

September 10, 2018

#5E25868-BG42

NMOCD District II Mike Bratcher 811 S. First St. Artesia, NM 88210

SUBJECT: Remediation Plan for the John AGU #1 Battery Release (2RP-4694), Eddy County, New Mexico

Dear Mr. Bratcher:

On behalf of EOG Resources (EOG), Souder, Miller & Associates (SMA) has prepared this Remediation Plan that describes the delineation and proposed remediation for a release of liquids related to oil and gas production activities at the John AGU#1 Battery site. The site is in Unit C, Section 14, Township 20S, Range 24E, Eddy County, New Mexico, on private land. Figure 1 illustrates the vicinity and site location on an USGS 7.5 minute quadrangle map.

Table 1 summarizes information regarding the release.

	Table 1: Release Information	on and Closure	Criteria
Name	John AGU #1 Battery	Company	EOG Resources
API Number	fAB1810139472	Location	32.57897° -104.56104°
Incident Number		2RP-4694	
Estimated Date of Release	3/22/2018	Date Reported to NMOCD	4/6/2018
Land Owner	Private	Reported To	NMOCD District II
Source of Release	Discharge Line		
Released Volume	14 bbls	Released Material	Produced Water
Recovered Volume	12 bbls	Net Release	2 bbls
NMOCD Closure Criteria	51-100 feet to groundwater		
SMA Response Dates	7/3/2018		

1.0 Background

On March 22, 2018, a release was discovered at the John AGU #1 Battery site due to a failure in the discharge line on the water pump. Initial response activities were conducted by EOG, and included the recovery of twelve (12) bbls of the released produced water. Figure 1 illustrates the site vicinity and wellhead protection area, Figure 2 illustrates surface water and other ranking criteria within a 300-foot radius in the vicinity, and Figure 3 illustrates the site and sample locations. The initial C-141 form is included in Appendix A.

2.0 Site Information and Closure Criteria

The John AGU #1 Battery is located approximately twenty-two (22) miles northwest of Carlsbad, New Mexico on privately-owned land.

As summarized in Table 2 and illustrated in Figure 1, depth to groundwater in the area is estimated to be ninety (90) feet below grade surface (bgs). There is one (1) known water source within ½-mile of the location, according to the New Mexico Office of the State Engineer (NMOSE) online water well database (https://gis.ose.state.nm.us/gisapps/ose_pod_locations/; accessed 7/2/2018). The nearest significant watercourse is a finger of the Middle Seven Rivers, located approximately 1,026 feet to the north

Based on the information presented herein, the applicable NMOCD Closure Criteria for this site is for groundwater depth of between 51-100 feet bgs. Table 2 demonstrates the Closure Criteria applicable to this location. Pertinent well data is attached in Appendix B.

3.0 Release Characterization Activities and Findings

An initial sampling event was conducted by EOG on March 27, 2018. A total of 6 sample locations (V1-V6) were investigated around the release site and throughout the visibly stained area to a maximum depth of 4 feet bgs.

On July 3, 2018, SMA personnel arrived onsite to continue the vertical delineation by collecting soil samples to a maximum depth of 10 feet bgs. A minimum of two samples were collected at each sampling location. A total of thirty-five (35) samples were collected for laboratory analysis for total chloride using EPA Method 300.0; benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B; and motor, diesel and gasoline range organics (MRO, DRO, and GRO) by EPA Method 8015D. Table 3 itemizes the sample results as well as identifying any variances from the typical specification of two samples per boring. Locations for all samples are depicted on Figure 3. Samples were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico (Appendix D).

Results indicate that all sample locations have met the Closure Criteria listed in Table 2; however, in order to achieve the reclamation requirements of 19.15.29.13 NMAC, chloride concentrations must be less than 600 mg/kg in the top four feet. None of the sample locations meet these criteria at this time.

4.0 Proposed Soil Remediation Work Plan

In order to achieve the reclamation requirements noted above, SMA proposes excavation and the installation of a clay liner, in the area illustrated in Figure 3. The impacted area will be excavated to approximately four (4) feet bgs for reclamation. Approximately 850 cubic yards of contaminated soil are projected to be removed and replaced with clean backfill material in order to return the surface to previous

contours. Before liner placement and backfill, we propose the collection of confirmation samples comprised of representative wall 5-point samples based on SW-846, 2002. This would require the collection of two sidewall samples on the both the north and south boundaries of the excavation and one sidewall sample on west and east boundaries. This also meets the requirements of NMOCD's alternative method for closure sampling as there is no area of linear sidewall collected that represent over 200 square feet. The contaminated soil will be transported for disposal at Lea Land, in Eddy County, NM, an NMOCD permitted disposal facility. Upon approval by NMOCD, the projected timeline for completion of remediation activities is approximately three to five days.

5.0 Scope and Limitations

The scope of our services included: assessment sampling; verifying release stabilization, regulatory liaison, and preparing this remediation plan. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact either Austin Weyant at 575-689-8801 or Shawna Chubbuck at 505-325-7535.

Submitted by: SOUDER, MILLER & ASSOCIATES

Reviewed by:

Melodie Sanjari Staff Scientist

M. Janyan

Shawna Chubbuck Senior Scientist

Shawna Chubbuck

ATTACHMENTS:

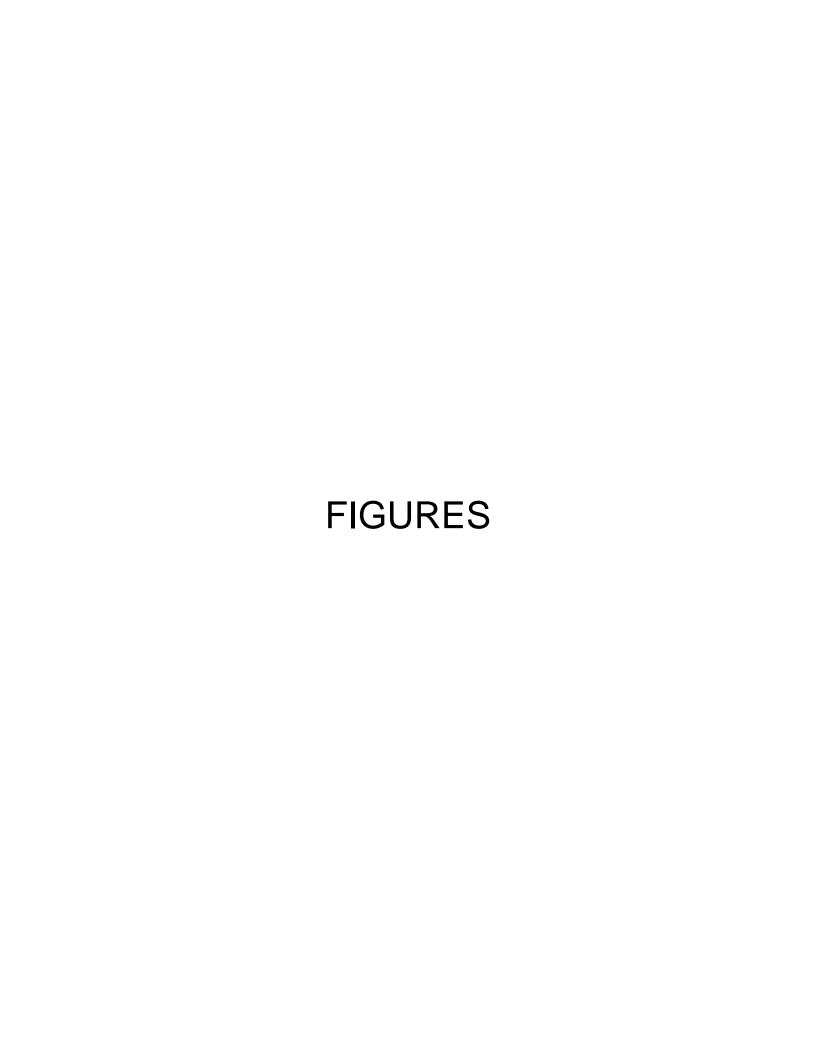
Figures:

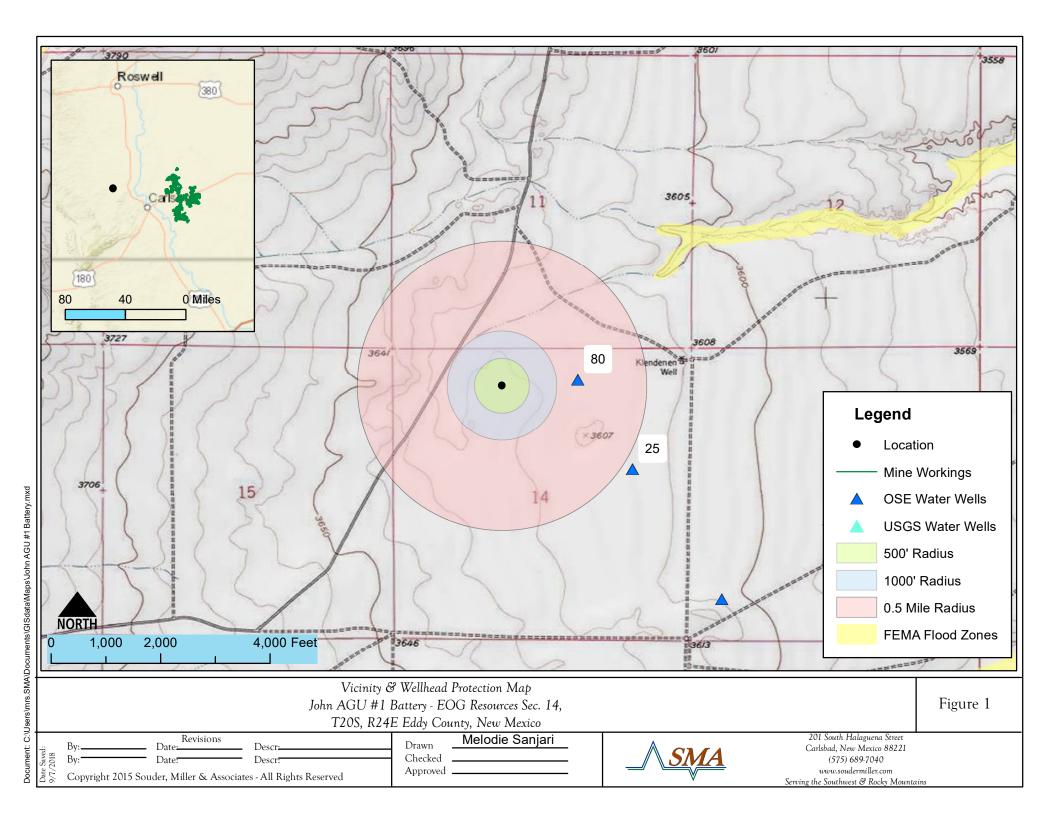
Figure 1: Site Vicinity and Wellhead Protection Map

