Devon Energy

Spud 16 State 8H Delineation Report & Work Plan

Section 16, Township 23S, Range 29E Eddy County, New Mexico

30-015-40038

April 17, 2019

Prepared for:
Devon Energy Production Company
6488 Seven Rivers Highway
By:

Safety & Environmental Solutions, Inc. 703 East Clinton Street Hobbs, New Mexico 88240 (575) 397-0510

TABLE OF CONTENTS

I.	COMPANY CONTACTS	1
	BACKGROUND	1
11.	BACKGROUND	1
III.	SURFACE AND GROUND WATER	1
IV.	CHARACTERIZATION	1
٧.	WORK PERFORMED	2
\/II	FIGURES & ADDENDICES	2
V II.	FIGURES & APPENDICESigure 1 – Vicinity Map	3
	igure 1 - Vicinity Map	4
-	igure 2 – Site Plan	5
Α	ppendix A – C-141	5
Α	ppendix B – Groundwater	6
Α	ppendix C – Analytical Results	7
۸	ppendix D – Site Photos	Q
μ	ppendix D - Site Friotos	

I. Company Contacts

Representative	Company	Telephone	E-mail
Amanda Davis	Devon Energy Corporation	575-748-0176	Amanda.Davis@dvn.com
Bob Allen	SESI	575-397-0510	ballen@sesi-nm.com

II. Background

Safety and Environmental Solutions, Inc., hereinafter referred to as (SESI) was engaged by Devon Energy Corporation to assess and remediate a spill area at the Spud 16 State #008H.

According to the C-141: According to the C-141 the cause of release, was a broken site glass on the heater treater. The affected area measured approximately 125' x 30'. All fluids remained on the location pad area. A Trimble Juno 3B handheld was used to map the spill area. (Figure 2). Approximately 11,307 cubic feet of surface area was impacted.

III. Surface and Ground Water

There is no record of depth to groundwater in the immediate vicinity of the site location. Further research of the New Mexico Office of the State Engineer records indicates the average depth to groundwater for the area to be 31' bgs. Please note: this location is surrounded in its entirety by the salt lakes, and the boundaries are periodically encroached upon by salt water. (Appendix B).

IV. Characterization

The target cleanup levels are determined using the NMAC 19.15.29 revisions dated July 24, 2018. The soil screening criteria presented below, and the applicable Recommended Remediation Action Levels (RRAL) are 10 parts per million (ppm) Benzene, 50 ppm combined Benzene, Toluene, Ethyl Benzene, and Total Xylenes (BTEX), and 2,500 ppm Total Petroleum Hydrocarbons (TPH). Characterization of vertical extent of chloride concentration to a level of 600 mg/kg (PPM) is also required for pasture impact. The soil in this area is characterized as a Reeves Gypsum. Classified as a loamy soils that are very shallow to moderately deep over Gypsum beds, and Gypsum land.

Closure	Table 1 Criteria for Soils Impa	acted by a Release	
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/l		Method*	Limit**
<50 feet	Chloride***	EPA 300.0 or SM4500 CI B	600 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	100 mg/kg
	втех	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
51 feet-100 feet	Chloride***	EPA 300.0 or SM4500 CI B	10,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	2,500 mg/kg
	втех	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
>100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	20,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	2,500 mg/kg
	втех	EPA SW-846 Method 8021B or 8260B	50 mg/kg

V. Work Performed

On March 27, 2019 SESI personnel were on site in order to meet with Devon Energy personnel regarding the safety issues, number of high pressure lines, as well as electrical lines on the location. The area was flagged for future New Mexico One Call clearance.

On April 02, 2019 SESI personnel, together with personnel from Devon Energy were on location in order to begin soil delineation of the spill area. Seven (7) Auger Holes were designated and advance to depths from surface to 2' bgs. Soil samples were grabbed at surface, and one foot increments, field tested, and packaged for laboratory confirmation. All samples were properly packaged, labeled, preserved, and transported to Hall Laboratories via Chain of Custody for analyses. The following constituencies were analyzed:

Chloride (CI Method 300.0 Anions), Total Petroleum Hydrocarbons (TPH Method 8015), and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX Method 8021B). The table below is a recap and tabulation of the results from the Hall Laboratory analyses for ease of reference (Appendix C)

Mr. Bob Allen (SESI) contacted Mr. Mike Bratcher of the NMOCD on April 10 or 11, 2019 by telephone. The close proximity of the Spud 16 8H to the salt lake (immediately adjacent) was discussed. Mr. Bratcher indicated that the primary concern at this location would be TPH contamination and not the chloride contamination. The action level for TPH will use the close proximity of the salt lake as a water body, therefore the TPH action level will be 100 mg/kg. The action plan will call for removal of all TPH contaminated soil above the 100 mg/kg level and the chloride levels at that depth will be sampled as retained in the documentation required for this release.

Sample ID	Chloride	MRO	DRO	GRO	ВТЕХ
	EPA Method 300	EPA Method	EPA Method	EPA Method	EPA Method
	Anions	8015	8015	8015	8021
AH-1 Surface	10000	7600	21000	3100	130
AH-1 @ 1 ft.	7200	1200	2800	250	6.6
AH-1 @ 2 ft.	2700	ND	24	ND	ND
AH-2 @	1600	4700	15000	1900	65
Surface					
AH-2 @ 1 ft.	3300	53	89	ND	ND
AH-3 Surface	910	1900	5600	210	4.6
AH-3 @ 1 ft.	140	55	89	ND	ND
AH-4 @	2400	ND	14000	46	ND
Surface					
AH-4 @ 1 ft.	1700	ND	770	17	ND
AH-5 @	650	7400	15000	110	2.2
Surface					
AH-5 @ 1 ft.	ND	ND	ND	ND	ND
AH-6 @	13000	6400	13000	23	.62
Surface					
AH-6 @ 1 ft.	ND	ND	ND	ND	ND
AH-7 @	21000	2500	4800	ND	ND
Surface					
AH-7 @ 1 ft.	61	ND	ND	ND	ND

VI. Action Plan

Based on the NMOCD soil screening levels, depth to groundwater for this area, and number of lines: It is proposed to "hand dig" the interior of the bermed area to a depth whereby TPH levels are below 100 mg/kg. The estimated area of impact is Two Hundred Forty Nine (249) cubic feet. The interior of the bermed area will be backfilled with like material and the berm restored. There is TPH contamination on surface area of pad, however this a heavily trafficked area with transport trucks, and will need to be remediated with caution, and backfilled immediately in order to prevent accidents. The approximate area of impact for the surface area of the pad is Two Thousand Nine Hundred Sixty One (2,961) cubic feet. It is proposed to grab sidewall and bottom samples for field testing as confirmation of the vertical and horizontal remediation respectively. All confirmations samples will be sent to an NMOCD approved laboratory for final analyses.

Due to geographic location, and the salt lakes; chloride levels are naturally occurring on all surface areas. All impacted soils will be transported to an NMOCD approved facility and documented via manifests. The Sidewall and Bottom Samples will be retrieved as confirmation and included in all Closure Documentation.

Upon completion of remediation activities: all surface areas of the pad area will be backfilled with like material and restored to grade. All closure documentation will be drafted and submitted to the proper parties of concern.

