District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAB1914334905		
District RP	2RP-5442		
Facility ID			
Application ID	pAB1914332309		

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380
	Contact Telephone 432-221-7331
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD) NAB1914334905
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220	

Location of Release Source

Latitude 32.253020°

	Longitude	-103.922
(NAD 83 in decimal	degrees to 5 decim	al places)

-103.922969°

Site Name Poker Lake Unit #263H	Site Type Production Well Facility flow line
Date Release Discovered 5/5/2019	API# (if applicable) 30-015-35115

Unit Letter	Section	Township	Range County		
С	6	248	30E	Eddy	

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 1.20	Volume Recovered (bbls) 1.15
Produced Water	Volume Released (bbls) 4.01	Volume Recovered (bbls) 3.85
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
	In the produced water >10,000 mg/1?	
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
0 00 1		

Cause of Release

Fluids were released to the lease road when a hole developed in a steel buried flow line due to corrosion. The line was clamped until it could be repaired. A vacuum truck recovered free fluids and the well was returned to production. Additional third party resources have been retained to assist with remediation.

Form C-141	State of New Mexico			
Form C=141		Incident ID	NAB1914334905	
Page 2	Oil Conservation Division	District RP	2RP-5442	
		Facility ID		
		Application ID	pAB1914332309	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? N/A
If YES, was immediate no N/A	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

It impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why: N/A

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: email: Kyle Littrell@xtoenergy.com	Date: <u>5/17/2019</u> Telephone: <u>432-221-7331</u>
OCD Only Received by:	Date:5/23/2019

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5442
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🛛 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖂 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

- 🛛 Field data
- Data table of soil contaminant concentration data
- Depth to water determination Determination of water source
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

ceived by OCD: 12/5/201	9 1:37:53 PM				Page 4 of
Form C-141 State of New Mexico)		Incident ID	
Page 4	Oil Conservation Divis	Oil Conservation Division		District RP	2RP-5442
				Facility ID	
				Application ID	
failed to adequately investaddition, OCD acceptance and/or regulations. Printed Name: I Signature: J email: Kyle_Littrational	onment. The acceptance of a C-141 report by tigate and remediate contamination that pose e of a C-141 report does not relieve the operat Kyle Littrell	a threat to grour or of responsibi _ Title: _ Date:	Idwater, surfa lity for compl SH&E Su _09/23/2019_	ce water, human health iance with any other fe ipervisor	a or the environment. In ederal, state, or local laws
OCD Only Received by:		I	Date:		

Form C-141 Page 6 State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5442
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Kyle Littrell	Title:	SH&E Supervisor	
Printed Name: Kyle Littrell Signature: Kyle Adventure	Date:		
email:Kyle_Littrell@xtoenergy.com	Telephone:	432-221-7331	
OCD Only			
Received by:	Date:		
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.			
Closure Approved by:	Date:		
Printed Name:	Title:		

LT Environmental, Inc.

3300 North "A" Street Building 1, Unit 222 Midland, Texas 79705 432.704.5178

December 4, 2019

Mr. Mike Bratcher New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request - Addendum Poker Lake Unit #263H Remediation Permit Number 2RP-5442 Eddy County, New Mexico

Dear Mr. Bratcher:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), presents the following addendum to the initial Closure Request dated September 26, 2019. This addendum details additional confirmation soil sampling activities for remediation of soil at the Poker Lake Unit #263H (Site) located in Unit C, Section 6, Township 24 South, Range 30 East, in Eddy County, New Mexico (Figure 1). Based on the remediation activities and results of the final soil confirmation sampling event, XTO is requesting no further action for this release.

BACKGROUND

On August 1, 2019, LTE submitted a Deferral Request to the New Mexico Oil Conservation Division (NMOCD) for impacted soil from a May 5, 2019, produced water and crude oil release associated with a corroded buried steel flow line on the active lease road adjacent to the Site. The Remediation Permit (RP) Number is 2RP-5442. The deferral was submitted after collecting preliminary and delineation soil samples within and around the release extent of impacted soil.

On August 2, 2019, the NMOCD denied deferral, following the Bureau of Land Management (BLM) recommendation to have blade and water truck work conducted on the road based upon the minimal loss of fluids during the release. Upon completion of blading and watering the lease road, LTE collected three additional discrete soil samples (SS04 through SS06) from a depth of approximately 0.5 feet bgs within the affected area on September 6, 2019. Soil samples SS04 through SS06 exhibited chloride concentrations ranged from 606 milligrams per kilogram (mg/kg) to 677 mg/kg. On November 7, 2019, NMOCD denied closure due to the low-level chloride exceedances reported during the additional sampling.

Bratcher, M. Page 2

ADDITIONAL SITE ACTIVITIES

LTE conducted confirmation sampling on November 12, 2019, to confirm the chloride exceedances previously reported had been fully remediated. LTE collected three 5-point composite confirmation floor samples (FS01 through FS03) from a depth of approximately 0.5 feet bgs within the affected area of the lease road (Figure 2 and Table 1).

The 5-point composite samples were collected by depositing 5 aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thorough mixing. Samples were then placed directly into pre-cleaned glass jars, labeled with location, date, time, sampler, method of analysis, and immediately placed on ice. The soil samples were shipped at 4 degrees Celsius (°C) under strict chain-of-custody procedures to Xenco Laboratories (Xenco) in Midland, Texas, for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by the United States Environmental Protection Agency (EPA) Method 8021B, total petroleum hydrocarbons (TPH)gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) by EPA Method 8015M/D, and chloride by EPA Method 300.0.

