SITE INFORMATION									
	Report Type: Closure Report 1RP-5526								
General Site Info	rmation:								
Site:		Momentum	36 State #1						
Company:		COG Operat	ing LLC	-	-	-			
Section, Townsh	ip and Range	Unit K	Sec 36	T 25S	R 35E				
Lease Number:		API No. 30-0	25-37517						
County:		Lea County							
GPS:			32.0838			-103	.32229		
Surface Owner:		State	() () NA() (400		1 1 1				
Directions:		lease road for 3.85 mi, turn east for 0.50 mi, turn south for additional 0.85 mi, turn east for 2.20 miles to location.							
Release Data:		F / 7 /0040							
Date Released:		D///2019 Oil & Dradwood Weter							
Type Release:	inction								
Source of Contain	ination.	9 bbl oil & 51 bbl water							
Fluids Recovered		8 bbl oil & 50 bbl water							
Official Commun	ication:								
Name:	Ike Tavarez				Clair Gonza	les			
Company:	COG Operating, LL	_C			Tetra Tech				
Address:	One Concho Cente	er			901 West W	/all Street			
	600 W. Illinois Ave.				Suite 100				
City:	Midland Texas, 797	701			Midland, Te	xas			
Phone number:	(432) 686-3023				(432) 687-8	110			
Fax:	(432) 684-7137								
Email:	itavarez@concho	.com			Clair.Gonz	ales@tetra	tech.com		

Site Characterization	
Depth to Groundwater:	250'
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)						
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides		
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	20,000 mg/kg		

QS24X-190808-C-1410

August 8, 2019

Mr. Dylan Rose-Coss Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report for the COG Operating, LLC, Momentum 36 State #1, Unit K, Section 36, Township 25 South, Range 35 East, Lea County, New Mexico. 1RP-5526

Mr. Rose-Coss:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to remediate a release that occurred at the Momentum 36 State #1, Unit K, Section 36, Township 25 South, Range 35 East, Lea County, New Mexico (Site). The spill site coordinates are 32.08378°, -103.32229°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico C-14 Report the release was discovered on May 7, 2019 due to a gun barrel malfunction resulting in a tank overflow. Approximately 9 barrels of oil and 51 barrels of produced water was released into the lined facility. A vacuum truck was dispatched to remove all freestanding fluids and recovered 8 barrels of oil and 50 barrels of produced water. The release occurred inside the lined facility and had some overspray onto the pad. The impacted area on the pad measures approximately 47' x 102'. The C-141 Form is included in Appendix A.

Site Characterization

A site characterization was performed for the site and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in a low karst potential area. The nearest well is listed in the USGS National Water Information System in Section 33, Township 25 South, Range 36 East, approximately 2.70 miles southeast of the site, and has a reported depth to groundwater of 250 feet below ground surface. The groundwater data is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed

Tetra Tech901 W. Wall Street, Suite 100, Midland, TX 79701Tel432.682.4559www.tetratech.com

RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 1,000 mg/kg (GRO + DRO) or 2,500 mg/kg (GRO + DRO + MRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 20,000 mg/kg.

Remediation Activities

Tetra Tech personnel were onsite on June 19th, June 20th, and July 23rd, 2019, to perform and supervise the remediation activities at risk. The release area was excavated to total depths between 0.5' to 1.0' below surface. Thirteen (13) bottom holes (Bottom Hole 1 through Bottom Hole 13) and four (4) sidewall composite samples (North Sidewall 1, South Sidewall 1, East Sidewall 1, and West Sidewall 1) were collected every 200 square feet to ensure proper removal of the impacted soils. The samples were submitted to the laboratory to be analyzed for TPH method 8015 extended, BTEX method 8021B, and Chloride by EPA Method 300.0. The sampling results are summarized in Table 1. The release area is shown on Figure 3. The excavation depths and sample locations are shown in Figure 4.

Referring to Table 1, all final confirmation samples showed benzene, total BTEX, TPH, and chloride concentrations below the RRAL's.

Approximately 115 cubic yards of material was excavated and transported offsite for proper disposal. The area was then backfilled with clean material to surface grade.

Conclusion

Based on the laboratory results and remediation activities performed COG requests closure of this spill issue. The final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment or remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

air Clongalos

Clair Gonzales, P.G., Project Manager

cc: Ike Tavarez – COG Dakota Neel - COG Rebecca Haskell - COG Sheldon Hitchcock - COG DeAnn Grant – COG Ryan Mann - NMSLO

Figures

24th: C:\Users\MISTI.MORGAN\Desktopproject tolder/212C-MD-01806 MOMENTUM 36 ST\MXD/212C-MD-01806 MOMENTUM 36 STATE #1 FIG. 1.mxd

Service Layer Credits: Copyright:@ 2013 National Geographic Society, i-cubed

MOMENTUM 36 STATE #1 FIG. 2.mxd

MOMENTUM 36 ST/MXD/212C-MD-01806

folder\212C-MD-01806

Approximate Scale in Feet

212C-MD-01806

Source: "New Mexico", 32º 52.14"N, 103º19'20.14"W. Google Earth. February 2019. August 06, 2019 Approximate Scale in Feet

Tables

Table 1 COG Momentum 36 State #1 Lea County, New Mexico

Sample ID	Sample	Sample	BEB Sample	Soil	Status		TPH (mg/kg)	0	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Gample ID	Date	Depth (ft)	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Bottom Hole #1	6/19/2019	-	0.5	Х		20.8	228	26.7	276	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	270
Bottom Hole #2	6/19/2019	-	0.5	Х		<15.0	61.3	<14.9	61.3	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	1,300
Bottom Hole #3	6/19/2019	-	0.5	Х		38.7	576	38.4	653	<0.00200	<0.00200	0.00745	0.0373	0.0448	1,270
Bottom Hole #4	6/19/2019	-	0.5	Х		49.1	623	50.9	723	<0.00200	<0.00200	0.00582	0.0193	0.0251	710
Bottom Hole #5	6/19/2019	-	0.5	Х		39.7	549	42.3	631	0.0749	<0.00996	0.135	0.448	0.658	1,230
Bottom Hole #6	6/20/2019	-	0.5	Х		21.2	472	44.6	538	<0.00200	<0.00200	0.00582	0.00931	0.00931	377
Bottom Hole #7	6/20/2019	-	0.5	Х		<15.0	53.3	<15.0	53.3	<0.00200	<0.00200	0.00580	<0.00200	0.00580	44.3
Bottom Hole #8	6/20/2019	-	0.5	Х		<15.0	28.3	<15.0	28.3	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	45.4
Bottom Hole #9	6/20/2019	-	0.5	Х		39.7	828	74.5	943	<0.00199	<0.00199	0.00677	0.0320	0.0387	666
Bottom Hole #10	6/20/2019	-	0.5		Х	158	1,480	112	1,750	0.0461	0.0502	1.06	5.55	6.71	394
	7/23/2019	-	1.0	Х		<10.0	27.5	<10.0	27.5	<0.25	<0.25	<0.25	<0.075	<0.25	1,090
Bottom Hole #11	6/20/2019	-	0.5		Х	284	2,110	141	2,540	<0.00998	0.110	.310	5.07	5.49	198
	7/23/2019	-	1.0	Х		<10.0	31	<10.0	31	<0.025	<0.025	<0.025	<0.075	<0.025	528
Bottom Hole #12	6/20/2019	-	0.5		Х	143	1,260	92.4	1,500	<0.00200	<0.00200	<0.00200	0.00377	0.00377	33.7
	7/23/2019	-	1.0	Х		<10.0	62.3	15.8	78.1	<0.025	<0.025	<0.025	<0.075	<0.025	80.0
Bottom Hole #13	6/20/2019	-	0.5		Х	154	1,330	88.7	1,570	< 0.00201	0.00279	0.0686	0.246	0.317	51.8
	7/23/2019	-	1.0	Х		<10.0	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075	<0.025	64.0
North Sidewall 1	6/20/2019	-	-	Х		<15.0	255	40.7	296	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	996
East Sidewall 1	6/20/2019	-	-		Х	<15.0	38.9	17.2	56.1	< 0.00199	< 0.00199	0.00259	< 0.00199	0.00259	1,410
	7/23/2019	-	-	Х		<10.0	<10.0	<10.0	<10.0	<0.025	<0.025	<0.025	<0.075	<0.025	48.0
West Sidewall 1	6/20/2019	-	-	х		<15.0	63.2	<15.0	63.2	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	16.7
South Sidewall 1	6/20/2019	-	-	Х		15.9	573	49.5	665	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	192

Photos

COG Operating LLC Momentum 36 State #1 Lea County, New Mexico

View South – Excavation Area

View North – Excavation Area

COG Operating LLC Momentum 36 State #1 Lea County, New Mexico

View North – Excavation Area

View North – Excavation Area

COG Operating LLC Momentum 36 State #1

View North – Excavation Area

Appendix A

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🗌 Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🗌 Yes 🗌 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

	Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
	Field data
	Data table of soil contaminant concentration data
	Depth to water determination
	Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
	Boring or excavation logs
	Photographs including date and GIS information
Ц	Photographs including date and GIS information

- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexico	Incident ID	
Page 4	Oil Conservation Division	District RP	
-		Facility ID	
		Application ID	
I hereby certify that the information of the environ failed to adequately investigaddition, OCD acceptance of and/or regulations. Printed Name: Signature: email:	ormation given above is true and complete to the best of my is required to report and/or file certain release notifications an ument. The acceptance of a C-141 report by the OCD does n gate and remediate contamination that pose a threat to ground of a C-141 report does not relieve the operator of responsibil	knowledge and understand that purs id perform corrective actions for rele iot relieve the operator of liability sh dwater, surface water, human health ity for compliance with any other fe	suant to OCD rules and eases which may endanger sould their operations have a or the environment. In ederal, state, or local laws
Received by:	D	Date:	

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following it	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
I hereby certify that the information given above is true and comple and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regula restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the O Printed Name	te to the best of my knowledge and understand that pursuant to OCD rules n release notifications and perform corrective actions for releases which a C-141 report by the OCD does not relieve the operator of liability nediate contamination that pose a threat to groundwater, surface water, a C-141 report does not relieve the operator of responsibility for ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.
Signature: _//// //S	Date:
email:	Telephone:
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface party of compliance with any other federal, state, or local laws and/	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Appendix B

Water Well Data Average Depth to Groundwater (ft) COG Momentum 36 State #1 Lea County, New Mexico

25 South			34	East	
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	26 S	outh	;	34 East	t
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

	25 South		25 South 35 East		
6	5	4	3 165	2	1
			100		
7	8	9	10 76	11	12
18	17	16	15	14	13 108
230					
19	20	21 173	22	23	24
		205			177
30	29	28	27	26	25
31	32	33	34	35	36 Site

35 East

13 229

206

26 South

	25 South		5 South 36 East		
6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13 350
19 270	20	21	22	23	24
30	29 <mark>239</mark> 282	28	27	26 237	25 340
31	32	33 <mark>80</mark>	34	35	36

	26 Sc	outh	36	East	
6	5	4 355	3 226	2 265	1
7	8	9 174 123	10	11	12 150
18	17 <mark>72</mark>	16	15 <mark>35</mark>	14	13 140
19	20	21 219	22	23	24 115
30	29	28	27	26	25
31	32	33	34	35	36

- 88 New Mexico State Engineers Well Reports
- 105 USGS Well Reports
- 90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)
- 34 NMOCD Groundwater Data
- 123 Tetra Tech installed temporary wells and field water level
- 143 NMOCD Groundwater map well location

USGS Hom **Contact US** Search US(

National Water Information System: Mapper

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

LISGS Water Pesources	Data Category:	Geographic Area:	
USUS Water Resources	Groundwater	 ✓ United States 	✓ G0

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News 🔝

Groundwater levels for the Nation

Search Results -- 1 sites found

site_no list =

• 320434103163501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320434103163501 25S.36E.33.33323

Available data for this site Groundwater: Field measurements \checkmark GO

Lea County, New Mexico

Hydrologic Unit Code 13070007 Latitude 32°04'34", Longitude 103°16'35" NAD27

Land-surface elevation 2,999 feet above NAVD88

This well is completed in the Chinle Formation (231CHNL) local aquifer.

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Breaks in the plot represent a gap of at least one year between field measurements.

