SITE INFORMATION

	Report Type: Closure Report NRM1927338634								
General Site Info	ormation:			-					
Site:		Roy Batty Fe	ed Com #3H						
Company:		COG Operat	ing LLC						
Section, Townsl	hip and Range	Unit N	Sec. 11	T 24S	R 33E				
Lease Number:		API No.							
County:		Lea County							
GPS:			32.22630			-103	.5461		
Surface Owner:		Private			1.1.7 1		001		
Directions:			From intersection of HWY 18 and HWY 28 in Jal, travel west on HWY 128for approximately 13.4 miles, turn north onto lease road for 0.45 mile to the location on the west side of the lease road.						
Release Data:									
Date Released:		8/29/2019							
Type Release:		Produced water							
Source of Contan	nination:	Flowline							
Fluid Released:		60 bbls							
Fluids Recovered		40 bbls							
Official Commun	nication:								
Name:	Ike Tavarez				Clair Gonz	ales			
Company:	COG Operating, LL	.C		Tetra Tech					
Address:	One Concho Cente	r		901 West Wall Street					
600 W. Illinois Ave.					Suite 100				
City: Midland Texas, 79701					Midland, To	exas			
Phone number: (432) 686-3023					(432) 687-8	8110			
Fax:	(432) 684-7137								
Email:	itavarez@concho	.com			Clair.Gon	zales@tetrat	tech.com		

Site Characterization	
Depth to Groundwater:	60'
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)								
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides				
10 mg/kg	50 mg/kg	1,000 mg/kg	2,500 mg/kg	10,000 mg/kg				

April 27, 2020

Dylan Rose-Coss Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Closure Report for the COG Operating, LLC, Roy Batty Fed Com #3H, Unit N, Section 11, Township 24 South, Range 33 East, Lea County, New Mexico. NRM1927338634

Mr. Rose-Coss:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG) to assess and remediate a release that occurred at the Roy Batty Fed Com #3H, Unit N, Section 11, Township 24 South, Range 33 East, Lea County, New Mexico (Site). The spill site coordinates are 32.2263°, -103.5461°. The site location is shown on Figures 1 and 2.

Background

According to the State of New Mexico, C-141 Initial Report the release was discovered on August 29, 2019, and released approximately 60 barrels of produced water due to a corroded flowline. A vacuum truck was dispatched to remove all freestanding fluids, recovering around 40 barrels of produced water. The release occurred along the lease road impacting an area measuring approximately 629' x 5' and migrated north into the pasture impacting an area measuring approximately 89' x 26' The initial C-141 form is included in Appendix A.

Site Characterization

A site characterization was performed for the site, and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. The site is in a low karst potential area. Two wells are near the site and listed in the New Mexico Office of the State Engineers website. The nearest well is listed in Section 10, Township 24 South, Range 33 East, approximately 1.25 miles northwest of the site, and has a reported depth to groundwater of 22 feet below ground surface. However, it was completed in 1920. The other well is listed in Section 01, Township 24 South, Range 33 East, approximately 2.26 miles northeast of the site, and has a reported depth to groundwater of 81 feet below ground surface. The well was installed in February 2017. In addition, the surface elevation of this site is 3,628,' and the surface elevation of the 20' well is approximately 3,608. Based on the relative elevation the depth to groundwater is estimated to be approximately 60' below surface. The groundwater data is shown in Appendix B.

Tetra Tech 901 W. Wall Street, Suite 100, Midland, TX 79701 Tel 432.682.4559 www.tetratech.com

Regulatory

A risk-based evaluation was performed for the Site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 1,000 mg/kg (GRO + DRO) and 2,500 mg/kg (GRO + DRO+ MRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 10,000 mg/kg.

Soil Assessment

Tetra Tech personnel were onsite on October 9, 2019, to assess the release area. A total of eight (8) auger holes (AH-1 through AH-8) were installed in the spill footprint to total depths ranging from 0-1' and 7'-7.5' below surface. Selected soil samples were submitted to the laboratory to be analyzed for TPH method 8015 extended, BTEX method 8021B, and Chloride by method SM4500. The sampling results are summarized in Table 1. The sample locations are shown in Figure 3.

Referring to Table 1, none of the samples analyzed showed any benzene, total BTEX, or TPH concentrations above the laboratory reporting limits. Additionally, none of the samples collected showed chloride concentrations above the RRALs. However, concentrations above the reclamation standards were detected in the areas of AH-1, AH-2, and AH-6.

Remediation Activities

Tetra Tech personnel were onsite from December 19, 2019, and January 14, 2020, to supervise the remediation activities. The areas were excavated as shown on Figure 4 and highlighted (green) on Table 1. The areas of AH-1 and AH-2 were excavated to 4.0'-4.5', and the area of AH-6 was excavated to 4.5' below surface. Additionally, the impacted area on the lease road adjacent to the areas of AH-1 and AH-2 was scraped to a depth of 6" below surface. A total of thirteen (13) bottom hole composite samples (Bottomhole-1 through Bottomhole-13) and twenty-two (22) composite sidewall samples (NSW-1 through NSW-7, SSW-1 through SSW-7, ESW-1 through ESW-4, and WSW-1 through WSW-4) were collected every 200 square feet to ensure proper removal of the impacted soils. Selected samples were submitted to the laboratory to be analyzed for TPH method 8015 extended, BTEX method 8021B, and Chloride by method SM4500. The sampling results are summarized in Table 1. The excavation depths and sample locations are shown in Figure 4.

Referring to Table 1, none of the confirmation samples showed benzene, total BTEX, or TPH chloride concentrations above the RRALs. Additionally, none of the bottom hole samples collected showed chloride concentrations above the RRALs. Except for NSW-1 and NSW-2, which were collected along a surface line, none of the sidewall samples showed chloride concentrations above 600 mg/kg. The areas of NSW-1 and NSW-2 showed chloride concentrations of 1,640 mg/kg and 3,640 mg/kg, respectively. Based on the laboratory data, the areas of NSW-1 and NSW-2, beneath the surface pipeline, were removed, along with SSW-3 and SSW-4. A composite bottom hole sample (Bottomhole-12 and Bottomhole-13) in this area was then collected, as the sidewall between the two excavation areas had been removed and showed a chloride concentration of 64.0 mg/kg and 752 mg/kg.

Approximately 480 cubic yards of material were excavated and transported offsite for proper disposal. The area was then backfilled with clean material to surface grade.

Conclusion

Based on the laboratory results and remediation activities performed, COG requests closure of this spill issue. The final C-141 is enclosed in Appendix A. If you have any questions or comments concerning the assessment or remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

ais Clongalos

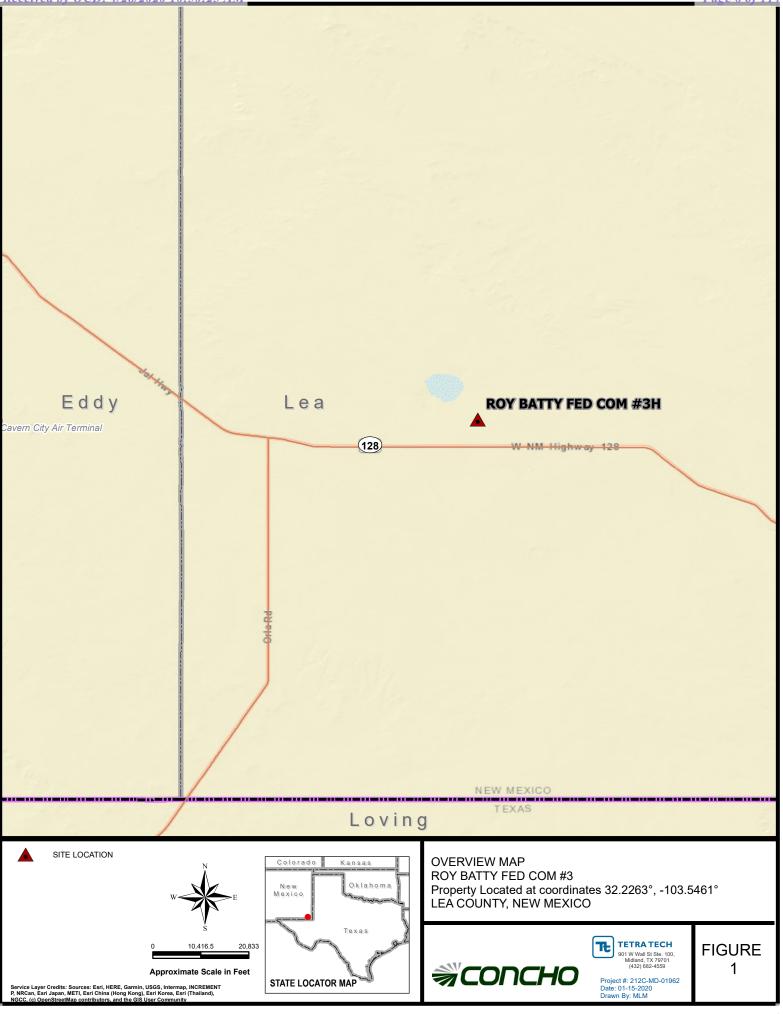
Clair Gonzales, P.G., Project Manager

Ine

Mike Carmona Geologist

-

Figures


•

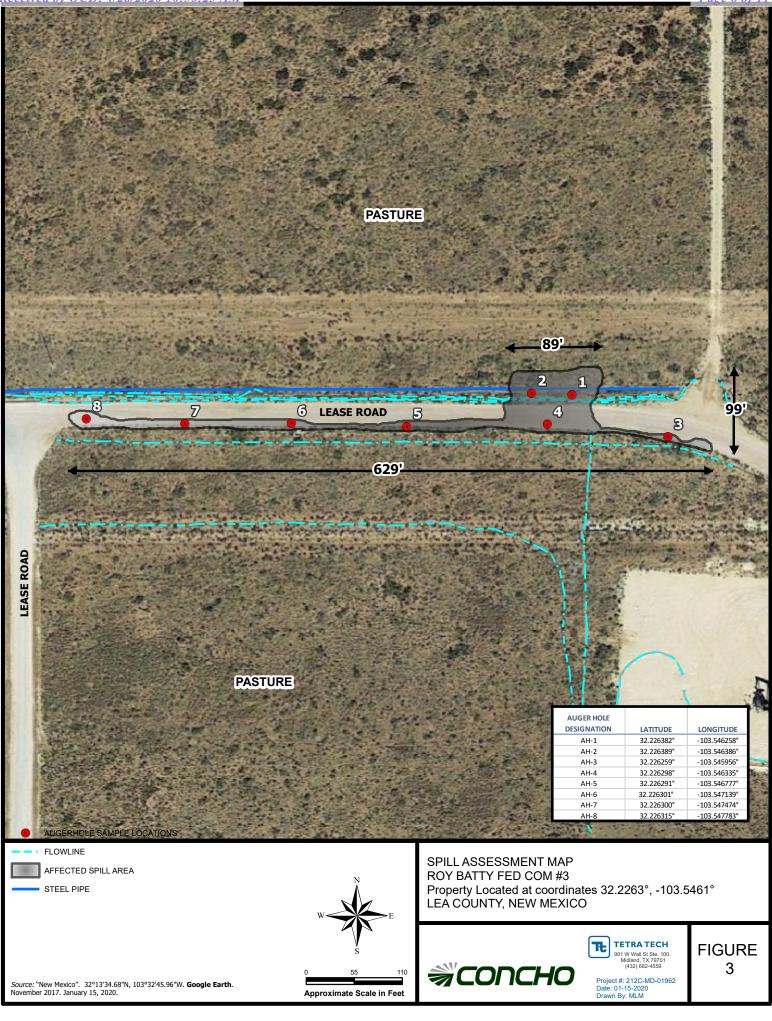
BATTY FED COM #3\MXD\212C-MD-01962 ROY BATTY FED COM #3 FIG. 1.mxd