SOIL ANALYTICAL RESULTS

Laboratory analytical results indicated that confirmation floor samples FS01 through FS03 were compliant with the NMOCD Table 1 Closure Criteria (Closure Criteria) for benzene, BTEX, and TPH. Confirmation soil samples FS01 through FS03 chloride concentrations ranged from 118 mg/kg to 425 mg/kg. Benzene, BTEX, and TPH concentrations were also below Site Closure Criteria. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Attachment 2.

CLOSURE REQUEST

Laboratory analytical results for the confirmation soil samples, collected from the lease road after blading and watering activities, indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria. The affected area is on a heavily-trafficked lease road, that does not need to be conducive to vegetation growth; therefore, no further remedial activities are warranted. Additionally, delineation soil sampling was completed in the area around the release extent. Laboratory analytical results for the July 2019 delineation soil samples indicated that benzene, BTEX, TPH, and chloride concentrations were compliant with the Closure Criteria.

Initial response efforts and remedial activities have mitigated impacts at this Site. XTO requests no further action for RP Number 2RP-5442. An updated NMOCD Form C-141 is included as Attachment 1.

Bratcher, M. Page 3

If you have any questions or comments, please do not hesitate to contact Ms. Ashley Ager at (970) 385-1096 or <u>aager@ltenv.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