VII. **Figures & Appendices**

Figure 1 - Vicinity Map

Figure 2 - Site Plan Appendix A – C-141

Appendix B – Groundwater

Appendix C – Analytical Results
Appendix D – Photo Documentation

Figure 1 Vicinity Map

Figure 2 Site Plan

Appendix A C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible	-			OGRID						
Contact Nam	e			Contact	Contact Telephone					
Contact emai	1			Incident	Incident # (assigned by OCD)					
Contact mail	ing address									
			Location	of Release S	Source					
Latitude			(NAD 83 in de	Longitude						
Site Name				Site Type	;					
Date Release	Discovered			API# (if a	oplicable)					
Unit Letter	Section	Township	Range	Co	ınty]				
			Nature and	Name: ng to legal descrip d Volume of	Release	AB e volumes provided below)				
Crude Oil		Volume Release			Volume Recovered (bbls)					
Produced	Water	Volume Release	d (bbls)		Volume Reco	overed (bbls)				
			ion of total dissolwater >10,000 mg	lved solids (TDS) g/l?	Yes N	No				
Condensa	te	Volume Release			Volume Reco	overed (bbls)				
Natural G	as	Volume Release	d (Mcf)		Volume Reco	overed (Mcf)				
Other (des	scribe)	Volume/Weight	Released (provid	e units)	Volume/Weig	ght Recovered (provide units)				
Cause of Rele	ease									

Form C-141 Page 2

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?						
19.15.29.7(A) NMAC?							
☐ Yes ☐ No							
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?						
	Initial Response						
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury						
The source of the rele	ease has been stopped.						
	s been secured to protect human health and the environment.						
Released materials ha	ave been contained via the use of berms or dikes, absorbent pads, or other containment devices.						
All free liquids and re	ecoverable materials have been removed and managed appropriately.						
If all the actions described	d above have <u>not</u> been undertaken, explain why:						
has begun, please attach	IAC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred at area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.						
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.							
Printed Name:	Title:						
Signature: Kendra	DeHoyos Date:						
	Telephone:						
OCD Only	hit Intamente Date:						
J							

Appendix B Groundwater

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters) (In feet)

	ciosed)	POD	(qu	aiv	013	arc .	Siliali	cst to i	angest)	(147100	5 O TWI III IIICCI	3) (III IC	Ct)	
		Sub-		Q	Q	Q							W:	ater
POD Number <u>C 00571</u>	Code	basin CUB	County ED					Tws 23S	_	X 591241	Y 3570957*	DepthWellDepthW 90	ater Col	umn 52
C 00571 CLW241602	О	CUB	ED	3	3	3	30	23S	29E	591241	3570757*	89	38	51
<u>C 01217 S</u>		CUB	ED	4	1	4	16	23S	29E	595413	3574403*	350		
C 01627		C	ED	1	4	4	28	23S	29E	595649	3570959*	170		
<u>C 02182</u>		C	ED			4	30	23S	29E	592328	3571048*	75	30	45
<u>C 02608</u>		CUB	ED	3	1	4	17	23S	29E	593598	3574387*	400		
<u>C 02613</u>		CUB	ED	4	4	2	20	23S	29E	594203	3573176*	400		
<u>C 02704</u>		C	ED			1	19	23S	29E	591531	3573493*	174		
<u>C 02705</u>		C	ED			2	17	23S	29E	593902	3575093*	68	28	40
<u>C 02706</u>		C	ED			4	18	23S	29E	592302	3574291*	17	10	7
<u>C 02707</u>		C	ED			2	28	23S	29E	595535	3571868*	40	18	22
<u>C 02715</u>		CUB	ED	4	1	3	15	23S	29E	596221	3574411*	400		
<u>C 02716</u>		CUB	ED	4	4	4	16	23S	29E	595818	3574002*	400		
<u>C 02717</u>		CUB	ED	4	2	4	16	23S	29E	595817	3574407*	400		
<u>C 02718</u>		CUB	ED	4	4	2	16	23S	29E	595816	3574812*	400		
<u>C 02720</u>		CUB	ED		2	1	21	23S	29E	594911	3573690*	150		
<u>C 02721</u>		CUB	ED		2	3	21	23S	29E	594915	3572879*	150		
<u>C 02792</u>		CUB	ED		4	3	04	23S	29E	594868	3577336*	200		
<u>C 02793</u>		CUB	ED		4	3	04	23S	29E	594868	3577336*	100		
<u>C 02794</u>		CUB	ED		4	3	10	23S	29E	596518	3575731*	100		
<u>C 02795</u>		CUB	ED		4	3	10	23S	29E	596518	3575731*	200		
<u>C 02797</u>		CUB	ED		2	3	22	23S	29E	596540	3572895*	200		
<u>C 02804</u>		CUB	ED		2	1	08	23S	29E	593262	3576905*	100		
<u>C 02805</u>		CUB	ED		2	1	08	23S	29E	593262	3576905*	100		
<u>C 02806</u>		CUB	ED		1	1	09	23S	29E	594473	3576927*	100		
<u>C 02807</u>		CUB	ED		1	1	09	23S	29E	594473	3576927*	100		
<u>C 02808</u>		CUB	ED		2	3	16	23S	29E	594909	3574501*	100		
<u>C 02809</u>		CUB	ED		2	3	16	23S	29E	594909	3574501*	100		
C 03057 EXPLORE		CUB	ED	4	1	1	21	23S	29E	594605	3573586*	150		
C 03058 EXPLORE		CUB	ED	4	1	1	16	23S	29E	594605	3575206*	150		
C 03059 EXPLORE		CUB	ED	4	1	3	17	23S	29E	592993	3574378*		65	
<u>C 03587 POD1</u>		CUB	ED	1	4	3	29	23S	29E	593338	3570754	99	44	55
C 03587 POD2		CUB	ED	1	2	4	19	23S	29E	592213	3572706	77	16	61

Average Depth to Water: 31 feet
Minimum Depth: 10 feet

Maximum Depth:

65 feet

Record Count: 33

PLSS Search:

Township: 23S Range: 29E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/16/19 2:27 PM

WATER COLUMN/ AVERAGE DEPTH TO

WATER

Appendix C Analytical Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 10, 2019

Bob Allen Safety & Environmental Solutions PO Box 1613 Hobbs, NM 88241

TEL: (575) 397-0510 FAX (575) 393-4388

RE: Devon SPUD 16 State 8H OrderNo.: 1904252

Dear Bob Allen:

Hall Environmental Analysis Laboratory received 15 sample(s) on 4/4/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/10/2019

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-1 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 9:45:00 AM

 Lab ID:
 1904252-001
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	10000	600		mg/Kg	200	4/8/2019 5:34:46 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGI	E					Analyst	: RAA
Gasoline Range Organics (GRO)	3100	230		mg/Kg	50	4/6/2019 6:50:00 PM	44098
Surr: BFB	105	70-130		%Rec	50	4/6/2019 6:50:00 PM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: Irm
Diesel Range Organics (DRO)	21000	380		mg/Kg	40	4/5/2019 9:01:07 AM	44126
Motor Oil Range Organics (MRO)	7600	1900		mg/Kg	40	4/5/2019 9:01:07 AM	44126
Surr: DNOP	0	70-130	S	%Rec	40	4/5/2019 9:01:07 AM	44126
EPA METHOD 8260B: VOLATILES SHORT LIS	Т					Analyst	: RAA
Benzene	4.8	0.11		mg/Kg	5	4/5/2019 11:23:14 PM	44098
Toluene	72	2.3		mg/Kg	50	4/6/2019 6:50:00 PM	44098
Ethylbenzene	22	0.23		mg/Kg	5	4/5/2019 11:23:14 PM	44098
Xylenes, Total	130	4.6		mg/Kg	50	4/6/2019 6:50:00 PM	44098
Surr: 1,2-Dichloroethane-d4	96.3	70-130		%Rec	5	4/5/2019 11:23:14 PM	44098
Surr: 4-Bromofluorobenzene	120	70-130		%Rec	5	4/5/2019 11:23:14 PM	44098
Surr: Dibromofluoromethane	133	70-130	S	%Rec	5	4/5/2019 11:23:14 PM	44098
Surr: Toluene-d8	100	70-130		%Rec	5	4/5/2019 11:23:14 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Client Sample ID: AH-1 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 10:15:00 AM

