			SITE INFORM	MATION		
		Report T	ype: Work F	Plan 2	RP-4959	
General Site In	formation:					
Site:		El Preside	ente State #4H			
Company:			Oil Permian, LLC			
	ship and Range	Unit O	Sec. 02	T 24S	R 27E	
Lease Number	:)-015-44165			
County:		Eddy Cour				
GPS:		0	32.2400799° N			104.153171° W
Surface Owner		State				
Mineral Owner Directions:	:	From the int	toroaction of LIC 205	and Block Div	or Villaga Dd i	n Malaga, travel west on Black Riv
			2.05 mi, turn south f			d for approx. 2.85 mi, turn west ar
Release Data:						
Date Released:		12/24/2017	7			
Type Release:		Oil and Pro	oduced Water			
Source of Conta	amination:	Oil Tank				
Fluid Released:		91 bbls				
Fluids Recovere		13 bbls				
Official Commi	unication:					
Name:	Callie Karrigan				Ike Tavarez	2
Company:	Marathon Oil Pern	nian, LLC.			Tetra Tech	
Address:	2423 Bonita St.				4000 N. Big	g Spring
					Ste 401	
City:	Carlsbad, NM 882	220			Midland, Te	exas
Phone number:	(575) 297-0956				(432) 687-8	
					. ,	
Fax:						

Depth to Groundwater:		Ranking Score	Site Data
:50 ft		20	
50-99 ft		10	50'-75'
>100 ft.		0	
NellHead Protection:		Ranking Score	Site Data
Vater Source <1,000 ft., Private <200	ft.	20	
Vater Source >1,000 ft., Private >200	ft.	0	0
Surface Body of Water:		Ranking Score	Site Data
:200 ft.		20	
200 ft - 1,000 ft.		10	
-1,000 ft.		0	0
Total Ranking Sco	re:	10	

1,000

May 7, 2018

Mike Bratcher Environmental Engineer Specialist Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Work Plan for the Marathon Oil Company, El Presidente State #4H, Unit O, Section 02, Township 24 South, Range 27 East, Eddy County, New Mexico. 2RP-4557.

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by Marathon Oil Company (Marathon) to investigate and assess a release that occurred at the El Presidente State #4H, Unit O, Section 02, Township 24 South, Range 27 East, Eddy County, New Mexico (Site). The spill site coordinates are N 32.2400799°, W 104.153171°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-141 Initial Report, the release was discovered on December 24, 2017, and released approximately ninety-one (91) barrels of fluids (89 bbls of oil and 2 bbls of produced water) due to a water hauler failing to disconnect from the load line prior to disembarking. Approximately thirteen (13) barrels of fluids were recovered. The release occurred on the pad area and measured approximately 150' x 200' and approximately 3.7 barrels of fluids migrated into the adjacent pasture impacting an area measuring approximately 30' x 125'. The initial C-141 form is included in Appendix A.

Groundwater

No wells are listed within Section 02 in the New Mexico Office of the State Engineers database, the USGS National Water Information System, or the Geology and Ground-Water Resources of Eddy County, NM (Report 3). However, the State Engineers database lists a well in Township 23 South, Range 27 East, Section 35, approximately 1.45 miles northwest of the site, with a reported depth to water of 67' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is between 50' and 75' below surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, dated August 13, 1993. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the depth to groundwater, the proposed RRAL for TPH is 1,000 mg/kg.

Soil Assessment and Analytical Results

On February 22, 2018, Tetra Tech personnel were onsite to evaluate and sample the release area. Eight auger holes (AH-1 through AH-8) were installed in the release footprint to total depths ranging from 6" to 4.5' below surface. Selected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of the laboratory analysis and chain-of-custody documentation are included in Appendix C. The sampling results are summarized in Table 1. The auger hole locations are shown in Figure 3.

TPH

Referring to Table 1, the areas of auger holes (AH-1, AH-3, and AH-4) showed TPH highs below the RRAL with concentrations of 209 mg/kg (AH-1), 599 mg/kg (AH-3), and 18.0 mg/kg (AH-4). The remaining auger hole locations showed elevated TPH concentrations to the shallow soils. The areas of auger holes (AH-2, AH-5, AH-6, AH-7, and AH-8) showed TPH highs of 16,100 mg/kg (0-6"), 45,700 mg/kg (0-1'), 10,500 mg/kg (0-1'), 15,000 mg/kg (0-1'), and 7,640 mg/kg (0-1'), respectively. The TPH concentrations declined with depth in the areas of auger holes (AH-5, AH-5, AH-7, and AH-8) to below the RRAL at depths ranging from 1.0'-1.5' to 3.0'-3.5' below surface. However, deeper samples were not collected in the area of auger hole (AH-2) due to a dense formation and the impact was not vertically defined.

Benzene and Total BTEX

The areas of auger holes (AH-1, AH-2, and AH-3) did not show any benzene or total BTEX concentrations above the RRALs. The area of auger hole (AH-5) showed a benzene concentration of 28.3 mg/kg at 0-1', which declined with depth to 13.8 mg/kg at 1.0'-1.5' and <0.101 mg/kg at 2.0'-2.5' below surface. None of the remaining areas showed benzene concentrations above 10 mg/kg. Additionally, the areas of auger holes (AH-5, AH-6, AH-7, and AH-8) showed total BTEX concentrations above the RRAL in the shallow soils, with BTEX highs of 870 mg/kg (1.0'-1.5'), 309 mg/kg (0-1'), 412 mg/kg (0-1'), and 101 mg/kg (0-1'), respectively. The BTEX concentrations then declined with depth to below the RRAL's at depths between 1.0'-1.5' and 2.0'-2.5' below surface.

Chloride

The areas of auger holes (AH-1, AH-4, AH-5, AH-6, and AH-8) did not show elevated chloride concentrations above the 600 mg/kg threshold. However, a shallow chloride impact was detected in the areas of auger holes (AH-2, AH-3, and AH-7), with concentrations of 1,510 mg/kg, 2,000 mg/kg, and 2,900 mg/kg at 0-1' below surface, respectively. The chloride concentrations detected in auger hole (AH-7) declined with depth to 73.7 mg/kg at 1.0'-1.5' below surface. Deeper samples were not collected in the areas of auger holes (AH-2 and AH-3) due to a dense formation and the chloride impact was not vertically defined.

Work Plan

Based on the laboratory results, Marathon proposes to remove the impacted soils as shown on Figure 4 and highlighted (green) on Table 1. The areas of auger holes (AH-2, AH-3, AH-6, AH--7 and AH-8) will be excavated to approximately 1.0'-2.0' below surface and the area of auger hole (AH-5) will be excavated to approximately 2.0'-3.0' below surface. During the excavation activities, deeper samples will be collected using a backhoe in the areas of auger holes (AH-2 and AH-3) in order to vertically define the extents. Based on the results those areas will be excavated to the appropriate depths. The excavated areas will then be backfilled with clean material to surface grade. All of the excavated material will be transported offsite for proper disposal.

The proposed excavation depths may not be reached due to wall cave ins and safety concerns for onsite personnel. In addition, impacted soil around oil and gas equipment, structures or lines may not be feasible or practicable to be removed due to safely concerns for onsite personnel. As such, Marathon will excavate the impacted soils to the maximum extent practicable.

Revegetation Plan

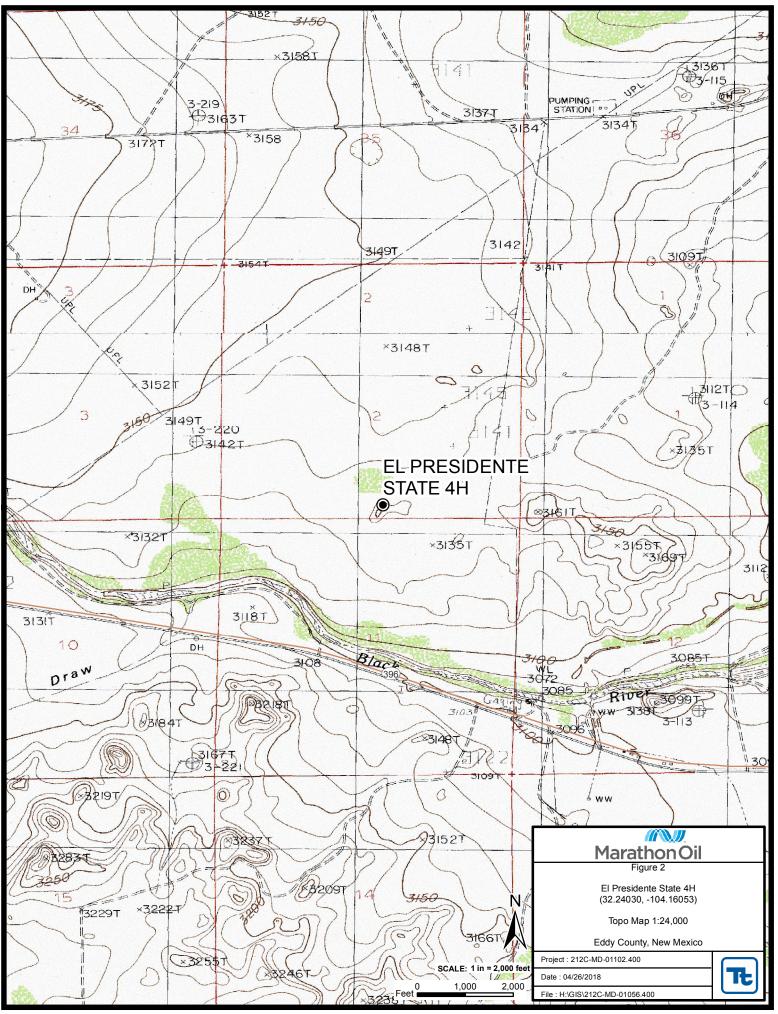
The backfilled areas in the pasture will be seeded in June 2018 in order to coincide with the rainy season in Southeastern New Mexico to aid in revegetation. Based on the soils at the site, the NMSLO Loamy (L) Sites Seed Mixture will be used for seeding and will be planted in the amount specified in the pounds pure live seed (PLS) per acre. The seed mixture will be spread by a drill equipped with a depth regulator or a hand-held broadcaster and raked. If a hand-held broadcaster is used for dispersal, the pounds pure live seed per acre will be doubled.

