Site Characterization Report & Soil Closure Request

COG Operating, LLC Glacier Fed Com #001H

Eddy County, New Mexico Unit Letter H, Section 16, Township 26 South, Range 25 East Latitude 32.04431 North, Longitude 104.39409 West NMOCD Reference No. 2RP-5568

Prepared By:

Etech Environmental & Safety Solutions, Inc. 3100 Plains Highway Lovington, New Mexico 88260

ame C

Lance Crenshaw

cel

Joel W. Lowry

Environmental & Safety Solutions, Inc.

TABLE OF CONTENTS

Section

PROJECT INFORMATION.	1.0
SITE CHARACTERIZATION.	2.0
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	3.0
REMEDIATION ACTIVITIES SUMMARY.	4.0
RESTORATION, RECLAMATION AND RE-VEGETATION PLAN.	5.0
SOIL CLOSURE REQUEST	6.0
LIMITATIONS.	7.0
DISTRIBUTION.	8.0

FIGURES

Figure 1 - Topographic Map Figure 2 - Aerial Proximity Map Figure 3 - Site & Sample Location Map

TABLES

Table 1 - Concentrations of BTEX, TPH and/or Chloride in Soil

APPENDICES

- Appendix A Depth to Groundwater Information
- Appendix B Field Data and Soil Profile Logs
- Appendix C Laboratory Analytical Reports
- Appendix D Photographic Log

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Longitude

Latitude			

Site Name	Site Type
Date Release Discovered	API# (if applicable)

(NAD 83 in decimal degrees to 5 decimal places)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 uge	-

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
19.19.29.7(11)100110.	
🗌 Yes 🗌 No	
LOVED 1' to	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>31 Ft</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗹 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔽 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔽 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔽 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🔽 No
Did the release impact areas not on an exploration, development, production, or storage site?	🔽 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Z Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 4/21/2020 3:37:0 Form C-141 Page 4	⁹⁶ PM State of New Mexico Oil Conservation Division	Incident ID District RP Facility ID Application ID	Page 6 of 58
regulations all operators are required to public health or the environment. The failed to adequately investigate and ren addition, OCD acceptance of a C-141 m and/or regulations.	ven above is true and complete to the best of my knowl o report and/or file certain release notifications and perf acceptance of a C-141 report by the OCD does not reli nediate contamination that pose a threat to groundwate report does not relieve the operator of responsibility for	form corrective actions for releases which eve the operator of liability should their or r, surface water, human health or the envi	n may endanger operations have ironment. In
Printed Name: Ike Tavarez	Title: Senior	HSE Specialist	
Printed Name: Ike Tavarez Signature:	Date: <u>4/21/20</u>	20	
email: itavarez@concho.co	m Telephone: 4	32-685-2573	_
OCD Only			
Received by:	Date: _		

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following	items must be included in the closure report.
\checkmark A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection) NA	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities NA	
and regulations all operators are required to report and/or file certa may endanger public health or the environment. The acceptance o should their operations have failed to adequately investigate and re human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.
OCD Only	
Received by:	Date:
	y of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible /or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

1.0 **PROJECT INFORMATION**

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of COG Operating, LLC, has prepared this Site Characterization Report & Soil Closure Request for the Release Site known as the Glacier Fed Com #001H. Details of the release are summarized below:

atitude:	32.04	4431	Longitude	-104.39409
		Provid	led GPS are in WGS84 for	mat.
ite Name:		d Com #001H	Site Type:	Flowline
ate Release Disc	overed:	7/22/2019	API # (if appli	cable): N/A
Unit Letter	Section	Township	Range	County
Н	16	26S	25E	Eddy
urface Owner: 🚺	KState I		Private (Nand Volume of	
Crude Oil	Volume	e Released (bbls)		Volume Recovered (bbls)
X Produced Wa	ter Volume	e Released (bbls)	10	Volume Recovered (bbls) 0
		oncentration of total n the produced wate		X Yes No N/A
Condensate	Volume	e Released (bbls)		Volume Recovered (bbls)
Natural Gas	Volume	e Released (Mcf)		Volume Recovered (Mcf)
Other (descri	be) Volume	/Weight Released		Volume/Weight Recovered
	aused by a lig	ghtning strike, causin a measuring approx	0 0	n a hole in the flowline. The release was t. within the pasture on the east side of
X The source of	the release has	s been stopped.		
X The impacted	area has been s	secured to protect hu	man health and the e	environment.
X Release mater	rials have been	contained via the us	e of berms or dikes,	absorbent pad, or other containment devices
				naged appropriately.

Previously submitted portions of the NMOCD Form C-141 are available on the NMOCD Imaging System.

2.0 SITE CHARACTERIZATION

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a half mile radius of the Release Site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

What is the shallowest depth to groundwater beneath the area affected by the release?	~3	1 Ft.
Did the release impact groundwater or surface water?	Yes	X No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes	X No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark?	Yes	X No
Are the lateral extents of the release within 300 feet of any occupied permanent residence, school, hospital, institution or church?	Yes	X No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Yes	X No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes	X No
Are the lateral extents of the release within the incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes	X No
Are the lateral extents of the release within 300 feet of a wetland?	Yes	X No
Are the lateral extents of the release overlying a subsurface mine?	Yes	X No
Are the lateral extents of the release overlying an unstable area such as karst geology?	X Yes	No
Are the lateral extents of the release within a 100-year floodplain?	Yes	X No
Did the release impact areas not on an exploration, development, production or storage site?	X Yes	No

NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) shapefiles; topographic maps; NMOSE and USGS databases; and aerial imagery. The results are depicted on Figures 1 & 2.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater and NMOCD Siting Criteria, the NMOCD Closure Criteria for the Site is as follows:

	Closure Criteria for Soil I	mpacted by a Release	
Probable Depth to Groundwater	Constituent	Method	Limit
	Chloride	EPA 300.0 or SM4500 Cl B	600 mg/kg
	TPH (GRO + DRO + MRO)	EPA SW-846 Method 8015M Ext	100 mg/kg
~31 Ft.	DRO + GRO	EPA SW-846 Method 8015M	N/A mg/kg
	BTEX	EPA SW-846 Methods 8021b or 8260b	50 mg/kg
	Benzene	EPA SW-846 Methods 8021b or 8260b	10 mg/kg

4.0 **REMEDIATION ACTIVITIES SUMMARY**

On December 18, 2019, Etech conducted an initial site assessment. During the initial site assessment, a series of hand-augered soil bores (were advanced within the release margins in an effort to characterize impacts from the release and determine the vertical extent, if any. In addition, hand-augered soil bores were advanced at the inferred edges of the affected area in an effort to determine the horizontal extent of soil impacts. During the advancement of the hand-augered soil bores, field soil samples were collected and field-screened for the presence of chloride concentrations utilizing a Hach Quantab ® chloride test kit. A "Site & Sample Location Map" is provided as Figure 3. Field data and soil profile logs, if applicable, are provided as Appendix B.

Based on field observations and field test data, **fourteen (14)** confirmation soil samples (NH@Surface, NH@1, EH@Surface, EH@1, SH@Surface, SH@1, WH@Surface, WH@1, SP1@Surface, SP1@1, SP1@2, SP2@Surface, SP2@1, and SP2@2) were submitted to the laboratory for analysis of BTEX, TPH and/or Chloride. Laboratory analytical results indicated soil was not affected above the NMOCD Closure Criteria and/or NMOCD Reclamation Standard. A "Soil Chemistry Table" is provided as Table 1. Laboratory Analytical Reports are provided in Appendix C.

Based on laboratory analytical data, soil within the affected area has not been impacted above NMOCD Closure Criteria and/or NMOCD Reclamation Standard. Based on those results soil has not been excavated from the affected area.

5.0 **RESTORATION, RECLAMATION AND RE-VEGETATION PLAN**

Laboratory analytical results from soil samples collected during the initial release assessment indicated remediation was not required, therefore the affected area was left in-situ and not altered. Vegetation within the affected area will be monitored and may be reseeded with an agency-approved seed mixture free of noxious weeds during the first favorable growing season following closure of the site, if necessary.

6.0 SOIL CLOSURE REQUEST

Delineation activities were conducted in accordance with applicable NMOCD Regulations. Laboratory analytical from the collected soil samples indicated soil in the affected area was not impacted above the NMOCD Closure Criteria and/or NMOCD Reclamation Standard. Laboratory analytical results from confirmation soil samples indicate concentrations of BTEX, TPH and chloride was below the NMOCD Closure Criteria and/or NMOCD Reclamation Standard in each of the submitted soil samples.

Based on laboratory analytical results and field activities conducted to date, Etech recommends COG Operating, LLC provide copies of this Remediation Summary and Soil Closure Request to the appropriate agencies and request closure be granted to the Glacier Fed Com #001H Site.

7.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this Site Characterization Report & Soil Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents reference in the report and on oral statements made by certain individuals. Basis has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of COG Operating, LLC. Use of the information contained in this report is prohibited within the consent of Etech and/or COG Operating, LLC.

8.0 **DISTRIBUTION**

COG Operating, LLC

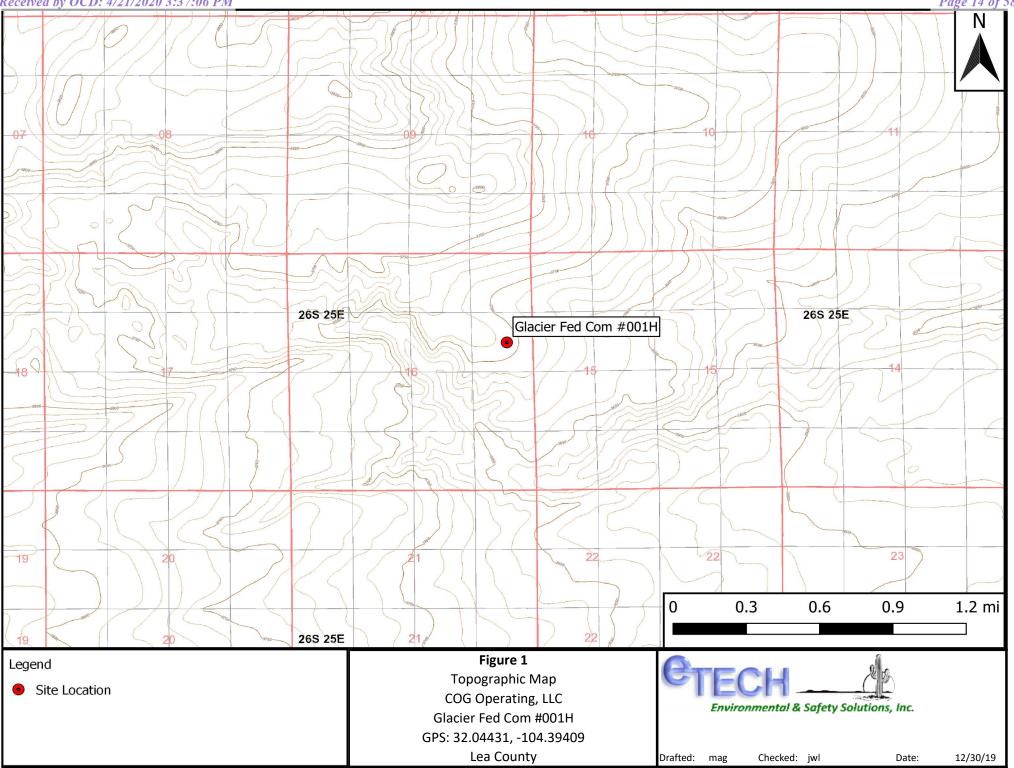
600 West Illinois Avenue Midland, TX 79701