1962 ROY

COG\212C-MD-

GIS/CONCHO RESOURCES

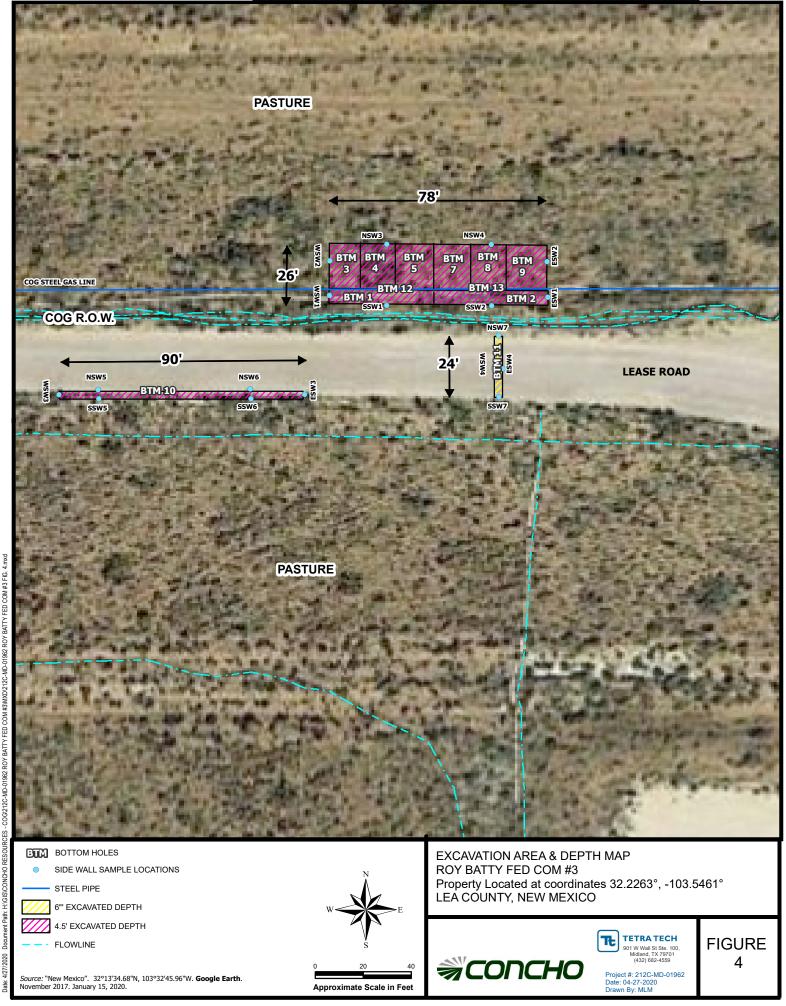
Received by OCD: 4/28/2020 10:50:25 AM


Page 7 of 114

FED COM #3 FIG

RESOLIDCES

HONOONCHO



RFSOURCES

H-/GIS/CONCHO

Path: |

Tables

•

Table 1 COG Roy Batty Fed Com #3 Lea County, New Mexico

Sample ID	Sample Date	Sample Depth (ft)	Excavation Bottom (ft)		Status	GRO	<u>TPH (</u> DRO	mg/kg) ORO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
AH-1	10/9/2019	0-1	-	In-Situ	Removed X	<49.9	<49.9	<49.9	<49.9	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	18.7
	"	1-1.5	-		X	<49.9	<49.9	<49.9	<49.9	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	33.8
	"	2-2.5	-		Х	-	-	-	-	-	-	-	-	-	90.5
	"	3-3.5	-		Х	-	-	-	-	-	-	-	-	-	1,440
	"	3.5-4	-		Х	-	-	-	-	-	-	-	-	-	5,390
AH-2	10/9/2019	0-1	-		Х	<50.0	<50.0	<50.0	<50.0	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	19.3
	"	1-1.5	-		Х	<49.9	<49.9	<49.9	<49.9	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	17.2
	"	2-2.5	-		Х	-	-	-	-	-	-	-	-	-	56.5
	"	3-3.5	-		Х	-	-	-	-	-	-	-	-	-	1,420
	"	4-4.5	-		Х	-	-	-	-	-	-	-	-	-	319
	"	5-5.5	-	X		-	-	-	-	-	-	-	-	-	635
	"	6-6.5 7-7.5	-	X X		-	-	-	-	-	-	-	-	-	1,570 184
A11.2															
AH-3	10/9/2019	0-1	-		Х	<49.8	<49.8	<49.8	<49.8	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	13.3
AH-4	10/9/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	23.2
AH-5	10/9/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	80.9
AH-6	10/9/2019	0-1	-		Х	<50.0	<50.0	<50.0	<50.0	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	146
	"	1-1.5	-		Х	-	-	-	-	-	-	-	-	-	1,850
AH-7	10/9/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	16.1
AH-8	10/9/2019	0-1	-	Х		<49.8	<49.8	<49.8	<49.8	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	7.78
	"	1-1.5	-	Х		-	-	-	-	-	-	-	-	-	20.8
Bottomhole-1	12/19/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	1,760
Bottomhole-2	12/19/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	592
Bottomhole-3	12/19/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	16.0
Bottomhole-4	12/19/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	<16.0
Bottomhole-5	12/19/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	512
Bottomhole-6	12/20/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	1,120
Bottomhole-7	12/20/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	240
Bottomhole-8	12/20/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	6,000
Bottomhole-9	12/20/2019	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	5,680
Bottomhole-10	1/2/2020		4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	16.0
Bottomhole-11	1/3/2020		0.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	176
Bottomhole-12	1/13/2020	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	64.0
Bottomhole-13	1/13/2020	-	4-4.5	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	752

Table 1 COG Roy Batty Fed Com #3 Lea County, New Mexico

Sample ID	Sample Date	Sample	Excavation	Soil	Status		TPH (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chlorid
Sample ID	Sample Date	Depth (ft)	Bottom (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
NSW-1	1/3/2020		-		Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	1,64
NSW-2	1/3/2020		-		Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	3,64
NSW-3	12/19/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	<16.
NSW-4	12/20/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	32.0
NSW-5	1/2/2020		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	<16.
NSW-6	"		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	272
NSW-7	1/3/2020		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	192
SSW-1	12/20/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	32.
SSW-2	12/19/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	288
SSW-3	1/2/2020		-		Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	11:
SSW-4	"		-		Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	19
SSW-5	"		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	32.
SSW-6	"		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	16.
SSW-7	1/3/2020		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	17(
ESW-1	12/19/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	11:
ESW-2	12/20/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	19
ESW-3	1/2/2020		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	11:
ESW-4	1/3/2020		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	14
WSW-1	12/19/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	38
WSW-2	12/20/2019		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	11
WSW-3	1/2/2020		-	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	48
WSW-4	1/3/2020		_	Х		<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.0150	<0.300	11

Not Analyzed

-

-

•

Photos

View West – Areas of AH-1 and AH-2

View West – Areas of AH-3 through AH-8

View West – Excavated Areas of AH-1 and AH-2

View West - Excavated Areas of AH-1 and AH-2

View South - Surficial scrape along lease road

View West - Removal of NSW-1 and NSW-2

.

•

Appendix A

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID			
Contact Name	Contact Telephone			
Contact email	Incident # (assigned by OCD)			
Contact mailing address				

Location of Release Source

Latitude	Longitude
	(
Site Name	Site Type

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

	Page 20 of 114
ncident ID	
District RP	
acility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
☐ Yes ☐ No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 4/28/2020 10:50:25 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 21 of 11	4
Incident ID		
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs

- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 4/28/2020 10:50:25 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 22 of 114
Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following it	tems must be included in the closure report.							
A scaled site and sampling diagram as described in 19.15.29.11 NMAC								
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)								
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)								
Description of remediation activities								
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	tions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in							
Printed Name:								
Signature: <u><u>A</u>B</u>	Date:							
email:	Telephone:							
OCD Only								
Received by:	Date:							
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.								
Closure Approved by:	Date:							
Printed Name:	Title:							

Page 6

.

•

Appendix B

Water Well Data Average Depth to Groundwater (ft) Roy Batty Lea County, New Mexico

	23 \$	South	:	32 East	t		23 \$	South	3	3 East			23 \$	South	3	4 East	
6	5	4	3	2	1	6	5	4	3	2	1	6	5	4	3	2	1
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
		400				400	400										
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
								400		225	225						
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	24	South		32 East	-		24 9	South	3.	B East			24 9	South		4 East	
6	5	4	3	2	1	6	5	4	3	2	1 81	6	5	4	3	2	1
7	8	9	10	11	12	7	8	9	10 20	11 Site	12	7	8	9	10	11	12
			20						22								
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
								415		575	390						
19	20	21	22	23	24	19	20	21	22	23 110	24	19	20	21	22	23	24
										208	16.9						
30	29	28	27	26	25	30	29	28	27	26	25 30	30	29	28	27	26	25
31	32	33	34	35	36	31	32	33 70	34	35	36	31	32	33	34	35	36
		290						93.2									
	25 9	South		32 East	+		25 \$	South	3	3 East			25	South	3	4 East	
6	5	4	3	2	1	6	5	4	3 172		1	6	5	4	3	2	1
7	8	9	10	11	12	7	8	9	10	11	12	7	8	9	10	11	12
										140	200						
18	17	16	15	14	13	18	17	16	15	14	13	18	17	16	15	14	13
19	20	21	22	23	24	19	20	21	22	23	24	19	20	21	22	23	24
							200	120									
30	29	28	27	26	25	30	29	28	27	26	25	30	29	28	27	26	25
									125							0.5	
31	32	33	34	35	36	31	32	33	34	35	36	31	32	33	34	35	36
	290					257											

88 New Mexico State Engineers Well Reports

105 USGS Well Reports

90 Geology and Groundwater Conditions in Southern Lea, County, NM (Report 6) Geology and Groundwater Resources of Eddy County, NM (Report 3)

34 NMOCD - Groundwater Data

123 Tetra Tech installed temporary wells and field water level

143 NMOCD Groundwater map well location

New Mexico Office of the State Engineer Water Column/Average Depth to Water

									<u> </u>				
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water sight file)	(R=POD replaced, O=orpha C=the file	ned,						E 3=SW		3 UTM in meters	.)	(In feet)	
water right file.)	closed)	POD	(q	uarte	is ai	: smai	lest to l	largest)	(NAD8:	5 UT WI III meters	5)	(In feet)	
		Sub-		Q	Q	2						W	ater
POD Number	Code		County	_		_		-	Х		•	epthWater Co	
02308		CUB	LE		3				634953	3567364*	40	20	20
<u>12309</u>		CUB	LE		2				639638	3562994*	60	30	30
<u>02310</u>		CUB	LE			2 33			634437	3560918*	120	70	50
02311		CUB	LE			2 33			634437	3560918*	120	70	50
02430		CUB	LE	3		3 16			633377	3564732*	643	415	228
02431		CUB	LE	4	4	4 17			633175	3564728*	525	415	110
02432		CUB	LE	4	4				633175	3564728*	640	415	225
02563		CUB	LE		4				634639	3560923*	120		> <
02564		CUB	LE	2	4	2 33	24S	33E	634839	3560923*	120		
02890		С	LE		2	4 29	24S	33E	633114	3562012*	500	$\langle \langle \rangle$	\backslash
<u>03565 POD3</u>		CUB	LE		3	4 08	24S	33E	632763	3566546	\wedge	1533	\backslash
<u>03591 POD1</u>		CUB	LE	2	1 ·	4 05	24S	33E	632731	3568518			
03600 POD1		CUB	LE	2	2	26	24S	33E	637275	3563023	$\langle \langle \cdot \rangle$	\land	
03600 POD2		CUB	LE	4	4	1 25	24S	33E	638824	3562329	\sim		
<u>03600 POD3</u>		CUB	LE	3	4	2 26	24S	33E	637784	3562340	//	\backslash	
<u>03600 POD4</u>		CUB	LE	3	3	1 26	24S	33E	636617	3562293 🗌		\searrow	
03600 POD5		CUB	LE	3	2	4 26	24S	33E	631857	-3562020	、)))	
03600 POD6		CUB	LE	3	1	4 26	24S	33E	637583	3592026	\searrow		/
<u>03600 POD7</u>		CUB	LE	3	1	3 26	24S	33E	636726	√356 1 968	\sim	$(\bigcirc$	/
03601 POD1		CUB	LE	4	4	2 23	24S	33E	638124	3563937	\diamond	\bigcirc	\mathcal{I}
03601 POD2		CUB	LE	3	2	4 23	24S	83E	637846	3563588		$\langle \rangle$	
03601 POD3		CUB	LE	1	3	3 24	24S	33E	638142	3563413			
<u>03601 POD4</u>		CUB	LE	z	S)	24	245	33E	638162	3561375	$\lesssim (($)>`	
<u>03601 POD5</u>		CUB	LE	\sum	4	1 23	248	33E	637988	35633\$4			
<u>03601 POD6</u>		CUB	LE	1	4	1 23	245	33E	637834	3563338			
<u>03601 POD7</u>		CUB	LE	4	A.	L 23	245	33E	637946	3563170			
03602 POD2		CUB	LE	\$4	A	1 25	245	> 33E	638824	3562320	>		
03603 POD1		сув	THE	3	2	2 35	24S	33E	637805	3564225			
<u>03603 POD2</u>	\bigcirc	CUB	E/	3	1		248	STE.	1037984	3561167			
03603 POD3	(ÇÛB	LE	À	$\mathbb{P}^{>}$	35	2 4 S	39E	636890	3561092			
03603 POD4	\/ <	ØUB	LE		2	4 35	245	UN,	637789	3560461			
C 03603 POD5	//	CUB		3	3	2 35	248	3512	636745	3560767			
03603 POD6		CUB		3	1	3 35	24S	33E	636749	3560447			
03662 POD1		С	LE	3	1	2 23	24S	33E	637342	3564428	550	110	440
<u>03666 POD1</u>		С	LE	2	3	4 13	24S	33E	639132	3565078	650	390	260
<u>03679 POD1</u>		С	ED	1	4	2 14	24S	33E	603567	3581547	700	575	125
) <u>3917 POD1</u>		С	LE	4	1	3 13	24S	33E	638374	3565212	600	420	180
04014 POD2		CUB	LE	4	4	2 01	24S	33E	639656	3568917	95	81	14
04014 POD3		CUB	LE	2	4	2 01	24S	33E	639497	3569007	95	87	8
04014 POD4		CUB	LE			2 01		33E	639295	3568859	96	86	10
04014 POD5		CUB	LE	1	4	2 01	24S	33E	639284	3569086	95	85	10
04339 POD1		CUB	LE	1	3	3 23	24S	33E	636525	3563309	47		
04339 POD10		CUB	LE	4	1	4 23	24S	33E	637688	3563503	49		
04339 POD2		CUB	LE	2	3	3 23	24S	33E	636789	3563315			
04339 POD3		CUB	LE			3 23		33E	637273	3563323	38		
04339 POD4		CUB	LE			3 23		33E	637273	3563323	47		
04339 POD5		CUB	LE			4 23		33E	637580	3563328	54		
)4339 POD6		CUB	LE			2 23			637340	3564386	60		
		2.55	22	2		20	2.5				00		

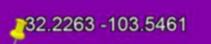
C 04220 POD7	CUD	1 E	4 4	2 22	240	2217	626472	2564011	43	
<u>C 04339 POD7</u> <u>C 04339 POD8</u>	CUB CUB	LE LE		2 23 3 23			636473 636519	3564011	43 30	
C 04339 POD9	CUB	LE		2 23			637731	3563913	45	
								Average Depth to Wat		300 feet
								M inimum De		20 feet
								M aximum Dep	oth:	1533 feet
Record Count: 51										
PLSS Search:										
Township: 248 Rang	ge: 33E									
*UTM location was derived from 1		-								
e data is furnished by the NMOSE/ISC a cerning the accuracy, completeness, re									warranties, ex	pressed or implied,
/22/19 9:54 AM								WATER TO WA		/ AVERAGE DEPT
										<
										\wedge
									<	
									\wedge	
								/	//	
								$\langle \cdot \rangle$	$\langle /$	>
									\mathbf{N}	/
								$\langle \rangle$	///	
							/	_//	$\langle \rangle \rangle$	\vee
								////))	((
								\bigcirc	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
								х́С		$\sim (())^{\circ}$
						<u>_</u>			\sim $/$ $'$ (
							//	\sim (\bigcirc	\mathbb{N}
			$\langle \rangle$	$\geq c$		/ /)		()	\rightarrow
			$\langle \rangle$	\swarrow	(//	\searrow	·//		
			\sim	\backslash	\mathbb{N}		\diamond	(///)	Ľ	
		(\sim	/	$\backslash \rangle$	$\langle \rangle$	~	$\langle \langle \forall \rangle \rangle$		
		1	()					>>> ~ ~ /	1	
	/	_ (/ ک	\wedge	\bigcirc	>		$ \diamond \Subset$		
	(($\sum_{i=1}^{n}$	$\left\langle \left(\right) \right\rangle$	\sum	\geq	> <		M & &		
	> ($\langle \rangle$		\sum_{n}					/	
									/	
				>					/	

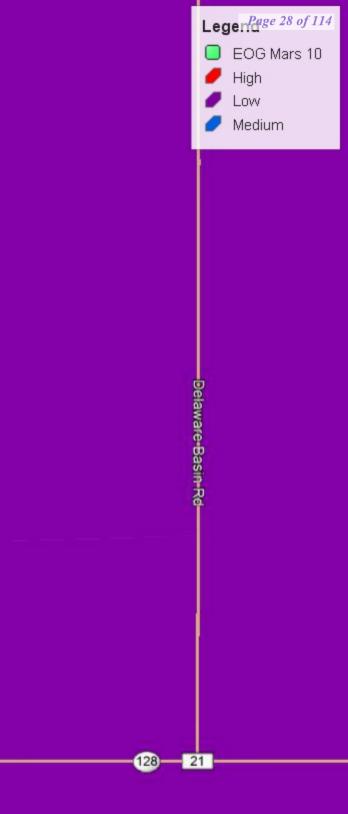
•

Page 26 of 114

•

National Water Information System: Mapper




Bellate

Co Rd 2-A

Vaca Ln

.