Download a presentation-quality graph

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

AccessibilityPlug-InsFOIAPrivacyPolicies and NoticesU.S. Department of the InteriorU.S. Geological SurveyTitle: Groundwater for USA:Water LevelsURL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2019-08-01 13:52:19 EDT 1.48 1.35 nadww01

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced	(R=POD replaced, O=orpha	has been ned,	n										
& no longer serves a	C=the file	e is	(q	uart	ers	are	1=NW	/ 2=NI	E 3=SW	(4=SE)			
water right file.)	closed)		(q	uart	ers	are	smalle	st to la	argest)	(NAD8	3 UTM in meter	s) (In fe	eet)
		POD Sub-		Q	Q	Q							Water
POD Number	Code	basin	County	64	116	4	Sec	Tws	Rng	Х	Y	DepthWellDepthW	ater Column
<u>C 02296</u>		CUB	LE	1	3	2	18	258	35E	650398	3556305*	300	230 70
<u>C 02297</u>		CUB	LE	2	2	1	21	258	35E	653436	3555140*	300	230 70
<u>C 02298</u>		CUB	LE	2	2	1	21	25S	35E	653436	3555140*	250	205 45
<u>C 02388</u>		CUB	LE			3	05	258	35E	651467	3558832*	180	165 15
<u>CP 00624</u>		СР	LE	4	1	1	11	25S	35E	656206	3558197*	510	
											Average Depth t	o Water:	207 feet
											Minimu	im Depth:	165 feet
											M aximu	m Depth:	230 feet
Record Count: 5													
PLSS Search:													

Township: 258 Range: 35E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/22/19 10:56 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

COG Momentum 36 State #1

32.083922 -103.322216

Legend

32.083922 -103.322216

Low

🯉 Medium

1000 ft

Appendix C

July 24, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MOMENTUM 36 ST. 1

Enclosed are the results of analyses for samples received by the laboratory on 07/23/19 14:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 10 (1' BEB) (H902528-01)

BTEX 8260B	mg/l	(g	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	91.4 %	6 90.4-11	1						
Surrogate: Toluene-d8	106 %	85.3-11	4						
Surrogate: 4-Bromofluorobenzene	99.8 %	6 80.1-12	1						
Chloride, SM4500Cl-B	mg/l	(g	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1090	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/l	(g	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	27.5	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	<10.0	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	80.2 %	6 41-142							
Surrogate: 1-Chlorooctadecane	92.1 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 11 (1' BEB) (H902528-02)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	91.9 9	6 90.4-11	1						
Surrogate: Toluene-d8	105 %	6 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	97.7 9	6 80.1-12	1						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	31.0	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	<10.0	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	84.1 9	6 41-142							
Surrogate: 1-Chlorooctadecane	93.9 9	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 12 (1' BEB) (H902528-03)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	93.2 9	% 90.4-11	1						
Surrogate: Toluene-d8	103 %	6 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	97.5 9	80.1-12	1						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	62.3	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	15.8	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	65.3 9	% 41-142	?						
Surrogate: 1-Chlorooctadecane	71.3 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 13 (1' BEB) (H902528-04)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	92.3 9	% 90.4-11	1						
Surrogate: Toluene-d8	105 %	6 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	96.9 9	80.1-12	1						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	<10.0	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	<10.0	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	86.7 9	% 41-142	?						
Surrogate: 1-Chlorooctadecane	96.6 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: EAST #2 SIDEWALL (H902528-05)

BTEX 8260B	mg/	(g	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	91.6%	6 90.4-11	1						
Surrogate: Toluene-d8	105 %	85.3-11	4						
Surrogate: 4-Bromofluorobenzene	95.9%	6 80.1-12	1						
Chloride, SM4500Cl-B	mg/	(g	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	(g	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	<10.0	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	<10.0	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	87.9 %	6 41-142							
Surrogate: 1-Chlorooctadecane	94.8 %	6 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose of use, or loss of profits incurred by client, its subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whoten timitation, business interruptions, loss of profits incurred by client, its subsidiaries, filtistes or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager
	nonnquancu vy.	Relinquished by	Relinquished by:	Relinquished by:		U EAST #	N Satom	C Sottom	2 Battor		Bothm	(LAB USE)	LAB #	\$2.5206H		Hecelving Laboratory:	Invoice to:	Project Location: (county, state) しもみ	Project Name:	Coc		Analysis Request
	Uate: lime:	Date. IIme:	o-chury 7/23/19 1437	Date: Time:		2 Sidewall	Hole #15 (1'BEB)	. HON HIT (1 BEB)	Hok #11 (1' BEB)	TOL FIG (1 SES)	Loic # 10 () DED/		SAMPLE IDENTIFICATION	1		ARDINAL	IKE TAVAREZ	C0 112 122	ENTRIM 36 St. 1		Tetra Tech, Inc.	of Chain of Custody Record
ORIGINAL CO	Received by:	Heceived by:	James	Received hv:		7123/51	7/23/19	7 23 14	7/23/19	1100/14	ן זין ב כן ר	DATE	YEAR: 2019	SAMPLIN		Sampler Signature		Project #: 2\2		Site Manager:		
ΡY	Date	Date	a allat			×	×	X	×	×	1 V (5	VATER SOIL		3 MATRIX		CONNER WIG		0.210-0.20		WIKE CARMO	901W Wa Midlanc Tel (4 Fax (4	
	a: Time:	J Time:	7-23-19	Time		×	×	×	< ×	×		INO ₃ CE Jone		PRESERVATIVE METHOD		O EHRIN S				いてき	II Street, Ste 100 I,Texas 79705 32) 662-4559 32) 682-3946	
2			14:40			- 7	- १	- 7	- 7	- 2	f	CONTAI	NEF	RS N)								
Circle) HAND DELIVE	Corrected 3.12	a.72 #97	LAB USE ONLY			×	××	×	××	×	 B' TI TI P, T(TEX 802 PH TX10 PH 80151 AH 82700 otal Metal	1B 05 (I VI (C C s Ag	BTEX Ext to C GRO - I As Ba	8260B 235) DRO - OF Cd Cr Pl	RO - MF	RO)		(Cire	ì		
RED FE											T(CLP Volat	iles Vola	atiles		u se ni	J		le or	ANA	-	
EDEX UPS 1	Special Report	RUSH: Same	STANDA								R(G(G(P(CI C/MS Vol. C/MS Ser CB's 8082	. 82 ni. V 2 / 6	60B / 6 ol. 827 08	24 '0C/625				Specify N	LYSIS REQ		
Fracking #:	Limits or TRRP F	Day 24 hr 48	(RD)			X	×	×	×	X	NC PL Ch Ch Ge	DRM M (Asbes nloride nloride eneral Wa	stos) Sulf	ate Chemi	TDS stry (see	attach	ed list)		fethod No.)	UEST		Page
	hoda	1 hr 72 hr									Ar	nion/Catio	on Ba	alance								of
Ľ											Но	old										~

July 24, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: MOMENTUM 36 ST. 1

Enclosed are the results of analyses for samples received by the laboratory on 07/23/19 14:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-18-11. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 10 (1.5' BEB) (H902529-01)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075 0.075		07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX <0.150		0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	93.5 9	% 90.4-11	1						
Surrogate: Toluene-d8	103 %	6 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	rogate: 4-Bromofluorobenzene 94.6 % 80.1-12								
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	<10.0	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	<10.0	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	82.2 9	% 41-142							
Surrogate: 1-Chlorooctadecane	91.8 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 11 (1.5' BEB) (H902529-02)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	94.5 %	% 90.4-11	1						
Surrogate: Toluene-d8	104 %	6 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	rrogate: 4-Bromofluorobenzene 94.1 % 80.1-12		1						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/24/2019	ND	198	99.1	200	4.18	
DRO >C10-C28*	<10.0	10.0	07/24/2019	ND	192	96.2	200	8.02	
EXT DRO >C28-C36	<10.0	10.0	07/24/2019	ND					
Surrogate: 1-Chlorooctane	84.3 9	% 41-142	?						
Surrogate: 1-Chlorooctadecane	94.9 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 12 (1.5' BEB) (H902529-03)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	0.075	07/23/2019	ND	1.69	113	1.50	4.88	
Total BTEX	<0.150	0.150	07/23/2019	ND					
Surrogate: Dibromofluoromethane	94.3 9	% 90.4-11	1						
Surrogate: Toluene-d8	105 %	6 85.3-11	4						
Surrogate: 4-Bromofluorobenzene	rrogate: 4-Bromofluorobenzene 94.7% 80.1-		1						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/24/2019	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/23/2019	ND	185	92.3	200	4.28	
DRO >C10-C28*	<10.0	10.0	07/23/2019	ND	178	89.0	200	4.70	
EXT DRO >C28-C36	<10.0	10.0	07/23/2019	ND					
Surrogate: 1-Chlorooctane	ate: 1-Chlorooctane 72.0% 41-142		?						
Surrogate: 1-Chlorooctadecane	75.1 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/23/2019	Sampling Date:	07/23/2019
Reported:	07/24/2019	Sampling Type:	Soil
Project Name:	MOMENTUM 36 ST. 1	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01806	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOM HOLE # 13 (1.5' BEB) (H902529-04)

BTEX 8260B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.025	0.025	07/23/2019	ND	0.507	101	0.500	2.59	
Toluene*	<0.025	0.025	07/23/2019	ND	0.523	105	0.500	3.61	
Ethylbenzene*	<0.025	0.025	07/23/2019	ND	0.553	111	0.500	5.86	
Total Xylenes*	<0.075	<0.075 0.075		ND	1.69	113	1.50	4.88	
Total BTEX	al BTEX <0.150 0.150		07/23/2019	ND					
Surrogate: Dibromofluoromethane	94.5	% 90.4-11	1						
Surrogate: Toluene-d8	104 9	85.3-11	4						
Surrogate: 4-Bromofluorobenzene	ate: 4-Bromofluorobenzene 95.1 % 80.1-12								
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/24/2019	ND	432	108	400	3.77	QR-03
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/23/2019	ND	185	92.3	200	4.28	
DRO >C10-C28*	<10.0	10.0	07/23/2019	ND	178	89.0	200	4.70	
EXT DRO >C28-C36	<10.0	10.0	07/23/2019	ND					
Surrogate: 1-Chlorooctane	73.4	% 41-142	?						
Surrogate: 1-Chlorooctadecane	78.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whoten limitation, business interruptors, loss of profits incurred by client, its subsidiaries, affliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	- Torring and the second se	Relinquished hv	(borner M	Relinquished by:				4 Botto w	1 Addinger	2 Dai 192	9 2	BOTTON	(LAB USE)	LAB #	H902529		Receiving Laboratory:	Invoice to:	Project Location: (county, state) してらい	mome	Project Name:	Client Name:	Analysis Request of
	Date:		Date Time	A Date: Time:				HOLE HIS (1.5 BEB)	TOLE #12 (1.5 GEB)	(1.5 KER)		V HOLE #10 (1.5)BEB)		SAMPLE IDENTIFICATION			IDDINAL	E TAVAREZ	10, NYN	NTUM 36 ST. L		Tetra Tech, Inc.	Chain of Custody Record
ORIGINAL CO	Received by:	Theoretived by:	laman	Received hv				712314	7 231.9	7 23 19		7 2314	DATE	YEAR: 2019	SAMPLIN		Sampler Signatur		Project #: 2		Site Manager:	2	
)PY	Dat	Pat	a Aldakou				1	×	×	×	>	<	TIME WATER SOIL		G MATRIX		CONNELS .		12C-MD-0180		NIKE CARM	901W Wa Midian Tel (4: Fax (4	
	e: Time:	e: Time:	27.23-19	Time:				×	×	×)	× 1	HCL HNO ₃ ICE None		PRESERVATIVE METHOD		MOEHRING		06		0 Z P	III Street, Ste 100 1,Texas 79705 32) 682-4559 32) 682-3946	
			14:40	-				- Z	- 2	- Z	-	- # 2 F	# CONTA	INEF	RS N)								
(Circle) HAND DELIV	Corrected 3.1 c	Sample Temperature	LAB USE ONLY					XX	×	×	>	< E T < T F	3TEX 802 PH TX10 PH 8015 PAH 8270 Total Meta	21B 005 (iM ((iC Is Ag	BTEX Ext to C GRO - L As Ba	8260B 235) DRO - OF Cd Cr Pt	RO - MF	RO)			()		
ERED FI				-		_	_					T	CLP Meta CLP Vola CLP Sem	als Ag tiles ii Vol	g As Ba atiles	Cd Cr P	b Se Ho)		C	ANA	2	
EDEX UPS T	Special Report	RUSH: Same	RKS: STANDA									R G P	ICI IC/MS Vo IC/MS Se CB's 808	I. 82 mi. V 12 / 6	60B / 6 ol. 827 08	24 '0C/625					LYSIS REQ		
racking #:	Limits or TRRP F	Day (24 hr) 48 Authorized	.RD					×	×	×	×	N P C C G	ORM LM (Asbe hloride hloride eneral W	stos) Sull	ate	TDS stry (see	attach	ed list)			IVEST		Page
	Report) hr 72 hr										A	nion/Catio	on B	alance								l of
Ľ							+		_			н	old										_