 Lab ID:
 1904252-002
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	7200	300		mg/Kg	100	4/8/2019 5:47:11 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst	: RAA
Gasoline Range Organics (GRO)	250	24		mg/Kg	5	4/6/2019 3:12:08 AM	44098
Surr: BFB	106	70-130		%Rec	5	4/6/2019 3:12:08 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS					Analyst	: Irm
Diesel Range Organics (DRO)	2800	96		mg/Kg	10	4/6/2019 9:30:09 PM	44126
Motor Oil Range Organics (MRO)	1200	480		mg/Kg	10	4/6/2019 9:30:09 PM	44126
Surr: DNOP	0	70-130	S	%Rec	10	4/6/2019 9:30:09 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIS	Т					Analyst	: RAA
Benzene	ND	0.12		mg/Kg	5	4/6/2019 7:18:40 PM	44098
Toluene	1.1	0.24		mg/Kg	5	4/6/2019 7:18:40 PM	44098
Ethylbenzene	1.0	0.24		mg/Kg	5	4/6/2019 7:18:40 PM	44098
Xylenes, Total	6.6	0.48		mg/Kg	5	4/6/2019 7:18:40 PM	44098
Surr: 1,2-Dichloroethane-d4	86.3	70-130		%Rec	5	4/6/2019 7:18:40 PM	44098
Surr: 4-Bromofluorobenzene	105	70-130		%Rec	5	4/6/2019 7:18:40 PM	44098
Surr: Dibromofluoromethane	88.7	70-130		%Rec	5	4/6/2019 7:18:40 PM	44098
Surr: Toluene-d8	91.4	70-130		%Rec	5	4/6/2019 7:18:40 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-1 2'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 10:25:00 AM

 Lab ID:
 1904252-003
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	2700	150	mg/Kg	50	4/8/2019 5:59:35 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst	: RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	4/6/2019 3:40:33 AM	44098
Surr: BFB	103	70-130	%Rec	1	4/6/2019 3:40:33 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst	: Irm
Diesel Range Organics (DRO)	24	10	mg/Kg	1	4/5/2019 3:31:04 PM	44126
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	4/5/2019 3:31:04 PM	44126
Surr: DNOP	90.9	70-130	%Rec	1	4/5/2019 3:31:04 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIST	-				Analyst	: RAA
Benzene	ND	0.023	mg/Kg	1	4/6/2019 7:47:08 PM	44098
Toluene	ND	0.047	mg/Kg	1	4/6/2019 7:47:08 PM	44098
Ethylbenzene	ND	0.047	mg/Kg	1	4/6/2019 7:47:08 PM	44098
Xylenes, Total	ND	0.094	mg/Kg	1	4/6/2019 7:47:08 PM	44098
Surr: 1,2-Dichloroethane-d4	86.6	70-130	%Rec	1	4/6/2019 7:47:08 PM	44098
Surr: 4-Bromofluorobenzene	99.9	70-130	%Rec	1	4/6/2019 7:47:08 PM	44098
Surr: Dibromofluoromethane	88.3	70-130	%Rec	1	4/6/2019 7:47:08 PM	44098
Surr: Toluene-d8	92.3	70-130	%Rec	1	4/6/2019 7:47:08 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-2 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 10:40:00 AM

 Lab ID:
 1904252-004
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	:: CJS
Chloride	1600	60		mg/Kg	20	4/6/2019 2:19:25 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANG	E					Analyst	: RAA
Gasoline Range Organics (GRO)	1900	93		mg/Kg	20	4/6/2019 4:09:08 AM	44098
Surr: BFB	112	70-130		%Rec	20	4/6/2019 4:09:08 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	:: Irm
Diesel Range Organics (DRO)	15000	190		mg/Kg	20	4/5/2019 4:15:14 PM	44126
Motor Oil Range Organics (MRO)	4700	930		mg/Kg	20	4/5/2019 4:15:14 PM	44126
Surr: DNOP	0	70-130	S	%Rec	20	4/5/2019 4:15:14 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIS	Т					Analyst	: RAA
Benzene	0.76	0.47		mg/Kg	20	4/6/2019 8:15:35 PM	44098
Toluene	28	0.93		mg/Kg	20	4/6/2019 8:15:35 PM	44098
Ethylbenzene	16	0.93		mg/Kg	20	4/6/2019 8:15:35 PM	44098
Xylenes, Total	65	1.9		mg/Kg	20	4/6/2019 8:15:35 PM	44098
Surr: 1,2-Dichloroethane-d4	87.9	70-130		%Rec	20	4/6/2019 8:15:35 PM	44098
Surr: 4-Bromofluorobenzene	107	70-130		%Rec	20	4/6/2019 8:15:35 PM	44098
Surr: Dibromofluoromethane	93.3	70-130		%Rec	20	4/6/2019 8:15:35 PM	44098
Surr: Toluene-d8	91.6	70-130		%Rec	20	4/6/2019 8:15:35 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/10/2019

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-2 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 10:55:00 AM

 Lab ID:
 1904252-005
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	3300	150	mg/Kg	50	4/8/2019 6:11:59 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGI	≣				Analyst	: RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	4/6/2019 4:37:49 AM	44098
Surr: BFB	105	70-130	%Rec	1	4/6/2019 4:37:49 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	: Irm
Diesel Range Organics (DRO)	89	9.6	mg/Kg	1	4/5/2019 4:59:11 PM	44126
Motor Oil Range Organics (MRO)	53	48	mg/Kg	1	4/5/2019 4:59:11 PM	44126
Surr: DNOP	91.9	70-130	%Rec	1	4/5/2019 4:59:11 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIS	Т				Analyst	: RAA
Benzene	ND	0.023	mg/Kg	1	4/6/2019 8:44:18 PM	44098
Toluene	ND	0.047	mg/Kg	1	4/6/2019 8:44:18 PM	44098
Ethylbenzene	ND	0.047	mg/Kg	1	4/6/2019 8:44:18 PM	44098
Xylenes, Total	ND	0.094	mg/Kg	1	4/6/2019 8:44:18 PM	44098
Surr: 1,2-Dichloroethane-d4	88.0	70-130	%Rec	1	4/6/2019 8:44:18 PM	44098
Surr: 4-Bromofluorobenzene	96.6	70-130	%Rec	1	4/6/2019 8:44:18 PM	44098
Surr: Dibromofluoromethane	90.7	70-130	%Rec	1	4/6/2019 8:44:18 PM	44098
Surr: Toluene-d8	94.7	70-130	%Rec	1	4/6/2019 8:44:18 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-3 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 11:00:00 AM