Figure 2: Surface Water Map

Figure 3: Site and Sample Location Map

Tables:


Table 2: NMOCD Closure Criteria Justification


Table 3: Summary of Sample Results

Appendices:

Appendix A: Form C141 Initial Appendix B: NMOSE Wells Report

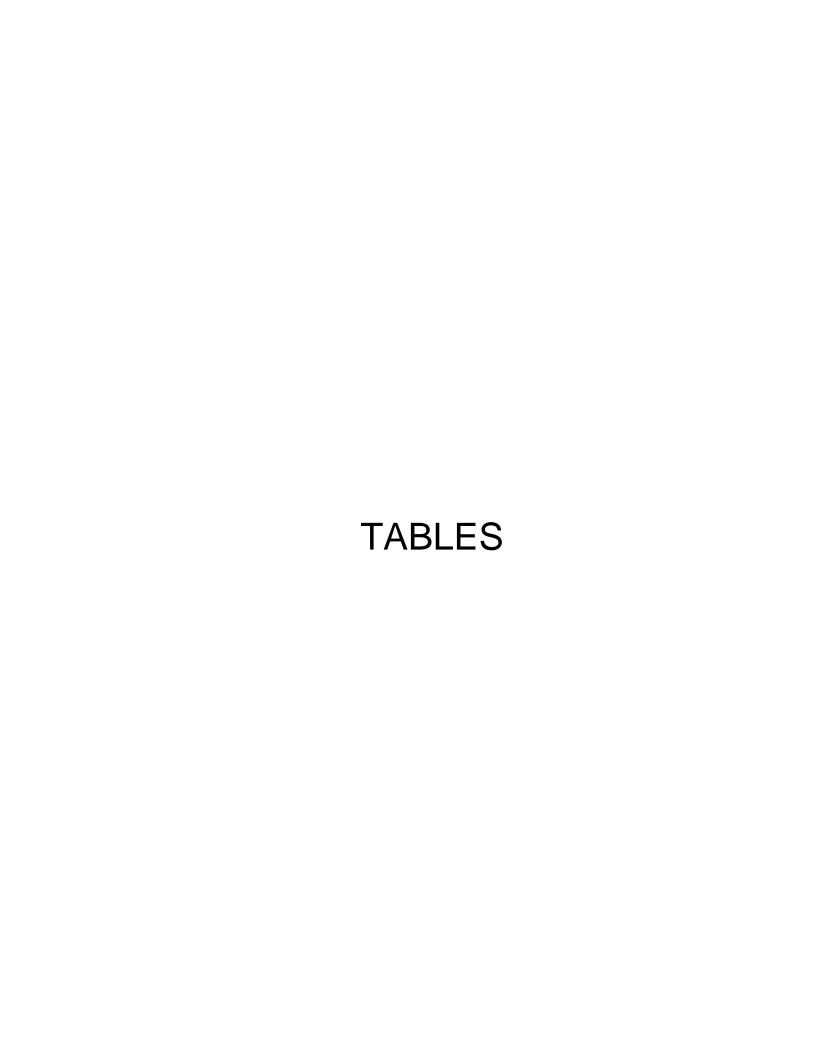
Appendix C: Laboratory Analytical Reports

Sec. 14, T20S, R24E Eddy County, New Mexico

Revisions Descr: Date: Copyright 2015 Souder, Miller & Associates - All Rights Reserved

Melodie Sanjari Drawn Checked Approved

201 South Halaguena Street Carlsbad, New Mexico 88221 (575) 689-7040 www.soudermiller.com Serving the Southwest & Rocky Mountains


Sec. 14, T20S, R24E Eddy County, New Mexico

Revisions Descr: Date: Descr: Copyright 2015 Souder, Miller & Associates - All Rights Reserved

Melodie Sanjari Drawn Checked Approved

201 South Halaguena Street Carlsbad, New Mexico 88221 (575) 689-7040 www.soudermiller.com Serving the Southwest & Rocky Mountains

Table 2: NMOCD Closure Criteria

Site Information (19.15.29.11.A(2, 3, and 4) NMAC		Source/Notes				
Depth to Groundwater (feet bgs)	89	OSE				
Hortizontal Distance From All Water Sources Within 1/2 Mile (ft)	1,026 & 1,318	USGS 7.5 minute quadrangle map & OSE, respectively				
Hortizontal Distance to Nearest Significant Watercourse (ft)	1,026	USGS 7.5 minute quadrangle map				

Closure Criteria (19.15.	29.12.B(4) and	Table 1 NMAC)				
		Closu	ure Criteria	(units in n	ng/kg)	
Depth to Groundwater						
< 50' BGS		600	100		50	10
51' to 100'	х	10000	2500	1000	50	10
>100'		20000	2500	1000	50	10
Surface Water		if yes	s, then			
<300' from continuously flowing watercourse or other significant						
watercourse?	no					
<200' from lakebed, sinkhole or playa lake?	no					
Water Well or Water Source						
<500 feet from spring or a private, domestic fresh water well used by						
less than 5 households for domestic or stock watering purposes?	no					
<1000' from fresh water well or spring?	no					
Human and Other Areas		600	100		50	10
<300' from an occupied permanent residence, school, hospital, institution or church?	no	000	100		30	10
within incorporated municipal boundaries or within a defined municipal fresh water well field?	no					
<100' from wetland?	no					
within area overlying a subsurface mine	no]				
within an unstable area?	no					
within a 100-year floodplain?	no					

Table 3: John AGU #1 Battery Sample Summary

NMCCD RRALL for Site Ranking 10 So mg/kg mg/kg mg/kg mg/kg mg/kg 1000 mg/kg mg/k	Sample Number	Comple Date	Depth	Dronner d Antion	BTEX	Benzene	GRO	DRO	MRO	Total TPH	CI-
3/27/2018		Sample Date		Proposed Action	ppm	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	Lab mg/Kg
V1	N	MOCD RRAL's fo	r Site Ranking	10	50 mg/Kg	10 mg/Kg				2500 mg/Kg	10000 mg/kg
V1 3/27/2018 3 excavate <0.300 <0.050 <10.0 <10.0 <10.0 <30.0 7730		3/27/2018	1	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<30.0	7460
V1		3/27/2018	2	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<30.0	5330
7/3/2018 6 in-situ 720 7/3/2018 8 in-situ 720 7/3/2018 8.5 in-situ <-0.207 <-0.023 <-4.6 <-10 <-50 <-64.6 300 3/27/2018 1 excavate 3.42 0.151 <-10.0 <-10.0 <-10.0 <-30.0 8000 7/3/2018 2 excavate 6000 7/3/2018 2 excavate 4300 7/3/2018 6 in-situ 4300 7/3/2018 8 in-situ 4000 7/3/2018 8 in-situ 8700 7/3/2018 1 excavate 8700 7/3/2018 1 excavate 8700 7/3/2018 2 excavate 8700 7/3/2018 3 excavate 8700 7/3/2018 4 excavate 8700 7/3/2018 3 excavate 8700 7/3/2018 4 excavate <-0.216 <-0.024 <-4.8 73 120 193 8600 3/27/2018 1 excavate <-0.300 <-0.050 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 8000 3/27/2018 2 excavate <-0.300 <-0.050 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0 <-10.0		3/27/2018	3	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<30.0	7730
T/3/2018	V1	3/27/2018	4	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<30.0	1920
17/3/2018 8.5 in-situ <0.207 <0.023 <4.6 <10 <50 <64.6 300		7/3/2018	6	in-situ							720
V2		7/3/2018	8	in-situ							1500
V2 7/3/2018 2 excavate		7/3/2018	8.5	in-situ	<0.207	<0.023	<4.6	<10	<50	<64.6	300
V2 7/3/2018		3/27/2018	1	excavate	3.42	0.151	<10.0	<10.0	<10.0	<30.0	8000
V3		7/3/2018	2	excavate							6000
\(\begin{array}{c c c c c c c c c c c c c c c c c c c	V2	7/3/2018	4	excavate							4300
V3 V3 3/27/2018 1		7/3/2018	6	in-situ							4000
V3		7/3/2018	8	in-situ	<0.207	<0.023	<4.6	9.9	<49	9.9	2400
V3 7/3/2018 3 excavate 8700 7/3/2018 4 excavate <0.216 <0.024 <4.8 73 120 193 8600 3/27/2018 1 excavate <0.300 <0.050 <10.0 <10.0 <10.0 <30.0 8000 3/27/2018 2 excavate <0.300 <0.050 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 4160 3/27/2018 3 excavate 0.731 0.353 <10.0 64.8 <10.0 64.8 9200 7/3/2018 8 in-situ		3/27/2018	1	excavate	4.34	0.874	<10.0	<10.0	<10.0	<30.0	8260
17/3/2018 3 excavate	\/2	7/3/2018	2	excavate							8700
V4	VS	7/3/2018	3	excavate	-		-				8700
V4 3/27/2018 2 excavate <0.300 <0.050 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10		7/3/2018	4	excavate	<0.216	<0.024	<4.8	73	120	193	8600
V4 3/27/2018 3 excavate 0.731 0.353 <10.0 64.8 <10.0 64.8 9200 7/3/2018 6 in-situ 6600 7/3/2018 8 in-situ 2300 7/3/2018 10 in-situ <0.216		3/27/2018	1	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<30.0	8000
\(V4\) \[\begin{array}{c c c c c c c c c c c c c c c c c c c		3/27/2018	2	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<10.0	4160
V5 7/3/2018 6 in-situ	\//	3/27/2018	3	excavate	0.731	0.353	<10.0	64.8	<10.0	64.8	9200
7/3/2018 10 in-situ <0.216 <0.024 <4.8 160 250 410 2400 3/27/2018 1 excavate <0.300 <0.050 <10.0 18.0 10.1 28.1 3040 3/27/2018 2 excavate <0.300 <0.050 <10.0 <10.0 <10.0 <30.0 8530 7/3/2018 4 excavate 5700 7/3/2018 8 in-situ 5100 7/3/2018 9 in-situ <0.219 <0.024 <4.9 <9.0 <45 <58.9 1100 3/27/2018 2 excavate 0.665 0.251 <10.0 <10.0 <10.0 <30.0 11600 3/27/2018 1 excavate 0.665 0.251 <10.0 <10.0 <10.0 <30.0 11600 3/27/2018 2 excavate 0.454 0.286 <10.0 17.7 16.2 33.9 5920 3/27/2018 3 excavate <0.300 <0.050 <10.0 12.3 <10 12.3 7600 7/3/2018 4 excavate 4300 7/3/2018 6 in-situ 4300 7/3/2018 8 in-situ 4300 7/3/2018 8 in-situ 4300	٧4	7/3/2018	6	in-situ							6600
No.		7/3/2018	8	in-situ							2300
No		7/3/2018	10	in-situ	<0.216	<0.024	<4.8	160	250	410	2400
V5 7/3/2018 4 excavate 5700 7/3/2018 6 in-situ 5100 7/3/2018 8 in-situ 6700 7/3/2018 9 in-situ <0.219		3/27/2018	1	excavate	<0.300	<0.050	<10.0	18.0	10.1	28.1	3040
V5 7/3/2018 6 in-situ 5100 7/3/2018 8 in-situ 6700 7/3/2018 9 in-situ <0.219		3/27/2018	2	excavate	<0.300	<0.050	<10.0	<10.0	<10.0	<30.0	8530
7/3/2018 6 in-situ 5100 7/3/2018 8 in-situ 6700 7/3/2018 9 in-situ <0.219	\/E	7/3/2018	4	excavate							5700
7/3/2018 9 in-situ <0.219 <0.024 <4.9 <9.0 <45 <58.9 1100 3/27/2018 1 excavate 0.665 0.251 <10.0 <10.0 <10.0 <30.0 11600 3/27/2018 2 excavate 0.454 0.286 <10.0 17.7 16.2 33.9 5920 3/27/2018 3 excavate <0.300 <0.050 <10.0 12.3 <10 12.3 7600 V6 7/3/2018 4 excavate 4300 7/3/2018 6 in-situ 4300 7/3/2018 8 in-situ 2200	V5	7/3/2018	6	in-situ							5100
3/27/2018 1 excavate 0.665 0.251 <10.0 <10.0 <10.0 <30.0 11600		7/3/2018	8	in-situ							6700
3/27/2018 2 excavate 0.454 0.286 <10.0 17.7 16.2 33.9 5920 3/27/2018 3 excavate <0.300		7/3/2018	9	in-situ	<0.219	<0.024	<4.9	<9.0	<45	<58.9	1100
3/27/2018 3 excavate <0.300 <0.050 <10.0 12.3 <10 12.3 7600 7/3/2018 4 excavate 4300 7/3/2018 6 in-situ 4300 7/3/2018 8 in-situ 2200		3/27/2018	1	excavate	0.665	0.251	<10.0	<10.0	<10.0	<30.0	11600
V6 7/3/2018 4 excavate 4300 7/3/2018 6 in-situ 4300 7/3/2018 8 in-situ 2200		3/27/2018	2	excavate	0.454	0.286	<10.0	17.7	16.2	33.9	5920
7/3/2018 6 in-situ 4300 7/3/2018 8 in-situ 2200		3/27/2018	3	excavate	<0.300	<0.050	<10.0	12.3	<10	12.3	7600
7/3/2018 8 in-situ 2200	V6	7/3/2018	4	excavate							4300
		7/3/2018	6	in-situ							4300
7/3/2018 8.5 in-situ <0.213 <0.024 <4.7 <9.1 <45 <58.8 2800		7/3/2018	8	in-situ							2200
7/5/2010 5.5 111 510 50.215 50.027 51.7 55.1 545 50.0 2000		7/3/2018	8.5	in-situ	<0.213	<0.024	<4.7	<9.1	<45	<58.8	2800