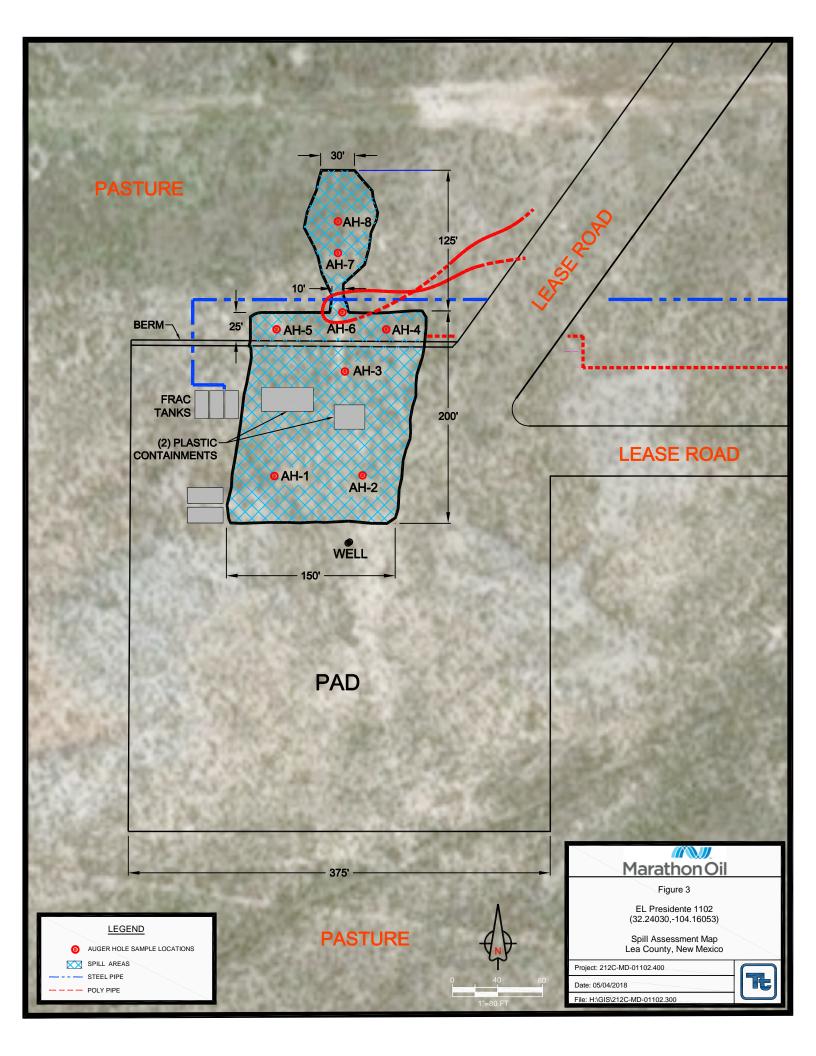
Site inspections will be performed to assess the revegetation progress and evaluate the site for the presence of primary or secondary noxious weeds. If noxious weeds are identified, the NMSLO will be contacted to determine an effective method for eradication. If the site does not show revegetation after one growing season, the area will be reseeded as appropriate. The NMSLO seed mixture details and corresponding pounds pure live seed per acre are included in Appendix D.

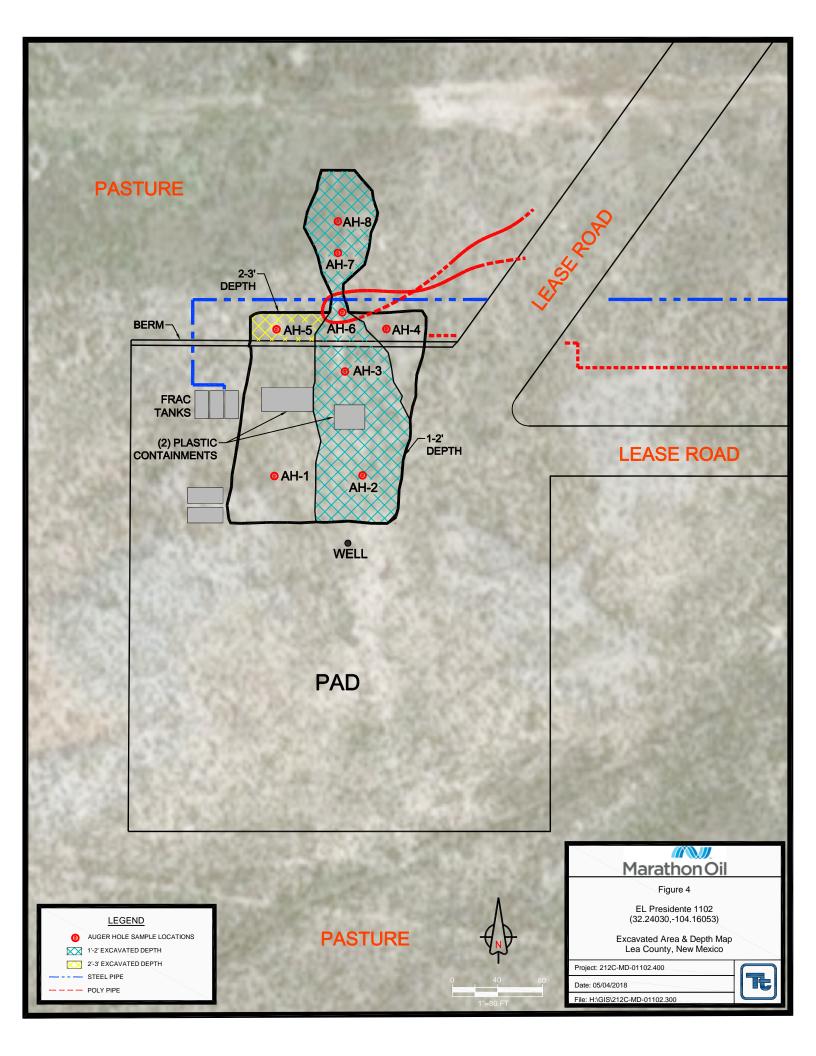
Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH


Clair Gonzales, Project Manager


cc: Crystal Weaver – NMOCD Ryan Mann - NMSLO Callie Karrigan - Marathon Ike Tavarez,


Senior Project Manager, P.G.

Figures

Tables

Table 1
Marathon Oil Company
El Presidente State #4H
Eddy County, New Mexico

Sample ID	Sample	Sample	Soil	Status		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	2/22/2018	0-6"	Х		<15.0	194	15.2	209	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	47.9
AH-2	2/22/2018	0-6"	Χ		1,100	14,600	407	16,100	<0.00200	0.121	0.0547	0.680	0.856	1,510
AH-3	2/22/2018	0-6"	Χ		16.4	552	30.8	599	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	2,000
AH-4	2/22/2018	0-1	Х		<15.0	18.0	<15.0	18.0	<0.00201	<0.00201	<0.00201	0.00427	0.00427	36.9
	"	1-1.5	Χ		<14.9	<14.9	<14.9	<14.9	<0.00202	<0.00202	<0.00202	0.0150	0.0150	12.9
AH-5	2/22/2018	0-1	Х		18,700	26,600	366	45,700	28.3	255	42.5	435	761	71.9
	"	1-1.5	Χ		17,100	22,500	273	39,900	13.8	182	82.4	592	870	7.60
	"	2-2.5	Χ		652	2,000	85.8	2,740	<0.101	0.612	1.15	11.9	13.7	53.2
	II .	3-3.5	Х		25.3	426	<14.9	451	-	-	-	-	-	33.5
AH-6	2/22/2018	0-1	Х		3,470	6,940	82	10,500	<1.00	31.5	27.2	250	309	508
	II .	1-1.5	Х		201	1,130	19.6	1,350	<0.00200	0.140	0.0541	0.613	0.807	195
	II .	2-2.5	Х		28.8	306	19.8	355	-	-	-	-	-	16.2
	II .	3-3.5	Х		-	-		-	-	-	-	-	-	53.0
AH-7	2/22/2018	0-1	Х		5,180	9,640	176	15,000	1.11	69.2	33.1	308	412	2,900
	"	1-1.5	Х		43.6	272	<15.0	316	<0.00198	0.00823	0.00619	0.102	0.117	73.7
	II .	2-2.5	Х		-	-	-		-	-	-	-	-	45.7
	"	3-3.5	Χ		-	-	-	-	-	-	-	-	-	6.11
	"	4-4.5	Х		-	-	-	-	-	-	-	-	-	91.8
AH-8	2/22/2018	0-1	Х		2,830	4,740	68.7	7,640	<0.0992	10.5	7.10	83.1	101	268
	"	1-1.5	Х		<15.0	76.6	<15.0	76.6	<0.00202	0.00367	<0.00202	0.0326	0.0363	13.4
	"	2-2.5	Х		-	-	1	-	-	-	-	-	-	<5.00
	"	3-3.5	Х		-	-	-	-	-	-	-	-	-	54.6

(-) Not Analyzed

BEB Below Excavation Bottom

Proposed Excavation

Photos

View East – Area of AH-1 and AH-2

View West – Area of AH-3

View South - Area of AH-4

View Southwest - Area of AH-5

View North - Area of AH-6

View North – Area of AH-7

View Southwest – Area of AH-8

Appendix A

NM OIL CONSERVATION

ARTESIA DISTRICT

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

JAN 08 2018

Form C-141 Revised April 3, 2017

Submit 1 Copy to appropriate District Office in **RECEIVED** rdance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Release Notification and Corrective Action NAB 1800 929 918 **OPERATOR** Initial Report Final Report Name of Company: Marathon Oil Permian LLC 372098 Contact: Jason Wardell Address: 5555 San Felipe St., Houston, TX 77056 Telephone No.: 575-297-0682 Facility Name: El Presidente State 4H Facility Type: Oil Well Surface Owner: State Mineral Owner: State API No.: 30-015-44165 LOCATION OF RELEASE Unit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line County 27E 330 **FSL** O 02 **24S** 2310 FEL Eddy Latitude32.2400799999999 Longitude-104.153171 NAD83 NATURE OF RELEASE 20 bbls 01/2 bbls were volume Recover Volume Recovered: 13 bbls? Type of Release: Crude Oil Source of Release: Oil Tanks Date and Hour of Occurrence: Date and Hour of Discovery: 12/14/17 -12/24/17 - 2130 HRS 2130 HRS Was Immediate Notice Given? If YES, To Whom? Email to Crystal Weaver and Mike Bratcher By Whom? Jason Wardell Date and Hour: 12/25/2017 1456 HRS Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ☒ No If a Watercourse was Impacted, Describe Fully.* N/A Describe Cause of Problem and Remedial Action Taken.* A water hauler failed to disconnect from the water load line before driving off. As a result, the oil load line and the water load line were damaged and approximately 91 bbls of produced fluid (89 bbls oil, 2 bbls water) was spilled onto location with approximately 3.7 bbls leaving location. Describe Area Affected and Cleanup Action Taken.* All but 3.7 bbls of the 91 spilled, remained on location. Impacted soil on location has been cleaned up and disposed of appropriately. Impacted area off of location has been fenced off pending an approved clean up and remediation plan. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Jason Wardell Approved by Environment By Specialist Printed Name: Jason Wardell Expiration Date: N/A Title: HES Professional Approval Date: E-mail Address: jlwardell@marathonoil.com Conditions of Approval: Date: 01/08/2018 Phone: 575-297-06892