NFHL Web Mapping Application	
+ Data Layers - -	Mea
3008 R	Search Result Y:32.226300 X:-103.546100
100m 	FEMA Bureau of Land Management, Texa

•

.

•

Appendix C

Analytical Report 639515

for Tetra Tech- Midland

Project Manager: Mike Carmona

Roy Batty

14-OCT-19

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-19-30), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142), North Carolina (681)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (TX104704295-19-22), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-19-16) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-19-21) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-19-5) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Tampa: Florida (E87429), North Carolina (483) Received by OCD: 4/28/2020 10:50:25 AM

14-OCT-19

Project Manager: **Mike Carmona Tetra Tech- Midland** 901 West Wall ST Midland, TX 79701

Reference: XENCO Report No(s): 639515 Roy Batty Project Address: Lea Co, NM

Mike Carmona:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 639515. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 639515 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Vramer

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Id

AH #1 (0-1') AH #1 (1-1.5') AH #1 (2-2.5') AH #1 (3-3.5') AH #1 (3.5-4') AH #2 (0-1') AH #2 (1-1.5') AH #2 (2-2.5') AH #2 (3-3.5') AH #2 (4-4.5') AH #2 (5-5.5') AH #2 (6-6.5') AH #2 (7-7.5') AH #3 (0-1') AH #4 (0-1') AH #5 (0-1') AH #6 (0-1') AH #6 (1-1.5') AH #7 (0-1') AH #8 (0-1') AH #8 (1-1.5')

Sample Cross Reference 639515

Tetra Tech- Midland, Midland, TX

Roy Batty

Matrix	Date Collected	Sample Depth	Lab Sample Id
S	10-09-19 00:00	0 - 1 ft	639515-001
S	10-09-19 00:00	1 - 1.5 ft	639515-002
S	10-09-19 00:00	2 - 2.5 ft	639515-003
S	10-09-19 00:00	3 - 3.5 ft	639515-004
S	10-09-19 00:00	3.5 - 4 ft	639515-005
S	10-09-19 00:00	0 - 1 ft	639515-006
S	10-09-19 00:00	1 - 1.5 ft	639515-007
S	10-09-19 00:00	2 - 2.5 ft	639515-008
S	10-09-19 00:00	3 - 3.5 ft	639515-009
S	10-09-19 00:00	4 - 4.5 ft	639515-010
S	10-09-19 00:00	5 - 5.5 ft	639515-011
S	10-09-19 00:00	6 - 6.5 ft	639515-012
S	10-09-19 00:00	7 - 7.5 ft	639515-013
S	10-09-19 00:00	0 - 1 ft	639515-014
S	10-09-19 00:00	0 - 1 ft	639515-015
S	10-09-19 00:00	0 - 1 ft	639515-016
S	10-09-19 00:00	0 - 1 ft	639515-017
S	10-09-19 00:00	1 - 1.5 ft	639515-018
S	10-09-19 00:00	0 - 1 ft	639515-019
S	10-09-19 00:00	0 - 1 ft	639515-020
S	10-09-19 00:00	1 - 1.5 ft	639515-021

Page	3	of	31	
i ugo	v	01	01	

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Roy Batty

Project ID: Work Order Number(s): 639515 Report Date: 14-OCT-19 Date Received: 10/09/2019

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3104132 BTEX by EPA 8021B Samples 639515-001, 639515-002, 639515-006, 639515-007, 639515-014, 639515-015, 639515-019, and 639515-020 were diluted due to surfactants.

Batch: LBA-3104147 Inorganic Anions by EPA 300/300.1

Lab Sample ID 639515-011 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 639515-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018, -019. The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Project Id:Contact:Mike CarmonaProject Location:Lea Co, NM

Certificate of Analysis Summary 639515

Tetra Tech- Midland, Midland, TX

Project Name: Roy Batty

Date Received in Lab:Wed Oct-09-19 03:46 pmReport Date:14-OCT-19Project Manager:Jessica Kramer

	Lab Id:	639515-001		639515-(002	639515-003		639515-004		639515-005		639515-0)06
Analysis Requested	Field Id:	AH #1 (0)-1')	AH #1 (1-1.5')		AH #1 (2-2.5')		AH #1 (3-3.5')		AH #1 (3.5-4')		AH #2 (0	-1')
Analysis Kequestea	Depth:	0-1 ft		1-1.5 ft		2-2.5 ft	2-2.5 ft		t	3.5-4 ft		0-1 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-09-19	00:00	Oct-09-19 (00:00	Oct-09-19 0	00:00	Oct-09-19 (00:00	Oct-09-19 (00:00	Oct-09-19 (00:00
BTEX by EPA 8021B	Extracted:	Oct-11-19 10:40		Oct-11-19	Oct-11-19 10:40							Oct-11-19 1	10:40
SUB: T104704219-19-21	Analyzed:	Oct-12-19	06:27	Oct-12-19 (Oct-12-19 06:51							Oct-12-19 07:15	
	Units/RL:	mg/kg	RL	mg/kg	RL							mg/kg	RL
Benzene		< 0.0400	0.0400	< 0.0400	0.0400							< 0.0400	0.0400
Toluene		< 0.0400	0.0400	< 0.0400	0.0400							< 0.0400	0.0400
Ethylbenzene		< 0.0400	0.0400	< 0.0400	0.0400							< 0.0400	0.0400
m,p-Xylenes		< 0.0800	0.0800	< 0.0800	0.0800							< 0.0800	0.0800
o-Xylene		< 0.0400	0.0400	< 0.0400	0.0400							< 0.0400	0.0400
Total Xylenes	tal Xylenes <0.04		0.0400	< 0.0400	0.0400							< 0.0400	0.0400
Total BTEX	Total BTEX		0.0400	< 0.0400	0.0400							< 0.0400	0.0400
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-19	17:30	Oct-11-19 17:30		Oct-11-19 17:30 0		Oct-11-19 17:30		Oct-11-19 17:30		Oct-11-19 17:30	
SUB: T104704400-19-19	Analyzed:	Oct-11-19 19:24		Oct-11-19 19:40		Oct-11-19 19:45		Oct-11-19 19:50		Oct-11-19 19:56		Oct-11-19 20:11	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		18.7	5.00	33.8	4.98	90.5	4.99	1440	4.96	5390	50.0	19.3	4.95
TPH By SW8015 Mod	Extracted:	Oct-11-19 11:00		Oct-11-19 11:00								Oct-11-19 1	11:00
SUB: T104704400-19-19 Analyz		Oct-11-19 18:52		Oct-11-19 19:13								Oct-11-19 1	19:34
	Units/RL:	mg/kg	RL	mg/kg	RL							mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<49.9	49.9	<49.9	49.9							<50.0	50.0
Diesel Range Organics (DRO)		<49.9	49.9	<49.9	49.9							<50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<49.9	49.9	<49.9	49.9							<50.0	50.0
Total TPH		<49.9	49.9	<49.9	49.9							<50.0	50.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kramer

Jessica Kramer Project Assistant

Page 5 of 31

Project Id:Contact:Mike CarmonaProject Location:Lea Co, NM

Certificate of Analysis Summary 639515

Tetra Tech- Midland, Midland, TX

Project Name: Roy Batty

Date Received in Lab:Wed Oct-09-19 03:46 pmReport Date:14-OCT-19Project Manager:Jessica Kramer

	Lab Id:	639515-(007	639515-0	008	639515-0	09	639515-0	010	639515-0	011	639515-0	012
	Field Id:	AH #2 (1-	1.5')	AH #2 (2-2	2.5')	AH #2 (3-3.5')		AH #2 (4-4.5')		AH #2 (5-5.5')		AH #2 (6-6.5')	
Analysis Requested	Depth:	1-1.5 f	ť	2-2.5 f	t	3-3.5 ft		4-4.5 ft		5-5.5 f	t	6-6.5 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-09-19	Oct-09-19 00:00		00:00	Oct-09-19 00:00		Oct-09-19 00:00		Oct-09-19 00:00		Oct-09-19 00:00	
BTEX by EPA 8021B	Extracted:	Oct-11-19 10:40											
SUB: T104704219-19-21	Analyzed:	Oct-12-19 07:38											
	Units/RL:	mg/kg	RL										
Benzene		< 0.0400	0.0400										
Toluene		< 0.0400	0.0400										
Ethylbenzene		< 0.0400	0.0400										
m,p-Xylenes		< 0.0800	0.0800										
o-Xylene		< 0.0400	0.0400										
Total Xylenes		< 0.0400	0.0400										
Total BTEX		< 0.0400	0.0400										
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-19	17:30	Oct-11-19 17:30		Oct-11-19 17:30		Oct-11-19 17:30		Oct-11-19 17:30		Oct-11-19 17:30	
SUB: T104704400-19-19 Analyz		Oct-11-19 20:17		Oct-11-19 20:22		Oct-11-19 20:27		Oct-11-19 20:33		Oct-11-19 20:38		Oct-11-19 20:54	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		17.2	5.02	56.5	4.96	1420	5.00	319	4.97	635	5.04	1570	25.0
TPH By SW8015 Mod	Extracted:	Oct-11-19	11:00										
SUB: T104704400-19-19	Analyzed:	Oct-11-19 19:55											
	Units/RL:	mg/kg	RL										
Gasoline Range Hydrocarbons (GRO)	' i i i i i i i i i i i i i i i i i i i	<49.9	49.9										
Diesel Range Organics (DRO)		<49.9	49.9										
Motor Oil Range Hydrocarbons (MRO)		<49.9	49.9										
Total TPH		<49.9	49.9										

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kramer

Jessica Kramer Project Assistant

Final 1.000

Project Id: Contact: Mike Carmona

Project Location: Lea Co, NM

Certificate of Analysis Summary 639515

Tetra Tech- Midland, Midland, TX Project Name: Roy Batty

Date Received in Lab:Wed Oct-09-19 03:46 pmReport Date:14-OCT-19Project Manager:Jessica Kramer

	Lab Id:	639515-0	13	639515-0	14	639515-0	15	639515-0)16	639515-0	17	630515.0)18
			-				-					639515-01 AH #6 (1-1 1-1.5 ft SOIL Oct-09-19 00 Oct-09-19 00 Oct-11-19 17 Oct-11-19 27 mg/kg 1850	
Analysis Requested	Field Id:	AH #2 (7-7	/.5')	AH #3 (0	-1')	AH #4 (0	-1')	AH #5 (0)-1')	AH #6 (0	-1')	AH #6 (1-1 1-1.5 ft SOIL Oct-09-19 0	1.5')
	Depth:	7-7.5 ft	t	0-1 ft		0-1 ft		0-1 ft		0-1 ft			t
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-09-19 (00:00	Oct-09-19 (00:00	Oct-09-19 (00:00	Oct-09-19	00:00	Oct-09-19 (00:00	Oct-09-19 (00:00
BTEX by EPA 8021B	Extracted:		1	Oct-11-19 1	0:40	Oct-11-19	10:40	Oct-11-19	10:40	Oct-11-19 1	0:40		
SUB: T104704219-19-21	Analyzed:			Oct-12-19 (08:02	Oct-12-19 (08:25	Oct-12-19	08:50	Oct-12-19 (9:13		
	Units/RL:			mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Benzene				< 0.0400	0.0400	< 0.0400	0.0400	< 0.0200	0.0200	< 0.0200	0.0200		
Toluene				< 0.0400	0.0400	< 0.0400	0.0400	< 0.0200	0.0200	< 0.0200	0.0200		
Ethylbenzene				< 0.0400	0.0400	< 0.0400	0.0400	< 0.0200	0.0200	< 0.0200	0.0200		
m,p-Xylenes				< 0.0800	0.0800	< 0.0800	0.0800	< 0.0400	0.0400	< 0.0400	0.0400		
o-Xylene				< 0.0400	0.0400	< 0.0400	0.0400	< 0.0200	0.0200	< 0.0200	0.0200		
Total Xylenes				< 0.0400	0.0400	< 0.0400	0.0400	< 0.0200	0.0200	< 0.0200	0.0200		
Total BTEX				< 0.0400	0.0400	< 0.0400	0.0400	< 0.0200	0.0200	< 0.0200	0.0200		
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-19 1	17:30	Oct-11-19 1	7:30	Oct-11-19	17:30	Oct-11-19	17:30	Oct-11-19 1	7:30	Oct-11-19 1	17:30
SUB: T104704400-19-19	Analyzed:	Oct-11-19 2	20:59	Oct-11-19 2	21:15	Oct-11-192	21:20	Oct-11-192	21:25	Oct-11-19 2	21:31	Oct-11-19 2	21:36
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		184	4.98	13.3	5.02	23.2	5.00	80.9	5.00	146	5.00	1850	25.2
TPH By SW8015 Mod	Extracted:			Oct-11-19 1	1:00	Oct-11-19	11:00	Oct-13-19	12:00	Oct-13-19 1	2:00		
SUB: T104704400-19-19	Analyzed:			Oct-11-19 2	20:16	Oct-11-192	20:37	Oct-14-19	03:20	Oct-14-19 ()3:41		
	Units/RL:			mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)				<49.8	49.8	< 50.0	50.0	<50.0	50.0	<50.0	50.0		
Diesel Range Organics (DRO)				<49.8	49.8	<50.0	50.0	<50.0	50.0	<50.0	50.0		
Motor Oil Range Hydrocarbons (MRO)				<49.8	49.8	<50.0	50.0	<50.0	50.0	<50.0	50.0		
Total TPH				<49.8	49.8	<50.0	50.0	<50.0	50.0	<50.0	50.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession Vramer