to be excavated
"--" = Not Analyzed

orange line denotes liner placement

APPENDIX A FORM C141 INITIAL

NM OIL CONSERVATION

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources ARTESIA DISTRICT

Form C-141 Revised April 3, 2017

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 APR **0 6** 2018 Revised April 3, 2017 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

RECEIVED

PAB1811	01394	12	Rele	ease Notific	ation	and Co	rrective A	ction				
NAB181					OPE	CRATOR			☑ Initia	al Damont		Final Danart
Name of Co		71		OGRID Numbe	r (Contact				al Report		Final Report
EOG Y Res				25575		Chase Settle						
Address	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			20010	_	Telephone N						
104 S. 4th St	treet Artesia	a NM 8821	0			575-748-14						
Facility Nar						Facility Typ					-	
John AGU	#1 Battery					Battery						
Surface Ow Private	ner			Mineral C	wner				API No			
Filvate				Fee	TION	N OF REI	FACE					
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the	Fact/W	est Line	County		
C	14	20S	24E	660	Nor		1980		est	Eddy		
				Latitude 32.57								
						OF REL		3				
Type of Rele	2200			NAI	UKE	Volume of			Volume B	Recovered		
Produced Wa						14 B/PW	Release		12 B/PW			
Source of Re							lour of Occurrence	e		Hour of Dis	covery	
Discharge Li						03/22/2018			03/22/201	18; PM		
Was Immedia	ate Notice Gi		1 V	IN- MAIN		If YES, To	Whom?					
-			yes L	No Not Ro	equirea							
By Whom?						Date and F	lour					
Was a Water	course Reach	ned?				If YES, Vo	olume Impacting t	he Wate	rcourse.			
			Yes 🗵	No								
If a Watercou												
Describe Cau				n Taken.*								
Discharge lin	ne on water p	ump had a ta	allure.									
Describe Are						1 0.1						
				feet by 10 feet v					J 414	ant to NIM	OCD #	ulas and
regulations a	ill operators a	re required t	o report a	e is true and comp nd/or file certain r	elease n	ne best of my	nd perform correct	nderstar	ons for rel	eases which	may e	ndanger
				ce of a C-141 repo								
should their	operations ha	ive failed to	adequately	investigate and r	emediate	e contaminati	on that pose a thr	eat to gr	ound water	r, surface wa	ater, hu	man health
or the enviro				otance of a C-141	report de	oes not reliev	e the operator of	responsi	bility for c	ompliance v	vith an	y other
rederal, state.	1 Contract law	2	diations.				OIL CON	SERV	ATION	DIVISIO	N	
Signature: (/how -	ettle					OIL COIL	DLIC V	^	1	7	
Printed Name	e: Chase Set	tle				Approved by	Environmental S	pecialist	Ch	Stel	11	N
Title: Rep S	afety & Envi	ronmental II				Approval Da	te:41018]	Expiration	Date: 11	A	
E-mail Addre	ess: chase_se	ettle@eogres	sources.co	m		Conditions o	f Approval:	0		Attached	126	P-4694
Date: April 5	5, 2018		Pl	hone:575-748-417	71	SCe	attach	ea			00	7-44UHF

* Attach Additional Sheets If Necessary

41918AB

Operator/Responsible Party,

The OCD has received the form C-141 you provided on 4/6/18 regarding an unauthorized release. The information contained on that form has been entered into our incident database and remediation case number has been assigned. Please refer to this case number in all future correspondence.

It is the Division's obligation under both the Oil & Gas Act and Water Quality Act to provide for the protection of public health and the environment. Our regulations (19.15.29.11 NMAC) state the following,

The responsible person shall complete <u>division-approved corrective action</u> for releases that endanger public health or the environment. The responsible person shall address releases in accordance with a remediation plan submitted to and approved by the division or with an abatement plan submitted in accordance with 19.15.30 NMAC. [emphasis added]

Release characterization is the first phase of corrective action unless the release is ongoing or is of limited volume and all impacts can be immediately addressed. Proper and cost-effective remediation typically cannot occur without adequate characterization of the impacts of any release. Furthermore, the Division has the ability to impose reasonable conditions upon the efforts it oversees. As such, the Division is requiring a workplan for the characterization of impacts associated with this release be submitted to the OCD District II office in Artesia on or before 5/6/18. If and when the release characterization workplan is approved, there will be an associated deadline for submittal of the resultant investigation report. Modest extensions of time to these deadlines may be granted, but only with acceptable justification.

The goals of a characterization effort are: 1) determination of the lateral and vertical extents along with the magnitude of soil contamination. 2) determine if groundwater or surface waters have been impacted. 3) If groundwater or surface waters have been impacted, what are the extents and magnitude of that impact. 4) The characterization of any other adverse impacts that may have occurred (examples: impacts on vegetation, impacts on wildlife, air quality, loss of use of property, etc.). To meet these goals as quickly as possible, the following items must, at a minimum, be addressed in the release characterization workplan and subsequent reporting:

- Horizontal delineation of soil impacts in each of the four cardinal compass directions. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. This is not an exclusive list of potential contaminants. Analyzed parameters should be modified based on the nature of the released substance(s). Soil sampling must be both within the impacted area and beyond.
- Vertical delineation of soil impacts. Adsorbed soil contamination must be characterized for the following constituents using the associated laboratory methods: benzene, toluene, ethylbenzene, and total xylenes by either Method 8260 or 8021, total petroleum hydrocarbons by Method 8015 extended range (GRO+DRO+MRO; C₆ thru C₃₆), and for chloride by Method 300. As above, this is not an exclusive list of potential contaminants and can be modified. Vertical characterization samples should be taken at depth intervals no greater than five feet apart. Lithologic description of encountered soils must also be provided. At least ten vertical feet of soils with contaminant concentrations at or below these values must be demonstrated as existing above the water table.
- Nominal detection limits for field and laboratory analyses must be provided.
- Composite sampling is not generally allowed.
- Field screening and assessment techniques are acceptable (headspace, titration, EC [include algorithm for validation purposes], EM, etc.), but the sampling and assay procedures must be clearly defined. Copies of field notes are highly desirable. A statistically significant set of split samples must be submitted for confirmatory laboratory analysis, including the laterally farthest and vertically deepest sets of soil samples. Make sure there are at least two soil samples submitted

for laboratory analysis from each borehole or test pit (highest observed contamination and deepest depth investigated). Copies of the actual laboratory results must be provided including chain of custody documentation.

