	SITE INFORMATION									
		Report Ty	pe: Work	Plan						
General Site Information:										
Site & Lease No:		Copperhead	Copperhead 31 Federal Com #001H							
Company:		COG Operati								
Section, Township and Ra	ange	Unit H	Sec. 31	T 26S	R 29E					
Lease Number:		API No. 30-0								
County:		Eddy County								
GPS:			32.00035			-104.	01626			
Surface Owner:		BLM								
Mineral Owner:		Federal								
Directions:			•	5 and Catfish	n Rd. head ea	ast on Catfish	Rd. for 0.87 miles and			
		arrive at location	on.							
		1								
Release Data:										
RP Number	2RP- 4796	2R	P-5034							
Date Released:	5/27/2018	10/21/2018								
Type Release:	Produced Water	Produced Wa	ater							
Source of Contamination:	Flowline Rupture	Flowline Leak	cat connection							
Fluid Released:	35 bbl	10 bbls								
Fluids Recovered:	0 bbls	2 bbls								
Official Communication:										
Name:	Ike Tavarez				Clair Gonz	ales				
Company:	COG Operating, LL	C			Tetra Tech	1				
Address:	One Concho Center	•			901 West	Wall Street				
	600 W. Illinois Ave.				Suite 100					
City:	Midland Texas, 797	01			Midland, T	exas				
Phone number:	(432) 686-3023				(432) 687-	8110				
Fax:	(432) 684-7137									
Email:	itavarez@concho.	com			Clair.Gon	zales@tetra	atech.com			

Site Characterization	
Depth to Groundwater:	50'-75'
Karst Potential:	Medium

Recommended Remedial Action Levels (RRALs)							
Benzene	Total BTEX	TPH (GRO+DRO+MRO)	Chlorides				
10 mg/kg	50 mg/kg	100 mg/kg	600 mg/kg				

March 18, 2019

Mr. Mike Bratcher Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Work Plan for the COG Operating, LLC, Copperhead 31 Federal Com #001H, Unit H, Section Re: 31, Township 26 South, Range 29 East, Eddy County, New Mexico. 2RP-4796 and 2RP-5034

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to assess a release that occurred at the Copperhead 31 Federal #001H, Unit H, Section 31, Township 26 South, Range 29 East, Eddy County, New Mexico (Site). The spill site coordinates are 32.00035°, -104.01626°. The site location is shown on Figures 1 and 2.

Background

2RP-4796: According to the State of New Mexico C-141 Initial Report, the leak was discovered on May 27, 2018, and released approximately 35 barrels of produced water due to a flowline rupture. The release impacted areas measuring approximately 80' x 37'. The C-141 Form is included in Appendix A. A workplan was submitted and approved but prior to the implementation, a 2nd release occurred and overlapped the original spill print.

2RP-5034: According to the State of New Mexico C-141 Initial Report, the leak was discovered on October 21, 2018, and released approximately 10 barrels of produced water due to a flowline leak at connection. A vacuum truck was dispatched to remove all freestanding fluids. Approximately 2 barrels of produced was recovered. The release impacted areas measuring approximately 95' x 25'. The C-141 Form is included in Appendix A.

Site Characterization

A site characterization was performed for the site and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances.

However, the site is located in a medium karst potential area. No water wells were listed within Section 31 on the New Mexico Office of the State Engineer's (NMOSE) database, the Geology and Groundwater Resources of Eddy County (Report 3), or the USGS National Water Information database. The nearest well is listed in Section 26 on the USGS database, approximately 3.35 miles northeast of the site, and has a reported depth to groundwater of 54.30' below surface. According to the Chevron Texaco Groundwater Trend map, the average depth to groundwater in the area is 25'-50' below surface. The groundwater data is shown in Appendix B

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization the proposed RRAL for TPH is 100 mg/kg (GRO+DRO+MRO). Additionally, the proposed RRAL for chlorides is 600 mg/kg.

Soil Assessment and Analytical Results

Tetra Tech personnel were onsite on February14-15 2019, to re-assess the release area. A total of four (4) boreholes (BH-1, BH-2, BH-3, and BH-4) were installed in the spill path area to total depths ranging from 19'-20- to 49'-50' below surface in order to vertically define the chloride concentrations. In addition, a background bore hole was installed to assess the native soils to a total depth of 34'-35' below surface. Selected soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix D. Copies of the boring log is included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, the areas of boreholes (BH-1, BH-2, BH-3, and BH-4) showed TPH, benzene, and total BTEX below the laboratory reporting limits. Horizontal samples were taken (HA-1 through HA-10) and showed TPH, benzene, total BTEX, and chloride below the RRALs. The area of borehole (BH-1) showed a high chloride concentration of 6,260 mg/kg at 0-1.0' and 1,190 mg/kg at 24'-25' which declined with depth at 29'-30' with a concentration of 258 mg/kg and showed a concentration of 159 mg/kg at 49'-50' below surface, respectively. The area of borehole (BH-2) showed chloride concentrations ranging from 234 mg/kg to 409 mg/kg from surface to 4'-5' below surface, however, at depths of 6'-7' and 9'-10' showed spiked concentrations of 1,440 mg/kg and 2,020 mg/kg, were detected, which appears to be historical. The chloride concentrations then declined with depth at 14'-15' below surface with a concentration of 157 mg/kg. The areas of boreholes (BH-3 and BH-4) showed chloride concentrations ranging from 543 mg/kg to 4,750 mg/kg, then both declining with depth at 14'-15' below surface with concentrations of 247 mg/kg and 269 mg/kg.

Also, the boreholes (BH-1 through BH-4) showed no moisture or groundwater at any of the borehole locations with the deepest depth at (BH-1) 49'-50' below surface. A background sample was taken to assess the natural soils showing chloride concentrations of 113 mg/kg at 0-1' and 161 mg/kg at 34'-35' below surface, the background bore had no moisture and didn't encounter groundwater.

Work Plan

Based on the laboratory results, COG proposes to remove the chloride impacted soils as shown on Figure 4 and highlighted (green) on Table 1. Due to access issues and safely concerns, the proposed excavation will be performed to remove the impacted soil to the maximum extent practicable. The areas of bore holes (BH-1, BH-2, BH-3, and BH-4) will be excavated to approximately 4.0' below surface.

Variance

Per rule 19.15.29.14, COG requests a variance to install a 20-mil liner at 4.0' below surface in the areas of boreholes (BH-1, BH-2, BH-3, and BH-4), to prevent vertical migration of the deeper chloride concentrations detected. Prior to the liner installation, composite sidewall samples will be collected every 600 square feet, to be representative of the release area, for documentation purposes.

Additionally, the areas of borehole (BH-2) will be excavated to 4'-5' below surface and capped with a 20-mil liner. The excavated material from borehole (BH-2) will be segregated every 50 cubic yards and will be sampled for chlorides by EPA method 300 to confirm and determine if the concentrations are below 600 mg/kg. If the segregated and stockpiled material shows chloride concentrations below 600 mg/kg, the soils will be used to backfill the excavation areas. If samples exceed threshold, the stockpile will be transported to proper disposal. Once completed, the excavated areas will be backfilled with clean material to surface grade. The area of borehole (BH-2) didn't show significant impact from the surface to approximately 4'-5' below surface. Once completed, the excavated areas will then be backfilled with clean material to surface grade.

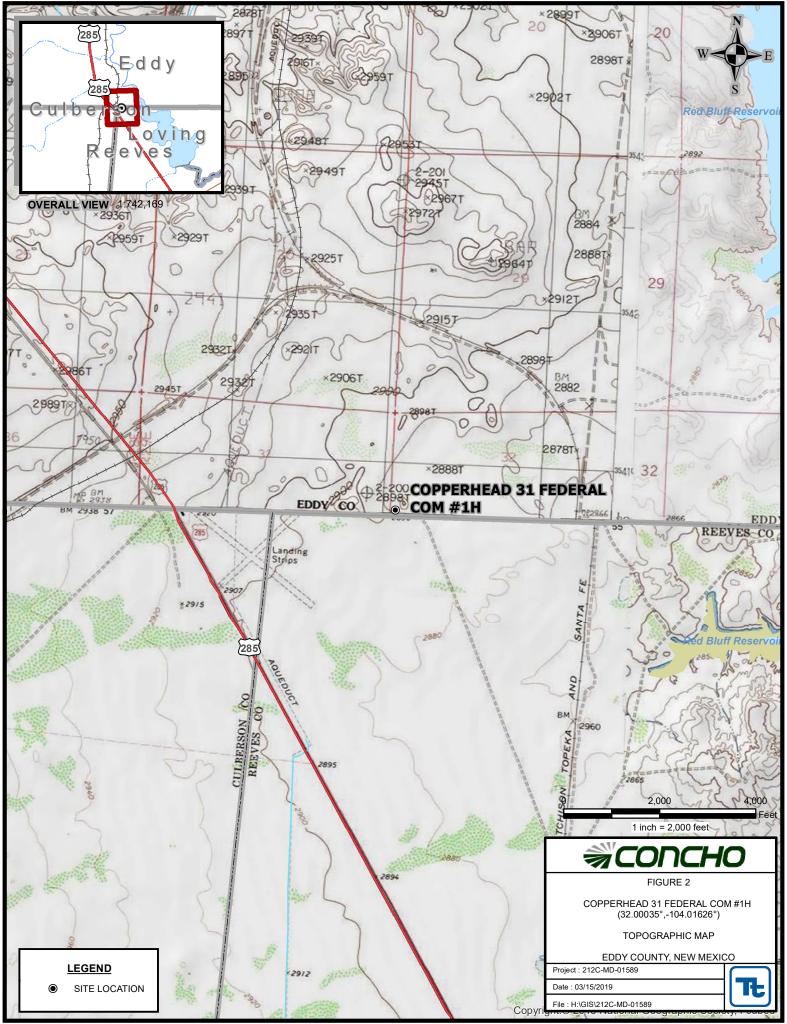
All the excavated material will be transported offsite for proper disposal. COG estimates approximately 1,500 cubic yards will be excavated and will be implemented within ninety (90) days of the work plan being approved.

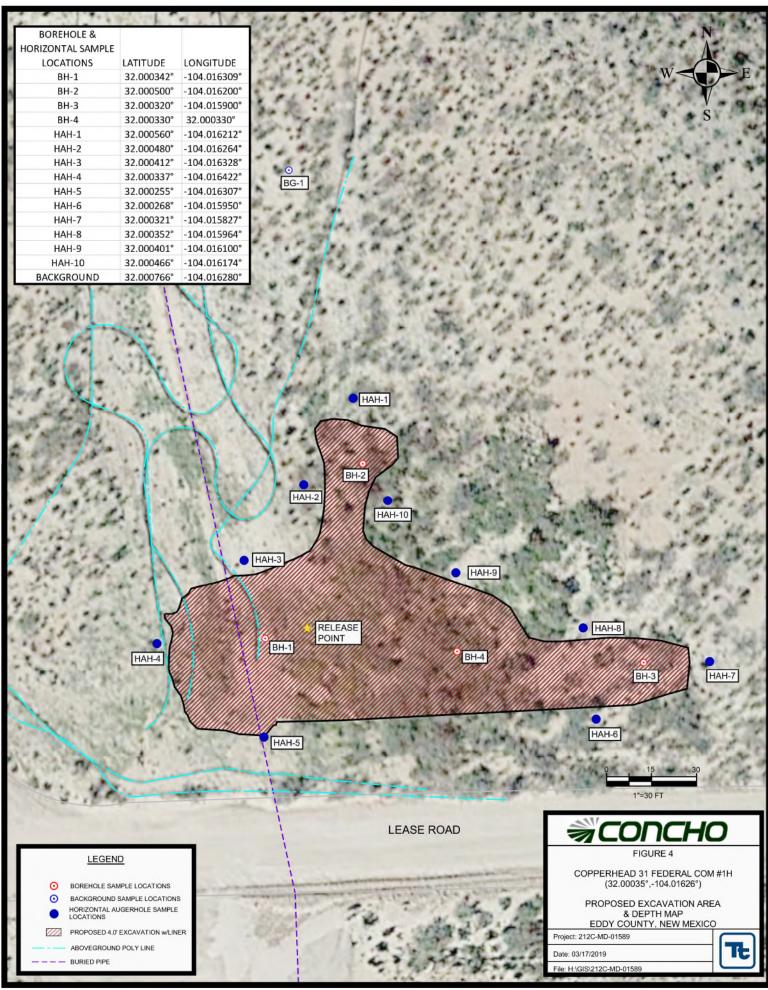
Sampling Plan

Five-point composite sidewall confirmation samples will be collected every 600 square feet in order to ensure proper removal of the impacted areas. The proposed excavation depths may not be reached due to wall cave-ins and safety concerns for onsite personnel. Also, impacted soil around oil and gas equipment, structures or lines may not be viable or practicable to be removed due to safely concerns for on-site personnel. As such, COG will excavate the impacted soils to the maximum extent practicable.

Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.