Jessica Kramer Project Assistant

Project Id:Contact:Mike CarmonaProject Location:Lea Co, NM

Certificate of Analysis Summary 639515

Tetra Tech- Midland, Midland, TX Project Name: Roy Batty

Date Received in Lab:Wed Oct-09-19 03:46 pmReport Date:14-OCT-19Project Manager:Jessica Kramer

	Lab Id:	639515-0)19	639515-0	2.0	639515-0	21			
	Field Id:	AH #7 (0		AH #8 (0	-	AH #8 (1-1				
Analysis Requested	Depth:	0-1 ft	Ý I	0-1 ft	- /	1-1.5 ft	Ý I			
	-	SOIL		SOIL		SOIL				
	Matrix:									
	Sampled:	Oct-09-19 (00:00	Oct-09-19 (00:00	Oct-09-19 0	00:00			
BTEX by EPA 8021B	Extracted:	Oct-11-19	10:40	Oct-11-19 1	0:40			1	ľ	
SUB: T104704219-19-21	Analyzed:	Oct-12-19 (09:37	Oct-12-19 1	0:01					
	Units/RL:	mg/kg	RL	mg/kg	RL					
Benzene		< 0.0400	0.0400	< 0.0400	0.0400					
Toluene		< 0.0400	0.0400	< 0.0400	0.0400					
Ethylbenzene		< 0.0400	0.0400	< 0.0400	0.0400					
m,p-Xylenes		< 0.0800	0.0800	< 0.0800	0.0800					
o-Xylene		< 0.0400	0.0400	< 0.0400	0.0400					
Total Xylenes		< 0.0400	0.0400	< 0.0400	0.0400					
Total BTEX		< 0.0400	0.0400	< 0.0400	0.0400					
Inorganic Anions by EPA 300/300.1	Extracted:	Oct-11-19	17:30	Oct-11-19 1	6:30	Oct-11-19 1	6:30			
SUB: T104704400-19-19	Analyzed:	Oct-11-192	21:47	Oct-11-19 2	20:07	Oct-11-19 2	0:13			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL			
Chloride		16.1	4.96	7.78	5.03	20.8	4.96			
TPH By SW8015 Mod	Extracted:	Oct-13-19	12:00	Oct-13-19 1	2:00					
SUB: T104704400-19-19	Analyzed:	Oct-14-19 (04:02	Oct-14-19 (4:23					
	Units/RL:	mg/kg	RL	mg/kg	RL					
Gasoline Range Hydrocarbons (GRO)		<50.0	50.0	<49.8	49.8					
Diesel Range Organics (DRO)		<50.0	50.0	<49.8	49.8					
Motor Oil Range Hydrocarbons (MRO)		<50.0	50.0	<49.8	49.8					
Total TPH		<50.0	50.0	<49.8	49.8					

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

fession kenner

Jessica Kramer Project Assistant

Page 8 of 31

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough
 - to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- ${\bf F} \quad {\rm RPD} \ {\rm exceeded} \ {\rm lab} \ {\rm control} \ {\rm limits}.$
- **J** The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	S Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labo	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Project Name: Roy Batty

Work Ord Lab Batch #:		5, Sample: 639515-001 / SMP	Bate	Project ID: h: 1 Matrix						
Units:	mg/kg	Date Analyzed: 10/11/19 18:52	SU	JRROGATE R	ECOVERY S	STUDY				
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooctane	e		92.8	99.8	93	70-135				
o-Terphenyl			50.5	49.9	101	70-135				
Lab Batch #:	3104204	Sample: 639515-002 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 10/11/19 19:13	SU	JRROGATE R	ECOVERY S	STUDY				
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1.011		Analytes	04.4			50.105				
1-Chlorooctane	e		91.1	99.7	91					
o-Terphenyl	2104204	C 1 (20515 00/ / CMD	50.2	49.9	101	70-135				
Lab Batch #:		Sample: 639515-006 / SMP	Bate			70-135 70-135 STUDY Control Limits %R				
Units:	mg/kg	Date Analyzed: 10/11/19 19:34	SU	JRROGATE R	ECOVERY S	RY STUDY				
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Limits	Flags			
		Analytes			[D]					
1-Chlorooctane	e		92.2	99.9	92	70-135				
o-Terphenyl			49.9	50.0	100	70-135				
Lab Batch #:	3104204	Sample: 639515-007 / SMP	Batc	h: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 10/11/19 19:55	SU	JRROGATE R	ECOVERY S	STUDY				
	TPH I	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	e		90.7	99.7	91	70-135				
o-Terphenyl	-		49.9	49.9	100	70-135				
Lab Batch #:	3104204	Sample: 639515-014 / SMP	Batc			10 155				
Units:	mg/kg	Date Analyzed: 10/11/19 20:16		JRROGATE R		STUDY				
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
[Analytes			[D]					
1-Chlorooctane	e		98.9	99.6	99	70-135				
o-Terphenyl			52.0	49.8	104	70-135				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Roy Batty

	ders : 63951: #: 3104204	5, Sample: 639515-015 / SMP	Batch	Project ID a: 1 Matrix						
Units:	mg/kg	Date Analyzed: 10/11/19 20:37	SU	RROGATE R	ECOVERY S	STUDY				
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1-Chlorooct	ane		95.5	99.9	96	70-135				
o-Terphenyl			50.9	50.0	102	70-135				
Lab Batch	#: 3104132	Sample: 639515-001 / SMP	Batch	a: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 10/12/19 06:27	SU	RROGATE R	ECOVERY S	STUDY				
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4 Due un e fler		Analytes	0.0077	0.100		60.100				
4-Bromoflu			0.0877	0.100	88	68-120				
a,a,a-Trifluc		Sec. 1. (20515-002 / SMD	3.77	4.00 1: 1 Matrix	94	71-121				
	#: 3104132	Sample: 639515-002 / SMP	Batch							
Units:	mg/kg	Date Analyzed: 10/12/19 06:51	SU	RROGATE R	ECOVERY	STUDY				
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
4-Bromoflu	orobenzene		0.0832	0.100	83	68-120				
a,a,a-Trifluc	rotoluene		3.61	4.00	90	71-121				
Lab Batch	#: 3104132	Sample: 639515-006 / SMP	Batch	n: 1 Matrix	: Soil					
Units:	mg/kg	Date Analyzed: 10/12/19 07:15	SU	RROGATE R	ECOVERY	STUDY				
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Bromoflu			0.0787	0.100	79	68-120				
a,a,a-Trifluc			3.54	4.00	89	71-121				
	#: 3104132	Sample: 639515-007 / SMP	Batch			1	<u> </u>			
Units:	mg/kg	Date Analyzed: 10/12/19 07:38	SU	RROGATE R	ECOVERY	STUDY				
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Bromoflu			0.0762	0.100		68 120				
			0.0762	0.100	76	68-120				
a,a,a-Trifluc	notoluelle		3.33	4.00	83	71-121				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Roy Batty

Work Orde Lab Batch #:		5, Sample: 639515-014 / SMP	Batch:	Project ID 1 Matrix							
Units:	mg/kg	Date Analyzed: 10/12/19 08:02	SUR	ROGATE R	RECOVERY	STUDY					
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
4-Bromofluorol	benzene		0.0755	0.100	76	68-120					
a,a,a-Trifluorot	oluene		3.48	4.00	87	71-121					
Lab Batch #:	3104132	Sample: 639515-015 / SMP	Batch:	1 Matrix	:: Soil						
Units:	mg/kg	Date Analyzed: 10/12/19 08:25	SUR	ROGATE R	RECOVERY	STUDY					
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
		Analytes									
4-Bromofluorol			0.0905	0.100	91						
a,a,a-Trifluorote			3.78	4.00		71-121					
Lab Batch #:		Sample: 639515-016 / SMP									
Units:	mg/kg	Date Analyzed: 10/12/19 08:50	SUR	ROGATE R	RECOVERY	68-120 71-121 STUDY Control Limits %R 68-120 71-121 STUDY 68-120 71-121 STUDY 68-120 71-121 STUDY Control Limits %R Flag 68-120 71-121 STUDY Control Limits %R Flag 68-120 71-121					
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D] Control Limits %R 72 68-120						
		Analytes			[D]						
4-Bromofluorol	benzene		0.0715	0.100	72	68-120					
a,a,a-Trifluorot	oluene		1.67	2.00	84	71-121					
Lab Batch #:	3104132	Sample: 639515-017 / SMP	Batch:	1 Matrix	c: Soil						
Units:	mg/kg	Date Analyzed: 10/12/19 09:13	SUR	ROGATE R	RECOVERY	STUDY					
	BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Limits	Flags				
4 Due		Analytes	0.0001	0.100		60.100					
4-Bromofluorol			0.0821	0.100	82						
a,a,a-Trifluorote		Sample: 639515-019 / SMP	1.88 Batch:	2.00 1 Matrix	94	/1-121					
	mg/kg	Date Analyzed: 10/12/19 09:37									
	mg/ĸg	Date Analyzeu: 10/12/19/09.37	SUR	ROGATE R	RECOVERY	STUDY					
	BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Bromofluoral	-Bromofluorobenzene			0.100	89	68-120					
а,a,a-Trifluorot			0.0886								
a,a,a-1111100100	ondelle		3.89	4.00	97	71-121					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Roy Batty

Work Ord Lab Batch #:	ers: 63951: 3104132	5, Sample: 639515-020 / SMP	Batch	Project ID n: 1 Matrix					
Units:	mg/kg	Date Analyzed: 10/12/19 10:01	SU.	RROGATE R	ECOVERY S	STUDY			
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
4-Bromofluoro	obenzene		0.0754	0.100	75	68-120			
a,a,a-Trifluoro	toluene		3.33	4.00	83	71-121			
Lab Batch #:	3104226	Sample: 639515-016 / SMP	Batch	n: 1 Matrix	: Soil				
Units:	mg/kg	Date Analyzed: 10/14/19 03:20	SU	RROGATE R	ECOVERYS	STUDY			
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1.011		Analytes				50.105			
1-Chlorooctan	e		72.4	99.9	72	70-135			
o-Terphenyl	2104226	C 1 (20515 017 / CMD	35.4	50.0	71	70-135			
Lab Batch #:		Sample: 639515-017 / SMP	Batch		-				
Units:	mg/kg	Date Analyzed: 10/14/19 03:41	SU	RROGATE R	ECOVERYS	RY STUDY			
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooctan	e		70.6	100	71	70-135			
o-Terphenyl			35.4	50.0	71	70-135			
Lab Batch #:	3104226	Sample: 639515-019 / SMP	Batch	n: 1 Matrix	: Soil				
Units:	mg/kg	Date Analyzed: 10/14/19 04:02	SU	RROGATE R	ECOVERY	STUDY			
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooctan	e		71.3	99.9	71	70-135			
o-Terphenyl			35.9	50.0	72	70-135			
Lab Batch #:	3104226	Sample: 639515-020 / SMP	Batch	n: 1 Matrix	: Soil				
Units:	mg/kg	Date Analyzed: 10/14/19 04:23	SU	RROGATE R	ECOVERY	STUDY			
	TPH I	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chlorooctan	e		70.8	99.6	71	70-135			
o-Terphenyl			35.6	49.8	71	70-135			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Roy Batty

Work Ore Lab Batch #	lers : 63951 : 3104204	5, Sample: 7687940-1-BLK / I	BLK Batc	Project ID h: 1 Matrix			
Units:	mg/kg	Date Analyzed: 10/11/19 12:16	SU	RROGATE R	ECOVERY	STUDY	
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chloroocta	ne		108	100	108	70-135	
o-Terphenyl			59.0	50.0	118	70-135	
Lab Batch #	: 3104132	Sample: 7687946-1-BLK / I	BLK Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 10/12/19 01:17	SU	RROGATE R	ECOVERY	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluo		Anary its	0.0827	0.100	83	68-120	
a.a.a-Trifluor			1.81	2.00	91	71-121	
Lab Batch #		Sample: 7688030-1-BLK / I				/1-121	
		-					
Units:	mg/kg	Date Analyzed: 10/13/19 21:46	SU	RROGATE R	ECOVERY	STUDY	
	TPH F	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	[-]	[-]	[D]	,	
1-Chloroocta	ne		72.5	100	73	70-135	
o-Terphenyl			40.9	50.0	82	70-135	
Lab Batch #	: 3104204	Sample: 7687940-1-BKS / H	BKS Bate	h: 1 Matrix	: Solid		
Units:	mg/kg	Date Analyzed: 10/11/19 12:37	SU	RROGATE R	ECOVERY	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chloroocta			124	100	124	70-135	
o-Terphenyl			55.9	50.0	112	70-135	
Lab Batch #	: 3104132	Sample: 7687946-1-BKS / I					
Units:	mg/kg	Date Analyzed: 10/11/19 23:40		RROGATE R		STUDY	
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4.D. C		Analytes	0.057	0.100			
4-Bromofluo			0.0776	0.100	78	68-120	
a,a,a-Trifluor	otoluene		1.68	2.00	84	71-121	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Roy Batty