Keni M. age

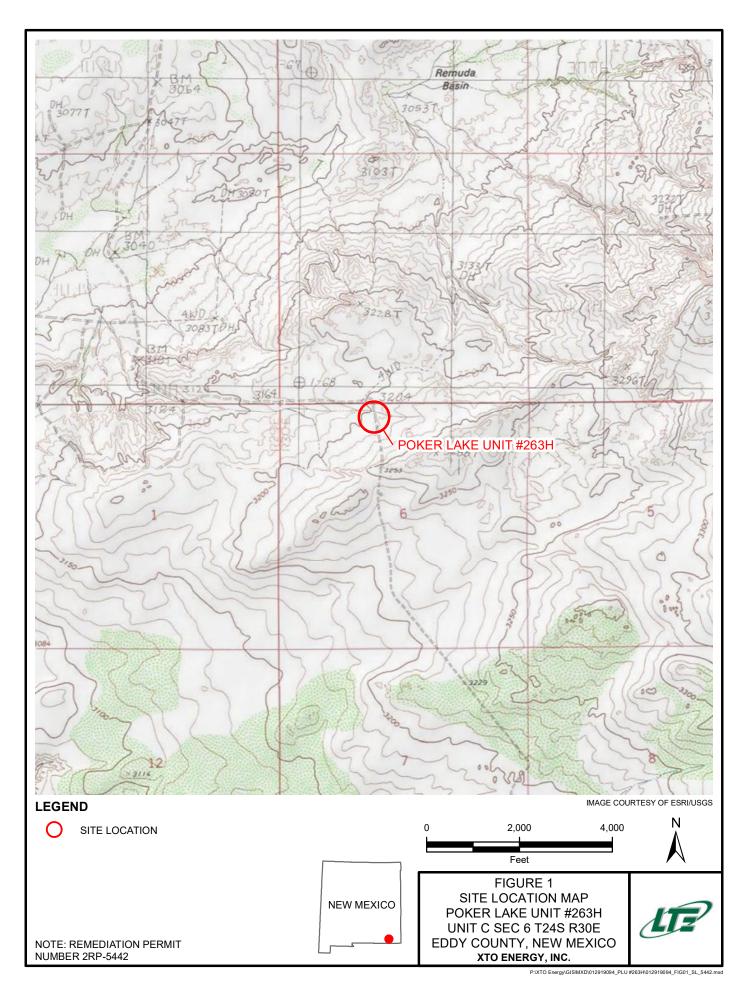
Kevin M. Axe, P.G. Senior Geologist

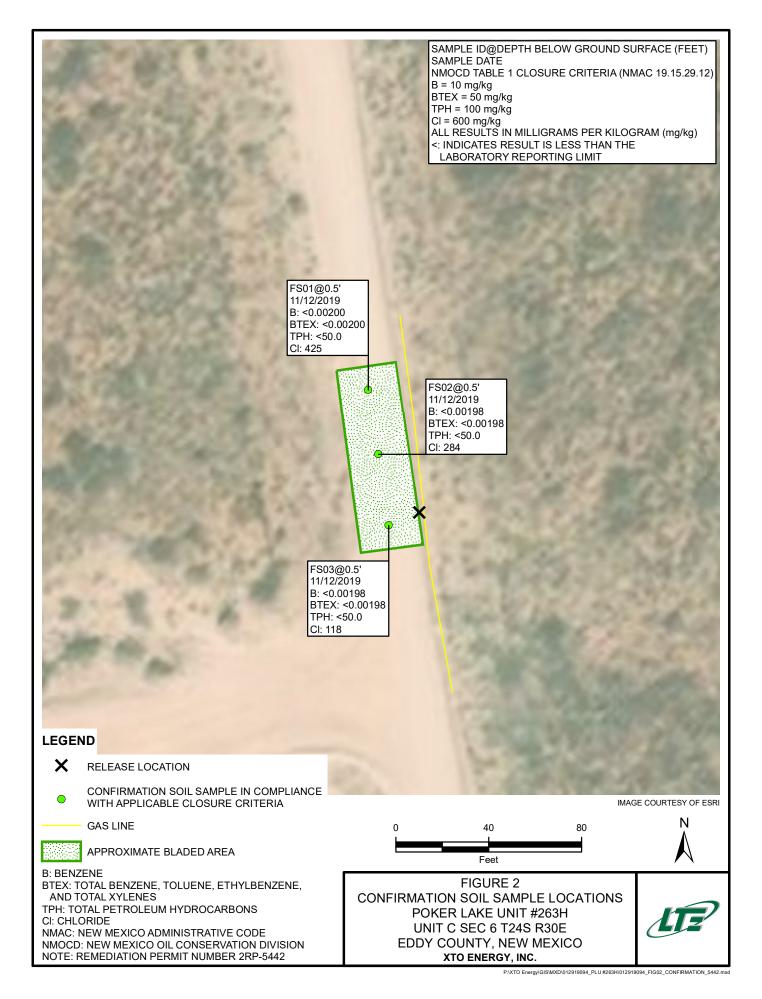
Ashley L. ager

Ashley L. Ager, M.S., P.G. Senior Geologist

cc: Kyle Littrell, XTO Victoria Venegas, NMOCD Robert Hamlet, NMOCD United States Bureau of Land Management

Attachments:


Figure 1Site Location MapFigure 2Confirmation Soil Sample LocationsTable 1Laboratory Analytical ReportsAttachment 1 Initial/Final NMOCD Form C-141 (2RP-5442)Attachment 2 Soil Analytical Results



•

FIGURES

ट्री

•

TABLE

TABLE 1 SOIL ANALYTICAL RESULTS

POKER LAKE UNIT #263H REMEDIATION PERMIT NUMBER 2RP-5442 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	ORO (mg/kg)	Total GRO+DRO (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
SS01	0.5	05/07/2019	<0.00200	0.0209	0.0435	0.232	0.296	89.6	797	126	887	1,010	6,390
SS02	0.5	05/07/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	17.4	633	105	650	755	6,230
SS03	0.5	05/07/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	18.9	<15.0	18.9	18.9	5,640
SS04	0.5	09/06/2019	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	<25.1	<25.1	<25.1	<25.1	<25.1	677
SS05	0.5	09/06/2019	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	<25.1	<25.1	<25.1	<25.1	<25.1	643
SS06	0.5	09/06/2019	<0.000990	<0.000990	<0.000990	<0.000990	<0.000990	<24.9	<24.9	<24.9	<24.9	<24.9	606
BH01	1	07/09/2019	<0.00202	<0.00202	<0.00202	<0.00202	<0.00202	<15.0	<15.0	<15.0	<15.0	<15.0	18.1
BH01A	4	07/09/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	11.6
BH02	1	07/09/2019	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	17.4	<15.0	<15.0	17.4	17.4	21.5
BH02A	4	07/09/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	109
BH03	1	07/09/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	33.3
BH03A	4	07/09/2019	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<15.0	<15.0	<15.0	<15.0	<15.0	5.30
BH04	1	07/09/2019	<0.00201	<0.00201	<0.00201	<0.00201	<0.00201	<14.9	<14.9	<14.9	<14.9	<14.9	22.7
BH04A	4	07/09/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<15.0	<15.0	<15.0	<15.0	<15.0	15.6
FS01	0.5	11/12/2019	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	<50.0	<50.0	<50.0	<50.0	<50.0	425
FS02	0.5	11/12/2019	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<50.0	<50.0	<50.0	<50.0	<50.0	284
FS03	0.5	11/12/2019	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<50.0	<50.0	<50.0	<50.0	<50.0	118
NMOCD Table 1 Closure Criteria			10	NE	NE	NE	50	NE	NE	NE	NE	100	600

Notes:

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes

DRO - diesel range organics

GRO - gasoline range organics

mg/kg - milligrams per kilogram

ORO - motor oil range organics

NMAC - New Mexico Administrative Code

NMOCD - New Mexico Oil Conservation Division NE - not established

TPH - total petroleum hydrocarbons

Bold - indicates result exceeds the applicable regulatory standard

< - indicates result is below laboratory reporting limits

Table 1 - closure criteria for soils impacted by a release per NMAC 19.15.29 August 2018

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NAB1914334905
District RP	2RP-5442
Facility ID	
Application ID	pAB1914332309

Release Notification

Responsible Party

Responsible Party XTO Energy	OGRID 5380	
	Contact Telephone 432-221-7331	
Contact email Kyle_Littrell@xtoenergy.com	Incident # (assigned by OCD) NAB1914334905	
Contact mailing address 522 W. Mermod, Carlsbad, NM 88220		

Location of Release Source

Longitude

-103.922969°

Latitude _________32.253020°

(NAD 83 in decimal de	grees to 5 decimal places)
Site Name Poker Lake Unit #263H	Site Type Production Well Facility flow line
Date Release Discovered 5/5/2019	API# (if applicable) 30-015-35115

Unit Letter	Section	Township	Range	County
С	6	248	30E	Eddy

Surface Owner: State E Federal Tribal Private (Name: BLM

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

X Crude Oil	Volume Released (bbls) 1.20	Volume Recovered (bbls) 1.15
Produced Water	Volume Released (bbls) 4.01	Volume Recovered (bbls) 3.85
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

Fluids were released to the lease road when a hole developed in a steel buried flow line due to corrosion. The line was clamped until it could be repaired. A vacuum truck recovered free fluids and the well was returned to production. Additional third party resources have been retained to assist with remediation.