Respectfully submitted, TETRA TECH


Clair Gonzales, Project Manager Mike Carmona, Geologist

cc: Ike Tavarez - COG Dakota Neel - COG Rebecca Haskell - COG Sheldon Hitchcock - COG DeAnn Grant - COG

Figures

Tables

Table 1
COG
Copperhead 31 Fed Com #1H
Eddy County, New Mexico

	Sample	nple Sample Depth	Soil Status			TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	(ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-1	2/14/2019	0-1	Χ		<15.0	39.3	<15.0	39.3	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	6,260
	"	2-3	Χ		<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	7,610
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	2,810
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	1,710
	"	9-10	Χ		-	-	-	-	-	-	-	-	-	287
	II	14-15	Χ		-	-	-	-	-	-	-	-	-	1,140
	11	19-20	Χ		-	-	-	-	-	-	-	-	-	643
	II	24-25	Χ		-	-	-	-	-	-	-	-	-	1,190
	11	29-30	Χ		-	-	-	-	-	-	-	-	-	258
	11	34-35	Χ		-	-	-	-	-	-	-	-	-	469
	11	39-40	Χ		-	-	-	-	-	-	-	-	-	229
	11	44-45	Χ		-	-	-	-	-	-	-	-	-	203
	II	49-50	Х		-	-	-	-	-	-	-	-	-	159
BH-2	2/14/2019	0-1	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	409
	"	2-3	Х		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	234
	"	4-5	Х		-	-	-	-	-	-	-	-	-	259
	"	6-7	Х		-	-	-	-	-	-	-	-	-	1,440
	"	9-10	Х		-	-	-	-	-	-	-	-	-	2,020
	"	14-15	Х		-	-	-	-	-	-	-	-	-	157
	"	19-20	Χ		-	-	-	-	-	-	-	-	-	136

Table 1
COG
Copperhead 31 Fed Com #1H
Eddy County, New Mexico

0I- ID	Sample	Sample Depth (ft)	Soil Status TPH (mg		mg/kg) Benz		Benzene	Benzene Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride		
Sample ID	Date		In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH-3	2/15/2019	0-1	Χ		<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	772
	"	2-3	Χ		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	543
	"	4-5	Χ		-	-	-	-	-	-	-	-	-	1,050
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	2,080
	"	9-10	Χ		-	-	-	-	-	-	-	-	-	3,220
	"	14-15	Χ		-	-	-	-	-	-	-	-	-	247
	11	19-20	Χ		-	-	-	-	-	-	-	-	-	93.8
BH-4	2/15/2019	0-1	Χ		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	4,750
	"	2-3	Χ		<15.0	<15.0	<15.0	<15.0	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	2,310
	"	4-5	Х		-	-	-	-	-	-	-	-	-	3,600
	"	6-7	Χ		-	-	-	-	-	-	-	-	-	3,060
	II .	9-10	Χ		-	-	-	-	-	-	-	-	-	4,190
	II .	14-15	Χ		-	-	-	-	-	-	-	-	-	269
	"	19-20	Χ		-	-	-	-	-	-	-	-	-	528

Table 1
COG
Copperhead 31 Fed Com #1H
Eddy County, New Mexico

0 1 15	Sample	Sample Depth	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	(ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
HA-1	2/15/2019	-	Х		<14.9	<14.9	<14.9	<14.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	224
HA-2	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	202
HA-3	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	57.6
HA-4	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	122
HA-5	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	54.0
HA-6	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	74.6
HA-7	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<5.00
HA-8	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	191
HA-9	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	143
HA-10	2/15/2019	-	Х		<15.0	<15.0	<15.0	<15.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	55.1
BG-1	2/15/2019	0-1	Х		-	-	-	-	-	-	-	-	-	113
	"	2-3	Х		-	-	-	-	-	-	-	-	-	193
	11	4-5	Χ			-	-	-	-	-	-	-	-	58.8
	11	6-7	Χ		ı	ı	-	-	-	-	ı	-	-	167
	"	9-10	Χ		-	ı	-	-	-	-	-	-	-	185
	11	14-15	Χ		-	-	-	-	-	-	-	-	-	98.8
	11	19-20	Χ		-	-	-	-	-	-	-	-	-	181
	"	24-25	Χ		-	-	-	-	-	-	-	-	-	164
	"	29-20	Χ		-	-	-	-	-	-	-	-	-	123
	"	34-35	Χ		-	-	-	-	-	-	-	-	-	161

(-) Not Analyzed

Proposed Excavation Depth

Proposed Liner

Photos

COG Copperhead 31 Fed Com #1H Eddy County, New Mexico

View East - Area of BH-1, BH-3, and BH-4

View North – Area of BH-2

Appendix A

District I 1625 N. French Dr., Hobbs, NM 88240 District II District III
1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

Form C-141

Revised April 3, 2017

			Polo	oso Notific	entin	and Co	rrective A	ction				
			Kele	ease mound	auo							
N CG		200	110/	OCDID HOOM	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OPERA'			ial Report		Final Report	
				OGRID #22913		Contact: Robert McNeill Telephone No. 432-683-7443						
Address: 600 Facility Name						Facility Typ		083-7443				
racinty Name	. Coppei	neau 31 Fe	cuer ar C		1	racinty Typ	e. Plowine					
Surface Owner	r: BLN	Л		Mineral C)wner:	Federal		API N	o. 30-015-3	38532		
LOCATION OF RELEASE												
							Feet from the	East/West Line		Coun	ity	
Н	31	26S	29E	480		South	480	East		Edd	у	
Latitude 32.000323 Longitude -104.016294 NAD83 NATURE OF RELEASE												
Type of Release	e Produce	d Water		1411	CILL		Release 35 bbl.	Volume	Recovered 0) bbl.		
Source of Relea						Date and H	lour of Occurrenc	e Date and	Hour of Dis	scovery	,	
		Flowline R	lupture				018 7:30am	May 27,	2018 7:30ar	n		
Was Immediate	Notice G		Yes \Box	No Not Re	anirad	If YES, To	whom? her – NMOCD					
			168	I NO 🗀 NOUNG	equireu		cker – BLM					
By Whom? Dak	cota Neel						Jour May 27, 2018	8 12:52pm				
Was a Watercou	urse Reach		5	7		If YES, Vo	olume Impacting t	he Watercourse.				
		Ш	Yes 🗵	No								
If a Watercourse	e was Imp	acted, Descri	be Fully.*	k		1						
Describe Cause	of Proble	m and Remed	dial Action	n Taken.*								
The malesce was	, agus ad b		untuma in :	the male floreline	The fle	lina ia hain	namla and					
Describe Area				the poly flowline.	The no	withe is being	д гергасец.					
Describe Thea T	mreeted a	na cicanap i	ionon run									
							ing fluids. Concho MOCD for approv					
							knowledge and u					
							nd perform correc					
							arked as "Final Ro					
							on that pose a three the operator of 1					
federal, state, or					торого		c the operator of t	esponsionity for	ompnunee	.,	, 501101	
		~ ^	_				OIL CONS	SERVATION	DIVISIO	NC		
Signature:		Dalin	~ 0	10 W								
Signature.		<u>L</u>	1-1-0-(/k			A	E	:.1:4.				
Printed Name:		DeAnn Gran	nt U			Approved by	Environmental S ₁	pecianst:				
Title:		HSE Admir	istrative A	Assistant		Approval Dat	e:	Expiration	Date:			
E-mail Address:	:	agrant@cor	ncho.com			Conditions of	Approval:		Attached	i		

Phone: (432) 253-4513

Date: May 29, 2018

^{*} Attach Additional Sheets If Necessary

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141
Revised August 24, 2018
Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	Partv	COG Operatir	a 11 C	OGRID	229137		
Contact Nan		•	<u> </u>	Contact Telephone			
		Robert McN	veiii		(432) 683-7443		
Contact ema	il	RMcNeill@	concho.com	Incident # (assigned by O	CD)		
Contact mai	ling address	600 West III	nois Avenue, Midla	nd, Texas 79701			
			I and an af D	-1 C			
			Location of R	delease Source			
Latitude	32.0003	35		Longitude -104.0	01626		
			(NAD 83 in decimal de	grees to 5 decimal places)	-		
Site Name		Copperhead 31	Federal Com #001H	Site Type Tar	nk Battery		
Date Release	Discovered	October 21, 2	018	API# (if applicable) 30-	015-38532		
Unit Letter	Section	Township	Range	County			
	31	•		•			
H	31	26S	29E	Eddy			
Surface Owne	er: State	Federal Tri	bal Private (Name:)		
			Natura and Val	lume of Release			
			Tratuit and voi	iume of Acicase			
		l(s) Released (Select all	that apply and attach calculat				
				tions or specific justification for	the volumes provided below)		
Crude Oi	1	Volume Released			the volumes provided below) ecovered (bbls)		
Produced		Volume Released	i (bbls)	Volume Re			
		Volume Released Is the concentration	d (bbls) d (bbls) 10 on of dissolved chloride	Volume Re	ecovered (bbls) ecovered (bbls) 2		
	l Water	Volume Released	d (bbls) 1 (bbls) 10 on of dissolved chloride 10,000 mg/l?	Volume Re Volume Re e in the ■ Yes □	ecovered (bbls) ecovered (bbls) 2		
■ Produced	l Water	Volume Released Is the concentrate produced water >	d (bbls) 1 (bbls) 10 on of dissolved chloride 10,000 mg/l? 1 (bbls)	Volume Re Volume Re e in the Volume Re Volume Re	ecovered (bbls) ecovered (bbls) No		

Cause of Release

The release was caused by a flowline leak at a connection. The connector is being replaced. The release was in the pasture. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities.

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the respon	sible party consider this a major release?
19.15.29.7(A) NMAC?		
☐ Yes ■ No		
If VFS, was immediate no	otice given to the OCD? By whom? To wh	om? When and by what means (phone, email, etc)?
11 1 LS, was infinediate in	once given to the OCD. By whom. To wh	oni. When and by what means (phone, email, etc).
	Initial Re	esponse
The responsible p	party must undertake the following actions immediately	unless they could create a safety hazard that would result in injury
■ The source of the rele	ease has been stopped.	
■ The impacted area ha	s been secured to protect human health and	the environment.
Released materials ha	we been contained via the use of berms or d	ikes, absorbent pads, or other containment devices.
<u> </u>	ecoverable materials have been removed and	
If all the actions described	d above have <u>not</u> been undertaken, explain v	vhy:
D-:: 10 15 20 9 D (4) NIM	A C 41 1.1	
has begun, please attach	a narrative of actions to date. If remedial e	emediation immediately after discovery of a release. If remediation efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investiga addition, OCD acceptance of and/or regulations.	required to report and/or file certain release notified ment. The acceptance of a C-141 report by the O ate and remediate contamination that pose a threat fa C-141 report does not relieve the operator of the contamination.	best of my knowledge and understand that pursuant to OCD rules and ications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws
Printed Name: DeAnr	n Grant Opeant	Title: HSE Administrative Assistant
Signature:	Opeant	Date:
email: agrant@co	ncho.com	Date: 10/23/2018 Telephone: (432) 253-4513
OCD Only		
Received by:		Date:

State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5034
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	54' (ft bgs)
Did this release impact groundwater or surface water?	☐ Yes 🗹 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes 🗹 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes 🗹 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes 🗹 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes 🗹 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes 🗹 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes 🗹 No
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes 🗹 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes 🗹 No
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes 🗹 No
Did the release impact areas not on an exploration, development, production, or storage site?	¥ Yes ☐ No
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vercontamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil
Characterization Report Checklist: Each of the following items must be included in the report.	
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring well Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody	ls.