Work Or Lab Batch #	ders : 63951: #: 3104226	5, Sample: 7688030-1-BKS / E	KS Bate	Project ID h: 1 Matrix					
Units:	mg/kg	Date Analyzed: 10/13/19 22:07	SU	RROGATE R	ECOVERY S	STUDY			
	TPH F	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chloroocta	ane		80.8	100	81	70-135			
o-Terphenyl			39.3	50.0	79	70-135			
Lab Batch #	#: 3104204	Sample: 7687940-1-BSD / E	SD Bate	h: 1 Matrix	: Solid				
Units:	mg/kg	Date Analyzed: 10/11/19 12:57	SU	RROGATE R	ECOVERY S	STUDY			
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chloroocta		;	113	100	113	70-135			
o-Terphenyl			48.6	50.0	97	70-135			
Lab Batch	#: 3104132	Sample: 7687946-1-BSD / E				,0155			
Units:	mg/kg	Date Analyzed: 10/12/19 00:04			RECOVERY STUDY				
	BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes	[A]	[10]	[D]	701			
4-Bromofluc	orobenzene		0.0793	0.100	79	68-120			
a,a,a-Trifluo	rotoluene		1.68	2.00	84	71-121			
Lab Batch #	#: 3104226	Sample: 7688030-1-BSD / E	SD Bate	h: 1 Matrix	: Solid				
Units:	mg/kg	Date Analyzed: 10/13/19 22:27	SU	RROGATE R	ECOVERY S	STUDY			
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chloroocta	ane		90.3	100	90	70-135			
o-Terphenyl			45.5	50.0	91	70-135			
Lab Batch #	#: 3104204	Sample: 639399-001 S / MS	Batc	h: 1 Matrix	: Soil				
Units:	mg/kg	Date Analyzed: 10/11/19 13:39	SU	RROGATE R	ECOVERY S	STUDY			
		By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1-Chloroocta	ane		106	99.9	106	70-135			
o-Terphenyl			44.2	50.0	88	70-135			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Roy Batty

	ders : 63951: #: 3104132	5, Sample: 639685-001 S / MS	Batch:	Project ID 1 Matrix			
Units:	mg/kg	Date Analyzed: 10/12/19 02:04	SUR	ROGATE R	RECOVERY	STUDY	
		X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
4-Bromoflu	orobenzene		0.0788	0.100	79	68-120	
a,a,a-Trifluc			1.83	2.00	92	71-121	
Lab Batch	#: 3104226	Sample: 639592-001 S / MS	B Batch:	1 Matrix	c: Soil		
Units:	mg/kg	Date Analyzed: 10/13/19 23:09	SUR	ROGATE R	RECOVERYS	STUDY	
		By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooct		Anaryus	02.6	00.0		70.125	
o-Terphenyl			92.6	99.9 50.0	93	70-135	
	#: 3104204	Sample: 639399-001 SD / N	44.1 ASD Batch:	50.0	88 	70-135	
		L					
Units:	mg/kg	Date Analyzed: 10/11/19 14:00	SUR	ROGATE R	RECOVERY	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1-Chlorooct	ane		121	99.8	121	70-135	
o-Terpheny	l		51.5	49.9	103	70-135	
Lab Batch	#: 3104132	Sample: 639685-001 SD / N	ASD Batch:	1 Matrix	: Soil		
Units:	mg/kg	Date Analyzed: 10/12/19 02:29	SUR	ROGATE R	RECOVERYS	STUDY	
		X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromoflu		•	0.0950	0.100	95	68-120	
a,a,a-Trifluo	orotoluene		2.06	2.00	103	71-121	
	#: 3104226	Sample: 639592-001 SD / N					
Units:	mg/kg	Date Analyzed: 10/13/19 23:30	SUR	ROGATE R	RECOVERY	STUDY	
	TPH I	3y SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes	رما	נשן	[D]	/01	
1-Chlorooct	ane		76.4	99.6	77	70-135	
o-Terpheny			35.8	49.8	72	70-135	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

•

Project Name: Roy Batty

Work Order #: 639515								Pro	ject ID:			
Analyst: MIT		D	ate Prepai	red: 10/11/202	19			Date A	nalyzed:	10/11/2019		
Lab Batch ID: 3104132	Sample: 7687946-1	-BKS	Bate	h #: 1					Matrix:	Solid		
Units: mg/kg			BLAN	K /BLANK	SPIKE / 1	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
	EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene		< 0.0200	2.00	1.76	88	2.00	1.74	87	1	55-120	20	
Toluene		< 0.0200	2.00	1.78	89	2.00	1.71	86	4	77-120	20	
Ethylbenzene		< 0.0200	2.00	1.89	95	2.00	1.83	92	3	77-120	20	
m,p-Xylenes		< 0.0400	4.00	3.68	92	4.00	3.57	89	3	78-120	20	
o-Xylene		< 0.0200	2.00	1.86	93	2.00	1.81	91	3	78-120	20	
Analyst: CHE		D	ate Prepai	red: 10/11/202	19	•		Date A	nalyzed:	10/11/2019	•	
Lab Batch ID: 3104138	Sample: 7687992-1	-BKS	Batc	h #: 1					Matrix: 3	Solid		
Units: mg/kg			BLAN	K /BLANK	SPIKE / 2	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	ЭY	
Inorganic Anion Analytes	s by EPA 300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride		<0.858	250	247	99	250	247	99	0	90-110	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

.

BS / BSD Recoveries

Project Name: Roy Batty

Work Order #: 639515							Pro	ject ID:					
Analyst: CHE	D	ate Prepar	ed: 10/11/20)19			Date A	nalyzed:	10/11/2019				
Lab Batch ID: 3104147 Sam	ple: 7687993-1-BKS	Batch	n #: 1					Matrix:	Solid				
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ed: 10/11/2019 ix: Solid OVERY STUDY D Control Limits %R Control 90-110 20 90-110 20 0 90-110 20 0 90-110 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Inorganic Anions by EPA 30 Analytes	0/300.1 Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Limits	Limits	Flag		
Chloride	<5.00	250	247	99	250	246	98	0	90-110	20			
Analyst: ARM	D	ate Prepar	ed: 10/11/20)19			Date A	Analyzed: 10/11/2019					
Lab Batch ID: 3104204 Sam	ple: 7687940-1-BKS	Batch	n #: 1				Matrix: Solid						
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	Idyzed: 10/11/2019Idirix: SolidECOVERY STUDYRPD %Control Limits %RControl Limits %RPD090-11020Idyzed: 10/11/201920Idirix: SolidECOVERY STUDYRPD %Control Limits %RControl Limits %R170-13520470-13520Idyzed: 10/13/2019Itimits ECOVERY STUDYIdirix: SolidECOVERY STUDYRPD %Control Limits %RControl Limits %RRPD %Control Limits %RControl Limits %R				
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R		Limits	Limits	Flag		
Analytes		[B]	[C]	[D]	[E]	Kesuit [F]	[G]						
Gasoline Range Hydrocarbons (GRO)	<15.0	1000	1190	119	1000	1180	118	1	70-135	20			
Diesel Range Organics (DRO)	<50.0	1000	1150	115	1000	1200	120	4	70-135	20			
Analyst: ARM	D	ate Prepar	ed: 10/13/20)19			Date A	nalyzed:	10/13/2019				
Lab Batch ID: 3104226 Sam	ple: 7688030-1-BKS	Batch	n #: 1					Matrix:	Solid				
Units: mg/kg		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY			
TPH By SW8015 Moo Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]		Limits	Limits	Flag		
Gasoline Range Hydrocarbons (GRO)	<50.0	1000	899	90	1000	983	98	9	70-135	20	+		
Diesel Range Organics (DRO)	<15.0	1000	937	94	1000	889	89	5	70-135	20	+		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

.

Work Order # :	639515						Project II):				
Lab Batch ID:	3104132	QC- Sample ID:	639685	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/12/2019	Date Prepared:	10/11/2	2019	An	alyst: N	TIM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]	[-]	[D]	[E]	[-]	[G]			/	
Benzene		<0.0200	2.00	1.79	90	2.00	1.76	88	2	54-120	25	
Toluene		0.00600	2.00	1.78	89	2.00	1.79	89	1	57-120	25	
Ethylbenzene		<0.0200	2.00	1.78	89	2.00	1.91	96	7	58-131	25	
m,p-Xylenes		<0.0400	4.00	3.49	87	4.00	3.72	93	6	62-124	25	
o-Xylene		<0.0200	2.00	1.70	85	2.00	1.80	90	6	62-124	25	
Lab Batch ID:	3104138	QC- Sample ID:	639650	-003 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/11/2019	Date Prepared:	10/11/2	2019	An	alyst: (CHE					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample	611	Spiked Sample	Spiked		Duplicate	Spiked			1	
		Degult	Spike	Result	Sample		Spiked Sample	Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	Result [C]		Spike Added [E]	-	Dup. %R [G]	RPD %			Flag
Chloride	Analytes		Added		Sample %R	Added	Spiked Sample	%R		Limits	Limits	Flag
	Analytes 3104138	[A]	Added [B] 248	[C] 567	Sample % R [D] 94	Added [E]	Spiked Sample Result [F]	% R [G] 94	%	Limits %R	Limits %RPD	Flag
Lab Batch ID:		[A] 335	Added [B] 248 639662	[C] 567 -001 S	Sample %R [D] 94 Ba	Added [E] 248	Spiked Sample Result [F] 567 1 Matrix	% R [G] 94	%	Limits %R	Limits %RPD	Flag
Lab Batch ID: Date Analyzed:	3104138	[A] 335 QC- Sample ID:	Added [B] 248 639662 10/11/2	[C] 567 -001 S 2019	Sample %R [D] 94 Ba An	Added [E] 248 tch #: nalyst: (Spiked Sample Result [F] 567 1 Matrix	% R [G] 94 :: Soil	% 0	Limits %R 90-110	Limits %RPD	Flag
Lab Batch ID: Date Analyzed: Reporting Units:	3104138 10/11/2019	[A] 335 QC- Sample ID: Date Prepared: Parent Sample	Added [B] 248 639662 10/11/2 M Spike	[C] 567 -001 S 2019 IATRIX SPIK Spiked Sample Result	Sample %R [D] 94 Ba An E / MAT Spiked Sample	Added [E] 248 tch #: nalyst: C RIX SPI Spike	Spiked Sample Result [F] 567 1 Matrix CHE KE DUPLICA Duplicate Spiked Sample	%Ř [G] 94 c: Soil TE REC Spiked Dup.	% 0 OVERY RPD	Limits %R 90-110 STUDY Control Limits	Limits %RPD 20 Control Limits	Flag
Lab Batch ID: Date Analyzed: Reporting Units:	3104138 10/11/2019 mg/kg	[A] 335 QC- Sample ID: Date Prepared: Parent	Added [B] 248 639662 10/11/2 M	[C] 567 -001 S 2019 IATRIX SPIKI Spiked Sample	Sample %R [D] 94 Ba An E / MAT Spiked	Added [E] 248 tch #: nalyst: (RIX SPI	Spiked Sample Result [F] 567 1 Matrix CHE KE DUPLICA' Duplicate	%Ř [G] 94 c: Soil TE REC(Spiked	% 0 OVERY	Limits %R 90-110 STUDY Control	Limits %RPD 20 Control	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Work Order # :	639515						Project II):				
Lab Batch ID:	3104147	QC- Sample ID:	639515	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/11/2019	Date Prepared:	10/11/2	019	Ar	alyst: (CHE					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		18.7	250	270	101	250	274	102	1	90-110	20	
Lab Batch ID:	3104147	QC- Sample ID:	639515	-011 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/11/2019	Date Prepared:	10/11/2	019	Ar	alyst: (CHE					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorga	nic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Chloride		635	252	859	89	252	857	88	0	90-110	20	Х
Lab Batch ID:	3104204	QC- Sample ID:	639399	-001 S	Ba	tch #:	1 Matrix	: Soil				
Date Analyzed:	10/11/2019	Date Prepared:	10/11/2	019	Ar	alyst: A	ARM					
Reporting Units:	mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range	e Hydrocarbons (GRO)	<15.0	999	1190	119	998	1180	118	1	70-135	20	
Diesel Range C	Organics (DRO)	28.8	999	1160	113	998	1140	111	2	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Roy Batty

W	ork Order # :	639515						Project II	D:				
La	b Batch ID:	3104226	C- Sample ID:	639592	-001 S	Ba	tch #:	1 Matri	x: Soil				
Da	te Analyzed:	10/13/2019	Date Prepared:	10/13/2	019	An	alyst: A	ARM					
Re	eporting Units:	mg/kg		Μ	ATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY S	STUDY		
	Т	TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
		Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
	Gasoline Range I	Hydrocarbons (GRO)	16.9	999	1010	99	996	853	84	17	70-135	20	
	Diesel Range Org	ganics (DRO)	<15.0	999	1000	100	996	878	88	13	70-135	20	