- •Probable depth to shallowest protectable groundwater and lateral distance to nearest surface water. If there is an estimate of groundwater depth, the information used to arrive at that estimate must be provided. If there is a reasonable assumption that the depth to protectable water is 50 feet or less, the responsible party should anticipate the need for at least one groundwater monitoring well to be installed in the area of likely maximum contamination.
- If groundwater contamination is encountered, an additional investigation workplan may be required to determine the extents of that contamination. Groundwater and/or surface water samples, if any, must be analyzed by a competent laboratory for volatile organic hydrocarbons (typically Method 8260 full list), total dissolved solids, pH, major anions and cations including chloride and sulfate, dissolved iron, and dissolved manganese. The investigation workplan must provide the groundwater sampling method(s) and sample handling protocols. To the fullest extent possible, aqueous analyses must be undertaken using nominal method detection limits. As with the soil analyses, copies of the actual laboratory results must be provided including chain of custody documentation.
- Accurately scaled and well-drafted site maps must be provided providing the location of borings, test pits, monitoring
 wells, potentially impacted areas, and significant surface features including roads and site infrastructure that might limit
 either the release characterization or remedial efforts. Field sketches may be included in subsequent reporting, but should
 not be considered stand-alone documentation of the site's layout. Digital photographic documentation of the location
 and fieldwork is recommended, especially if unusual circumstances are encountered.

Nothing herein should be interpreted to preclude emergency response actions or to imply immediate remediation by removal cannot proceed as warranted. Nonetheless, characterization of impacts and confirmation of the effectiveness of remedial efforts must still be provided to the OCD before any release incident will be closed.

Jim Griswold
OCD Environmental Bureau Chief
1220 South St. Francis Drive
Santa Fe, New Mexico 87505
505-476-3465
jim.griswold@state.nm.us

Weaver, Crystal, EMNRD

From:

Yvette Moore <Yvette_Moore@eogresources.com>

Sent:

Friday, April 6, 2018 12:11 PM

To:

Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD

Cc:

Bob Asher; Chase Settle John AGU Battery C-141

Subject: Attachments:

John AGU Battery_032618_Initial.pdf

Please find the attached C-141 Initial for the location listed below:

John AGU #1 Battery 660' FNL & 1980' FWL Section 14, T20S-R24E Eddy County, New Mexico

Thanks,

Yvette Moore

Rep Safety & Environmental II
Safety & Environmental Department
Artesia Division
(575)748-4223
yvette_moore@eogresources.com

APPENDIX B NMOSE WELLS REPORT

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters)

(In feet)

water right me.,	POD						J.				,		
	Sub-	Q	Q	Q							Depth	Depth	Water
POD Number	Code basin County	64	16	4 5	Sec T	ws F	Rng	X	Υ	Distance	Well	Water	Column
RA 05146	ED		1	2	14 2	20S 2	24E	541600	3604734* 🌑	401	300	80	220
RA 02906 CLW	CH	3	4	2	14 2	20S 2	24E	541907	3604238*	843	145	25	120
RA 04742	ED		3	3	13 2	20S 2	24E	542408	3603517*	1689	300		
RA 07771	ED	4	1	4	22 2	20S 2	24E	540073	3602194*	2745			
RA 05424	ED	4	2	3	22 2	20S 2	24E	539669	3602194* 🌍	2934	1000	400	600
RA 03085	CH			1	01 2	20S 2	24E	542613	3607799* 🌍	3407	465	300	165
RA 03084	ED			1	03 2	20S 2	24E	539366	3607752*	3562	330	268	62
RA 10139	ED	3	3	2	21 2	20S 2	24E	538285	3602597* 🌍	3592	308		
RA 04245	ED		4	4	35 1	9S 2	24E	542005	3608363*	3752	300		
RA 05284	ED		1	2	01 2	20S 2	24E	543220	3607973* 🌍	3847	282	273	9
RA 04956	ED		1	1	21 2	20S 2	24E	537605	3603101*	3933	1013		
RA 04502	ED		2	2	25 2	20S 2	24E	543656	3601480*	4048	300	268	32
RA 04502 REPAR	ED		2	2	25 2	20S 2	24E	543656	3601480*	4048	275	268	7
RA 05723	ED		3	3	34 1	9S 2	24E	539170	3608353*	4180	310	270	40
RA 02775	CH	1	4	3	21 2	20S 2	24E	537899	3601986*	4271	140	31	109
RA 10140	ED	2	1	1	35 2	20S 2	24E	540938	3599981*	4724	295		
RA 03265	ED	1	2	3	08 2	20S 2	25E	545972	3605636*	4863	150		
RA 05478	ED	3	2	3	08 2	20S 2	24E	536272	3605389*	4975	550	500	50

Average Depth to Water: 243

243 feet

Minimum Depth:

25 feet

Maximum Depth:

500 feet

Record Count: 18

UTMNAD83 Radius Search (in meters):

Easting (X): 541199.63 **Northing (Y):** 3604698 **Radius:** 5000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

APPENDIX C LABORATORY ANALYTICAL REPORTS

April 06, 2018

CHASE SETTLE
EOG Y RESOURCES, INC
105 SOUTH 4TH STREET
ARTESIA, NM 88210

RE: JOHN AGU BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 03/28/18 14:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-17-10. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Reported: 04/06/2018

Project Name: JOHN AGU BATTERY
Project Number: NONE GIVEN

Project Location: JOHN AGU BATTERY

Sampling Date: 03/27/2018

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: V1 - 1' (H800879-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	< 0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	< 0.050	0.050	04/02/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	<0.150	0.150	04/02/2018	ND	6.04	101	6.00	0.461	
Total BTEX	<0.300	0.300	04/02/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 72-148	}						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7460	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/04/2018	ND	198	99.0	200	2.19	
DRO >C10-C28*	<10.0	10.0	04/04/2018	ND	208	104	200	2.23	
EXT DRO >C28-C36	<10.0	10.0	04/04/2018	ND					
Surrogate: 1-Chlorooctane	88.3	% 41-142	?						
Surrogate: 1-Chlorooctadecane	72.8	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC **CHASE SETTLE** 105 SOUTH 4TH STREET ARTESIA NM, 88210

Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact NONE GIVEN Sample Received By: Tamara Oldaker Project Number:

Project Location: JOHN AGU BATTERY

Sample ID: V1 - 2' (H800879-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	<0.050	0.050	04/02/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	<0.150	0.150	04/02/2018	ND	6.04	101	6.00	0.461	
Total BTEX	<0.300	0.300	04/02/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 72-148	}						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5330	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/04/2018	ND	198	99.0	200	2.19	
DRO >C10-C28*	<10.0	10.0	04/04/2018	ND	208	104	200	2.23	
EXT DRO >C28-C36	<10.0	10.0	04/04/2018	ND					
Surrogate: 1-Chlorooctane	94.0	% 41-142	?						
Surrogate: 1-Chlorooctadecane	82.8	% 37 6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC **CHASE SETTLE** 105 SOUTH 4TH STREET ARTESIA NM, 88210

Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018 Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact NONE GIVEN Sample Received By: Project Number: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V1 - 3' (H800879-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	<0.050	0.050	04/02/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	<0.150	0.150	04/02/2018	ND	6.04	101	6.00	0.461	
Total BTEX	<0.300	0.300	04/02/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 72-148	3						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7730	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	84.7	% 41-142	?						
Surrogate: 1-Chlorooctadecane	76.4	% 37.6-14	7						

Surrogate: 1-Chlorooctadecane 76.4 %

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V1 - 4' (H800879-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	<0.050	0.050	04/02/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	<0.050	0.050	04/02/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	<0.150	0.150	04/02/2018	ND	6.04	101	6.00	0.461	
Total BTEX	<0.300	0.300	04/02/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 72-148	,						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1920	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	89.3	% 41-142	ı						
Surrogate: 1-Chlorooctadecane	87.8	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V2 - 1' (H800879-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.151	0.100	04/03/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	0.938	0.100	04/03/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	0.323	0.100	04/03/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	2.01	0.300	04/03/2018	ND	6.04	101	6.00	0.461	
Total BTEX	3.42	0.600	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 72-148	?						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8000	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	84.2	% 41-142	,						
Surrogate: 1-Chlorooctadecane	83.7	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V3 - 1' (H800879-06)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.874	0.500	04/03/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	3.46	0.500	04/03/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	<0.500	0.500	04/03/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	<1.50	1.50	04/03/2018	ND	6.04	101	6.00	0.461	
Total BTEX	4.34	3.00	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.9	% 72-148	}						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8260	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	76.9	% 41-142	?						
Surrogate: 1-Chlorooctadecane	75.1	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V4 - 1' (H800879-07)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/03/2018	ND	1.98	98.9	2.00	1.09	
Toluene*	0.052	0.050	04/03/2018	ND	1.98	98.9	2.00	0.657	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	1.95	97.7	2.00	0.566	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.04	101	6.00	0.461	
Total BTEX	<0.300	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 72-148							
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8000	16.0	04/02/2018	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	88.5	% 41-142							
Surrogate: 1-Chlorooctadecane	81.0	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V4 - 2' (H800879-08)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	<0.300	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 72-148							
Chloride, SM4500CI-B	mg/	'kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4160	16.0	04/03/2018	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS	By: MS				
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	86.9	% 41-142							
Surrogate: 1-Chlorooctadecane	85.0	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V4 - 3' (H800879-09)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.353	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	0.378	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	0.731	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.4	% 72-148	}						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	9200	16.0	04/03/2018	ND	432	108	400	0.00	
TPH 8015M			Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	64.8	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	81.6	% 41-142	•						
Surrogate: 1-Chlorooctadecane	87.4	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC **CHASE SETTLE** 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V4 - 4' (H800879-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	<0.300	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 72-148	}						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7120	16.0	04/03/2018	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed Method Blank 04/03/2018 ND Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	229	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	74.1	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	81.5	% 41-142	?						
Surrogate: 1-Chlorooctadecane	92.5	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC **CHASE SETTLE** 105 SOUTH 4TH STREET ARTESIA NM, 88210

Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018 Reported: Soil

04/06/2018 Sampling Type: Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V5 - 1' (H800879-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	<0.300	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 72-148	}						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3040	16.0	04/03/2018	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	18.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	10.1	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	81.2	% 41-142	?						
Surrogate: 1-Chlorooctadecane	83.2	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC **CHASE SETTLE** 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date:

03/27/2018 Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V5 - 2' (H800879-12)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	<0.300	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 72-148	}						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8530	16.0	04/03/2018	ND	448	112	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	82.1	% 41-142	,						
Surrogate: 1-Chlorooctadecane	75.8	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V6 - 1' (H800879-13)