Appendix B

Water Well Data Average Depth to Groundwater (ft) Marathon - El Presidente State #4H Eddy County, New Mexico

Carl Bad 7 8 267 9 10 11 12 18 17 16 15 14 13 19 20 21 22 224 23 24 30 99 29 28 27 26 25 30 29 103 28 27 26 25 30 29 103 28 27 26 25 31 32 223 33 34 35 36 24 South 26 East 24 South 26 East 24 South 27 East 24 South 28 East 6 6 3 5 4 3 2 1 18 30 17 16 15 14 30 13 28 30 17 16 15 14 13 30 38 40 9 50 10 11 12 29 6 43 1 27 20 73 18 30 17 16 15 14 13 30 30 29 128 27 26 25 30 29 28 27 26 25 31 32 23 33 34 35 36 25 South 26 East 27 East 28 South 28 East 6 5 4 3 2 1 7 8 3 6 9 50 10 11 12 28 6 43 27 29 18 30 3 2 25 51 6 6 7 0 5 30 4 30 3 2 25 51 6 7 250 8 450 9 10 11 12 26 43 12 2 23 38 34 35 36 30 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29		23 Sc	out <u>h</u>	2	6 East				23 S	outh		27 East				23 Sc	uth	28	B East	
18	6	5	4	3 220	2	1	Carls	6 bad	5 83	4 90	3	2 70	1 17	6	16.5 5		4	3	2	1
18 17 16 15 14 13 19 20 21 22 224 23 24 20 21 22 224 23 23 24 90 30 99 29 28 27 26 25 30 29 103 28 27 26 25 31 32 23 33 34 35 36 30 29 103 28 27 26 25 31 32 23 33 34 35 36 30 29 10 11 12 7 250 8 450 9 10 11 12 24 80 9 10 11 12 26 43 21 7 250 8 450 9 10 11 12 26 43 22 1 7 8 50 9 10 11 12 26 43 22 1 27 8 50 9 10 11	7	8 267	9	10	11	12	1	7	8	9	10	11	12 40	7	2 6.5 8		9	10	11	12
19																		<u> </u>		-
19	18	17	16	15	14	13		18	17	16	15	14 75	13		17	7	16		14	
30 99 29 28 27 26 25 30 29 103 28 27 26 25 30 29 103 28 27 26 25 30 29 103 28 27 26 25 31 32 223 33 34 35 36 36 31 32 223 33 34 35 36 36 31 32 223 33 34 35 36 36 31 32 23 33 34 35 67 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	10	20	24	22.22	4 22	24		10	20	24	22	22.22	24.00		20	`	24	14	22	
30 99 29 28 27 26 25 30 29 103 28 27 26 25 30 29 103 28 27 26 25 30 29 28 27 26 25 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 67 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 67 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 23 33 34 35 36 36 31 32 31 32 33 34 35 36 36 31 32 31 32 33 34 35 36 36 31 32 31 3	19	20	21	22 22	4 23	24		19	20	21	22	23 23	24 90	19			21		23	
24 South 26 East 24 South 27 East 24 South 28 East 24 South 27 East 24 South 28 East 28 South 28 E	30 99	29	28	27	26	25	-	30	29 103	28	27	26	25	30			28		26	
31																. L	oving	[·		
6 63 5 4 3 2 1	31	32 223	33	34	35	36		31	32	33	34	35 67	36	31			33	34	35	
7 250 8 450 9 10 11 12		24 Sc	outh	2	6 East		4		24 S	outh	-	27 East			2	24 Sc	uth	28	B East	
26 43 27 27 28 28 27 28 28 28 28 28 28 29 18 52 34 28 39 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29	6 63					1	1	6	_	4		2	1	6						1 60
26 43 27 27 28 28 27 28 28 28 28 28 28 29 18 52 34 28 39 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29																				
18 17 16 15 14 30 13 650 19 20 21 22 23 38 24 28 30 29 46 28 27 30 26 25 30 29 46 28 27 30 26 25 31 32 111 33 34 35 36 31 32 111 33 34 35 36 25 South 26 25 31 32 11 32 33 34 35 36 25 South 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 31 32 11 12 12 12 12 11 12 11 13 14 13 13 13 13 13 13 14 13 13 <t< td=""><td>7 250</td><td>8 450</td><td>9</td><td>10</td><td>11</td><td>12</td><td></td><td>7</td><td></td><td></td><td>10</td><td>11</td><td></td><td>7</td><td>8</td><td>50</td><td>9</td><td>_</td><td></td><td></td></t<>	7 250	8 450	9	10	11	12		7			10	11		7	8	50	9	_		
34 34 37 30 30 29 46 28 27 30 26 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 40 40 40 40 40 40 40 4	10	4.7	10	45	44 00	40		40.00			4.5	4.4		40	4-	,	40		_	
19		17	16	15	14 30	13			117	16	15	14		18						
37 30 30 29 46 28 27 30 26 25 30 29 28 27 26 40 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 20 20 20 20 20 20 20		20	21	22	23 38	24 28	-	34 10	20	21	22	23		10			29 21	22		
30 29 46 28 27 30 26 25 31 32 111 33 34 35 36 31 32 111 33 34 35 36 25 South 26 East 25 South 27 26 25 30 29 28 27 26 25 31 32 33 34 35 36 25 South 27 26 25 30 29 28 20 21 22 23 24 25 30 29 28 27 26 25 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25		20	 					10	20			20					-		20	_
32 111 33 34 35 36 31 32 33 34 35 36	30	29 46	28	27 30				30	29	28		26	25	30			28	27	26	25
32 111 33 34 35 36 31 32 33 34 35 36	70																			
25 South 26 East 25 South 27 East 25 South 28 East 6 5 4 3 2 1 6 5 4 3 2 1 7 8 9 45 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 49 19 20 21 22		32 111	33	34	35	36		31	32	33	34	35	36	31	32	2	33	34	35	36
6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 35 3 32 2 1 Site 7 8 9 45 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 8 9 10 11 12 7 8 9 10 11 12 92 18 17 16 15 14 13 18 17 16 15 49 14 13 19 20 21 22 23 24 26 67 30 29 28 27 26 25 30 29 28 27 26 40 25 10 10 11 12 12 13 14 13 11 12 13 14 13 15 14 13 12 13 15 16 15 14 13 13 14 15 15 14 15 14 15 15 16 15 14 15 15 16 17 16 15 14 15 16 5 4 35 3 32 2 1 18 17 16 15 14 13 19 20 21 22 23 24 20 21 22 23 24 21 22 23 24 22 23 24 23 24 25 24 26 25 25 26 25 26 27 26 40 25 27 28 27 26 40 25 28 27 26 40 25 29 28 27 26 40 25 20 21 22 23 24 21 22 23 24 22 30 30 29 28 27 26 40 25 25 30 29 28 27 26 40 25 26 40 25 27 28 27 26 40 25 28 27 28 27 26 40 25 28 28 27 26 25 30 29 28 27 26 40 30 20 21 22 23 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 20 21 22 30 30 20 21 30 30 30 30 30 30 30 30		109																		
7 8 9 45 7 8 9 45 10 11 12 18 17 16 15 14 13 19 20 21 22 23 24 18 17 16 15 14 13 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 26 67 30 29 28 27 26 25 16 12		25 Sc	outh	2	6 East				25 S	outh	2	27 East			2	25 Sc	uth	28	3 East	
7 8 9 45 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 12 8 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 48 14 13 19 20 21 22 23 24 18 24 26 67 30 29 28 27 26 25 16 12 15 90	6	5	4	3	2	1		6	5	4	3	2	1	6	5		4 35	3 32	2	1
60 92 18 17 16 15 14 13 19 20 21 22 23 24 19 20 21 22 23 24 18 17 16 15 14 13 19 20 21 22 23 24 19 20 21 22 23 24 20 21 22 23 24 20 21 22 23 24 20 21 22 23 24 20 21 22 23 24 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 40 25)				
18 17 16 15 14 13 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 24 26 67 30 29 28 27 26 25 30 29 28 27 26 25 16 12 15 90	7	8	9 4	10	11	12		7	8	9	10	11	12	7	8		9	10	11	12
19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 26 67 30 29 28 27 26 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25	60				1		=		ļ			4		10				 	 	
19 20 21 22 23 24 19 20 21 22 23 24 30 29 28 27 26 25 30 29 28 27 26 25 16 16 12 19 20 21 22 23 24 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25 30 29 28 27 26 40 25	18	17	16	15	14	13		18	17	16	15	14	13	_	1 4	,	16		14	13
24 26 67 30 29 28 27 26 25 30 29 28 27 26 25 16 12 15 90	10	20	24	22	22	24		10	20	24	22	22	24		20	`	24	49	22	24
30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 40 25 15 90 27 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 15 26 40 25 26 40	19	20	21		23	24		19	-	21		23		19			21	22	23	24
16 12 15 90	30	29	28		26	25	1	30		28		26		30			28	27	26 40	25
				[-										50			_	ļ_,		
	31	32	33	34	35	36	1	31	32	33		35	36	31				34	35	36

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

replaced, O=orphaned,

(quarters are 1=NW 2=NE 3=SW 4=SE)

C=the file is water right file.) (quarters are smallest to largest) (NAD83 UTM in meters) (In feet) closed)