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5034
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the regulations all operators are required to report and/or file certain release noting public health or the environment. The acceptance of a C-141 report by the Called to adequately investigate and remediate contamination that pose a three addition, OCD acceptance of a C-141 report does not relieve the operator of and/or regulations.	fications and perform corrective actions for releases which may endanger DCD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In
Printed Name: Ike Tavarez	Title: Senior HSE Supervisor
Signature:	Date: <u>3-19-19</u>
email: itavarez@concho.com	Telephone: 432-687-2573
OCD Only	
Received by:	Date:

State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5034
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of	the following items must be included in the plan.	
	es showing delineation points	OCD approval is required)
Deferral Requests Only: Each of the	following items must be confirmed as part of any requ	uest for deferral of remediation.
Contamination must be in areas imr deconstruction.	nediately under or around production equipment where	remediation could cause a major facility
☐ Extents of contamination must be for	ally delineated.	
Contamination does not cause an in	nminent risk to human health, the environment, or grou	ndwater.
rules and regulations all operators are re which may endanger public health or th liability should their operations have fai surface water, human health or the envir	en above is true and complete to the best of my knowled equired to report and/or file certain release notifications be environment. The acceptance of a C-141 report by the led to adequately investigate and remediate contaminations. In addition, OCD acceptance of a C-141 report bether federal, state, or local laws and/or regulations.	and perform corrective actions for releases ne OCD does not relieve the operator of tion that pose a threat to groundwater,
Printed Name: Ike Tayarez	Title: Senior HSE Supe	ervisor
Signature:	Date: 3-19-19	
email: itavarez@concho.com	Telephone: 432-685-25	73
OCD Only		
Received by:	Date:	_
☐ Approved ☐ Approved v	vith Attached Conditions of Approval Denie	d Deferral Approved
Signature:	<u>Date:</u>	

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG Copperhead 31 Fed Com #1H Eddy County, New Mexico

	25 Sc	outh	28	East	
6	5	4 35	3 32	2	1
	59				Site
7	8	9	10	11	12
18	17	16	15 48	14	13
67			49		
19	20	21	22	23	24
	96				
30	29	28	27	26 40	25
	15	90			5
31	32	33	34	35	36
					40

_	25 Sc	uth	29	East	
6	5	4	3	2	1
40					
7	8	9	10	11	12
			40		
18	17	16	15	14	13
			60		
19	20	21	22	23	24
30	29	28	27	26	25
30					
31	32 115	33	34	35	36

_	25 S	outh	30	East	
6	5	4	3	2 295	1
7 26	4 8	9 295	10	11	12 390
18	17	16	15	14	13
19	20	21 265 268	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	26 Sc	outh	28	East	
6	5	4	3	2 120	1
				21	
7	8	9	10	11	12
					100
18	17	16	15	14	13
				120	56
19	20	21	22	23	24
			120		
30	29	28	27	26	25
31	32	33	34	35	36

	26 Sc	outh	29		
6	5 78	4	3	2	1
7	8	9	10	11	12
18	17	16 125	15	14	13
19	20	21	22 57 57 69	23	24
30	29	28	27	26 54.30	25
31 Site	32	33	34	35	36

	26 Sc	uth	30	East	
6	5 179 180	4	3	2	1
7	8 172	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24 180
30	29	28	27	26	25
31	32	33	34	35	36

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- **143** NMOCD Groundwater map well location

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a

replaced, O=orphaned,

(quarters are 1=NW 2=NE 3=SW 4=SE)

C=the file is closed)

(NAD83 UTM in meters)

water right file.)	ciosea)		(41	iui i c	13 6		manic	3t to 1	ii gest)	(midd)	55 O I WI III III CCC	(11110		
		POD Sub-		Q	Q	Q							Wa	iter
POD Number	Code	basin	County	64	16	4	Sec	Tws	Rng	X	Y	DepthWellDepthW	ater Colu	ımn
C 01354 X-3		CUB	ED	2	1	3	23	26S	29E	598323	3543837	170		
C 02038		C	ED	3	2	4	26	26S	29E	599204	3541992*	200		
C 03507 POD1		C	ED	1	3	3	05	26S	29E	593064	3548313	140	78	62
C 03508 POD1		C	ED	1	3	3	05	26S	29E	593063	3548361	140	75	65
C 03605 POD1		CUB	ED	4	2	3	27	26S	29E	596990	3541983	45	0	45
											Average Depth t	o Water:	51 feet	

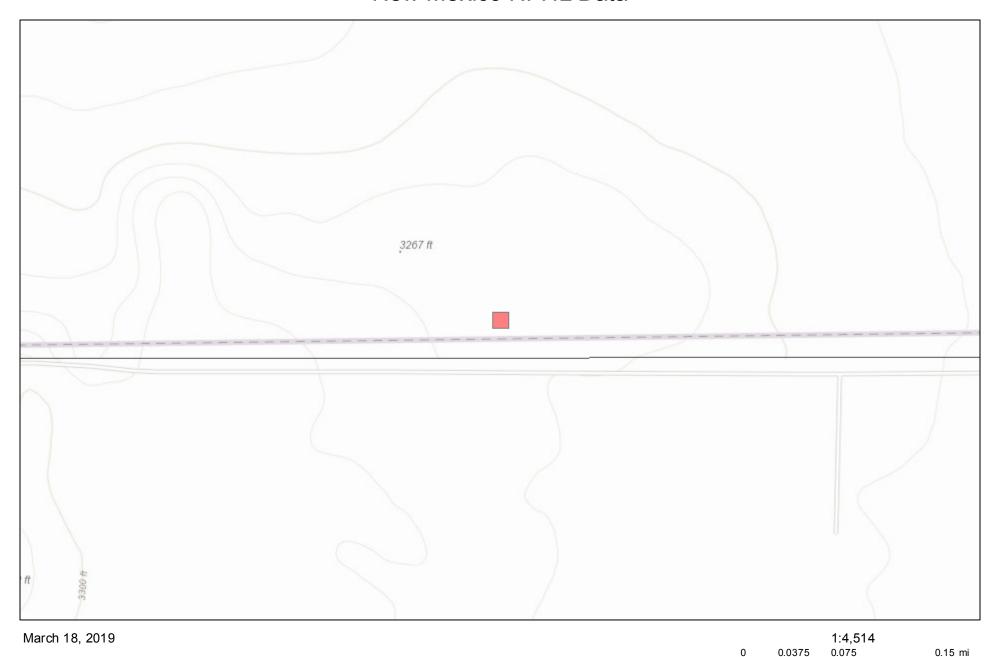
Minimum Depth:

0 feet Maximum Depth: 78 feet

Record Count: 5

PLSS Search:

Township: 26S Range: 29E


*UTM location was derived from PLSS - see Help


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/12/19 3:20 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

New Mexico NFHL Data

0.2 km

0.05

Appendix C

Client:	COG			
Site Name	Copperhead 31 Fed Com #001H			
Boring/Well:	BH-1			
GPS	32.000342° -104.016309°			
Project #:	212C-MD-01589			
Total Depth	50'			
Date Installed:	2/15/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Chloride(PPM)	Titration (ppr
0-1	Red Silty Sand	No odor or Odor	4.48 PPT	-
2-3	Red Silty Sand	No Stain or odor	6.39 PPT	-
4-5	Red Silty Sand	No Stain or odor	5.52 PPT	-
6-7	Red Silty Sand	No Stain or odor	3.50 PPT	-
9-10	Red Silty Sand w/minor rock fragments, Dry	No Stain or odor	1.64 PPT	-
14-15	Red Clayey Sand , Dry	No Stain or odor	2.46 PPT	-
19-20	Red Silt Sand Clay w/gypsum fragments, Dry	No Stain or odor	1.93 PPT	1,040
24-25	Red Silt Sand Clay w/gypsum fragments, Dry	No Stain or odor	1.67 PPT	1,120
29-30	Red Silt Sand Clay w/gypsum fragments, Dry	No Stain or odor	1.51 PPT	960
34-35	Red Silt Sand Clay w/gypsum fragments, Dry	No Stain or odor	969 PPT	920
39-40	Red Silt Sand Clay w/gypsum fragments, Dry	No Stain or odor	1.12 PPT	800
44-45	Red Silt Sand Clay w/gypsum fragments,Dry	No Stain or odor	1.34 PPT	600
49-50	Red Silt Sand Clay w/gypsum fragments/Dry	No Stain or odor	1.29 PPT	520

Client:	COG			
Site Name	Copperhead 31 Fed Com #001H			
Boring/Well:	BH-2			
GPS	32.000500° -104.016200°			
Project #:	212C-MD-01589			
Total Depth	20'			
Date Installed:	2/15/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Chloride(PPM)	Titration (ppm
0-1	Brown Silty Sandy Clay/Dry	No odor or Odor	1.92 PPT	
2-3	Brown Silty Sandy Clay/Dry	No Stain or odor	942 PPM	-
4-5	Red Silty Sandy Clay/Dry	No Stain or odor	2.81 PPT	-
6-7	Red Silty Sandy Clay/Dry	No Stain or odor	3.14 PPT	-
9-10	Red Silty Sandy Clay/Dry	No Stain or odor	3.44 PPT	-
14-15	Red Silty Sandy Clay/Dry	No Stain or odor	595 PPM	360
19-20	Red Silty Sandy Clay/Dry	No Stain or odor	598 PPM	320

Client:	COG			
Site Name	Copperhead 31 Fed Com #001H			
Boring/Well:	BH-3			
GPS	32.000320° -104.015900°			
Project #:	212C-MD-01589			
Total Depth	20'			
Date Installed:	2/15/2019			
DEPTH (Ft)	Lithology/Sample Description	NOTES	Chloride(PPM)	Titration (ppm
0-1	Brown Sandy Silt w/gravel fragments/Dry	No odor or Odor	1.70 PPT	-
2-3	Red Sand Clayey Silt/Dry	No Stain or odor	1.39 PPT	-
4-5	Red Sandy Silty Clay/Dry	No Stain or odor	2.24 PPT	-
6-7	Red Sandy Silty Clay/Dry	No Stain or odor	3.10 PPT	-
9-10	Red Sandy Silty Clay/Dry	No Stain or odor	3.95 PPT	-
14-15	White Chalkey Gypsum/Dry	No Stain or odor	1.23 PPT	480
19-20	White Chalkey Gypsum/Dry	No Stain or odor	1.11 PPT	320

Client:	cog			
Site Name	Copperhead 31 Fed Com #001H			
Boring/Well:	BH-4			
GPS	32.000330° -104.016100°			
Project #:	212C-MD-01589			
Total Depth	20'			
Date Installed:	2/15/2019			
		•		
DEPTH (Ft)	Lithology/Sample Description	NOTES	Chloride(PPM)	Titration (ppm)
0-1	Brown Sandy Silt w/gravel fragments/Dry	No odor or Odor	1.92 PPT	-
2-3	Red Sandy Silty Clay/Dry	No Stain or odor	2.04 PPT	-
4-5	Red Sandy Silty Clay/Dry	No Stain or odor	2.25 PPT	-
6-7	Red Sandy Silty Clay/Dry	No Stain or odor	4.22 PPT	-
9-10	Red Sandy Silty Clay/Dry	No Stain or odor	4.38 PPT	-
14-15	Red Sandy Silty Clay w/gypsum/Dry	No Stain or odor	1.35 PPT	520
19-20	Red Sandy Silty Clay w/gypsum/Dry	No Stain or odor	1.29 PPT	520

Appendix D

Analytical Report 614869

for Tetra Tech- Midland

Project Manager: Clair Gonzales
Copperhead 31 Fed Com #15H (10-21-18)
212C-MD-01589
21-FEB-19

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco-Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)

Xenco-Tampa: Florida (E87429), North Carolina (483) Xenco-Lakeland: Florida (E84098)

Page 1 of 37

21-FEB-19

Project Manager: Clair Gonzales

Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 614869

Copperhead 31 Fed Com #15H (10-21-18) Project Address: Eddy County, New Mexico

Clair Gonzales:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 614869. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 614869 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Kramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 614869

Tetra Tech- Midland, Midland, TX

Copperhead 31 Fed Com #15H (10-21-18)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-1 (0-1)	S	02-14-19 00:00		614869-001
BH-1 (2-3)	S	02-14-19 00:00		614869-002
BH-1 (4-5)	S	02-14-19 00:00		614869-003
BH-1 (6-7)	S	02-14-19 00:00		614869-004
BH-1 (9-10)	S	02-14-19 00:00		614869-005
BH-1 (14-15)	S	02-14-19 00:00		614869-006
BH-1 (19-20)	S	02-14-19 00:00		614869-007
BH-1 (24-25)	S	02-14-19 00:00		614869-008
BH-1 (29-30)	S	02-14-19 00:00		614869-009
BH-1 (34-35)	S	02-14-19 00:00		614869-010
BH-1 (39-40)	S	02-14-19 00:00		614869-011
BH-1 (44-45)	S	02-14-19 00:00		614869-012
BH-1 (49-50)	S	02-14-19 00:00		614869-013
BH-2 (0-1)	S	02-14-19 00:00		614869-014
BH-2 (2-3)	S	02-14-19 00:00		614869-015
BH-2 (4-5)	S	02-14-19 00:00		614869-016
BH-2 (6-7)	S	02-14-19 00:00		614869-017
BH-2 (9-10)	S	02-14-19 00:00		614869-018
BH-2 (14-15)	S	02-14-19 00:00		614869-019
BH-2 (19-20)	S	02-14-19 00:00		614869-020
BH-3 (0-1)	S	02-15-19 00:00		614869-021
BH-3 (2-3)	S	02-15-19 00:00		614869-022
BH-3 (4-5)	S	02-15-19 00:00		614869-023
BH-3(6-7)	S	02-15-19 00:00		614869-024
BH-3 (9-10)	S	02-15-19 00:00		614869-025
BH-3 (14-15)	S	02-15-19 00:00		614869-026
BH-3 (19-20)	S	02-15-19 00:00		614869-027
BH-4 (0-1)	S	02-15-19 00:00		614869-028
BH-4 (2-3)	S	02-15-19 00:00		614869-029
BH-4 (4-5)	S	02-15-19 00:00		614869-030
BH-4(6-7)	S	02-15-19 00:00		614869-031
BH-4 (9-10)	S	02-15-19 00:00		614869-032
BH-4 (14-15)	S	02-15-19 00:00		614869-033
BH-4 (19-20)	S	02-15-19 00:00		614869-034
HAH-1	S	02-15-19 00:00		614869-035
HAH-2	S	02-15-19 00:00		614869-036
НАН-3	S	02-15-19 00:00		614869-037
HAH-4	S	02-15-19 00:00		614869-038
HAH-5	S	02-15-19 00:00		614869-039
НАН-6	S	02-15-19 00:00		614869-040
НАН-7	S	02-15-19 00:00		614869-041
НАН-8	S	02-15-19 00:00		614869-042
НАН-9	S	02-15-19 00:00		614869-043

Sample Cross Reference 614869

Tetra Tech- Midland, Midland, TX

Copperhead 31 Fed Com #15H (10-21-18)

HAH-10 S 02-15-19 00:00 614869-044

Version: 1.%

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

 Project ID:
 212C-MD-01589
 Report Date:
 21-FEB-19

 Work Order Number(s):
 614869
 Date Received:
 02/18/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3079640 Chloride by EPA 300

Nitrite as N Relative Percent Difference (RPD) between matrix spike and duplicate was above quality control limits.