Form C-141	State of New Mexico			_
10mm C-141		Incident ID	NAB1914334905	
Page 2	Oil Conservation Division	District RP	2RP-5442	
		Facility ID		
		Application ID	pAB1914332309	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? N/A			
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?				
N/A				

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

It impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why: N/A

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: email: Kyle Littrell@xtoenergy.com	Date: Telephone:
OCD Only Received by:	Date:5/23/2019

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5442
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔀 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🛛 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔀 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖂 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

- 🛛 Field data
- Data table of soil contaminant concentration data
- Depth to water determination Determination of water source
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

ceived by OCD: 12/5/202	19 1:37:53 PM				Page 18 of
Form C-141	State of New Mexico)		Incident ID	
Page 4	Oil Conservation Divis	ion		District RP	2RP-5442
				Facility ID	
				Application ID	
failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name: Signature:	onment. The acceptance of a C-141 report by tigate and remediate contamination that pose e of a C-141 report does not relieve the operat Kyle Littrell	a threat to groun- tor of responsibil Title: Date:	dwater, surfac ity for compli SH&E Su _09/23/2019_	e water, human health ance with any other fe pervisor	or the environment. In deral, state, or local laws
OCD Only Received by:		D	Date:		

Form C-141 Page 6 State of New Mexico Oil Conservation Division

Incident ID	
District RP	2RP-5442
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Kyle Littrell	Title:	SH&E Supervisor							
Printed Name: Kyle Littrell Signature: Kyle Adventure	Date:								
email:Kyle_Littrell@xtoenergy.com	Telephone:	432-221-7331							
OCD Only									
Received by:	Date:								
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.									
Closure Approved by:	Date:								
Printed Name:	Title:								

•

Analytical Report 643015

for LT Environmental, Inc.

Project Manager: Dan Moir

PLU 263

012919094

14-NOV-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

14-NOV-19

Project Manager: **Dan Moir LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 643015 PLU 263 Project Address: Eddy County

Dan Moir:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 643015. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 643015 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Vermer

 Jessica Kramer

 Project Assistant

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

.

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
FS01	S	11-12-19 14:40	0.5 ft	643015-001
FS02	S	11-12-19 14:50	0.5 ft	643015-002
FS03	S	11-12-19 15:00	0.5 ft	643015-003

•

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: PLU 263

 Project ID:
 012919094

 Work Order Number(s):
 643015

 Report Date:
 14-NOV-19

 Date Received:
 11/13/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3107440 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:012919094Contact:Dan MoirProject Location:Eddy County

Certificate of Analysis Summary 643015

LT Environmental, Inc., Arvada, CO

Project Name: PLU 263

Date Received in Lab:Wed Nov-13-19 10:44 amReport Date:14-NOV-19Project Manager:Jessica Kramer

	Lab Id:	643015-0	001	643015-0	002	643015-0)03		
Analysis Requested	Field Id:	FS01		FS02		FS03			
Analysis Kequesieu	Depth:	0.5- ft	0.5- ft		0.5- ft				
	Matrix:	SOIL	,	SOIL		SOIL			
	Sampled:	Nov-12-19	Nov-12-19 14:40		14:50	Nov-12-19	15:00		
BTEX by EPA 8021B	Extracted:	Nov-13-19	15:00	Nov-13-19	15:00	Nov-13-19	15:00		
SUB: T104704400-19-19	Analyzed:	Nov-14-19	01:52	Nov-14-19	02:12	Nov-14-19	02:32		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00200	0.00200	<0.00198	0.00198	< 0.00198	0.00198		
Toluene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198		
Ethylbenzene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198		
m,p-Xylenes		< 0.00400	0.00400	< 0.00397	0.00397	< 0.00397	0.00397		
o-Xylene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198		
Total Xylenes		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00198	0.00198		
Total BTEX		< 0.00200	0.00200	<0.00198	0.00198	< 0.00198	0.00198		
Chloride by EPA 300	Extracted:	Nov-13-19	16:30	Nov-13-19	16:30	Nov-13-19	16:30		
SUB: T104704400-19-19	Analyzed:	Nov-13-19	21:01	Nov-13-19	21:07	Nov-13-19	21:27		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		425	25.1	284	25.0	118	4.97		
TPH by SW8015 Mod	Extracted:	Nov-13-19	16:00	Nov-13-19	16:00	Nov-13-19	16:00		
SUB: T104704400-19-19	Analyzed:	Nov-14-19	03:30	Nov-14-19	04:34	Nov-14-19	04:55		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<50.0	50.0	<50.0	50.0		
Diesel Range Organics (DRO)		<50.0	50.0	<50.0	50.0	<50.0	50.0		
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<50.0	50.0	<50.0	50.0		
Total GRO-DRO		<50.0	50.0	<50.0	50.0	<50.0	50.0		
Total TPH		<50.0	50.0	<50.0	50.0	<50.0	50.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession beamer

Jessica Kramer Project Assistant

Page 25 of 38

Final 1.000

Page 5 of 18

Certificate of Analytical Results 643015

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id: FS01 Lab Sample Id: 643015-001				Date Received:11.13.19 10.44 Sample Depth: 0.5 ft			
Analytical Method: Chloride by E	PA 300]	Prep Method: E30)0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	11.13.19 16.30]	Basis: We	t Weight	
Seq Number: 3107408				:	SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	425	25.1	mg/kg	11.13.19 21.01		5

Analytical Method: TPH by SW801:	5 Mod				P	Prep Method: SW	/8015P	
Tech: DVM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 11.13.1	9 16.00	E	Basis: We	et Weight	
Seq Number: 3107399					S	SUB: T10470440)-19-19	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	11.14.19 03.30	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	11.14.19 03.30	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	11.14.19 03.30	U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	11.14.19 03.30	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	11.14.19 03.30	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	117	%	70-135	11.14.19 03.30		
o-Terphenyl		84-15-1	107	%	70-135	11.14.19 03.30		

•

1

.