BTEX 8021B	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.251	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	0.414	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	0.665	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 72-148							
Chloride, SM4500CI-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11600	16.0	04/03/2018	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	<10.0	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	86.3	% 41-142							
Surrogate: 1-Chlorooctadecane	84.6	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC **CHASE SETTLE** 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V6 - 2' (H800879-14)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.286	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	0.168	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	0.454	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.7	% 72-148	,						
Chloride, SM4500CI-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5920	16.0	04/03/2018	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	17.7	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	16.2	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	83.2	% 41-142	1						
Surrogate: 1-Chlorooctadecane	82.8	% 37.6-14	7						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after competent of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

EOG Y RESOURCES, INC CHASE SETTLE 105 SOUTH 4TH STREET ARTESIA NM, 88210 Fax To: (575) 748-4131

Received: 03/28/2018 Sampling Date: 03/27/2018

Reported: 04/06/2018 Sampling Type: Soil

Project Name: JOHN AGU BATTERY Sampling Condition: Cool & Intact
Project Number: NONE GIVEN Sample Received By: Tamara Oldaker

Project Location: JOHN AGU BATTERY

Sample ID: V6 - 3' (H800879-15)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.98	
Toluene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	3.12	
Ethylbenzene*	<0.050	0.050	04/03/2018	ND	2.04	102	2.00	2.49	
Total Xylenes*	<0.150	0.150	04/03/2018	ND	6.34	106	6.00	2.24	
Total BTEX	<0.300	0.300	04/03/2018	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 72-148	3						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7600	16.0	04/03/2018	ND	448	112	400	0.00	
TPH 8015M	mg/kg Result Reporting Limit		Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	04/06/2018	ND	236	118	200	4.81	
DRO >C10-C28*	12.3	10.0	04/06/2018	ND	211	105	200	5.19	
EXT DRO >C28-C36	<10.0	10.0	04/06/2018	ND					
Surrogate: 1-Chlorooctane	80.6	% 41-142	?						
g	00.3	0/ 27 / 14	7						

Surrogate: 1-Chlorooctadecane 80.3 % 37.6-147

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch

accepted based on LCS and/or LCSD recovery and/or RPD values.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

ecoverv.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

ARDINAL LABORATORIES
101 East Marland, Hobbs, NM 88240

(505) 393-2326 FAX (505) 393-2476

	elinquished by:	elliquisiled by.	1	elinquished by		necial I	- 1	0	,	6	0	5	W	2	_	LAB # (lab use only)	ĺ	ORDER #:		ab use only)							
567	ned by:	יפט טץ.).27	1		to V4-4	V4-3'	V4-2'	V4-1'	V3-1'	V2-1'	V1-4'	V1-3'	V1-2'	V1-1'	FIELD CODE		# 1200800 -		only)	Sampler Signature:	Telephone No: 575-748-4171	City/State/Zip: Artesia, NM 88210	Company Address: 105 South 4th Street	Company Name EOG Y Resources Inc.		Project Manager: Chase Settle
ş	Date	Date	3/23/18		TO THE PARTY OF TH	YTENDED																	88210	Street	rces Inc.		
	_	2-	1	`	2											Beginning Depth											
	Time	Ime	00) me	טבט	5										Ending Depth	1										
	Received by ELOT:	Received by:	inum	Received by:	100	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	Date Sampled											15
	OT:		ma all	1		1:29 PM	1:27 PM	1:22 PM	1:20 PM	1:15 PM	1:12 PM	1:06 PM	1:03 PM	1:00 PM	12:57 PM	Time Sampled					e-mail:	Fax No:					
			2	1												Field Filtered						É					
		3) 21	1					_	-	->	-7	->	_	_	_	Total #. of Containers	Ļ	7			S S						
				1		×	×	×	×	×	×	×	×	×	×	Ice		,			Chase						
			8			_	-	╀	-	_	_					HNO ₃	Preservation & # of										
				0		<u> </u>	-	-	-	-			- 1			HCI	vation				Settle@					- 1	
						-	-	-	-	-		-				H ₂ SO ₄	- k				le(C						
						-	+	\vdash	+-	-	-					NaOH Na ₂ S ₂ O ₃)ec						
	12		Cu			H	╁	1—	1	-	_	_				None	Containers				gre					1	
,			"			-	+									Other (Specify)	- es				ose						
5	Date	Date	oc	Date		_		1	1							DW=Drinking Water SL=Sludge	t	1			eogresources.com	1	į	J	88		
			18			S	S	S	S	S	S	S	ဟ	S	S	GW = Groundwater S=Soil/Solid	Matrix				es	Rep					
		_	0				\perp									NP=Non-Potable Specify Other	×	L	-		CO	ort		פ		1	Pro
	Time	Time	3:10	Time		×	×	×	×	×	×	×	×	×	×	TPH: 8015B EXTENDED		1			13	Report Format:		Project Loc:	Pro		Project Name:
					< 10 F	_										TPH: TX 1005 TX 1006		1		ı		nat:	PO #:	Ϋ́	Project #:		Nan
em		Sam	Cust	abe	Sam /OC	_	-									Cations (Ca, Mg, Na, K)		1		П				ŭ	#	ı	ie:
pera	by Courier?	Sample Hand Delivered by Sampler/Client Rep	ody	Labels on container(s)	Laboratory Comments: Sample Containers Intac VOCs Free of Headspac											Anions (CI, SO4, Alkalinity)		TOTAL:	ICLP:			× Standard	205-0750				
ture	urie	lmple	seal	00 (Cont ee o	-	i i		-							SAR / ESP / CEC	-	F.		4		Stan	0750				
PB	-2	ar/CI	SON	ntair	aine f He	-	-		-						_	Metals: As Ag Ba Cd Cr Pb Hg	Se	┢	1	Ana		darc	0				
n R	_	liver ient	000	er(s	mer rs Ir	-	-			_						Volatiles		╀	╀	ılyze				ر	1		ے
Temperature Upon Receipt	UPS	ple Hand Delivered by Sampler/Client Rep. ?	Custody seals on cooler(s)	ت ا	Laboratory Comments: Sample Containers Intact? VOCs Free of Headspace?		-	_						$\overline{}$	_	Semivolatiles BTEX: 8021B		\vdash	+	Analyze For:		\Box		ohn			hn
P	O	•	s) e		.5 .5	×	×	×	×	×	×	×	×	×	×	RCI				-		Ц		AG			AG
4.00	F					\vdash	-		_							N.O.R.M.			_	1		TRRP		ohn AGU Battery			John AGU Battery
30	71							~	V	~	V		J		10.00	Chlorides			_	1		U		atte		3	##
10.	FedEx	RA	<(-	K	RR	×	×	×	×	×	×	×	×	×	×	SAR			_	1				ery		9	Ž
3		00	1	N	00								-			Ont				1		$_{z}$					
റ്	Lone Star	zz	zz	zz	zz	\vdash	-		_						-	RUSH TAT (Pre-Schedule) 24, 4	10 7	2 6		_		NPDES					
i	Star					_	V	~	×	×		$\overline{}$	×	×	_	Standard TAT	40, /	z nr	5			S					
					Account to			_	_	_	_	_	A	ス	7	Glanualu IAI	1						1				

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

ARDINAL LABORATORIES
101 East Marland, Hobbs, NM 88240
Project Manager: Chase Settle

(505) 393-2326 FAX (505) 393-2476

Relinquished by:	selmquished by:	Relinquished by:	pecial in				5	14	5	/~		LAB # (lab use only)		ORDER #:		(lab use only)						
ed by:	ed by:	ed by:	Special Instructions:				V6-3'	V6-2'	V6-1'	V5-2'	V5-1'			# # # Q		only)	Sampler Signature:	Telephone No:	City/State/Zip:	Company Address:	Company Name	Project Manager:
Date	Date	Date \$/28/18	TPH EXTENDED NEEDED									FIELD CODE		0879			ure:	575-748-4171	Artesia, NM 88210	ss: 105 South 4th Street	EOG Y Resources Inc.	r: Chase Settle
		7	DED NEE									Beginning Depth										
Time	Time	Time	DED									Ending Depth										
Received by ELOT:	Received by:	Received by:					3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	Date Sampled										
OT:		wara b					1:45 PM	1:43 PM	1:41 PM	1:37 PM	1:35 PM	Time Sampled					e-mail:	Fax No:				
		D						D.S.		1200		Field Filtered					10	T.				
		18.			+	-						Total #. of Containers	+	7			Chase					
	Č	1				-	×	×	×	×	×	HNO ₃	-	P			ese					
		RI			++-	-	-					HCI	- 1	Servi								
		1				+						H ₂ SO ₄	- 5	Preservation & #			Settle@					
												NaOH	- 1	# # %								
												Na ₂ S ₂ O ₃	9	500			eo					
		CI										None	- 10	Containers			eogresources.com)					
Date	Date	Date										Other (Specify)	ď	'n			SOL				l	
(0)		1						78 -	20	15		DW=Drinking Water SL=Sludge	14	3			E C	ח				•
		00					S	S	S	S	S	GW = Groundwater S=Soil/Solid NP=Non-Potable Specify Other	21.7	Matrix			S.C	Report Format:				ס
Time	Time	Time	1			+	×	×	×	×	×	TPH: 8015B EXTENDED		+	_	Т	Š Š	Ă		Pro	-	roje
ne ne	ne	6 9	Ì		$\pm \pm$					_		TPH: TX 1005 TX 1006		1		ı	1-	orm	-77	Project Loc:	Project #:	Project Name:
d	Sa	5 5 E	Sa									Cations (Ca, Mg, Na, K)		1		ı		at:	PO #:	Loc	ct #	ame
mpe	mple by	bels stod	mple									Anions (CI, SO4, Alkalinity)		۱=				×		<u> </u>	1	
perature L	Ha	on c	Co									SAR / ESP / CEC		- C	TCLP:			Sta	205-0750			
70. <u>a</u>	nd D	onta als c	ntair of L									Metals: As Ag Ba Cd Cr Pb Hg	Se	_		≥		x Standard	50			
Temperature Upon Receipt:	Sample Hand Delivered by Sampler/Client Rep. ?	Labels on container(s) Custody seals on container Custody seals on container	Laboratory Comments: Sample Containers Intact?									Volatiles				Analyze	l i	<u>a</u>				
Rec	ered t Re	spac (s) ontai	ents									Semivolatiles				že F				John		John
Mej:		Labels on container(s) Custody seals on container(s) Custody seals on container(s)	3 23				×	×	×	×	×	BTEX: 8021B				For:) A (n Ac
3x		s										RCI						TRRP		UE		GU
0												N.O.R.M.				H	1	õ		John AGU Battery		John AGU Battery
J.986	(2)	1200	AR -		\vdash		×	×	×	×		Chlorides				П	¥			ery		tery
× ×	W	W				+	_	_	4	_		SAR				П						
C °C	zzz	zzz	zz	_	\vdash		\dashv	+	-	\dashv	-	RIISH TAT mes activities	40 -	70 '		Ц		NPDES				
Star			-			H	×	× ;	×	×	_	RUSH TAT (Pre-Schedule) 24, 4 Standard TAT	48,	r2 hr	S			S				
6º			1211									- WINGIANI	1						li "		l	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 25, 2018