Project Id:Contact:Mike CarmonaProject Location:Lea Co, NM

Certificate of Analysis Summary 628584

Tetra Tech- Midland, Midland, TX

Project Name: Momentum 36 State #1

Date Received in Lab:Thu Jun-20-19 05:00 pmReport Date:29-JUN-19Project Manager:Jessica Kramer

	Lab Id:	628584-	001	628584-0	002	628584-	003	628584-	004	628584-	005	628584-	006
Analysis Paguested	Field Id:	Bottom Hole	#1 (6")	Bottom Hole	#2 (6")	Bottom Hole	#3 (6")	Bottom Hole	#4 (6")	Bottom Hole	#5 (6")	Bottom Hole	#6 (6")
Analysis Kequesiea	Depth:												
	Matrix:	SOIL	,	SOIL	,	SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	Jun-19-19	un-19-19 00:00 Ju		00:00	Jun-19-19	Jun-19-19 00:00		00:00	Jun-19-19 00:00		Jun-20-19	00:00
BTEX by EPA 8021B	Extracted:	Jun-27-19	Jun-27-19 22:10 Ju		22:10	Jun-27-19	22:10	Jun-27-19	22:10	Jun-27-19 22:10		Jun-27-19 22:1	
SUB: T104704400-18-16	Analyzed:	Jun-28-19	01:27	Jun-28-19	01:51	Jun-28-19	02:14	Jun-28-19	19:04	Jun-28-19	14:56	Jun-28-19	09:55
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	0.0749	0.00996	< 0.00200	0.00200
Toluene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00996	0.00996	< 0.00200	0.00200
Ethylbenzene		< 0.00199	0.00199	< 0.00200	0.00200	0.00745	0.00200	0.00582	0.00200	0.135	0.00996	< 0.00200	0.00200
m,p-Xylenes	<0.00398 0.00398		< 0.00401	0.00401	0.0175	0.00399	0.0147	0.00401	0.393	0.0199	0.00596	0.00400	
o-Xylene	Vylene <0.00199 0.001		0.00199	< 0.00200	0.00200	0.0198	0.00200	0.00457	0.00200	0.0550	0.00996	0.00335	0.00200
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200	0.0373	0.00200	0.0193	0.00200	0.448	0.00996	0.00931	0.00200
Total BTEX		< 0.00199	0.00199	< 0.00200	0.00200	0.0448	0.00200	0.0251	0.00200	0.658	0.00996	0.00931	0.00200
Chloride by EPA 300	Extracted:	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00
SUB: T104704400-18-16	Analyzed:	Jun-22-19	19:49	Jun-22-19	20:11	Jun-22-19	20:19	Jun-22-19	20:26	Jun-22-19	20:33	Jun-22-19	20:40
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		270	5.05	1300	5.05	1270	5.05	710	5.00	1230	4.97	377	4.99
TPH By SW8015 Mod	Extracted:	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00
SUB: T104704400-18-16	Analyzed:	Jun-23-19	00:04	Jun-23-19	01:19	Jun-23-19	01:45	Jun-23-19	02:10	Jun-23-19	02:35	Jun-23-19	02:59
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		20.8	15.0	<15.0	15.0	38.7	15.0	49.1	15.0	39.7	15.0	21.2	15.0
Diesel Range Organics (DRO)		228	228 15.0		15.0	576	15.0	623	15.0	549	15.0	472	15.0
Motor Oil Range Hydrocarbons (MRO)		26.7	26.7 15.0		15.0	38.4	15.0	50.9	15.0	42.3	15.0	44.6	15.0
Total TPH		276	15.0	61.3	15.0	653	15.0	723	15.0	631	15.0	538	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Page 1 of 52

Project Id:Contact:Mike CarmonaProject Location:Lea Co, NM

Certificate of Analysis Summary 628584

Tetra Tech- Midland, Midland, TX

Project Name: Momentum 36 State #1

Date Received in Lab:Thu Jun-20-19 05:00 pmReport Date:29-JUN-19Project Manager:Jessica Kramer

	Lab Id:	628584-	007	628584-	008	628584-	009	628584-	010	628584-	011	628584-	012
Analysis Paguastad	Field Id:	Bottom Hole	#7 (6")	Bottom Hole	#8 (6")	Bottom Hole	#9 (6")	Bottom Hole	#10 (6")	Bottom Hole	#11 (6")	Bottom Hole	#12 (6")
Analysis Kequestea	Depth:												
	Matrix:	SOIL		SOIL	,	SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	Jun-20-19	un-20-19 00:00 Ju		00:00	Jun-20-19	00:00	Jun-20-19	00:00	Jun-20-19 00:00		Jun-20-19	00:00
BTEX by EPA 8021B	Extracted:	Jun-27-19	Jun-27-19 22:10 Ju		22:10	Jun-27-19	22:10	Jun-27-19	22:10	Jun-27-19 22:10		Jun-27-19 22:10	
SUB: T104704400-18-16	Analyzed:	Jun-28-19	10:18	Jun-28-19	10:42	Jun-28-19	18:41	Jun-28-19	14:10	Jun-28-19	18:17	Jun-28-19	03:46
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	0.0461	0.0200	< 0.00998	0.00998	< 0.00200	0.00200
Toluene		< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	0.0502	0.0200	0.110	0.00998	< 0.00200	0.00200
Ethylbenzene		0.00580	0.00200	< 0.00200	0.00200	0.00677	0.00199	1.06	0.0200	0.310	0.00998	< 0.00200	0.00200
m,p-Xylenes		< 0.00401	0.00401	< 0.00399	0.00399	0.00676	0.00398	3.39	0.0401	3.13	0.0200	< 0.00400	0.00400
o-Xylene		< 0.00200	0.00200	< 0.00200	0.00200	0.0252	0.00199	2.16	0.0200	1.94	0.00998	0.00377	0.00200
Total Xylenes		< 0.00200	0.00200	< 0.00200	0.00200	0.0320	0.00199	5.55	0.0200	5.07	0.00998	0.00377	0.00200
Total BTEX		0.00580	0.00200	< 0.00200	0.00200	0.0387	0.00199	6.71	0.0200	5.49	0.00998	0.00377	0.00200
Chloride by EPA 300	Extracted:	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00
SUB: T104704400-18-16	Analyzed:	Jun-22-19	21:09	Jun-22-19	21:17	Jun-22-19	21:54	Jun-22-19 22:01		Jun-22-19 22:08		Jun-22-19 22:16	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		44.3	5.00	45.4	4.99	666	5.00	394	5.02	198	4.97	33.7	4.96
TPH By SW8015 Mod	Extracted:	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00
SUB: T104704400-18-16	Analyzed:	Jun-23-19	03:24	Jun-23-19	03:49	Jun-23-19	04:14	Jun-23-19	04:39	Jun-23-19	05:29	Jun-23-19	05:54
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0	39.7	15.0	158	15.0	284	15.0	143	15.0
Diesel Range Organics (DRO)		53.3	15.0	28.3	15.0	828	15.0	1480	15.0	2110	15.0	1260	15.0
Motor Oil Range Hydrocarbons (MRO)		<15.0	<15.0 15.0		15.0	75.4	15.0	112	15.0	141	15.0	92.4	15.0
Total TPH		53.3	15.0	28.3	15.0	943	15.0	1750	15.0	2540	15.0	1500	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Page 2 of 52

Project Id:Contact:Mike CarmonaProject Location:Lea Co, NM

Certificate of Analysis Summary 628584

Tetra Tech- Midland, Midland, TX

Project Name: Momentum 36 State #1

Date Received in Lab:Thu Jun-20-19 05:00 pmReport Date:29-JUN-19Project Manager:Jessica Kramer

	Lab Id:	628584-	013	628584-0	014	628584-	015	628584-0	016	628584-0	017	
Anglusia Degregated	Field Id:	Bottom Hole	#13 (6")	North 1 Sid	lewall	East #1 Sid	lewall	West #1 Sic	lewall	South #1 Sid	dewall	
Analysis Kequestea	Depth:											
	Matrix:	SOIL		SOIL	,	SOIL		SOIL	,	SOIL	,	
	Sampled:	Jun-20-19	00:00	Jun-20-19	00:00	Jun-20-19	00:00	Jun-20-19	00:00	Jun-20-19	00:00	
BTEX by EPA 8021B	Extracted:	Jun-27-19	22:10	Jun-27-19	22:10	Jun-27-19	22:10	Jun-27-19	22:10	Jun-27-19	22:10	
SUB: T104704400-18-16	Analyzed:	Jun-28-19	04:09	Jun-28-19	11:05	Jun-28-19	11:28	Jun-28-19	06:43	Jun-28-19	07:06	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Benzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Toluene		0.00279	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Ethylbenzene		0.0686	0.00201	< 0.00200	0.00200	0.00259	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
m,p-Xylenes		0.119	0.00402	<0.00399	0.00399	< 0.00398	0.00398	< 0.00400	0.00400	< 0.00401	0.00401	
o-Xylene		0.127	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Total Xylenes		0.246	0.00201	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Total BTEX		0.317	0.00201	< 0.00200	0.00200	0.00259	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	
Chloride by EPA 300	Extracted:	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:00	Jun-22-19	16:30	Jun-22-19	16:30	
SUB: T104704400-18-16	Analyzed:	Jun-22-19	22:23	Jun-22-19	22:30	Jun-22-19	22:37	Jun-24-19	15:45	Jun-24-19	16:02	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		51.8	5.01	996	4.98	1410	4.95	16.7	5.00	192	5.05	
TPH By SW8015 Mod	Extracted:	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	Jun-22-19	15:00	
SUB: T104704400-18-16	Analyzed:	Jun-23-19	06:18	Jun-23-19	06:43	Jun-23-19	07:08	Jun-23-19	07:32	Jun-23-19	07:57	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Gasoline Range Hydrocarbons (GRO)	·	154	15.0	<15.0	15.0	<15.0	15.0	<15.0	15.0	15.9	14.9	
Diesel Range Organics (DRO)		1330	15.0	255	15.0	38.9	15.0	63.2	15.0	573	14.9	
Motor Oil Range Hydrocarbons (MRO)		88.7	15.0	40.7	15.0	17.2	15.0	<15.0	15.0	76.5	14.9	
Total TPH		1570	15.0	296	15.0	56.1	15.0	63.2	15.0	665	14.9	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Analytical Report 628584

for Tetra Tech- Midland

Project Manager: Mike Carmona

Momentum 36 State #1

29-JUN-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-29), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-19-19), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-18-14) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-20) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-18-18) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-18-4) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429), North Carolina (483)

29-JUN-19

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): **628584 Momentum 36 State #1** Project Address: Lea Co, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 628584. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 628584 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession Vramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

Bottom Hole #1 (6")
Bottom Hole #2 (6")
Bottom Hole #3 (6")
Bottom Hole #4 (6")
Bottom Hole #5 (6")
Bottom Hole #6 (6")
Bottom Hole #7 (6")
Bottom Hole #8 (6")
Bottom Hole #9 (6")
Bottom Hole #10 (6")
Bottom Hole #11 (6")
Bottom Hole #12 (6")
Bottom Hole #13 (6")
North 1 Sidewall
East #1 Sidewall
West #1 Sidewall
South #1 Sidewall

Sample Cross Reference 628584

Tetra Tech- Midland, Midland, TX

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	06-19-19 00:00		628584-001
S	06-19-19 00:00		628584-002
S	06-19-19 00:00		628584-003
S	06-19-19 00:00		628584-004
S	06-19-19 00:00		628584-005
S	06-20-19 00:00		628584-006
S	06-20-19 00:00		628584-007
S	06-20-19 00:00		628584-008
S	06-20-19 00:00		628584-009
S	06-20-19 00:00		628584-010
S	06-20-19 00:00		628584-011
S	06-20-19 00:00		628584-012
S	06-20-19 00:00		628584-013
S	06-20-19 00:00		628584-014
S	06-20-19 00:00		628584-015
S	06-20-19 00:00		628584-016
S	06-20-19 00:00		628584-017

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Momentum 36 State #1

Project ID: Work Order Number(s): 628584
 Report Date:
 29-JUN-19

 Date Received:
 06/20/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3093930 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030. Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected; data confirmed by re-analysis.