 Lab ID:
 1904252-006
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	:: CJS
Chloride	910	60		mg/Kg	20	4/6/2019 2:44:14 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANG	E					Analyst	: RAA
Gasoline Range Organics (GRO)	210	4.9		mg/Kg	1	4/6/2019 5:06:18 AM	44098
Surr: BFB	120	70-130		%Rec	1	4/6/2019 5:06:18 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	:: Irm
Diesel Range Organics (DRO)	5600	98		mg/Kg	10	4/5/2019 5:43:13 PM	44126
Motor Oil Range Organics (MRO)	1900	490		mg/Kg	10	4/5/2019 5:43:13 PM	44126
Surr: DNOP	0	70-130	S	%Rec	10	4/5/2019 5:43:13 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIS	T					Analyst	: RAA
Benzene	ND	0.049		mg/Kg	2	4/6/2019 9:12:48 PM	44098
Toluene	ND	0.098		mg/Kg	2	4/6/2019 9:12:48 PM	44098
Ethylbenzene	0.54	0.098		mg/Kg	2	4/6/2019 9:12:48 PM	44098
Xylenes, Total	4.6	0.20		mg/Kg	2	4/6/2019 9:12:48 PM	44098
Surr: 1,2-Dichloroethane-d4	86.7	70-130		%Rec	2	4/6/2019 9:12:48 PM	44098
Surr: 4-Bromofluorobenzene	112	70-130		%Rec	2	4/6/2019 9:12:48 PM	44098
Surr: Dibromofluoromethane	88.2	70-130		%Rec	2	4/6/2019 9:12:48 PM	44098
Surr: Toluene-d8	90.0	70-130		%Rec	2	4/6/2019 9:12:48 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-3 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 11:15:00 AM

 Lab ID:
 1904252-007
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CJS
Chloride	140	60	mg/Kg	20	4/6/2019 3:21:26 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	4/9/2019 2:16:59 AM	44098
Surr: BFB	106	70-130	%Rec	1	4/9/2019 2:16:59 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst	: Irm
Diesel Range Organics (DRO)	89	9.0	mg/Kg	1	4/5/2019 6:27:19 PM	44126
Motor Oil Range Organics (MRO)	55	45	mg/Kg	1	4/5/2019 6:27:19 PM	44126
Surr: DNOP	92.2	70-130	%Rec	1	4/5/2019 6:27:19 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst	RAA
Benzene	ND	0.024	mg/Kg	1	4/6/2019 9:41:13 PM	44098
Toluene	ND	0.048	mg/Kg	1	4/6/2019 9:41:13 PM	44098
Ethylbenzene	ND	0.048	mg/Kg	1	4/6/2019 9:41:13 PM	44098
Xylenes, Total	ND	0.097	mg/Kg	1	4/6/2019 9:41:13 PM	44098
Surr: 1,2-Dichloroethane-d4	89.9	70-130	%Rec	1	4/6/2019 9:41:13 PM	44098
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	4/6/2019 9:41:13 PM	44098
Surr: Dibromofluoromethane	93.9	70-130	%Rec	1	4/6/2019 9:41:13 PM	44098
Surr: Toluene-d8	94.5	70-130	%Rec	1	4/6/2019 9:41:13 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Client Sample ID: AH-4 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 11:30:00 AM

 Lab ID:
 1904252-008
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: CJS
Chloride	2400	60		mg/Kg	20	4/6/2019 3:33:51 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGE	.					Analyst	RAA
Gasoline Range Organics (GRO)	46	4.6		mg/Kg	1	4/6/2019 6:03:24 AM	44098
Surr: BFB	110	70-130		%Rec	1	4/6/2019 6:03:24 AM	44098
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS					Analyst	: Irm
Diesel Range Organics (DRO)	14000	960	D	mg/Kg	100	4/5/2019 6:49:22 PM	44126
Motor Oil Range Organics (MRO)	ND	4800	D	mg/Kg	100	4/5/2019 6:49:22 PM	44126
Surr: DNOP	0	70-130	SD	%Rec	100	4/5/2019 6:49:22 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIST	Т					Analyst	RAA
Benzene	ND	0.12		mg/Kg	5	4/6/2019 10:09:46 PM	44098
Toluene	ND	0.23		mg/Kg	5	4/6/2019 10:09:46 PM	44098
Ethylbenzene	ND	0.23		mg/Kg	5	4/6/2019 10:09:46 PM	44098
Xylenes, Total	ND	0.46		mg/Kg	5	4/6/2019 10:09:46 PM	44098
Surr: 1,2-Dichloroethane-d4	86.3	70-130		%Rec	5	4/6/2019 10:09:46 PM	44098
Surr: 4-Bromofluorobenzene	85.1	70-130		%Rec	5	4/6/2019 10:09:46 PM	44098
Surr: Dibromofluoromethane	87.0	70-130		%Rec	5	4/6/2019 10:09:46 PM	44098
Surr: Toluene-d8	95.6	70-130		%Rec	5	4/6/2019 10:09:46 PM	44098

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-4 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 11:40:00 AM

 Lab ID:
 1904252-009
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: CJS
Chloride	1700	60	mg/Kg	20	4/6/2019 3:46:15 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANG	GE				Analyst	: RAA
Gasoline Range Organics (GRO)	17	4.8	mg/Kg	1	4/6/2019 6:32:00 AM	44111
Surr: BFB	104	70-130	%Rec	1	4/6/2019 6:32:00 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	: Irm
Diesel Range Organics (DRO)	770	9.7	mg/Kg	1	4/5/2019 3:53:42 AM	44126
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	4/5/2019 3:53:42 AM	44126
Surr: DNOP	95.3	70-130	%Rec	1	4/5/2019 3:53:42 AM	44126
EPA METHOD 8260B: VOLATILES SHORT L	IST				Analyst	: RAA
Benzene	ND	0.048	mg/Kg	2	4/6/2019 10:38:24 PM	44111
Toluene	ND	0.097	mg/Kg	2	4/6/2019 10:38:24 PM	44111
Ethylbenzene	ND	0.097	mg/Kg	2	4/6/2019 10:38:24 PM	44111
Xylenes, Total	ND	0.19	mg/Kg	2	4/6/2019 10:38:24 PM	44111
Surr: 1,2-Dichloroethane-d4	86.8	70-130	%Rec	2	4/6/2019 10:38:24 PM	44111
Surr: 4-Bromofluorobenzene	85.7	70-130	%Rec	2	4/6/2019 10:38:24 PM	44111
Surr: Dibromofluoromethane	89.8	70-130	%Rec	2	4/6/2019 10:38:24 PM	44111
Surr: Toluene-d8	92.2	70-130	%Rec	2	4/6/2019 10:38:24 PM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

Е

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-5 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 11:50:00 AM

 Lab ID:
 1904252-010
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: CJS
Chloride	650	60		mg/Kg	20	4/6/2019 3:58:40 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGI	≣					Analyst	: RAA
Gasoline Range Organics (GRO)	110	4.6		mg/Kg	1	4/6/2019 7:57:40 AM	44111
Surr: BFB	116	70-130		%Rec	1	4/6/2019 7:57:40 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: Irm
Diesel Range Organics (DRO)	15000	200		mg/Kg	20	4/5/2019 7:33:31 PM	44126
Motor Oil Range Organics (MRO)	7400	1000		mg/Kg	20	4/5/2019 7:33:31 PM	44126
Surr: DNOP	0	70-130	S	%Rec	20	4/5/2019 7:33:31 PM	44126
EPA METHOD 8260B: VOLATILES SHORT LIS	Т					Analyst	: RAA
Benzene	ND	0.046		mg/Kg	2	4/6/2019 11:07:04 PM	44111
Toluene	ND	0.092		mg/Kg	2	4/6/2019 11:07:04 PM	44111
Ethylbenzene	0.27	0.092		mg/Kg	2	4/6/2019 11:07:04 PM	44111
Xylenes, Total	2.2	0.18		mg/Kg	2	4/6/2019 11:07:04 PM	44111
Surr: 1,2-Dichloroethane-d4	88.8	70-130		%Rec	2	4/6/2019 11:07:04 PM	44111
Surr: 4-Bromofluorobenzene	102	70-130		%Rec	2	4/6/2019 11:07:04 PM	44111
Surr: Dibromofluoromethane	88.6	70-130		%Rec	2	4/6/2019 11:07:04 PM	44111
Surr: Toluene-d8	90.5	70-130		%Rec	2	4/6/2019 11:07:04 PM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-5 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 12:10:00 PM

