

CLOSURE REPORT

Property:

Nailed It, Lateral Pipeline (Station 252+00) S36, T26S, R29E 32.004861 N, -103.943759 W Eddy County, New Mexico

> December 13, 2019 Ensolum Project No. 03B1511003

> > Prepared for:

Salt Creek Midstream, LLC 20320 State Hwy 249 4th Floor Houston, Texas 77070

Attn: Mr. Mike Poffinbarger

Prepared by:

Beaux Jennings Senior Project Manager

lizabeth Scagge

Elizabeth Scaggs, PG Principal Geoscientist

Ensolum, LLC 705 W. Wadley, Suite 210, Midland, TX 79705 ° www.ensolum.com P.G. Firm No. 50588

.

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Site Description & Background	.1
	1.2	Project Objective	.1
2.0	CLOS	SURE CRITERIA	.1
3.0	SOIL	REMEDIATION ACTIVITIES	3
4.0	SOIL	SAMPLING PROGRAM	4
5.0	SOIL	LABORATORY ANALYTICAL METHODS	4
6.0	DATA	EVALUATION	4
7.0	RECL	AMATION AND RE-VEGETATION	4
8.0	FIND	INGS AND RECOMMENDATION	5
9.0	STAN	IDARDS OF CARE, LIMITATIONS, AND RELIANCE	.5
	9.1	Standard of Care	.5
	9.2	Limitations	.5
	9.3	Reliance	.5

LIST OF APPENDICES

.

Appendix A:	Figures
Appendix B:	Supporting Figures and Documentation
Appendix C:	Photographic Documentation
Appendix D:	Table 1 - Soil Analytical Summary
Appendix E:	Laboratory Data Sheets & Chain-of-Custody Documentation
Appendix F:	C-141

CLOSURE REPORT

Nailed It, Lateral Pipeline (Station 252+00) S36, T26S, R29E 32.004861 N, -103.943759 W Eddy County, New Mexico

1.0 INTRODUCTION

1.1 Site Description & Background

Operator:	Salt Creek Midstream, LLC (Salt Creek)
Site Name:	Nailed It, Lateral Pipeline (Station 252+00)
Location:	32.004861 N, -103.943759 W Section 36, Township 26 South, Range 29 East Eddy County, New Mexico
Property:	State of New Mexico
Regulatory:	New Mexico Energy, Minerals and Natural Resources Department (EMNRD) Oil Conservation Division (OCD)

On December 6, 2019, a third-party contractor for Salt Creek struck a buried produced water line, operated by Mewbourne Oil Company, with a backhoe while trenching a new pipeline right-of-way (ROW). Approximately 2,500 barrels (bbls) of produced water were released onto the ground surface and flowed approximately 270 feet west, contained within the new pipeline ROW trench. Subsequent to the discovery of the release, Salt Creek informed Lighthouse Environmental Services, Inc. (Lighthouse) and dispatched a vacuum truck to recover standing produced water that was released onto the pipeline ROW trench. Approximately 100 bbls of produced water were recovered with the vacuum truck.

The **Topographic Map** depicting the location of the Site is included as **Figure 1**, and the **Site Vicinity Map** is included as **Figure 2** in **Appendix A**.

1.2 Project Objective

The primary objective of the closure activities was to reduce constituent of concern (COC) concentrations in the on-Site soils to below the applicable New Mexico EMNRD OCD closure criteria concentrations.

2.0 CLOSURE CRITERIA

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. In order to address activities related to exempt oil and gas releases, the New Mexico EMNRD OCD references New Mexico Administrative Code (NMAC) 19.15.29 *Releases,* which establishes investigation and abatement action requirements for sites subject to reporting and/or corrective action. Ensolum, LLC (Ensolum) utilized information provided by Salt Creek Midstream, the general site characteristics, and information available from the New Mexico Office of the State Engineer (OSE) and the New Mexico EMNRD OCD Imaging database to determine the appropriate closure criteria for the Site. Supporting documentation and figures associated with the following bullets are provided in **Appendix B**.

- The Site is not located within 300 feet of a New Mexico ENMRD OCD-defined continuously flowing watercourse or significant watercourse.
- The Site is not located within 200 feet of a lakebed, sinkhole or playa lake.
- The Site is not located within 300 feet from a permanent residence, school, hospital, institution or church.
- According to the OSE WRSS database there are no private, domestic freshwater wells used by less than five (5) households for domestic or stock water purposes identified within 500 feet of the Site.
- According to the OSE WRSS database there are no freshwater wells identified within 1,000 feet of the Site as declared in the previous bullet.
- The Site is not located within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3.
- The National Wetlands Inventory (NWI) was utilized to determine if the Site is located within 300 feet of a wetland. The NWI Mapper shows that the Site intersects 1.41 acres of Riverine habitat and is classified as a R4SBJ. As stated in the description of the Riverine habitat, "Some areas exhibiting this Water Regime do not fall within our definition of wetland because they do not have hydric soils or support hydrophytes. This Water Regime is generally limited to the arid West." Based on its location and description of Riverine habitat, the Site is not located within 300 feet of a wetland.
- Based on information identified on the New Mexico Mining and Minerals Division's GIS, Maps and Mine Data database, the Site is not located within an area overlying a subsurface mine.
- The Site is not located within an unstable area.
- The Site is not located within a 100-year floodplain.

Based on the identified siting criteria, cleanup goals for soils remaining in place at the Site include:

	Closure Criteria for	Soils Impacted by a Release	
Minimum depth below any point within horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Method	Limit
	Chloride	EPA 300.0 or SM4500 CI B	10,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg
50-100'	TPH (GRO+DRO)	EPA SW-846 Method 8015M	1,000 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg

3.0 SOIL REMEDIATION ACTIVITIES

On December 6, 2019, a third-party contractor for Salt Creek struck a buried produced water line, operated by Mewbourne Oil Company, with a backhoe while trenching a new pipeline ROW. Approximately 2,500 bbls of produced water were released onto the ground surface and flowed approximately 270 feet west, contained within the new pipeline ROW trench. Subsequent to the discovery of the release, Salt Creek informed Lighthouse and dispatched a vacuum truck to recover standing produced water that was released onto the pipeline ROW trench. Approximately 100 bbls of produced water were recovered with the vacuum truck. During remediation activities, Lighthouse utilized a backhoe and track hoe during soil remediation activities, beginning near the point of release near the produced water line and flow path. Remediation activities were conducted by Lighthouse, with oversight by Ensolum, on December 7, 2019 through December 9, 2019.

The flow path area measured approximately 220 square feet. The maximum depth of COC impacts measured approximately four (4) to six (6) feet bgs.

The lithology encountered during the completion of closure activities consisted primarily of silty sand, underlain by a competent gypsum rock layer.

A total of approximately 300 cubic yards (cy) of produced water affected soils were transported off-site for disposal at Petro Waste Environmental LP Orla Landfill outside Orla, Texas. The excavation will be backfilled to the approximate ROW trench grade of four (4) feet bgs with imported clean fill.

Figure 3 is a map that identifies approximate soil sample locations and depicts the approximate dimensions of the excavation (Appendix A). Photographic documentation of the field activities is included in Appendix C.

Closure Report Nailed It, Lateral Pipeline (Station 252+00) December 13, 2019

Page 6 of 60

4.0 SOIL SAMPLING PROGRAM

Ensolum's soil sampling program included the collection of three (3) confirmation soil samples (CS-1 through CS-3) from the impacted area for laboratory analysis. The location and depth of the three (3) confirmation soil samples were taken within the flow path to horizontally and vertically delineate the produced water released from the struck poly line.

The soil samples were collected and placed in laboratory prepared glassware, labeled/sealed using laboratory supplied labels and custody seals, and stored on ice in a cooler. The samples were relinquished to Xenco Laboratories in Midland, Texas, under proper chain-of-custody procedures.

5.0 SOIL LABORATORY ANALYTICAL METHODS

The confirmation soil samples and stockpile soil sample were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) using Environmental Protection Agency (EPA) SW-846 Method #8021B, total petroleum hydrocarbon (TPH) gasoline range organics (GRO), diesel range organics (DRO), and motor oil/lube oil range organics (MRO) using EPA SW-846 Method #8015M, and chloride using EPA Method #300.0.

Laboratory analytical results are summarized in **Table 1** in **Appendix D**. The executed chain-of-custody and laboratory documentation are provided in **Appendix E**.

6.0 DATA EVALUATION

Ensolum compared the BTEX, TPH GRO/DRO/MRO, and chloride concentrations associated with the confirmation soil samples (CS-1 through CS-3) remaining in place to the New Mexico EMNRD OCD closure criteria.

- Laboratory analytical results indicate benzene concentrations for soils remaining in place do not exceed the laboratory sample detection limits (SDLs) or the New Mexico EMNRD OCD closure criteria of 10 milligrams per kilogram (mg/kg).
- Laboratory analytical results indicate that total BTEX concentrations for soils remaining in place do not exceed the laboratory SDLs or the New Mexico EMNRD OCD closure criteria of 50 mg/kg.
- Laboratory analytical results indicate combined TPH GRO/DRO/MRO concentrations for soils remaining in place do not exceed the laboratory SDLs or the New Mexico EMNRD OCD closure criteria of 100 mg/kg.
- Laboratory analytical results indicate chloride concentrations for soils remaining in place do not exceed the New Mexico EMNRD OCD closure criteria of 10,000 mg/kg.

Laboratory analytical results are summarized in **Table 1** in **Appendix D**.

7.0 RECLAMATION AND RE-VEGETATION

The excavation will be backfilled to the approximate ROW trench grade of four (4) feet bgs with imported clean fill.

8.0 FINDINGS AND RECOMMENDATION

- The primary objective of the closure activities was to reduce COC concentrations in the on-Site soils to below the applicable New Mexico EMNRD OCD closure criteria using the New Mexico EMNRD OCD's NMAC 19.15.29 *Releases* as guidance.
- During remediation activities, Lighthouse utilized a backhoe and track hoe during soil remediation activities, beginning near the point of release near the produced water line and flow path. Remediation activities were conducted by Lighthouse, with oversight by Ensolum, on December 7, 2019 through December 9, 2019.
- A total of three (3) confirmation soil samples were collected from the impacted area. Based on laboratory analytical results, soils remaining in place do not exhibit COC concentrations above the applicable New Mexico EMNRD OCD closure criteria.
- The location and depth of the three (3) confirmation soil samples taken within the flow path are adequate to effectively horizontally and vertically delineate the produced water released from the struck poly line.
- A total of approximately 300 cy of produced water affected soils were transported off-site for disposal at Petro Waste Environmental LP Orla Landfill outside Orla, Texas. The excavation will be backfilled to the approximate ROW trench grade of four (4) feet bgs with imported clean fill.

Based on field observations and laboratory analytical results, no additional investigation or corrective action appears warranted at this time.

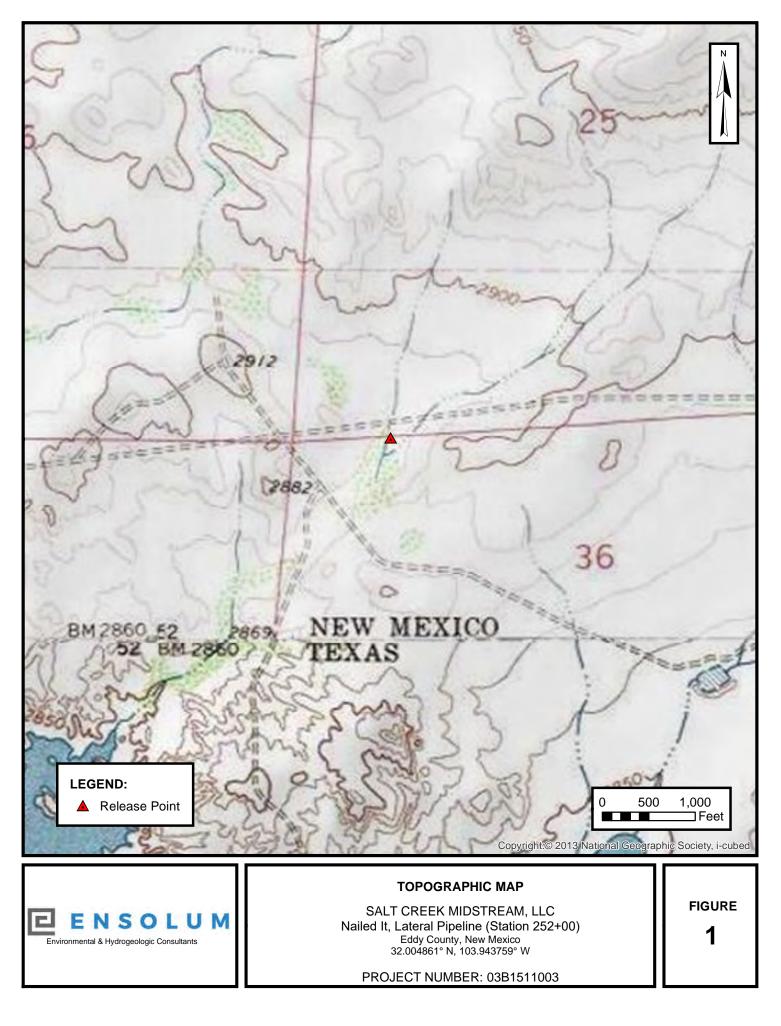
9.0 STANDARDS OF CARE, LIMITATIONS, AND RELIANCE

9.1 Standard of Care

Ensolum's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Ensolum makes no warranties, express or implied, as to the services performed hereunder. Additionally, Ensolum does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client, as detailed in our proposal.