water right file.)	closed)		(qı	ıarte	rs a	re s	malle	st to la	irgest)	(NAD8:	3 UTM in meters) (1	n feet)	
		POD Sub-		0	Q	0								/ater
POD Number	Code		County				Sec	Tws	Rng	X	Y	DepthWellDept		
C 00342	C	CUB	ED		4	1	13	24S	27E	580432	3565080*	2565		
C 00347		CUB	ED		1	1	13	24S	27E	580010	3565479*	60	30	30
C 00364	C	CUB	ED		1	2	09	24S	27E	575997	3567043*	2270		
C 00516		CUB	ED	1	3	4	08	24S	27E	574288	3565901*	105	36	69
C 00516 CLW201016	О		ED	1	3	4	08	24S	27E	574288	3565901*	62		
C 00516 CLW308590	О		ED	1	3	4	08	24S	27E	574288	3565901*	105	36	69
C 00516 POD6		CUB	ED	1	4	3	08	24S	27E	573885	3565895*	78	17	61
C 00516 S		CUB	ED	1	3	4	08	24S	27E	574288	3565901	50	17	33
C 00631		C	ED	3	3	4	08	24S	27E	574288	3565701*	50	24	26
C 00683		C	ED		4	3	08	24S	27E	573986	3565796*	50	17	33
C 00821		C	ED		3	2	09	24S	27E	575996	3566635*	97	50	47
C 00850		C	ED		2	3	09	24S	27E	575595	3566223*	108	35	73
C 00929		C	ED		3	3	18	24S	27E	572013	3564159*	54	33	21
C 01169		C	ED	1	4	3	18	24S	27E	572282	3564261*	55	35	20
C 01187		C	ED		4	3	08	24S	27E	573986	3565796*	108	17	91
C 01366		CUB	ED			4	08	24S	27E	574590	3566003*	60	35	25
C 01452		C	ED				22	24S	27E	577435	3563175*	95	70	25
C 01721		C	ED			1	25	24S	27E	580271	3562033*	170		
C 01841		C	ED			1	29	24S	27E	573806	3561953*	150		
C 01943		C	ED			1	13	24S	27E	580221	3565275*	30	25	5
C 02976		C	ED	4	2	3	12	24S	27E	580519	3566195*	57	27	30
C 03037		C	ED	4	3	4	12	24S	27E	580930	3565795*	116	25	91
C 03092		C	ED	4	3	1	08	24S	27E	573678	3566501*	54	37	17
C 03145		C	ED	3	1	4	13	24S	27E	580749	3564579*	103	40	63
C 03147		C	ED	3	3	3	12	24S	27E	579885	3565715	140		
C 03260 POD1		C	ED	3	3	3	12	24S	27E	579995	3565935	80	56	24
C 03260 POD2	O	C	ED	1	3	3	12	24S	27E	580100	3565984	80	56	24
C 03489 POD1		CUB	ED	2	4	3	08	24S	27E	574153	3565939	200		
C 03490 POD1		CUB	ED	3	4	3	08	24S	27E	573812	3565709	140	23	117
C 03560 POD1		C	ED	2	3	3	18	24S	27E	572009	3564150	68	28	40
C 03740 POD1		C	ED	4	4	4	12	24S	27E	581283	3565795	340		
C 04147 POD1		CUB	ED	4	1	3	24	24S	27E	580101	3562969	35		
										A	Average Depth to	Water:	33 fee	et
											M inimu	n Depth:	17 fee	t
											Maximun	n Depth:	70 fee	t

Record Count: 32

PLSS Search:

Range: 27E Township: 24S

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

POD

 Code
 basin
 County
 64 16 4 Sec
 Tws
 Rng

 C
 ED
 1 3 3 3 35 238 27E

X Y 578315 3569206*

Water DepthWellDepthWater Column

67 feet

Average Depth to Water:

Minimum Depth: 67 feet

Maximum Depth: 67 feet

Record Count: 1

POD Number

C 03031

PLSS Search:

Section(s): 31-36

Township: 23S

Range: 27E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/24/18 8:30 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Appendix C

Analytical Report 577383

for Tetra Tech- Midland

Project Manager: Ike Tavarez
El Presidente State 4H
212C-MD-01102
05-MAR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab code: TX00127): Texas (T104704221-17-12)
Xenco-Lubbock (EPA Lab code: TX00139): Texas (T104704219-17-16)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-18-14)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

05-MAR-18

Project Manager: **Ike Tavarez Tetra Tech- Midland**4000 N. Big Spring Suite 401
Midland, TX 79705

Reference: XENCO Report No(s): 577383

El Presidente State 4H

Project Address: Eddy Co, NM

Ike Tavarez:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 577383. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 577383 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Kelsey Brooks

Knus Hoah

Project Manager

 $Recipient\ of\ the\ Prestigious\ Small\ Business\ Administration\ Award\ of\ Excellence\ in\ 1994.$

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 577383

Tetra Tech- Midland, Midland, TX

El Presidente State 4H

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
AH #1 (0-6")	S	02-22-18 00:00		577383-001
AH #2 (0-6")	S	02-22-18 00:00		577383-002
AH #3 (0-6")	S	02-22-18 00:00		577383-003
AH #4 (0-1')	S	02-22-18 00:00		577383-004
AH #4 (1-1.5')	S	02-22-18 00:00		577383-005
AH #5 (0-1')	S	02-22-18 00:00		577383-006
AH #5 (1-1.5')	S	02-22-18 00:00		577383-007
AH #5 (2-2.5')	S	02-22-18 00:00		577383-008
AH #5 (3-3.5')	S	02-22-18 00:00		577383-009
AH #6 (0-1')	S	02-22-18 00:00		577383-010
AH #6 (1-1.5')	S	02-22-18 00:00		577383-011
AH #6 (2-2.5')	S	02-22-18 00:00		577383-012
AH #6 (3-3.5')	S	02-22-18 00:00		577383-013
AH #7 (0-1')	S	02-22-18 00:00		577383-014
AH #7 (1-1.5')	S	02-22-18 00:00		577383-015
AH #7 (2-2.5')	S	02-22-18 00:00		577383-016
AH #7 (3-3.5')	S	02-22-18 00:00		577383-017
AH #7 (4-4.5')	S	02-22-18 00:00		577383-018
AH #8 (0-1')	S	02-22-18 00:00		577383-019
AH #8 (1-1.5')	S	02-22-18 00:00		577383-020
AH #8 (2-2.5')	S	02-22-18 00:00		577383-021
AH #8 (3-3.5')	S	02-22-18 00:00		577383-022

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: El Presidente State 4H

Project ID: 212C-MD-01102 Report Date: 05-MAR-18
Work Order Number(s): 577303

Work Order Number(s): 577383 Date Received: 02/23/2018

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3042214 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Surrogate 1,4-Difluorobenzene recovered below QC limits. Matrix interferences is suspected; data

confirmed by re-analysis.

Samples affected are: 577383-006.

Dilutions necessitated by poor internal visibility at a lower dilution.

Batch: LBA-3042224 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data

confirmed by re-analysis.

Samples affected are: 577383-002.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Lab Sample ID 577383-004 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 577383-001, -002, -003, -004, -005, -011, -015, -020.

The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3042346 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Dilutions due to poor resolution of internal.

Batch: LBA-3042388 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data

confirmed by re-analysis.

Samples affected are: 577383-007.

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: El Presidente State 4H

Project ID: 212C-MD-01102 Report Date: 05-MAR-18
Work Order Number(s): 577383

Work Order Number(s): 577383 Date Received: 02/23/2018

Batch: LBA-3042451 Inorganic Anions by EPA 300/300.1

Lab Sample ID 577383-012 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 577383-002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020, -021.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3042728 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Dilution due to excessive hydrocarbons.

Tetra Tech- Midland, Midland, TX Project Name: El Presidente State 4H TNI

Project Id: 212C-MD-01102

Contact: Ike Tavarez **Project Location:** Eddy Co, NM

Date Received in Lab: Fri Feb-23-18 02:35 pm

Report Date: 05-MAR-18 **Project Manager:** Kelsey Brooks

	Lab Id:	577383-0	001	577383-	002	577383-0	003	577383-0	004	577383-	005	577383-0	06
Analysis Requested	Field Id:	AH #1 (0	-6")	AH #2 (0	-6")	AH #3 (0-	-6")	AH #4 (0)-1')	AH #4 (1	-1.5')	AH #5 (0-	1')
Anaiysis Requesieu	Depth:												
	Matrix:	SOIL	,	SOIL	,	SOIL		SOIL	,	SOII	.	SOIL	
	Sampled:	Feb-22-18	00:00	Feb-22-18 0	00:00								
BTEX by EPA 8021B	Extracted:	Feb-24-18	11:00	Feb-24-18 1	1:00								
	Analyzed:	Feb-24-18	21:07	Feb-24-18	21:26	Feb-24-18	21:44	Feb-24-18	20:49	Feb-24-18	22:03	Feb-25-18 1	7:33
	Units/RL:	mg/kg	RL	mg/kg	RL								
Benzene		< 0.00202	0.00202	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202	28.3	20.0
Toluene		< 0.00202	0.00202	0.121	0.00200	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202	255	20.0
Ethylbenzene		< 0.00202	0.00202	0.0547	0.00200	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00202	0.00202	42.5	20.0
m,p-Xylenes		< 0.00403	0.00403	0.464	0.00401	< 0.00398	0.00398	0.00427	0.00402	0.0119	0.00404	315	40.1
o-Xylene		< 0.00202	0.00202	0.216	0.00200	< 0.00199	0.00199	< 0.00201	0.00201	0.00311	0.00202	120	20.0
Total Xylenes		< 0.00202	0.00202	0.680	0.00200	< 0.00199	0.00199	0.00427	0.00201	0.0150	0.00202	435	20.0
Total BTEX		< 0.00202	0.00202	0.856	0.00200	< 0.00199	0.00199	0.00427	0.00201	0.0150	0.00202	761	20.0
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-27-18	12:00	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18 1	6:20
	Analyzed:	Feb-27-18	16:41	Feb-27-18	17:38	Feb-27-18	17:44	Feb-27-18	17:12	Feb-27-18	17:49	Feb-27-18 1	7:54
	Units/RL:	mg/kg	RL	mg/kg	RL								
Chloride		47.9	25.0	1510	25.0	2000	25.0	36.9	5.00	12.9	5.00	71.9	5.00
TPH By SW8015 Mod	Extracted:	Feb-23-18	15:00	Feb-23-18 1	5:00								
	Analyzed:	Feb-23-18	20:41	Feb-24-18	12:07	Feb-23-18	21:32	Feb-23-18	21:59	Feb-23-18	22:26	Feb-24-18 1	2:32
	Units/RL:	mg/kg	RL	mg/kg	RL								
Gasoline Range Hydrocarbons		<15.0	15.0	1100	74.9	16.4	15.0	<15.0	15.0	<14.9	14.9	18700	150
Diesel Range Organics		194	15.0	14600	74.9	552	15.0	18.0	15.0	<14.9	14.9	26600	150
Oil Range Hydrocarbons		15.2	15.0	407	74.9	30.8	15.0	<15.0	15.0	<14.9	14.9	366	150
Total TPH		209	15.0	16100	74.9	599	15.0	18.0	15.0	<14.9	14.9	45700	150

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Tetra Tech- Midland, Midland, TX Project Name: El Presidente State 4H TNI TABORATORI