Austin Weyant Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040

FAX

RE: John AGU Battery OrderNo.: 1807276

Dear Austin Weyant:

Hall Environmental Analysis Laboratory received 21 sample(s) on 7/7/2018 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued July 18, 2018.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

anded

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V1-6

Project: John AGU Battery
 Collection Date: 7/3/2018 10:57:00 AM

 Lab ID: 1807276-001
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qu	ial Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: MRA
Chloride	720	30	mg/Kg	20	7/13/2018 4:28:57 PM	1 39196

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 1 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V1-8

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 11:03:00 AM

 Lab ID:
 1807276-002
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: MRA
Chloride	1500	75	mg/Kg	50	7/16/2018 7:01:25 AM	39196

-				
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 2 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V1-8.5

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 11:15:00 AM

 Lab ID:
 1807276-003
 Matrix: SOLID
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	300	30	mg/Kg	20	7/13/2018 4:53:45 PM	39196
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	: Irm
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	7/11/2018 12:12:12 PM	39125
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	7/11/2018 12:12:12 PM	39125
Surr: DNOP	89.2	70-130	%Rec	1	7/11/2018 12:12:12 PM	39125
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	7/10/2018 5:48:26 PM	39103
Surr: BFB	95.7	15-316	%Rec	1	7/10/2018 5:48:26 PM	39103
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Methyl tert-butyl ether (MTBE)	ND	0.092	mg/Kg	1	7/10/2018 5:48:26 PM	39103
Benzene	ND	0.023	mg/Kg	1	7/10/2018 5:48:26 PM	39103
Toluene	ND	0.046	mg/Kg	1	7/10/2018 5:48:26 PM	39103
Ethylbenzene	ND	0.046	mg/Kg	1	7/10/2018 5:48:26 PM	39103
Xylenes, Total	ND	0.092	mg/Kg	1	7/10/2018 5:48:26 PM	39103
Surr: 4-Bromofluorobenzene	108	80-120	%Rec	1	7/10/2018 5:48:26 PM	39103

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifi	ers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	POL	Practical Quanitative Limit	RL	Reporting Detection Limit

S % Recovery outside of range due to dilution or matrix W Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V2-2

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 11:31:00 AM

 Lab ID:
 1807276-004
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qu	ial Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analys	st: MRA
Chloride	6000	300	mg/Kg	200 7/16/2018 7:13:49 AM	1 39196

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 4 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL Practical Quanitative Limit		RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V2-4

Project: John AGU Battery
 Collection Date: 7/3/2018 11:38:00 AM

 Lab ID: 1807276-005
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qı	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: MRA
Chloride	4300	300	mg/Kg	200 7/16/2018 7:26:13 AM	A 39196

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	 H Holding times for preparation or analysis exceeded 		J	Analyte detected below quantitation limits Page 5 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL Practical Quanitative Limit		RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V2-6

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 11:47:00 AM

 Lab ID:
 1807276-006
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: MRA
Chloride	4000	150	mg/Kg	100 7/16/2018 7:38:37 AM	A 39196

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 6 of 26 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V2-8

Project: John AGU Battery
 Collection Date: 7/3/2018 11:59:00 AM

 Lab ID: 1807276-007
 Matrix: SOLID
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	2400	75	mg/Kg	50	7/16/2018 7:51:02 AM	39196
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	: Irm
Diesel Range Organics (DRO)	9.9	9.8	mg/Kg	1	7/11/2018 1:26:21 PM	39125
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	7/11/2018 1:26:21 PM	39125
Surr: DNOP	93.0	70-130	%Rec	1	7/11/2018 1:26:21 PM	39125
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	7/10/2018 6:12:02 PM	39103
Surr: BFB	97.2	15-316	%Rec	1	7/10/2018 6:12:02 PM	39103
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	0.092	mg/Kg	1	7/10/2018 6:12:02 PM	39103
Benzene	ND	0.023	mg/Kg	1	7/10/2018 6:12:02 PM	39103
Toluene	ND	0.046	mg/Kg	1	7/10/2018 6:12:02 PM	39103
Ethylbenzene	ND	0.046	mg/Kg	1	7/10/2018 6:12:02 PM	39103
Xylenes, Total	ND	0.092	mg/Kg	1	7/10/2018 6:12:02 PM	39103
Surr: 4-Bromofluorobenzene	106	80-120	%Rec	1	7/10/2018 6:12:02 PM	39103

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V3-2

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 1:30:00 PM

 Lab ID:
 1807276-008
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: MRA
Chloride	8700	300	mg/Kg	200 7/16/2018 8:03:27 AM	A 39196

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 8 of 26 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V3-3

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 1:45:00 PM

 Lab ID:
 1807276-009
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qu	ıal Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analys	st: MRA
Chloride	8700	750	mg/Kg	500 7/16/2018 8:15:51 AM	39196

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V3-4

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 1:55:00 PM

 Lab ID:
 1807276-010
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: MRA
Chloride	8600	750	mg/Kg	500	7/16/2018 8:28:16 AM	39196
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	: Irm
Diesel Range Organics (DRO)	73	10	mg/Kg	1	7/11/2018 1:51:14 PM	39125
Motor Oil Range Organics (MRO)	120	50	mg/Kg	1	7/11/2018 1:51:14 PM	39125
Surr: DNOP	106	70-130	%Rec	1	7/11/2018 1:51:14 PM	39125
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	7/10/2018 6:35:42 PM	39103
Surr: BFB	97.5	15-316	%Rec	1	7/10/2018 6:35:42 PM	39103
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	0.096	mg/Kg	1	7/10/2018 6:35:42 PM	39103
Benzene	ND	0.024	mg/Kg	1	7/10/2018 6:35:42 PM	39103
Toluene	ND	0.048	mg/Kg	1	7/10/2018 6:35:42 PM	39103
Ethylbenzene	ND	0.048	mg/Kg	1	7/10/2018 6:35:42 PM	39103
Xylenes, Total	ND	0.096	mg/Kg	1	7/10/2018 6:35:42 PM	39103
Surr: 4-Bromofluorobenzene	107	80-120	%Rec	1	7/10/2018 6:35:42 PM	39103

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 10 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order 1807276

Client Sample ID: V4-6

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 7:36:00 AM

 Lab ID:
 1807276-011
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qı	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	6600	300	mg/Kg	200 7/17/2018 7:56:37 AM	1 39208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 11 of 26 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V4-8

Project: John AGU Battery
 Collection Date: 7/3/2018 7:54:00 AM

 Lab ID: 1807276-012
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: CJS
Chloride	2300	75	mg/Kg	50	7/17/2018 8:09:02 AM	1 39208

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 12 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/25/2018

CLIENT: Souder, Miller & Associates Client Sample ID: V4-10

Project: John AGU Battery
 Collection Date: 7/3/2018 8:15:00 AM

 Lab ID: 1807276-013
 Matrix: SOLID
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: CJS
Chloride	2400	75		mg/Kg	50	7/17/2018 8:21:26 AM	39208
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: TOM
Diesel Range Organics (DRO)	160	9.4	Н	mg/Kg	1	7/23/2018 11:19:31 AM	39336
Motor Oil Range Organics (MRO)	250	47	Н	mg/Kg	1	7/23/2018 11:19:31 AM	39336
Surr: DNOP	100	70-130	Н	%Rec	1	7/23/2018 11:19:31 AM	39336
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	Н	mg/Kg	1	7/24/2018 11:54:21 AM	39352
Surr: BFB	93.7	15-316	Н	%Rec	1	7/24/2018 11:54:21 AM	39352
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.024	Н	mg/Kg	1	7/24/2018 11:54:21 AM	39352
Toluene	ND	0.048	Н	mg/Kg	1	7/24/2018 11:54:21 AM	39352
Ethylbenzene	ND	0.048	Н	mg/Kg	1	7/24/2018 11:54:21 AM	39352
Xylenes, Total	ND	0.096	Н	mg/Kg	1	7/24/2018 11:54:21 AM	39352
Surr: 4-Bromofluorobenzene	103	80-120	Н	%Rec	1	7/24/2018 11:54:21 AM	39352

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	times for preparation or analysis exceeded J Analyte detected below quantitation lim	
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V5-4

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 8:44:00 AM

 Lab ID:
 1807276-014
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	5700	300	mg/Kg	200 7/17/2018 8:33:51 AM	A 39208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 14 of 26 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates

Project: John AGU Battery

Lab ID: 1807276-015

Client Sample ID: V5-6

Collection Date: 7/3/2018 8:57:00 AM

Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	5100	300	mg/Kg	200 7/17/2018 8:46:16 AM	A 39208

Matrix: SOIL

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 15 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V5-8

Project: John AGU Battery
 Collection Date: 7/3/2018 9:08:00 AM

 Lab ID: 1807276-016
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	6700	300	mg/Kg	200 7/17/2018 8:58:40 AM	M 39208

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	or analysis exceeded J Analyte detected below quantitation limits	
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V5-9

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 9:20:00 AM

 Lab ID:
 1807276-017
 Matrix: SOLID
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: MRA
Chloride	1100	30		mg/Kg	20	7/16/2018 2:16:01 AM	39208
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.0	Н	mg/Kg	1	7/23/2018 10:35:20 AM	39336
Motor Oil Range Organics (MRO)	ND	45	Н	mg/Kg	1	7/23/2018 10:35:20 AM	39336
Surr: DNOP	92.8	70-130	Н	%Rec	1	7/23/2018 10:35:20 AM	39336
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	Н	mg/Kg	1	7/24/2018 12:17:48 PM	39352
Surr: BFB	89.7	15-316	Н	%Rec	1	7/24/2018 12:17:48 PM	39352
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.024	Н	mg/Kg	1	7/24/2018 12:17:48 PM	39352
Toluene	ND	0.049	Н	mg/Kg	1	7/24/2018 12:17:48 PM	39352
Ethylbenzene	ND	0.049	Н	mg/Kg	1	7/24/2018 12:17:48 PM	39352
Xylenes, Total	ND	0.097	Н	mg/Kg	1	7/24/2018 12:17:48 PM	39352
Surr: 4-Bromofluorobenzene	99.3	80-120	Н	%Rec	1	7/24/2018 12:17:48 PM	39352