9.2 Limitations

Findings, conclusions, and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Ensolum cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during the investigation. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Ensolum's findings, and recommendations are based solely upon data available to Ensolum at the time of these services.


9.3 Reliance

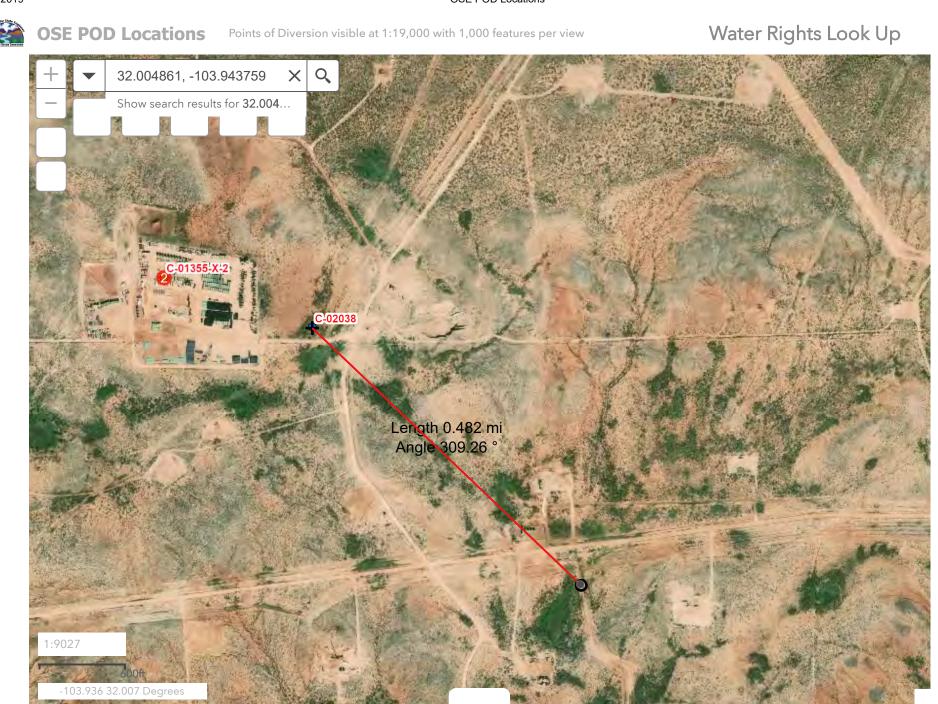
This report has been prepared for the exclusive use of Salt Creek Midstream, LLC, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization Salt Creek Midstream, LLC and Ensolum. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the Closure Report.

ENSOLUM

APPENDIX A

Figures

Environmental & Hydrogeologic Consultants


Nailed It, Lateral Pipeline (Station 252+00) Eddy County, New Mexico 32.004861° N, 103.943759° W

PROJECT NUMBER: 03B1511003

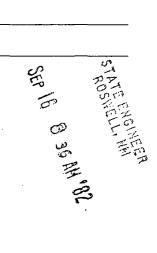
ENSOLUM

APPENDIX B

Supporting Figures & Documentation

All Rights Reserved

de de la compañía de	· .	,	STA	TE ENGIN	IEER OFF	ICE	J			
				WELL R	ECORD			DAG	372	
			Section 1	. GENERA	L INFOR	MATION	1	71	I AI	, 1/57/
(A) Owner of Street or	well	C. W11]	liamson		86	JAN 7		ner's Well N	۲۵	
City and	State	Mid	tand, Te:	xas		· · · · · · ·	· · · · ·		<u> </u>	
Well was drilled	l under Permit	No	720		and	is located	NEER OFFI	CE		
a	_ 1⁄4 1⁄4	NE 14		ction	/ک Tov	QNIA FE wnship		ange	<u> </u>	N.M.P
	No									
					-				······································	
c. Lot N Subdiv	o vision, recorded	of Block No. 1 in	······································	01	f the County		- <u></u>	· · ·	·	
	· .	1. The second					vstem	•	· · ·	Zone
					t, N.M. CO					Cra
(B) Drilling C	Contractor		• <u>•</u> •••		N		License No		· •	
Address		Glenn	's WAter			e		WD 4C	<u>ــــــــــــــــــــــــــــــــــــ</u>	
	Box 692							<u>.</u>		
Drilling Began	Sept. 1		Sep	ot. 9,8	32 ^{-1ype}	e tools	rotary	Size	of hole_	8"
Elevation of lar							_ ft. Total dep		<u> </u>	
Completed well	lis 💭 st	nallow 🗖 .	artesian.		Depth	to water	upon completi	on of well.	·	
	X		ction 2. PRIN					•		
Depth		Thicknes	s	Description	··				stimated	
From	<u>To</u>	in Feet						(gai	lons per n	ninute)
								·		•
							<u>_</u>			
							· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	, , ,		Sinctio	- 2 BECC						
Diameter	Pounds	Threads		n 3. RECC in Feet		ASING ength			· 	ations
Diameter (inches)	Pounds per foot	Threads per in.			L		Type of S	Shoe -	· 	ations To
(inches)	per foot	1 +	Depth Top	in Feet Bottor	L m (ength feet)	Type of S	Shoe	Perfor From	To
(inches)	per foot	1 +	Depth	in Feet	L m (ength	Type of S	Uhoe	Perfor	<u>`</u>
(inches)	per foot	1 +	Depth Top	in Feet Bottor	L m (ength feet)	Type of S	bhoe -	Perfor From	To
(inches)	per foot 5/8 PVC	per in.	Depth Top 1	in Feet Bottor 140	L.	ength feet) 140	· · · · · · · · · · · · · · · · · · ·	bhoe -	Perfor From	To
(inches)	per foot 5/8 PVC	per in.	Dep th Top 1	in Feet Bottor 140 RD OF MU	Lin (ength feet) 140 ND CEMI	ENTING		Perfor From 100	To
(inches) 6	per foot 5/8 PVC	per in.	Depth Top 1 tion 4. RECO Sack of M	in Feet Bottor 140 RD OF MU	L.	ength feet) 140 ND CEMH eet	ENTING	shoe	Perfor From 100	To
(inches)	per foot 5/8 PVC	per in.	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	Linn (Difference of the second secon	ength feet) 140 ND CEMH eet	ENTING		Perfor From 100	To
(inches)	per foot 5/8 PVC	per in.	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	Linn (Difference of the second secon	ength feet) 140 ND CEMH eet	ENTING		Perfor From 100	To
(inches)	per foot 5/8 PVC	per in. Sec Hole Diameter	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	Linn (Difference of the second secon	ength feet) 140 ND CEMH eet	ENTING		Perfor From 100	To
(inches)	per foot 5/8 PVC	per in.	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent	ENTING Me		Perfor From 100	To
(inches)	per foot 5/8 PVC	per in. Sec Hole Diameter	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent	ENTING Me		Perfor From 100	To
(inches) 6	per foot	per in.	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent	ENTING Me	thod of Pla	Perfor From 100	<u> </u>
(inches)	per foot	per in.	Depth Top 1 tion 4. RECOI	in Feet Bottor 140 RD OF MU	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent	ENTING Me		Perfor From 100	To
(inches) 6	per foot	per in.	Depth Top 1 tion 4. RECOI Sack of Mu	in Feet Bottor 140 RD OF MU	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent CORD	ENTING Me Depth	thod of Pla	Perfor From 100	To 140
(inches)	per foot	per in.	Depth Top 1	in Feet Bottor 140 RD OF MU cs ud	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent CORD	ENTING Me Depth	thod of Pla	Perfor From 100	To 140
(inches) 6	per foot	per in. Sec Hole Diameter	Depth Top 1 tion 4. RECOI Sack of Mu	in Feet Bottor 140 RD OF MU cs ud	JDDING A Cubic F of Ceme	ength feet) 140 ND CEMH eet ent CORD	ENTING Me Depth	thod of Pla	Perfor From 100	To 140

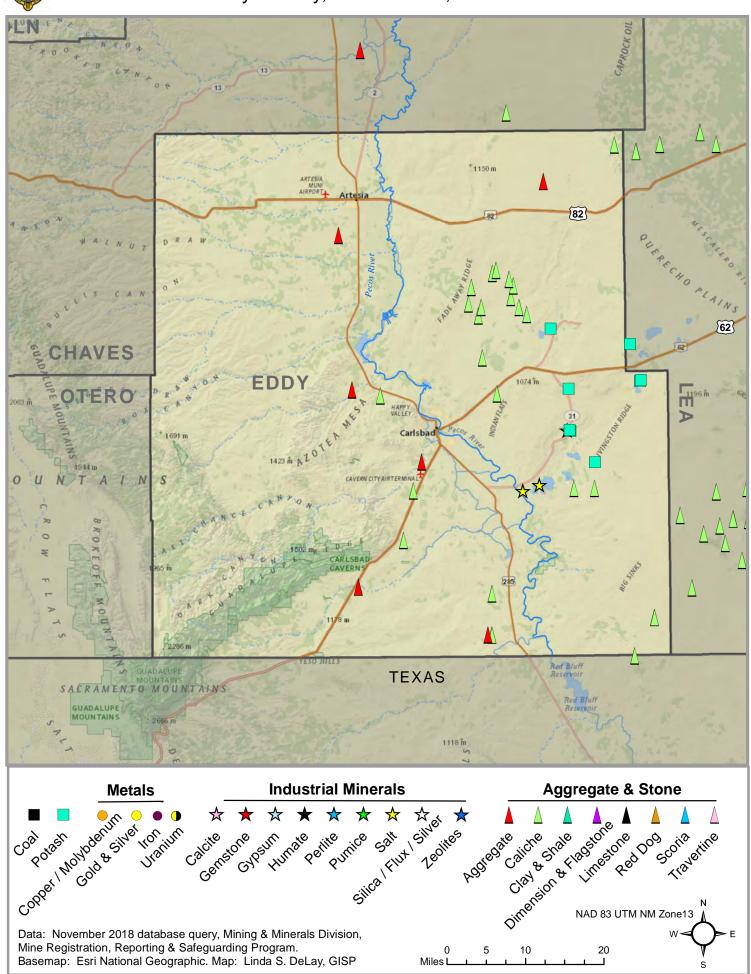

·*60*

۰.

(Y

Depth	in Feet	Thickness	Section 6. LOG OF HOLE
From	То	in Feet	Color and Type of Material Encountered
		- T 1 - 1 - 1	
() 5	- 5 46	5 41	fill sand & gravel
46	52	6	-ned sand
-52	5.9	7	ned clay
59	69	10	white line
69	71	2	red clay sand s gravel
71	78	7	utite line
	<u>80</u> 98	2 18	sand 6 gravel white lime
98	128	:30	cavaran
128	135	. 7	red & gray clay
135	178	43	limestone
178	200	12.	ned clay
· · ·	· .		
,			
•			
:			
· · · · · ·	- 34,	· · ·	
·			
· · · · · ·		I 	
	l.		
· ·	. <u>.</u>		
· ·	· · ·	•	

Section 7. REMARKS AND ADDITIONAL INFORMATION



The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

60.2 én I Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections concerning of the state Engineer. All sections 5, shall be answered as completely curately as possible when any well is drilled, repaired or deepened. When the section 5 are section 5 are section 5 and be completed.