 Lab ID:
 1904252-011
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: CJS
Chloride	ND	60	mg/Kg	20	4/6/2019 4:11:05 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANG	iΕ				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	4/8/2019 11:32:26 AM	44111
Surr: BFB	104	70-130	%Rec	1	4/8/2019 11:32:26 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	4/5/2019 10:55:58 AM	44127
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	4/5/2019 10:55:58 AM	44127
Surr: DNOP	113	70-130	%Rec	1	4/5/2019 10:55:58 AM	44127
EPA METHOD 8260B: VOLATILES SHORT LIS	ST .				Analyst	: RAA
Benzene	ND	0.023	mg/Kg	1	4/7/2019 12:32:55 AM	44111
Toluene	ND	0.046	mg/Kg	1	4/7/2019 12:32:55 AM	44111
Ethylbenzene	ND	0.046	mg/Kg	1	4/7/2019 12:32:55 AM	44111
Xylenes, Total	ND	0.093	mg/Kg	1	4/7/2019 12:32:55 AM	44111
Surr: 1,2-Dichloroethane-d4	86.7	70-130	%Rec	1	4/7/2019 12:32:55 AM	44111
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	4/7/2019 12:32:55 AM	44111
Surr: Dibromofluoromethane	90.2	70-130	%Rec	1	4/7/2019 12:32:55 AM	44111
Surr: Toluene-d8	93.1	70-130	%Rec	1	4/7/2019 12:32:55 AM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/10/2019

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-6 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 12:20:00 PM

 Lab ID:
 1904252-012
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	13000	600		mg/Kg	200	4/8/2019 6:24:24 PM	44174
EPA METHOD 8015D MOD: GASOLINE RAI	NGE					Analyst	: RAA
Gasoline Range Organics (GRO)	23	4.7		mg/Kg	1	4/6/2019 9:52:11 AM	44111
Surr: BFB	108	70-130		%Rec	1	4/6/2019 9:52:11 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS					Analyst	: CLP
Diesel Range Organics (DRO)	13000	490		mg/Kg	50	4/5/2019 3:14:13 PM	44127
Motor Oil Range Organics (MRO)	6400	2500		mg/Kg	50	4/5/2019 3:14:13 PM	44127
Surr: DNOP	0	70-130	S	%Rec	50	4/5/2019 3:14:13 PM	44127
EPA METHOD 8260B: VOLATILES SHORT	LIST					Analyst	: RAA
Benzene	ND	0.047		mg/Kg	2	4/7/2019 1:01:39 AM	44111
Toluene	0.099	0.095		mg/Kg	2	4/7/2019 1:01:39 AM	44111
Ethylbenzene	ND	0.095		mg/Kg	2	4/7/2019 1:01:39 AM	44111
Xylenes, Total	0.62	0.19		mg/Kg	2	4/7/2019 1:01:39 AM	44111
Surr: 1,2-Dichloroethane-d4	87.8	70-130		%Rec	2	4/7/2019 1:01:39 AM	44111
Surr: 4-Bromofluorobenzene	99.5	70-130		%Rec	2	4/7/2019 1:01:39 AM	44111
Surr: Dibromofluoromethane	88.3	70-130		%Rec	2	4/7/2019 1:01:39 AM	44111
Surr: Toluene-d8	95.1	70-130		%Rec	2	4/7/2019 1:01:39 AM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Client Sample ID: AH-6 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 12:35:00 PM

 Lab ID:
 1904252-013
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: CJS
Chloride	ND	60	mg/Kg	20	4/6/2019 4:35:54 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANG	GE				Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	4/7/2019 1:30:17 AM	44111
Surr: BFB	103	70-130	%Rec	1	4/7/2019 1:30:17 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	4/5/2019 12:08:51 PM	44127
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	4/5/2019 12:08:51 PM	44127
Surr: DNOP	99.2	70-130	%Rec	1	4/5/2019 12:08:51 PM	44127
EPA METHOD 8260B: VOLATILES SHORT LI	ST				Analyst	: RAA
Benzene	ND	0.024	mg/Kg	1	4/7/2019 1:30:17 AM	44111
Toluene	ND	0.048	mg/Kg	1	4/7/2019 1:30:17 AM	44111
Ethylbenzene	ND	0.048	mg/Kg	1	4/7/2019 1:30:17 AM	44111
Xylenes, Total	ND	0.095	mg/Kg	1	4/7/2019 1:30:17 AM	44111
Surr: 1,2-Dichloroethane-d4	87.2	70-130	%Rec	1	4/7/2019 1:30:17 AM	44111
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	4/7/2019 1:30:17 AM	44111
Surr: Dibromofluoromethane	91.2	70-130	%Rec	1	4/7/2019 1:30:17 AM	44111
Surr: Toluene-d8	95.3	70-130	%Rec	1	4/7/2019 1:30:17 AM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Date Reported: 4/10/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-7 Surface

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 12:55:00 PM

 Lab ID:
 1904252-014
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	21000	1500		mg/Kg	500	4/8/2019 6:36:48 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANGE	<u> </u>					Analyst	: RAA
Gasoline Range Organics (GRO)	ND	4.7		mg/Kg	1	4/6/2019 10:49:18 AM	44111
Surr: BFB	104	70-130		%Rec	1	4/6/2019 10:49:18 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS					Analyst	CLP
Diesel Range Organics (DRO)	4800	99		mg/Kg	10	4/5/2019 12:33:10 PM	44127
Motor Oil Range Organics (MRO)	2500	490		mg/Kg	10	4/5/2019 12:33:10 PM	44127
Surr: DNOP	0	70-130	S	%Rec	10	4/5/2019 12:33:10 PM	44127
EPA METHOD 8260B: VOLATILES SHORT LIST	Γ					Analyst	: RAA
Benzene	ND	0.024		mg/Kg	1	4/7/2019 1:58:53 AM	44111
Toluene	ND	0.047		mg/Kg	1	4/7/2019 1:58:53 AM	44111
Ethylbenzene	ND	0.047		mg/Kg	1	4/7/2019 1:58:53 AM	44111
Xylenes, Total	ND	0.095		mg/Kg	1	4/7/2019 1:58:53 AM	44111
Surr: 1,2-Dichloroethane-d4	84.8	70-130		%Rec	1	4/7/2019 1:58:53 AM	44111
Surr: 4-Bromofluorobenzene	104	70-130		%Rec	1	4/7/2019 1:58:53 AM	44111
Surr: Dibromofluoromethane	89.3	70-130		%Rec	1	4/7/2019 1:58:53 AM	44111
Surr: Toluene-d8	94.4	70-130		%Rec	1	4/7/2019 1:58:53 AM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/10/2019

CLIENT: Safety & Environmental Solutions Client Sample ID: AH-7 1'