Certificate of Analytical Results 643015

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id:	FS01		Matrix:	Soil		Date Received:11.	13.19 10.4	4
Lab Sample Id: 643015-001			Date Coll	ected: 11.12.19 14.40	Sample Depth: 0.5 ft			
Tech:	ethod: BTEX by EPA 80 KTL	021B		11 12 10 15 00		Prep Method: SW % Moisture:		
Analyst:	KTL		Date Prep	: 11.13.19 15.00			t Weight	
Seq Number:	3107440					SUB: T104704400)-19-19	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Parameter Benzene		Cas Number 71-43-2	Result <0.00200	RL 0.00200	Units mg/kg	Analysis Date	Flag U	Dil
						•	0	Dil 1 1
Benzene		71-43-2	<0.00200	0.00200	mg/kg	11.14.19 01.52	U	Dil 1 1 1
Benzene Toluene		71-43-2 108-88-3	<0.00200 <0.00200	0.00200 0.00200	mg/kg mg/kg	11.14.19 01.52 11.14.19 01.52	U U U	Dil 1 1 1 1
Benzene Toluene Ethylbenzene		71-43-2 108-88-3 100-41-4	<0.00200 <0.00200 <0.00200	0.00200 0.00200 0.00200	mg/kg mg/kg mg/kg	11.14.19 01.52 11.14.19 01.52 11.14.19 01.52	U U U U	Dil 1 1 1 1 1

Total BTEX	< 0.00200	0.00200		mg/kg	11.14.19 01.52	U
Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	87	%	70-130	11.14.19 01.52	
1,4-Difluorobenzene	540-36-3	96	%	70-130	11.14.19 01.52	

Certificate of Analytical Results 643015

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id: FS02 Lab Sample Id: 643015-002		Matrix: Date Collect	Soil ted: 11.12.19 14.50	-	13.19 10.4 ft	4	
Analytical Method: Chloride by E	PA 300]	Prep Method: E30)0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	11.13.19 16.30]	Basis: We	t Weight	
Seq Number: 3107408				:	SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	284	25.0	mg/kg	11.13.19 21.07		5

Analytical Method: TPH by SW801 Tech: DVM	5 Mod					Prep Method: SW 6 Moisture:	/8015P	
Analyst: ARM		Date Pre	p: 11.13.1	9 16.00			et Weight	
Seq Number: 3107399					3	SUB: T104704400)-19-19	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	11.14.19 04.34	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	11.14.19 04.34	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	11.14.19 04.34	U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	11.14.19 04.34	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	11.14.19 04.34	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane o-Terphenyl		111-85-3 84-15-1	124 111	% %	70-135 70-135	11.14.19 04.34 11.14.19 04.34		
0-reiphenyi		04-13-1	111	70	70-155	11.14.19 04.34		

•

Certificate of Analytical Results 643015

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id: FS02		Matrix:	Soil]	Date Received:11.	13.19 10.4	4
Lab Sample Id: 643015-0	02	Date Colle	ected: 11.12.19 14.50	:	Sample Depth: 0.5	ft	
Analytical Method: BTE	X by EPA 8021B]	Prep Method: SW	5030B	
Tech: KTL					% Moisture:		
Analyst: KTL		Date Prep	: 11.13.19 15.00]	Basis: We	t Weight	
Seq Number: 3107440		1		:	SUB: T104704400	-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198	mg/kg	11.14.19 02.12	U	1
Toluene	108-88-3	< 0.00198	0.00198	mg/kg	11.14.19 02.12	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198	mg/kg	11.14.19 02.12	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397	mg/kg	11.14.19 02.12	U	1
o-Xylene	95-47-6	< 0.00198	0.00198	mg/kg	11.14.19 02.12	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198	mg/kg	11.14.19 02.12	U	1
Total BTEX		< 0.00198	0.00198	mg/kg	11.14.19 02.12	U	1
Cumagata		Cas Namehan	%	T	A	Fl	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	91	%	70-130	11.14.19 02.12	
1,4-Difluorobenzene	540-36-3	97	%	70-130	11.14.19 02.12	

Certificate of Analytical Results 643015

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id: FS03 Lab Sample Id: 643015-00	3	Matrix: Date Collect	Soil ted: 11.12.19 15.00		Date Received:11. Sample Depth:0.5		4
Analytical Method: Chlor	ide by EPA 300				Prep Method: E30)0P	
Tech: CHE					% Moisture:		
Analyst: CHE		Date Prep:	11.13.19 16.30		Basis: We	t Weight	
Seq Number: 3107408		-			SUB: T104704400)-19-19	
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	118	4.97	mg/kg	11.13.19 21.27		1

Analytical Method: TPH by SW801:	5 Mod				P	Prep Method: SW	/8015P	
Tech: DVM					%	6 Moisture:		
Analyst: ARM		Date Pre	p: 11.13.1	9 16.00	E	Basis: We	et Weight	
Seq Number: 3107399					S	SUB: T10470440)-19-19	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	11.14.19 04.55	U	1
Diesel Range Organics (DRO)	C10C28DRO	<50.0	50.0		mg/kg	11.14.19 04.55	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<50.0	50.0		mg/kg	11.14.19 04.55	U	1
Total GRO-DRO	PHC628	<50.0	50.0		mg/kg	11.14.19 04.55	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	11.14.19 04.55	U	1
Surrogate 1-Chlorooctane		Cas Number 111-85-3	% Recovery 120	Units %	Limits 70-135	Analysis Date 11.14.19 04.55	Flag	
o-Terphenyl		84-15-1	109	%	70-135	11.14.19 04.55		

Certificate of Analytical Results 643015

LT Environmental, Inc., Arvada, CO

PLU 263

Sample Id: FS03		Matrix:	Soil			Date Received:11	.13.19 10.44	4
Lab Sample Id: 643015-003		Date Co	llected: 11.12.1	9 15.00		Sample Depth: 0.5	5 ft	
Analytical Method: BTEX by EPA 8	021B					Prep Method: SV	V5030B	
Tech: KTL						% Moisture:		
Analyst: KTL		Date Pre	p: 11.13.1	9 15.00		Basis: W	et Weight	
Seq Number: 3107440			-			SUB: T10470440	0-19-19	
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	11.14.19 02.32	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	11.14.19 02.32	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	11.14.19 02.32	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	11.14.19 02.32	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	11.14.19 02.32	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	11.14.19 02.32	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	11.14.19 02.32	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

4-Bromofluorobenzene	460-00-4	94	%	70-130	11.14.19 02.32
1,4-Difluorobenzene	540-36-3	96	%	70-130	11.14.19 02.32

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

LT Environmental, Inc.

PLU 263

Analytical Method:	Chloride by EPA 30)0						Pı	ep Metho	od: E30	0P	
Seq Number:	3107408			Matrix:	Solid				Date Pre	ep: 11.1	3.19	
MB Sample Id:	7690275-1-BLK		LCS Sar	nple Id:	7690275-	1-BKS		LCS	D Sample	Id: 7690	0275-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 0.858	250	248	99	248	99	90-110	0	20	mg/kg	11.13.19 18:54	

Analytical Method:	Chloride by EPA 30)0						Pı	ep Metho	od: E30	OP	
Seq Number:	3107408			Matrix:	Soil				Date Pr	ep: 11.	13.19	
Parent Sample Id:	642023-007		MS Sar	nple Id:	642023-00)7 S		MS	D Sample	e Id: 642	023-007 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride		252	570	99			90-110		20	mg/kg	11.13.19 19:14	

Analytical Method:	Chloride by EPA 30	00						P	ep Metho	od: E30	0P	
Seq Number:	3107408			Matrix:	Soil				Date Pre	ep: 11.1	3.19	
Parent Sample Id:	642973-005		MS Sar	nple Id:	642973-00	05 S		MS	D Sample	Id: 6429	973-005 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	107	396	516	103	516	103	90-110	0	20	mg/kg	11.13.19 20:47	

Analytical Method:	TPH by S	W8015 M	od						I	Prep Method	1: SW	8015P	
Seq Number:	3107399				Matrix: Solid				Date Prep: 11.13.19				
MB Sample Id:	7690274-1	-BLK		LCS Sar	nple Id:	7690274-	1-BKS		LCS	SD Sample	Id: 769	0274-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocart	oons (GRO)	<15.0	1000	1150	115	1190	119	70-135	3	20	mg/kg	11.14.19 02:48	
Diesel Range Organics	(DRO)	<15.0	1000	1110	111	1150	115	70-135	4	20	mg/kg	11.14.19 02:48	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re		-	Limits	Units	Analysis Date	
1-Chlorooctane		113		1	16		121		7	0-135	%	11.14.19 02:48	
o-Terphenyl		105		1	04		109		7	0-135	%	11.14.19 02:48	

Seq Number: 3107399	Matrix: MB Sample Id:	Solid 7690274-1-BLK	Date Prep:	11.13	3.19	
Parameter Motor Oil Range Hydrocarbons (MRO)	MB Result <50.0			J nits g/kg	Analysis Date 11.14.19 02:27	Flag

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

.