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, District 2 811 S. First Street Artesia, NM 88210

Hobbs Field Office

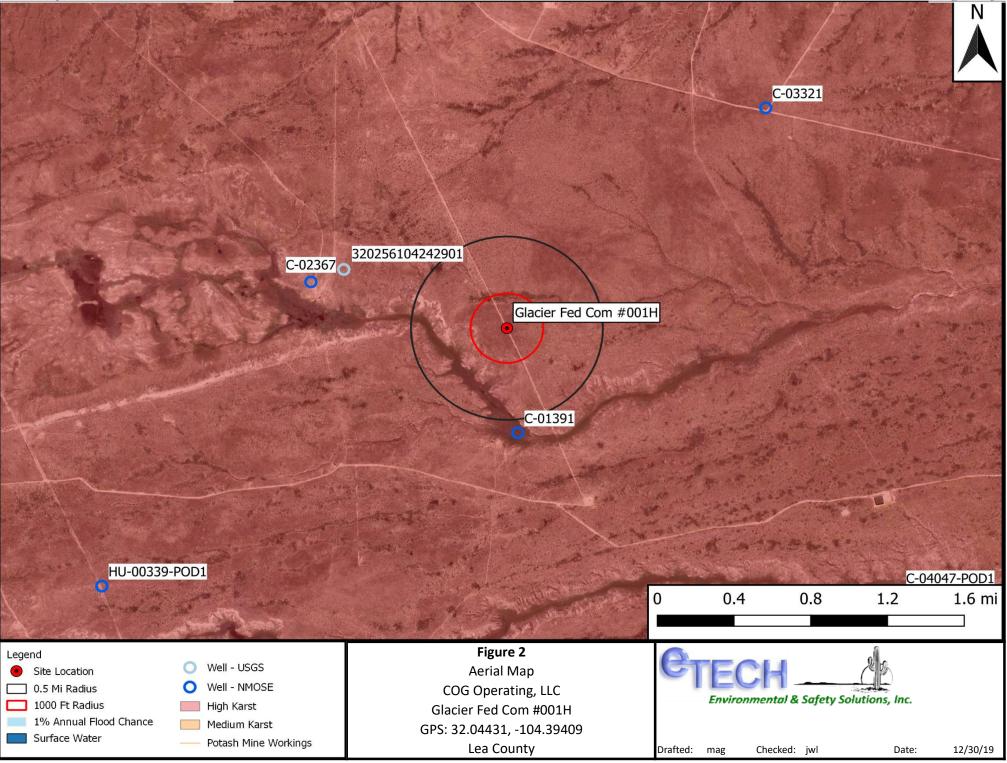
New Mexico State Land Office 2827 North Dal Paso Street Suite 117 Hobbs, NM 88240


(Electronic Submission)