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery $[G] = 100^{*}(F-A)/E$

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Boy Barty Boy Barty Boy Barty Boy Barty Tend Taxon a CICIC or S Nano Sample Found Tend for the Carmona Conner Moelering Laa CO, NM Tend for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Manco Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Indeges samples if Coon RMG for the Carmona Conner Moelering Inde	Internal of custody Record Internal Tech, Inc. Internal Tech, Inc. <th>ceived by Θ</th> <th>CD: 720</th> <th>Selinquished by:</th> <th>0</th> <th>Relinquished by:</th> <th>25</th> <th>AM</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>(LAB USE)</th> <th>LAB #</th> <th></th> <th>Comments:</th> <th>Receiving Laboratory:</th> <th>Invoice to:</th> <th>Project Location: (county, state)</th> <th>Project Name:</th> <th>Client Name:</th> <th>Pag</th> <th>analysis Re</th>	ceived by Θ	CD: 720	Selinquished by:	0	Relinquished by:	25	AM									(LAB USE)	LAB #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	Pag	analysis Re	
Image: Sample Temperature I	ANALYSIS REDUEST ONLYSIC OF Specify Method No. 15:44 0 1 1 2 2 FILTERED (Y/N) 14 2 7 FILTERED (Y/N) 15 FILTERED (Y/N) 15 FILTERED (Y/N) 16 FILTERED (Y/N) 17 F		Date:	Date:	- Time	Morent 10/9/19 15 4	AH #2 (4-4.5')	AH #2 (3-3.5')	AH #2 (2-2 5')	AH #2 (1-1.5')	AH #2 (0-1')	AH #1 (3 5-4')	AH #1 (3-3.5')	AH #1 (2-2.5')	AH #1 (1-1.5')	AH #1 (0-1')		SAMPLE IDENTIFICATION		Run deeper sample if GRO + DRO exceeds 1000 mg/Kg. exceeds 50 mg/Kg.		COG - Ike Taverez		Roy Batty	COG	;h,	equest of Chain of Custody Record	
Image: Sample Temperature I	ANALYSIS REDUEST ONLYSIC OF Specify Method No. 15:44 0 1 1 2 2 FILTERED (Y/N) 14 2 7 FILTERED (Y/N) 15 FILTERED (Y/N) 15 FILTERED (Y/N) 16 FILTERED (Y/N) 17 F	ORIGINAL COF	Received by:		Parriely of hv:	Received by:	10/9/2019	10/9/2019	10/9/2019	10/9/2019	10/9/2019	10/9/2019	10/9/2019	10/9/2019	10/9/2019	10/9/2019		YEAR: 2019	SAMPLING	Run deeper samples it		Complex Cimpture	Project #:	2	Site Manager:			
Image: Sample Temperature I	ANALYSIS REDUEST ONLYSIC OF Specify Method No. 15:44 0 4 1 2 2 FILTERED (Y/N) 14 2 2 FILTERED (Y/N) 15 7 TROUM 14 2 2 FILTERED (Y/N) 15 7 TROUM 15 7 7 7 7 7 7 7	Ŷ	Date		Date	J ID Date	-	×	×	×	X	X	×	×	×	×	SOIL	ER	1	benzene exceeds	Conner M		Pending		Mike Carmor	901W Wall Str Midland, Tei Tei (432) 6 Fax (432) 6		
Circle HAND DELIVERED Sample Temperature X X X X X X X X BTEX 8021B BTEX 8260B H I I TPH TX1005 (Ext to C35) Image: Construction of the second of the	ANALYSIS RECUENT ANALYSIS RECUENT (Circle or Specify Method No.) (Circle or Specify No.) (Circle or Specify No.) (Circle or Specify No.) (Circle or Specify Method No.) (Circle or Specify No.) (Circl				1	Time:		×	×	X	×	×	×	×	×	×	ICE None)	_	10 mg/Kg or total	loehring				าล	reet, Ste 100 xas 79705 382-4559 582-3946		
HAND DELIVERE LAB X X X TPH TX1005 (Ext to C35) HAND DELIVERE ONLY X X X X X X (GRO - DRO - ORO - MRO) PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg Crece or S ANAL REMA I I TCLP Volatiles TCLP Semi Volatiles F	AMALYSIS RECUEST Circle or Specify Method No.) Circle or Specify Method No.) PAH 8270C Circle or Specify Method No.) PAH 8270C ONLY Total Metals Ag As Ba Cd Cr Pb Se Hg Circle or Specify Method No.) PAH 8270C ONLY Total Metals Ag As Ba Cd Cr Pb Se Hg Circle or Specify Method No. PAH 8270C ONLY Remarks: TCLP Metals Ag As Ba Cd Cr Pb Se Hg Circle or Specify Method No. Remarks: TCLP Semi Volatiles PEMPKS: Remarks: Circle of C/MS Semi. Vol. 8260B / 624 Circle or Specify Method No. Remarks: Remarks: PEDEX UPS Tadoing #: PCB's 8082 / 608 NORM NORM NORM NORM NORM NORM Normal and third to the original and the original an					e	1 N	Z	1 N			1 N	1 Z	1 Z			FILTE	RED	(Y/N)									
TCLP Semi Volatiles	FEDEX UPS Tracking #: Tracking #: <th td="" trac<=""><td>(Circle) HAND DELIV</td><td>4.4</td><td>Sample Temperature</td><td></td><td>LAB USE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TPH TPH PAH Total</td><td>TX100 8015M 8270C Metals</td><td>95 (Ext 1 (GR) 6 Ag As</td><td>to C35) O - DRO s Ba Cd C</td><td>- ORO</td><td>e Hg</td><td>)</td><td></td><td>(Circl</td><td></td><td></td></th>	<td>(Circle) HAND DELIV</td> <td>4.4</td> <td>Sample Temperature</td> <td></td> <td>LAB USE</td> <td></td> <td>TPH TPH PAH Total</td> <td>TX100 8015M 8270C Metals</td> <td>95 (Ext 1 (GR) 6 Ag As</td> <td>to C35) O - DRO s Ba Cd C</td> <td>- ORO</td> <td>e Hg</td> <td>)</td> <td></td> <td>(Circl</td> <td></td> <td></td>	(Circle) HAND DELIV	4.4	Sample Temperature		LAB USE											TPH TPH PAH Total	TX100 8015M 8270C Metals	95 (Ext 1 (GR) 6 Ag As	to C35) O - DRO s Ba Cd C	- ORO	e Hg)		(Circl		
PS Tracking #:	Image: state of the state o	FEDEX		Bush Cr	X RUSH:												TCLF TCLF RCI GC/N	Volati Semi IS Vol.	iles Volatil 8260	les 0B / 624					ANALYSIS or Speci			
	PP 48 Chionide Suitate FDS PP 48 General Water Chemistry (see attached list) 9 PP 48 Anion/Cation Balance		Report Limits or T	arges Authorized		INDARD	X	×	×	×	×	×	×	×	~ ×	× ×	PCB NOR PLM Chlo	s 8082 M (Asbea ride	2 / 608 stos)	3					Method		Page	

.

1.

$\begin{array}{c c} \label{eq:rescaled} \begin{tabular}{ c c c c } \hline \label{eq:rescaled} \end{tabular} \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tetra Tech, Inc. and transformer Mile Carmona Mile Carmona Mile Carmona Conder Regenere Conder Regenere <th colspa<="" th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th>Markets and the second second</th></th>	<th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th> <th>Markets and the second second</th>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Markets and the second
Bortw Wall Street, Ste 10 Midda, Tesas, 2505 Tai (d32), 2683-2505 Tai (d32), 2683-2505 Tai (d32), 2683-2505 Tai (d32), 2683-2505 Tai (d32), 2683-2505 Tai (d32), 2683-2505 Tai (d32), 2683-2506 Tai (d32), 268-2506 Tai (d32), 26	• • • • •	ie: ie: <td>iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</td> <td>i i</td> <td>ARALYSIS REQUEST (Circle or Specify Method No.) BTEX</td>	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	i i	ARALYSIS REQUEST (Circle or Specify Method No.) BTEX	
Sortw Wall Street, Ste 100 Mildland, Texas 79705 Fax (432) 682-3946 Pending Conner Moehring Conner Moehring MATRIX PRESERVATIVE WATEL MATRIX PRESERVATIVE METHOD WATEL 001 H ICL WASO H K K X K X K X K X K X K X K X K X K Date: Time: Date: Time:	• • • • •	ie: ie: <td>iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</td> <td>iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</td> <td>ARALYSIS REGUEST (Circle or Specify Method No.) BTEX 8021B BTEX 8260B TL TERED (Y/N) BTEX 8260B TL TERED (Y/N) TL TERED (Y/N)</td>	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ARALYSIS REGUEST (Circle or Specify Method No.) BTEX 8021B BTEX 8260B TL TERED (Y/N) BTEX 8260B TL TERED (Y/N) TL TERED (Y/N)	
Moehring Moehring Moehring Moehring Moehring Moehring Moehring MeErHop METHOp METHOp METHOp METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP METHOP	• • • • •	ie: ie: <td>i i</td> <td>i i</td> <td>Mone O O AMALYSIS REGUEST Circle or Specify Method No. O O O O O O O</td>	i i	i i	Mone O O AMALYSIS REGUEST Circle or Specify Method No. O O O O O O O	
		Image: Second	Somple Temperature X<	Somple Temperature X<	Sample Temperature X	

v	CD: #2	elinquished by:	Belinquished by:	.23 A	1					DD #		Comments:	Receiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		Analysis Hec
	Date: Time:	Date: Time:	a morary 10/4/14 1546				Ап #0 (1-1.3)			SAMPLE IDENTIFICATION		Run deeper sample if GRO + DRO exceeds 1000 mg/Kg. Run deeper samples if benzene exceeds 10 mg/Kg or total BTEX exceeds 50 mg/Kg.	iory: Xenco	COG - Ike Taverez	Lea Co, NM	Roy Batty	COG	Tetra Tech, Inc.	quest of Chain of Custody Hecord
ORIGINAL COPY	Received by:	Pleceived by:	Received by:				I N J N J	10/0/2010	DATE	YEAR: 2019	SAMPLING	un deeper sample	Sampler Signature		Project #:		Site Manager:		
OPY			I X X X				>	_	TIME WATEF SOIL	1	IG MATRIX	es if benzene e			Pe		Mike (99	
	Date: Time:	Date: Time:	Date: Time: 10/9/19/15				,	×	HCL HNO ₃ ICE None		RIX PRESERVATIVE METHOD	xceeds 10 mg/Kg o	Conner Moehring		Pending		Mike Carmona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
			5:46					1 Z	# CONT	ED (Y	:RS (/N)								
(Circle) HAND DELIVERED	4.4	Sample Temperature	LAB USE ONLY						BTEX 80 TPH TX TPH 801 PAH 827 Total Me TCLP Me	1005 15M (70C tals A	(Ext to GRO	- DRO - Ba Cd Cr	ORO - Pb Se	Hg			(Circle		
TED FEDEX UPS	Grand Rush Charg	X RUSH: Same Day	STANDARD						TCLP Vo TCLP Se RCI GC/MS V GC/MS S PCB's 8	omi Vo Vol. 8 Semi.	olatile: 3260B Vol.	624	25				ANALYSIS RE		
Tracking #:	Hush Charges Authonzed Special Report Limits or TRRP Report	24 hr							NORM PLM (As Chloride Chloride	besto S	os) ulfate	TDS emistry (see at	ached	list)		REQUEST		- ugo
	Report	48 hr 72 hr							Anion/C										

Page 24 of 31

Final 1.000

•

IOS Number : **49791**

Date/Time	: 10.09.2019	Created by:	Elizabeth	Mcclellan	Please send report to:	Jessica Kram	ner		
Lab# From	Carlsbad	Delivery Pri	ority:		Address:	1089 N Cana	l Street		
Lab# To:	Lubbock	Air Bill No.	:		E-Mail:	jessica.krame	er@xen	co.com	
Sample Id	Matrix Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
639515-001	S AH #1 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-002	S AH #1 (1-1.5')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-006	S AH #2 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-007	S AH #2 (1-1.5')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-014	S AH #3 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-015	S AH #4 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-016	S AH #5 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-017	S AH #6 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-019	S AH #7 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	
639515-020	S AH #8 (0-1')	10.09.2019 00:00	SW8021B	BTEX by EPA 8021B	10.11.2019	10.23.2019	JKR	BR4FBZ BZ BZME EBZ	

Inter Office Shipment or Sample Comments:

Relinquished By:

.

Elizabeth McClellan

Date Relinquished: 10.09.2019

Received By:	
Date Received:	
Cooler Temperature:	

Page 1 of 1

IOS Number 49840

Date/Time: 10/10/19 10:19

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Lab# From: Carlsbad

Lab# To: Lubbock

Air Bill No.: FEDEX

Delivery Priority:

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
639515-001	S	AH #1 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-002	S	AH #1 (1-1.5')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-006	S	AH #2 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-007	S	AH #2 (1-1.5')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-014	S	AH #3 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-015	S	AH #4 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-016	S	AH #5 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-017	S	AH #6 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-019	S	AH #7 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	
639515-020	S	AH #8 (0-1')	10/09/19 00:00	SW8021B	BTEX by EPA 8021B	10/11/19	10/23/19	JKR	BR4FBZ BZ BZME EBZ X	

Inter Office Shipment or Sample Comments:

Relinquished By:

Elizabeth McClellan

Date Relinquished: 10/10/2019

Received By:	Re
	Ashley Derstine
D D 1	10/11/2010 00 00

Cooler Temperature: 1.9

Date Received: 10/11/2019 09:30

•

Page 1 of 2

IOS Number 49841

Date/Time: 10/10/19 10:19

Lab# From: Carlsbad

•

Lab# To: Midland

Created by: Elizabeth Mcclellan

Delivery Priority:

Air Bill No.:

Please send report to: Jessica Kramer

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
639515-001	S	AH #1 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35	
639515-001	S	AH #1 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-002	S	AH #1 (1-1.5')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35	
639515-002	S	AH #1 (1-1.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-003	S	AH #1 (2-2.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-004	S	AH #1 (3-3.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-005	S	AH #1 (3.5-4')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-006	S	AH #2 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-006	S	AH #2 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35	
639515-007	S	AH #2 (1-1.5')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35	
639515-007	S	AH #2 (1-1.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-008	S	AH #2 (2-2.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-009	S	AH #2 (3-3.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-010	S	AH #2 (4-4.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-011	S	AH #2 (5-5.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-012	S	AH #2 (6-6.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-013	S	AH #2 (7-7.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-014	S	AH #3 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-014	S	AH #3 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35]	
639515-015	S	AH #4 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-015	S	AH #4 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35]	
639515-016	S	AH #5 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35]	
639515-016	S	AH #5 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-017	S	AH #6 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35]	
639515-017	S	AH #6 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	

Page 2 of 2

IOS Number 49841

Date/Time:	10/10/19 10:19
Lab# From:	Carlsbad

Lab# To: Midland

Delivery Priority: Air Bill No.:

Created by: Elizabeth Mcclellan

Please send report to: Jessica Kramer

Address: 1089 N Canal Street

E-Mail: jessica.kramer@xenco.com

Sample Id	Matrix	Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	РМ	Analytes	Sign
639515-018	S	AH #6 (1-1.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-019	S	AH #7 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-019	S	AH #7 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35	
639515-020	S	AH #8 (0-1')	10/09/19 00:00	SW8015MOD_NM	TPH By SW8015 Mod	10/11/19	10/23/19	JKR	PHCC10C28 PHCC28C35	
639515-020	S	AH #8 (0-1')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	
639515-021	S	AH #8 (1-1.5')	10/09/19 00:00	E300	Inorganic Anions by EPA 300/300.1	10/11/19	11/06/19	JKR	CL	

Inter Office Shipment or Sample Comments:

Relinquished By:

Elizabeth McClellan

Date Relinquished: 10/10/2019

Received By:

Date Received:

Cooler Temperature:

Received by OCD: 4/28/2020 10:50:25 AM

ABORATORIES

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Lubbock IOS #: 49840

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used :

Sent By:	Elizabeth McClellan	Date Sent:	10/10/2019 10:19 AM
Received By:	Ashley Derstine	Date Received:	10/11/2019 09:30 AM

Sample Receipt Checklist

Comments

#1 *Temperature of cooler(s)?	1.9
#2 *Shipping container in good condition?	Yes
#3 *Samples received with appropriate temperature?	Yes
#4 *Custody Seals intact on shipping container/ cooler?	Yes
#5 *Custody Seals Signed and dated for Containers/coolers	Yes
#6 *IOS present?	Yes
#7 Any missing/extra samples?	No
#8 IOS agrees with sample label(s)/matrix?	Yes
#9 Sample matrix/ properties agree with IOS?	Yes
#10 Samples in proper container/ bottle?	Yes
#11 Samples properly preserved?	Yes
#12 Sample container(s) intact?	Yes
#13 Sufficient sample amount for indicated test(s)?	Yes
#14 All samples received within hold time?	Yes

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

NonConformance:

Corrective Action Taken:

Contact:

Nonconformance Documentation

Contacted by :

Date:

Checklist reviewed by:

6112	
1000	
XXXXX	

Date: 10/11/2019

Ashley Derstine

Received by OCD: 4/28/2020 10:50:25 AM

•

XENCO Laboratories

Inter Office Report- Sample Receipt Checklist

Sent To: Midl IOS #: 49841	and		Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : R8				
Sent By: Received By:	Elizabeth McClellan	Date Sent: Date Received:	10/10/2019 10:19 AM				
		Sample Rec	eipt Checklist	Comments			
#2 *Shipping #3 *Samples #4 *Custody #5 *Custody #6 *IOS pres #7 Any miss #8 IOS agree #9 Sample r #10 Sample #11 Sample #12 Sample #13 Sufficier #14 All samp	ing/extra samples? es with sample label(s)/mat natrix/ properties agree with s in proper container/ bottle s properly preserved? container(s) intact? nt sample amount for indica bles received within hold tin npleted for after-hours de	temperature? ontainer/ cooler? r Containers/coole trix? n IOS? ? ated test(s)? ne?	ns	or			
Corrective Act	ion Taken:						
		Nonconfor	mance Documentation				
Contact:		Contacted by :		Date:			
	Checklist reviewed by:		Date:				

.