Samples affected are: 628584-013,628584-011,628584-005,628584-010.

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #1 (6")		Matrix:	Soil		Date Received:0	6.20.19 17.00	
Lab Sample Id	: 628584-001		Date Collec	cted: 06.19.19 00.00				
Analytical Me	thod: Chloride by EPA 3	800				Prep Method: E	300P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: W	Vet Weight	
Seq Number:	3093287					SUB: T1047044	00-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	270	5.05	mg/kg	06.22.19 19.49		1

Analytical Met	Analytical Method: TPH By SW8015 Mod Prep Method: TX1005P										
Tech:	ARM					%	6 Moisture:				
Analyst:	ARM		Date Prep	p: 06.22	2.19 15.00	В	Basis: We	t Weight			
Seq Number: 3093277 SUB: T104704400-18-16							-18-16				
Parameter		Cas Number	Result	RL		Units	Analysis Date	Flag	Dil		
Gasoline Range Hy	drocarbons (GRO)	PHC610	20.8	15.0		mg/kg	06.23.19 00.04		1		
Diesel Range Or	ganics (DRO)	C10C28DRO	228	15.0		mg/kg	06.23.19 00.04		1		
Motor Oil Range H	Iydrocarbons (MRO)	PHCG2835	26.7	15.0		mg/kg	06.23.19 00.04		1		
Total TPH		PHC635	276	15.0		mg/kg	06.23.19 00.04		1		
Surrogate			Cas Number	% Recovery	Units	Limits	Analysis Date	Flag			
1-Chlorooct	tane		111-85-3	93	%	70-135	06.23.19 00.04				
o-Terpheny	1		84-15-1	79	%	70-135	06.23.19 00.04				

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #1 (6'') : 628584-001	Matrix: Date Collected	Soil : 06.19.19 00.00	Date Received	06.20.19 17.00
Analytical Me	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.28.19 01.27	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.28.19 01.27	U	1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	06.28.19 01.27	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.28.19 01.27	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.28.19 01.27	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.28.19 01.27	U	1
Total BTEX		< 0.00199	0.00199		mg/kg	06.28.19 01.27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	118	%	70-130	06.28.19 01.27		
1,4-Difluorobenzene		540-36-3	96	%	70-130	06.28.19 01.27		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #2 (6'')		Matrix:	Soil		Date Received:	06.20.19 17.00	
Lab Sample Id	: 628584-002		Date Collec	eted: 06.19.19 00.00				
Analytical Me	thod: Chloride by EPA 3	800				Prep Method: 1	E300P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis:	Wet Weight	
Seq Number:	3093287					SUB: T1047044	400-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Dat	e Flag	Dil
Chloride		16887-00-6	1300	5.05	mg/kg	06.22.19 20.1	1	1

Analytical Method: TPH By SW8015 Mod Prep Method: TX1005P										
Tech: ARM					%	6 Moisture:				
Analyst: ARM		Date Prep	: 06.22	.19 15.00	В	Basis: Wet	t Weight			
Seq Number: 3093277 SUB: T104704400-18-16										
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil		
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.23.19 01.19	U	1		
Diesel Range Organics (DRO)	C10C28DRO	61.3	15.0		mg/kg	06.23.19 01.19		1		
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	06.23.19 01.19	U	1		
Total TPH	PHC635	61.3	15.0		mg/kg	06.23.19 01.19		1		
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag			
1-Chlorooctane		111-85-3	93	%	70-135	06.23.19 01.19				
o-Terphenyl		84-15-1	77	%	70-135	06.23.19 01.19				

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #2 (6") : 628584-002	Matrix: Date Collected	Soil : 06.19.19 00.00	Date Received	:06.20.19 17.00
Analytical Me	thod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	4400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 01.51	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 01.51	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.28.19 01.51	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.28.19 01.51	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.28.19 01.51	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.28.19 01.51	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.28.19 01.51	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	117	%	70-130	06.28.19 01.51		
1,4-Difluorobenzene		540-36-3	97	%	70-130	06.28.19 01.51		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #3 (6")		Matrix:	Soil		Date Received:06.	20.19 17.00	
Lab Sample Id	: 628584-003		Date Collec	cted: 06.19.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E30	00P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: We	t Weight	
Seq Number:	3093287					SUB: T104704400)-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1270	5.05	mg/kg	06.22.19 20.19		1

Analytical Method: TPH By SW8015	5 Mod				P	Prep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	b: 06.22	.19 15.00	E	Basis: We	t Weight	
Seq Number: 3093277 SUB: T104704400-18-16								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	38.7	15.0		mg/kg	06.23.19 01.45		1
Diesel Range Organics (DRO)	C10C28DRO	576	15.0		mg/kg	06.23.19 01.45		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	38.4	15.0		mg/kg	06.23.19 01.45		1
Total TPH	PHC635	653	15.0		mg/kg	06.23.19 01.45		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	94	%	70-135	06.23.19 01.45		
o-Terphenyl		84-15-1	85	%	70-135	06.23.19 01.45		

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #3 (6'') : 628584-003	Matrix: Date Collected	Soil : 06.19.19 00.00	Date Received:	06.20.19 17.00
Analytical Met Tech:	hod: BTEX by EPA 8021B DVM			Prep Method: % Moisture:	SW5030B
Analyst: Seq Number:	DVM 3093930	Date Prep:	06.27.19 22.10	Basis: SUB: T104704	Wet Weight 400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 02.14	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 02.14	U	1
Ethylbenzene	100-41-4	0.00745	0.00200		mg/kg	06.28.19 02.14		1
m,p-Xylenes	179601-23-1	0.0175	0.00399		mg/kg	06.28.19 02.14		1
o-Xylene	95-47-6	0.0198	0.00200		mg/kg	06.28.19 02.14		1
Total Xylenes	1330-20-7	0.0373	0.00200		mg/kg	06.28.19 02.14		1
Total BTEX		0.0448	0.00200		mg/kg	06.28.19 02.14		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	88	%	70-130	06.28.19 02.14		
4-Bromofluorobenzene		460-00-4	130	%	70-130	06.28.19 02.14		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #4 (6")		Matrix:	Soil		Date Received:06.	20.19 17.00	
Lab Sample Id	: 628584-004		Date Collec	cted: 06.19.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: We	et Weight	
Seq Number:	3093287				, I	SUB: T104704400)-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	710	5.00	mg/kg	06.22.19 20.26		1

Analytical Method: TPH By SW8015	5 Mod				Р	rep Method: TX1	005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Prep	: 06.22.	19 15.00	В	Basis: Wet	Weight	
Seq Number: 3093277 SUB: T104704400-18-16								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	49.1	15.0		mg/kg	06.23.19 02.10		1
Diesel Range Organics (DRO)	C10C28DRO	623	15.0		mg/kg	06.23.19 02.10		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	50.9	15.0		mg/kg	06.23.19 02.10		1
Total TPH	PHC635	723	15.0		mg/kg	06.23.19 02.10		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	99	%	70-135	06.23.19 02.10		
o-Terphenyl		84-15-1	94	%	70-135	06.23.19 02.10		

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #4 (6'') : 628584-004	Matrix: Date Collected	Soil : 06.19.19 00.00	Date Received:	06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 19.04	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 19.04	U	1
Ethylbenzene	100-41-4	0.00582	0.00200		mg/kg	06.28.19 19.04		1
m,p-Xylenes	179601-23-1	0.0147	0.00401		mg/kg	06.28.19 19.04		1
o-Xylene	95-47-6	0.00457	0.00200		mg/kg	06.28.19 19.04		1
Total Xylenes	1330-20-7	0.0193	0.00200		mg/kg	06.28.19 19.04		1
Total BTEX		0.0251	0.00200		mg/kg	06.28.19 19.04		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	123	%	70-130	06.28.19 19.04		
1,4-Difluorobenzene		540-36-3	90	%	70-130	06.28.19 19.04		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #5 (6'')		Matrix:	Soil]	Date Received:06	6.20.19 17.00	
Lab Sample Id	: 628584-005		Date Collec	cted: 06.19.19 00.00				
Analytical Me	thod: Chloride by EPA 3	300]	Prep Method: E	300P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00]	Basis: W	/et Weight	
Seq Number:	3093287				:	SUB: T10470440	00-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1230	4.97	mg/kg	06.22.19 20.33		1

Analytical Method: TPH By SW801	5 Mod				P	rep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	o: 06.22.	19 15.00	E	Basis: We	t Weight	
Seq Number: 3093277					S	UB: T104704400	-18-16	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	39.7	15.0		mg/kg	06.23.19 02.35		1
Diesel Range Organics (DRO)	C10C28DRO	549	15.0		mg/kg	06.23.19 02.35		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	42.3	15.0		mg/kg	06.23.19 02.35		1
Total TPH	PHC635	631	15.0		mg/kg	06.23.19 02.35		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	92	%	70-135	06.23.19 02.35		
o-Terphenyl		84-15-1	86	%	70-135	06.23.19 02.35		

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #5 (6'') : 628584-005	Matrix: Date Collected	Soil : 06.19.19 00.00	Date Received	:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	4400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	0.0749	0.00996		mg/kg	06.28.19 14.56		5
Toluene	108-88-3	< 0.00996	0.00996		mg/kg	06.28.19 14.56	U	5
Ethylbenzene	100-41-4	0.135	0.00996		mg/kg	06.28.19 14.56		5
m,p-Xylenes	179601-23-1	0.393	0.0199		mg/kg	06.28.19 14.56		5
o-Xylene	95-47-6	0.0550	0.00996		mg/kg	06.28.19 14.56		5
Total Xylenes	1330-20-7	0.448	0.00996		mg/kg	06.28.19 14.56		5
Total BTEX		0.658	0.00996		mg/kg	06.28.19 14.56		5
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	190	%	70-130	06.28.19 14.56	**	
1,4-Difluorobenzene		540-36-3	98	%	70-130	06.28.19 14.56		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #6 (6")		Matrix:	Soil		Date Received:06	20.19 17.0)
Lab Sample Id	l: 628584-006		Date Collec	cted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E3	00P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: We	et Weight	
Seq Number:	3093287					SUB: T10470440	0-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	377	4.99	mg/kg	06.22.19 20.40		1

Analytical Method: TPH By SW801	5 Mod				F	Prep Method: TX	1005P	
Analyst: ARM			06 22	10 15 00	У Т	% Moisture:	t Weight	
Allaryst. Activ		Date Prej	p: 00.22	.19 15.00	1			
Seq Number: 3093277					2	SUB: 1104/04400	-18-16	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	21.2	15.0		mg/kg	06.23.19 02.59		1
Diesel Range Organics (DRO)	C10C28DRO	472	15.0		mg/kg	06.23.19 02.59		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	44.6	15.0		mg/kg	06.23.19 02.59		1
Total TPH	PHC635	538	15.0		mg/kg	06.23.19 02.59		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	94	%	70-135	06.23.19 02.59		
o-Terphenyl		84-15-1	91	%	70-135	06.23.19 02.59		

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #6 (6'') : 628584-006	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 09.55	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 09.55	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.28.19 09.55	U	1
m,p-Xylenes	179601-23-1	0.00596	0.00400		mg/kg	06.28.19 09.55		1
o-Xylene	95-47-6	0.00335	0.00200		mg/kg	06.28.19 09.55		1
Total Xylenes	1330-20-7	0.00931	0.00200		mg/kg	06.28.19 09.55		1
Total BTEX		0.00931	0.00200		mg/kg	06.28.19 09.55		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	95	%	70-130	06.28.19 09.55		
4-Bromofluorobenzene		460-00-4	118	%	70-130	06.28.19 09.55		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #7 (6")		Matrix:	Soil	Ι	Date Received:06.	20.19 17.00)
Lab Sample Id	: 628584-007		Date Collec	cted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300			I	Prep Method: E3	00P	
Tech:	CHE				ç	% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00	I	Basis: We	et Weight	
Seq Number:	3093287				S	SUB: T10470440	0-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	44.3	5.00	mg/kg	06.22.19 21.09		1