•

Figure 1 Topographic Map

Received by OCD: 4/21/2020 3:37:06 PM



•

•

Figure 2 Aerial Proximity Map

•

Figure 3 Site and Sample Location Map

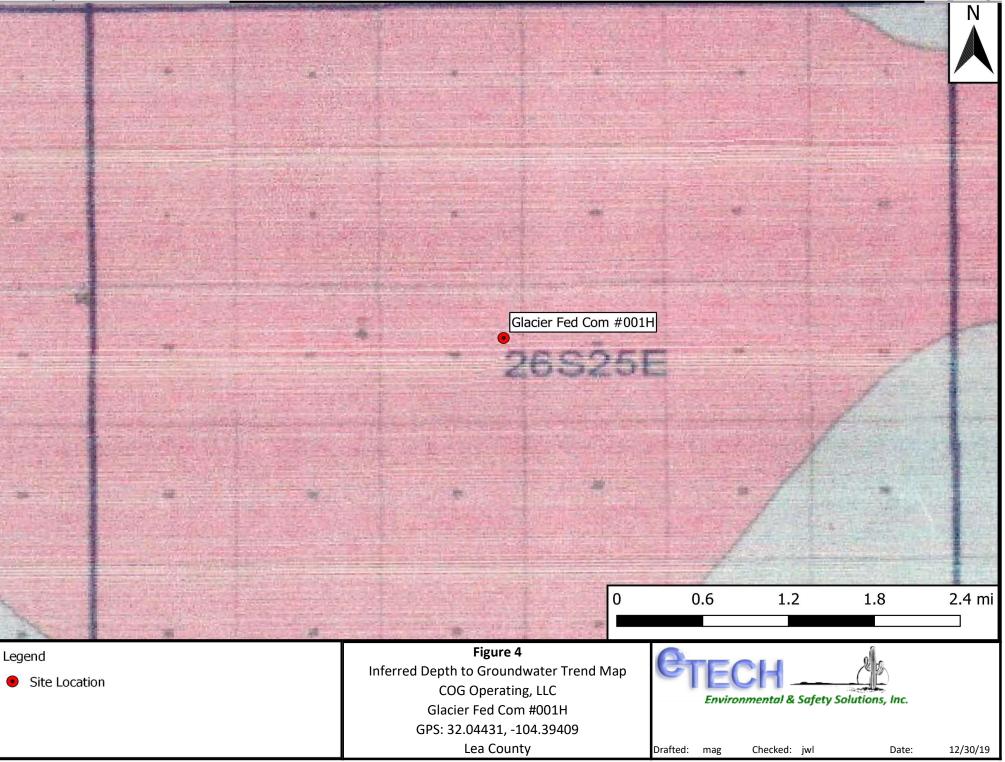
Page 18 of 58

•

Table 1Concentrations of BTEX, TPH, and/or Chloride in Soil

TABLE 1 CONCENTRATIONS OF BENZENE, BTEX TPH AND CHLORIDE IN SOIL COG Operating, LLC Glacier Fed Com #001H NMOCD Ref. #: 2RP-5568											
				SW 840	5 8021B		SW	846 8015M	Ext.		4500 Cl
Sample ID	Date	Depth	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	GRO + DRO C ₆ -C ₂₈ (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)
NH@Surface	12/18/2019	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
NH@1	12/18/2019	1'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
EH@Surface	12/18/2019	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
EH@1	12/18/2019	1'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SH@Surface	12/18/2019	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SH@1	12/18/2019	1'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	192
WH@Surface	12/18/2019	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
WH@1	12/18/2019	1'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	16.0
SP1@Surface	12/18/2019	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SP1@1	12/18/2019	1'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0
SP1@2	12/18/2019	2'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SP2@Surface	12/18/2019	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	<16.0
SP2@1	12/18/2019	1'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	96.0
SP2@2	12/18/2019	2'	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<10.0	<10.0	<10.0	128
Cl	osure Cr	iteria		10	50	-	-	N/A	-	100	600

NOTES:


- =

.

Bold text denotes a concentration that exceeds the NMOCD Closure Criteria

•

Appendix A Depth to Groundwater Information

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)						2=NE a	3=SW 4 rgest)) AD83 UTM in me	eters)	(In feet)	
POD Number	POD Sub- Code basin Co		Q (64 1			Tws	Rng		x	Y	Distance	-	-	Water Column
<u>C 02367</u>	CUB	ED		2 2	17	26S	25E	5555	560	3545912* 🌍	1693	30	40	-10
<u>C 03321</u>	С	ED	4	1 1	11	26S	25E	5593	375	3547431 🌍	2900	150	23	127
										Avera	ge Depth to	Water:	31	feet
											Minimum	Depth:	23	feet
											Maximum	Depth:	40	feet
Record Count: 2														

UTMNAD83 Radius Search (in meters):

Easting (X): 557204.37

Northing (Y): 3545507.63

Radius: 3220

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters (quarters				· · · · · ·	(NAD83 UT	'M in meters)	
Well Tag PO	OD Number	Q64 Q1	6 Q4	Sec	Tws	Rng	Х	Y	
C	03321	4 1	1	11	26S	25E	559375	3547431 🌍	
Driller License	: 1348	Driller C	ompa	ny:	TA	YLOR V	WATER WEI	L SERVICE	
Driller Name:									
Drill Start Dat	e: 02/06/2007	Drill Fini	sh Da	te:	02	2/08/200	07 Plu	g Date:	
Log File Date:	04/30/2007	PCW Rc	v Date	e:			Sou	irce:	Shallow
Pump Type:		Pipe Disc	harge	Size	:		Est	imated Yield:	1 GPM
Casing Size:	5.00	Depth W	ell:		1:	50 feet	Dej	oth Water:	23 feet
x Wi	ater Bearing Strati	fications:	Te	op E	Bottom	Desci	ription		
			(50	150	Shall	ow Alluvium	/Basin Fill	
X	Casing Per	forations:	То	op E	Bottom	l			
			11	10	150)			

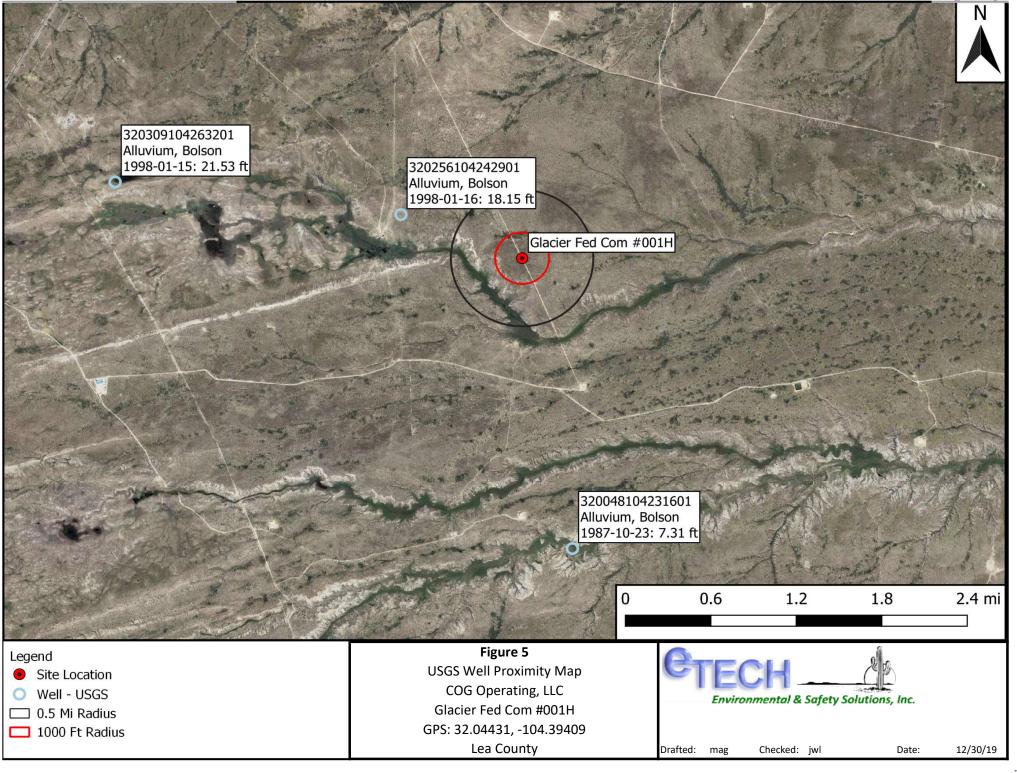
The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability for any particular purpose of the data.