Project Id: 212C-MD-01102

Contact: Ike Tavarez **Project Location:** Eddy Co, NM

Date Received in Lab: Fri Feb-23-18 02:35 pm

Report Date: 05-MAR-18 **Project Manager:** Kelsey Brooks

	Lab Id:	577383-0	007	577383-0	08	577383-0	09	577383-0	10	577383-0	011	577383-0	12
Analysis Requested	Field Id:	AH #5 (1-	1.5')	AH #5 (2-2	2.5')	AH #5 (3-3	3.5')	AH #6 (0	-1')	AH #6 (1-	1.5')	AH #6 (2-2	2.5')
Anaiysis Requesieu	Depth:												
	Matrix:	SOIL	,	SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	Feb-22-18	00:00	Feb-22-18 (00:00	Feb-22-18 0	00:00	Feb-22-18 (00:00	Feb-22-18	00:00	Feb-22-18 0	0:00
BTEX by EPA 8021B	Extracted:	Feb-26-18	17:15	Mar-04-18 (08:00			Feb-27-18 (9:30	Feb-24-18	11:00		
	Analyzed:	Feb-28-18	15:36	Mar-04-18	4:25			Feb-27-18	5:10	Feb-24-18	22:40		
	Units/RL:	mg/kg	RL	mg/kg	RL			mg/kg	RL	mg/kg	RL		
Benzene		13.8	1.99	< 0.101	0.101			<1.00	1.00	< 0.00200	0.00200		
Toluene		182	1.99	0.612	0.101			31.5	1.00	0.140	0.00200		
Ethylbenzene		82.4	1.99	1.15	0.101			27.2	1.00	0.0541	0.00200		
m,p-Xylenes		431	3.98	9.05	0.202			195	2.00	0.436	0.00399		
o-Xylene		161	1.99	2.88	0.101			55.2	1.00	0.177	0.00200		
Total Xylenes		592	1.99	11.9	0.101			250	1.00	0.613	0.00200		
Total BTEX		870	1.99	13.7	0.101			309	1.00	0.807	0.00200		
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-27-18	16:20	Feb-27-18 1	6:20	Feb-27-18 1	6:20	Feb-27-18	6:20	Feb-27-18	16:20	Feb-27-18 1	6:20
	Analyzed:	Feb-27-18	18:10	Feb-27-18 1	8:15	Feb-27-18 1	8:21	Feb-27-18	8:26	Feb-27-18	18:31	Feb-27-18 1	8:37
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		7.60	5.00	53.2	5.00	33.5	5.00	508	5.00	195	5.00	16.2	5.00
TPH By SW8015 Mod	Extracted:	Feb-23-18	16:00	Feb-26-18 1	6:00	Mar-02-18 1	18:00	Feb-23-18	6:00	Feb-23-18	16:00	Feb-26-18 1	6:00
	Analyzed:	Feb-24-18	12:58	Feb-27-18 (8:17	Mar-03-18 1	14:56	Feb-24-18	3:23	Feb-24-18	09:31	Feb-27-18 0	8:43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		17100	150	652	15.0	25.3	14.9	3470	74.9	201	14.9	28.8	15.0
Diesel Range Organics		22500	150	2000	15.0	426	14.9	6940	74.9	1130	14.9	306	15.0
Oil Range Hydrocarbons		273	150	85.8	15.0	<14.9	14.9	81.9	74.9	19.6	14.9	19.8	15.0
Total TPH		39900	150	2740	15.0	451	14.9	10500	74.9	1350	14.9	355	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Tetra Tech- Midland, Midland, TX

Project Name: El Presidente State 4H

TNI THEORATORY

Project Id: 212C-MD-01102

Contact: Ike Tavarez **Project Location:** Eddy Co, NM

Date Received in Lab: Fri Feb-23-18 02:35 pm

Report Date: 05-MAR-18 **Project Manager:** Kelsey Brooks

	Lab Id:	577383-0	013	577383-0	014	577383-0	015	577383-0	016	577383-0	017	577383-0	018
	Field Id:	AH #6 (3-3		AH #7 (0		AH #7 (1-		AH #7 (2-		AH #7 (3-		AH #7 (4-4	
Analysis Requested	Depth:	111 110 (5)	,	1111 / (0	1	1111 117 (1	1.0)	111/(2		1111, (0		1111111	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-22-18 (00:00	Feb-22-18 (00:00	Feb-22-18	00:00	Feb-22-18	00:00	Feb-22-18 (00:00	Feb-22-18 (J0:00
BTEX by EPA 8021B	Extracted:			Feb-27-18 (09:30	Feb-24-18	11:00						
	Analyzed:			Feb-27-18	15:29	Feb-24-18	22:58						
	Units/RL:			mg/kg	RL	mg/kg	RL						
Benzene				1.11	0.998	< 0.00198	0.00198						
Toluene				69.2	0.998	0.00823	0.00198						
Ethylbenzene				33.1	0.998	0.00619	0.00198						
m,p-Xylenes				241	2.00	0.0685	0.00396						
o-Xylene				67.2	0.998	0.0337	0.00198						
Total Xylenes				308	0.998	0.102	0.00198						
Total BTEX				412	0.998	0.117	0.00198						
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18 1	16:20
	Analyzed:	Feb-27-18	18:53	Feb-27-18	18:58	Feb-27-18	19:14	Feb-27-18	19:19	Feb-27-18	19:24	Feb-27-18 1	19:30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		53.0	5.00	2900	25.0	73.7	5.00	45.7	5.00	6.11	5.00	91.8	5.00
TPH By SW8015 Mod	Extracted:			Feb-23-18 1	16:00	Feb-23-18	16:00						
	Analyzed:			Feb-24-18	13:50	Feb-24-18	10:23						
	Units/RL:			mg/kg	RL	mg/kg	RL						
Gasoline Range Hydrocarbons				5180	74.7	43.6	15.0						
Diesel Range Organics				9640	74.7	272	15.0						
Oil Range Hydrocarbons				176	74.7	<15.0	15.0						
Total TPH				15000	74.7	316	15.0						

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Tetra Tech- Midland, Midland, TX Project Name: El Presidente State 4H TNI HABORATORY

Project Id: 212C-MD-01102

Contact: Ike Tavarez **Project Location:** Eddy Co, NM

Date Received in Lab: Fri Feb-23-18 02:35 pm

Report Date: 05-MAR-18 **Project Manager:** Kelsey Brooks

	Lab Id:	577383-	019	577383-0	020	577383-0	21	577383-0	22		
Analysis Requested	Field Id:	AH #8 (0)-1')	AH #8 (1-	1.5')	AH #8 (2-2	2.5')	AH #8 (3-3	3.5')		
Anaiysis Requesieu	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Feb-22-18	00:00	Feb-22-18	00:00	Feb-22-18 0	00:00	Feb-22-18 (00:00		
BTEX by EPA 8021B	Extracted:	Feb-27-18	09:30	Feb-24-18	11:00						
	Analyzed:	Feb-27-18	17:13	Feb-24-18	23:17						
	Units/RL:	mg/kg	RL	mg/kg	RL						
Benzene		< 0.0992	0.0992	< 0.00202	0.00202						
Toluene		10.5	0.0992	0.00367	0.00202						
Ethylbenzene		7.10	0.0992	< 0.00202	0.00202						
m,p-Xylenes		67.9 D	0.994	0.0220	0.00403						
o-Xylene		15.2	0.0992	0.0106	0.00202						
Total Xylenes		83.1	0.0992	0.0326	0.00202						
Total BTEX		101	0.0992	0.0363	0.00202						
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-27-18	16:20	Feb-27-18	16:20	Feb-27-18 1	6:20	Feb-27-18 1	7:00		
	Analyzed:	Feb-27-18	19:35	Feb-27-18	19:40	Feb-27-18 1	9:45	Feb-27-18 2	20:17		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		268	5.00	13.4	5.00	< 5.00	5.00	54.6	5.00		
TPH By SW8015 Mod	Extracted:	Feb-23-18	16:00	Feb-23-18	16:00		İ				
	Analyzed:	Feb-24-18	10:49	Feb-24-18	11:14						
	Units/RL:	mg/kg	RL	mg/kg	RL						
Gasoline Range Hydrocarbons	'	2830	15.0	<15.0	15.0						
Diesel Range Organics		4740	15.0	76.6	15.0						
Oil Range Hydrocarbons		68.7	15.0	<15.0	15.0						
Total TPH		7640	15.0	76.6	15.0						

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

| Phone | Fax | | 4147 Greenbriar Dr, Stafford, TX 77477 | (281) 240-4200 | (281) 240-4280 | (281) 240-4200 | (281) 240-4280

Form 2 - Surrogate Recoveries

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042060 **Sample:** 577383-001 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/23/18 20:41	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane	Timing tes	97.8	99.7	98	70-135	
o-Terphenyl			49.0	49.9	98	70-135	

Lab Batch #: 3042060 **Sample:** 577383-003 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg **Date Analyzed:** 02/23/18 21:32 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 108 99.8 108 70-135 o-Terphenyl 59.3 49.9 119 70-135

Lab Batch #: 3042060 **Sample:** 577383-004 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/23/18 21:59 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	110	99.9	110	70-135	
o-Terphenyl	53.7	50.0	107	70-135	

Lab Batch #: 3042060 **Sample:** 577383-005 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/23/18 22:26	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		109	99.6	109	70-135			
o-Terphenyl			54.5	49.8	109	70-135			

Units:	mg/kg	Date Analyzed: 02/24/18 09:31	9:31 SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		115	99.6	115	70-135			
o-Terpheny	1		63.7	49.8	128	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: El Presidente State 4H

Project ID: 212C-MD-01102 Work Orders: 577383,

Lab Batch #: 3042063 Matrix: Soil **Sample:** 577383-015 / SMP Batch:

Units:	mg/kg	Date Analyzed: 02/24/18 10:23	SURROGATE RECOVERY STUDY					
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane	Timing tes	112	99.7	112	70-135		
o-Terpheny			56.8	49.9	114	70-135		

Lab Batch #: 3042063 Sample: 577383-019 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 02/24/18 10:49 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 122 99.8 122 70-135 o-Terphenyl 49.9 70-135 41.6 83

Lab Batch #: 3042063 Sample: 577383-020 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 02/24/18 11:14 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	115	99.8	115	70-135	
o-Terphenyl	58.6	49.9	117	70-135	

Lab Batch #: 3042060 **Sample:** 577383-002 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 02/24/18 12:07	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		118	99.8	118	70-135			
o-Terphenyl			40.5	49.9	81	70-135			

Lab Batch #: 3042060 Sample: 577383-006 / SMP Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 02/24/18 12:32	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		128	99.7	128	70-135			
o-Terpheny	·l		48.9	49.9	98	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042063 **Sample:** 577383-007 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/24/18 12:58	2:58 SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooct	ane		103	99.7	103	70-135			
o-Terphenyl			46.8	49.9	94	70-135			

Units:	mg/kg	Date Analyzed: 02/24/18 13:23	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane	Thai y us	115	99.8	115	70-135		
o-Terpheny	<i>i</i> 1		59.3	49.9	119	70-135		

Units: mg/kg Date Analyzed: 02/24/18 13:50 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	125	99.6	126	70-135	
o-Terphenyl	47.5	49.8	95	70-135	

Units: mg/kg	Date Analyzed: 02/24/18 20:49	SURROGATE RECOVERY STUDY				
вте	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]		
1,4-Difluorobenzene		0.0248	0.0300	83	80-120	
4-Bromofluorobenzene		0.0311	0.0300	104	80-120	

Units:	mg/kg	Date Analyzed: 02/24/18 21:07	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene			0.0247	0.0300	82	80-120		
4-Bromofluorobenzene			0.0318	0.0300	106	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Units: mg/kg Date Analyzed: 02/24/18 21:26 SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorobenzene			0.0241	0.0300	80	80-120	
4-Bromofluorobenzene			0.0780	0.0300	260	80-120	**