Analytical Method: TPH By SW80	15 Mod				P	rep Method: TX	1005P	
Tech: ARM					9	6 Moisture:		
Analyst: ARM		Date Prep	o: 06.22	.19 15.00	E	Basis: We	t Weight	
Seq Number: 3093277 SUB: T104704400						-18-16		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.23.19 03.24	U	1
Diesel Range Organics (DRO)	C10C28DRO	53.3	15.0		mg/kg	06.23.19 03.24		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	06.23.19 03.24	U	1
Total TPH	PHC635	53.3	15.0		mg/kg	06.23.19 03.24		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	97	%	70-135	06.23.19 03.24		
o-Terphenyl		84-15-1	95	%	70-135	06.23.19 03.24		

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #7 (6") : 628584-007	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Me	thod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 10.18	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 10.18	U	1
Ethylbenzene	100-41-4	0.00580	0.00200		mg/kg	06.28.19 10.18		1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.28.19 10.18	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.28.19 10.18	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.28.19 10.18	U	1
Total BTEX		0.00580	0.00200		mg/kg	06.28.19 10.18		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	115	%	70-130	06.28.19 10.18		
1,4-Difluorobenzene		540-36-3	98	%	70-130	06.28.19 10.18		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #8 (6")		Matrix:	Soil]	Date Received:06	.20.19 17.00	
Lab Sample Id	: 628584-008		Date Collec	eted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA 3	800			I	Prep Method: E3	00P	
Tech:	CHE				Ģ	% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00	1	Basis: We	et Weight	
Seq Number:	3093287				2	SUB: T10470440	0-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	45.4	4.99	mg/kg	06.22.19 21.17		1

Analytical Method: TPH By SW80 Tech: ARM Analyst: ARM	15 Mod	Date Prep	o: 06.22	.19 15.00	F 9 F	Prep Method: TX 6 Moisture: Basis: We	1005P t Weight		
Seq Number: 3093277 SUB: T						SUB: T104704400	04704400-18-16		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.23.19 03.49	U	1	
Diesel Range Organics (DRO)	C10C28DRO	28.3	15.0		mg/kg	06.23.19 03.49		1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	06.23.19 03.49	U	1	
Total TPH	PHC635	28.3	15.0		mg/kg	06.23.19 03.49		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	105	%	70-135	06.23.19 03.49			
o-Terphenyl		84-15-1	95	%	70-135	06.23.19 03.49			

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #8 (6") : 628584-008	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Me	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	4400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 10.42	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 10.42	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.28.19 10.42	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	06.28.19 10.42	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.28.19 10.42	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.28.19 10.42	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.28.19 10.42	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	111	%	70-130	06.28.19 10.42		
1,4-Difluorobenzene		540-36-3	97	%	70-130	06.28.19 10.42		

Tetra Tech- Midland, Midland, TX

Sample Id: Bottom Hole #9 (6") Lab Sample Id: 628584-009			Matrix: Date Collec	Soil ted: 06.20.19 00.00	Date Received:06.20.19 17.00				
Analytical WetworkChloride by EPA 300Tech:CHEAnalyst:SPCSeq Number:3093287			Date Prep:	06.22.19 16.00	Prep Method: E300P % Moisture: Basis: Wet Weight SUB: T104704400-18-16				
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride		16887-00-6	666	5.00	mg/kg	06.22.19 21.54		1	
Analytical Me	thod: TPH By SW8015	Mod				Prep Method: TX	1005P		

inou. IIII by b ii oo	10 1000				-	rep method. In	10001		
ARM					9	6 Moisture:			
ARM		Date Pre	p: 06.22	.19 15.00	E	Basis: We	t Weight		
Seq Number: 3093277			-		SUB: T104704400-18-16				
	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
drocarbons (GRO)	PHC610	39.7	15.0		mg/kg	06.23.19 04.14		1	
ganics (DRO)	C10C28DRO	828	15.0		mg/kg	06.23.19 04.14		1	
lydrocarbons (MRO)	PHCG2835	75.4	15.0		mg/kg	06.23.19 04.14		1	
	PHC635	943	15.0		mg/kg	06.23.19 04.14		1	
		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
ane		111-85-3	91	%	70-135	06.23.19 04.14			
l		84-15-1	91	%	70-135	06.23.19 04.14			
	ARM ARM 3093277 drocarbons (GRO) ganics (DRO) jydrocarbons (MRO)	ARM ARM 3093277 drocarbons (GRO) PHC610 ganics (DRO) C10C28DRO PHCG2835 PHC635 ane	ARM Date Prej 3093277 Cas Number Result drocarbons (GRO) PHC610 39.7 ganics (DRO) C10C28DRO 828 jydrocarbons (MRO) PHC635 75.4 PHC635 943 Cas Number ane 111-85-3 ane 111-85-3 84-15-1 84-15-1	ARM Date Prep: 06.22 3093277 Cas Number Result RL drocarbons (GRO) PHC610 39.7 15.0 ganics (DRO) C10C28DRO 828 15.0 lydrocarbons (MRO) PHCG2835 75.4 15.0 PHC635 943 15.0 ane 111-85-3 91 11 84-15-1 91	ARM Date Prep: 06.22.19 15.00 3093277 Cas Number Result RL drocarbons (GRO) PHC610 39.7 15.0 ganics (DRO) C10C28DRO 828 15.0 iydrocarbons (MRO) PHCG2835 75.4 15.0 PHC635 943 15.0 ane 111-85-3 91 % 111-85-3 91 % 84-15-1 91 %	ARM 9 ARM Date Prep: 06.22.19 15.00 E 3093277 S S S S drocarbons (GRO) PHC610 39.7 15.0 mg/kg ganics (DRO) C10C28DRO 828 15.0 mg/kg jydrocarbons (MRO) PHCG2835 75.4 15.0 mg/kg PHC635 943 15.0 mg/kg ane 111-85-3 91 % 70-135 ane 111-85-3 91 % 70-135	ARM % Moisture: ARM % Moisture: ARM % Moisture: 3093277 SUB: T104704400 Cas Number Result RL Units Analysis Date drocarbons (GRO) PHC610 39.7 15.0 mg/kg 06.23.19 04.14 ganics (DRO) C10C28DRO 828 15.0 mg/kg 06.23.19 04.14 lydrocarbons (MRO) PHCG2835 75.4 15.0 mg/kg 06.23.19 04.14 PHC635 943 15.0 mg/kg 06.23.19 04.14 PHC635 943 15.0 mg/kg 06.23.19 04.14 ane 111-85-3 91 % 70-135 06.23.19 04.14 11-85-3 91 % 70-135 06.23.19 04.14	ARM % Moisture: ARM % Moisture: ARM % Moisture: Basis: Wet Weight 3093277 SUB: T104704400-18-16 Cas Number Result RL Units Analysis Date Flag drocarbons (GRO) PHC610 39.7 15.0 mg/kg 06.23.19 04.14 ganics (DRO) C10C28DRO 828 15.0 mg/kg 06.23.19 04.14 iydrocarbons (MRO) PHCG2835 75.4 15.0 mg/kg 06.23.19 04.14 PHC635 943 15.0 mg/kg 06.23.19 04.14 ane 111-85-3 91 % 70-135 06.23.19 04.14 111-85-3 91 % 70-135 06.23.19 04.14	

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #9 (6'') : 628584-009	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Me	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	4400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.28.19 18.41	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.28.19 18.41	U	1
Ethylbenzene	100-41-4	0.00677	0.00199		mg/kg	06.28.19 18.41		1
m,p-Xylenes	179601-23-1	0.00676	0.00398		mg/kg	06.28.19 18.41		1
o-Xylene	95-47-6	0.0252	0.00199		mg/kg	06.28.19 18.41		1
Total Xylenes	1330-20-7	0.0320	0.00199		mg/kg	06.28.19 18.41		1
Total BTEX		0.0387	0.00199		mg/kg	06.28.19 18.41		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	92	%	70-130	06.28.19 18.41		
4-Bromofluorobenzene		460-00-4	127	%	70-130	06.28.19 18.41		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #10 (6")		Matrix:	Soil	1	Date Received:06.	20.19 17.00	
Lab Sample Id	: 628584-010		Date Collec	cted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300]	Prep Method: E30	00P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00]	Basis: We	t Weight	
Seq Number:	3093287					SUB: T104704400)-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	394	5.02	mg/kg	06.22.19 22.01		1

Analytical Method: TPH By SW801:	5 Mod				Р	Prep Method: TX	1005P		
Tech: ARM					%	6 Moisture:			
Analyst: ARM		Date Prep	o: 06.22.	19 15.00	В	Basis: We	t Weight		
Seq Number: 3093277					SUB: T104704400-18-16				
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	158	15.0		mg/kg	06.23.19 04.39		1	
Diesel Range Organics (DRO)	C10C28DRO	1480	15.0		mg/kg	06.23.19 04.39		1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	112	15.0		mg/kg	06.23.19 04.39		1	
Total TPH	PHC635	1750	15.0		mg/kg	06.23.19 04.39		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	86	%	70-135	06.23.19 04.39			
o-Terphenyl		84-15-1	83	%	70-135	06.23.19 04.39			

Tetra Tech- Midland, Midland, TX

Momentum 36 State #1

Sample Id: Lab Sample Id:	Bottom Hole #10 (6'') : 628584-010	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method: SW5030B
Tech:	DVM			% Moisture:

Analyst: DVM

Seq Number: 3093930

06.27.19 22.10 Date Prep:

Basis: Wet Weight SUB: T104704400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	0.0461	0.0200		mg/kg	06.28.19 14.10		10
Toluene	108-88-3	0.0502	0.0200		mg/kg	06.28.19 14.10		10
Ethylbenzene	100-41-4	1.06	0.0200		mg/kg	06.28.19 14.10		10
m,p-Xylenes	179601-23-1	3.39	0.0401		mg/kg	06.28.19 14.10		10
o-Xylene	95-47-6	2.16	0.0200		mg/kg	06.28.19 14.10		10
Total Xylenes	1330-20-7	5.55	0.0200		mg/kg	06.28.19 14.10		10
Total BTEX		6.71	0.0200		mg/kg	06.28.19 14.10		10
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	286	%	70-130	06.28.19 14.10	**	
1,4-Difluorobenzene		540-36-3	80	%	70-130	06.28.19 14.10		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #11 (6")		Matrix:	Soil		Date Received:06.	20.19 17.00)
Lab Sample Ic	l: 628584-011		Date Collec	ted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E30)0P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: We	t Weight	
Seq Number:	3093287					SUB: T104704400	-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	198	4.97	mg/kg	06.22.19 22.08		1

Analytical Method: TPH E	By SW8015 Mod				Р	Prep Method: TX	1005P		
Tech: ARM					%	6 Moisture:			
Analyst: ARM		Date Prep	: 06.22	.19 15.00	В	Basis: We	t Weight		
Seq Number: 3093277					SUB: T104704400-18-16				
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (Gl	RO) PHC610	284	15.0		mg/kg	06.23.19 05.29		1	
Diesel Range Organics (DRO)	C10C28DRO	2110	15.0		mg/kg	06.23.19 05.29		1	
Motor Oil Range Hydrocarbons (M	(IRO) PHCG2835	141	15.0		mg/kg	06.23.19 05.29		1	
Total TPH	PHC635	2540	15.0		mg/kg	06.23.19 05.29		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	96	%	70-135	06.23.19 05.29			
o-Terphenyl		84-15-1	99	%	70-135	06.23.19 05.29			

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #11 (6'') : 628584-011	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Me	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	4400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00998	0.00998		mg/kg	06.28.19 18.17	U	5
Toluene	108-88-3	0.110	0.00998		mg/kg	06.28.19 18.17		5
Ethylbenzene	100-41-4	0.310	0.00998		mg/kg	06.28.19 18.17		5
m,p-Xylenes	179601-23-1	3.13	0.0200		mg/kg	06.28.19 18.17		5
o-Xylene	95-47-6	1.94	0.00998		mg/kg	06.28.19 18.17		5
Total Xylenes	1330-20-7	5.07	0.00998		mg/kg	06.28.19 18.17		5
Total BTEX		5.49	0.00998		mg/kg	06.28.19 18.17		5
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	90	%	70-130	06.28.19 18.17		
4-Bromofluorobenzene		460-00-4	407	%	70-130	06.28.19 18.17	**	