12/30/19 1:01 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

Well Tag	POD Number	(quarters are 1=NW 2=NE (quarters are smallest to 1 Q64 Q16 Q4 Sec 7	argest)	(NAD83 UTM in meters) X Y	
_	C 02367	2 2 17 2	26S 25E	555560 3545912* 🌍	
Driller Lic	ense:	Driller Company:			
Driller Na	me: UNKNOWN				
Drill Start	Date:	Drill Finish Date:	12/31/1959	Plug Date:	
Log File D	ate:	PCW Rcv Date:		Source:	
Ритр Тур	e:	Pipe Discharge Size:		Estimated Yield:	10 GPM
	ae: 3.00	Depth Well:	30 feet	Depth Water:	40 feet


*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

12/30/19 1:01 PM

POINT OF DIVERSION SUMMARY

Received by OCD: 4/21/2020 3:37:06 PM

<u>Received by OCD: 4/2</u>1/2020 3:37:06 PM

Page 27 of 58 **USGS Home Contact USGS**

Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	▼	United States	V	GO

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News

Groundwater levels for the Nation

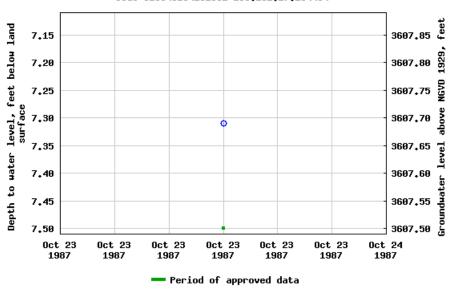
Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320048104231601

Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 320048104231601 26S.25E.27.134434

Available data for this site Groundwater: Field measurements ▼ GO

Eddy County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°00'48", Longitude 104°23'16" NAD27 Land-surface elevation 3,615.00 feet above NGVD29 This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. Output formate

Output formats
Table of data
Tab-separated data
Graph of data
Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

USGS 320048104231601 265,25E,27,134434

Questions about sites/data?

Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

.

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2019-12-30 14:55:30 EST 0.56 0.47 nadww01

Received by OCD: 4/21/2020 3:37:06 PM

National Water Information System: Web Interface

USGS Water Resources

Page 29 of 58

USGS Home Contact USGS Search USGS

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News 🔊

Groundwater levels for the Nation

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320256104242901

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320256104242901 26S.25E.17.242111

Available data for this site Groundwater: Field measurements

ield measurements

GO

Eddy County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°02'56", Longitude 104°24'29" NAD27 Land-surface elevation 3,755 feet above NAVD88 The depth of the well is 22 feet below land surface. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

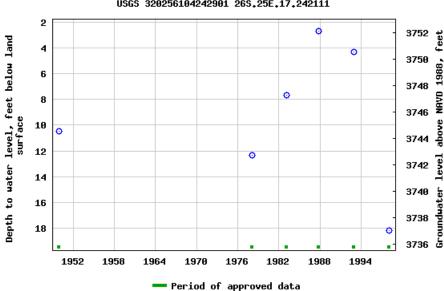

 Output formats

 Table of data

 Tab-separated data

 Graph of data

 Reselect period

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

USGS 320256104242901 265,25E,17,242111

Questions about sites/data?

Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

.

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2019-12-30 14:55:31 EST 0.62 0.45 nadww01

<u>Received by OCD: 4/2</u>1/2020 3:37:06 PM

Page 31 of 58 **USGS Home Contact USGS** Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	▼	United States	▼	GO

Click to hideNews Bulletins

- Introducing The Next Generation of USGS Water Data for the Nation
- Full News

Groundwater levels for the Nation

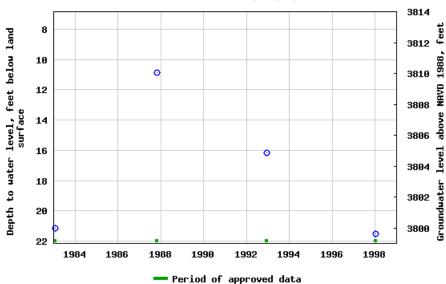
Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 320309104263201

Minimum number of levels = 1


Save file of selected sites to local disk for future upload

USGS 320309104263201 26S.24E.13.222122

Available data for this site Groundwater: Field measurements ▼ GO

Eddy County, New Mexico Hydrologic Unit Code 13060011 Latitude 32°03'09", Longitude 104°26'32" NAD27 Land-surface elevation 3,821 feet above NAVD88 This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

Table of data
Tab-separated data
Graph of data
Reselect period

USGS 320309104263201 265,24E,13,222122

Breaks in the plot represent a gap of at least one year between field measurements. Download a presentation-quality graph

Questions about sites/data?

Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

.

Accessibility Plug-Ins FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2019-12-30 14:55:32 EST 0.5 0.46 nadww01

-

•

Appendix B Field Data and Soil Profile Logs

Received by OCD: 4/21/2020 3:37:06 PM

Page 34 of 58

0	6
ETECH	510
TECH	(12
I Levi I	
Environmenta	1 & Safety Solutions, Inc

Sample Log

				Date:	12/18/19		
Project:	Glacier Fed Com #001H			10.000	/ /		
Project Number:	11569	Latitude:	32.04431	Longitude:	-104.39409		

Sample ID	PID/Odor	Chloride Conc.	GPS
NHOSVIFACE	12	y 11:00	
NHQ	140	P (1:15	
EN@ Svikare	124	(1:30	
·EMAL	124	11:45	
SHO SULTACE	124	12:00	
SW@ 1'	196	12:15	
- While Surface	148	12:30	
WH@/	196	12:45	
SPT@/	148		
511@21	248	1:15	
· 5P 2@/'	220		
58282'	120		
SPIPSUFAce SP2@sufface	195		
SP2@surface	198	2:19	
	and the second second		
		- The second	
		and the second	
		and the other states of the second se	
		and the second part of the second	
		and the second	
		and the second sec	
		197914	
		and the second	
Sample Point = SP #1 @ ## etc		Toot Toosah - TT #1 @ ##	

Sample Point = SP #1 @ ## etc

Test Trench = TT #1 @ ##

Resamples= SP #1 @ 5b or SW #1b

Floor = FL #1 etc

Refusal = SP #1 @ 4'-R

Stockpile = Stockpile #1

Sidewall = SW #1 etc

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

GPS Sample Points, Center of Comp Areas

Environmental & Safi	Glacier Fed Com #001H			Date:	2/18/19	
oject Number:	11569	Latitude:	Clean Up Level: 32.04431	Longitude:	-104.39409	_
			Site Diagram			
	\ \	NH				
				\geq		
				cm		
		CDI		SPZ	EH	
		SPI				
	An		1			
		$\langle \rangle$				
			57	+		
Notes: Con	fester	lect sam	des in the	relasse greg	and field	tes
release	andes outside area to < 600	chiorides	aveg and f Photogon	ield test,	Delineate	
Length: 100	~Width: 63'	~Area: 40	00	~Depth:		
3-4 Representat	tive Pictures of the Affected	d Area including	sample locations?		Yes No	
	oles Field Screened and on					
Sample and Fiel	d Screen Data Entered on S	Sample Log?			à o	
	and vertical delineation acl					

Received by OCD: 4/21/2020 3:37:06 PM

Page 36 of 58

	tal & Safety Solution			Soil Pro	o file Date:	12/1	8/19	
Project:		er Fed Com #001H						
Project Num	ber:	11569	Latitude:	32.04431	Longitude:		-104.39409	
Depth (ft. bgs)) 1	Soft	caliche	De	escription			
	anan	50 +1	Caliche					
	4							
h.,	5						•••••	
(6			28101		•••••••	••••••	
	7		1111 col					•••••
	8							
9	9							
10	0							
11	1							
12								
13								
14								
15								
16								
17								
18								
19								
20								
21			••••••					
22		••••••			••••••			
23								
25				•••••				
26								
27				••••				
28								
29								
30				••••••	•••••			
31					•••••			
32				••••••	••••••			
33								
34				••••••				
35								
36								
37					••••••			
38		••••••	•••••••		••••••			•••••
39				••••••				
40								
40								

.

•

Appendix C Laboratory Analytical Reports

December 30, 2019

LANCE CRENSHAW

Etech Environmental & Safety Solutions

P.O. Box 301

Lovington, NM 88260

RE: GLACIER FED COM 1H

Enclosed are the results of analyses for samples received by the laboratory on 12/20/19 15:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celez D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: NH @ SURFACE (H904265-01)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/26/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/26/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/26/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/26/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/26/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/23/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/24/2019	ND	212	106	200	0.968	
DRO >C10-C28*	<10.0	10.0	12/24/2019	ND	217	108	200	1.03	
EXT DRO >C28-C36	<10.0	10.0	12/24/2019	ND					
Surrogate: 1-Chlorooctane	93.2	% 41-142	,						
Surrogate: 1-Chlorooctadecane	94.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: NH @ 1 (H904265-02)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/26/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/26/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/26/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/26/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/26/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/23/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/24/2019	ND	212	106	200	0.968	
DRO >C10-C28*	<10.0	10.0	12/24/2019	ND	217	108	200	1.03	
EXT DRO >C28-C36	<10.0	10.0	12/24/2019	ND					
Surrogate: 1-Chlorooctane	95.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	97.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: EH @ SURFACE (H904265-03)