Units: mg/kg Date Analyzed: 02/24/18 21:44 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0245 0.0300 82 80-120 4-Bromofluorobenzene 0.0333 0.0300 80-120 111

Units: mg/kg Date Analyzed: 02/24/18 22:03 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0247	0.0300	82	80-120	
4-Bromofluorobenzene	0.0318	0.0300	106	80-120	

Lab Batch #: 3042224Sample: 577383-011 / SMPBatch: 1Matrix: Soil

Units: mg/kg Date Analyzed: 02/24/1	8 22:40 SU	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0244	0.0300	81	80-120		
4-Bromofluorobenzene	0.0352	0.0300	117	80-120		

Units: mg/kg Date Analyzed: 02/24/18 22:58 SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0245	0.0300	82	80-120			
4-Bromofluorobenzene	0.0355	0.0300	118	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Units:	mg/kg	Date Analyzed: 02/24/18 23:17	SURROGATE RECOVERY STUDY				
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
		Analytes			[ط]		
1,4-Difluorob	penzene		0.0255	0.0300	85	80-120	
4-Bromofluorobenzene			0.0346	0.0300	115	80-120	

Units: mg/kg Date Analyzed: 02/25/18 17:33 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0219 0.0300 73 80-120 *** 4-Bromofluorobenzene 0.0321 0.0300 107 80-120

Units: mg/kg Date Analyzed: 02/27/18 08:17 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	125	99.8	125	70-135	
o-Terphenyl	64.9	49.9	130	70-135	

Lab Batch #: 3042220 **Sample:** 577383-012 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/27/18 08:43 SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod			Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes					[D]		
1-Chlorooc	tane		115	99.7	115	70-135	
o-Terpheny	1		59.0	49.9	118	70-135	

Lab Batch #: 3042346 **Sample:** 577383-010 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/21/18 15:10 SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]			
1,4-Difluorobenzene			0.0226	0.0300	75	70-130		
4-Bromofluore	obenzene		0.0347	0.0300	116	70-130		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042346 **Sample:** 577383-014 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/2//18 15:29	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]					
1,4-Difluorobenzene			0.0248	0.0300	83	70-130				
4-Bromoflu	orobenzene		0.0380	0.0300	127	70-130				

Units: mg/kg Date Analyzed: 02/27/18 16:32 SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	robenzene		0.0233	0.0300	78	70-130	
4-Bromofli	uorobenzene		0.0375	0.0300	125	70-130	

Units: mg/kg Date Analyzed: 02/27/18 17:13 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0238	0.0300	79	70-130	
4-Bromofluorobenzene	0.0373	0.0300	124	70-130	

Units:	mg/kg	Date Analyzed: 02/28/18 15:36	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluor	robenzene	•	0.0258	0.0300	86	70-130			
4-Bromoflu	uorobenzene		0.0896	0.0300	299	70-130	**		

Units:	mg/kg	Date Analyzed: 03/03/18 14:56	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chloroocta	ane		114	99.6	114	70-135			
o-Terphenyl			58.0	49.8	116	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Units:	mg/kg	Date Analyzed: 03/04/18 14:25	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoroben	izene	Analy Co	0.0221	0.0300	74	70-130			
4-Bromofluorob	enzene		0.0383	0.0300	128	70-130			

Lab Batch #: 3042060 Sample: 7639737-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	nits: mg/kg Date Analyzed: 02/23/18 10:57 SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]			
1-Chlorooct	tane		108	100	108	70-135		
o-Terpheny	·l		55.7	50.0	111	70-135		

Lab Batch #: 3042063 Sample: 7639738-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/23/18 23:45 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	105	100	105	70-135	
o-Terphenyl	54.8	50.0	110	70-135	

Lab Batch #: 3042224 Sample: 7639837-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/24/18 20:31	SURROGATE RECOVERY STUDY							
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	obenzene	Tanana ji voo	0.0251	0.0300	84	70-130				
4-Bromoflu	orobenzene		0.0300	0.0300	100	70-130				

Lab Batch #: 3042214 Sample: 7639819-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	Jnits: mg/kg Date Analyzed: 02/25/18 10:23 SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1,4-Difluorobenzene			0.0250	0.0300	83	80-120			
4-Bromofluo	orobenzene		0.0333	0.0300	111	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, Project ID: 212C-MD-01102

Date Analyzed: 02/26/18 21:30 Units: mg/kg SURROGATE RECOVERY STUDY True Control Amount TPH By SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 70-135 120 100 120 o-Terphenyl 50.0 123 70-135 61.6

Lab Batch #: 3042346 Sample: 7639907-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/27/18 09:36 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0258 0.0300 86 70-130 4-Bromofluorobenzene 0.0284 0.0300 95 70-130

Lab Batch #: 3042388 Sample: 7639915-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/28/18 05:35 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0239	0.0300	80	70-130	
4-Bromofluorobenzene	0.0280	0.0300	93	70-130	

Lab Batch #: 3042778 Sample: 7640127-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/03/18 04:04	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes			Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooc	tane		100	100	100	70-135			
o-Terpheny	1		52.4	50.0	105	70-135			

Lab Batch #: 3042728 Sample: 7640119-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/04/18 11:15 SURROGATE RECOVERY STUDY									
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1,4-Difluorobenzene			0.0238	0.0300	79	70-130			
4-Bromoflu	orobenzene		0.0311	0.0300	104	70-130			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042060 **Sample:** 7639737-1-BKS / BKS **Batch:** 1 **Matrix:** Solid

Units:	mg/kg	Date Analyzed: 02/23/18 11:24	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane	Analytes	108	100	108	70-135			
o-Terphenyl			52.3	50.0	105	70-135			

Lab Batch #: 3042063 **Sample:** 7639738-1-BKS / BKS **Batch:** 1 **Matrix:** Solid

Units:	mg/kg	Date Analyzed: 02/24/18 00:11	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	ane		127	100	127	70-135			
o-Terphenyl	[61.8	50.0	124	70-135			

Lab Batch #: 3042224 Sample: 7639837-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/24/18 18:58 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0299	0.0300	100	70-130	
4-Bromofluorobenzene	0.0360	0.0300	120	70-130	

Lab Batch #: 3042214 Sample: 7639819-1-BKS / BKS Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/25/18 08:51	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	benzene		0.0277	0.0300	92	80-120			
4-Bromofluorobenzene			0.0351	0.0300	117	80-120			

Lab Batch #: 3042220 Sample: 7639806-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/26/18 21:55 SURROGATE RECOVERY STUDY									
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]				
1-Chloroocta	ane		110	100	110	70-135			
o-Terphenyl			55.6	50.0	111	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042346 Matrix: Solid **Sample:** 7639907-1-BKS / BKS Batch: 1

Units: Date Analyzed: 02/27/18 07:08 mg/kg SURROGATE RECOVERY STUDY True Amount Control BTEX by EPA 8021B Recovery **Found** Amount Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0272 0.0300 91 70-130 4-Bromofluorobenzene 0.0323 0.0300 108 70-130

Lab Batch #: 3042388 **Sample:** 7639915-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg **Date Analyzed:** 02/28/18 03:42 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0262 0.0300 87 70-130 4-Bromofluorobenzene 0.0338 0.0300 113 70-130

Lab Batch #: 3042778 Sample: 7640127-1-BKS / BKS Batch: Matrix: Solid

Units: mg/kg Date Analyzed: 03/03/18 04:32 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	127	100	127	70-135	
o-Terphenyl	64.8	50.0	130	70-135	

Sample: 7640119-1-BKS / BKS **Lab Batch #:** 3042728 Batch: Matrix: Solid

Units: Date Analyzed: 03/04/18 09:19 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0243 0.0300 81 70-130 4-Bromofluorobenzene 0.0348 0.0300 70-130 116

Lab Batch #: 3042060 **Sample:** 7639737-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/23/18 11:50	SURROGATE RECOVERY STUDY						
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		109	100	109	70-135			
o-Terpheny	·1		52.9	50.0	106	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042063 Sample: 7639738-1-BSD / BSD Batch: 1 Matrix: Solid

Date Analyzed: 02/24/18 00:39 **Units:** mg/kg SURROGATE RECOVERY STUDY True Control Amount TPH By SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 126 100 126 70-135 o-Terphenyl 50.0 63.6 127 70-135

Lab Batch #: 3042224 Sample: 7639837-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg **Date Analyzed:** 02/24/18 19:16 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0302 0.0300 101 70-130 4-Bromofluorobenzene 0.0359 0.0300 120 70-130

Lab Batch #: 3042214 Sample: 7639819-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/25/18 09:10 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0290	0.0300	97	80-120	
4-Bromofluorobenzene	0.0360	0.0300	120	80-120	

Lab Batch #: 3042220 **Sample:** 7639806-1-BSD / BSD **Batch:** 1 **Matrix:** Solid

Units: mg/kg Date Analyzed: 02/26/18 22:22 SURROGATE RECOVERY STUDY Amount True Control TPH By SW8015 Mod Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1-Chlorooctane 100 70-135 118 118 o-Terphenyl 50.0 118 70-135 58.8

Lab Batch #: 3042346 Sample: 7639907-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/	'kg	Date Analyzed: 02/27/18 07:28	SURROGATE RECOVERY STUDY							
	·	y EPA 8021B nalytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene			0.0268	0.0300	89	70-130				
4-Bromofluorobenze	ene		0.0333	0.0300	111	70-130				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Units:	mg/kg	Date Analyzed: 02/28/18 04:01	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluorobe	enzene		0.0253	0.0300	84	70-130			
4-Bromofluoro	obenzene		0.0349	0.0300	116	70-130			

Lab Batch #: 3042778 Sample: 7640127-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 03/03/18 04:57	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]					
1-Chlorooct	tane		116	100	116	70-135				
o-Terpheny	1		59.1	50.0	118	70-135				

Lab Batch #: 3042728 Sample: 7640119-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 03/04/18 09:38 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0253	0.0300	84	70-130	
4-Bromofluorobenzene	0.0355	0.0300	118	70-130	

Lab Batch #: 3042060 **Sample:** 577014-001 S / MS **Batch:** 1 **Matrix:** Soil

Units:	Inits: mg/kg Date Analyzed: 02/23/18 13:16			SURROGATE RECOVERY STUDY										
TPH By SW8015 Mod Analytes 1-Chlorooctane		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags								
1-Chlorooct	ane		110	99.9	110	70-135								
o-Terpheny	1		52.7	50.0	105	70-135								

Units:	mg/kg	Date Analyzed: 02/24/18 01:32	SURROGATE RECOVERY STUDY									
	ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooct	tane		103	99.7	103	70-135						
o-Terpheny	1		50.7	49.9	102	70-135						

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, Project ID: 212C-MD-01102

Units: Date Analyzed: 02/24/18 19:35 mg/kg SURROGATE RECOVERY STUDY True Amount Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0300 0.0278 93 70-130 4-Bromofluorobenzene 0.0347 0.0300 70-130 116