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H Holding times for preparation or analysis exceeded J Ana		Analyte detected below quantitation limit Page 17 of 26	
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order 1807276

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V6-4

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 9:42:00 AM

 Lab ID:
 1807276-018
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	4300	150	mg/Kg	100 7/17/2018 9:35:54 AM	A 39208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 18 of 26 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V6-6

Project: John AGU Battery
 Collection Date: 7/3/2018 9:54:00 AM

 Lab ID: 1807276-019
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	4300	150	mg/Kg	100 7/17/2018 9:48:19 AM	A 39208

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	on or analysis exceeded J Analyte detected below	
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Lab Order **1807276**

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates Client Sample ID: V6-8

 Project:
 John AGU Battery
 Collection Date: 7/3/2018 10:06:00 AM

 Lab ID:
 1807276-020
 Matrix: SOIL
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 300.0: ANIONS				Analy	st: CJS
Chloride	2200	150	mg/Kg	100 7/17/2018 10:00:44 A	AM 39208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 20 of 26 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range PQL Practical Quanitative Limit RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Date Reported: 7/25/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Souder, Miller & Associates

Client Sample ID: V6-8.5

Project: John AGU Battery
 Collection Date: 7/3/2018 10:17:00 AM

 Lab ID: 1807276-021
 Matrix: SOLID
 Received Date: 7/7/2018 10:50:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: CJS
Chloride	2800	150		mg/Kg	100	7/17/2018 10:13:09 AM	39208
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: TOM
Diesel Range Organics (DRO)	ND	9.1	Н	mg/Kg	1	7/23/2018 10:13:25 AM	39336
Motor Oil Range Organics (MRO)	ND	45	Н	mg/Kg	1	7/23/2018 10:13:25 AM	39336
Surr: DNOP	91.1	70-130	Н	%Rec	1	7/23/2018 10:13:25 AM	39336
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.7	Н	mg/Kg	1	7/24/2018 12:41:20 PM	39352
Surr: BFB	92.5	15-316	Н	%Rec	1	7/24/2018 12:41:20 PM	39352
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.024	Н	mg/Kg	1	7/24/2018 12:41:20 PM	39352
Toluene	ND	0.047	Н	mg/Kg	1	7/24/2018 12:41:20 PM	39352
Ethylbenzene	ND	0.047	Н	mg/Kg	1	7/24/2018 12:41:20 PM	39352
Xylenes, Total	ND	0.095	Н	mg/Kg	1	7/24/2018 12:41:20 PM	39352
Surr: 4-Bromofluorobenzene	102	80-120	Н	%Rec	1	7/24/2018 12:41:20 PM	39352

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 21 of 26
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1807276**

25-Jul-18

Client: Souder, Miller & Associates

Project: John AGU Battery

Sample ID MB-39196 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 39196 RunNo: 52688

Prep Date: 7/13/2018 Analysis Date: 7/13/2018 SeqNo: 1729903 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-39196 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 39196 RunNo: 52688

Prep Date: 7/13/2018 Analysis Date: 7/13/2018 SeqNo: 1729904 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 95.2 90 110

Sample ID MB-39208 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 39208 RunNo: 52708

Prep Date: 7/15/2018 Analysis Date: 7/16/2018 SeqNo: 1730611 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-39208 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 39208 RunNo: 52708

Prep Date: **7/15/2018** Analysis Date: **7/16/2018** SeqNo: **1730612** Units: **mg/Kg**

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 95.3 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 22 of 26

Hall Environmental Analysis Laboratory, Inc.

WO#: 1807276

25-Jul-18

Client: Souder, Miller & Associates

Project: John AGU Battery

Project:	John AGO	Dattery									
Sample ID N	/IB-39125	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: P	PBS	Batch	ID: 39	125	F	RunNo: 5	2618				
Prep Date:	7/10/2018	Analysis Da	ate: 7/	11/2018	5	SeqNo: 1	726901	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Org		ND	10								
Motor Oil Range	Organics (MRO)	ND	50								
Surr: DNOP		8.6		10.00		86.0	70	130			
Sample ID L	.CS-39125	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: L	.css	Batch	ID: 39	125	F	RunNo: 5	2618				
Prep Date:	7/10/2018	Analysis Da	ate: 7/	11/2018	9	SeqNo: 1	726902	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Org	ganics (DRO)	52	10	50.00	0	103	70	130			
Surr: DNOP		4.1		5.000		82.3	70	130			
Sample ID 1	807276-003AMS	SampT	уре: М\$	<u> </u>	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: V	/ 1-8.5	Batch	ID: 39	125	F	RunNo: 5 :	2618				
Prep Date:	7/10/2018	Analysis Da	ate: 7/	11/2018	9	SeqNo: 1	727034	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Org	ganics (DRO)	53	9.8	49.16	4.611	98.5	62	120			
Surr: DNOP		4.3		4.916		86.7	70	130			
Sample ID 1	807276-003AMSE	SampT ₁	ype: MS	SD	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: V	/ 1-8.5	Batch	ID: 39	125	F	RunNo: 5	2618				
Prep Date:	7/10/2018	Analysis Da	ate: 7/	11/2018	5	SeqNo: 1	727035	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Org	ganics (DRO)	53	9.9	49.36	4.611	98.6	62	120	0.459	20	
Surr: DNOP		4.3		4.936		87.8	70	130	0	0	
Sample ID L	.CS-39336	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: L	.css	Batch	ID: 39	336	F	RunNo: 5	2903				
Prep Date:	7/23/2018	Analysis Da	ate: 7/	23/2018	\$	SeqNo: 1	738189	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Org	ganics (DRO)	47	10	50.00	0	93.4	70	130	_	_	_
Surr: DNOP		4.3		5.000		86.2	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Page 23 of 26

Hall Environmental Analysis Laboratory, Inc.

WO#: 1807276

25-Jul-18

Client: Souder, Miller & Associates

Project: John AGU Battery

Sample ID MB-39336 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

PBS Client ID: Batch ID: 39336 RunNo: 52903

Prep Date: 7/23/2018 Analysis Date: 7/23/2018 SeqNo: 1738190 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50

Surr: DNOP 8.8 10.00 88.0 70 130

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P

Sample pH Not In Range

Reporting Detection Limit RL

Sample container temperature is out of limit as specified

Page 24 of 26

Hall Environmental Analysis Laboratory, Inc.

1000

1000

WO#: 1807276

25-Jul-18

Client: Souder, Miller & Associates

Project: John AGU Battery

Sample ID MB-39103	SampType: M	BLK	Test	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch ID: 39	103	R	RunNo: 52	2591				
Prep Date: 7/9/2018	Analysis Date: 7	/10/2018	S	SeqNo: 17	725737	Units: mg/k	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	930	1000		93.0	15	316			
Sample ID LCS-39103	SampType: L (cs	Test	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batch ID: 39	103	R	RunNo: 52	2591				
Prep Date: 7/9/2018	Analysis Date: 7	/10/2018	S	SeqNo: 17	725738	Units: mg/k	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	28 5.0	25.00	0	110	75.9	131			
Surr: BFB	1000	1000		102	15	316			
Sample ID MB-39352	SampType: M	BLK	Test	tCode: EF	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch ID: 39	352	R	RunNo: 52	2947				
Prep Date: 7/23/2018	Analysis Date: 7	/24/2018	S	SeqNo: 17	740075	Units: mg/k	(g		
Prep Date: 7/23/2018 Analyte	Analysis Date: 7 Result PQL		SPK Ref Val	•		Units: mg/k HighLimit	(g %RPD	RPDLimit	Qual
	•	SPK value		•		J	J	RPDLimit	Qual
Analyte	Result PQL	SPK value		•		J	J	RPDLimit	Qual
Analyte Gasoline Range Organics (GRO)	Result PQL ND 5.0	SPK value	SPK Ref Val	%REC 95.3	LowLimit 15	HighLimit	%RPD		Qual
Analyte Gasoline Range Organics (GRO) Surr: BFB	Result PQL ND 5.0 950	SPK value 1000	SPK Ref Val	%REC 95.3	LowLimit 15 PA Method	HighLimit 316	%RPD		Qual
Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID LCS-39352	Result PQL ND 5.0 950 SampType: L0	SPK value 1000 CS 0352	SPK Ref Val	%REC 95.3 tCode: EF	LowLimit 15 PA Method 2947	HighLimit 316	%RPD		Qual
Analyte Gasoline Range Organics (GRO) Surr: BFB Sample ID LCS-39352 Client ID: LCSS	Result PQL ND 5.0 950 SampType: L0 Batch ID: 39	SPK value 1000 CS 0352 /24/2018	SPK Ref Val	%REC 95.3 tCode: EF RunNo: 5 2	LowLimit 15 PA Method 2947	HighLimit 316 8015D: Gaso	%RPD		Qual

Qualifiers:

Surr: BFB

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range

103

15

316

- J
- Analyte detected below quantitation limits
- Page 25 of 26

- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1807276

25-Jul-18

Client: Souder, Miller & Associates

Project: John AGU Battery

Sample ID MB-39103	Samp	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: PBS	Batc	h ID: 39	103	F	RunNo: 5	2591				
Prep Date: 7/9/2018	Analysis [Date: 7/	10/2018	5	SeqNo: 1	725764	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	0.10								
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.0		1.000		104	80	120			
Sample ID LCS-39103	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Batc	h ID: 39	103	F	RunNo: 5	2591				
Prep Date: 7/9/2018	Analysis [Date: 7/	10/2018	\$	SeqNo: 1	725765	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	0.90	0.10	1.000	0	90.4	70.1	121			
Benzene	0.97	0.025	1.000	0	96.8	77.3	128			
Toluene	1.0	0.050	1.000	0	100	79.2	125			
Ethylbenzene	0.98	0.050	1.000	0	98.0	80.7	127			
Xylenes, Total	3.0	0.10	3.000	0	100	81.6	129			
Surr: 4-Bromofluorobenzene	1.1		1.000		106	80	120			
Sample ID MB-39352	Samp	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: PBS	Batc	h ID: 39	352	F	RunNo: 5	2947				
Prep Date: 7/23/2018	Analysis [Date: 7/	24/2018	5	SeqNo: 1	740124	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.1		1.000		108	80	120			
Sample ID LCS-39352	Samp	Гуре: LC	ss	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Batc	h ID: 39	352	F	RunNo: 5	2947				
Prep Date: 7/23/2018	Analysis [Date: 7/	24/2018	5	SeqNo: 1	740125	Units: mg/h	(g		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.025	1.000	0	93.8	77.3	128			
Toluene	0.97	0.050	1.000	0	97.2	79.2	125			
Ethylbenzene	0.95	0.050	1.000	0	94.6	80.7	127			
,										