 Project:
 Devon SPUD 16 State 8H
 Collection Date: 4/2/2019 1:25:00 PM

 Lab ID:
 1904252-015
 Matrix: SOIL
 Received Date: 4/4/2019 8:55:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: CJS
Chloride	61	60	mg/Kg	20	4/6/2019 5:00:43 PM	44174
EPA METHOD 8015D MOD: GASOLINE RANG	GE				Analyst	RAA
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	4/6/2019 11:17:44 AM	44111
Surr: BFB	101	70-130	%Rec	1	4/6/2019 11:17:44 AM	44111
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	4/5/2019 1:04:05 PM	44127
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	4/5/2019 1:04:05 PM	44127
Surr: DNOP	109	70-130	%Rec	1	4/5/2019 1:04:05 PM	44127
EPA METHOD 8260B: VOLATILES SHORT LI	ST				Analyst	: RAA
Benzene	ND	0.025	mg/Kg	1	4/7/2019 2:27:29 AM	44111
Toluene	ND	0.050	mg/Kg	1	4/7/2019 2:27:29 AM	44111
Ethylbenzene	ND	0.050	mg/Kg	1	4/7/2019 2:27:29 AM	44111
Xylenes, Total	ND	0.10	mg/Kg	1	4/7/2019 2:27:29 AM	44111
Surr: 1,2-Dichloroethane-d4	87.6	70-130	%Rec	1	4/7/2019 2:27:29 AM	44111
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	4/7/2019 2:27:29 AM	44111
Surr: Dibromofluoromethane	90.4	70-130	%Rec	1	4/7/2019 2:27:29 AM	44111
Surr: Toluene-d8	93.3	70-130	%Rec	1	4/7/2019 2:27:29 AM	44111

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

- W Sample container temperature is out of limit as specified at testcode
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904252**

10-Apr-19

Client: Safety & Environmental Solutions

Project: Devon SPUD 16 State 8H

Sample ID: MB-44174 SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 44174 RunNo: 58963

Prep Date: 4/6/2019 Analysis Date: 4/6/2019 SeqNo: 1983569 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-44174 SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 44174 RunNo: 58963

Prep Date: 4/6/2019 Analysis Date: 4/6/2019 SeqNo: 1983570 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 95.5 90 110

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit
W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904252**

10-Apr-19

Client: Safety & Environmental Solutions

Project: Devon SPUD 16 State 8H

Devon S	SPUD 16 State 8H							
Sample ID: LCS-44126	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: LCSS	Batch ID: 44126	RunNo: 58882						
Prep Date: 4/4/2019	Analysis Date: 4/4/2019	SeqNo: 1980513	Units: mg/Kg					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual					
Diesel Range Organics (DRO)	50 10 50.00	0 99.6 63.9	124					
Surr: DNOP	4.4 5.000	88.3 70	130					
Sample ID: MB-44126	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics					
Client ID: PBS	Batch ID: 44126	RunNo: 58882						
Prep Date: 4/4/2019	Analysis Date: 4/4/2019	SeqNo: 1980514	Units: mg/Kg					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual					
Diesel Range Organics (DRO)	ND 10							
Motor Oil Range Organics (MRO)	ND 50		100					
Surr: DNOP	9.1 10.00	91.4 70	130					
Sample ID: LCS-44142	ample ID: LCS-44142 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics							
Client ID: LCSS	Batch ID: 44142	RunNo: 58917						
Prep Date: 4/5/2019	Analysis Date: 4/5/2019	SeqNo: 1981087	Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual					
Surr: DNOP	4.4 5.000	87.5 70	130					
Sample ID: MB-44142	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics					
Client ID: PBS	Batch ID: 44142	RunNo: 58917						
Prep Date: 4/5/2019	Analysis Date: 4/5/2019	SeqNo: 1981088	Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual					
Surr: DNOP	10 10.00	101 70	130					
Sample ID: MB-44127	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics					
Client ID: PBS	Batch ID: 44127	RunNo: 58929						
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1981904	Units: mg/Kg					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual					
Diesel Range Organics (DRO)	ND 10							
Motor Oil Range Organics (MRO)	ND 50							
Surr: DNOP	10 10.00	101 70	130					
Sample ID: LCS-44127	SampType: LCS	TestCode: EPA Method	8015M/D: Diesel Range Organics					
Client ID: LCSS	Batch ID: 44127	RunNo: 58929						
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1981905	Units: mg/Kg					

Qualifiers:

Analyte

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

PQL

Result

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

SPK value SPK Ref Val %REC LowLimit

S % Recovery outside of range due to dilution or matrix

HighLimit

%RPD

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904252**

10-Apr-19

Client:	Safety & Environmental Solutions
Project:	Devon SPUD 16 State 8H

Project: Devon	SPUD 16 State 8H						
Sample ID: LCS-44127	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: LCSS	Batch ID: 44127	RunNo: 58929					
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1981905 Units: mg/Kg					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual					
Diesel Range Organics (DRO)	47 10 50.00	0 93.6 63.9 124					
Surr: DNOP	4.8 5.000	95.3 70 130					
Sample ID: LCS-44128	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: LCSS	Batch ID: 44128	RunNo: 58917					
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1982023 Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual					
Surr: DNOP	4.3 5.000	86.1 70 130					
Sample ID: MB-44128	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: PBS	Batch ID: 44128	RunNo: 58917					
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1982024 Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual					
Surr: DNOP	9.8 10.00	98.1 70 130					
Sample ID: MB-44133	SampType: MBLK	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: PBS	Batch ID: 44133	RunNo: 58929					
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1983932 Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual					
Surr: DNOP	13 10.00	130 70 130 S					
Sample ID: LCS-44133	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: LCSS	Batch ID: 44133	RunNo: 58929					
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1983933 Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual					
Surr: DNOP	4.7 5.000	94.6 70 130					
Sample ID: LCS-44145	SampType: LCS	TestCode: EPA Method 8015M/D: Diesel Range Organics					
Client ID: LCSS	Batch ID: 44145	RunNo: 58966					
Prep Date: 4/5/2019	Analysis Date: 4/8/2019	SeqNo: 1984035 Units: %Rec					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual					

Qualifiers:

Surr: DNOP

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

4.5

H Holding times for preparation or analysis exceeded

90.4

70

130

PQL Practical Quanitative Limit

5.000

Hall Environmental Analysis Laboratory, Inc.

9.7

WO#: **1904252**

10-Apr-19

Client: Safety & Environmental Solutions

Project: Devon SPUD 16 State 8H

Surr: DNOP

Sample ID: MB-44145 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: PBS Batch ID: 44145 RunNo: 58966