Active Mines in Eddy County, New Mexico, December 2017

U.S. Fish and Wildlife Service National Wetlands Inventory

Wetlands Map

December 12, 2019

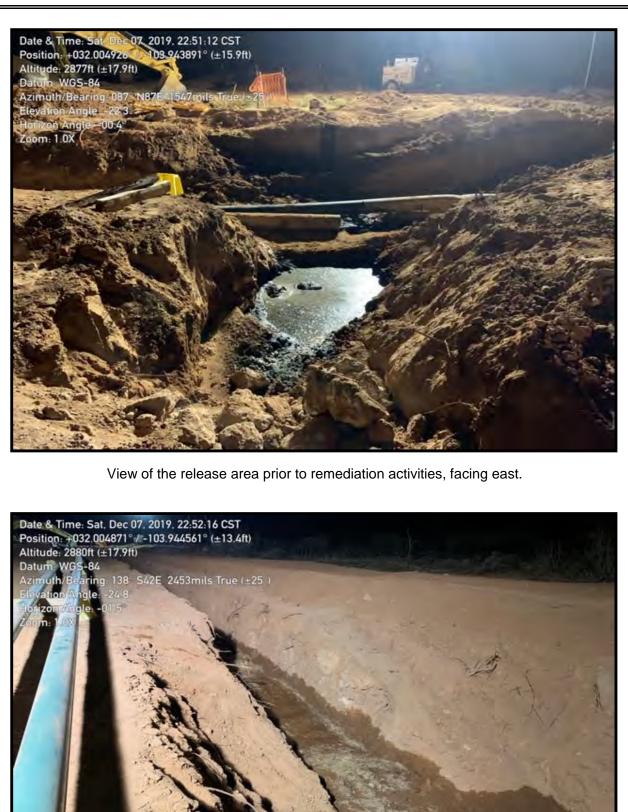
Wetlands

- Estuarine and Marine Deepwater

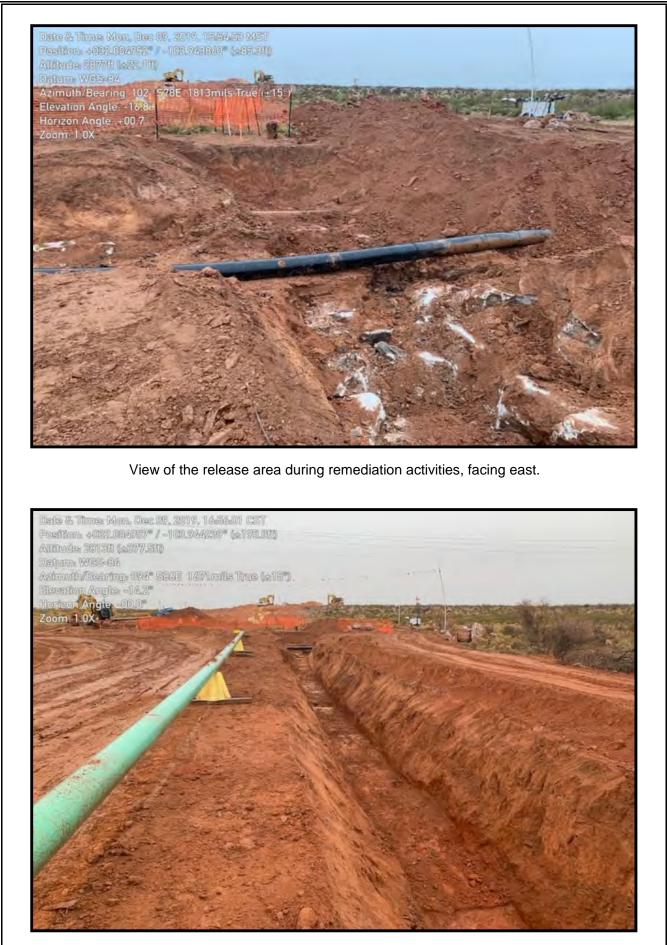
Estuarine and Marine Wetland

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland

Freshwater Pond



This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.


ENSOLUM

APPENDIX C

Photographic Documentation

View of the release area prior to remediation activities, facing southeast.

View of flow path during remediation activities, facing east.

ENSOLUM

APPENDIX D

Table 1 – Soil Analytical Summary

.

E ENSOLUM

				S	alt Creek Midstream, I	TABLE 1 AMPLE ANALYTICA LLC - Nailed It, Later Eddy County, New M olum Project No. 03E	al Pipeline (Station 2 exico	52+00)				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	Total TPH (GRO+DRO+MRO) (mg/kg)	Chloride (mg/kg)
for Soil	nservation Divis Is Impacted by a (51 feet - 100 fee		10	NE	NE	NE	50	1,1	000	NE	2,500	10,000
					Confirmat	tion Soil Sample Ana	lytical Results					-
CS-1	12/9/2019	6	<0.000383	0.000626 J	<0.000561	0.00342	0.00405	<15.0	44.2 J	<15.0	44.2 J	729
CS-2	12/9/2019	6	0.00121 J	0.00229	<0.000564	0.00374	0.00724	<15.0	<15.0	<15.0	<15.0	8,600
CS-3	12/9/2019	6	<0.000387	0.000523 J	< 0.000568	< 0.000346	0.000523 J	<15.0	<15.0	<15.0	<15.0	2,060

bgs: below ground surface

J: The target analyte was positively identified below the quantitation limit and above the detection limit.

mg/kg: milligrams per kilogram

NE: Not Established

•

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

ENSOLUM

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

Analytical Report 645655

for

Ensolum

Project Manager: Beaux Jennings

BLM Brine Polyline

03B1511003

10-DEC-19

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (19-037-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483)

•

Table of Contents

Cover Page	1
Cover Letter	3
Sample ID Cross Reference	4
LCASE_NARR_SUMMARY	5
Certificate of Analysis (Detailed Report)	6
Chronology of Holding Times	11
Explanation of Qualifiers (Flags)	14
Analytical Log	15
SURR_QC_V62	18
LCS / LCSD Recoveries	20
MS / MSD Recoveries	22
Laboratory Review Checklist	23
DCS_SUMMARY	27
Chain of Custody	28
Sample Receipt Conformance Report	30

•

10-DEC-19

Project Manager: **Beaux Jennings Ensolum** 2351 W Northwest Highway Suite 1203 Dallas, TX 75220

Reference: XENCO Report No(s): 645655 BLM Brine Polyline Project Address:

Beaux Jennings:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 645655. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 645655 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession KRAMER

 Jessica Kramer

 Project Assistant

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

 Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 645655

Ensolum, Dallas, TX

BLM Brine Polyline

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
CS-1	S	12-09-19 16:40	6 ft	645655-001
CS-2	S	12-09-19 16:42	6 ft	645655-002
CS-3	S	12-09-19 16:45	6 ft	645655-003

•

CASE NARRATIVE SUMMARY

Client Name: Ensolum Project Name: BLM Brine Polyline

 Project ID:
 03B1511003

 Work Order Number:
 645655

Report Date: 10-DEC-19 Date Received: 10-DEC-19

Jession VRAMER

Jessica Kramer Project Assistant

Final 1.000

Page 5 of 30

.

Certificate of Analytical Results 645655

Ensolum, Dallas, TX BLM Brine Polyline

Sample Id: CS-1		Matrix:	Soil		Sample	Depth: 6 ft		
Lab Sample Id: 645655-001		Date Collecte	ed: 12.09.19 1	6.40	Date R	eceived: 12.10.	19 08.2	20
Analytical Method: Chloride by EPA 300)				Prep M	ethod: E300P		
Analyst: CHE		% Moist:			Tech:	CHE		
Seq Number: 3109983		Date Prep: 12	2.10.19 09.35					
Seq Number. 5107765		Prep seq: 76						
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride	16887-00-6	729	24.8	4.26	mg/kg	12.10.19 10:44		5
Analytical Method: TPH by SW8015 Mo	d				Prep M	ethod: 8015		
Analyst: ARM		% Moist:			Tech:	DVM		
,		Date Prep: 12	2 10 19 09 00		reen.	DVIII		
Seq Number: 3109957								
		Prep seq: 76	592069					
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	50.0	15.0	mg/kg	12.10.19 10:32	U	1
Diesel Range Organics (DRO)	C10C28DRO	44.2	50.0	15.0	mg/kg	12.10.19 10:32	J	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<15.0	50.0	15.0	mg/kg	12.10.19 10:32	U	1
Total TPH	PHC635	44.2		15.0	mg/kg	12.10.19 10:32	J	
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag
Surrogate 1-Chlorooctane o-Terphenyl		% Recovery 108 108		Limits 70 - 1 70 - 1	135 %		Date	Flag
1-Chlorooctane o-Terphenyl	R	108		70 - 1	135 % 135 %			Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211	В	108 108		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL	В	108 108 % Moist:	2 10 10 10 20	70 - 1	135 % 135 %			Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211	В	108 108 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL		108 108 % Moist:		70 - 1	135 % 135 % Prep M	ethod: 5030B KTL		
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL	B CAS Number	108 108 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene	CAS Number 71-43-2	108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383	592054 MQL 0.00199	70 - 1 70 - 1 SDL 0.000383	135 % 135 % Prep M Tech:	ethod: 5030B KTL Analysis Date 12.10.19 12:30	Flag	Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene	CAS Number 71-43-2 108-88-3	108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626	592054 MQL 0.00199 0.00199	70 - 3 70 - 3 SDL 0.000383 0.000453	135 % 135 % Prep M Tech: Units mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:30 12.10.19 12:30	Flag U J	Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene	CAS Number 71-43-2 108-88-3 100-41-4	108 108 08 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561	592054 MQL 0.00199 0.00199 0.00199	70 - 3 70 - 3 SDL 0.000383 0.000453 0.000561	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	Tethod: 5030B KTL Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J U	Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene m,p-Xylenes	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1	108 108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561 0.00231	592054 MQL 0.00199 0.00199 0.00199 0.00398	70 - 3 70 - 3 5 DL 0.000383 0.000453 0.000561 0.00101	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Tethod: 5030B KTL Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J U J	Dil Factor 1 1 1 1
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	108 108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561 0.00231 0.00111	592054 MQL 0.00199 0.00199 0.00199	70 - : 70 - : 50L 0.000383 0.000453 0.000561 0.00101 0.000342	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg	Tethod: 5030B KTL Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J U	Dil Factor
1-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene m,p-Xylenes	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1	108 108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561 0.00231	592054 MQL 0.00199 0.00199 0.00199 0.00398	70 - 3 70 - 3 5 DL 0.000383 0.000453 0.000561 0.00101	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	Tethod: 5030B KTL Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J U J	Dil Factor 1 1 1 1
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021H Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Total Xylenes Total BTEX	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	108 108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561 0.00231 0.00111 0.00342 0.00405	592054 MQL 0.00199 0.00199 0.00199 0.00398	70 - 3 70 - 3 70 - 3 5 DL 0.000383 0.000453 0.000561 0.00101 0.000342 0.000342 0.000342	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J J J J	Dil Factor 1 1 1 1 1 1
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 80211 Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Total Xylenes Total Xylenes Total BTEX Surrogate	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	108 108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561 0.00231 0.001111 0.00342 0.00405	592054 MQL 0.00199 0.00199 0.00199 0.00398	70 - 1 70 - 1 70 - 1 5DL 0.000383 0.000453 0.000561 0.00101 0.000342 0.000342 0.000342 0.000342 0.000342	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Bate Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J J J J	Dil Factor 1 1 1 1
I-Chlorooctane o-Terphenyl Analytical Method: BTEX by EPA 8021H Analyst: KTL Seq Number: 3109981 Parameter Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Total Xylenes Total BTEX	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	108 108 108 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000383 0.000626 <0.000561 0.00231 0.00111 0.00342 0.00405	592054 MQL 0.00199 0.00199 0.00199 0.00398	70 - 3 70 - 3 70 - 3 5DL 0.000383 0.000453 0.000561 0.00101 0.000342 0.000342 0.000342	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Analysis Date 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30 12.10.19 12:30	Flag U J J J J	Dil Factor 1 1 1 1 1 1