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #12 (6'')		Matrix:	Soil]	Date Received:06.	20.19 17.00	
Lab Sample Id	: 628584-012		Date Collec	ted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300]	Prep Method: E3	00P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00]	Basis: We	et Weight	
Seq Number:	3093287				:	SUB: T104704400)-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	33.7	4.96	mg/kg	06.22.19 22.16		1

Analytical Method: TPH By SW8015	5 Mod				Р	rep Method: TX	1005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Prep	b: 06.22	.19 15.00	В	Basis: We	Weight	
Seq Number: 3093277				S	UB: T104704400	-18-16		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	143	15.0		mg/kg	06.23.19 05.54		1
Diesel Range Organics (DRO)	C10C28DRO	1260	15.0		mg/kg	06.23.19 05.54		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	92.4	15.0		mg/kg	06.23.19 05.54		1
Total TPH	PHC635	1500	15.0		mg/kg	06.23.19 05.54		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	90	%	70-135	06.23.19 05.54		
o-Terphenyl		84-15-1	79	%	70-135	06.23.19 05.54		

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #12 (6'') : 628584-012	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00		
Analytical Method: BTEX by EPA 8021B Prep Method: SW5030B							
Tech:	DVM			% Moisture:			
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight		
Seq Number:	3093930			SUB: T104704	4400-18-16		

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 03.46	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 03.46	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.28.19 03.46	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	06.28.19 03.46	U	1
o-Xylene	95-47-6	0.00377	0.00200		mg/kg	06.28.19 03.46		1
Total Xylenes	1330-20-7	0.00377	0.00200		mg/kg	06.28.19 03.46		1
Total BTEX		0.00377	0.00200		mg/kg	06.28.19 03.46		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	92	%	70-130	06.28.19 03.46		
4-Bromofluorobenzene		460-00-4	125	%	70-130	06.28.19 03.46		

Tetra Tech- Midland, Midland, TX

Sample Id:	Bottom Hole #13 (6")		Matrix:	Soil		Date Received:06.	20.19 17.00	1
Lab Sample Id	: 628584-013		Date Collec	cted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E30)0P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: We	t Weight	
Seq Number:	3093287					SUB: T104704400	-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	51.8	5.01	mg/kg	06.22.19 22.23		1

Analytical Method: TPH By SW8015	5 Mod				P	Prep Method: TX	1005P		
Tech: ARM					9	6 Moisture:			
Analyst: ARM		Date Prep	o: 06.22	.19 15.00	E	Basis: We	t Weight		
Seq Number: 3093277					S	SUB: T104704400-18-16			
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil	
Gasoline Range Hydrocarbons (GRO)	PHC610	154	15.0		mg/kg	06.23.19 06.18		1	
Diesel Range Organics (DRO)	C10C28DRO	1330	15.0		mg/kg	06.23.19 06.18		1	
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	88.7	15.0		mg/kg	06.23.19 06.18		1	
Total TPH	PHC635	1570	15.0		mg/kg	06.23.19 06.18		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	100	%	70-135	06.23.19 06.18			
o-Terphenyl		84-15-1	80	%	70-135	06.23.19 06.18			

Tetra Tech- Midland, Midland, TX

Sample Id: Lab Sample Id	Bottom Hole #13 (6'') : 628584-013	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Me	thod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight
Seq Number:	3093930			SUB: T104704	4400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	06.28.19 04.09	U	1
Toluene	108-88-3	0.00279	0.00201		mg/kg	06.28.19 04.09		1
Ethylbenzene	100-41-4	0.0686	0.00201		mg/kg	06.28.19 04.09		1
m,p-Xylenes	179601-23-1	0.119	0.00402		mg/kg	06.28.19 04.09		1
o-Xylene	95-47-6	0.127	0.00201		mg/kg	06.28.19 04.09		1
Total Xylenes	1330-20-7	0.246	0.00201		mg/kg	06.28.19 04.09		1
Total BTEX		0.317	0.00201		mg/kg	06.28.19 04.09		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	166	%	70-130	06.28.19 04.09	**	
1,4-Difluorobenzene		540-36-3	86	%	70-130	06.28.19 04.09		

Tetra Tech- Midland, Midland, TX

Sample Id: North 1 Sidewall Lab Sample Id: 628584-014			Matrix:SoilDate Received:06.20Date Collected:06.20.1900.00			5.20.19 17.00)	
Analytical Me Tech: Analyst: Seq Number:	thod: Chloride by EPA CHE SPC 3093287	. 300	Date Prep:	06.22.19 16.00		Prep Method: E. % Moisture: Basis: W SUB: T10470440	300P Tet Weight 00-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	996	4.98	mg/kg	06.22.19 22.30		1
Analytical Me Tech:	thod: TPH By SW801: ARM	5 Mod				Prep Method: T2 % Moisture:	X1005P	
Analyst:	ARM		Date Prep:	06.22.19 15.00		Basis: W	et Weight	

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.23.19 06.43	U	1
Diesel Range Organics (DRO)	C10C28DRO	255	15.0		mg/kg	06.23.19 06.43		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	40.7	15.0		mg/kg	06.23.19 06.43		1
Total TPH	PHC635	296	15.0		mg/kg	06.23.19 06.43		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	96	%	70-135	06.23.19 06.43		
o-Terphenyl		84-15-1	74	%	70-135	06.23.19 06.43		

Seq Number: 3093930

Certificate of Analytical Results 628584

Tetra Tech- Midland, Midland, TX

Momentum 36 State #1

SUB: T104704400-18-16

Sample Id: Lab Sample Id	North 1 Sidewall : 628584-014	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight

Parameter **Cas Number** Result RL Units **Analysis Date** Flag Dil 71-43-2 Benzene < 0.002000.00200 mg/kg 06.28.19 11.05 U 1 Toluene 108-88-3 < 0.00200 0.00200 06.28.19 11.05 U mg/kg 1 Ethylbenzene 100-41-4 0.00200 mg/kg < 0.00200 06.28.19 11.05 U 1 m,p-Xylenes 179601-23-1 < 0.00399 0.00399 mg/kg 06.28.19 11.05 U 1 o-Xylene 95-47-6 < 0.00200 0.00200 06.28.19 11.05 U mg/kg 1 Total Xylenes 1330-20-7 < 0.00200 0.00200 06.28.19 11.05 U mg/kg 1 Total BTEX < 0.00200 0.00200 06.28.19 11.05 U mg/kg 1 % Cas Number Flag Surrogate Units Limits Analysis Date Recovery 1,4-Difluorobenzene 540-36-3 98 % 70-130 06.28.19 11.05 4-Bromofluorobenzene 460-00-4 119 % 70-130 06.28.19 11.05

Tetra Tech- Midland, Midland, TX

Sample Id:	East #1 Sidewall		Matrix:	Soil		Date Received:06.2	20.19 17.00	
Lab Sample Id	: 628584-015		Date Collec	cted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E30	0P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.00		Basis: Wet	Weight	
Seq Number:	3093287					SUB: T104704400	-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	1410	4.95	mg/kg	06.22.19 22.37		1

Analytical Me	thod: TPH By SW80	15 Mod				F	Prep Method: TX	1005P	
Tech:	ARM					9	6 Moisture:		
Analyst:	ARM		Date Prep	p: 06.22	.19 15.00	E	Basis: We	t Weight	
Seq Number:	3093277 SUB: T			SUB: T104704400	104704400-18-16				
Parameter		Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hyd	drocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.23.19 07.08	U	1
Diesel Range Or	ganics (DRO)	C10C28DRO	38.9	15.0		mg/kg	06.23.19 07.08		1
Motor Oil Range H	Iydrocarbons (MRO)	PHCG2835	17.2	15.0		mg/kg	06.23.19 07.08		1
Total TPH		PHC635	56.1	15.0		mg/kg	06.23.19 07.08		1
Surrogate			Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooct	tane		111-85-3	106	%	70-135	06.23.19 07.08		
o-Terpheny	1		84-15-1	90	%	70-135	06.23.19 07.08		

Tetra Tech- Midland, Midland, TX

Momentum 36 State #1

Sample Id: Lab Sample Id:	East #1 Sidewall : 628584-015	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	1:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	

Analyst: DVM Seq Number: 3093930

06.27.19 22.10 Date Prep:

Basis: Wet Weight SUB: T104704400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	06.28.19 11.28	U	1
Toluene	108-88-3	< 0.00199	0.00199		mg/kg	06.28.19 11.28	U	1
Ethylbenzene	100-41-4	0.00259	0.00199		mg/kg	06.28.19 11.28		1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	06.28.19 11.28	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	06.28.19 11.28	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	06.28.19 11.28	U	1
Total BTEX		0.00259	0.00199		mg/kg	06.28.19 11.28		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	114	%	70-130	06.28.19 11.28		
1,4-Difluorobenzene		540-36-3	99	%	70-130	06.28.19 11.28		

Tetra Tech- Midland, Midland, TX

Sample Id:	West #1 Sidewall		Matrix:	Soil	Ι	Date Received:06	5.20.19 17.00)
Lab Sample Id	: 628584-016		Date Collec	cted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	800			I	Prep Method: E	300P	
Tech:	CHE				ç	% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.30	I	Basis: W	et Weight	
Seq Number:	3093335				S	SUB: T10470440	00-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	16.7	5.00	mg/kg	06.24.19 15.45		1

Analytical Method: TPH By SW801	5 Mod				F	Prep Method: TX	1005P	
Tech: ARM					9	% Moisture:		
Analyst: ARM		Date Pre	p: 06.22	.19 15.00	E	Basis: We	et Weight	
Seq Number: 3093277				S	SUB: T10470440)-18-16		
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.23.19 07.32	U	1
Diesel Range Organics (DRO)	C10C28DRO	63.2	15.0		mg/kg	06.23.19 07.32		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	15.0		mg/kg	06.23.19 07.32	U	1
Total TPH	PHC635	63.2	15.0		mg/kg	06.23.19 07.32		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	94	%	70-135	06.23.19 07.32		
o-Terphenyl		84-15-1	70	%	70-135	06.23.19 07.32		

Seq Number: 3093930

Certificate of Analytical Results 628584

Tetra Tech- Midland, Midland, TX

Momentum 36 State #1

Sample Id: Lab Sample Id	West #1 Sidewall : 628584-016	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight

SUB: T104704400-18-16

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 06.43	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 06.43	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.28.19 06.43	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	06.28.19 06.43	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.28.19 06.43	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.28.19 06.43	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.28.19 06.43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	116	%	70-130	06.28.19 06.43		
1,4-Difluorobenzene		540-36-3	96	%	70-130	06.28.19 06.43		

Tetra Tech- Midland, Midland, TX

Sample Id:	South #1 Sidewall		Matrix:	Soil		Date Received:0	6.20.19 17.00	
Lab Sample Id	: 628584-017		Date Collec	eted: 06.20.19 00.00				
Analytical Me	thod: Chloride by EPA	300				Prep Method: E	300P	
Tech:	CHE					% Moisture:		
Analyst:	SPC		Date Prep:	06.22.19 16.30		Basis: W	Vet Weight	
Seq Number:	3093335					SUB: T1047044	00-18-16	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	192	5.05	mg/kg	06.24.19 16.02		1

Analytical Method: TPH By SW8015	5 Mod				Р	rep Method: TX1	005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Prep	: 06.22.	19 15.00	В	Basis: Wet	Weight	
Seq Number: 3093277 SUE			UB: T104704400	-18-16				
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	15.9	14.9		mg/kg	06.23.19 07.57		1
Diesel Range Organics (DRO)	C10C28DRO	573	14.9		mg/kg	06.23.19 07.57		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	76.5	14.9		mg/kg	06.23.19 07.57		1
Total TPH	PHC635	665	14.9		mg/kg	06.23.19 07.57		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	92	%	70-135	06.23.19 07.57		
o-Terphenyl		84-15-1	81	%	70-135	06.23.19 07.57		

Seq Number: 3093930

Certificate of Analytical Results 628584

Tetra Tech- Midland, Midland, TX

Momentum 36 State #1

Sample Id: Lab Sample Id	South #1 Sidewall : 628584-017	Matrix: Date Collected	Soil : 06.20.19 00.00	Date Received	:06.20.19 17.00
Analytical Met	hod: BTEX by EPA 8021B			Prep Method:	SW5030B
Tech:	DVM			% Moisture:	
Analyst:	DVM	Date Prep:	06.27.19 22.10	Basis:	Wet Weight