BTEX 8021B	mg/	'kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/26/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/26/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/26/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/26/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/26/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/23/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/24/2019	ND	212	106	200	0.968	
DRO >C10-C28*	<10.0	10.0	12/24/2019	ND	217	108	200	1.03	
EXT DRO >C28-C36	<10.0	10.0	12/24/2019	ND					
Surrogate: 1-Chlorooctane	81.0	% 41-142	,						
Surrogate: 1-Chlorooctadecane	82.5	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: EH @ 1 (H904265-04)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/26/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/26/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/26/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/26/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/26/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/24/2019	ND	212	106	200	0.968	
DRO >C10-C28*	<10.0	10.0	12/24/2019	ND	217	108	200	1.03	
EXT DRO >C28-C36	<10.0	10.0	12/24/2019	ND					
Surrogate: 1-Chlorooctane	92.3	% 41-142	,						
Surrogate: 1-Chlorooctadecane	94.0	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SH @ SURFACE (H904265-05)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/26/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/26/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/26/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/26/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/26/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/24/2019	ND	212	106	200	0.968	
DRO >C10-C28*	<10.0	10.0	12/24/2019	ND	217	108	200	1.03	
EXT DRO >C28-C36	<10.0	10.0	12/24/2019	ND					
Surrogate: 1-Chlorooctane	98.3	% 41-142							
Surrogate: 1-Chlorooctadecane	101 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SH @ 1 (H904265-06)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/26/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/26/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/26/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/26/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/26/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/24/2019	ND	212	106	200	0.968	
DRO >C10-C28*	<10.0	10.0	12/24/2019	ND	217	108	200	1.03	
EXT DRO >C28-C36	<10.0	10.0	12/24/2019	ND					
Surrogate: 1-Chlorooctane	95.6	% 41-142							
Surrogate: 1-Chlorooctadecane	98.6	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: WH @ SURFACE (H904265-07)

BTEX 8021B	mg/	'kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	93.7	% 41-142	2						
Surrogate: 1-Chlorooctadecane	94.6	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: WH @ 1 (H904265-08)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	101	% 41-142							
Surrogate: 1-Chlorooctadecane	101	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SP 1 @ 1 (H904265-09)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	98.4	% 41-142							
Surrogate: 1-Chlorooctadecane	98.9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SP 1 @ 2 (H904265-10)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	90.5	% 41-142							
Surrogate: 1-Chlorooctadecane	91.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SP 2 @ 1 (H904265-11)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	94.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	96.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SP 2 @ 2 (H904265-12)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	73.3-12	9						
Chloride, SM4500CI-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128 16.0		12/23/2019	12/23/2019 ND		100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	77.2	% 41-142	,						
Surrogate: 1-Chlorooctadecane	76.7	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SP 1 @ SURFACE (H904265-13)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39	
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26	
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16	
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43	
Total BTEX	<0.300	0.300	12/27/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0 16.0		12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11	
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713	
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND					
Surrogate: 1-Chlorooctane	98.4	% 41-142							
Surrogate: 1-Chlorooctadecane	99.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	12/20/2019	Sampling Date:	12/18/2019
Reported:	12/30/2019	Sampling Type:	Soil
Project Name:	GLACIER FED COM 1H	Sampling Condition:	Cool & Intact
Project Number:	11569	Sample Received By:	Tamara Oldaker
Project Location:	COG - EDDY CO NM		

Sample ID: SP 2 @ SURFACE (H904265-14)

BTEX 8021B	mg/	'kg	Analyze	d By: ms						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	12/27/2019	ND	2.00	99.8	2.00	7.39		
Toluene*	<0.050	0.050	12/27/2019	ND	2.00	100	2.00	7.26		
Ethylbenzene*	<0.050	0.050	12/27/2019	ND	2.02	101	2.00	7.16		
Total Xylenes*	<0.150	0.150	12/27/2019	ND	5.99	99.9	6.00	6.43		
Total BTEX	<0.300	0.300	12/27/2019	ND						
Surrogate: 4-Bromofluorobenzene (PID	114 %	73.3-12	9							
Chloride, SM4500Cl-B	mg/kg		Analyze	d By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	<16.0 16.0		12/23/2019	ND	400	100	400	3.92		
TPH 8015M	mg/kg		Analyze	d By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	<10.0	10.0	12/26/2019	ND	210	105	200	1.11		
DRO >C10-C28*	<10.0	10.0	12/26/2019	ND	208	104	200	0.713		
EXT DRO >C28-C36	<10.0	10.0	12/26/2019	ND						
Surrogate: 1-Chlorooctane	93.0	% 41-142	,							
Surrogate: 1-Chlorooctadecane	93.9	% 37.6-14	7							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Time: Time: Delivered By: (Circle One) 1.9 c #97 Cool Intect Sampler - UPS - Bus - Other: Delivered Cool Intect Cool Intect Pes + Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476 Total changes for the second changes for the second changes for the second changes. Please fax written changes for 575-393-2476	Relinguished By:	arelyses. All claims including those for negligence and any other cause whatsoever shall be dee service. In no event shall Cardral be liable for incidental or consequental damages, including with affiates or successors arising out of or related to the performance of services hereurder by Card Do Lincourted and and and and and and and and and an	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or lod	<u> </u>	S. C. M. D. A.	6 240 1	S SHO SWADOR	T 243 h	3 CH @ Sunface	2 14 @ 1	1 MA & Surface	amp	FOR LAB USE ONLY	Sampler Name: Migrel Koun irez	Project Location: Faddy (bundy)	Project Name: Alacier ted CONN 14	Project #: 1/569 Project Owner:	275-346	Lovington	Address: 3100 V/61n 5 HWY	Lance	Cola Ofer	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	Laboratories
#77 Sample Condition CHECKED BY: Cool Intact (Initials) Cool Intect Ves Tres V 2 No □ No No	Received By:			4, 20, 1 br31.0 × × × 1, 2	C (1, 81, C) X X	(C) (b) 31. C/ × × /	X X X X	11 D. 11 . V X	X 21.21 X	1) Sudice X	and broken X X 1 3	# CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	MATRIX PRESERV. SAMPLING	Fax #:	#	State: Zip:	Coa city:	396 · 1429 Address:	Zip: ぞうしんひ Attn:	Company:	P.O. #:	BILL TO	240 476	CHAIN-
	t: □ Yes □ No Add'I Phone #: □ Yes □ No Add'I Fax #: S: email results to	cable				XXX						Chloride TPH BTEX 8021										ANALYSIS REQUEST		-OF-CUSTODY AND ANALYSIS REQUEST

 $(\varepsilon$

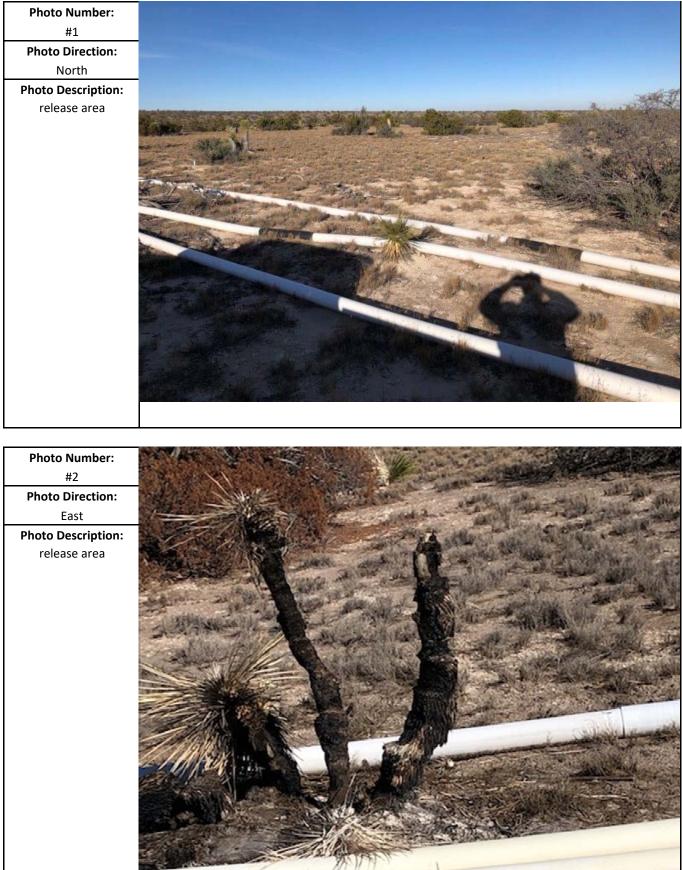
Page 54 of 58

.

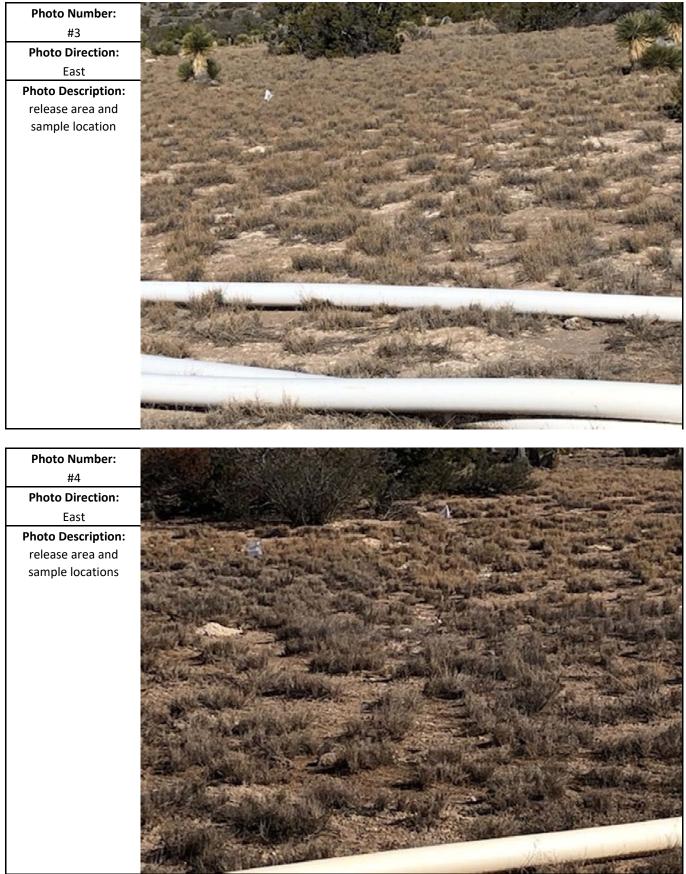
Received by OCD: 4/21/2020 3:37:06 PM

T Cardinal cannot accept verbal changes. Please fax written changes to 575-393-2476	HECKED BY: (Initials)	plicable	6 P.R. C. +	1 X X X X X X X X X X X X X X X X X X X	CPC Chlo CC Chlo CC Chlo CC Chlo	R : BASE: COOL R :	MATRIX	Sampler Name: M, 2 (AUN 93) Fax #:	Glacier red com 1H	Project Owner: (06)	Orty: Ulliaften State: JUM Zip: DB 2 GD Attn: Phone #: 5 75・3 74・73 75・3 94・1414 Address: Address:	ess: 100 Hains Hur	er: Jince (lershaw P.O. #:	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Company Name: (らん のPrad France とくし	Laboratories
						K 8021								DEOLIES	F-CUSTODY AND ANALYSIS REQUEST

Page 55 of 58


.

•


•

Appendix D Photographic Log

Dates: 12/18/2019 - 12/18/2019

Dates: 12/18/2019 - 12/18/2019