Final 1.000

•

Certificate of Analytical Results 645655

Ensolum, Dallas, TX BLM Brine Polyline

Lab Sample 1d: 645665:002 Date Collected: 12.09.19 16.42 Date Received: 12.10.19 08.20 Analysic CHF % Moist: Tech: CHF Seq Number: 3109983 Date Prep: 12.10.19 09.35 Tech: CHF Seq Number: 3109983 CMM MQL SDL Uais Analysic CHF Parameter CMM Result MQL SDL Uais Analysic File Dif Perform Analysical Method: TFH by SW8015 Mod Result Seq Number: 10887-00-0 10 10 Analysical Method: TFH by SW8015 Mod Prep Method:: 8015 210.19 10.00 10 Seq Number: 3109957 Date Perg: 12.10.19 09.00 Teces seq: 7692469 10 1 Gasoline Range Hydrocarbons (GRO) PHC610 <15.0 49.9 15.0 mgkg 12.101.911.29 1 1 Moor Old Range Hydrocarbons (GRO) PHC635 <1.5 49.9 15.0 mgkg 12.101.911.29 1 1 Moor Old Range Hydrocarbons (GRO) PHC635 <1.5 49.9 15.0 mgkg	Sample Id:	CS-2		Matrix:	Soil		Sample	Depth: 6 ft		
Analysi: CHE % Moisi: Tech: CHE CHE Seq Number: 3109983 Date Prep: 12.10.19.09.35 Prep seg: 7692055 Parameter CAS Result MQL SDI Cnis Analysis Fag Dil Fortor Chioride 16887-056 8600 50.0 8.58 mg/g 12.10.19.10.50 10 Analysis: ARM 50.0 8.68 mg/g 12.10.19.10.50 10 Analysis: ARM % Moist: Tech: DVM 50.0 8.58 mg/g 12.10.19.10.50 10 Analysis: ARM % Moist: Tech: DVM 50.0 8.05 50.0 8.05 Analysis: ARM % Moist: Tech: DVM 50.0 10.0 <td>Lab Sample Id</td> <td>d: 645655-002</td> <td></td> <td>Date Collecte</td> <td>ed: 12.09.19 10</td> <td>6.42</td> <td>Date Re</td> <td>eceived: 12.10.</td> <td>19 08.2</td> <td>20</td>	Lab Sample Id	d: 645655-002		Date Collecte	ed: 12.09.19 10	6.42	Date Re	eceived: 12.10.	19 08.2	20
Cancel of the second	Analytical Me	ethod: Chloride by EPA 300					Prep M	ethod: E300P		
Saq Number: 3109933 Date Prep: 12.10.19.09.35 Prep.seq: 7692055 Parameter Result MQL SDL Units Analysics Parameter	Analyst:	CHE		% Moist:			Tech:	CHE		
Prep sog: 7692055 Parameter CAS Number Result MQL SDL Units Analysis Date PB artor Chloride 16887.00.6 8600 50.0 8.58 mgkg 12.10.1910.50 10 Analytical Method: TPH by SW8015 Mod	-	3100083		Date Prep: 12	2.10.19.09.35					
Parameter CAS Number Result MQL SDL Units Analysis Date Fag Dif Partor Chloride 16887-00-6 8600 50.0 8.58 mg/kg 12.10.19.10.50 10 Analytical Method: TPH by SW8015 Mod	Seq Number.	5107765		-						
Chloride 16887-00-6 8600 50.0 8.58 mg/kg 12.10.19 10:50 10 Analytical Method: TPH by SW8015 Mod Analyst: ARM % Moist: Tech: 8015 Seq Number: 3109957 Date Prep: 12.10.19 09.00 Prep seq: Tech: DVM Analysis Analysis Analysis Analysis Parameter CAS Money Result MQL SDL Units Analysis Flag Dil Pactor Gasoline Range Hydrocarbons (GRO) PHC610 <15.0	Paramete	r				SDL	Units	-	Flag	Dil Factor
Analysi: ARM Seq Number: 3109957 Woist: Tech: DVI Seq Number: 3109957 Date Prep: $12.10.19 09.00$ Prep seq: 7692069 Parameter CAS Number Result MQL SDL Values Analysis Prep Plateore Gasoline Range Hydrocarbons (GRO) PHC610 $(15.0 49.9)$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (GRO) PHC635 $<15.0 49.9$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (GRO) PHC635 $<15.0 49.9$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (MRO) PHC635 $<15.0 49.9$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (MRO) PHC635 $<15.0 9.9$ mg/kg $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (MRO) PHC635 $<15.0 9.9$ mg/kg $12.01.9 11.29$ U 1 Moder Prep: 102 $70-135 %$ $Nomber$ $Nomber$ $Nomber$ $Nomber$ $Nomber$ <td>Chloride</td> <td></td> <td></td> <td>8600</td> <td>50.0</td> <td>8.58</td> <td>mg/kg</td> <td></td> <td></td> <td>10</td>	Chloride			8600	50.0	8.58	mg/kg			10
Analysi: ARM Seq Number: 3109957 Woist: Tech: DVI Seq Number: 3109957 Date Prep: $12.10.19 09.00$ Prep seq: 7692069 Parameter CAS Number Result MQL SDL Values Analysis Prep Plateore Gasoline Range Hydrocarbons (GRO) PHC610 $(15.0 49.9)$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (GRO) PHC635 $<15.0 49.9$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (GRO) PHC635 $<15.0 49.9$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (MRO) PHC635 $<15.0 49.9$ $15.0 mg/kg$ $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (MRO) PHC635 $<15.0 9.9$ mg/kg $12.10.19 11.29$ U 1 Moor Oll Range Hydrocarbons (MRO) PHC635 $<15.0 9.9$ mg/kg $12.01.9 11.29$ U 1 Moder Prep: 102 $70-135 %$ $Nomber$ $Nomber$ $Nomber$ $Nomber$ $Nomber$ <td>Analytical Me</td> <td>ethod: TPH by SW8015 Mod</td> <td>l</td> <td></td> <td></td> <td></td> <td>Prep M</td> <td>ethod: 8015</td> <td></td> <td></td>	Analytical Me	ethod: TPH by SW8015 Mod	l				Prep M	ethod: 8015		
Seq Number: 3109957 Date Prep: 12.10.19 09.00 Parameter CAS Number Result MQL SDL Units Analysis Date Flag Dil Factor Gasoline Range Hydrocarbons (GRO) Disest Range Organics (DRO) PHC610 <15.0	-	-		% Moist			-			
For set: For 2020F Parameter CAS Number Result MQL SDL Units Analysis Data For get Plassel Plassel	•				2.10.19 09.00		Tech:	DVW		
Parameter CAS Number Result MQL SDL Units Analysis Date Find Difference Gaoline Range Hydrocarbons (GRO) Diesel Range Hydrocarbons (MRO) PH C610 <15.0	beq i tumber.	5107751								
Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH C10C28DRO PHCG2835 <15.0 49.9 15.0 mg/kg 12.10.19 11:29 U 1 Surrogate o-Terphenyl '''' ''' '''' <t< td=""><td>Parameter</td><td>r</td><td></td><td></td><td></td><td>SDL</td><td>Units</td><td>-</td><td>Flag</td><td>Dil Factor</td></t<>	Parameter	r				SDL	Units	-	Flag	Dil Factor
Diesel Range Organics (DRO) Motor Oil Range Hydrocarbons (MRO) Total TPH C10C28DRO PHCG2835 <15.0 49.9 15.0 mg/kg 12.10.19 11:29 U 1 Surrogate o-Terphenyl '''' ''' '''' <t< td=""><td>Gasoline R</td><td>ange Hydrocarbons (GRO)</td><td>PHC610</td><td><15.0</td><td>49.9</td><td>15.0</td><td>mg/kg</td><td>12.10.19 11:29</td><td>U</td><td>1</td></t<>	Gasoline R	ange Hydrocarbons (GRO)	PHC610	<15.0	49.9	15.0	mg/kg	12.10.19 11:29	U	1
Total TPH PHC635 <15.0 mg/kg 12.10.19 11:29 U Surrogate % Recovery Limits Units Analysis Date Flag 1-Chlorooctane 102 70 - 135 % 70 - 135 % 70 - 135 % Analytical Method: BTEX by EPA 8021B					49.9					1
Total TPH PHC635 <15.0 mg/kg 12.10.19 U Surrogate % Recovery Limits Units Values Flag 1-Chlorooctane 102 70 - 135 % 70 - 135 % 70 - 135 % Analytical Method: BTEX by EPA 8021B Prep Method: 5030B 5030B 5030B 5030B Analysic KTL % Moist: Tech: KTL 5030B 50			PHCG2835							1
I-Chlorooctane o-Terphenyl 102 70 - 135 % 1-Chlorooctane o-Terphenyl 102 70 - 135 % Analytical Method: BTEX by EPA 8021B Prep Method: 5030B Analyst: KTL % Moist: Tech: KTL Seq Number: 3109981 Date Prep: 12.10.19 10.30 Tech: KTL Prep seq: 7692054 Parameter CAS Number Result MQL SDL Units Analysis Date Flag Dil Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Benzene 71-43-2 0.00121 0.00200 0.000364 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000164 mg/kg 12.10.19 12:51 J 1 mp-Sylenes 179601-23-1 0.00287 0.00399 0.00101 mg/kg 12.10.19 12:51 J 1 Total Xylenes 130-20-7 0.00374 0.000344 mg/kg 12.10.19 12:51 J 1	Total TPH		PHC635	<15.0		15.0		12.10.19 11:29	U	
o-Terphenyl 101 70 - 135 % Analytical Method: BTEX by EPA 8021B Prep Method: 5030B Prep Method: 5030B Analyst: KTL % Moist: Tech: KTL Seq Number: 3109981 Date Prep: 12.10.19 10.30 Prep seq: 7692054 Parameter CAS Number Result MQL SDL Units Analysis Flag Dif Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Benzene 1064-14 <0.00206										
Analyst: KTL % Moist: Tech: KTL Seq Number: 3109981 Date Prep: 12.10.19 10.30 Prep seq: 7692054 Tech: KTL Parameter $\frac{CAS}{Number}$ Result MQL SDL Units Analysis Date Flag Dil Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000455 mg/kg 12.10.19 12:51 J 1 m.p-Xylenes 179601-23-1 0.00287 0.00399 0.00101 mg/kg 12.10.19 12:51 J 1 o-Xylene 95-47-6 0.000868 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Total Xylenes 130-20-7 0.00374 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Surrogate % Recovery Limits Units Limits Analysis Date Flag 1/4-Difluorobenzene	Surrogate			% Recovery		Limits	Uni	ts Analysis	Date	Flag
Analyst: KTL % Moist: Tech: KTL Seq Number: 3109981 Date Prep: 12.10.19 10.30 Prep seq: 7692054 Tech: KTL Parameter $\frac{CAS}{Number}$ Result MQL SDL Units Analysis Date Flag Dil Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000455 mg/kg 12.10.19 12:51 J 1 m.p-Xylenes 179601-23-1 0.00287 0.00399 0.00101 mg/kg 12.10.19 12:51 J 1 o-Xylene 95-47-6 0.000868 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Total Xylenes 130-20-7 0.00374 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Surrogate % Recovery Limits Units Limits Analysis Date Flag 1/4-Difluorobenzene	1-Chlorooc	ctane		102		70 - 1	135 %		Date	Flag
Seq Number: 3109981 Date Prep: 12.10.19 10.30 Perp seq: 7692054 Prep seq: 7692054 Parameter CAS Number Result MQL SDL Units Analysis Date Flag Dil Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000455 mg/kg 12.10.19 12:51 J 1 Ethylbenzene 100-41-4 <0.000564 0.00200 0.000364 mg/kg 12.10.19 12:51 J 1 o-Xylene 95-47-6 0.00287 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Total Xylenes 1330-20-7 0.00374 0.000344 mg/kg 12.10.19 12:51 J 1 Surrogate % Recovery Limits Units Analysis Date Flag 1,4-Difluorobenzene 100 70-130 %	1-Chlorooc	ctane		102		70 - 1	135 %		Date	Flag
Prep seq: 7692054 Parameter CAS Number Result MQL SDL Units Analysis Date Flag Dil Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000455 mg/kg 12.10.19 12:51 J 1 Ethylbenzene 100-41-4 <0.000564	1-Chlorooc o-Terpheny	ctane yl		102 101		70 - 1	135 % 135 %	ethod: 5030B		Flag
Parameter CAS Number Result MQL SDL Units Analysis Date Flag Dil Factor Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000564 mg/kg 12.10.19 12:51 J 1 Ethylbenzene 100-41-4 <0.000564	1-Chlorooc o-Terpheny Analytical Me	ethod: BTEX by EPA 8021B		102 101		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
Parameter Number Result MQL SDL Units Date Flag Benzene 71-43-2 0.00121 0.00200 0.000384 mg/kg 12.10.19 12:51 J 1 Toluene 108-88-3 0.00229 0.00200 0.000455 mg/kg 12.10.19 12:51 J 1 Ethylbenzene 100-41-4 <0.000564	1-Chlorooc o-Terpheny Analytical Me Analyst:	ctane yl ethod: BTEX by EPA 8021B KTL		102 101 % Moist:	2.10.19 10.30	70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
Toluene 108-88-3 0.00229 0.00200 0.000455 mg/kg 12.10.19 12:51 1 Ethylbenzene 100-41-4 <0.000564 0.00200 0.000564 mg/kg 12.10.19 12:51 U 1 m,p-Xylenes 179601-23-1 0.00287 0.00399 0.00101 mg/kg 12.10.19 12:51 J 1 o-Xylene 95-47-6 0.000868 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Total Xylenes 1330-20-7 0.00374 0.000344 mg/kg 12.10.19 12:51 J 1 Surrogate % Recovery Limits Units Analysis Date Flag 1,4-Difluorobenzene 100 70 - 130 %	1-Chlorooc o-Terpheny Analytical Me Analyst:	ctane yl ethod: BTEX by EPA 8021B KTL		102 101 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
Ethylbenzene 100-41-4 <0.000564	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number:	ctane yl ethod: BTEX by EPA 8021B KTL 3109981	CAS	102 101 % Moist: Date Prep: 12 Prep seq: 76	592054	70 - 1 70 - 1	135 % 135 % Prep M Tech:	ethod: 5030B KTL Analysis		
m,p-Xylenes 179601-23-1 0.00287 0.00399 0.00101 mg/kg 12.10.19 12:51 J 1 o-Xylene 95-47-6 0.000868 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Total Xylenes 1330-20-7 0.00374 0.000344 mg/kg 12.10.19 12:51 J 1 Surrogate % Recovery Limits Units Analysis Date Flag 1,4-Difluorobenzene 100 70 - 130 %	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Paramete	ctane yl ethod: BTEX by EPA 8021B KTL 3109981	CAS Number	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result	592054 MQL	70 - 1 70 - 1 SDL	135 % 135 % Prep M Tech: Units	ethod: 5030B KTL Analysis Date	Flag	Dil Factor
o-Xylene 95-47-6 0.000868 0.00200 0.000344 mg/kg 12.10.19 12:51 J 1 Total Xylenes 1330-20-7 0.00374 0.000344 mg/kg 12.10.19 12:51 J 1 Surrogate % Recovery Limits Units Analysis Date Flag 1,4-Difluorobenzene 100 70 - 130 %	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene	ctane yl ethod: BTEX by EPA 8021B KTL 3109981	CAS Number 71-43-2	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121	592054 MQL 0.00200	70 - 1 70 - 1 SDL 0.000384	135 % 135 % Prep M Tech: Units mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51	Flag	Dil Factor
Total Xylenes 1330-20-7 0.00374 0.000344 mg/kg 12.10.19 12:51 Total BTEX 0.00724 0.000344 mg/kg 12.10.19 12:51 Surrogate % Recovery Limits Units Analysis Date Flag 1,4-Difluorobenzene 100 70 - 130 %	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze	ethod: BTEX by EPA 8021B KTL 3109981 r	CAS Number 71-43-2 108-88-3 100-41-4	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564	592054 MQL 0.00200 0.00200 0.00200	70 - 1 70 - 1 SDL 0.000384 0.000455 0.000564	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U	Dil Factor
Total BTEX 0.00724 0.000344 mg/kg 12.10.19 12:51 Surrogate % Recovery Limits Units Analysis Date Flag 1,4-Difluorobenzene 100 70 - 130 % %	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylen	ethod: BTEX by EPA 8021B KTL 3109981 r	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564 0.00287	592054 MQL 0.00200 0.00200 0.00200 0.00200 0.00399	70 - 1 70 - 1 5 DL 0.000384 0.000455 0.000564 0.00101	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U J	Dil Factor 1 1 1 1 1
Surrogate% RecoveryLimitsUnitsAnalysis DateFlag1,4-Difluorobenzene10070 - 130%	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylen o-Xylene	ethod: BTEX by EPA 8021B KTL 3109981 r ene es	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564 0.00287 0.000868	592054 MQL 0.00200 0.00200 0.00200 0.00200 0.00399	70 - 1 70 - 1 501 5000384 0.000384 0.000455 0.000564 0.00101 0.000344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U J	Dil Factor 1 1 1 1 1
1,4-Difluorobenzene 100 70 - 130 %	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylen o-Xylene Total Xyle	ethod: BTEX by EPA 8021B KTL 3109981 r ene es	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564 0.00287 0.000868 0.00374	592054 MQL 0.00200 0.00200 0.00200 0.00200 0.00399	70 - 1 70 - 1 70 - 1 5DL 0.000384 0.000455 0.000564 0.00101 0.000344 0.000344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U J	Dil Factor 1 1 1 1 1
	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylen o-Xylene Total Xyle	ethod: BTEX by EPA 8021B KTL 3109981 r ene es	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564 0.00287 0.000868 0.00374	592054 MQL 0.00200 0.00200 0.00200 0.00200 0.00399	70 - 1 70 - 1 70 - 1 5DL 0.000384 0.000455 0.000564 0.00101 0.000344 0.000344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U J	Dil Factor 1 1 1 1 1
4-Bromofluorobenzene 103 70 - 130 %	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylen o-Xylene Total Xyle Total BTE	ethod: BTEX by EPA 8021B KTL 3109981 r me ees mes X	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564 0.00287 0.000868 0.00374 0.000724	592054 MQL 0.00200 0.00200 0.00200 0.00200 0.00399	70 - 1 70 - 1 70 - 1 5DL 0.000384 0.000455 0.000564 0.00101 0.000344 0.000344 0.000344	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U J J	Dil Factor 1 1 1 1 1 1
	1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylen o-Xylene Total Xyle Total BTE Surrogate	ethod: BTEX by EPA 8021B KTL 3109981 r me es mes X	CAS Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	102 101 % Moist: Date Prep: 12 Prep seq: 76 Result 0.00121 0.00229 <0.000564 0.00287 0.000868 0.00374 0.000724	592054 MQL 0.00200 0.00200 0.00200 0.00200 0.00399	70 - 1 70 - 1 70 - 1 5DL 0.000384 0.000455 0.000564 0.00101 0.000344 0.000344 0.000344 0.000344 0.000344	135 % 135 % Prep M Tech: Units mg/kg m	ethod: 5030B KTL Analysis Date 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51 12.10.19 12:51	Flag J U J J	Dil Factor 1 1 1 1 1 1

