Facility:	C-1 lateral Leak	Date:	8/31/2019
-----------	------------------	-------	-----------

Enter data in shaded fields to calculate gas volumes released due to leak and/or blowdown of system.

Hours of leak	0.5
Diameter of hole (inches)	0.0625
Line Pressure at Leak	437
Volume of Gas Leaked	0.88

NOTE: Enter Components on the Gas Leak or Gas Blowdown sheet as needed.

Hourly Basis Rectangle or Line Crack

0.88 MSCF

Length, in. 0
Width, in, 0
Eqv. Diameter, in. #DIV/0!

Calculations:

Volume of Gas Leaked (MSCF) = Diameter*Diameter*(Upstream Gauge Pressure + Atmospheric Pressure)*Hours of Leak

^{**}Reference: Pipeline Rules of Thumb Handbook, 3rd Edition, McAllister. Page 260. Assuming Standard Temperature and Pressure (14.7 psi and 60 F)

Footage of Pipe blowndown	14572	
Initial line pressure	437	
Diameter of Pipe (inches)	8	
Volume of Gas Blown Down	181	MSCF

Calculations:

 $Volume\ of\ Gas\ Blown\ Down\ (MSCF) = Volume\ at\ pipeline\ conditions\ (ft3)*(Gauge\ Pressure\ (psig) + Atmospheric\ Pressure\ 13.7\ psi)*Standard\ Temperature\ (60F)$

/(1000 scf/mscf)*Standard Pressure (14.7psi)*Temperature(F)*Z Factor

Volume at pipeline conditions (scf) = Diameter/12 (ft)*Diameter/12 (ft)*PI/4*Length of pipe (ft)

^{**}Reference: Gas Pipeline Hydraulics, Menson (2005) Pages 132-134. Assuming the Ideal Gas Law and Tpipeline = Tatm.

Corrective Action: Isolated and blew down

Name: David Sedillo Cell Phone: 575-200-7981