Samples in the analytical batch are: 614869-007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020, -021, -022, -023, -024, -025, -026

Lab Sample ID 614869-017 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 614869-007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019, -020, -021, -022, -023, -024, -025, -026.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3079649 Chloride by EPA 300

Lab Sample ID 614869-037 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 614869-027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038, -039, -040, -041, -042, -043, -044.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3079858 BTEX by EPA 8021B

Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 21-FEB-19

Contact: Clair Gonzales Eddy County, New Mexico **Project Location:** Project Manager: Jessica Kramer

	Lab Id:	614869-0	001	614869-	002	614869-0	03	614869-0	004	614869-0	005	614869-0	06
Analysis Requested	Field Id:	BH-1 (0	-1)	BH-1 (2	-3)	BH-1 (4-	5)	BH-1 (6-	7)	BH-1 (9-	10)	BH-1 (14-	15)
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-14-19	00:00	Feb-14-19	00:00	Feb-14-19 0	00:00	Feb-14-19	00:00	Feb-14-19	00:00	Feb-14-19 0	0:00
BTEX by EPA 8021B	Extracted:	Feb-20-19	13:00	Feb-20-19	13:00								
	Analyzed:	Feb-20-19	19:09	Feb-20-19	19:30								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Benzene		< 0.00201	0.00201	< 0.00199	0.00199								
Toluene		< 0.00201	0.00201	< 0.00199	0.00199								
Ethylbenzene		< 0.00201	0.00201	< 0.00199	0.00199								
m,p-Xylenes		< 0.00402	0.00402	< 0.00398	0.00398								
o-Xylene		< 0.00201	0.00201	< 0.00199	0.00199								
Total Xylenes		< 0.00201	0.00201	< 0.00199	0.00199								
Total BTEX		< 0.00201	0.00201	< 0.00199	0.00199								
Chloride by EPA 300	Extracted:	Feb-18-19	15:00	Feb-18-19	15:00	Feb-18-19 1	5:00	Feb-18-19	15:00	Feb-18-19	15:00	Feb-18-19 1	5:00
	Analyzed:	Feb-18-19	17:22	Feb-18-19	17:28	Feb-18-19 1	7:34	Feb-18-19	17:41	Feb-19-19 (9:17	Feb-18-19 1	7:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		6260	49.5	7610	49.9	2810	100	1710	49.9	287	4.97	1140	24.8
TPH by SW8015 Mod	Extracted:	Feb-18-19	15:00	Feb-18-19	15:00								
	Analyzed:	Feb-18-19	22:14	Feb-18-19	23:13								
	Units/RL:	mg/kg	RL	mg/kg	RL								
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<14.9	14.9								
Diesel Range Organics (DRO)		39.3	15.0	<14.9	14.9								
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<14.9	14.9								
Total TPH		39.3	15.0	<14.9	14.9					<u> </u>			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Jessica Vermer

Project Id: Contact:

Chloride

Project Location:

212C-MD-01589

Eddy County, New Mexico

Clair Gonzales

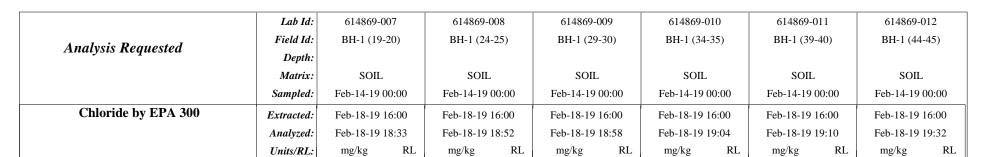
Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 21-FEB-19


229

4.95

203

4.95

Project Manager: Jessica Kramer

25.0

258

24.8

469

4.95

1190

643

24.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer

Jessica Kramer Project Assistant

Eddy County, New Mexico

Clair Gonzales

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 21-FEB-19
Project Manager: Jessica Kramer

	Lab Id:	614869-0	013	614869-0	14	614869-0)15	614869-0	16	614869-0	17	614869-0	18
Analysis Requested	Field Id:	BH-1 (49-	-50)	BH-2 (0-	1)	BH-2 (2-	-3)	BH-2 (4-	5)	BH-2 (6-	7)	BH-2 (9-1	10)
Anaiysis Requestea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-14-19 (00:00	Feb-14-19 (00:00	Feb-14-19	00:00	Feb-14-19	00:00	Feb-14-19 (00:00	Feb-14-19 (00:00
BTEX by EPA 8021B	Extracted:			Feb-20-19 1	3:00	Feb-20-19	13:00						
	Analyzed:			Feb-20-19 1	9:51	Feb-20-19	20:12						
	Units/RL:			mg/kg	RL	mg/kg	RL						
Benzene				< 0.00200	0.00200	< 0.00201	0.00201						
Toluene				< 0.00200	0.00200	< 0.00201	0.00201						
Ethylbenzene				< 0.00200	0.00200	< 0.00201	0.00201						
m,p-Xylenes				< 0.00400	0.00400	< 0.00402	0.00402						
o-Xylene				< 0.00200	0.00200	< 0.00201	0.00201						
Total Xylenes				< 0.00200	0.00200	< 0.00201	0.00201						
Total BTEX				< 0.00200	0.00200	< 0.00201	0.00201						
Chloride by EPA 300	Extracted:	Feb-18-19	16:00	Feb-18-19 1	6:00	Feb-18-19	16:00	Feb-18-19	16:00	Feb-18-19 1	6:00	Feb-18-19 1	6:00
	Analyzed:	Feb-18-19	19:38	Feb-18-19 1	9:44	Feb-18-19	19:50	Feb-19-19 (9:24	Feb-18-19 2	20:03	Feb-18-19 2	20:21
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride	·	159	5.00	409	4.99	234	4.97	259	5.01	1440	25.0	2020	24.9
TPH by SW8015 Mod	Extracted:			Feb-18-19 1	5:00	Feb-18-19	15:00						
	Analyzed:			Feb-18-19 2	23:32	Feb-18-19 2	23:52						
	Units/RL:			mg/kg	RL	mg/kg	RL						
Gasoline Range Hydrocarbons (GRO)	·			<15.0	15.0	<15.0	15.0						
Diesel Range Organics (DRO)				<15.0	15.0	<15.0	15.0						
Motor Oil Range Hydrocarbons (MRO)				<15.0	15.0	<15.0	15.0						
Total TPH		·		<15.0	15.0	<15.0	15.0					·	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Jessica Vermer

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 21-FEB-19

Project Id: 212C-MD-01589 **Contact:** Clair Gonzales

Project Location: Eddy County, New Mexico Project Manager: Jessica Kramer

Lab Id:	614869-0	19	614869-0	20	614869-0)21	614869-	022	614869-0	23	614869-02	24
Field Id:	BH-2 (14-	15)	BH-2 (19-	20)	BH-3 (0-	-1)	BH-3 (2	-3)	BH-3 (4-	5)	BH-3(6-7	7)
Depth:												
Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
Sampled:	Feb-14-19 (00:00	Feb-14-19 (00:00	Feb-15-19 (00:00	Feb-15-19	00:00	Feb-15-19 (00:00	Feb-15-19 0	00:00
Extracted:					Feb-20-19	13:00	Feb-20-19	13:00				
Analyzed:					Feb-20-19 2	20:33	Feb-20-19	20:55				
Units/RL:					mg/kg	RL	mg/kg	RL				
					< 0.00199	0.00199	< 0.00200	0.00200				
					< 0.00199	0.00199	< 0.00200	0.00200				
					< 0.00199	0.00199	< 0.00200	0.00200				
					< 0.00398	0.00398	< 0.00401	0.00401				
					< 0.00199	0.00199	< 0.00200	0.00200				
					< 0.00199	0.00199	< 0.00200	0.00200				
					< 0.00199	0.00199	< 0.00200	0.00200				
Extracted:	Feb-18-19	16:00	Feb-18-19 1	6:00	Feb-18-19	16:00	Feb-18-19	16:00	Feb-18-19 1	6:00	Feb-18-19 1	6:00
Analyzed:	Feb-18-19 2	20:27	Feb-18-19 2	20:49	Feb-18-19 2	20:55	Feb-18-19	21:01	Feb-18-19 2	1:07	Feb-18-19 2	1:14
Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
	157	4.98	136	4.98	772	4.98	543	4.96	1050	49.6	2080	24.8
Extracted:					Feb-18-19	15:00	Feb-18-19	15:00				
Analyzed:					Feb-19-19 (00:11	Feb-19-19	00:31				
Units/RL:					mg/kg	RL	mg/kg	RL				
·					<15.0	15.0	<15.0	15.0				
					<15.0	15.0	<15.0	15.0				
					<15.0	15.0	<15.0	15.0				
					<15.0	15.0	<15.0	15.0				
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Analyzed:	Field Id: Depth: Matrix: SOIL Sampled: Feb-14-19 (Extracted: Analyzed: Units/RL: Extracted: Feb-18-19 (Analyzed: Teb-18-19 (Units/RL: mg/kg Extracted: Analyzed: Analyzed:	Field Id: Depth: Matrix: SOIL Sampled: Feb-14-19 00:00 Extracted: Analyzed: Units/RL: Extracted: Feb-18-19 16:00 Analyzed: Feb-18-19 20:27 Units/RL: mg/kg RL 157 4.98 Extracted: Analyzed:	Field Id:	BH-2 (14-15) BH-2 (19-20) Depth: Matrix: SOIL SOIL Sampled: Feb-14-19 00:00 Feb-14-19 00:00 Extracted: Analyzed: Units/RL: Extracted: Feb-18-19 16:00 Feb-18-19 16:00 Analyzed: Feb-18-19 20:27 Feb-18-19 20:49 Units/RL: mg/kg RL mg/kg RL	BH-2 (14-15) BH-2 (19-20) BH-3 (04-15) Depth: Matrix: SOIL SOIL SOIL Sampled: Feb-14-19 00:00 Feb-14-19 00:00 Feb-15-19 (19-20-19) Extracted: Analyzed: Teb-20-19 Units/RL: mg/kg <0.00199 Co.00199 <0.00199 Extracted: Feb-18-19 16:00 Feb-18-19 16:00 Feb-18-19 Analyzed: Feb-18-19 20:27 Feb-18-19 20:49 Feb-18-19 20:49 Units/RL: mg/kg RL mg/kg RL mg/kg Latracted: Feb-18-19 16:00 Feb-18-19 20:49 Feb-18-19 Extracted: Feb-18-19 20:27 Feb-18-19 20:49 Feb-18-19 20:49 Units/RL: mg/kg RL mg/kg RL mg/kg Latracted: Feb-18-19 16:00 Feb-18-19 Latracted: Feb-18-19 20:49 Fe	Field Id: BH-2 (14-15) BH-2 (19-20) BH-3 (0-1) Depth: Matrix: SOIL SOIL SOIL Sampled: Feb-14-19 00:00 Feb-15-19 00:00 Feb-15-19 00:00 Extracted: Feb-20-19 13:00 Feb-20-19 13:00 Feb-20-19 20:33 mg/kg RL Units/RL: Mg/kg RL <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 <0.00199 0.00199 Extracted: Feb-18-19 16:00 Feb-18-19 16:00 Feb-18-19 16:00 Feb-18-19 16:00 Feb-18-19 16:00 Feb-18-19 20:55 mg/kg RL mg/kg RL Units/RL: mg/kg RL mg/kg RL mg/kg RL Extracted: Analyzed: Feb-18-19 15:00 Feb-18-19 10:011 mg/kg RL Units/RL: Mg/kg RL <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <15:0 <	Field Id: BH-2 (14-15) BH-2 (19-20) BH-3 (0-1) BH-3 (2 Depth: Matrix: SOIL SOIL	BH-2 (14-15) BH-2 (19-20) BH-3 (0-1) BH-3 (2-3)	Field Id: BH-2 (14-15) BH-2 (19-20) BH-3 (0-1) BH-3 (2-3) BH-3 (4-10	Field Id: BH-2 (14-15) BH-2 (19-20) BH-3 (0-1) BH-3 (2-3) BH-3 (4-5) Depth: Matrix: SOIL SO	BH-2 (14-15) BH-2 (19-20) BH-3 (0-1) BH-3 (2-3) BH-3 (4-5) BH-3 (6-2)