Final 1.000

.

.

Certificate of Analytical Results 645655

Ensolum, Dallas, TX BLM Brine Polyline

Sample Id:	CS-3		Matrix:	Soil		Sample	Depth: 6 ft		
Lab Sample Io	d: 645655-003		Date Collecte	ed: 12.09.19 10	6.45	Date R	eceived: 12.10.	19 08.2	20
Analytical Me	ethod: Chloride by EPA 300					Prep M	ethod: E300P		
Analyst:	CHE		% Moist:			Tech:	CHE		
Seq Number:	3109983		Date Prep: 12	2.10.19 09.35					
~ 1	2107700		Prep seq: 76						
Paramete	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Chloride		16887-00-6	2060	50.0	8.58	mg/kg	12.10.19 10:57		10
Analytical Me	ethod: TPH by SW8015 Mod					Prep M	ethod: 8015		
Analyst:	ARM		% Moist:			Tech:	DVM		
Seq Number:	3109957		Date Prep: 12	2 10 19 09 00		reen.	DVM		
Seq Number.	5105557		Prep seq: 76						
Parameter	r	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Gasoline R	ange Hydrocarbons (GRO)	PHC610	<15.0	49.9	15.0	mg/kg	12.10.19 11:47	U	1
	ge Organics (DRO)	C10C28DRO	<15.0	49.9	15.0	mg/kg	12.10.19 11:47	U	1
	ange Hydrocarbons (MRO)	PHCG2835	<15.0	49.9	15.0	mg/kg	12.10.19 11:47	U	1
Total TPH		PHC635	<15.0		15.0	mg/kg	12.10.19 11:47	U	
Surrogate			% Recovery		Limits	Uni	ts Analysis	Date	Flag
Surrogate 1-Chlorooc o-Terpheny	ctane		% Recovery 123 121		Limits 70 - 1 70 - 1	135 %	-	Date	Flag
1-Chlorooc o-Terpheny	ctane yl		123		70 - 1	135 % 135 %			Flag
1-Chlorooc o-Terpheny Analytical Me	ethod: BTEX by EPA 8021B		123 121		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooc o-Terpheny Analytical Me Analyst:	ethod: BTEX by EPA 8021B KTL		123 121 % Moist:	2.10.19 10.30	70 - 1	135 % 135 %			Flag
1-Chlorooc o-Terpheny Analytical Me	ethod: BTEX by EPA 8021B		123 121		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag
1-Chlorooc o-Terpheny Analytical Me Analyst:	ctane yl ethod: BTEX by EPA 8021B KTL 3109981	CAS Number	123 121 % Moist: Date Prep: 12		70 - 1	135 % 135 % Prep M	ethod: 5030B		Flag Dil Factor
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number:	ctane yl ethod: BTEX by EPA 8021B KTL 3109981		123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387	592054	70 - 1 70 - 1	135 % 135 % Prep M Tech:	ethod: 5030B KTL Analysis		
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Paramete Benzene Toluene	ctane yl ethod: BTEX by EPA 8021B KTL 3109981 r	Number 71-43-2 108-88-3	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523	592054 MQL 0.00201 0.00201	70 - 1 70 - 1 SDL 0.000387 0.000458	135 % 135 % Prep M Tech: Units mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11	Flag U J	Dil Factor
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze	ethod: BTEX by EPA 8021B KTL 3109981 r	Number 71-43-2 108-88-3 100-41-4	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523 <0.000568	592054 MQL 0.00201 0.00201 0.00201	70 - 1 70 - 1 50L 0.000387 0.000458 0.000568	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11	Flag U J U	Dil Factor
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Paramete Benzene Toluene Ethylbenze m,p-Xylene	ethod: BTEX by EPA 8021B KTL 3109981 r	Number 71-43-2 108-88-3 100-41-4 179601-23-1	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523 <0.000568 <0.00102	592054 MQL 0.00201 0.00201 0.00201 0.00201 0.00402	70 - 1 70 - 1 50L 0.000387 0.000458 0.000568 0.00102	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11	Flag U J U U	Dil Factor 1 1 1 1
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylene o-Xylene	ethod: BTEX by EPA 8021B KTL 3109981 r	Number 71-43-2 108-88-3 100-41-4	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523 <0.000568	592054 MQL 0.00201 0.00201 0.00201	70 - 1 70 - 1 50L 0.000387 0.000458 0.000568	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11	Flag U J U	Dil Factor
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Paramete Benzene Toluene Ethylbenze m,p-Xylene	ethod: BTEX by EPA 8021B KTL 3109981 r ene es nes	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523 <0.000568 <0.00102 <0.000346	592054 MQL 0.00201 0.00201 0.00201 0.00201 0.00402	70 - 1 70 - 1 70 - 1 5 DL 0.000387 0.000458 0.000568 0.00102 0.000346	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11	Flag U J U U U U	Dil Factor 1 1 1 1
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylene o-Xylene Total Xylen	ethod: BTEX by EPA 8021B KTL 3109981 r es nes X	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523 <0.000568 <0.00102 <0.000346 <0.000346	592054 MQL 0.00201 0.00201 0.00201 0.00201 0.00402	70 - 1 70 - 1 70 - 1 5DL 0.000387 0.000458 0.000568 0.00102 0.000346 0.000346	135 % 135 % Prep M Tech: Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11	Flag U J U U U U J J	Dil Factor 1 1 1 1
1-Chlorooc o-Terpheny Analytical Me Analyst: Seq Number: Parameter Benzene Toluene Ethylbenze m,p-Xylene Total Xylen Total BTE	ethod: BTEX by EPA 8021B KTL 3109981 r ene ess nes X	Number 71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	123 121 % Moist: Date Prep: 12 Prep seq: 76 Result <0.000387 0.000523 <0.000568 <0.00102 <0.000346 <0.000346 0.000523	592054 MQL 0.00201 0.00201 0.00201 0.00201 0.00402	70 - 1 70 - 1 70 - 1 5DL 0.000387 0.000458 0.000568 0.00102 0.000346 0.000346 0.000346	135 % 135 % Prep M Tech: Units Units mg/kg	ethod: 5030B KTL Analysis Date 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11 12.10.19 13:11	Flag U J U U U U J J	Dil Factor 1 1 1 1 1 1

Final 1.000

•

.