Page 13 of 18

Final 1.000

PLU 263

Analytical Method:TPHSeq Number:31073Parent Sample Id:64301	99	od	MS Sar	Matrix: nple Id:)1 S		Prep Metl Date P MSD Samp	rep: 11.1	8015P 13.19 015-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD RPD Lir	nit Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO) <15.0	997	1180	118	1200	120	70-135	2 20	mg/kg	11.14.19 03:51	
Diesel Range Organics (DRO)	21.2	997	1190	117	1170	115	70-135	2 20	mg/kg	11.14.19 03:51	
Surrogate				IS Rec	MS Flag	MSD %Rec			Units	Analysis Date	
1-Chlorooctane			1	28		128		70-135	%	11.14.19 03:51	
o-Terphenyl			1	12		113		70-135	%	11.14.19 03:51	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3107440 7690267-1-BLK	1B	LCS San	Matrix: nple Id:	~ ~ ~ ~ ~ ~	1-BKS			Prep Metho Date Pre SD Sample	ep: 11.1	5030B 3.19 0267-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0974	97	0.106	106	70-130	8	35	mg/kg	11.13.19 22:51	
Toluene	< 0.00200	0.100	0.103	103	0.111	111	70-130	7	35	mg/kg	11.13.19 22:51	
Ethylbenzene	< 0.00200	0.100	0.104	104	0.112	112	70-130	7	35	mg/kg	11.13.19 22:51	
m,p-Xylenes	< 0.00400	0.200	0.182	91	0.198	99	70-130	8	35	mg/kg	11.13.19 22:51	
o-Xylene	< 0.00200	0.100	0.104	104	0.113	113	70-130	8	35	mg/kg	11.13.19 22:51	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Ree		-	Limits	Units	Analysis Date	
1,4-Difluorobenzene	98		ç	95		101		~	70-130	%	11.13.19 22:51	
4-Bromofluorobenzene	88		ç	98		109			70-130	%	11.13.19 22:51	

Analytical Method: Seq Number:	3107440	1B		Matrix:		1.6			Prep Metho Date Pre	p: 11.1	5030B 3.19	
Parent Sample Id:	642593-001	<i>a</i>	MS San	1	642593-00				1		593-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limi	t Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0917	92	0.0971	97	70-130	6	35	mg/kg	11.13.19 23:32	
Toluene	< 0.00200	0.100	0.0995	100	0.101	101	70-130	1	35	mg/kg	11.13.19 23:32	
Ethylbenzene	< 0.00200	0.100	0.0939	94	0.101	101	70-130	7	35	mg/kg	11.13.19 23:32	
m,p-Xylenes	< 0.00401	0.200	0.172	86	0.178	89	70-130	3	35	mg/kg	11.13.19 23:32	
o-Xylene	< 0.00200	0.100	0.0966	97	0.0995	100	70-130	3	35	mg/kg	11.13.19 23:32	
Surrogate				IS Rec	MS Flag	MSD %Re		-	Limits	Units	Analysis Date	
1,4-Difluorobenzene			ç	95		94		7	0-130	%	11.13.19 23:32	
4-Bromofluorobenzene			1	05		106		7	0-130	%	11.13.19 23:32	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample) LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

Final 1.000

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Page 34 of 38

Sample's Name Elizabeth Nais Due Date Sample's Name Elizabeth Nais Due Date Sample's Name Tame Blank Tame Blank Thermoneter Conter Castody Seals: Ves Ves No Sample's Name Tame Blank Tame Blank Thermoneter Received Intact: Ves No Correction Factor -0.7 Sample Identification Metrix Sampled Sampled Date Time FS01 Sample Identification Metrix Sampled Sampled Date Time FS02 III/2//9 III/2//9 III/2//9 III/2/19 III/2/19 III/2/19 FS02 Sample Identification Metrix Sampled Sampled Sampled Sampled Sampled Sampled FS02 Sample Identification Metrix Sampled Sampled Sampled Sampled Sampled Sampled FS02 Sample Identification Metrix Sampled Sampled Sampled Sampled Sampled Sampled FS02 Sample Identification Sampled Sampled Sampled Sampled Sampled Sampled Sampled Sampled FS02 Sampled Sampled Sampled Sampled III/2/10 III/2/10 Sampled Sampled Sampled Sampled FS02 Sampled Sampled Sampled Samp		Hobbs,NA Dan Moir LT Environmental, Inc., Permian office 3300 North A Street Midland, Tx 79705 (432) 236-3849 PLU 263 012419694	, IC., Permian o		Chain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813) Bill to: (if different) Kyle Littrell Company Name: XTO Energy Address: City, State ZIP: XTO Energy ANALYSIS REQU Fmail: enaka@ltenv.com, dmoir@ltenv.com ANALYSIS REQU		hain o allas,TX (214) : L. Paso,TX (91 0-355-0900) / Kyle Littrell XTO Energy	P Of (114) 90: (915) (0) Atta ergy	III IIII IIIIIIIIIIIIIIIIIIIIIII	Chain of Custody Dallas,TX (214) 902-0300 San Antonio; EL Paso,TX (915)585-3443 Lubbock,T (480-355-0900) Atlanta,GA (770-449-88 Kyle Littrell Kyle Littrell XTO Energy	ANALYS	110) 509-3334 200794-1296 200794 200794-1296 200794-120074 200794 200794-120074 200794-1000 200794-1000 200794-10		n: UST/PS e of Projec Ig:Level II Ibles: EDE		wrk Order No: () wrk Order Comments Page Work Order Comments [] ORP [] Prownfields [] evel III [] ADaPT [] Wor []
	ame:	012919694 Eddy C Elizabet	County	Routine Rush: 2	Routine							-				
	MPLE RECEIPT	_	Vaka													
	mperature (°C):	1.2	C	Thermometer ID		ners)				-			
	eceived Intact:	1 4	T	-NN-00	4	ntaii			00.0)			_				
	ooler Custody Seals:	Re		ction Factor:	2				PA 3			+	T			
	ample Custody Seals:	No		Containers:					de (El			4				
	Sample Identific			Time Sampled					Chloric							
	FS01	S	11/12/19	1440				()	7			-				
	F502			1450			_									
	ESQ 3	t	4	1500					C							
					Gottati	Va	h		-							
						\parallel	\parallel									
												+	1			
						-	-		-		-					
	Total 200.7 / 6010		8			A S	As			Ca		u Fe Pt	Mg	Mn Mo Ni K	Se Ag	
Votice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) Wybuth Make Wave Wave Wave Wave Wave	Circle Method(s) a	ind Metal(s) to be a	1.00	TCLP / SPLP	6010: 8RCR	A Sb	As E	Ba Be	Cd	Cr Co Cu		In Mo N	li Se	L L		
Relinquished by: (Signature) Received by: (Signature) Date/Time Relinquished by: (Signature) Received by: (Signature) (Signatu	otice: Signature of this docur f service. Xenco will be liable f Xenco. A minimum charge c	ment and relinquishmeni e only for the cost of san of \$75.00 will be applied	t of samples consti nples and shall not to each project and	tutes a valid purch assume any respo d a charge of \$5 for	ase order from cl insibility for any l	ient con osses o pmitted t	npany to r expens to Xenco	Xenco, ses incu	its affil rred by pt analyz	ates and sub the client if su	contracto uch losse	rs. It assign s are due to e enforced t	ns stand o circum unless p	ard terms and cor stances beyond the	ditions control	
Note anna Byen 11/8/19 0945 2 anna Byen O	Relinquished by: (Si	ignature)	Received t	oy: (Signature)			ate/Tin	le	-	Relinquis	hed by	: (Signatu	ure)	Recei	/ed by:	(Sigr
		an		٢	III	12/10	1 09	145	2	anna	B	mer		(and		2
		_							d							