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Jessica Vermer

Eddy County, New Mexico

Clair Gonzales

Project Id:

Project Location:

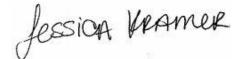
Contact:

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am


Project Manager: Jessica Kramer

Report Date: 21-FEB-19

	Lab Id:	614869-0)25	614869-0	26	614869-0)27	614869-0)28	614869-0	029	614869-0	030
Analysis Requested	Field Id:	BH-3 (9-	10)	BH-3 (14-	15)	BH-3 (19-	-20)	BH-4 (0	-1)	BH-4 (2	-3)	BH-4 (4-	-5)
Anaiysis Requesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	Feb-15-19 (00:00	Feb-15-19 (00:00	Feb-15-19	00:00	Feb-15-19	00:00	Feb-15-19	00:00	Feb-15-19 (00:00
BTEX by EPA 8021B	Extracted:							Feb-20-19	13:00	Feb-20-19	13:00		
	Analyzed:							Feb-20-19	21:16	Feb-20-19	21:38		
	Units/RL:							mg/kg	RL	mg/kg	RL		
Benzene								< 0.00200	0.00200	< 0.00202	0.00202		
Toluene								< 0.00200	0.00200	< 0.00202	0.00202		
Ethylbenzene								< 0.00200	0.00200	< 0.00202	0.00202		
m,p-Xylenes								< 0.00399	0.00399	< 0.00403	0.00403		
o-Xylene								< 0.00200	0.00200	< 0.00202	0.00202		
Total Xylenes								< 0.00200	0.00200	< 0.00202	0.00202		
Total BTEX								< 0.00200	0.00200	< 0.00202	0.00202		
Chloride by EPA 300	Extracted:	Feb-18-19	16:00	Feb-18-19 1	6:00	Feb-18-19	16:30	Feb-18-19	16:30	Feb-18-19	16:30	Feb-18-19	16:30
	Analyzed:	Feb-18-19 2	21:20	Feb-19-19 (9:30	Feb-19-19	09:36	Feb-18-19	22:31	Feb-18-19	22:37	Feb-18-19 2	22:43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		3220	24.8	247	4.99	93.8	4.96	4750	49.7	2310	24.8	3600	50.1
TPH by SW8015 Mod	Extracted:							Feb-18-19	15:00	Feb-18-19	15:00		
	Analyzed:							Feb-19-19	00:51	Feb-19-19	01:11		
	Units/RL:							mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)	'							<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)								<15.0	15.0	<15.0	15.0		
Motor Oil Range Hydrocarbons (MRO)								<15.0	15.0	<15.0	15.0		
Total TPH								<15.0	15.0	<15.0	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Eddy County, New Mexico

Clair Gonzales

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 21-FEB-19 **Project Manager:** Jessica Kramer

Report Date: 21-FEB-19

	Lab Id:	614869-0)31	614869-0	32	614869-0)33	614869-0	34	614869-	035	614869-	036
	Field Id:	BH-4(6-		BH-4 (9-1		BH-4 (14-		BH-4 (19-		НАН-		HAH-	
Analysis Requested	Depth:	(,	.,	(,			/	(_,					_
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
		Feb-15-19 (00.00	Feb-15-19 (00.00	Feb-15-19 (Feb-15-19 (00.00	Feb-15-19		Feb-15-19	
	Sampled:	Feb-15-19 (00:00	Feb-15-19 (0:00	Feb-15-19 (00:00	Feb-15-19 (0:00	Feb-15-19	00:00	Feb-15-19	00:00
BTEX by EPA 8021B	Extracted:									Feb-20-19	13:00	Feb-20-19	13:00
	Analyzed:									Feb-20-19	23:02	Feb-20-19	23:23
	Units/RL:									mg/kg	RL	mg/kg	RL
Benzene										< 0.00199	0.00199	< 0.00201	0.00201
Toluene										< 0.00199	0.00199	< 0.00201	0.00201
Ethylbenzene										< 0.00199	0.00199	< 0.00201	0.00201
m,p-Xylenes										< 0.00398	0.00398	< 0.00402	0.00402
o-Xylene										< 0.00199	0.00199	< 0.00201	0.00201
Total Xylenes										< 0.00199	0.00199	< 0.00201	0.00201
Total BTEX										< 0.00199	0.00199	< 0.00201	0.00201
Chloride by EPA 300	Extracted:	Feb-18-19	16:30	Feb-18-19 1	6:30	Feb-18-19 1	16:30	Feb-18-19	6:30	Feb-18-19	16:30	Feb-18-19	16:30
	Analyzed:	Feb-18-19	23:05	Feb-18-19 2	23:11	Feb-18-19 2	23:17	Feb-18-19 2	23:23	Feb-18-19	22:06	Feb-18-19	23:30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		3060	50.0	4190	49.5	269	25.2	528	25.0	224	4.99	202	5.00
TPH by SW8015 Mod	Extracted:				ĺ					Feb-18-19	15:00	Feb-18-19	15:00
	Analyzed:									Feb-19-19	01:31	Feb-19-19	01:51
	Units/RL:									mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)										<14.9	14.9	<15.0	15.0
Diesel Range Organics (DRO)										<14.9	14.9	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)										<14.9	14.9	<15.0	15.0
otal TPH										<14.9	14.9	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer

Jessica Kramer Project Assistant

Eddy County, New Mexico

Clair Gonzales

Project Id:

Project Location:

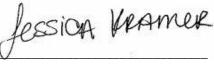
Contact:

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am


Report Date: 21-FEB-19 **Project Manager:** Jessica Kramer

Report Date: 21-FEE

	Lab Id:	614869-0	027	614869-	20	614869-0	220	614869-0	240	614869-	041	614869-	0.42
											_		
Analysis Requested	Field Id:	HAH-	3	HAH-	4	HAH-	5	HAH-	5	HAH-	7	HAH-	8
	Depth:												
	Matrix:	SOIL	,	SOIL	,	SOIL	,	SOIL		SOIL	,	SOIL	,
	Sampled:	Feb-15-19	00:00	Feb-15-19	00:00	Feb-15-19	00:00	Feb-15-19	00:00	Feb-15-19	00:00	Feb-15-19	00:00
BTEX by EPA 8021B	Extracted:	Feb-20-19	13:00	Feb-20-19	13:00	Feb-20-19	13:00	Feb-20-19	13:00	Feb-20-19	13:00	Feb-20-19	13:00
	Analyzed:	Feb-20-19	23:44	Feb-21-19	00:05	Feb-21-19	00:26	Feb-21-19	00:48	Feb-21-19	01:09	Feb-21-19	01:29
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Toluene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Ethylbenzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
m,p-Xylenes		< 0.00398	0.00398	< 0.00401	0.00401	< 0.00399	0.00399	< 0.00399	0.00399	< 0.00400	0.00400	< 0.00402	0.00402
o-Xylene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Total BTEX		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00201	0.00201
Chloride by EPA 300	Extracted:	Feb-18-19	16:30	Feb-18-19	16:30	Feb-18-19 16:30		Feb-18-19 16:30		Feb-18-19 16:30		Feb-18-19 16:	
	Analyzed:	Feb-18-19	23:36	Feb-18-19	23:54	Feb-19-19	00:00	Feb-19-19	00:22	Feb-19-19	00:28	Feb-19-19	00:34
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		57.6	4.96	122	5.00	54.0	5.00	74.6	5.00	< 5.00	5.00	191	5.00
TPH by SW8015 Mod	Extracted:	Feb-18-19	15:00	Feb-18-19	15:00	Feb-18-19	15:00	Feb-18-19	15:00	Feb-19-19	11:00	Feb-19-19	11:00
	Analyzed:	Feb-19-19	02:51	Feb-19-19	03:11	Feb-19-19	03:31	Feb-19-19	03:51	Feb-19-19	19:15	Feb-19-19	19:35
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0			15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Diesel Range Organics (DRO)		<15.0			15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Motor Oil Range Hydrocarbons (MRO)		<15.0	<15.0 15.0 <		15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0
Total TPH		<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Eddy County, New Mexico

Clair Gonzales

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 614869

Tetra Tech- Midland, Midland, TX

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 21-FEB-19

Project Manager: Jessica Kramer

	Lab Id:	614869-0)43	614869-0	44			
Analysis Paguastad	Field Id:	HAH-9	9	HAH-1	0			
Analysis Requested	Depth:							
	Matrix:	SOIL		SOIL				
	Sampled:	Feb-15-19 (00:00	Feb-15-19 (00:00			
BTEX by EPA 8021B	Extracted:	Feb-20-19	13:00	Feb-20-19 1	3:00			
	Analyzed:	Feb-21-19	01:50	Feb-21-19 (02:12			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Benzene		< 0.00199	0.00199	< 0.00200	0.00200			
Toluene		< 0.00199	0.00199	< 0.00200	0.00200			
Ethylbenzene		< 0.00199	0.00199	< 0.00200	0.00200			
m,p-Xylenes		< 0.00398	0.00398	< 0.00400	0.00400			
o-Xylene		< 0.00199	0.00199	< 0.00200	0.00200			
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200			
Total BTEX		< 0.00199	0.00199	< 0.00200	0.00200			
Chloride by EPA 300	Extracted:	Feb-18-19	16:30	Feb-18-19 1	6:30			
	Analyzed:	Feb-19-19	00:41	Feb-19-19 (00:47			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Chloride		143	4.98	55.1	4.96			
TPH by SW8015 Mod	Extracted:	Feb-19-19	11:00	Feb-19-19 1	1:00			
	Analyzed:	Feb-19-19	19:55	Feb-19-19 2	20:15			
	Units/RL:	mg/kg	RL	mg/kg	RL			
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0			
Diesel Range Organics (DRO)		<15.0	15.0	<15.0	15.0			
Motor Oil Range Hydrocarbons (MRO)		<15.0	15.0	<15.0	15.0			
Total TPH		<15.0	15.0	<15.0	15.0			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Version: 1.%

Jessica Kramer Project Assistant

Jessica Vermer

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Lab Batch #: 3079622 **Sample:** 614869-001 / SMP **Batch:** 1 **Matrix:** Soil

Data Amalamada 02/19/10 22:14

Units:	mg/kg	Date Analyzed: 02/18/19 22:14	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ne		98.0	99.7	98	70-135	
o-Terphenyl			49.5	49.9	99	70-135	

Lab Batch #: 3079622 **Sample:** 614869-002 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/18/19 23:13 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 99.9 99.6 100 70-135 o-Terphenyl 49.7 49.8 100 70-135

Lab Batch #: 3079622 **Sample:** 614869-014 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/18/19 23:32 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	98.2	99.9	98	70-135	
o-Terphenyl	48.9	50.0	98	70-135	

Lab Batch #: 3079622 **Sample:** 614869-015 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/18/19 23:52	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct	ane		100	99.9	100	70-135	
o-Terpheny	1		49.7	50.0	99	70-135	

Units:	mg/kg	Date Analyzed: 02/19/19 00:11	SU	RROGATE RE	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooc	tane		94.8	99.7	95	70-135	
o-Terpheny	1		47.4	49.9	95	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Lab Batch #: 3079622 **Sample:** 614869-022 / SMP **Batch:** 1 **Matrix:** Soil

Data Amalamada 02/10/10 00:21

Units:	mg/kg	Date Analyzed: 02/19/19 00:31	SU	RROGATE RI	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ane		98.5	100	99	70-135	
o-Terphenyl			48.9	50.0	98	70-135	

Lab Batch #: 3079622 **Sample:** 614869-028 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/19/19 00:51 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 113 100 113 70-135 o-Terphenyl 55.9 50.0 112 70-135

Units: mg/kg Date Analyzed: 02/19/19 01:11 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	92.7	99.8	93	70-135	
o-Terphenyl	45.9	49.9	92	70-135	

Lab Batch #: 3079622 **Sample:** 614869-035 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/19/19 01:31	SURROGATE RECOVERY STUDY					
TPH by SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooct	tane		95.1	99.6	95	70-135		
o-Terpheny	1		45.9	49.8	92	70-135		

Lab Batch #: 3079622 **Sample:** 614869-036 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/19/19 01:51	SURROGATE RECOVERY STUDY					
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane		90.3	99.8	90	70-135		
o-Terpheny	1		42.9	49.9	86	70-135		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Lab Batch #: 3079622 **Sample:** 614869-037 / SMP **Batch:** 1 **Matrix:** Soil

Data Amalamada 02/10/10 02.51

Units:	mg/kg	Date Analyzed: 02/19/19 02:51	SURROGATE RECOVERY STUDY							
	TPH by SW8015 Mod			True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooctan	ie		91.6	99.9	92	70-135				
o-Terphenyl			42.9	50.0	86	70-135				

Lab Batch #: 3079622 **Sample:** 614869-038 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/19/19 03:11 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 93.9 99.7 94 70-135 o-Terphenyl 45.0 49.9 70-135 90

Units: mg/kg Date Analyzed: 02/19/19 03:31 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	91.2	99.9	91	70-135	
o-Terphenyl	42.0	50.0	84	70-135	