Certificate of Analytical Results 645655

Ensolum, Dallas, TX BLM Brine Polyline

Sample Id: 7692054-1-BLK		Matrix: Solid Sample Depth:								
Lab Sample Id: 7692054-1-BLK		Date Collecte	ed:		Date Received:					
Analytical Method: BTEX by EPA 8021B					Prep M	lethod: 5030B				
Analyst: KTL		% Moist:			Tech:	KTL				
5			10 10 10 20		Teen.	KIL				
Seq Number: 3109981		Date Prep: 12								
		Prep seq: 76	592054							
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor		
Benzene	71-43-2	< 0.000385	0.00200	0.000385	mg/kg	12.10.19 12:10	U	1		
Toluene	108-88-3	< 0.000456	0.00200	0.000456	mg/kg	12.10.19 12:10	U	1		
Ethylbenzene	100-41-4	< 0.000565	0.00200	0.000565	mg/kg	12.10.19 12:10	U	1		
m,p-Xylenes	179601-23-1	< 0.00101	0.00400	0.00101	mg/kg	12.10.19 12:10	U	1		
o-Xylene	95-47-6	<0.000344	0.00200	0.000344	mg/kg	12.10.19 12:10	U	1		
Surrogate		% Recovery		Limits	Uni	its Analysis	Date	Flag		
1,4-Difluorobenzene		95	95 70 - 1)				
4-Bromofluorobenzene		95		70 - 1	130 %)				
Sample Id: 7692055-1-BLK		Matrix:	Solid		Sample	e Depth:				
Lab Sample Id: 7692055-1-BLK		Date Collecte	ed:		Date R	eceived:				
Analytical Method: Chloride by EPA 300					Prep M	lethod: E300P				
Analyst: CHE		% Moist:			Tech:	CHE				
Seq Number: 3109983		Date Prep: 12	2.10.19 09.35							
		Prep seq: 76	592055							
Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor		
Chloride	16887-00-6	< 0.858	5.00	0.858	mg/kg	12.10.19 09:46	U	1		

•

Certificate of Analytical Results 645655

Ensolum, Dallas, TX BLM Brine Polyline

Sample Id: 7692069	9-1-BLK		Matrix:	trix: Solid			Sample Depth:				
Lab Sample Id: 7692069	Date Collecte	d:	Date Received:								
Analytical Method: TP	H by SW8015 Mod			Prep Method: 8015							
Analyst: ARM			% Moist:		Tech: DVM						
Seq Number: 3109957	7		Date Prep: 12	2.10.19 09.00							
			Prep seq: 76	592069							
Parameter		CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor		
Gasoline Range Hydro	ocarbons (GRO)	PHC610	<15.0	50.0	15.0	mg/kg	12.10.19 09:35	U	1		
Diesel Range Organics	s (DRO)	C10C28DRO	<15.0	50.0	15.0	mg/kg	12.10.19 09:35	U	1		
Motor Oil Range Hydroca	arbons (MRO)	PHCG2835	<15.0	50.0	15.0	mg/kg	12.10.19 09:35	U	1		

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1-Chlorooctane o-Terphenyl	93 94	70 - 135 70 - 135	% %		

.

CHRONOLOGY OF HOLDING TIMES

Analytical Method :Chloride by EPA 300Work Order #:645655

Date Received: 12/10/19

Client : Ensolum

Project ID: 03B1511003

Field	d Sample ID	Lab Sample ID	Date Collected	Date Extracted	Max Holding Time Extracted (Days)	Time Held Extracted (Days)	Date Analyzed	Max Holding Time Analyzed (Days)	Time Held Analyzed (Days)	Q
CS-1		645655-001	12/09/19				12/10/19	28	1	
CS-2		645655-002	12/09/19				12/10/19	28	1	
CS-3		645655-003	12/09/19				12/10/19	28	1	

CHRONOLOGY OF HOLDING TIMES

Time

Held

Analytical Method: TPH by SW8015 Mod Client : Ensolum Work Order #: 645655 Project ID: 03B1511003 12/10/19 Date Received: Max Time Max Holding Date Held Date Holding Date Field Sample ID Lab Sample ID Collected Extracted Time Extracted Analyzed Time

Fiel	ld Sample ID	Lab Sample ID	Collected	Extracted	Time Extracted (Days)	Extracted (Days)	Analyzed	Time Analyzed (Days)	Analyzed (Days)	Q
CS-1		645655-001	12/09/19	12/10/19	14	1	12/10/19	14	0	
CS-2		645655-002	12/09/19	12/10/19	14	1	12/10/19	14	0	
CS-3		645655-003	12/09/19	12/10/19	14	1	12/10/19	14	0	

CHRONOLOGY OF HOLDING TIMES

Analytical Method : BTEX by EPA 8021B Client : Ensolum Work Order #: 645655 Project ID: 03B1511003 Date Received: 12/10/19 Max Time

Field Sample ID	Lab Sample ID	Date Collected	Date Extracted	Max Holding Time Extracted (Days)	Date Analyzed	Max Holding Time Analyzed (Days)	Time Held Analyzed (Days)	Q
CS-1	645655-001	12/09/19			12/10/19	14	1	
CS-2	645655-002	12/09/19			12/10/19	14	1	
CS-3	645655-003	12/09/19			12/10/19	14	1	

F = These samples were analyzed outside the recommended holding time.

Flagging Criteria

- Page 37 of 60
- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Analytical Method:	TPH by SW8015 Mod	Batch #:	3109957
Project Name:	BLM Brine Polyline	Project ID:	03B1511003
Client Name:	Ensolum	WO Number:	645655

Client Sample Id	Lab Sample Id	QC Types
CS-1	645655-001	SMP
CS-2	645655-002	SMP
CS-3	645655-003	SMP
	645655-001 S	MS
	645655-001 SD	MSD
	7692069-1-BKS	BKS
	7692069-1-BLK	BLK
	7692069-1-BSD	BSD

Analytical Method:	BTEX by EPA 8021B	Batch #:	3109981
Project Name:	BLM Brine Polyline	Project ID:	03B1511003
Client Name:	Ensolum	WO Number:	645655

Client Sample Id	Lab Sample Id	QC Types
CS-1	645655-001	SMP
CS-2	645655-002	SMP
CS-3	645655-003	SMP
	645655-001 S	MS
	645655-001 SD	MSD
	7692054-1-BKS	BKS
	7692054-1-BLK	BLK
	7692054-1-BSD	BSD

.

Analytical Method:	Chloride by EPA 300	Batch #:	3109983
Project Name:	BLM Brine Polyline	Project ID:	03B1511003
Client Name:	Ensolum	WO Number:	645655

Client Sample Id	Lab Sample Id	QC Types
CS-1	645655-001	SMP
CS-2	645655-002	SMP
CS-3	645655-003	SMP
	645620-007 S	MS
	645620-007 SD	MSD
	7692055-1-BKS	BKS
	7692055-1-BLK	BLK
	7692055-1-BSD	BSD

.

Form 2 - Surrogate Recoveries

Project Name: BLM Brine Polyline

ork Orders : 645655		DVG	0	D: 03B15110	003	
Lab Batch #: 3109981	Sample: 7692054-1-BKS / 1		h: ¹ Matrix RROGATE R		OTUDY	
Units: mg/kg	Date Analyzed: 12/10/19 10:29	50	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0272	0.0300	91	70-130	
4-Bromofluorobenzene		0.0298	0.0300	99	70-130	
Lab Batch #: 3109981	Sample: 7692054-1-BSD /	BSD Bate	h: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 12/10/19 10:50	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	Analytes	0.0298	0.0300	99	70-130	
4-Bromofluorobenzene		0.0298	0.0300	113	70-130	
Lab Batch #: 3109981	Sample: 645655-001 S / M			-		
	-		h: 1 Matrix RROGATE R	-	STUDY	
Units: mg/kg	Date Analyzed: 12/10/19 11:10		1			
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene	Analytes	0.0290	0.0300	97	70-130	
4-Bromofluorobenzene		0.0342	0.0300	114	70-130	
Lab Batch #: 3109981	Sample: 645655-001 SD / N	MSD Bate	h: ¹ Matrix	z• Soil		
Units: mg/kg	Date Analyzed: 12/10/19 11:30		RROGATE R		STUDY	
	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0288	0.0300	96	70-130	ļ
4-Bromofluorobenzene		0.0327	0.0300	109	70-130	I
Lab Batch #: 3109981	Sample: 7692054-1-BLK /					
Units: mg/kg	Date Analyzed: 12/10/19 12:10	SU	RROGATE R	ECOVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0285	0.0300	95	70-130	
4-Bromofluorobenzene			0.0300			
+-bromonuorobenzene		0.0285	0.0300	95	70-130	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: BLM Brine Polyline

ork Orders : 645655	,		Project I	D: 03B15110	03	
Lab Batch #: 3109957	Sample: 7692069-1-BLK /		-			
Units: mg/kg	Date Analyzed: 12/10/19 09:35	SU	RROGATE R	ECOVERYS	STUDY	
TPH	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		1
1-Chlorooctane		93.4	100	93	70-135	
o-Terphenyl		47.2	50.0	94	70-135	
Lab Batch #: 3109957	Sample: 7692069-1-BKS /	BKS Batc	h: ¹ Matrix	:Solid		
Units: mg/kg	Date Analyzed: 12/10/19 09:53	SU	RROGATE R	ECOVERY S	STUDY	
TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	Anarytes	130	100	130	70-135	
o-Terphenyl		59.0	50.0	118	70-135	
	g 1 7(000(0 1 DOD /				10 155	
Lab Batch #: 3109957	Sample: 7692069-1-BSD /		h: 1 Matrix	-	STUDY	
Units: mg/kg	Date Analyzed: 12/10/19 10:12	50				
TPH	by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	1 muly tos	128	100	128	70-135	
o-Terphenyl		64.5	50.0	129	70-135	
Lab Batch #: 3109957	Sample: 645655-001 S / M	S Batc	h: 1 Matrix	:Soil	11	
Units: mg/kg	Date Analyzed: 12/10/19 10:50		RROGATE R	ECOVERY	STUDY	
	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		1
1-Chlorooctane		129	99.7	129	70-135	
o-Terphenyl		62.2	49.9	125	70-135	
Ξ. Ψ	Sample: 645655-001 SD / N		49.9 h: 1 Matrix		70-135	
μ. Ψ.	Sample: 645655-001 SD / N Date Analyzed: 12/10/19 11:09	MSD Batc		:Soil		
Lab Batch #: 3109957 Units: mg/kg	•	MSD Batc	h: 1 Matrix	:Soil		Flags
Lab Batch #: 3109957 Units: mg/kg	Date Analyzed: 12/10/19 11:09 by SW8015 Mod	MSD Batc SU Amount Found	h: 1 Matrix RROGATE R True Amount	:: Soil ECOVERY S Recovery %R	STUDY Control Limits	Flags

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

BS / BSD Recoveries

Project Name: BLM Brine Polyline

Work Order #: 645655							Proj	ect ID:	03B151100)3	
Analyst: KTL	D	ate Prepar	ed: 12/10/20	19			Date A	nalyzed:	12/10/2019		
Lab Batch ID: 3109981 Sample: 7692054-1-	BKS	Batch	n #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE /]	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.000385	0.100	0.102	102	0.100	0.105	105	3	70-130	35	
Toluene	< 0.000456	0.100	0.0985	99	0.100	0.102	102	3	70-130	35	
Ethylbenzene	< 0.000565	0.100	0.0958	96	0.100	0.100	100	4	70-130	35	
m,p-Xylenes	< 0.00101	0.200	0.195	98	0.200	0.206	103	5	70-130	35	
o-Xylene	< 0.000344	0.100	0.0951	95	0.100	0.102	102	7	70-130	35	
Analyst: CHE	D	ate Prepar	ed: 12/10/20	19	1		Date A	nalyzed:	12/10/2019	1	
Lab Batch ID: 3109983 Sample: 7692055-1-	BKS	Batch	n #: 1					Matrix:	Solid		
Units: mg/kg		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Chloride by EPA 300 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<0.858	250	245	98	250	244	98	0	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: BLM Brine Polyline

Work Order	#: 645655							Proj	ect ID: ()3B151100	3	
Analyst:	ARM	D	ate Prepar	red: 12/10/201	.9			Date A	nalyzed: 1	2/10/2019		
Lab Batch ID:	Sample: 7692069-1-	BKS	Bate	h #: 1					Matrix: S	Solid		
Units:	mg/kg		BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	ΟY	
	TPH by SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analy	tes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline F	Range Hydrocarbons (GRO)	<15.0	1000	974	97	1000	1110	111	13	70-135	20	
Diesel Rar	nge Organics (DRO)	<15.0	1000	1020	102	1000	1180	118	15	70-135	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

.