SUB: T104704400-18-16

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	06.28.19 07.06	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	06.28.19 07.06	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	06.28.19 07.06	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	06.28.19 07.06	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	06.28.19 07.06	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	06.28.19 07.06	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	06.28.19 07.06	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	114	%	70-130	06.28.19 07.06		
1,4-Difluorobenzene		540-36-3	95	%	70-130	06.28.19 07.06		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	nt Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Laboration	atory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 628584

Tetra Tech- Midland

Momentum 36 State #1

Analytical Method:	Chloride by EPA 30	0						P	rep Meth	od: E30	0P	
Seq Number:	3093287			Matrix:	Solid				Date Pr	ep: 06.2	22.19	
MB Sample Id:	7680531-1-BLK		LCS Sar	nple Id:	7680531-	1-BKS		LCS	D Sampl	e Id: 768	0531-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lin	it Units	Analysis Date	Flag
Chloride	<0.858	250	244	98	244	98	90-110	0	20	mø/kø	06.22.19 18:51	

Analytical Method:	Chloride by EPA 30)0						P	rep Metho	od: E30	0P	
Seq Number:	3093335]	Matrix:	Solid				Date Pre	ep: 06.2	22.19	
MB Sample Id:	7680532-1-BLK		LCS San	nple Id:	7680532-1	I-BKS		LCS	D Sample	e Id: 768	0532-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limi	it Units	Analysis Date	Flag
Chloride	< 5.00	250	258	103	256	102	90-110	1	20	mg/kg	06.24.19 15:34	

Analytical Method:	Chloride by EPA 3	00						Pi	rep Meth	od: E30	0P	
Seq Number:	3093287			Matrix:	Soil				Date Pr	ep: 06.2	2.19	
Parent Sample Id:	628549-002		MS San	nple Id:	628549-00	02 S		MS	D Sampl	e Id: 628	549-002 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 0.858	250	269	108	269	108	90-110	0	20	mg/kg	06.22.19 19:13	

Analytical Method:	Chloride by	y EPA 3()0						Pi	rep Meth	od: E30	0P	
Seq Number:	3093287				Matrix:	Soil				Date Pr	ep: 06.2	2.19	
Parent Sample Id:	628569-001			MS Sar	nple Id:	628569-00	01 S		MS	D Sample	e Id: 628	569-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	ut Units	Analysis Date	Flag
Chloride		< 0.865	252	257	102	257	102	90-110	0	20	mg/kg	06.22.19 20:55	

Analytical Method:	Chloride by EPA 30	0						Pr	ep Metho	od: E30	OP	
Seq Number:	3093335			Matrix:	Soil				Date Pr	ep: 06.2	22.19	
Parent Sample Id:	628256-003		MS San	nple Id:	628256-00)3 S		MS	D Sample	e Id: 628	256-003 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	<4.95	248	236	95	235	95	90-110	0	20	mg/kg	06.24.19 17:08	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 628584

Tetra Tech- Midland

Momentum 36 State #1

Analytical Method:	Chloride by EPA 30					Pi	rep Meth	od: E30	0P			
Seq Number:	3093335			Matrix:	Soil				Date Pr	ep: 06.2	2.19	
Parent Sample Id:	628584-016		MS Sar	nple Id:	628584-01	16 S		MS	D Sample	e Id: 628	584-016 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	uit Units	Analysis Date	Flag
Chloride	16.7	250	257	96	258	97	90-110	0	20	mg/kg	06.24.19 15:51	

Analytical Method: Seq Number:	od]	Solid		F	rep Methoo Date Prep	1: TX 5: 06.2	1005P 22.19					
MB Sample Id:	7680559-1-	BLK		LCS Sample Id:		7680559-	1-BKS		LCS	SD Sample	ld: 768	0559-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ns (GRO)	<15.0	1000	1090	109	1090	109	70-135	0	20	mg/kg	06.22.19 23:13	
Diesel Range Organics (I	DRO)	<8.13	1000	1100	110	1080	108	70-135	2	20	mg/kg	06.22.19 23:13	
Surrogate		MB %Rec	MB Flag	L0 %]	CS Rec	LCS Flag	LCSI %Ree) LCSI c Flag	D L g	Limits	Units	Analysis Date	
1-Chlorooctane		115		9	94		93		7	0-135	%	06.22.19 23:13	
o-Terphenyl		97		8	37		87		7	0-135	%	06.22.19 23:13	

TPH By SW	8015 M	lod	Moterius Soil					Р	rep Method	l: TX	1005P	
3093277				Matrix:	Soil				Date Prep	b: 06.2	22.19	
628584-001			MS Sar	nple Id:	628584-00	01 S		MS	D Sample l	d: 628	584-001 SD	
	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
ns (GRO)	20.8	999	1020	100	981	96	70-135	4	20	mg/kg	06.23.19 00:29	
DRO)	228	999	1150	92	1170	95	70-135	2	20	mg/kg	06.23.19 00:29	
			N %	1S Rec	MS Flag	MSD %Ree	MSD c Flag		limits	Units	Analysis Date	
			8	37		84		7	0-135	%	06.23.19 00:29	
o-Terphenyl			79			81		7	0-135	%	06.23.19 00:29	
	TPH By SW 3093277 628584-001 ns (GRO) DRO)	TPH By SW8015 M 3093277 628584-001 Parent Result ns (GRO) 20.8 DRO) 228	Parent Spike Result Amount ns (GRO) 20.8 999 DRO) 228 999	Parent Spike MS San 028584-001 MS San MS San MS San MS San MS San San	TPH By SW8015 Mod 3093277 Matrix: 628584-001 MS Sample Id: Parent Result Spike Amount MS Result %Rec ns (GRO) 20.8 999 1020 100 DRO) 228 999 1150 92 MS MS MS MS %Rec 87 79 79	Matrix: Soil 3093277 Matrix: Soil 628584-001 MS Sample Id: 628584-00 Parent Result Spike Amount MS MS MSD Result ns (GRO) 20.8 999 1020 100 981 DRO) 228 999 1150 92 1170 MS MS MS MS MS 87 79 79 100 100	Matrix: Soil 3093277 Matrix: Soil 628584-001 MS Sample Id: 628584-001 S Parent Result Spike Amount MS MS MSD MSD ns (GRO) 20.8 999 1020 100 981 96 ORO) 228 999 1150 92 1170 95 MS MS MS MSD MSD %Rec Flag %Rec 87 84 79 81	Matrix: Soil 3093277 Matrix: Soil 628584-001 MS Sample Id: 628584-001 S Parent Result Spike Amount MS Result MS Result MSD Result R	TPH By SW8015 Mod Matrix: Soil Matrix: Soil 3093277 Matrix: Soil MS Sample Id: 628584-001 S MS 628584-001 MS Spike Result MS Sample Id: 628584-001 S MS MS Namount MS Sample Id: 628584-001 S MS MS	Prep Method 3093277 Matrix: Soil Date Prep 628584-001 MS Sample Id 628584-001 S MSD sample Id Parent Result Spike Amount MS MS MSD Result MSD %Rec Limits %RPD Limit ns (GRO) 20.8 999 1020 100 981 96 70-135 4 20 DRO) 228 999 1150 92 1170 95 70-135 2 20 MS fee MS fee MS fee MS fee MSD f	Prep Method: TX 3093277 Matrix: Soil Date Prep: 06.2 628584-001 MS Sample Id: 628584-001 S MSD Sample Id: 628 Parent Result Spike Amount MS Result MSD Result MSD	TPH By SW8015 ModPrep Method: IX1005P3093277Matrix:SoilDate Prep: $06.22.19$ 628584-001MS S $merror IX$ $06.22.19$ $08.22.19$ $08.22.19$ 628584-001MS S $merror IX$ MS S $merror IX$ MSDMS

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 628584

Tetra Tech- Midland

Momentum 36 State #1

Analytical Method:	BTEX by EPA 8021			Prep Method: SW5030B								
Seq Number:	3093930			Matrix:	Solid				Date Pr	rep: 06.2	7.19	
MB Sample Id:	7681025-1-BLK		LCS Sar	nple Id:	7681025-	1-BKS		LCS	SD Sampl	e Id: 768	1025-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	ORPD Lin	nit Units	Analysis Date	Flag
Benzene	0.000471	0.100	0.0787	79	0.0890	89	70-130	12	35	mg/kg	06.27.19 22:15	
Toluene	0.000521	0.100	0.0852	85	0.0951	95	70-130	11	35	mg/kg	06.27.19 22:15	
Ethylbenzene	< 0.000567	0.100	0.0914	91	0.102	102	70-130	11	35	mg/kg	06.27.19 22:15	
m,p-Xylenes	< 0.00102	0.201	0.180	90	0.201	101	70-130	11	35	mg/kg	06.27.19 22:15	
o-Xylene	0.000441	0.100	0.0882	88	0.0981	98	70-130	11	35	mg/kg	06.27.19 22:15	
Surrogate	MB %Rec	MB Flag	L %	CS Rec	LCS Flag	LCSE %Rec) LCS c Flag	D I g	Limits	Units	Analysis Date	
1,4-Difluorobenzene	94		ç	93		95		7	70-130	%	06.27.19 22:15	
4-Bromofluorobenzene	106		1	03		106		7	70-130	%	06.27.19 22:15	

Analytical Method:	BTEX by EPA 8021		Prep Method: SW5030B									
Seq Number:	3093930			Matrix:	Soil				Date Prep	p: 06.2	27.19	
Parent Sample Id:	628584-001		MS Sar	nple Id:	628584-00	01 S		M	SD Sample	Id: 628	584-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0994	0.0906	91	0.0909	91	70-130	0	35	mg/kg	06.28.19 00:18	
Toluene	< 0.000453	0.0994	0.0970	98	0.0962	96	70-130	1	35	mg/kg	06.28.19 00:18	
Ethylbenzene	< 0.000561	0.0994	0.101	102	0.101	101	70-130	0	35	mg/kg	06.28.19 00:18	
m,p-Xylenes	< 0.00101	0.199	0.204	103	0.198	99	70-130	3	35	mg/kg	06.28.19 00:18	
o-Xylene	0.000447	0.0994	0.0972	97	0.0955	95	70-130	2	35	mg/kg	06.28.19 00:18	
Surrogate	ogate		MS %Rec		MS Flag	MSD %Rec	MSI Flag)] g	Limits	Units	Analysis Date	
1,4-Difluorobenzene			9	97	97		7	0-130	%	06.28.19 00:18		
4-Bromofluorobenzene		10	109 70-130 % 06.28.19 0					06.28.19 00:18				