Units: mg/kg Date Analyzed: 02/25/18 09:28 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0266 0.0300 89 80-120 4-Bromofluorobenzene 0.0332 0.0300 111 80-120

Lab Batch #: 3042220 **Sample:** 577420-012 S / MS **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/26/18 23:12 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	122	99.9	122	70-135	
o-Terphenyl	57.9	50.0	116	70-135	

Units: Date Analyzed: 02/27/18 07:47 SURROGATE RECOVERY STUDY mg/kg Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0271 0.0300 90 70-130 4-Bromofluorobenzene 0.0343 0.0300 114 70-130

Units: mg/kg Date Analyzed: 02/28/18 04:21 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0266 0.0300 89 70-130 4-Bromofluorobenzene 0.0347 0.0300 116 70-130

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, Project ID: 212C-MD-01102

Units: Date Analyzed: 03/03/18 05:49 mg/kg SURROGATE RECOVERY STUDY Amount True Control TPH By SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 117 99.9 117 70-135 o-Terphenyl 56.6 50.0 113 70-135

Units: mg/kg Date Analyzed: 03/04/18 09:57 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0237 0.0300 79 70-130 4-Bromofluorobenzene 0.0374 0.0300 125 70-130

Lab Batch #: 3042060 Sample: 577014-001 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 02/23/18 13:41 SURROGATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	109	99.7	109	70-135	
o-Terphenyl	52.4	49.9	105	70-135	

Lab Batch #: 3042063 **Sample:** 577388-001 SD / MSD **Batch:** 1 **Matrix:** Soil

Units: Date Analyzed: 02/24/18 01:59 SURROGATE RECOVERY STUDY mg/kg Amount True Control TPH By SW8015 Mod Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1-Chlorooctane 99.9 115 115 70-135 o-Terphenyl 55.7 50.0 70-135 111

Units: mg/kg Date Analyzed: 02/24/18 19:53 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0290 0.0300 97 70-130 4-Bromofluorobenzene 0.0353 0.0300 118 70-130

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Lab Batch #: 3042214 **Sample:** 577310-001 SD / MSD **Batch:** 1 **Matrix:** Soil

Units: Date Analyzed: 02/25/18 09:46 mg/kg SURROGATE RECOVERY STUDY True Amount Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0242 0.0300 81 80-120 4-Bromofluorobenzene 0.0331 0.0300 110 80-120

Lab Batch #: 3042220 **Sample:** 577420-012 SD / MSD **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/26/18 23:39 SURROGATE RECOVERY STUDY **Amount** True Control TPH By SW8015 Mod Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 105 99.7 105 70-135 o-Terphenyl 49.9 102 51.1 70-135

Units: mg/kg Date Analyzed: 02/28/18 04:40 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0247	0.0300	82	70-130	
4-Bromofluorobenzene	0.0337	0.0300	112	70-130	

Units: Date Analyzed: 02/28/18 10:51 SURROGATE RECOVERY STUDY mg/kg Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0261 0.0300 87 70-130 4-Bromofluorobenzene 0.0328 0.0300 109 70-130

Lab Batch #: 3042778 Sample: 577595-021 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 03/03/18 06:15 SURROGATE RECOVERY STUDY Amount True Control TPH By SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 114 99.7 114 70-135 o-Terphenyl 53.8 49.9 108 70-135

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Orders: 577383, **Project ID:** 212C-MD-01102

Units: Date Analyzed: 03/04/18 10:17 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Recovery Found Amount Limits Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0251 0.0300 84 70-130 4-Bromofluorobenzene 0.0367 0.0300 122 70-130

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Analyst: ALJ Date Prepared: 02/24/2018 Date Analyzed: 02/25/2018

 Lab Batch ID: 3042214
 Sample: 7639819-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]	[C]	[D]	[E]	Kesuit [F]	[6]				
Benzene	< 0.00202	0.101	0.0846	84	0.100	0.0712	71	17	70-130	35	
Toluene	< 0.00202	0.101	0.0847	84	0.100	0.0705	71	18	70-130	35	
Ethylbenzene	< 0.00202	0.101	0.0907	90	0.100	0.0736	74	21	71-129	35	
m,p-Xylenes	< 0.00403	0.202	0.175	87	0.200	0.144	72	19	70-135	35	
o-Xylene	< 0.00202	0.101	0.0899	89	0.100	0.0762	76	16	71-133	35	

Analyst: ALJ Date Prepared: 02/24/2018 Date Analyzed: 02/24/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.0998	0.0805	81	0.100	0.0762	76	5	70-130	35	
Toluene	< 0.00200	0.0998	0.0851	85	0.100	0.0770	77	10	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.0899	90	0.100	0.0820	82	9	70-130	35	
m,p-Xylenes	< 0.00399	0.200	0.174	87	0.201	0.160	80	8	70-130	35	
o-Xylene	< 0.00200	0.0998	0.0902	90	0.100	0.0835	84	8	70-130	35	

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Analyst: ALJ Date Prepared: 02/27/2018 Date Analyzed: 02/27/2018

 Lab Batch ID: 3042346
 Sample: 7639907-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00199	0.0996	0.0899	90	0.0994	0.0887	89	1	70-130	35	
Toluene	< 0.00199	0.0996	0.0945	95	0.0994	0.0941	95	0	70-130	35	
Ethylbenzene	< 0.00199	0.0996	0.107	107	0.0994	0.107	108	0	70-130	35	
m,p-Xylenes	< 0.00398	0.199	0.213	107	0.199	0.213	107	0	70-130	35	
o-Xylene	< 0.00199	0.0996	0.104	104	0.0994	0.104	105	0	70-130	35	

Analyst: ALJ Date Prepared: 02/26/2018 Date Analyzed: 02/28/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00202	0.101	0.0833	82	0.100	0.0797	80	4	70-130	35	
Toluene	< 0.00202	0.101	0.0877	87	0.100	0.0857	86	2	70-130	35	
Ethylbenzene	< 0.00202	0.101	0.0994	98	0.100	0.0970	97	2	70-130	35	
m,p-Xylenes	< 0.00403	0.202	0.196	97	0.200	0.192	96	2	70-130	35	
o-Xylene	< 0.00202	0.101	0.0981	97	0.100	0.0976	98	1	70-130	35	

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Analyst: ALJ **Date Prepared:** 03/04/2018 **Date Analyzed:** 03/04/2018

 Lab Batch ID: 3042728
 Sample: 7640119-1-BKS
 Batch #: 1
 Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00201	0.100	0.0887	89	0.101	0.0889	88	0	70-130	35	
Toluene	< 0.00201	0.100	0.0951	95	0.101	0.0943	93	1	70-130	35	
Ethylbenzene	< 0.00201	0.100	0.109	109	0.101	0.108	107	1	70-130	35	
m,p-Xylenes	< 0.00402	0.201	0.215	107	0.202	0.213	105	1	70-130	35	
o-Xylene	< 0.00201	0.100	0.106	106	0.101	0.104	103	2	70-130	35	

Analyst: OJS Date Prepared: 02/27/2018 Date Analyzed: 02/27/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 5.00	250	262	105	250	258	103	2	90-110	20	

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Analyst: OJS Date Prepared: 02/27/2018 Date Analyzed: 02/27/2018

 Lab Batch ID: 3042451
 Sample: 7639872-1-BKS
 Batch #: 1
 Matrix: Solid

Units:	mg/kg		BLAN	K/BLANK	SPIKE /	BLANK S	SPIKE DUP	LICATE REC	OVERY STU	ΟY
Inorg	ranic Anions by FPA 300/300 1	Blank	Spike	Blank	Blank	Snike	Blank	Blk, Spk	Control	Control

Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<5.00	250	254	102	250	270	108	6	90-110	20	

Analyst: OJS Date Prepared: 02/27/2018 Date Analyzed: 02/27/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 5.00	250	274	110	250	274	110	0	90-110	20	

Analyst: ARM Date Prepared: 02/23/2018 Date Analyzed: 02/23/2018

Lab Batch ID: 3042060 **Sample:** 7639737-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	<15.0	1000	883	88	1000	894	89	1	70-135	35	
Diesel Range Organics	<15.0	1000	900	90	1000	911	91	1	70-135	35	

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Analyst: ARM Date Prepared: 02/23/2018 Date Analyzed: 02/24/2018

Lab Batch ID: 3042063 **Sample:** 7639738-1-BKS **Batch #:** 1 **Matrix:** Solid

Units:	mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DΥ	
	TPH By SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag

TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons	<15.0	1000	1040	104	1000	1050	105	1	70-135	35	
Diesel Range Organics	<15.0	1000	1080	108	1000	1090	109	1	70-135	35	

Analyst: ARM **Date Prepared:** 02/26/2018 **Date Analyzed:** 02/26/2018

Lab Batch ID: 3042220 **Sample:** 7639806-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod	Blank	Spike Added	Blank	Blank	Spike	Blank	Blk. Spk	DDD	Control	Control Limits	E1
Analytes	Sample Result [A]	[B]	Spike Result [C]	Spike %R [D]	Added [E]	Spike Duplicate Result [F]	Dup. %R [G]	RPD %	Limits %R	%RPD	Flag
Gasoline Range Hydrocarbons	<15.0	1000	924	92	1000	980	98	6	70-135	35	
Diesel Range Organics	<15.0	1000	959	96	1000	1000	100	4	70-135	35	

Analyst: ARM **Date Prepared:** 03/02/2018 **Date Analyzed:** 03/03/2018

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons	<15.0	1000	1100	110	1000	1040	104	6	70-135	35	
Diesel Range Organics	<15.0	1000	1140	114	1000	1060	106	7	70-135	35	

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Lab Batch ID: 3042214 **QC- Sample ID:** 577310-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/25/2018 Date Prepared: 02/24/2018 Analyst: ALJ

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	result [1]	[G]	, •	/014	/ VIAL D	
Benzene	< 0.00199	0.0996	0.0528	53	0.100	0.0624	62	17	70-130	35	X
Toluene	< 0.00199	0.0996	0.0443	44	0.100	0.0578	58	26	70-130	35	X
Ethylbenzene	< 0.00199	0.0996	0.0461	46	0.100	0.0583	58	23	71-129	35	X
m,p-Xylenes	< 0.00398	0.199	0.0891	45	0.200	0.110	55	21	70-135	35	X
o-Xylene	< 0.00199	0.0996	0.0476	48	0.100	0.0588	59	21	71-133	35	X

Lab Batch ID: 3042224 **QC- Sample ID:** 577383-004 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00198	0.0992	0.0590	59	0.0998	0.0584	59	1	70-130	35	X
Toluene	< 0.00198	0.0992	0.0583	59	0.0998	0.0465	47	23	70-130	35	X
Ethylbenzene	< 0.00198	0.0992	0.0528	53	0.0998	0.0459	46	14	70-130	35	X
m,p-Xylenes	0.00427	0.198	0.103	50	0.200	0.0944	45	9	70-130	35	X
o-Xylene	< 0.00198	0.0992	0.0532	54	0.0998	0.0488	49	9	70-130	35	X