Form 3 - MS / MSD Recoveries

Project Name: BLM Brine Polyline

Work Order # :	645655						Project II): 03B15	11003			
Lab Batch ID:	3109981	QC- Sample ID:	645655-	-001 S	Ba	tch #:	1 Matrix	k: Soil				
Date Analyzed:	12/10/2019	Date Prepared:	12/10/20	019	An	alyst: k	KTL					
Reporting Units:	mg/kg		М	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA'	TE REC	OVERY	STUDY		
I	BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added	Spiked Sample Result [C]	Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Anarytes		[B]		[D]	[E]		[G]				
Benzene		<0.000383	0.0996	0.100	100	0.0990	0.0890	90	12	70-130	35	
Toluene		0.000626	0.0996	0.0962	96	0.0990	0.0866	87	11	70-130	35	
Ethylbenzene		<0.000563	0.0996	0.0905	91	0.0990	0.0815	82	10	70-130	35	
m,p-Xylenes		0.00231	0.199	0.185	92	0.198	0.165	82	11	70-130	35	
o-Xylene		0.00111	0.0996	0.0901	89	0.0990	0.0807	80	11	70-130	35	
Lab Batch ID:	3109983	QC- Sample ID:	645620-	-007 S	Ba	tch #:	1 Matrix	k: Soil				
Lab Batch ID: Date Analyzed:	3109983 12/10/2019	QC- Sample ID: Date Prepared:				tch #: alyst: (c: Soil				
			12/10/20	019	An	alyst: (OVERY	STUDY		
Date Analyzed: Reporting Units:	12/10/2019	Date Prepared: Parent Sample	12/10/20 M Spike)19 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample	alyst: C RIX SPI	CHE KE DUPLICA' Duplicate Spiked Sample	TE REC Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Date Analyzed: Reporting Units:	12/10/2019 mg/kg	Date Prepared:	12/10/20 M	019 ATRIX SPIK Spiked Sample	An E / MAT Spiked	alyst: (RIX SPI	CHE KE DUPLICA Duplicate	TE REC Spiked		Control		Flag
Date Analyzed: Reporting Units:	12/10/2019 mg/kg Chloride by EPA 300	Date Prepared: Parent Sample Result	12/10/20 M Spike Added)19 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample %R	alyst: C RIX SPI Spike Added	CHE KE DUPLICA' Duplicate Spiked Sample	TE REC Spiked Dup. %R	RPD	Control Limits	Limits	Flag
Date Analyzed: Reporting Units:	12/10/2019 mg/kg Chloride by EPA 300	Date Prepared: Parent Sample Result [A]	12/10/20 M Spike Added [B] 253	019 ATRIX SPIK Spiked Sample Result [C] 380	An E / MAT Spiked Sample %R [D] 96	alyst: C RIX SPI Spike Added [E]	CHE KE DUPLICA' Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G] 98	RPD %	Control Limits %R	Limits %RPD	Flag
Date Analyzed: Reporting Units:	12/10/2019 mg/kg Chloride by EPA 300 Analytes	Date Prepared: Parent Sample Result [A] 137	12/10/20 M Spike Added [B] 253 645655-	019 ATRIX SPIK Spiked Sample Result [C] 380 001 S	An E / MAT Spiked Sample %R [D] 96 Ba	RIX SPI Spike Added [E] 253	CHE KE DUPLICA Duplicate Spiked Sample Result [F] 385 1 Matrix	TE REC Spiked Dup. %R [G] 98	RPD %	Control Limits %R	Limits %RPD	Flag
Date Analyzed: Reporting Units: Chloride Lab Batch ID:	12/10/2019 mg/kg Chloride by EPA 300 Analytes 3109957	Date Prepared: Parent Sample Result [A] 137 QC- Sample ID:	12/10/20 M Spike Added [B] 253 645655- 12/10/20	ATRIX SPIK Spiked Sample Result [C] 380 001 S 019	An E / MAT Spiked Sample %R [D] 96 Ba An	Analyst: C RIX SPI Spike Added [E] 253 tch #: nalyst: A	CHE KE DUPLICA Duplicate Spiked Sample Result [F] 385 1 Matrix	TE REC Spiked Dup. %R [G] 98 c: Soil	RPD %	Control Limits %R 90-110	Limits %RPD	Flag
Date Analyzed: Reporting Units: Chloride Lab Batch ID: Date Analyzed: Reporting Units:	12/10/2019 mg/kg Chloride by EPA 300 Analytes 3109957 12/10/2019	Date Prepared: Parent Sample Result [A] 137 QC- Sample ID:	12/10/20 M Spike Added [B] 253 645655- 12/10/20 M	ATRIX SPIK Spiked Sample Result [C] 380 001 S 019	An E / MAT Spiked Sample %R [D] 96 Ba An E / MAT	Analyst: C RIX SPI Spike Added [E] 253 tch #: nalyst: A	CHE KE DUPLICA Duplicate Spiked Sample Result [F] 385 1 Matrix	TE REC Spiked Dup. %R [G] 98 c: Soil	RPD %	Control Limits %R 90-110	Limits %RPD	
Date Analyzed: Reporting Units: Chloride Lab Batch ID: Date Analyzed: Reporting Units:	12/10/2019 mg/kg Chloride by EPA 300 Analytes 3109957 12/10/2019 mg/kg TPH by SW8015 Mod	Date Prepared: Date Prepared: Parent Sample Result [A] 137 QC- Sample ID: Date Prepared: Parent Sample Result	12/10/20 M Spike Added [B] 253 645655- 12/10/20 M Spike Added	019 ATRIX SPIK Spiked Sample Result [C] 380 001 S 019 ATRIX SPIK Spiked Sample Result	An E / MAT Spiked Sample %R [D] 96 Ba An E / MAT Spiked Sample %R	Analyst: C RIX SPI Spike Added [E] 253 tch #: aalyst: A RIX SPI Spike Added	CHE KE DUPLICA' Duplicate Spiked Sample Result [F] 385 1 Matrix ARM KE DUPLICA' Duplicate Spiked Sample	TE REC Spiked Dup. %R [G] 98 k: Soil TE REC Spiked Dup. %R	RPD % 1 OVERY	Control Limits %R 90-110 STUDY Control Limits	Limits %RPD 20 Control Limits	Flag

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$

.

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Attachment A Laboratory Data Package Cover Page

Project Name: **BLM Brine Polyline** Laboratory Number: 645655 Laboratory Batch No(s) 7692054, 7692055, 7692069 This Data package consists of : This signature page, the laboratory review checklist, and the following reportable data: X R1 Field chain-of-custody documentation; \mathbf{X} R2 Sample identification cross-reference; X R3 Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs). X R4 Surrogate Recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits. X R5 Test reports/summary forms for blank samples; X R6 Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits. X R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs) and e) The laboratory's MS/MSD QC limits X R8 Laboratory anaytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates.

 $\boxed{\mathbf{X}}$ R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;

X R10 Other problems or anomalies.

X Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies, observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: [] This laboratory meets an exception under 30 TAC 25.6 and was last inspection by [] TCEQ or [] ______ on (enter date of last inspection). Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

	Jessica VRAMER		
Jessica Kramer	Josevin	Project Assistant	10-DEC-19
Name (Printed)	Signature	Official Title (printed)	Date

.

Att	ach	ment A (cont'd) : Laboratory Review Cl	hecklist: Reportable Data					
Labo	orator	y Name: XENCO LABORATORIES	LRC Date : 10-DEC-19					
Proje	ect Na	ame: BLM Brine Polyline	Laboratory Job Number : 645655					
Revi	ewer	Name: JKR	Batch Number(s) : 7692054, 7692055, 7692069					
#1	A ²	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
R 1	OI	Chain-of-Custody (COC)		1				
		Did samples meet the laboratory's standard conditions of s	ample acceptability upon receipt?	X				
		Were all departures from standard conditions described in		X				
R2	OI	Sample and Quality Control (QC) Identification	* *	1				
		Are all field sample ID numbers cross-referenced to the la		X				
		Are all laboratory ID numbers cross-referenced to the corr		X				
R3	OI	Test Reports		1				
		Were all samples prepared and analyzed within holding tir	mes?	X				
		Other than those results <mql, all="" other="" raw="" td="" values<="" were=""><td></td><td>X</td><td></td><td></td><td></td><td></td></mql,>		X				
		Were calculations checked by a peer or supervisor?		X				
		Were all analyte identifications checked by a peer or super	rvisor?	X				
		Were sample detection limits reported for all analytes not	detected?	X				
		Were all results for soil and sediment samples reported on		Х				
		Were % moisture (or solids) reported for all soil and sedin	-	Х				
		Were bulk soil/solid samples for volatile analysis extracted	d with methanol per SW846 Method 5035?		X			1
		If required for the project, were TICs reported?		X				
R4	0	Surrogate Recovery Data						
		Were surrogates added prior to extraction?		X				
		Were surrogate percent recoveries in all samples within the		X				
R5	OI	Test Reports/Summary Forms for Blank Sample	28					
		Were appropriate type(s) of blanks analyzed?		Х				
		Were blanks analyzed at the appropriate frequency ?		X				
		Were method blanks taken through the entire analytical proprocedures ?	ocedure, including preparation and, if applicable, cleanup	X				
		Were Blank Concentrations <mql?< td=""><td></td><td>X</td><td></td><td></td><td></td><td></td></mql?<>		X				
R6	OI	Laboratory Control Samples (LCS):		1				
		Were all COCs included in the LCS?		X				
		Was each LCS taken through the entire analytical procedu	re, including prep and cleanup steps?	X				
		Were LCSs analyzed at the required frequency?		X				
		Were LCS (and LCSD, if applicable) %Rs within the labor	ratory QC limits?	X				
		Does the detectability check sample data document the lab	poratory's capability to detect the COCs at the MDL used to	Х				
		calculate the SDLs?						
D7	OI	Was the LCSD RPD within the QC limits?		X				
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (
		Were the project/method specified analytes included in the	e MS and MSD?	X				
		Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the labora	tom OC limite?	X X				
		Were MS/MSD RPDs within the laboratory QC limits?	tory QC limits?	X				
R8	OI	Analytical Duplicate Data		1				
110		Were appropriate analytical duplicates analyzed for each r	natrix?	X				
		Were analytical duplicates analyzed at the appropriate free		X				
		Were RPDs or relative standard deviations within the labo		X				
				1				
R9	OI							
R9	OI	Method Quantitation Limits (MQLs)	poratory data package?	X				
R9	OI	Method Quantitation Limits (MQLs) Are the MQLs for each method analyte included in the lab		X X				
R9	OI	Method Quantitation Limits (MQLs)	st non-zero calibration standard?					
		Method Quantitation Limits (MQLs) Are the MQLs for each method analyte included in the lab Do the MQLs correspond to the concentration of the lower Are unadjusted MQLs and DCSs included in the laborator	st non-zero calibration standard?	X				
		Method Quantitation Limits (MQLs) Are the MQLs for each method analyte included in the lab Do the MQLs correspond to the concentration of the lowes Are unadjusted MQLs and DCSs included in the laborator Other Problems/Anomalies	st non-zero calibration standard? y data package?	X				
		Method Quantitation Limits (MQLs) Are the MQLs for each method analyte included in the lab Do the MQLs correspond to the concentration of the lowes Are unadjusted MQLs and DCSs included in the laborator Other Problems/Anomalies Are all known problems/anomalies/special conditions note	st non-zero calibration standard? y data package? ed in this LRC and ER?	X X				
		Method Quantitation Limits (MQLs) Are the MQLs for each method analyte included in the lab Do the MQLs correspond to the concentration of the lowes Are unadjusted MQLs and DCSs included in the laborator Other Problems/Anomalies Are all known problems/anomalies/special conditions note	st non-zero calibration standard? y data package? ed in this LRC and ER? pratory Accreditation Program for the analytes, matrices and	X X X				