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Image: Term Term Term Term Term Term Image: Term Term Term Term Term Term Term Term Term Term					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Special Report Limits or TRRF	Date: Ime:	Heceived by:	Date: lime:	Relinquished by:
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ample lemperature	4			in the state of th
$\begin{tabular}{ c c c c c } \hline Pertra Tech, Inc. \\ \hline \end{tabular} \en$	RUSH: Same Day	Date: Time:	Received by:	Date: Time:	Relinguished by:
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ONLY REMARKS:	Date: Time:	Received by:	Vochning 6/20/19 1535	Pelinquished by:
$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			6/20/12 ×	Hom Hole # (6")	R
$\begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	X	2 - X	6/20/19	four Hore #7 (6")	S.
$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	XX	x + z	6/20/1m >>	on Hol2#5 (6")	30
$\begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	XX	2 - X	6/20/197	oun those #7 (bis)	₿¢.
$\begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	X X X	N I N	Colorofica >	on the the (e ii)	Bo
$\begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	XX	× - 7	k/in/in/ >	ion Holc #5 (6")	B
Mart Name (b) Tetra Tech, Inc. Summary Same (b)		< X 1 2	6/10/10 >	om Hok #4 (6")	Bo
International construction International construction International		× · · · z	6/19/19	om Hole #3 (6")	S.
Inter Name: Inter Tech, Inc. North Manager: Inter Name: Charles State Manager: North Kanneger: North Name: Charles State Manager: North Name: State Manager: State Manager: North Name: State Manager: North Name: Charles State Manager: North Name: State Manager: State Manager: North Name: State Manager: State Manager: State Manager: North Name: North Name: State Manager: State Manager: North Name: North Name: State Manager: State Manager: North Name: North Name: State Manager: State Manager: North Name: North Namager: State Manager:		x X · Z	6/14/19	ion Hele #2 (G")	<i>b</i> ₂
Image: Source Service Sector Service Bit Manager: Multicase Service Sector Service Multicase Service receiving Laboratory: Ch - HCE Multicase Service Multicase Service Multicase Service Multicase Service Multicase Service receiving Laboratory: Ch - HCE Multicase Service Multicase Servicase Service Multicase Service </td <td>× ×</td> <td>× ×</td> <td>6/10/19</td> <td>ern Hole #1 (6")</td> <td>69</td>	× ×	× ×	6/10/19	ern Hole #1 (6")	69
Image: Statute Statut	TPH TX1 TPH TX1 TPH 801 PAH 827 Total Meta TCLP Met TCLP Vol TCLP Ser RCI GC/MS V GC/MS S PCB's 80 NORM PLM (Ast Chloride Chloride General	HCL HNO ₃ ICE None # CONTA	DATE TIME WATER		LAB USE)
Image: Intervalues Tetra Tech, Inc. Source Name: Index Jose 300 Inde	21B 005 5M (0C als A tals / datiles mi Vo fol. & Semi. 082 / S Swat		YEAR: 2019	SAMPI E IDENTIFICATION	
Tetra Tech, Inc. Source State	Ag As E (Ext to: (GRO) Ag As g As s s olatiles 3260B Vol. { 608 S S S S S S S S S	TRIX PRESERVATIVE METHOD RS	SAMPLING MA		
Image: Constraint of the series of the se	-X 8260 - DRO - Ba Cd Cr Ba Cd Cr Ba Cd C - - - - - - - - - - - - -				Comments:
Image: Continue Define a Tech, Inc. Solution Tech, Solution Clent Name: Conf. Conf. Site Manager: Milled Texas 7875 Conf. Solution Project Name: Mountain Texas Site Manager: Milled Texas 7875 Maland Texas 7875 Project Name: Mountain Texas Site Manager: Milled Texas 7875 Maland Texas 7875 Project Name: Mountain Texas Site Manager: Milled Texas 7875 Maland Texas 7875 Project Name: Mountain Texas Site Manager: Milled Texas 7875 Maland Texas 7875 Project Name: Mountain Texas Site Manager: Milled Texas 7875 Maland Texas 7875 Project Name: Mountain Texas Site Manager: Milled No.) Maland Texas 7875 Project Location: Control Froject #: Exast (x) BB2-394 Circle or Specify Method No.) Project Location: Control Ep Control Site Manager: Exast (x) BB2-394 Site Manager: Bite Manager: Milled Info Mole to: Control Ep Control Bite P D Bite P D Bite P D	B ORO - Pb Se r Pb Se 225	2 WOEHRING	Sampler Signature: Coออออ	CHEDINATE KENCO	Receiving Laboratory
Image: Project Location: Environ Site Manager: Multimut, Texas 79705 Site Manager: Multimut, Texas 79705 Curcle or Specify Method No.) Project Location: Stock #1 Multimut, Texas 79705 (Crcle or Specify Method No.) Project Location: LEA CO INTA Project #: Multimut, Texas 79705	MRO) Hg Hg			ILE TAVARES	nvoice to:
Image: Continue Site Manager: Momentum Site Manager: Momentum NIKE CREMENT Grad Content Content of the fill	list)		Project #: PENDING	EA COINM	Project Location: (county, state)
Tetra Tech, Inc. BOTW Wall Street, Ste 100 Midland, Texas 79705 Tel (422) 682-459 Fax (432) 682-3946 Curcle of Specify Method No.) Client Name: Curcle of Specify Method No.)				ientum 36 State #1	Project Name: Mov
Tetra Tech, Inc. Maland, Texas 59705 Tel (432) 682-3946 Fax (432) 682-3946 L28584	ANALYSIS REQUEST	CARMONA	Site Manager:		Client Name:
	628584	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946		Tetra Tech, Inc.	F

Page 46 of 52

Final 1.000

Relinquished t	Kelinquistieu u	00000	Relinquished b									ONLY)	LAB #			Comments:	Receiving Labora	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	F
y; Date: Time:	9	Date: Time:	W outif 6/20/25 1555		South #1 Sidewall	West #1 Sidewerl	TACE # SWEWEI	North [Sidewall	Batom Hole #13 (6")	Bottom Hole # 12 (6")	Bothm Holz # 11 (6")			SAMBLE IDENTIFICATION			atory: B Kenco	COG - IKE TAVAREZ	LEA CO,NM	Momentum 36 Sti # 1	604	Tetra Tech, Inc.
Received by:		Received by:	Received by:		4						6/20/14	D/	ATE	YEAR: 2019	SAMPLING		Sampler Signature:		riujeu *· P	D	Site Manager: Iv	
Date:		Date:	6/20/19		X	X	X	×	×	×	X	W S H H		3	MATRIX ME		Conver mo		inding		NIKE CARMON	901W Wall Street, Ste Midland, Texas 7970 Tel (432) 682-4555 Fax (432) 682-394
Time:		Time:	Time: VS:55		2	× ×	× 2	X	X	XX	2	(10 N			THOD RS		enving				2	9 9 6
(Circle) HAND DELIV		Sample Temperature	LAB USE ONLY		XX	7	7 7	XX	XX	× ×			PH T PH T PH 80 PAH 83 Fotal M	8021B X1005 D15M 270C letals Metals	G (Ext (GR Ag As Ag A	to C35) O - DRO s Ba Cd (s Ba Cd (- ORO Cr Pb S Cr Pb S	- MRC Se Hg Se Hg))		(Circle	
ERED FEDEX UPS Tr	Rush Charges A	RUSH: Same L	STANDAF									-	TCLP \ TCLP \ RCI GC/MS GC/MS PCB's NORM	Volatile Semi V S Vol. S Sem 8082	es /olatil 8260 i. Vol / 608	es 0B / 624 . 8270C	/625				or Specify Meth	U28
Limits or TRRP Report acking #:	Authorized	Jay 2411 40111 121	DF			* .	X	K	X	*	× '	×	PLM (/ Chlorid Chlori Gene Anion	Asbes de de ral Wa /Catio	sulfa ater C	te TD Chemistr Iance	S y (see	attach	ed list)		ST 10d No.)	584
				F							_		Hold								_	

Page 47 of 52

Final 1.000

Inter-Office Shipment

Page 1 of 3

IOS Number 41955

Date/Time: 06/20/19 17:26

Lab# From:CarlsbadDelivery Priority:

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Address: 1089 N Canal Street

Lab# To: Midland

Air Bill No.:

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
628584-001	S	Bottom Hole #1 (6")	06/19/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/16/19	JKR	CL	
628584-001	S	Bottom Hole #1 (6")	06/19/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/03/19	JKR	PHCC10C28 PHCC28C35]	
628584-001	S	Bottom Hole #1 (6")	06/19/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/03/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-002	S	Bottom Hole #2 (6")	06/19/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/03/19	JKR	PHCC10C28 PHCC28C35	
628584-002	S	Bottom Hole #2 (6")	06/19/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/16/19	JKR	CL	
628584-002	S	Bottom Hole #2 (6")	06/19/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/03/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-003	S	Bottom Hole #3 (6")	06/19/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/16/19	JKR	CL	
628584-003	S	Bottom Hole #3 (6")	06/19/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/03/19	JKR	PHCC10C28 PHCC28C35	
628584-003	S	Bottom Hole #3 (6")	06/19/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/03/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-004	S	Bottom Hole #4 (6")	06/19/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/16/19	JKR	CL	
628584-004	S	Bottom Hole #4 (6")	06/19/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/03/19	JKR	PHCC10C28 PHCC28C35	
628584-004	S	Bottom Hole #4 (6")	06/19/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/03/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-005	S	Bottom Hole #5 (6")	06/19/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/03/19	JKR	PHCC10C28 PHCC28C35	
628584-005	S	Bottom Hole #5 (6")	06/19/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/03/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-005	S	Bottom Hole #5 (6")	06/19/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/16/19	JKR	CL	
628584-006	S	Bottom Hole #6 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-006	S	Bottom Hole #6 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-006	S	Bottom Hole #6 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-007	S	Bottom Hole #7 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-007	S	Bottom Hole #7 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-007	S	Bottom Hole #7 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-008	S	Bottom Hole #8 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-008	S	Bottom Hole #8 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-008	S	Bottom Hole #8 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-009	S	Bottom Hole #9 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	

Inter-Office Shipment

Page 2 of 3

IOS Number 41955

Lab# From: Carlsbad

Lab# To: Midland

Date/Time: 06/20/19 17:26

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Delivery Priority:

Air Bill No.:

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
628584-009	S	Bottom Hole #9 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-009	S	Bottom Hole #9 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-010	S	Bottom Hole #10 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-010	S	Bottom Hole #10 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-010	S	Bottom Hole #10 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-011	S	Bottom Hole #11 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-011	S	Bottom Hole #11 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-011	S	Bottom Hole #11 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-012	S	Bottom Hole #12 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-012	S	Bottom Hole #12 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-012	S	Bottom Hole #12 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-013	S	Bottom Hole #13 (6")	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-013	S	Bottom Hole #13 (6")	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-013	S	Bottom Hole #13 (6")	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-014	S	North 1 Sidewall	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-014	S	North 1 Sidewall	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-014	S	North 1 Sidewall	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-015	S	East #1 Sidewall	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-015	S	East #1 Sidewall	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-015	S	East #1 Sidewall	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-016	S	West #1 Sidewall	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X	
628584-016	S	West #1 Sidewall	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	
628584-016	S	West #1 Sidewall	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-017	S	South #1 Sidewall	06/20/19 00:00	E300_CL	Chloride by EPA 300	06/24/19	12/17/19	JKR	CL	
628584-017	S	South #1 Sidewall	06/20/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	06/24/19	07/04/19	JKR	PHCC10C28 PHCC28C35	

Inter Office Shipment or Sample Comments:

Inter-Office Shipment

Page 3 of 3

IOS Number 41955

Date/Time:	/Time: 06/20/19 17:26 Created by: Elizabeth Mcclellan					Please send report	t to:	Jessica Kra	mer		
Lab# From:	Carls	sbad	Delivery Price	ority:		Address: 1089 N Canal Street					
Lab# To:	Lab# To: Midland		Air Bil	l No.:		E-1	Mail:	jessica.krar	ner@xend	co.com	

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign	
628584-017	S	South #1 Sidewall	06/20/19 00:00	SW8021B	BTEX by EPA 8021B	06/24/19	07/04/19	JKR	BR4FBZ BZ BZME EBZ X]

Inter Office Shipment or Sample Comments:

Relinquished By:

Date Relinquished:

Elizabeth McClellan

06/20/2019

Date Received:

Received By:

Cooler Temperature: <u>06/21/2019 07:33</u>

0.4

Brianna Teel

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Midland IOS #: 41955

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : R8

Sent By:	Elizabeth McClellan	Date Sent:	06/20/2019 05:26 PM
Received By:	Brianna Teel	Date Received:	06/21/2019 07:33 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	.4
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	N/A
#5 *Custody Seals Signed and dated for Containers/coolers	N/A
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by: Brittle Ta Brianna Teel

Date: 06/21/2019

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland	Acceptable Temperature Range: 0 - 6 degC						
Date/ Time Received: 06/20/2019 05:00:35 PM	Air and Metal samples Acceptable Range: Ambient						
Work Order #: 628584	Temperature Measuring device used : T-NM-007						
Sample Recei	ot Checklist	Comments					
#1 *Temperature of cooler(s)?	7.8						
#2 *Shipping container in good condition?	Yes						
#3 *Samples received on ice?	Yes	Chilling in progress					
#4 *Custody Seals intact on shipping container/ cooler?	N/A						
#5 Custody Seals intact on sample bottles?	N/A						
#6*Custody Seals Signed and dated?	N/A						
#7 *Chain of Custody present?	Yes						
#8 Any missing/extra samples?	No						
#9 Chain of Custody signed when relinquished/ received?	Yes						
#10 Chain of Custody agrees with sample labels/matrix?	Yes						
#11 Container label(s) legible and intact?	Yes						
#12 Samples in proper container/ bottle?	Yes						
#13 Samples properly preserved?	Yes						
#14 Sample container(s) intact?	Yes						
#15 Sufficient sample amount for indicated test(s)?	Yes						
#16 All samples received within hold time?	Yes						
#17 Subcontract of sample(s)?	Yes	Sub to Xenco Midland					
#18 Water VOC samples have zero headspace?	N/A						

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan
Checklist reviewed by: Jessica Kramer

Date: 06/20/2019

Jessica Kramer

Date: 06/20/2019