Lab Batch #: 3079622 **Sample:** 614869-040 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/19/19 03:51	SURROGATE RECOVERY STUDY					
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane		97.2	99.8	97	70-135		
o-Terpheny	[46.4	49.9	93	70-135		

Units:	mg/kg	Date Analyzed: 02/19/19 19:15	SURROGATE RECOVERY STUDY					
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooc	tane		93.5	99.8	94	70-135		
o-Terpheny	·1		45.1	49.9	90	70-135		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, **Project ID:** 212C-MD-01589

Lab Batch #: 3079727 **Sample:** 614869-042 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/19/19 19:35	SURROGATE RECOVERY STUDY					
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooct	ane		93.4	99.7	94	70-135		
o-Terpheny	1		45.3	49.9	91	70-135		

Units: mg/kg **Date Analyzed:** 02/19/19 19:55 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 90.1 100 90 70-135 o-Terphenyl 42.9 50.0 70-135 86

Lab Batch #: 3079727 **Sample:** 614869-044 / SMP **Batch:** 1 **Matrix:** Soil

Units: mg/kg Date Analyzed: 02/19/19 20:15 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	89.7	99.8	90	70-135	
o-Terphenyl	42.8	49.9	86	70-135	

Units:	mg/kg	Date Analyzed: 02/20/19 19:09	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	benzene		0.0270	0.0300	90	70-130		
4-Bromofluorobenzene		0.0282	0.0300	94	70-130			

Units: mg/	kg Dat	e Analyzed: 02/20/19 19:30	SURROGATE RECOVERY STUDY					
	BTEX by EI		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0267	0.0300	89	70-130			
4-Bromofluorobenzene		0.0250	0.0300	83	70-130			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Data Amalamada 02/20/10 10.51

Units: mg/kg Date A	Analyzed: 02/20/19 19:51	SURROGATE RECOVERY STUDY							
BTEX by EPA	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes	S			[D]					
1,4-Difluorobenzene		0.0260	0.0300	87	70-130				
4-Bromofluorobenzene		0.0283	0.0300	94	70-130				

Units: mg/kg **Date Analyzed:** 02/20/19 20:12 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0273 0.0300 91 70-130 4-Bromofluorobenzene 0.0261 0.0300 70-130 87

Units: mg/kg Date Analyzed: 02/20/19 20:33 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0263	0.0300	88	70-130	
4-Bromofluorobenzene	0.0278	0.0300	93	70-130	

Units:	mg/kg	Date Analyzed: 02/20/19 20:55	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluoro	benzene		0.0257	0.0300	86	70-130		
4-Bromofluorobenzene			0.0262	0.0300	87	70-130		

Lab Batch #: 3079858 **Sample:** 614869-028 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/20/19 21:16	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluoro	benzene		0.0266	0.0300	89	70-130		
4-Bromofluorobenzene			0.0263	0.0300	88	70-130		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, **Project ID:** 212C-MD-01589

Lab Batch #: 3079858 Batch: 1 Matrix: Soil **Sample:** 614869-029 / SMP

Units:	mg/kg	Date Analyzed: 02/20/19 21:38	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1.4.0:01		Analytes						
1,4-Difluorob	enzene		0.0262	0.0300	87	70-130		
4-Bromofluoi	robenzene		0.0266	0.0300	89	70-130		

Lab Batch #: 3079858 Sample: 614869-035 / SMP Batch: 1 Matrix: Soil

Units: mg/kg **Date Analyzed:** 02/20/19 23:02 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0278 0.0300 93 70-130 4-Bromofluorobenzene 0.0270 0.0300 70-130 90

Lab Batch #: 3079858 Sample: 614869-036 / SMP Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 02/20/19 23:23 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0277	0.0300	92	70-130	
4-Bromofluorobenzene	0.0293	0.0300	98	70-130	

Sample: 614869-037 / SMP **Lab Batch #:** 3079858 Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 02/20/19 23:44	BTEX by EPA 8021B Amount Found Amount [A] [B] Amount Recovery Limits %R %R [D]				
BTEX by EPA 8021B	Found	Amount		Limits	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0277	0.0300	92	70-130	
4-Bromofluorobenzene	0.0272	0.0300	91	70-130	

Lab Batch #: 3079858 Sample: 614869-038 / SMP Batch: 1 Matrix: Soil

Units:	mg/kg	Date Analyzed: 02/21/19 00:05	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluoro	benzene		0.0287	0.0300	96	70-130		
4-Bromofluc	orobenzene		0.0283	0.0300	94	70-130		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Data Amalamada 02/21/10 00:26

Units: mg/kg	6 SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0281	0.0300	94	70-130			
4-Bromofluorobenzene	0.0280	0.0300	93	70-130			

Units: mg/kg Date Analyzed: 02/21/19 00:48 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0284 0.0300 95 70-130 4-Bromofluorobenzene 0.0289 0.0300 70-130 96

Units: mg/kg Date Analyzed: 02/21/19 01:09 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0307	0.0300	102	70-130	
4-Bromofluorobenzene	0.0255	0.0300	85	70-130	

Units:	mg/kg	Date Analyzed: 02/21/19 01:29	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluor	robenzene	v	0.0265	0.0300	88	70-130		
4-Bromoflu	uorobenzene		0.0292	0.0300	97	70-130		

Units: mg/l	Date Analyzed: 02/21/19 01:50	SU	RROGATE RI	ECOVERY	STUDY	
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene	:	0.0270	0.0300	90	70-130	
4-Bromofluorobenze	ene	0.0260	0.0300	87	70-130	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, **Project ID:** 212C-MD-01589

Lab Batch #: 3079858 **Sample:** 614869-044 / SMP **Batch:** 1 **Matrix:** Soil

Units:	mg/kg	Date Analyzed: 02/21/19 02:12	SURROGATE RECOVERY STUDY					
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
		Analytes			נעו			
1,4-Difluoro	benzene		0.0256	0.0300	85	70-130		
4-Bromofluo	orobenzene		0.0288	0.0300	96	70-130		

Lab Batch #: 3079622 Sample: 7672047-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/18/19 21:14	SU	RROGATE RI	ECOVERY S	STUDY	
	ТРН	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	tane		78.7	100	79	70-135	
o-Terpheny	1		39.5	50.0	79	70-135	

Lab Batch #: 3079727 Sample: 7672124-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/19/19 12:23 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	96.2	100	96	70-135	
o-Terphenyl	48.4	50.0	97	70-135	

Lab Batch #: 3079858 Sample: 7672200-1-BLK / BLK Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/20/19 18:04	SURROGATE RECOVERY STUDY								
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro	obenzene	•	0.0270	0.0300	90	70-130					
4-Bromoflu	orobenzene		0.0230	0.0300	77	70-130					

Lab Batch #: 3079622 Sample: 7672047-1-BKS / BKS Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/18/19 21:34	SU	RROGATE RI	ECOVERY S	STUDY	
	TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ane		125	100	125	70-135	
o-Terphenyl			59.2	50.0	118	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Lab Batch #: 3079727 Sample: 7672124-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/19/19 12:43 SURROGATE RECOVERY STUDY True Control Amount TPH by SW8015 Mod **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1-Chlorooctane 118 100 118 70-135 o-Terphenyl 50.0 57.6 115 70-135

Lab Batch #: 3079858 Sample: 7672200-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/20/19 16:17 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0294 0.0300 98 70-130 4-Bromofluorobenzene 0.0278 0.0300 93 70-130

Lab Batch #: 3079622 Sample: 7672047-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 02/18/19 21:54 SURROGATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	122	100	122	70-135	
o-Terphenyl	52.4	50.0	105	70-135	

Lab Batch #: 3079727 **Sample:** 7672124-1-BSD / BSD **Batch:** 1 **Matrix:** Solid

Units:	mg/kg	Date Analyzed: 02/19/19 13:03	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct	ane		123	100	123	70-135					
o-Terpheny	1		59.4	50.0	119	70-135					

Lab Batch #: 3079858 Sample: 7672200-1-BSD / BSD Batch: 1 Matrix: Solid

Units:	mg/kg	Date Analyzed: 02/20/19 16:39	SURROGATE RECOVERY STUDY								
	ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluoro	benzene		0.0257	0.0300	86	70-130					
4-Bromofluo	orobenzene		0.0285	0.0300	95	70-130					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, **Project ID:** 212C-MD-01589

Lab Batch #: 3079622 Matrix: Soil **Sample:** 614869-001 S / MS Batch:

Units:	mg/kg	Date Analyzed: 02/18/19 22:34	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct	ane		118	99.7	118	70-135					
o-Terphenyl			50.6	49.9	101	70-135					

Lab Batch #: 3079727 **Sample:** 614850-021 S / MS Batch: 1 Matrix: Soil

Units: mg/kg **Date Analyzed:** 02/19/19 13:42 SURROGATE RECOVERY STUDY **Amount** True Control TPH by SW8015 Mod Flags Found Limits Amount Recovery [A] [B] %R %R [D] **Analytes** 1-Chlorooctane 119 99.8 119 70-135 o-Terphenyl 57.0 49.9 114 70-135

Lab Batch #: 3079858 Sample: 615142-001 S / MS Batch: Matrix: Soil

Units: mg/kg Date Analyzed: 02/20/19 17:01 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0368	0.0300	123	70-130	
4-Bromofluorobenzene	0.0301	0.0300	100	70-130	

Lab Batch #: 3079622 **Sample:** 614869-001 SD / MSD Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 02/18/19 22:53	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooct	ane		116	99.8	116	70-135					
o-Terpheny	1		51.1	49.9	102	70-135					

Lab Batch #: 3079727 Sample: 614850-021 SD / MSD Batch: Matrix: Soil

Units:	mg/kg	Date Analyzed: 02/19/19 14:02	SURROGATE RECOVERY STUDY								
	ТРН	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooc	tane		121	99.8	121	70-135					
o-Terpheny	·1		57.1	49.9	114	70-135					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Orders: 614869, Project ID: 212C-MD-01589

Units: Date Analyzed: 02/20/19 17:22 mg/kg SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Limits Flags Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0360 0.0300 120 70-130 4-Bromofluorobenzene 0.0302 0.0300 101 70-130

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614869 Project ID: 212C-MD-01589

Analyst: SCM Date Prepared: 02/20/2019 Date Analyzed: 02/20/2019

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00200	0.100	0.118	118	0.101	0.107	106	10	70-130	35	
Toluene	< 0.00200	0.100	0.0889	89	0.101	0.0971	96	9	70-130	35	
Ethylbenzene	< 0.00200	0.100	0.0977	98	0.101	0.0999	99	2	70-130	35	
m,p-Xylenes	< 0.00400	0.200	0.212	106	0.201	0.218	108	3	70-130	35	
o-Xylene	< 0.00200	0.100	0.0941	94	0.101	0.0946	94	1	70-130	35	

Analyst: CHE Date Prepared: 02/18/2019 Date Analyzed: 02/18/2019

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 S Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	259	104	250	249	100	4	90-110	20	

BS / BSD Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614869 Project ID: 212C-MD-01589

Analyst: CHE **Date Prepared:** 02/18/2019 **Date Analyzed:** 02/18/2019

Lab Batch ID: 3079640 **Sample:** 7672051-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	249	100	250	272	109	9	90-110	20	

Analyst: CHE **Date Prepared:** 02/18/2019 **Date Analyzed:** 02/18/2019

Lab Batch ID: 3079649 **Sample:** 7672052-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	262	105	250	259	104	1	90-110	20	

Analyst: ARM **Date Prepared:** 02/18/2019 **Date Analyzed:** 02/18/2019

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	1020	102	1000	872	87	16	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	1170	117	1000	979	98	18	70-135	20	

mg/kg

Units:

BS / BSD Recoveries

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Project ID: 212C-MD-01589 **Work Order #:** 614869

Date Prepared: 02/19/2019 **Date Analyzed:** 02/19/2019 **Analyst:** ARM

Sample: 7672124-1-BKS **Lab Batch ID:** 3079727 **Batch #:** 1 Matrix: Solid

Units: mg/kg		BLAN	IK/BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUL	ΟY	
TPH by SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes											
Gasoline Range Hydrocarbons (GRO)	<8.00	1000	905	91	1000	947	95	5	70-135	20	
Diesel Range Organics (DRO)	<8.13	1000	902	90	1000	933	93	3	70-135	20	

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614869 Project ID: 212C-MD-01589

Lab Batch ID: 3079858 **QC- Sample ID:** 615142-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/20/2019 Date Prepared: 02/20/2019 Analyst: SCM

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00199	0.0994	0.104	105	0.101	0.105	104	1	70-130	35	
Toluene	<0.00199	0.0994	0.0830	84	0.101	0.0825	82	1	70-130	35	
Ethylbenzene	< 0.00199	0.0994	0.0966	97	0.101	0.0922	91	5	70-130	35	
m,p-Xylenes	< 0.00398	0.199	0.190	95	0.202	0.176	87	8	70-130	35	
o-Xylene	< 0.00199	0.0994	0.0869	87	0.101	0.0839	83	4	70-130	35	