Prep Date: 4/5/2019 Analysis Date: 4/8/2019 SeqNo: 1984036 Units: %Rec

10.00

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

97.0

70

130

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904252**

10-Apr-19

Client: Safety & Environmental Solutions

Project: Devon SPUD 16 State 8H

SampT	Type: LC	S	TestCode: EPA Method 8260B: Volatiles Short List						
Batcl	h ID: 44 0	098	F	RunNo: 58934					
Analysis D	Date: 4/	5/2019	9	SeqNo: 1982755		Units: mg/Kg			
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
0.75	0.025	1.000	0	75.1	70	130			
0.95	0.050	1.000	0	94.6	70	130			
0.95	0.050	1.000	0	95.5	70	130			
2.9	0.10	3.000	0	95.4	70	130			
0.44		0.5000		88.2	70	130			
0.51		0.5000		102	70	130			
0.44		0.5000		88.1	70	130			
0.47		0.5000		95.0	70	130			
	Batcl Analysis E Result 0.75 0.95 0.95 2.9 0.44 0.51 0.44	Batch ID: 440 Analysis Date: 4/2 Result PQL 0.75 0.025 0.95 0.050 0.95 0.050 2.9 0.10 0.44 0.51 0.44	Result PQL SPK value 0.75 0.025 1.000 0.95 0.050 1.000 0.95 0.050 1.000 2.9 0.10 3.000 0.44 0.5000 0.51 0.5000 0.44 0.5000	Batch ID: 44098 FR Analysis Date: 4/5/2019 S Result PQL SPK value SPK Ref Val 0.75 0.025 1.000 0 0.95 0.050 1.000 0 0.95 0.050 1.000 0 2.9 0.10 3.000 0 0.44 0.5000 0.51 0.5000 0.44 0.5000	Batch ID: 44098 RunNo: 5 Analysis Date: 4/5/2019 SeqNo: 1 Result PQL SPK value SPK Ref Val %REC 0.75 0.025 1.000 0 75.1 0.95 0.050 1.000 0 94.6 0.95 0.050 1.000 0 95.5 2.9 0.10 3.000 0 95.4 0.44 0.5000 88.2 0.51 0.5000 102 0.44 0.5000 88.1	Batch ID: 44098 RunNo: 58934 Analysis Date: 4/5/2019 SeqNo: 1982755 Result PQL SPK value SPK Ref Val %REC LowLimit 0.75 0.025 1.000 0 75.1 70 0.95 0.050 1.000 0 94.6 70 0.95 0.050 1.000 0 95.5 70 2.9 0.10 3.000 0 95.4 70 0.44 0.5000 88.2 70 0.51 0.5000 102 70 0.44 0.5000 88.1 70	Batch ID: 44098 RunNo: 58934 Analysis Date: 4/5/2019 SeqNo: 1982755 Units: mg/k Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit 0.75 0.025 1.000 0 75.1 70 130 0.95 0.050 1.000 0 94.6 70 130 0.95 0.050 1.000 0 95.5 70 130 2.9 0.10 3.000 0 95.4 70 130 0.44 0.5000 88.2 70 130 0.51 0.5000 102 70 130 0.44 0.5000 88.1 70 130	Batch ID: 44∪98 RunNo: 58934 Analysis Date: 4/5/2019 SeqNo: 1982755 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD 0.75 0.025 1.000 0 75.1 70 130 0.95 0.050 1.000 0 94.6 70 130 0.95 0.050 1.000 0 95.5 70 130 2.9 0.10 3.000 0 95.4 70 130 0.44 0.5000 88.2 70 130 0.51 0.5000 88.2 70 130 0.44 0.5000 88.1 70 130	Batch ID: 44098 RunNo: 58934 Analysis Date: 4/5/2019 SeqNo: 1982755 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit 0.75 0.025 1.000 0 75.1 70 130 0.95 0.050 1.000 0 94.6 70 130 0.95 0.050 1.000 0 95.5 70 130 2.9 0.10 3.000 0 95.4 70 130 0.44 0.5000 88.2 70 130 0.51 0.5000 102 70 130 0.44 0.5000 88.1 70 130

Sample ID: mb-44098	SampType: MBLK			TestCode: EPA Method 8260B: Volatiles Short List						
Client ID: PBS	Batc	h ID: 44 0	098	F	RunNo: 5	8934				
Prep Date: 4/4/2019	Analysis [Date: 4/	5/2019	SeqNo: 1982756		Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		90.5	70	130			
Surr: 4-Bromofluorobenzene	0.52		0.5000		103	70	130			
Surr: Dibromofluoromethane	0.45		0.5000		89.8	70	130			
Surr: Toluene-d8	0.46		0.5000		93.0	70	130			

Sample ID: 1904252-010ams	Sampi	ype: MS	5	les	List					
Client ID: AH-5 Surface	Batch	n ID: 44	111	F	RunNo: 58962					
Prep Date: 4/4/2019	Prep Date: 4/4/2019 Analysis Date: 4/6/2019		SeqNo: 1983539 Units: mg/Kg				g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.71	0.047	0.9488	0	74.4	68.9	131			
Toluene	0.91	0.095	0.9488	0.03910	92.0	64.3	137			
Ethylbenzene	1.2	0.095	0.9488	0.2733	96.3	70	130			
Xylenes, Total	5.0	0.19	2.846	2.199	97.6	70	130			
Surr: 1,2-Dichloroethane-d4	0.84		0.9488		88.7	70	130			
Surr: 4-Bromofluorobenzene	1.0		0.9488		108	70	130			
Surr: Dibromofluoromethane	0.83		0.9488		87.9	70	130			
Surr: Toluene-d8	0.87		0.9488		91.8	70	130			

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1

1904252 10-Apr-19

Client: Safety & Environmental Solutions

Project: Devon SPUD 16 State 8H

Sample ID: 1904252-010amsd SampType: MSD TestCode: EPA Method 8260B: Volatiles Short List Client ID: AH-5 Surface RunNo: 58962 Batch ID: 44111 SeqNo: 1983540 Prep Date: 4/4/2019 Analysis Date: 4/7/2019 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result Benzene 0.71 0.050 0.9970 0 70.7 68.9 131 0.143 20 Toluene 0.92 0.10 0.9970 0.03910 88.0 64.3 137 0.492 20 0.10 87.2 70 3.78 0 Ethylbenzene 1.1 0.9970 0.2733 130 Xylenes, Total 4.7 0.20 2.991 2.199 84.2 70 130 5.36 0 88.7 Surr: 1,2-Dichloroethane-d4 0.88 0.9970 70 130 0 0 Surr: 4-Bromofluorobenzene 0.9970 110 70 130 0 0 1.1 Surr: Dibromofluoromethane 0.89 0.9970 89.1 70 130 0 0 Surr: Toluene-d8 0.91 0.9970 91.4 70 130 0 0

Sample ID: Ics-44111	s	TestCode: EPA Method 8260B: Volatiles Short List								
Client ID: LCSS	ent ID: LCSS Batch ID: 44111			RunNo: 58962						
Prep Date: 4/4/2019	Analysis [Date: 4/	6/2019	\$	SeqNo: 1	983547	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.73	0.025	1.000	0	73.1	70	130			
Toluene	0.91	0.050	1.000	0	91.4	70	130			
Ethylbenzene	0.92	0.050	1.000	0	91.8	70	130			
Xylenes, Total	2.8	0.10	3.000	0	94.1	70	130			
Surr: 1,2-Dichloroethane-d4	0.43		0.5000		86.5	70	130			
Surr: 4-Bromofluorobenzene	0.52		0.5000		103	70	130			
Surr: Dibromofluoromethane	0.44		0.5000		89.0	70	130			
Surr: Toluene-d8	0.47		0.5000		94.0	70	130			

Sample ID: mb-44111	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	nod 8260B: Volatiles Short List					
Client ID: PBS	Batcl	n ID: 44	111	F	RunNo: 5	8962	62					
Prep Date: 4/4/2019	Analysis D	ysis Date: 4/6/2019		9	SeqNo: 1983548 Units: mg/Kg			(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	0.025										
Toluene	ND	0.050										
Ethylbenzene	ND	0.050										
Xylenes, Total	ND	0.10										
Surr: 1,2-Dichloroethane-d4	0.43		0.5000		85.3	70	130					
Surr: 4-Bromofluorobenzene	0.52		0.5000		104	70	130					
Surr: Dibromofluoromethane	0.43		0.5000		86.9	70	130					
Surr: Toluene-d8	0.47		0.5000		93.3	70	130					

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1904252

10-Apr-19

Client: Safety & Environmental Solutions
Project: Devon SPUD 16 State 8H

Sample ID: 1904252-009ams SampType: MS TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: AH-4 1' Batch ID: 44111 RunNo: 58934