Received by OCD: 4/28/2020 10:50:25 AM

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Tetra Tech- Midland Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 10/09/2019 03:46:00 PM Temperature Measuring device used : T-NM-007 Work Order #: 639515 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? 4.4 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? Yes #5 Custody Seals intact on sample bottles? Yes #6*Custody Seals Signed and dated? Yes #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? Yes BTEX samples subbed to Lubbock. TPH and CL subbed to Midland. #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Elizabeth McClellan

Date: 10/09/2019

Checklist reviewed by: Jession Vramer

Jessica Kramer

Date: 10/09/2019

December 20, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: ROY BATTY FEDERAL COM 3H

Enclosed are the results of analyses for samples received by the laboratory on 12/19/19 16:50.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #1 (4' BEB) (H904253-01)

BTEX 8021B	mg,	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1760	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	105	% 41-142							
Surrogate: 1-Chlorooctadecane	112 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #2 (4' BEB) (H904253-02)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	95.2	% 41-142							
Surrogate: 1-Chlorooctadecane	101 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: EAST 1 SIDEWALL (H904253-03)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	107 9	% 41-142							
Surrogate: 1-Chlorooctadecane	113 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: WEST 1 SIDEWALL (H904253-04)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	107 9	% 41-142							
Surrogate: 1-Chlorooctadecane	112 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #3 (4' BEB) (H904253-05)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	107 9	% 41-142							
Surrogate: 1-Chlorooctadecane	113 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #4 (4' BEB) (H904253-06)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	108	% 41-142							
Surrogate: 1-Chlorooctadecane	114 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #5 (4' BEB) (H904253-07)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	73.3-12	9						
Chloride, SM4500CI-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	105 9	% 41-142							
Surrogate: 1-Chlorooctadecane	110 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 2 SIDEWALL (H904253-08)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	107	% 41-142							
Surrogate: 1-Chlorooctadecane	113 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/19/2019	Sampling Date:	12/19/2019
Reported:	12/20/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Jodi Henson
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 3 SIDEWALL (H904253-09)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/20/2019	ND	2.02	101	2.00	4.82	
Toluene*	<0.050	0.050	12/20/2019	ND	2.00	100	2.00	6.43	
Ethylbenzene*	<0.050	0.050	12/20/2019	ND	2.07	104	2.00	2.60	
Total Xylenes*	<0.150	0.150	12/20/2019	ND	6.12	102	6.00	2.52	
Total BTEX	<0.300	0.300	12/20/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/20/2019	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/20/2019	ND	215	108	200	1.64	
DRO >C10-C28*	<10.0	10.0	12/20/2019	ND	216	108	200	0.0223	
EXT DRO >C28-C36	<10.0	10.0	12/20/2019	ND					
Surrogate: 1-Chlorooctane	108	% 41-142							
Surrogate: 1-Chlorooctadecane	114 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by	OCD: 4 /	28/2020	10:50:25	AM
-------------	-----------------	---------	----------	----

t of Chain of Custody Record Tetra Tech, Inc. Concho Site Roy Batty Federal Com 3H (8.29.19) Site Lea Co, NM COG - Ike Tavrez Cordinal From the test of the tavrez Site Cardinal Sit		CD: 4/2 Relinquished by:	6/20/ Relinquished by:		Relinquished by:		19	L	0	S.	t	S	N	-		(LAB USE)	LAB #	HADArsz		Comments:		Deceiving Laborato	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:		-	e 73 o Analysis Requ
Normal Series and Tiget (2009) Series of Tiget (2009) Series o		Date:		ustin tor's 12-1979 1	Date: Time:	3 Sicewa	Z Sideman	Hoic#2(4)3	1 + 1 + + + + + + + + + + + + + + + + +	Hole #3 (4' BE	1 side 11	East I side wall	tom Hole #2 (them Hole #1 (4. DEL	٢		SAMPLE IDENTIFICATION			λ		- COG - IKe			Roy Batty Federal Com 3H (8.29.19)	Concho		ch,	lest of Chain of Custody Record
Page Nike Carmona Mike Carmona Mike Carmona Conner Moehning / Justin Flores Conne Moehning / Justin Flores	ORIGINAL COPY	Received by:	C	0	Ned by:									1	0		TEAN: 2019	VEAD- 2010	SAMPLING					Project #:		Site Manager:	Site Manager:		
ANALYSIS REQUEST INVOLVE OV INVOLVE INVOLVENCE OF SPECIAL OF DESCRIPTION OF DES				YY 1												SOIL HCL HNO		1				Conner Mo		212C-MD-01962		Mike Carmona	Fax (432) 682-3946	901W Wall Street, Ste 10 Midland,Texas 79705 Tel (432) 682-4559	
Circle or Specify Method No. AND DELVERED FEDEX UPS Anion/Cation Balance		Time:			19							1 1 1	-	-		None # CO	NTAI	INER	S N)	-		ng / Justin Flores		10				0	
Tracking #:	(Circle) HAND DELIVE	#97	4,70	Sample Temperature	LAB USE						\sim	-				TPH TPH PAH Total TCLP	TX10 8015 8270 Meta	005 (I 6M (C 0C als Ag als A	Ext t GRC	o C35)) - DRO Ba Cd	- OF Cr Pt	o Se	Hg)		(Circle c	A	2 2	
And Berlin Antion/Cation Balance		Special Report L	Rush Charges A	X RUSH: Same D												TCLF RCI GC/M GC/M PCB ⁴ NOR	P Sen AS Vo AS So s 80 M	ni Vo ol. 82 emi. 1 82 / 6	260E /ol. 608	3 / 624	/625					r Specify Meth	VALYSIS REQUES		σ
	acking #:	Limits or TRRP Report	uthorized	24 hr 48 hr	Y							X	×	×	×	Chlo Chlo Gen	ride oride eral '	Su Wate	lfate	hemistr		e att	ache	ed list)		2	Ĩ		

December 23, 2019

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: ROY BATTY FEDERAL COM 3H

Enclosed are the results of analyses for samples received by the laboratory on 12/20/19 15:20.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #6 (4' BEB) (H904264-01)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1120	16.0	12/23/2019	ND	400	100	400	3.92	QM-07
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	115 9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	124	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #7 (4' BEB) (H904264-02)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	109 9	% 41-142							
Surrogate: 1-Chlorooctadecane	116 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #8 (4' BEB) (H904264-03)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	73.3-12	9						
Chloride, SM4500CI-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	6000	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	120	% 41-142							
Surrogate: 1-Chlorooctadecane	128	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #9 (4' BEB) (H904264-04)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	73.3-12	9						
Chloride, SM4500CI-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5680	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	119 9	% 41-142							
Surrogate: 1-Chlorooctadecane	130	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 1 SIDEWALL (H904264-05)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/23/2019 ND		400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	120 9	% 41-142							
Surrogate: 1-Chlorooctadecane	128 % 37.6-147		7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 4 SIDEWALL (H904264-06)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/23/2019	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	118 9	% 41-142							
Surrogate: 1-Chlorooctadecane	127 % 37.6-147		7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: WEST 2 SIDEWALL (H904264-07)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	12/23/2019 ND		400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	118 9	% 41-142							
Surrogate: 1-Chlorooctadecane	125 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/20/2019	Sampling Date:	12/20/2019
Reported:	12/23/2019	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: EAST 2 SIDEWALL (H904264-08)

BTEX 8021B	mg/	kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.02	
Toluene*	<0.050	0.050	12/21/2019	ND	1.92	96.0	2.00	9.46	
Ethylbenzene*	<0.050	0.050	12/21/2019	ND	1.91	95.6	2.00	9.93	
Total Xylenes*	<0.150	0.150	12/21/2019	ND	5.67	94.5	6.00	9.73	
Total BTEX	<0.300	0.300	12/21/2019	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	12/23/2019 ND		400	100	400	3.92	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/21/2019	ND	225	112	200	1.87	
DRO >C10-C28*	<10.0	10.0	12/21/2019	ND	219	109	200	1.16	
EXT DRO >C28-C36	<10.0	10.0	12/21/2019	ND					
Surrogate: 1-Chlorooctane	96.7	% 41-142							
Surrogate: 1-Chlorooctadecane	102 % 37.6-147		7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 84 of 114

Page 11 of 11

Received by OCD: 4/28/2020 10:50:25 AM

		Relinquished by:	Helinquished by:	(brun	Relinquished by:		X	-	6.	S	4 8	CU câ		(75)	(LAB USE)	LAB #	Hanupid	Comments:	necelvilig Laboratory:		(county, state)	Project Name:	Client Name:	F	Analysis Req
		Date: Time:	Date: Time:	12/25/29	A		EAST 2 Sudemanil	5 2	NORTH WAN 4 Sidewall	South 1 Sidewall	Bothom Holk#9 (4:8EB)	Sotton Hok#8 (4' 8EB)	3. Hom How #7 (4' BEB)	Bottom Hole # 6 (4' BEB)		SAMPLE IDENTIFICATION			ury: Cardinal	COG - Ike Tavrez	Lea Co, NM	Roy Batty Federal Com 3H (8.29.19)	Cancho	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	incontrol by.	Received hv:	Received by:	(ALUA)	Received/by:		4							12/20/4	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:	2	
үчс	C.	2	D	ta Malat	111 Da		4							×	TIME WATEF SOIL	3	G MATRIX				212C-N		Mike Carmona	901W Wa Midian Tel (4 Fax (4	
		20	Date: Time:	Sul 12-20-19	Date: Time:		Y							×	HCL HNO ₃ ICE None		PRESERVATIVE METHOD		Conner Moehring / Justin		212C-MD-01962		nona	901W Wall Street, Ste 100 Midland, Texas 79705 Tel (432) 682-4550 Fax (432) 682-3946	
6			S	19 15:20	┟		VVV						-		# CONT. FILTERE BTEX 80	ED (Y	7N)	Y 00000	Flores						
(Circle) HAND DELIVERED	4.6c	A sporter D	Sample Temperature				~							×	TPH TX1 TPH 801 PAH 827 Total Met TCLP Me	5M (70C als A tals /	(Ext to GRO - g As Ba Ag As B	C35) DRO - C a Cd Cr F	PRO - I Pb Se I	Чg					
FEDEX UPS	Special Report	Rush Charges Authorized	X RUSH: Same Day	STANDARD	REMARKS:										TCLP Vol TCLP Sel RCI GC/MS V GC/MS S PCB's 80	mi Vo ol. 8 emi.	latiles 260B / Vol. 82						ALYSIS RE		
Tracking #:	Special Report Limits or TRRP Report	Authorized	Day 24 th 48 hr	(RD			¢						-	×	NORM PLM (Asb Chloride Chloride General N Anion/Ca	Su Vate	lfate r Chen		e atta	ched lis	st)				Page
	ort		72 hr			_									Hold										of 1

January 03, 2020

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: ROY BATTY FEDERAL COM 3H

Enclosed are the results of analyses for samples received by the laboratory on 01/02/20 16:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 3 SIDEWALL (H000010-01)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	01/03/2020 ND		416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	102 9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	114 % 37.6-147		7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 4 SIDEWALL (H000010-02)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	01/03/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	105 9	% 41-142	2						
Surrogate: 1-Chlorooctadecane	118 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #10 (4'-4.5' BEB) (H000010-03)

BTEX 8021B	mg	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	104	% 41-142							
Surrogate: 1-Chlorooctadecane	119	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 5 SIDEWALL (H000010-04)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	108	% 41-142	,						
Surrogate: 1-Chlorooctadecane	121	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 6 SIDEWALL (H000010-05)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	112 9	% 41-142							
Surrogate: 1-Chlorooctadecane	125 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 5 SIDEWALL (H000010-06)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	104 9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	119 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 6 SIDEWALL (H000010-07)

BTEX 8021B	mg,	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	104	% 41-142	,						
Surrogate: 1-Chlorooctadecane	117 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: EAST 3 SIDEWALL (H000010-08)

BTEX 8021B	mg/	′kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	73.3-12	9						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	105 9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	120 9	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/02/2020	Sampling Date:	01/02/2020
Reported:	01/03/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: WEST 3 SIDEWALL (H000010-09)

BTEX 8021B	mg/	/kg	Analyze	d By: ms					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/03/2020	ND	1.94	97.0	2.00	2.82	
Toluene*	<0.050	0.050	01/03/2020	ND	1.98	99.0	2.00	1.69	
Ethylbenzene*	<0.050	0.050	01/03/2020	ND	2.00	100	2.00	2.09	
Total Xylenes*	<0.150	0.150	01/03/2020	ND	5.99	99.8	6.00	1.65	
Total BTEX	<0.300	0.300	01/03/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/03/2020	ND	432	108	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/03/2020	ND	216	108	200	0.935	
DRO >C10-C28*	<10.0	10.0	01/03/2020	ND	232	116	200	0.240	
EXT DRO >C28-C36	<10.0	10.0	01/03/2020	ND					
Surrogate: 1-Chlorooctane	77.1	% 41-142	2						
Surrogate: 1-Chlorooctadecane	79.6	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 96 of 114