Labo	rator	y Name: XENCO LABORATORIES LRC D	Date : 10-DEC-19					
Proje	ect Na	ame: BLM Brine Polyline Labora	atory Job Number: 645655					
Revie	ewer	Name: JKR Batch	Number(s): 7692054, 7692055, 7692069					
#1	A ²	Description		Yes	No	NA 3	NR ⁴	ED
S 1				103	INO	NA	INK	EK
51	01	Initial Calibration (ICAL)		V				
		Were response factors and/or relative response factors for each ana Were percent RSDs or correlation coefficient criteria met?	alyte within QC limits?	X X				<u> </u>
		Was the number of standards recommended in the method used for	r all analytes?	X				-
		Were all points generated between the lowest and the highest stand	-	X				
		Are ICAL data available for all instruments used?		X				
		Has the initial calibration curve been verified using an appropriate	second source standard?	X				-
S2	OI	Initial and Continuing Calibration Verification (ICCV)						
		Was the CCV analyzed at the method-required frequency?	and eet) and containing canoration blank	X				
		Were percent differences for each analyte within the method-requir	red QC limits?	X				-
		Was the ICAL curve verified for each analyte?		X				
		Was the absolute value of the analyte concentration in the inorgani	c CCB <mdl?< td=""><td>X</td><td></td><td></td><td></td><td>-</td></mdl?<>	X				-
S3 0		Mass Spectral Tuning						
		Was the appropriate compound for the method used for tuning?		Х				
		Were ion abundance data within the method-required QC limits?		Х				
S4	0	Internal Standard (IS)						
		Were IS area counts and retention times within the method-require	d QC limits?	Х				
S5	OI	Raw Data (NELAC 5.5.10)						
		Were the raw data (for example, chromatograms, spectral data) rev	viewed by an analyst?	X				-
		Were data associated with manual integrations flagged on the raw		X				
S 6	0	Dual Column Confirmation						
		Did dual column confirmation results meet the method-required Q	C?	X				╞
S 7	0	Tentatively Identified Compounds (TICs)						
		If TICs were requested, were the mass spectra and TIC data subject	t to appropriate checks?	X				-
S 8	Ι	Interference Check Sample (ICS) Results						
~ ~	-	Were percent recoveries within method QC limits?		X				-
S 9	Ι	Serial Dilutions, Post Digestions Spikes, and Method of	Standard Additions					
	-	Were percent differences, recoveries, and the linearity within the Q		X				-
S10	OI		ze mints speemed in the method.	Λ				
510	01	Method Detection Limit (MDL) Studies		V				
		Was a MDL study performed for each reported analyte? Is the MDL either adjusted or supported by the analysis of DCSs?		X X				
S11	OI			Λ				
511	01	Proficiency Test Reports Was the laboratory's performance acceptable on the applicable pro	finiancy tests or evaluation studios?	X				
S12	OI		incremely tests of evaluation studies?	Λ				
512	01	Standards Documentation		V				
012	OI	Are all standards used in the analyses NIST-traceable or obtained f	from other appropriate sources?	X				
515	0I	Compound/Analyte Identification Procedures						
<u></u>	01	Are the procedures for compound/analyte identification documente	ed?	X				
514	U	Demonstration of Analyst Competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5?	2	X		L		
	67	Is documentation of the analyst's competency up-to-date and on file		X				
\$15	OI	Verification/Validation Documentation for Methods (N						
		Are all methods used to generate the data documented, verified, an	ad validated, where applicable?	Х				
S16	OI	Laboratory Standard Operating Procedures (SOPs)						
		Are laboratory SOPs current and on file for each method performe	d?	Х				

1. Items identified by the letter "R" must be included in the laboratory data package submitted to the TCEQ-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report Identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Attachment A (cont'd): Laboratory Review Checklist: Exception Reports					
Laboratory Name: XENCO LABORATORIES	y Name: XENCO LABORATORIES LRC Date: 10-DEC-19				
Project Name: BLM Brine Polyline Laboratory Job Number: 645655					
Reviewer Name: JKR Batch Number(s) : 7692054, 7692055, 7692069					
ER# 1 DESCRIPTION					
1 Soil samples were not received in Terracore k	Soil samples were not received in Terracore kits and therefore were prepared by method 5030.				

1 ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No is checked on the LRC).

Chloride

0.858

DCS Summary

645655

1.59

mg/kg

Ensolum, Dallas, TX

BLM Brine Polyline

Analytical Method:	BTEX by EPA 8	6021B		Matrix: Soil	
Prep Method:	SW5030B			Laboratory: Xenco - Midlan	d
Parameter	SDL	MQL	Spike Amount	Actual Amount	Units
Benzene	0.000385	0.00200	0.00100	0.000891	mg/kg
Toluene	0.000456	0.00200	0.00100	0.00121	mg/kg
Ethylbenzene	0.000565	0.00200	0.00100	0.00104	mg/kg
m,p-Xylenes	0.00101	0.00400	0.00200	0.00214	mg/kg
o-Xylene	0.000344	0.00200	0.00100	0.000883	mg/kg
Analytical Method:	Chloride by EPA	A 300		Matrix: Soil	
Prep Method:	E300P			Laboratory: Xenco - Midlan	d
Parameter	SDL	MQL	Spike Amount	Actual Amount	Units

5.00

5.00

Revised Date 051418 Rev. 2018.1.

ABORATORIES ABORATORIES ABORATORIES ABORATORIES PASSALLANA ALSALANA TX 747 210-210-210 210-210-202 210-210 200-202 2	Chain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 5 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)79 575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa Bill to: (If different) Image: Company Name: Imanta	Work Order No: Work Order No: VULY 4:1296 Work Order Comments AFL (813-620-2000) Work Order Comments Program: UST/PST PRP Brownfields RRC State of Project: Propiect: Deliverables: EDD ADaPT Other: Vork Order Notes REQUEST Work Order Notes
53B1511003 63B1511003	SIA DD.D ANALYSIS	
CEIPT Temp Blank: Yes	Wet Ice: () Thermometer Thermometer () Thermometer () Containers:	TAT starts the day received by the lab, if received by 4:30pm
Sample Identification Matrix Sampled	Time Sampled Depth	Sample Comments
(5-2) 5 12/14	Vendo 6' 1 X X X	- Same Day Push
Ser Ser		
Market Market		
Total 200.7 / 6010 200.8 / 6020: 8F	BRCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe	Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr Ti Sn U V Zn
Notice: Signature of this document and relinquishment of samples c of service. Xenco will be liable only for the cost of samples and sha of Xenco. A minimum charge of \$75.00 will be applied to each proje		
Relinquished by: (Signature) Receive	Received by: (Signature) Date/Time Relinquished by: (Si	(Signature) Received by: (Signature) Date/Time

Work Order No: UUSUSS

person collecting sering to Date Collected id cole pointer W in opt Person Collecting semale Date Collected / St Cole Roune Time Collected ~ Sample No. Ś. · R `time Collected Sample No.

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Ensolum Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 12/10/2019 08:20:00 AM Temperature Measuring device used : R8 Work Order #: 645655 Sample Receipt Checklist Comments #1 *Temperature of cooler(s)? .5 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? Yes

	163
#5 Custody Seals intact on sample bottles?	N/A
#6*Custody Seals Signed and dated?	Yes
#7 *Chain of Custody present?	Yes
#8 Any missing/extra samples?	No
#9 Chain of Custody signed when relinquished/ received?	Yes
#10 Chain of Custody agrees with sample labels/matrix?	Yes
#11 Container label(s) legible and intact?	Yes
#12 Samples in proper container/ bottle?	Yes
#13 Samples properly preserved?	Yes
#14 Sample container(s) intact?	Yes
#15 Sufficient sample amount for indicated test(s)?	Yes
#16 All samples received within hold time?	Yes
#17 Subcontract of sample(s)?	N/A
#18 Water VOC samples have zero headspace?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Brianna Teel

Date: 12/10/2019

Checklist reviewed by:

fession Vermer

Jessica Kramer

Date: 12/10/2019

Page 53 of 60

C-141

APPENDIX F

ENSOLUM

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Salt Creek Midstream, LLC	OGRID 373554				
Contact Name Mike Poffinbarger	Contact Telephone 832-998-1113				
Contact email Michael.poffinbarger@armenergy.com	Incident # (assigned by OCD)				
Contact mailing address 20329 State Hwy 249 4 th Floor, Houston, TX 77070					

Location of Release Source

Latitude 32.004861_

Longitude -103.943759_

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Nailed It Lateral Pipeline (station 252+00)	Site Type Pipeline ROW, under construction
Date Release Discovered 12/6/2019	API# (if applicable)

Unit Letter	Section	Township	Range	County
D	36	26S	29E	Eddy

Surface Owner: State Federal Tribal Private (Name: State of New Mexico)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)						
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)				
Produced Water	Volume Released (bbls) <2,500	Volume Recovered (bbls) 100				
Is the concentration of dissolved chloride in the produced water >10,000 mg/l?						
Condensate Volume Released (bbls) Volume Recovered (bbls)						
Natural Gas Volume Released (Mcf) Volume Recovered (Mcf)						
Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units)						
Cause of Release: At approximately 4:30pm on Friday, December 6th, 2019, while engaged in the construction of Salt Creek						
Midstream's Nailed it Lateral gas pipeline, Lonestar Pipeline Contractors (a contractor of SCM, LLC.), ruptured a buried produced						
water line operated by Mewbourne Oil. The backhoe operator struck the visible water line with the tip of the hammer ram while						
hammering rock around the marked line with the spotters watching. Location Station#252+71. Water was subsequently diverted into						
SCM's pipeline ditch to o	contain the spread of the					
spill.						

Page 55 of 60

Form C-141	
Page 2	Oi

State of New Mexico Dil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? Yes No	If YES, for what reason(s) does the responsible party consider this a major release? Unauthorized release >25 bbls of fluid	
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? On Dec 7 th , Joan Harris, Director of Compliance Salt Creek Midstream, called the OCD emergency number to notify the agency regarding the spill. She spoke with Gilbert Cordero who advised her to email Victoria Venegas and Robert Hamlet. On Dec 7, 2019 Joan Harris emailed Victoria Venegas and Robert Hamlet to notify the agency regarding the spill.		

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Matthew Veltri	Title:Environmental Inspector
Signature: Matthew T. Veltri	Date: _12/7/2019
email: _mvelt4201@yahoo.com	Telephone: 724-914-1229
OCD Only	
Received by:	Date:

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Page 57 of 60

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>100</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	□ Yes ⊠ No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.

🛛 Field data

Data table of soil contaminant concentration data

Depth to water determination

Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release

Boring or excavation logs

Photographs including date and GIS information

Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	
Page 4	

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name: CORAL RICHLINE	Title: <u>SR EHS</u> (bordinator	
Printed Name: <u>ORAL RICHUINE</u> Signature: <u>CARP RICHUINE</u>	Date: 12/16/2019	
email: Oral. richline @armenergy. com	Telephone: 832 657 6344	
OCD Only		
Received by:	Date:	

Form C-141 Page 5 State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.

Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.

Extents of contamination must be fully delineated.

Contamination does not cause an imminent risk to human health, the environment, or groundwater.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	2AL RICHUNE	Title: SREHS (b0)	rdinator
Signature: Coral	Pichline	Date: 12/16/2019	
email: <u>Obraliri</u>	chline@armenergy.com	Telephone: <u>832-657</u>	6344
OCD Only			
Received by:		Date:	
Approved	Approved with Attached Conditions of Ap	pproval 🗌 Denied	Deferral Approved
Signature:	<u>D</u>	ate:	

Form C-141 Page 6 State of New Mexico Oil Conservation Division

Inc	ident ID	
Di	strict RP	
Fa	cility ID	
Ap	plication ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: (BRHL RICHUNE	Title: SR EHS Coordinator
signature: Conal Richline email: Coral richline Cannenergy. Com	Date: 12/16/2019
email: Oral, richline Cannenergy. Com	Telephone: 8326576344
OCD Only	
Received by:	Date:
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.	
Closure Approved by:	Date:
Printed Name:	Title: