

PO Box 2948 | Hobbs, NM 88241 | Phone 575.393.2967

August 1st, 2014

Mr. Mike Bratcher

New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division – District 2 811 S. First Street Artesia, NM 88210

RE: Corrective Action Plan Burnett Oil Co. – Jackson B 67 UL/G sec. 24 T17S R30E API No. 30-015-41968

Mr. Bratcher:

Burnett Oil Co. (Burnett) has retained Rice Environmental Consulting and Safety (RECS) to address potential environmental concerns at the above-referenced site.

Background and Previous Work

The site is located approximately 3.4 miles east of Loco Hills, New Mexico at UL/G sec. 24 T17S R30E. The overspray is located in UL/B, C, F, G sec. 24 T17S R30E. This site is in an area of no known groundwater (Figure 1).

On July 5th, 2014, Burnett had a well tester on the well head that when pressured up popped off causing an overspray of 136 barrels of oil and produced water over 1,014,373 square feet of lease pad, lease road and pasture land. NMOCD and BLM were notified of the release on July 7th, 2014 and an initial C-141 was submitted on July 9th, 2014 to NMOCD for their approval (Appendix A).

RECS personnel were on site beginning on July 7th, 2014 to assess the release. Surface samples were taken at seven points within the release area, and two points were sampled with depth (Figure 2). The samples were field tested for chlorides and organic vapors, and all samples were taken to a commercial laboratory for analysis (Appendix B). Point 1 and Point 2 were sampled to a depth of 6 inches bgs where chlorides, Gasoline Range Organics (GRO), Diesel Range Organics (DRO) and BTEX readings were all below regulatory standards. Points 3 through 7 returned laboratory readings below regulatory standards at the surface.

Photo documentation of the release can be found in Appendix C.

Corrective Action Plan

Based on the laboratory analysis, the areas around Point 1 and Point 2 will be scraped up to 6 inches bgs (Figure 3). A composite sample from the base of the scrape will be taken and sent to

a commercial laboratory to confirm that chloride, GRO, DRO and BTEX values are below regulatory standards. The area closer to the well head, where pooling of fluids occurred, will be scraped down until a composite sample of the scrape shows laboratory chloride, GRO, DRO and BTEX values below regulatory standards.

All soils from the scrapes will be evaluated for use as backfill and any soils that do not meet regulatory standards will be sent to a NMOCD approved facility for disposal. Clean soil will be imported to the site to replace any soils taken for disposal. A sample of the blended soil will be taken and sent to a commercial laboratory for analysis to confirm that all constituents are below regulatory standards. The scrapes will be backfilled with the blended soil and contoured to the surrounding location. The areas in the pasture will be seeded with a blend of native vegetation.

The remainder of the site is oil overspray that has partially covered the vegetation in the area. Therefore, the areas around Point 3-7 will be sprayed with Micro-Blaze to wash the vegetation. Micro-Blaze contains a proprietary blend of wetting agents, nutrients, and several strains of safe, non-pathogenic *Bacillus* bacteria. When applied to a hydrocarbon-based or organic spill, the wetting agent begins breaking down the contaminants into smaller molecules for more efficient degradation by the microbes into harmless byproducts like carbon dioxide, water and trace salts.

Once these activities have been completed, a Termination Request will be sent to NMOCD and BLM requesting 'remediation termination' and site closure.

RECS appreciates the opportunity to work with you on this project. Please call Hack Conder at (575) 393-2967 or me if you have any questions or wish to discuss the site.

Sincerely,

JC.W.

Lara Weinheimer Project Scientist RECS (575) 441-0431

Attachments:

Figure 1 – Groundwater Figure 2 – Initial Sampling Data Figure 3 – Proposed Corrective Action Appendix A – Initial C-141 Appendix B – Initial Sampling Lab Appendix C – Photo Documentation

Figures

RICE Environmental Consulting and Safety (RECS) P.O. Box 2948, Hobbs, NM 88241 Phone 575.393.2967

Depth to Groundwater

P 10	М	N 11	0	P	M		0 2	Р	м	N	0 7	P	M8
A	D	с	в	A	P040	С	В	A	D	C	В	A	D
н	E	F	G	н	ME LAVE ROLD	F	G	н	E	F	G	Ħ	E
15 I	1-	к 14	J	1	L	к	13 J	1	Ŀ	к 0 §	18 0 2	ATER	17 L
Р	м	N	0	Р	М	N	0	P.(1202)) M	N	AREA°OF NO KNOWN	GROUNDWATER	М
A	D	c	В	A	D	Jaĉk	son E	• 67	D	c	AR!	GROI	D
	0 E	٦	G	H	E	F	G	н Н	E	F	G	Н	E
22 1	Eddy L	23 County K	J US 82	17 S 30	E	K	24 J		17 S L	31 Е к	19 J	F	20 L
Р	М	N	0	P	м	N	0	P	M	N	Ö	P 0 3)0	М
A	P	c	В	A	D	С	В	A	D	C	В	A	D
Н	E	F	G	H	E	F	G 25	H	E	F	G G 30	0) H	E 29
-27 I	L	к	1	I-	T	к	J	1	Ŀ	к	J	į.	E
	V: Non gend	e	0	Р	М	N	0	Р	М	N	Ō	P	М
S	RECS SC	OIL BORES OADS	B G	A	D	C	NES/Airbus	DigitalĢļobe, DS, USDA, U d the GļŞ Us	JSGS, AEX	Getmappir	B hstar Geogra ig, Aerogrid, G	aphics <u>a</u> IGN, IGP H	D 32 E
	RE				BU. JAC	RNE KSO	TT C N B	DIL 67 24		0.25 H		W	N S E
	CE ENV C O N S U L T			L			R-30-E UNTY, 1			date: 7/22/1 y: L. Weinh			

Initial Sampling Data

	any at	a 7/ 1		10 9 AS		2 Harris	a set of the		Press A.	
Point 1										
1.2.2.1.6	CI-	PID	GRO	DRO	В	T	E	X	BTEX	
Surface	4400	332.6	141	11900	<0.1	<0.1	0.146	0.359	<0.6	
6"	160	1.3	<10	47.3	<0.05	<0.05	<0.05	<0.15	<0.3	
and the second sec										
Point 2										
ALL ALL	Cl-	PID	GRO	DRO	В	T	E	X	BTEX	
Surface	1120	59.3	<50	2170	<0.05	<0.05	<0.05	<0.15	<0.3	
6"	48	1.8	<10	14.2	<0.05	<0.05	<0.05	<0.15	<0.3	
-	12 Aleren	Carlo and	STALLED TO	C		- Chi	N.S.			
1.2		1. 1.	initial	Surface	e Samp	les		E		
a alt of	Cl-	PID	GRO	DRO	В	T	E	X	BTEX	
Pt. 3	176	2.8	<10	58.2	<0.05	<0.05	<0.05	<0.15	<0.3	
Pt. 4	80	3.4	<10	22.8	<0.05	<0.05	<0.05	<0.15	<0.3	
Pt. 5	160	23.2	<10	19.9	<0.05	<0.05	<0.05	<0.15	<0.3	
Pt. 6	80	27.1	<10	<10	<0.05	<0.05	<0.05	<0.15	<0.3	
Pt. 7	176	23.9	<10	38.6	<0.05	<0.05	<0.05	<0.15	<0.3	
ATTENT OF THE ME			Partie and			ALL CARS	an 21	a marine	A TANK	

Landowner: BLM DGW: None

Legend

SAMPLE POINT 7/8/14

SATURATED AREA

- - LIGHTER OVERSPRAY- 863,497 SQ FT
 - HEAVIER OVERSPRAY- 154,853 SQ FT

BURNETT	0	IL
JACKSON	B	67
UL G SECTIO		4

and the GIS l

6

7

5

Δ

2

Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,

T-17-S R-30-E EDDY COUNTY, NM

JA.	CI	KS	10	JB	#0	6

Fig		e 2	W E						
0		300	600						
\square			Feet						
GPS date: 7/7/14 JB & KS, 7/8/14 KS Drawing date: 7/18/14 Drafted by: T. Grieco/L.Weinheimer									

Proposed Corrective Action

MICROBLAZE

CNES/Airbus DS

BURNETT OIL

JACKSON B 67

UL G SECTION 24

T-17-S R-30-E

EDDY COUNTY, NM

Landowner: BLM **DGW: None**

Legend

OIL WELL ROAD EDGE

LIGHTER OVERSPRAY- 863,497 SQ FT

HEAVIER OVERSPRAY- 154,853 SQ FT SATURATED AREA

SCRAPE UP TO 6 IN BGS

Source: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,

ŀ

Drawing date: 7/18/14

0

F

Figure 3

300

GPS date: 7/7/14 JB & KS, 7/8/14 KS

Drafted by: T. Grieco/L.Weinheimer

JACKSON B #067

600

Feet

Appendix A Initial C-141

RICE Environmental Consulting and Safety (RECS) P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967 State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Fra	ncis Dr., Santa	a Fe, NM 8750	5	Sa	anta Fe	e, NM 875	505				
			Rel	ease Notific	catio	n and Co	orrective A	ction			
						OPERA	TOR	🖂 Initi	al Report	П	Final Repor
Name of C	ompany B	Burnett Oil C	ю.		_	Contact Sh	nawna Matthews				1
Address	87 Square	Lake Rd., L	oco Hills	NM 88255		Telephone 1	No. (575) 219-	6370			
Facility Na	me Jackso	on B 67				Facility Typ	be Well tester of	on site			
Surface Ov	vner BLM	-		Mineral (Owner			API No	. 30-015-4	41968	
				LOC	TIO	N OF RE	FASE				
Unit Letter	Section	Township	Range	Feet from the		/South Line	Feet from the	East/West Line	County		
G	24	175	30E	2130		FNL	1785	FEL	Eddy		
0	21	175	501					TEL	Eddy		
				Latitude 32.82	21405	_Longitude	e <u>-103.922745</u>	-			
T		e 11			URE	OF REL					
Source of Re		rspray of oil a	and produc	ced water	_	the second se	Release 136 bb		Recovered		
Source of Re	elease well	Tester				7/5/2014	Iour of Occurrent 7:00 PM	Date and 7/5/2014	Hour of Dis 7:00 PM	covery	
Was Immedi	iate Notice C		Yes 🗵	No 🗌 Not R	equired	If YES, To	Whom?				
By Whom? I						Date and H	lour: Email BLM	and NMOCD on 7	/7/2014		
Was a Watercourse Reached?					If YES, Volume Impacting the Watercourse.						
		em and Reme r on it. The v			popped	off causing a	n over spray of oi	l and produced wat	er.	÷ 1	
A total of 1,(submitted fo)14,373 sq fi r NMOCD a	nd BLM appi	and pastur oval.	e land was affecte				ssed and a Correcti			
regulations a public health should their or the enviro	Il operators or the envir operations h nment. In a	are required to conment. The ave failed to a	o report ar acceptance adequately OCD accept	nd/or file certain r e of a C-141 repo investigate and r	elease nort by the emediate	otifications as e NMOCD m e contaminati	nd perform correct arked as "Final R on that pose a thr	nderstand that purs trive actions for rele eport" does not reli eat to ground water responsibility for co	eases which eve the oper ; surface wa	may en- rator of iter, hun	danger liability nan health
Signature Shawna Matthews							SERVATION	DIVISIC	DN		
Printed Nam	e: Shawna	Matthews			1	Approved by	Environmental S	pecialist:			
Title: Senior	Production	Technician	1			Approval Dat	e:	Expiration	Date:		
		ews@burnette	oil.com			Conditions of	Approval:		Attached		
Date: 7-9-1	14		Phone:	(575) 219-6370					1		

* Attach Additional Sheets If Necessary

Appendix B Initial Sampling Lab

RICE Environmental Consulting and Safety (RECS) P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967

July 18, 2014

LAURA FLORES RICE ENVIRONMENTAL CONSULTING & SAFETY LLC 419 W. CAIN HOBBS, NM 88240

RE: JACKSON B #67

Enclosed are the results of analyses for samples received by the laboratory on 07/11/14 16:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-13-5. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 1 @ SURFACE (H402118-01)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.100	0.100	07/17/2014	ND	2.06	103	2.00	12.6	
Toluene*	<0.100	0.100	07/17/2014	ND	2.06	103	2.00	12.3	
Ethylbenzene*	0.146	0.100	07/17/2014	ND	2.13	106	2.00	12.2	
Total Xylenes*	0.359	0.300	07/17/2014	ND	6.39	106	6.00	12.7	
Total BTEX	<0.600	0.600	07/17/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AP						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	141	100	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	11900	100	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	171 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	295 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 2 @ SURFACE (H402118-02)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2014	ND	2.26	113	2.00	3.51	
Toluene*	<0.050	0.050	07/17/2014	ND	2.08	104	2.00	3.14	
Ethylbenzene*	<0.050	0.050	07/17/2014	ND	2.18	109	2.00	3.52	
Total Xylenes*	<0.150	0.150	07/17/2014	ND	6.55	109	6.00	3.43	
Total BTEX	<0.300	0.300	07/17/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1120	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<50.0	50.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	2170	50.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	127 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	178 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 3 @ SURFACE (H402118-03)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2014	ND	2.26	113	2.00	3.51	
Toluene*	<0.050	0.050	07/17/2014	ND	2.08	104	2.00	3.14	
Ethylbenzene*	<0.050	0.050	07/17/2014	ND	2.18	109	2.00	3.52	
Total Xylenes*	<0.150	0.150	07/17/2014	ND	6.55	109	6.00	3.43	
Total BTEX	<0.300	0.300	07/17/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	58.2	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	123 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	132 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 4 @ SURFACE (H402118-04)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2014	ND	2.26	113	2.00	3.51	
Toluene*	<0.050	0.050	07/17/2014	ND	2.08	104	2.00	3.14	
Ethylbenzene*	<0.050	0.050	07/17/2014	ND	2.18	109	2.00	3.52	
Total Xylenes*	<0.150	0.150	07/17/2014	ND	6.55	109	6.00	3.43	
Total BTEX	<0.300	0.300	07/17/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	22.8	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	125 9	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	132 9	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 5 @ SURFACE (H402118-05)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2014	ND	2.26	113	2.00	3.51	
Toluene*	<0.050	0.050	07/17/2014	ND	2.08	104	2.00	3.14	
Ethylbenzene*	<0.050	0.050	07/17/2014	ND	2.18	109	2.00	3.52	
Total Xylenes*	<0.150	0.150	07/17/2014	ND	6.55	109	6.00	3.43	
Total BTEX	<0.300	0.300	07/17/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	19.9	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	1169	65.2-14	0						
Surrogate: 1-Chlorooctadecane	121 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 6 @ SURFACE (H402118-06)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/17/2014	ND	2.26	113	2.00	3.51	
Toluene*	<0.050	0.050	07/17/2014	ND	2.08	104	2.00	3.14	
Ethylbenzene*	<0.050	0.050	07/17/2014	ND	2.18	109	2.00	3.52	
Total Xylenes*	<0.150	0.150	07/17/2014	ND	6.55	109	6.00	3.43	
Total BTEX	<0.300	0.300	07/17/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	<10.0	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	123 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	125 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/08/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 7 @ SURFACE (H402118-07)

BTEX 8021B	mg/	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/16/2014	ND	2.28	114	2.00	2.77	
Toluene*	<0.050	0.050	07/16/2014	ND	2.28	114	2.00	1.94	
Ethylbenzene*	<0.050	0.050	07/16/2014	ND	2.39	119	2.00	2.07	
Total Xylenes*	<0.150	0.150	07/16/2014	ND	7.18	120	6.00	1.62	
Total BTEX	<0.300	0.300	07/16/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	38.6	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	124 9	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	131 9	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/10/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 1 @ 6" (H402118-08)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/16/2014	ND	2.28	114	2.00	2.77	
Toluene*	<0.050	0.050	07/16/2014	ND	2.28	114	2.00	1.94	
Ethylbenzene*	<0.050	0.050	07/16/2014	ND	2.39	119	2.00	2.07	
Total Xylenes*	<0.150	0.150	07/16/2014	ND	7.18	120	6.00	1.62	
Total BTEX	<0.300	0.300	07/16/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	47.3	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	121 9	65.2-14	0						
Surrogate: 1-Chlorooctadecane	127 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

RICE ENVIRONMENTAL CONSULTING & SAFETY LAURA FLORES 419 W. CAIN HOBBS NM, 88240 Fax To: (575) 397-1471

Received:	07/11/2014	Sampling Date:	07/10/2014
Reported:	07/18/2014	Sampling Type:	Soil
Project Name:	JACKSON B #67	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	NOT GIVEN		

Sample ID: POINT 2 @ 6" (H402118-09)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/16/2014	ND	2.28	114	2.00	2.77	
Toluene*	<0.050	0.050	07/16/2014	ND	2.28	114	2.00	1.94	
Ethylbenzene*	<0.050	0.050	07/16/2014	ND	2.39	119	2.00	2.07	
Total Xylenes*	<0.150	0.150	07/16/2014	ND	7.18	120	6.00	1.62	
Total BTEX	<0.300	0.300	07/16/2014	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/16/2014	ND	416	104	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	07/15/2014	ND	192	95.9	200	0.641	
DRO >C10-C28	14.2	10.0	07/15/2014	ND	203	102	200	3.60	
Surrogate: 1-Chlorooctane	122 %	65.2-14	0						
Surrogate: 1-Chlorooctadecane	127 %	63.6-15	,						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

RDINAL LABORATORIES

101 East Marland, Hobbs, NM 88240 2111 Beechwood, Abilene, TX 79603

(505) 393-2326 FAX (505) 393-2476 (325) 673-7001 FAX (325)673-7020

Company Name: RECS						BILL TO					and the first	ANALYSIS REQUEST												
Project Manager: Laura Flores, Vible Nor man						P	P.O. #:										1-3							
Address:							C	Company:										ns						
City: Hobbs State: NM Zip: 88240								A	Attn:										io					
Phone #: Fax #:							A	Address:						1	_			Ar						
Project #: Project Owner:							0	City:						S	Z		TPH	Cations/Anions						
Project Name:						5	State: Zip:						Chlorides	TPH 8015	X	F	io	S						
Project Location: Jack Son B #67						F	Phone #:						ori		BTEX	Texas	Cat	2						
Sampler Name: Kyle Schnaick						Fax #: PRESERV. SAMPLING						NC	1 H			Xe								
FOR LAB USE ONLY				-		TAN	RIX	T	- -	RE	SER	V.	SAMPLI	NG	0	E		F	et					
Lab I.D. H402118	Sample I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	WASTEWATER	SOIL	OIL	SLUDGE	OTHER :	ACID/BASE:	CICE / COOL	OTHER:	DATE	TIME		N	×		Complete					
	Point 1@ surface	6	1	1		K		+	+	1	K	+	2-8-14		X	1	R	-		-				-
	point 2@ Surface	6	1	1		x		+	+	1	5	+	(9:50	17	X	R	-	-					
3	point 3 @ Surface	6	1	1		Ķ	\vdash	4	+	-	X	+	1	9:55	R	X	X	-	-	-				
	point 4 @ surface	6	1	╞		ĸ		+	+	-	5	+	- /	10:00	N	V	Ŷ	-	-	-				
5	point 5 @ surface	6	4	┝	-	X		+	+	-	5	+	- 1	10:10	17	2	X						1	
	point 6 @ surface	6	H	⊢	-	K	$\left \right $	+	+	-	X	+	1	10'.15	12	R	V							
7	point 7 6 surface	6	ť	⊢	-	K		1		-	K		7-10-14	7:15	X	X	R							_
9	point 1 @ 6" point 2 @ 6"	6	1			X					k			7:50	×	X	K		_	-				

anaryses. An came including indeforming indeforming shows and any other cause matabove and the value of the service interruptions, loss of use, or loss of profils incurred by client, its subsidiaries service. In no event shall Cardinal be liable for incidental or consequential demages, including without limitation, business interruptions, loss of use, or loss of profils incurred by client, its subsidiaries affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise.

Relinguished By: <u>Kyle</u> Schnauk Relinguished By:	Kule Schmaik Time :00 4		Phone Result: Yes No Add'l P Fax Result: Yes No Add'l F REMARKS: email: hconder@riceswd.com Iweinheimer@rice-ecs.com; kijkamplain@rice-ecs.com; sed	n; Iflores@rice-ecs.com; norman@rice-ecs.com;
Delivered By: (Circle One) Sampler - UPS - Bus - Other:		Sample Condition C Cool Intact Yes Yes No No	Cursanic@rice-ecs.com Environmental Tech:	@rice-ecs.com

† Cardinal cannot accept verbal changes. Please fax written changes to 505-393-246

Appendix C Photo Documentation

RICE Environmental Consulting and Safety (RECS) P.O. Box 2948 Hobbs, NM 88241 Phone 575.393.2967

Burnett Oil Co. Jackson B 67

Unit Letter G, Section 24, T17S, R30E

Initial site photo, facing east

7/7/14

Initial site photo, facing northwest

Initial site photo, facing northeast

7/7/14

Initial site photo, facing north

7/7/14