Lab Batch ID: 3079634 **QC- Sample ID:** 614843-001 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	554	248	1900	543	248	1810	506	5	90-110	20	X

Lab Batch ID: 3079634 **QC- Sample ID:** 614864-003 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/19/2019 Date Prepared: 02/18/2019 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	29800	250	28700	0	250	30200	160	5	90-110	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614869 Project ID: 212C-MD-01589

Lab Batch ID: 3079640 **QC- Sample ID:** 614869-007 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/18/2019 Date Prepared: 02/18/2019 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	643	249	2050	565	249	1960	529	4	90-110	20	X

Lab Batch ID: 3079640 **QC- Sample ID:** 614869-017 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/18/2019 Date Prepared: 02/18/2019 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	1440	250	2680	496	250	2620	472	2	90-110	20	X

Lab Batch ID: 3079649 **QC- Sample ID:** 614869-035 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/18/2019 Date Prepared: 02/18/2019 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	224	250	483	104	250	475	100	2	90-110	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: Copperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614869 Project ID: 212C-MD-01589

Lab Batch ID: 3079649 **QC- Sample ID:** 614869-037 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/18/2019 Date Prepared: 02/18/2019 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	result [1]	[G]	,•	/ UI	/ VIAL B	
Chloride	57.6	248	359	122	248	344	115	4	90-110	20	X

Lab Batch ID: 3079622 **QC- Sample ID:** 614869-001 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/18/2019 **Date Prepared:** 02/18/2019 **Analyst:** ARM

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<7.98	997	866	87	998	944	95	9	70-135	20	
Diesel Range Organics (DRO)	39.3	997	945	91	998	972	93	3	70-135	20	

Lab Batch ID: 3079727 **QC- Sample ID:** 614850-021 S **Batch #:** 1 **Matrix:** Soil

 Date Analyzed:
 02/19/2019
 Date Prepared:
 02/19/2019
 Analyst:
 ARM

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons (GRO)	<7.99	998	964	97	998	975	98	1	70-135	20	
Diesel Range Organics (DRO)	<8.11	998	972	97	998	993	99	2	70-135	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Final 1.000

о 1

	neiinquisned by:	-	Relinquished by:	smiler (Relinquished by:											(LAB USE)	LAB#		Comments: Ru exc	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	Image: Control of the
	Date: lime:		Date: Time:	31-81-6	Date: Time:	BH-1 (34-35)	BH-1 (29-30)	BH-1 (24-25)	BH-1 (19-20)	BH-1 (14-15)	BH-1 (9-10)	BH-1 (6-7)	BH-1 (4-5)	BH-1 (2-3)	BH-1 (0-1)		SAMPLE IDENTIFICATION		Run deeper samples if TPH (GRO + DRO + MRO) exceeds 100 mg/kg or mg/kg. Run deeper sam exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg	" Xenco	COG - Ike Taveraz	Eddy County, New Mexico	Copperhead 31 Fed Com #15H (10-21-18)	COG	Tetra Tech, Inc.
ORIGINAL COPY	Heceived by:		Received by:	2	Regewed by: A	2/14/2019	2/14/2019	2/14/2019	2/14/2019	2/14/2019	2/14/2019	2/14/2019	2/14/2019	2/14/2019	2/14/2019	DATE TIME	YEAR: 2019	SAMPLING	eeds 100 mg/kg or r	Sampler Signature:		Project #:		Site Manager:	
	Date: Tir		Date:	01/8/19) Date:	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL HNO ₃ ICE	R	MATRIX PRESERVATIVE METHOD	ng/kg. Run deeper sa	Joe Tyler		212C-MD-01589		Clair Gonzales	900 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
-	Time:		ime	050	Time:		ı	ı Z	 		1 N			<u>-</u>	z	None # CONT	ED (\	:RS (/N)	ples if benzene		-	9			100
(Circle) AAND DELIVERED		Sample Temperature		LAB USE ONLY	_			-						×	×	PAH 82 Total Me TCLP M	(1005 15M (270C etals /	(Ext to GRO Ag As E Ag As	EX 8260 0 C35) - DRO - 1 Ba Cd Cr Ba Cd C	ORO - Pb Se	Hg				
FEDEX UPS		Rush Charges Authorized	X RUSH: Same Day	STANDARD	REMARKS:											PCB's 8	emi V Vol. 8 Semi. 3082 /	3260B Vol. 8		5			— — — — — — — — — — — — — — — — — — —		
Tracking #:	Special Report Limits or TRRP Report	orized	ıv 24 hr 48/nr (72 hr			7	メ	*	×	X	*	× -	<	× }	×.	PLM (As Chloride Chloride General Anion/C TPH 80	300.0 S Wate ation) ulfate er Che	TDS mistry (s	ee atta	ached I	ist)			·
			<u></u>	1	ŀ											HOLD	-					-	_		

Receiving Laboratory:

Xenco

LAB USE LAB# Project Location

Project Name:

Client Name:

COG

a

county, state)

exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg Run deeper samples if TPH (GRO + DRO + MRO) exceeds 100 mg/kg or mg/kg. Run deeper samples if benzene COG - Ike Taveraz Eddy County, New Mexico Copperhead 31 Fed Com #15H (10-21-18) Tetra Tech, Inc. SAMPLE IDENTIFICATION BH-2 (19-20) BH-2 (14-15) BH-1 (49-50) BH-1 (44-45) BH-1 (39-40) BH-2 (4-5) BH-2 (9-10) BH-2 (6-7) BH-2 (2-3) BH-2 (0-1) 11-61-6 Date: ime: Time: Reclaived by: Received by: Sampler Signature: 2/14/2019 2/14/2019 2/14/2019 2/14/2019 2/14/2019 2/14/2019 Project #: 2/14/2019 2/14/2019 2/14/2019 2/14/2019 'EAR: 2019 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 900 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 \times \times × × \times × SOIL 212C-MD-01589 Date: Date: S HCL PRESERVATIVE METHOD HNO₃ × \times \times × ICE \times × 1059 None # CONTAINERS Z z Z z z z z Z Ż FILTERED (Y/N) z J.5/0, T Sample Temperature LAB USE ONLY BTEX 8021B BTEX 8260B Circle) HAND DELIVERED FEDEX UPS TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) Total Metals Ag As Ba Cd Cr Pb Se Hg Circle or Specify Method No. TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles X RUSH: Same Day 24 hr 48 hr Rush Charges Authorized TCLP Semi Volatiles ANALYSIS REQUEST RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Page Chloride 300.0 Chloride Sulfate TDS General Water Chemistry (see attached list) 8 Anion/Cation Balance 72 hr TPH 8015R 으 HOLD

ORIGINAL COPY

Helinquished by:

Relinquished by:

3

Relinquished by

Analysis Request of Chain of Custody Record 1014869 Page 3

	Relinquished by:		Relinquished by:	mike (Relinquished by:	-										(LAB USE)	- AB	-	Comments: Run c	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	
	Date: Time:		Date: Time:	71	Date: Time:	BH-4 (4-5)	BH-4 (2-3)	BH-4 (0-1)	BH-3 (19-20)	BH-3 (14-15)	BH-3 (9-10)	BH-3 (6-7)	BH-3 (4-5)	BH-3 (2-3)	BH-3 (0-1)		SAMPLE IDENTIFICATION		Run deeper samples if TPH (GRO + DRO + MRO) exceeds 100 mg/kg or mg/kg. Run deeper samples exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg	Xenco	COG - Ike Taveraz	Eddy County, New Mexico	Copperhead 31 Fed Com #15H (10-21-18)	COG	Tetra Tech. Inc.
OBIGINAL COPY	Received by:		Received by:		Reseived by 7	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	DATE	YEAR: 2019	SAMPLING	ceeds 100 mg/kg or	Sampler Signature:		Project #:		Site Manager:	
	Date: Time:		Time	0201 b1/8/100	l	× ×	X	X X 1	X X 1	X X 1	X X 1	X	× × 1	X	X	WATER SOIL HCL HNO ₃ ICE None	-	MATRIX PRESERVATIVE OF	=;	Joe Tyler		212C-MD-01589		Clair Gonzales	900 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
(Circle) HAND DELIVERED	0.010	Sample Temperature		LAB USE ONLY		Z	z У	X	Z	Z	Z	Z	Z	N X X		FILTERE BTEX 80 TPH TX1 TPH 801 PAH 827 Total Met TCLP Me	021B 1005 5M 70C	BTI (Ext to (GRO	- DRO - Ba Cd Cr	ORO - Pb Se	Hg				
RED FEDEX UPS Tracking #:	Special Report Limits or TRRP Report	orized	X RUSH: Same Day 24 hr 48 pr 72 hr		REMARKS:	×.	*	×.	×.	X	×	×,	X	X		TCLP Vol TCLP Sei RCI GC/MS V GC/MS S PCB's 80 NORM PLM (Asb Chloride 3 Chloride General V Anion/Ca TPH 801	mi V ol. demi observed observed solution	8260B Vol. 8 608 os)	/ 624 3270C/62 TDS mistry (s		ached	list)	— or opecity wetting wo.)	ALYSIS REQUEST	

		telinquished by:		telifiquished by:	Aniles/	telinquisnea by:											(LAB USE)	LAB#	· · · · · · · · · · · · · · · · · · ·	exce	abora	nvoice to:	oroject Location:	Project Name:	Circle Name:		Analysis Reque
		Date: Time:		Date: Time:		Date: Time:		HAH-5	HAH-4	HAH-3	HAH-2	HAH-1	BH-4 (19-20)	BH-4 (14-15)	BH-4 (9-10)	BH-4 (6-7)		SAMPLE IDENTIFICATION		Run deeper samples if TPH (GRO + DRO + MRO) exceeds 100 mg/kg or mg/kg. Run deeper samples exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg	Xenco	COG - Ike Taveraz	Eddy County, New Mexico	Copperhead 31 Fed Com #15H (10-21-18)	COG	Tetra Tech. Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY		Received by:		Received by:	MAN	Regelyed by:	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	DATE	YEAR: 2019	SAMPLING	ceeds 100 mg/kg	Sampler Signature:		Project #:		Site Manager:		
¥					2-10	01.	×	×	×	×	×	×	×	×	×	×	WATEF SOIL	<u> </u>	MATRIX	or mg/kg. Run	Joe Tyler		2120		Clair Gonzales	900 We Mia Te	
		Date: Time:		Date: Time:	1/99/	Date: Time:	×	×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD	ո deeper samp	⊺yler		212C-MD-01589		onzales	900 West Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946	
					S S		 	-1 Z	1 Z		 	-1 Z	 				# CONT		ERS	les if benzene							
(Circle) HAND (ELIVERED)	3110	9,010,0		Sample Temperature	LAB USE ONLY		× ×	×.	<u>х</u>		×.>	<					PAH 827 Total Met	5M (70C als A	(Ext to (GRO	EX 82608 0 C35) - DRO - C	DRO - I	Hg					
ÆÅEΩ) FEDEX UPS	Special Re	 I Г	1	X RUSH: Same Day		REMARKS:											TCLP Vol TCLP Ser RCI GC/MS V	atile mi V	s olatiles 3260B		V-1-41	Hg			ANALYSIS		1849
Tracking #:	Special Report Limits or TRRP Report	Indsii Cilaiges Adiiloitzed		24 hr	STANDARD	,	2)	\ \ \	*	< <u>}</u>	\ \ \	< >	< >	< *		 	PCB's 80 NORM PLM (Asb Chloride 3 Chloride	esto	s)	TDS				Specify Wethod			Page
F887/	lP Report			48 hr/ 72 hr/)											1	General V Anion/Ca FPH 8015	tion		mistry (se	e atta	ched lis	st)				of (%

Relinquished by: Relinquished by Relinquished by: Receiving Laboratory: (county, state) Project Name: Client Name: Project Location LAB USE LAB# Mila d exceeds 10 mg/kg or Total BTEX exceeds 50 mg/kg. Run deeper samples if TPH (GRO + DRO + MRO) exceeds 100 mg/kg or mg/kg. Run deeper samples if benzene Xenco റ്റെ Eddy County, New Mexico Copperhead 31 Fed Com #15H (10-21-18) COG - Ike Taveraz Tetra Tech. Inc. SAMPLE IDENTIFICATION HAH-8 HAH-10 HAH-9 HAH-7 5181C Date: Time: Time: Site Manager 2/15/2019 Sampler Signature: Received by: Project #: /EAR: 2019 2/15/2019 2/15/2019 2/15/2019 DATE SAMPLING TIME Clair Gonzales WATER MATRIX 900 West Wall Street, Ste 10 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 × × × SOIL 212C-MD-01589 × Joe Tylei Date: HCL PRESERVATIVE METHOD HNO₃ ICE \times × \times × Time: None 100 # CONTAINERS FILTERED (Y/N) Z Z Z BTEX 8260B LAB USE ONLY BTEX 8021B 7.3 N.d Sample Temperature Circle) HAMB-DELIVERED TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg Circle or Specify Method No. TCLP Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles X RUSH: Same Day 24 hr 48 hr / 72 hr TCLP Semi Volatiles Rush Charges Authorized ANALYSIS REQUEST FEDEX Special Report Limits or TRRP Report RCI STANDARD GC/MS Vol. 8260B / 624 UPS GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Chloride 300.0 Sulfate TDS Chloride General Water Chemistry (see attached list) Anion/Cation Balance TPH 8015R HOLD

ORIGINAL COPY

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 02/18/2019 10:59:00 AM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 614869

Temperature Measuring device used: R8

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		2.2
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping con	tainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle	s?	N/A
#6*Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Any missing/extra samples?		No
#9 Chain of Custody signed when relinqu	iished/ received?	Yes
#10 Chain of Custody agrees with sample	e labels/matrix?	Yes
#11 Container label(s) legible and intact?	•	Yes
#12 Samples in proper container/ bottle?		Yes
#13 Samples properly preserved?		Yes
#14 Sample container(s) intact?		Yes
#15 Sufficient sample amount for indicate	ed test(s)?	Yes
#16 All samples received within hold time	9?	Yes
#17 Subcontract of sample(s)?		N/A
#18 Water VOC samples have zero head	Ispace?	N/A
* Must be completed for after-hours del Analyst:	livery of samples prior to placing in	the refrigerator
Checklist completed by: Checklist reviewed by:	Brianna Teel lossion Weamer	Date: 02/18/2019
Checklist reviewed by.	Jessica Kramer	Date: 02/18/2019

Analytical Report 614870

for Tetra Tech- Midland

Project Manager: Clair Gonzales
Cooperhead 31 Fed Com #15H (10-21-18)
212C-MD-01589
19-FEB-19

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-28), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-18-17), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-18-18)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4)
Xenco-Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757)
Xenco-Atlanta (LELAP Lab ID #04176)
Xenco-Tampa: Florida (E87429), North Carolina (483)

Xenco-Lakeland: Florida (E84098)

19-FEB-19

Project Manager: Clair Gonzales

Tetra Tech- Midland 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 614870

Cooperhead 31 Fed Com #15H (10-21-18) Project Address: Eddy County, New Mexico

Clair Gonzales:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 614870. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 614870 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Jessica Kramer

Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 614870

Tetra Tech- Midland, Midland, TX

Cooperhead 31 Fed Com #15H (10-21-18)

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BG (0-1)	S	02-15-19 00:00		614870-001
BG (2-3)	S	02-15-19 00:00		614870-002
BG (4-5)	S	02-15-19 00:00		614870-003
BG (6-7)	S	02-15-19 00:00		614870-004
BG (9-10)	S	02-15-19 00:00		614870-005
BG (14-5)	S	02-15-19 00:00		614870-006
BG (19-20)	S	02-15-19 00:00		614870-007
BG (24-25)	S	02-15-19 00:00		614870-008
BG (29-30)	S	02-15-19 00:00		614870-009
BG (34-35)	S	02-15-19 00:00		614870-010

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: Cooperhead 31 Fed Com #15H (10-21-18)

 Project ID:
 212C-MD-01589
 Report Date:
 19-FEB-19

 Work Order Number(s):
 614870
 Date Received:
 02/18/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Eddy County, New Mexico

Clair Gonzales

Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 614870

Tetra Tech- Midland, Midland, TX

Project Name: Cooperhead 31 Fed Com #15H (10-21-18)

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 19-FEB-19

Project Manager: Jessica Kramer

	Lab Id:	614870-0	01	614870-0	02	614870-0	03	614870-0	04	614870-0	05	614870-0	06
Analysis Requested	Field Id:	BG (0-1)	BG (2-3)	BG (4-5)	BG (6-7)	BG (9-10	0)	BG (14-5	5)
Anaiysis Kequesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Feb-15-19 (00:00	Feb-15-19 0	00:00	Feb-15-19 0	00:00	Feb-15-19 0	0:00	Feb-15-19 (00:00	Feb-15-19 0	00:00
Chloride by EPA 300	Extracted:	Feb-18-19 1	6:30	Feb-18-19 1	6:30	Feb-19-19 0	9:30	Feb-19-19 0	9:30	Feb-19-19 0	9:30	Feb-19-19 0	9:30
	Analyzed:	Feb-19-19 (00:53	Feb-19-19 0	0:59	Feb-19-19 1	3:31	Feb-19-19 1	1:21	Feb-19-19 1	1:27	Feb-19-19 1	3:37
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		113	4.99	293	24.9	58.8	4.95	167	49.5	185	49.5	98.8	4.95

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

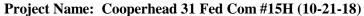
Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jessica Vramer

Jessica Kramer Project Assistant

Eddy County, New Mexico

Clair Gonzales


Project Id:

Project Location:

Contact:

Certificate of Analysis Summary 614870

Tetra Tech- Midland, Midland, TX

Date Received in Lab: Mon Feb-18-19 10:59 am

Report Date: 19-FEB-19

Project Manager: Jessica Kramer

	Lab Id:	614870-0	07	614870-0	08	614870-0	09	614870-0	10		
Analysis Requested	Field Id:	BG (19-2	(0)	BG (24-2	5)	BG (29-3	0)	BG (34-3	5)		
Anaiysis Kequesieu	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Feb-15-19 (00:00	Feb-15-19 0	00:00	Feb-15-19 0	00:00	Feb-15-19 (00:00		
Chloride by EPA 300	Extracted:	Feb-19-19 (9:30	Feb-19-19 0	9:30	Feb-19-19 0	9:30	Feb-19-19 (9:30		
	Analyzed:	Feb-19-19 1	13:43	Feb-19-19 1	3:49	Feb-19-19 1	2:04	Feb-19-19 1	4:08		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		181	4.98	164	5.00	123	24.8	161	4.95		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jessica Weamer

Jessica Kramer Project Assistant

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

BS / BSD Recoveries

Project Name: Cooperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614870 Project ID: 212C-MD-01589

Analyst: CHE Date Prepared: 02/18/2019 Date Analyzed: 02/18/2019

Lab Batch ID: 3079649 **Sample:** 7672052-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	262	105	250	259	104	1	90-110	20	

Analyst: CHE **Date Prepared:** 02/19/2019 **Date Analyzed:** 02/19/2019

Lab Batch ID: 3079654 **Sample:** 7672053-1-BKS **Batch #:** 1 **Matrix:** Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	< 0.858	250	234	94	250	253	101	8	90-110	20	

Project Name: Cooperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614870 Project ID: 212C-MD-01589

Lab Batch ID: 3079649 **QC- Sample ID:** 614869-035 S **Batch #:** 1 **Matrix:** Soil

 Date Analyzed:
 02/18/2019
 Date Prepared:
 02/18/2019
 Analyst:
 CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	%R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	224	250	483	104	250	475	100	2	90-110	20	

Lab Batch ID: 3079649 **QC- Sample ID:** 614869-037 S **Batch #:** 1 **Matrix:** Soil

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	57.6	248	359	122	248	344	115	4	90-110	20	X

Lab Batch ID: 3079654 **QC- Sample ID:** 614870-008 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/19/2019 Date Prepared: 02/19/2019 Analyst: CHE

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	164	250	438	110	250	417	101	5	90-110	20	

Project Name: Cooperhead 31 Fed Com #15H (10-21-18)

Work Order #: 614870 Project ID: 212C-MD-01589

Lab Batch ID: 3079654 **QC- Sample ID:** 614952-002 S **Batch #:** 1 **Matrix:** Soil

Date Analyzed: 02/19/2019 **Date Prepared:** 02/19/2019 **Analyst:** CHE

Reporting Units: mg/kg MATRIX SPIKE DUPLICATE RECOVERY STUDY

Chloride by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	2160	252	3320	460	252	3440	NC	4	90-110	20	X

(county, state) Relinquished by: Comments: Receiving Laboratory: nvoice to: Project Location Project Name: Client Name: Relinquished by: elinquished by: LAB USE LAB# ď COG Eddy County, New Mexico COG - Ike Taveraz Copperhead 31 Fed Com #15H (10-21-18 Tetra Tech, Inc. SAMPLE IDENTIFICATION BG (34-35) BG (29-30) BG (24-25) BG (19-20) BG (14-15) BG (9-10) BG (6-7) BG (4-5) BG (2-3) BG (0-1) -18-19 Date: Date: Date: Time: Time: Site Manager: Received by: Sampler Signature: Project #: 2/15/2019 2/15/2019 2/15/2019 2/15/2019 2/15/2019 2/15/2019 2/15/2019 2/15/2019 2/15/2019 2/15/2019 EAR: 2019 DATE SAMPLING TIME WATER Clair Gonzales MATRIX 900 West Wall Street, Ste 11 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 SOIL × \times × × × × × × × Joe Tylei 212C-MD-01589 Date: Date: HCL PRESERVATIVE METHOD HNO₃ $\overline{\circ}$ ICE \times × \times × \times \times \times \times Time: None 029 # CONTAINERS z z Ż z Z FILTERED (Y/N) Z Z Z Z Sample Temperature BTEX 8021B BTEX 8260B LAB USE ONLY Circle) HAND DELIVERED 97 LO TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg (Circle or Specify Method No.) TCLP Metals Ag As Ba Cd Cr Pb Se Hg REMARKS: TCLP Volatiles TCLP Semi Volatiles RUSH: Same Day 24 hr 48 hr 72 hr Special Report Limits or TRRP Report Rush Charges Authorized ANALYSIS REQUEST FEDEX UPS RCI STANDARD GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM PLM (Asbestos) Chloride 300.0 \times × × × × × Chloride Sulfate TDS General Water Chemistry (see attached list) Anion/Cation Balance TPH 8015R HOLD

ORIGINAL COPY

013410

Page

D of

										_					-									
	Relinquished by:			Relinquished by:											(LAB USE)	LAB#	-	Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	(a)
	Date: Time:		Date: Time:	218-64		BG (29-30)	BG (24-25)	BG (19-20)	BG (14-15)	BG (9-10)	BG (6-7)	BG (4-5)	BG (2-3)	BG (0-1)		SAMPLE IDENTIFICATION			Xenco	COG - Ike Taveraz	Eddy County, New Mexico	Copperhead 31 Fed Com #15H (10-21-18	COG	Tetra Tech. Inc.
ORIGINAL COPY	Received by:		Received by:	Resilved	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	2/15/2019	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
γο	Date:		Date:	Date:	×	×	×	×	×	×	×	×	×	×	WATE SOIL HCL	R	MATRIX PF		Joe Tyler		212C-MD-01589		Clair Gonzales	900 West Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
	Time:	ť	Time:	a Joss	× - -	×	X 1	X 1	X 1	X	X 1	×	×	X 1	HNO ₃ ICE None # CONT	ΓAINE	PRESERVATIVE S	-			01589		S	reet, Ste 100 is 79701 2-4559 12-3946
(Circle) HAND DELIVERED	1.717.7		Sample Temperature	LAB USE ONLY	z	Z	Z	Z	Z	Z	2	Z	Z	Z	PAH 82 Total Me	021B (1005 015M 270C etals	Ext t (GRO	EX 8260 o C35) - DRO - Ba Cd Ci	ORO -	Hg			2	·
FEUEX UPS		Rush Charges Authorized	X RUSH: Same Day	RE											TCLP V TCLP S RCI GC/MS	olatile emi V Vol. Semi	es 'olatile 8260B . Vol.	S					ANALYSIS REQUEST	
racking #:	Special Report Limits or TRRP Report	uthorized	Day 24 hr 48 ht 72 h	QP.	×	×	×	×	X	×	×	×	×	×	PLM (As Chloride Chloride	e 300. e S I Wat Cation	0 Sulfate er Ch	emistry (see att	ached	list)		REQUEST	
			p.	IJ											HOLD									

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland

Date/ Time Received: 02/18/2019 10:59:00 AM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 614870

Temperature Measuring device used: R8

Work Order #. Or lord								
	Sample Receipt Checklist	Comments						
#1 *Temperature of cooler(s)?		2.2						
#2 *Shipping container in good condition	?	Yes						
#3 *Samples received on ice?		Yes						
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	N/A						
#5 Custody Seals intact on sample bottle	es?	N/A						
#6*Custody Seals Signed and dated?		N/A						
#7 *Chain of Custody present?		Yes						
#8 Any missing/extra samples?		No						
#9 Chain of Custody signed when relinqu	uished/ received?	Yes						
#10 Chain of Custody agrees with sampl	e labels/matrix?	Yes						
#11 Container label(s) legible and intact?	?	Yes						
#12 Samples in proper container/ bottle?		Yes						
#13 Samples properly preserved?		Yes						
#14 Sample container(s) intact?		Yes						
#15 Sufficient sample amount for indicate	ed test(s)?	Yes						
#16 All samples received within hold time	e?	Yes						
#17 Subcontract of sample(s)?		N/A						
#18 Water VOC samples have zero head	dspace?	N/A						
* Must be completed for after-hours delivery of samples prior to placing in the refrigerator Analyst: PH Device/Lot#:								
Checklist completed by:	Brianna Teel	Date: 02/18/2019						
Checklist reviewed by:	Jessica Kramer	Date: 02/18/2019						