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Lab Batch ID: 3042346 **QC- Sample ID:** 577420-010 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Kesuit [F]	[G]	70	/0K	70KI D	
Benzene	< 0.00199	0.0996	0.0839	84	0.0998	0.0602	60	33	70-130	35	X
Toluene	< 0.00199	0.0996	0.0875	88	0.0998	0.0402	40	74	70-130	35	XF
Ethylbenzene	< 0.00199	0.0996	0.0987	99	0.0998	0.0647	65	42	70-130	35	XF
m,p-Xylenes	< 0.00398	0.199	0.194	97	0.200	0.127	64	42	70-130	35	XF
o-Xylene	< 0.00199	0.0996	0.0959	96	0.0998	0.0628	63	42	70-130	35	XF

Lab Batch ID: 3042388 **QC- Sample ID:** 577388-008 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00199	0.0996	0.0794	80	0.0994	0.0699	70	13	70-130	35	
Toluene	< 0.00199	0.0996	0.0844	85	0.0994	0.0739	74	13	70-130	35	
Ethylbenzene	< 0.00199	0.0996	0.0929	93	0.0994	0.0819	82	13	70-130	35	
m,p-Xylenes	< 0.00398	0.199	0.183	92	0.199	0.161	81	13	70-130	35	
o-Xylene	< 0.00199	0.0996	0.0913	92	0.0994	0.0793	80	14	70-130	35	

Final 1.000

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Lab Batch ID: 3042728 **QC- Sample ID:** 577777-010 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00200	0.0998	0.0693	69	0.100	0.0693	69	0	70-130	35	X
Toluene	< 0.00200	0.0998	0.0728	73	0.100	0.0739	74	1	70-130	35	
Ethylbenzene	< 0.00200	0.0998	0.0825	83	0.100	0.0832	83	1	70-130	35	
m,p-Xylenes	<0.00399	0.200	0.162	81	0.200	0.165	83	2	70-130	35	
o-Xylene	< 0.00200	0.0998	0.0806	81	0.100	0.0820	82	2	70-130	35	

Lab Batch ID: 3042428 **QC- Sample ID:** 577380-002 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	1230	250	1390	64	250	1470	96	6	90-110	20	X

Lab Batch ID: 3042428 **QC- Sample ID:** 577380-010 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300 Analytes	/300.1 Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	2690	250	2740	20	250	2830	56	3	90-110	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Lab Batch ID: 3042451 **QC- Sample ID:** 577383-004 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/27/2018 Date Prepared: 02/27/2018 Analyst: OJS

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	36.9	250	301	106	250	305	107	1	90-110	20	

Lab Batch ID: 3042451 **QC- Sample ID:** 577383-012 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	16.2	250	295	112	250	294	111	0	90-110	20	X

Lab Batch ID: 3042453 **QC- Sample ID:** 577383-022 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/27/2018 Date Prepared: 02/27/2018 Analyst: OJS

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	54.6	250	303	99	250	311	103	3	90-110	20	

Project Name: El Presidente State 4H

Work Order #: 577383 Project ID: 212C-MD-01102

Lab Batch ID: 3042453 **QC- Sample ID:** 577388-010 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/27/2018 **Date Prepared:** 02/27/2018 **Analyst:** OJS

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	<5.00	250	268	107	250	262	105	2	90-110	20	

Lab Batch ID: 3042060 **QC- Sample ID:** 577014-001 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	<15.0	999	880	88	997	885	89	1	70-135	35	
Diesel Range Organics	<15.0	999	988	99	997	984	99	0	70-135	35	

Lab Batch ID: 3042063 **QC- Sample ID:** 577388-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/24/2018 **Date Prepared:** 02/23/2018 **Analyst:** ARM

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	<15.0	997	879	88	999	987	99	12	70-135	35	
Diesel Range Organics	29.5	997	982	96	999	1080	105	10	70-135	35	

Project Name: El Presidente State 4H

Work Order #: 577383 **Project ID:** 212C-MD-01102

Lab Batch ID: 3042220 **QC- Sample ID:** 577420-012 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/26/2018 Date Prepared: 02/26/2018 Analyst: ARM

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]		Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	<15.0	999	1040	104	997	910	91	13	70-135	35	
Diesel Range Organics	<15.0	999	1160	116	997	1040	104	11	70-135	35	

Lab Batch ID: 3042778 **QC- Sample ID:** 577595-021 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 03/03/2018 **Date Prepared:** 03/02/2018 **Analyst:** ARM

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	<15.0	999	1060	106	997	1030	103	3	70-135	35	
Diesel Range Organics	<15.0	999	1100	110	997	1050	105	5	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)|

Relinquished by: Relinquished Relinquished by Receiving Laboratory: Xenco Project Location: Co., NM nvoice to: Tetra Tech Project Name: El Presidente State 4H LAB USE LAB# 4 AH #6 (0-1') AH #5 (3-3.5') AH #3 (0-6") AH #2 (0-6") AH #5 (2-2.5') AH #5 (1.1.5') AH #5 (0-1') AH #4 (1-1.5') AH #4 (0-1') AH #1 (0-6") Run deeper sample if Benzene exceeds 10 mg/kg, total BTEX exceeds 50 mg/kg, or TPH exceeds 1000 mg/kg (county, state) Eddy SAMPLE IDENTIFICATION Tetra Tech, Inc. Date: Date: Time: ORIGINAL COPY Received by: 2/22/2018 2/22/2018 Project #: 212C-MD-01102 Site Manager: Ike Tavarez 2/22/2018 2/22/2018 2/22/2018 2/22/2018 2/22/2018 2/22/2018 2/22/2018 2/22/2018 DATE SAMPLING TIME WATER MATRIX 4000 N. Big Spring Street, Ste 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 SOIL Date: HCL PRESERVATIVE METHOD HNO₃ ICE Time: # CONTAINERS FILTERED (Y/N) (Circle) HAND DELIVERED Sample Temperature BTEX 8021B BTEX 8260B TPH TX1005 (Ext to C35) LAB USE Temp: 4,5 ONLY TPH 8015M (GRO - DRO - ORO - MRQ) PAH 8270C (Circle or Specify Method No.) Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg 577383 TCLP Volatiles ANALYSIS REQUEST REMARKS: TCLP Semi Volatiles Special Report Limits or TRRP Report RUSH: Same Day 24 hr Rush Charges Authorized GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) × × × Chloride Chloride Sulfate TDS 48 hr General Water Chemistry (see attached list) Anion/Cation Balance 72 hr Hold

Page 38 of 41

Corrected Temp: 4,3

(6-23: +0.2°C)

CF:(0-6: -0.2°C)

IR ID:R-8

Final 1.000

<u></u>

Analysis Request of Chain of Custody Record

(6-23: +0.2°C) $\stackrel{\checkmark}{\rightarrow}$ $\stackrel{\checkmark}{\rightarrow}$ Corrected Temp:

CF:(0-6: -0.2°C)

IR ID:R-8

Analysis Request of Chain of Custody Record

ORIGINAL COPY

Temp: 4,5

IR ID:R-8

CF:(0-6: -0.2°C)

(6-23: $+0.2^{\circ}$ C) Corrected Temp: 4, 3

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Work Order #: 577383

Date/ Time Received: 02/23/2018 02:35:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Date/ Time Necerved. 02/20/2010 02

Temperature Measuring device used: R8

Sample Receipt Checklist	Comments
	4.3
1?	Yes
	Yes
ntainer/ cooler?	N/A
es?	N/A
	N/A
	Yes
	No
uished/ received?	Yes
le labels/matrix?	Yes
?	Yes
?	Yes
	Yes
	Yes
ted test(s)?	Yes
e?	Yes
	No
dspace?	N/A
elivery of samples prior to placing in	n the refrigerator
Connie Hernandez	Date: 02/23/2018
	ntainer/ cooler? es? uished/ received? ble labels/matrix? ? ? ted test(s)? belivery of samples prior to placing in PH Device/Lot#:

Appendix D

Eddy Area, New Mexico

RE—Reagan-Upton association, 0 to 9 percent slopes

Map Unit Setting

National map unit symbol: 1w5d Elevation: 1,100 to 5,400 feet

Mean annual precipitation: 6 to 14 inches
Mean annual air temperature: 60 to 64 degrees F

Frost-free period: 180 to 240 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Reagan and similar soils: 70 percent *Upton and similar soils:* 25 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Reagan

Setting

Landform: Fan remnants, alluvial fans Landform position (three-dimensional): Rise

Down-slope shape: Convex, linear Across-slope shape: Linear

Across-slope strape. Litteal

Parent material: Alluvium and/or eolian deposits

Typical profile

H1 - 0 to 8 inches: loam H2 - 8 to 60 inches: loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 40 percent

Salinity, maximum in profile: Very slightly saline to moderately

saline (2.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 1.0

Available water storage in profile: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: Loamy (R070DY153NM)

Hydric soil rating: No

Description of Upton

Setting

Landform: Ridges, fans

Landform position (three-dimensional): Side slope, rise

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from limestone

Typical profile

H1 - 0 to 9 inches: gravelly loam
H2 - 9 to 13 inches: gravelly loam
H3 - 13 to 21 inches: cemented

H4 - 21 to 60 inches: very gravelly loam

Properties and qualities

Slope: 0 to 9 percent

Depth to restrictive feature: 7 to 20 inches to petrocalcic

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Low to

moderately high (0.01 to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 75 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0

to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 1.0

Available water storage in profile: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: Shallow Loamy (R070DY159NM)

Hydric soil rating: No

Minor Components

Pima

Percent of map unit:

Ecological site: Bottomland (R042XC017NM)

Hydric soil rating: No

Atoka

Percent of map unit:

Ecological site: Loamy (R042XC007NM)

Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 13, Sep 9, 2017

LOAMY (L) SITES SEED MIXTURE:

VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
VNS, Southern	1.0	D	
Lovington	1.0	D	
	4.0	F	
VNS, Southern	2.0	S	
VNS, Southern	1.0		
Cimarron, Pastura	1.5	F	
VNS, Southern	1.0	D	
Marana, Santa Rita	1.0	D	
VNS, Southern	0.5	F	
Total PLS/acre	18.0		
	VNS, Southern Lovington Vaughn, El Reno VNS, Southern VNS, Southern Cimarron, Pastura VNS, Southern Marana, Santa Rita VNS, Southern	VNS, Southern 1.0 Lovington 1.0 Vaughn, El Reno 4.0 VNS, Southern 2.0 VNS, Southern 1.0 Cimarron, Pastura 1.5 VNS, Southern 1.0 Marana, Santa Rita 1.0	RATE (PLS/Acre) BOX

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require
 other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