Prep Date: 4/4/2019 Analysis Date: 4/6/2019 SeqNo: 1982780 Units: mg/Kg

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Gasoline Range Organics (GRO) 33 4.8 24.11 17 11 66.9 68.2 135 S Surr: BFB 520 482.2 109 130

Sample ID: 1904252-009amsd SampType: MSD TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: AH-4 1' Batch ID: 44111 RunNo: 58934

Prep Date: 4/4/2019 Analysis Date: 4/6/2019 SeqNo: 1982781 Units: mg/Kg

HighLimit Analyte Result PQL SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 4.9 24.65 17.11 67.1 68.2 135 1.31 20 S Surr: BFB 500 493.1 102 70 130 0

Sample ID: Ics-44098 SampType: LCS TestCode: EPA Method 8015D Mod: Gasoline Range Client ID: LCSS Batch ID: 44098 RunNo: 58934 Prep Date: 4/4/2019 Analysis Date: 4/5/2019 SeqNo: 1982789 Units: mg/Kg HighLimit Result PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte LowLimit Qual Gasoline Range Organics (GRO) 21 5.0 25.00 0 85.5 70 130 Surr: BFB 500 500.0 100 70 130

Sample ID: Ics-44111 TestCode: EPA Method 8015D Mod: Gasoline Range SampType: LCS Client ID: LCSS Batch ID: 44111 RunNo: 58934 Prep Date: 4/4/2019 Analysis Date: 4/6/2019 SeqNo: 1982790 Units: mg/Kg SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Result PQL LowLimit Qual Gasoline Range Organics (GRO) 21 5.0 25.00 82.8 70 130 Surr: BFB 510 500.0 103 70 130

TestCode: EPA Method 8015D Mod: Gasoline Range Sample ID: mb-44111 SampType: MBLK Client ID: PRS Batch ID: 44111 RunNo: 58934 Prep Date: 4/4/2019 Analysis Date: 4/6/2019 SeqNo: 1982791 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 5.0 ND Surr: BFB 520 500.0 105 70 130

Sample ID: mb-44098 TestCode: EPA Method 8015D Mod: Gasoline Range SampType: MBLK Client ID: PBS Batch ID: 44098 RunNo: 58934 Prep Date: 4/4/2019 SeqNo: 1982792 Analysis Date: 4/5/2019 Units: mg/Kg SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result PQL LowLimit Qual

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1904252**

10-Apr-19

Client: Safety & Environmental Solutions

Project: Devon SPUD 16 State 8H

Sample ID: mb-44098 SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: PBS Batch ID: 44098 RunNo: 58934

Prep Date: 4/4/2019 Analysis Date: 4/5/2019 SeqNo: 1982792 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 500 500.0 99.8 70 130

Qualifiers:

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

C	lient Name:	Safety Env S	Solutions	Work	Order Numbe	er: 19042	52		RcptNo:	1
R	eceived By:	Yazmine G	arduno	4/4/201	9 8:55:00 AM	П	Afragai	in leftrolarie		
	ompleted By:	Anne Thor	ne	4/4/201	9:24:57 AM	ļ	an	A.	~	
	eviewed By: abel-c-l	64% M	4-1	1-19914	(1)					
<u>Cł</u>	ain of Cus									
1.	Is Chain of C	ustody comple	ete?			Yes 🛚	∠ No		Not Present	
2.	How was the	sample delive	red?			Courie	<u>.</u>			
L	og In									
	Was an atter	npt made to co	ool the samp	les?		Yes 🖢	₽ No		NA \square	
4.	Were all samp	ples received a	at a tempera	ture of >0° C t	o 6.0°C	Yes 🖢	No		NA \square	
5.	Sample(s) in	proper contain	er(s)?			Yes 🕨	No			
6.	Sufficient sam	nple volume fo	r indicated te	est(s)?		Yes 🗸	No			
7.	Are samples (except VOA a	nd ONG) pro	operly preserve	d?	Yes 🗸	No			
8.	Was preserva	tive added to	bottles?			Yes	No	✓	NA \square	
9.	VOA vials hav	e zero headsp	ace?			Yes	No		No VOA Vials 🗸	
10.	Were any san	mple container	s received b	roken?		Yes	No	V	# of preserved	
11.	Does paperwo	ork match bottl	le labels?			Yes 🗸	. No		bottles checked for pH:	
	(Note discrepa	ancies on chai	n of custody)					/	>12 unless noted)
	Are matrices of					Yes 🗸	-		Adjusted?	0 11
	Is it clear what			?		Yes 🗸			01/1-11	118 4/1/16
	Were all holdir (If no, notify cu	•				Yes 🗸	' No		Checked by:	Dis ilala
Spe	ecial Handl	ing (if appl	icable)			h	04/04/61			
15.	Was client no	tified of all dis	crepancies v	with this order?		Yes 🖟	Ź No		NA-V	
	Person	Notified:	15		Date					
	By Who	om:	AT		Via:	eMail	X Phone	Fax	☐ In Person	
	Regardi	ing:	Coll	ection t	ine fe	v A	H-7 L'		*	
	Client Ir	nstructions:				•				
16.	Additional rer	marks:	kr Js	AH-7	11 6	dection	on time	ls	1325	,
17.	Cooler Infor	mation							A5 041	04/19
	Cooler No		Condition	Seal Intact	Seal No	Seal Date	Signed	Ву		
	1		Good	Yes						
	2	4.4	Good	Yes						

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / DRO / MRO) TPH (Method 418.1) PAH's (8310 or 8270 SIMS) RCRA 8 Metals Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8250 (Semi-VOA) Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	Darks:
Turn-Around Time: Standard Rush Project Name: Device SRID (L SYMRE SH Project #:	Servative HEAL NO.	
Client: Sight & Grandy Record Client: Sight & Grandy Newman Sight & Grand Mailing Address: 703 & Clearan Stabbs NW 81240 Phone #: 575-357-0570	Package: Idard	0452 0945 5 944-1 Surfree 1 260000 10040 5 944-1 147 1 147 1 10040 5 944-2 147 1 1170 5 944-2 147 1 1170 5 944-3 500 for 1 1170 5 944-3 500 for 1 1170 5 944-5 147 1 1170 5 944-5

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO \ DRO \ MRO) TPH (Method 418.1) PAH's (8310 or 8270 SIMS) RCRA 8 Metals Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides \ 8082 PCB's 8081 Pesticides \ 8082 PCB's 82500 (VOA) 8270 (Semi-VOA) 8270 (Semi-VOA) 8270 (Semi-VOA)	X ~~~		Time: Relinquished by: Received by: Receiv
Turn-Around Time: Standard Rush Project Name: Dev col Shub Standard Standard Rush	Project Manager: Sampler: Sam Lundon Ice: Yes I No Sample Temperature: U. U. J. T Container Preservative Type and # Type And Type MOUSE	5/2 2/3	572	Received by: Re
Client: Sety + Gulynownesstar. Selvitions Mailing Address: 763 6, Charrow Mailing Address: 763 6, Charrow Abla ASM 88240 Phone #: 575-397-0570	email or Fax#: QA/QC Package: CAStandard Accreditation Date Time Matrix Sample Request ID	04/02/1220 5 AH-6 Surper 1235 5 WH-6 127 1255 5 AH-7 Surper	S A-7	Date: Time: Relinquished by: Date: Time: Relinquished by: Time: Relinquished by: 100

Appendix D Site Photos

Devon Energy Spud 16 State 8H 30-015-40038

Spill Source

Spill area post Vac Truck activity

Impact to pad area

Arial view of geographic location

Marked electrical lines on pad area