Final 1.000

Page 35 of 38

Page 15 of 18

BO

ORIES

Inter-Office Shipment

.

Page 1 of 1

IOS Number 52140

Date/Time:	11/13/19 12:02	Created by: Elizabeth Mcclellan	Please send report to:	Jessica Kramer
Lab# From:	Carlsbad	Delivery Priority:	Address:	1089 N Canal Street
Lab# To:	Midland	Air Bill No.:	E-Mail:	jessica.kramer@xenco.com
· · · · · · · · · · · · · · · · · · ·	1			

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
643015-001	S	FS01	11/12/19 14:40	SW8015MOD_NM	TPH by SW8015 Mod	11/14/19	11/26/19	JKR	GRO-DRO PHCC10C28 PI	
643015-001	S	FS01	11/12/19 14:40	SW8021B	BTEX by EPA 8021B	11/14/19	11/26/19	JKR	BZ BZME EBZ XYLENES	
643015-001	S	FS01	11/12/19 14:40	E300_CL	Chloride by EPA 300	11/14/19	05/10/20	JKR	CL	
643015-002	S	FS02	11/12/19 14:50	E300_CL	Chloride by EPA 300	11/14/19	05/10/20	JKR	CL	
643015-002	S	FS02	11/12/19 14:50	SW8021B	BTEX by EPA 8021B	11/14/19	11/26/19	JKR	BZ BZME EBZ XYLENES	
643015-002	S	FS02	11/12/19 14:50	SW8015MOD_NM	TPH by SW8015 Mod	11/14/19	11/26/19	JKR	GRO-DRO PHCC10C28 PH	
643015-003	S	FS03	11/12/19 15:00	E300_CL	Chloride by EPA 300	11/14/19	05/10/20	JKR	CL	
643015-003	S	FS03	11/12/19 15:00	SW8021B	BTEX by EPA 8021B	11/14/19	11/26/19	JKR	BZ BZME EBZ XYLENES	
643015-003	S	FS03	11/12/19 15:00	SW8015MOD_NM	TPH by SW8015 Mod	11/14/19	11/26/19	JKR	GRO-DRO PHCC10C28 PI	

Inter Office Shipment or Sample Comments:

Relinquished By:

.

Elizabeth McClellan

Date Relinquished: <u>11/13/2019</u>

Received By:

Brianna Teel

Date Received: <u>11/13/2019 15:59</u>

Cooler Temperature: 0.6

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Midland IOS #: 52140

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : R8

Sent By:	Elizabeth McClellan	Date Sent:	11/13/2019 12:02 PM
Received By:	Brianna Teel	Date Received:	11/13/2019 03:59 PM

Sample Receipt Checkli	st	Comments
#1 *Temperature of cooler(s)?	.6	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received with appropriate temperature?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 *Custody Seals Signed and dated for Containers/coolers	Yes	
#6 *IOS present?	Yes	
#7 Any missing/extra samples?	No	
#8 IOS agrees with sample label(s)/matrix?	Yes	
#9 Sample matrix/ properties agree with IOS?	Yes	
#10 Samples in proper container/ bottle?	Yes	
#11 Samples properly preserved?	Yes	
#12 Sample container(s) intact?	Yes	
#13 Sufficient sample amount for indicated test(s)?	Yes	
#14 All samples received within hold time?	Yes	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

Brince	Teal
E	Brianna Teel

Date: 11/13/2019

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/13/2019 10:44:00 AM Temperature Measuring device used : T-NM-007 Work Order #: 643015 Sample Receipt Checklist Comments

#1 *Temperature of cooler(s)?	1.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6*Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	Samples split into 2oz. jars for subbing.
#13 Samples properly preserved?	Yes	C C
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	Yes	Subbed to Midland.
#18 Water VOC samples have zero headspace?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan

Date: 11/13/2019

Checklist reviewed by: Jession Veramer

Jessica Kramer

Date: 11/14/2019

Page 38 of 38