Qualifiers:

Xylenes, Total

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix D

Surr: 4-Bromofluorobenzene

Η Holding times for preparation or analysis exceeded

2.9

1.0

0.10

3.000

1.000

ND Not Detected at the Reporting Limit

Practical Quanitative Limit PQL

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

81.6

80

129

120

Page 26 of 26

E Value above quantitation range

97.1

102

J Analyte detected below quantitation limits

P

Sample pH Not In Range

Reporting Detection Limit RL

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	SMA-CARLSBAD	Work Order Nur	mber: 1807276		RcptNo:	1
Received By:	Anne Thorne	7/7/2018 10:50:00) AM	anne Sh		
Completed By:	Isaiah Ortiz	7/9/2018 9:50:19	AM	IO		
Reviewed By:	<u>_TO</u>	7/9/18				
CB: F	TAN TIONS	· '				
Chain of Cus	stody	5				
1. Is Chain of C	ustody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		<u>Client</u>			
Log In 3 Was an atten	npt made to cool the samp	olog 2	v [ā]	🗆		
o. Was all allen	inprimade to coor the samp	nes?	Yes 🗹	No 🗔	NA. L	
4. Were all sam	ples received at a tempera	ature of >0° C to 6.0°C	Yes 🗸	No 🗌	NA 🗆	
		10 0.0 0	103 💌		IVA L	
5. Sample(s) in	proper container(s)?		Yes 🗹	No 🗌		
6 Sufficient sam	nple volume for indicated t	est/s\2	Yes 🔽	No 🗆		
	except VOA and ONG) pr		res ✓ Yes ✓	No 🗀		
	tive added to bottles?	opony preserveu:	Yes	No 🗹	NA 🗆	
			100	140 &	, IVA 🖂	
9. VOA vials hav	e zero headspace?		Yes	No 🗌	No VOA Vials 🗹	
10. Were any san	nple containers received b	oroken?	Yes	No 🗹	# 05 000000	
11 Dans					# of preserved bottles checked	0119
	ork match bottle labels? ancies on chain of custody	·)	Yes 🗹	No 🗀	for pH:	12 unless noted)
	orrectly identified on Chai		Yes 🗹	No 🗆	Adjusted?	drilodo fiotod)
	analyses were requested	?	Yes 🗹	No 🗆	()	
	ng times able to be met?		Yes 🗹	No 🗌	Checked by:	
	ustomer for authorization.)					
	ing (if applicable)					
15. Was client no	tified of all discrepancies v	with this order?	Yes 🗌	No 🗀	NA 🗹	
Person	Notified:	Date				
By Who		Via:	eMail P	hone 🗌 Fax	☐ In Person	
Regardi	PRODUCT CONSTRUCTOR CONTRACTOR CONTRACTOR		^^			
Client In	structions:				Meres emonomento comes e seres compositores	
16. Additional ren	narks:			· ·		
7. Cooler Inform	nation					
Cooler No.	S. CORRESPONDED TO A STREET OF THE STREET OF	Seal Intact Seal No	Seal Date	Signed By		
17	5.8 Good	Yes	1			

ر	hain	こっち	Chain-ot-Custody Record	urn-Around IIMe						1		; [
Client:	SM	4-61	SMA-Caristad	- □ Standard	Rush	X Rush 5 day				¥Z T	╛	HALL ENVIRONMENTAL	AI.	Ö ;	Σ	Z ; W ;	₹	, >
				اند ا					_	AVAVA		WANN Hallenvironmental com	ת מים ל	֓֞֞֜֞֜֞֜֞֜֞֜֞֜֞֜֜֞֜֞֜֜֞֜֞֜֜֞֜֜֞֜֞֓֓֓֓֓֓֜֜֜֜֜֡֓֓֓֓֓֡֓֜֜֡֓֓֡֓֡֓֜֜֡֓֜֡֓֜֡֡֡֓֜֡֡֡֡֓֓֡֓֡֡֡֡֓֜֡֡֓֜֡֓֜	ב כ	5	2	-
Mailing	Mailing Address:			JOHN A	AGU Balku	李五		4901	4901 Hawkins NE	kins	,	Albuquerque, NM 87109	erane	N N	 I 871(<u></u>		
								Tel.	Tel. 505-345-3975	45-3		Fax .	505-3	505-345-4107	107	•		
Phone #:	#:	:				`					An	alysis		lest				
email or Fax#:	r Fax#:			Project Manager:			((C)			(*(
QA/QC	QA/QC Package:			•	•		120		ואוע		(5)Sʻ						
☐ Standard	dard		☐ Level 4 (Full Validation)	MSHIN W	leuan+		8) s		/ O>		SMIS	ЪО						
Accreditation □ NELAP	itation AP	□ Other		Sampler: WC	/ S	Noise	'aMT				S 0728	' ^z ON' ^e			(/14
□ EDD (Type)	(Type)			Sample Temperature	tulre // Vision	71.4-58	+ 38								∀Ο/			
					3		aTM								√-im			
Date	Time	Matrix	Sample Request ID	Container Pre Type and #	Preservative Type	HEAL NOTICE	I + X∃T8	BTEX + I	108 H9T 9M) H9T	EDB (We	8) s'HAG	RCRA 8 Anions (F	8081 Pes	V) 809Z8	9S) 07S8			איר טיידדו
4/3/18 10:57 soil	15:01	:ē	۷۱-۲،	407.		8						+		1				
	11:03 Soil	<u>.</u>	VF 8 '			600						~						-
	11:15 ROCK		VI-8.5	BAGGY		003	*	_	×			×				<u> </u>		-
	11:31	[પછ	7			COH					 	>				_		+
	11:38	દાન	V2-4'			COS						*						
	11:47	É	٧2-6 '			000						7						
	11:59 BOCK	SE	12-8.	BKGH		700	×	*				¥				ļ		\vdash
	1:30	: <u>:</u>	V3-2'	<u> </u>		008						*		/				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	::	જ્યો	٧3-3،			COOH						\$ £			/	4		
	1:58	Sei l	V3-41			OIO	*	~				×					\angle	
	7:36	<u>.</u>	V4-6'			011						3 4.	-		_	<u> </u>		/-
	4	Ē	4-0-1	~		610						4			Н			-
	Itme:	Relinquished by:	•	Received by:	\	Date Time	Remarks	arks:										
	0110	M.\min	٠ ١	MA		15818 090	8	ᢐ				-		Ì	ç	(
15/15/	. ј. ше:	Xelinguight		Received by:	<i>!</i> 2	Date Time	Ž	page lof 2	7	N	•	\$ _	AsoulDTIB 1650	17d	' رو خ	S	\$	~-
0//	De By	ndus selome:	s enhanttad to Hall Environmental may be enhantracted to other o	of posterior according	1 277	This senses as profice of this	·	֓֞֞֜֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1 2	hochocat	9	460	女	1	7	7	0-1	m

	Juain	ابان ا	Chain-or-Custody Record		<u>5</u>					•		í	ļ		1	; ;	I		
Client:	SM	t Car	Client: SMA Cartsbad	☐ Standard		M Rush 5 day			7 _	4 Z I 4	<u> </u>	HALL ENVIRONMENTAL ANAI VSTS I ABODATODV	71R	o d	Σο	Z W \	₹ <u>6</u>	_ >	
i				Project Name:								Many ballenvironmental com	ת ה	֓֞֞֜֜֜֞֜֜֜֜֜֜֜֜֜֜֜֟֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֜֜֓֓֡֓֡֓֡֓֡	Ž) (5		_	
Mailinc	Mailing Address:			S	Kal Bates	ates.		4901	Haw	4901 Hawkins NE		Albuqueraue: NM 87109			" 8710	g:			
				Project #:			1	Tel.	505-(Tel. 505-345-3975		Fax	505-	505-345-4107	107)			
Phone #:	#										An	Analysis Request	Redu	lest					
email	email or Fax#:			Project Manager:	ger:		((0)			(†(
QA/QC	QA/QC Package:			-	•	_	120		HM		(5	OSʻ ^t							
□ Standard	ndard		☐ Level 4 (Full Validation)	机行机	NE gra	な	8) s		/ O>		SMIS	'Оd							
Accreditati	Accreditation	□ Other	Jo	Sampler: K	ريها	No.	'amt				S 07S	'ZON'						XI T	
	□ EDD (Type)			10 R =	Derature 162	16-1.00 S	+]:								ΨΟ /			•	
		90000	7,				8T								Λ-II			*/	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEALNG 1807376	BTEX + M	BTEX + M	13 108 H9T risM) H9T	EDB (Meth	.£8) a'HA¶	M 8 AЯጋЯ Anions (F	itsəG 1808	8Se0B (VC	mə2) 0728 	<u>-</u>		111 4 . v	
1218	8:15	なる	V4-10 '	ASS _M WAR		013	w	*				+	1					\vdash	
7 3 18	8:44 80	. <u>E</u>	V5-41	402		Ы						w.		-				\vdash	
	8:57	<u>.</u>	V5- L'			015						~			<u> </u>			+	
	9:08	<u>.</u>	12-61			910						w.						+	
	9:20	Sock Sock	15-9'	Bathy		710	٧.	*				×						 	
	9:42	. چ	16-41	ر بر .		018						*			<u> </u>	<u></u>		\vdash	
	9:54	رقح	VV ~ 6'			61W						~						<u> </u>	
	(0.0t	sil	Vb - 81	-		0eQ						¥						\vdash	
t	10:11	Pack.	Ve - F.5	Bassy		160	1		*			×			<u> </u>				
				(M)														<u> </u>	
																		-	
	į			(-			/						
Date:	ime:	Relinquished by:		Received by:		Date Time	Remarks:	arks:											
Z afe:	- '	Relinquished	No.	Received Vy		Date Time	2 4	ころ	2	page 1st 2									
27/2/	1			7		7050	•	-											
	f necessary, t	sample# subn	If necessary, samples submitted to Hall Environmental may be subcontracted to office accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	intracted to other acc	redited laboratories	s. This serves as notice of this	lidissod :	ty. Any	oo-dus	ntracted	data will	be clear	y notate	d on the	analyti	cal repo	ť		