Page 12 of 12

Received by OCD: 4/28/2020 10:50:25 AM

	Helinquisned by:	./.	(man w	Delinquiched by:	3 2	8	-	6 50	S N	4 ~	si Si	°5 2	1 5.	(LAB USE)	HODDO/O		Comments:	Heceiving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	F	Analysis Requ
	Date: Time:		arry 1/2/20		1995+ 4-35:25 mail	East 3 Sidewall	South & Sidemail	South & Sidewall	NORTH G Sidewail	NORTH S Sideman 1	Botton Hole # 10 (4-4.5 BEB)	South 4 Sidemail	South 3 Sidewall		SAMPLE IDENTIFICATION			r Cardinal	COG - Ike Tavrez	Lea Co, NM	Roy Batty Federal Com 3H (8.29.19)	Concho	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:	Heceived by:	necelved ny:		¥								1/2/20	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
	Date:	Date	7 Mart		4								×	WATEI SOIL HCL	۹	MATRIX		Conner N		212C-MD-01962		Mike Carmona	901W Wall S Midland,T Tel (432) Fax (432)	
	e: Time:	Time:	8/		4								×	HNO ₃ ICE None		PRESERVATIVE METHOD		Conner Moehring / Just		D-01962		ona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
		s. S	20 1635		444								1 N X	# CONT FILTERI BTEX 8	ED (Y	/N)	X 8260E	ustin Flores						
(Circle)		Sample Temperature	۰×											TPH TX	1005	(Ext to	C35)				_			
HAND DELIVERED	.0 J	3 Charlena	ONLY		<									PAH 82	70C						-7	5		
	8	ture		E						_				Total Me TCLP Me	etals A	Ag As E								
				-			_	_	_					TCLP Vo	a superiore.						q	ANA		
FEDEX	Spec	X RUSH: Same Day Rush Charges Auth												RCI GC/MS \	/al 0	0000 /	004					ANALYSIS		
UPS	vial Re	n Cha	STANDARD	-				_			_	_	_	GC/MS S	CARLEY AND		Contraction and Contraction of Contr	5			— g			
	port	rges /	NDAF						_					PCB's 8 NORM	082 / 0	608								
Tracking #:	Limits	0 0									_			PLM (As	bestos	5)						REQUEST		Pa
#	or TF	(24 hr	\rangle		4	1				_	-	-	-	Chloride Chloride	C,	ilfate	TDS							Page
	Special Report Limits or TRRP Report	r 48 hr											_	General				ee atta	ched li	st)				
	Repor													Anion/Ca	ation (Balanc	е							~
	2005	72 hr																					1	<u>o</u> f
			18			_		-																
														Hold										

January 06, 2020

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: ROY BATTY FEDERAL COM 3H

Enclosed are the results of analyses for samples received by the laboratory on 01/03/20 14:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/03/2020	Sampling Date:	01/03/2020
Reported:	01/06/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #11 (6" BEB) (H000020-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/04/2020	ND	1.82	90.8	2.00	6.28	
Toluene*	<0.050	0.050	01/04/2020	ND	1.84	91.8	2.00	5.76	
Ethylbenzene*	<0.050	0.050	01/04/2020	ND	1.90	95.0	2.00	5.84	
Total Xylenes*	<0.150	0.150	01/04/2020	ND	5.55	92.4	6.00	5.92	
Total BTEX	<0.300	0.300	01/04/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	01/06/2020	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/04/2020	ND	201	101	200	3.64	
DRO >C10-C28*	<10.0	10.0	01/04/2020	ND	207	104	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	01/04/2020	ND					
Surrogate: 1-Chlorooctane	85.9	% 41-142	,						
Surrogate: 1-Chlorooctadecane	89.4	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/03/2020	Sampling Date:	01/03/2020
Reported:	01/06/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 7 SIDEWALL (H000020-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/04/2020	ND	1.82	90.8	2.00	6.28	
Toluene*	<0.050	0.050	01/04/2020	ND	1.84	91.8	2.00	5.76	
Ethylbenzene*	<0.050	0.050	01/04/2020	ND	1.90	95.0	2.00	5.84	
Total Xylenes*	<0.150	0.150	01/04/2020	ND	5.55	92.4	6.00	5.92	
Total BTEX	<0.300	0.300	01/04/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 73.3-12	9						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	01/06/2020	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/04/2020	ND	201	101	200	3.64	
DRO >C10-C28*	<10.0	10.0	01/04/2020	ND	207	104	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	01/04/2020	ND					
Surrogate: 1-Chlorooctane	86.5	% 41-142	,						
Surrogate: 1-Chlorooctadecane	89.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/03/2020	Sampling Date:	01/03/2020
Reported:	01/06/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: SOUTH 7 SIDEWALL (H000020-03)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/04/2020	ND	1.82	90.8	2.00	6.28	
Toluene*	<0.050	0.050	01/04/2020	ND	1.84	91.8	2.00	5.76	
Ethylbenzene*	<0.050	0.050	01/04/2020	ND	1.90	95.0	2.00	5.84	
Total Xylenes*	<0.150	0.150	01/04/2020	ND	5.55	92.4	6.00	5.92	
Total BTEX	<0.300	0.300	01/04/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	01/06/2020	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/04/2020	ND	201	101	200	3.64	
DRO >C10-C28*	<10.0	10.0	01/04/2020	ND	207	104	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	01/04/2020	ND					
Surrogate: 1-Chlorooctane	84.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	89.3	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/03/2020	Sampling Date:	01/03/2020
Reported:	01/06/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: WEST 4 SIDEWALL (H000020-04)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/04/2020	ND	1.82	90.8	2.00	6.28	
Toluene*	<0.050	0.050	01/04/2020	ND	1.84	91.8	2.00	5.76	
Ethylbenzene*	<0.050	0.050	01/04/2020	ND	1.90	95.0	2.00	5.84	
Total Xylenes*	<0.150	0.150	01/04/2020	ND	5.55	92.4	6.00	5.92	
Total BTEX	<0.300	0.300	01/04/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	01/06/2020	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/04/2020	ND	201	101	200	3.64	
DRO >C10-C28*	<10.0	10.0	01/04/2020	ND	207	104	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	01/04/2020	ND					
Surrogate: 1-Chlorooctane	90.8	% 41-142	,						
Surrogate: 1-Chlorooctadecane	94.2	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/03/2020	Sampling Date:	01/03/2020
Reported:	01/06/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: EAST 4 SIDEWALL (H000020-05)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/04/2020	ND	1.82	90.8	2.00	6.28	
Toluene*	<0.050	0.050	01/04/2020	ND	1.84	91.8	2.00	5.76	
Ethylbenzene*	<0.050	0.050	01/04/2020	ND	1.90	95.0	2.00	5.84	
Total Xylenes*	<0.150	0.150	01/04/2020	ND	5.55	92.4	6.00	5.92	
Total BTEX	<0.300	0.300	01/04/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	01/06/2020	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/04/2020	ND	201	101	200	3.64	
DRO >C10-C28*	<10.0	10.0	01/04/2020	ND	207	104	200	1.08	
EXT DRO >C28-C36	<10.0	10.0	01/04/2020	ND					
Surrogate: 1-Chlorooctane	86.7	% 41-142	,						
Surrogate: 1-Chlorooctadecane	88.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Relinquished by:	ŝ	Relinquished by:	Relinquished by:		S	4	U	2	1	(LAB USE)	HO00020		Comments:	Receiving Laboratory:	nvoice to:	Project Location: county, state)	^p roject Name:	Client Name:	F	Analysis Requ
	Date: Time:		Date: Time:	Mouling 1/3/20		EAST 4 SIDEWALL	WEST & SIDEWALL	SOUTTI 7 SIDEWALL	NORTH 7 SIDEWALL	Bottom there # 11 (6"BEB)		SAMPLE IDENTIFICATION			ry: Cardinal	COG - Ike Tavrez	Lea Co, NM	Roy Batty Federal Com 3H (8.29.19)	Concho	Tetra Tech, Inc.	Analysis Request of Chain of Custody Record
ORIGINAL COPY	Received by:		Received by:	Received by:		1/3/20	1/3/20	1/3/20	1/3/20	1/3/20	DATE	YEAR: 2019	SAMPLING		Sampler Signature:		Project #:		Site Manager:		
¥	Date: Ti		Date: / Ti	ha allaber "			×		×	×	WATEF SOIL HCL HNO ₃ ICE	3	MATRIX PRESERVATIVE METHOD		Conner Moehring / Justin		212C-MD-01962		Mike Carmona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
	lime:			1-3-20 1445	-	- Z	 Z	 Z	- 2	1 N N	None # CONT FILTER	ED (Y	ERS (/N)	EX 8260	Flores		2			0	
(Circle) HAND DELIVERED	10.50	£11#	Sample Temperature	LAB USE		×				×	TPH TX TPH 80 PAH 82 Total Me TCLP Me TCLP Vo	1005 15M (70C tals <i>F</i> etals	(Ext to (GRO Ag As I Ag As	o C35) - DRO - Ba Cd Cr	ORO - Pb Se	Hg		1	AN/		e
D FEDEX UPS Tracking #	Special Report Limits or TRRP Report	Rush Charges Authorized	X RUSH: Same Day								TCLP Se RCI GC/MS V GC/MS S PCB's 8 NORM PLM (As	Vol. 8 Semi. 082 /	8260B . Vol. 4 / 608	/ 624	25			_	ANALYSIS REQUEST		e. Pa
:ing #:	its or TRRP Report	norized	v (24 hr) 48 hr 72 hr	λ		×				×	Chloride Chloride	e S Wat	ulfate er Che	emistry (see att	ached I	ist)		T od No.)	а 2 т	Page / of
			7								Hold										1

Received by OCD: 4/28/2020 10:50:25 AM

×.

Page 104 of 114

January 08, 2020

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: ROY BATTY FEDERAL COM 3H

Enclosed are the results of analyses for samples received by the laboratory on 01/06/20 16:40.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/06/2020	Sampling Date:	01/03/2020
Reported:	01/08/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 1 SIDEWALL (H000035-01)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/08/2020	ND	1.93	96.7	2.00	10.9	
Toluene*	<0.050	0.050	01/08/2020	ND	1.96	98.0	2.00	11.0	
Ethylbenzene*	<0.050	0.050	01/08/2020	ND	2.02	101	2.00	11.0	
Total Xylenes*	<0.150	0.150	01/08/2020	ND	5.91	98.5	6.00	11.2	
Total BTEX	<0.300	0.300	01/08/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.5	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1640	16.0	01/08/2020	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2020	ND	191	95.4	200	6.89	
DRO >C10-C28*	<10.0	10.0	01/08/2020	ND	220	110	200	2.66	
EXT DRO >C28-C36	<10.0	10.0	01/08/2020	ND					
Surrogate: 1-Chlorooctane	74.5	% 41-142	2						
Surrogate: 1-Chlorooctadecane	76.8	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/06/2020	Sampling Date:	01/03/2020
Reported:	01/08/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: NORTH 2 SIDEWALL (H000035-02)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/08/2020	ND	1.93	96.7	2.00	10.9	
Toluene*	<0.050	0.050	01/08/2020	ND	1.96	98.0	2.00	11.0	
Ethylbenzene*	<0.050	0.050	01/08/2020	ND	2.02	101	2.00	11.0	
Total Xylenes*	<0.150	0.150	01/08/2020	ND	5.91	98.5	6.00	11.2	
Total BTEX	<0.300	0.300	01/08/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.1	% 73.3-12	9						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3640	16.0	01/08/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2020	ND	191	95.4	200	6.89	
DRO >C10-C28*	<10.0	10.0	01/08/2020	ND	220	110	200	2.66	
EXT DRO >C28-C36	<10.0	10.0	01/08/2020	ND					
Surrogate: 1-Chlorooctane	71.5	% 41-142							
Surrogate: 1-Chlorooctadecane	73.1	% 37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

/keene@cardinallabsnm.com	Cardinal cannot accept verbal changes. Please email changes to celey keene@cardinallabsnm.com	nnot accept verbal changes	† Cardinal car	
ol Intact Yes∏Yes	Thermometer ID #97 Correction Factor + 0			FORM-000 R 3.0
Standard	CHECKED BY: Turnaround Time:	4.8 Sample Condition Cool Intact	-	Sampler- UPS - Bus - Other-
result mike chrmonit only	email		Time:	
	REMARKS:	Received By:	Date:	
V0	All Results a	Munara 1	0 Time: 1640	inquished By:
lt: □ Yes □ No Add'I Phone #:	1111	Received By:	22/0/1 mm	
, hymeradia	affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regarding to Subsess interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, Relinquished By: Dafe: // Doctores of whether such claim is based upon any of the above stated reasons or otherwise	out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based	the performance of services hereunder by Ca	affiliates or successors arising out of or related to Relinquished By:
	analyses. All claims including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal be liable for incidental or consecuental damages in the transmission of the applicable contract or tor, shall be cardinal be liable for incidental or consecuental damages in the transmission and the applicable contract or tor, shall be cardinal be liable for incidental or consecuental damages incidence and the applicable contract or tor, shall be cardinal be liable for incidental or consecuental damages incidence and the applicable contract or tor, shall be cardinal be liable for incidental or consecuental damages incidence and the applicable contract or tor.	eemed waived unless made in writing and recei	nce and any other cause whatsoever shall be d	ses. All claims including those for negligen e. In no event shall Cardinal be liable for in
			al's liability and client's exclusive remedy for an	SE NOTE: Liability and Damages. Cardina
-	× 1/3/20	()		
× × ×			2 SIDEWALL	2 iudpth
1	A (, IC 0	- # V X S C	(SIDEWALL	/ NORTH
Ch Io BTEX PH	CID/BAS CE / COC THER :	# CONT/		4000035
		OWATER	Sample I.D.	Lab I.D.
	PRESERV. SAMPLING	MATRIX		
	Fax #:	Π	R MOTHRING	FORLARUSE ONIX
	# #	0	1.	n: Cer
	State: Zip:	8.29.15) 5	FED COM 3H (104
	City:		- ປໍາິາເຈັ້ Project Owner:	2 C- m
			Fax #:	Phone #:
	TA	Zip: 79701	State: TY	City: MIDLAND
	Company. COム		WALL ST.	Address: 901 W. W
ANALYSIS REQUEST	P.O. #:		LE CARMONA	
			rs Tecn	Company Name: Tetra
		2476	(575) 393-2326 FAX (575) 393-2476	(575) 3
		8240	101 East Marland, Hobbs. NM 88240	101 East

Received by OCD: 4/28/2020 10:50:25 AM

Page 109 of 114

D

フロ

aborator

. IPS

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 5 of 5

January 16, 2020

MIKE CARMONA TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: ROY BATTY FEDERAL COM 3H

Enclosed are the results of analyses for samples received by the laboratory on 01/15/20 16:10.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-19-12. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2020	Sampling Date:	01/13/2020
Reported:	01/16/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #12 (4-4.5' BEB) (H000144-01)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					Qualifier Qualifier Qualifier
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/16/2020	ND	1.72	86.0	2.00	16.1	
Toluene*	<0.050	0.050	01/16/2020	ND	1.75	87.7	2.00	15.4	
Ethylbenzene*	<0.050	0.050	01/16/2020	ND	1.77	88.3	2.00	16.8	
Total Xylenes*	<0.150	0.150	01/16/2020	ND	5.15	85.9	6.00	16.9	
Total BTEX	<0.300	0.300	01/16/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.9	% 73.3-12	9						
Chloride, SM4500Cl-B	e, SM4500Cl-B mg/kg			d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	01/16/2020	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/16/2020	ND	219	110	200	18.0	
DRO >C10-C28*	<10.0	10.0	01/16/2020	ND	239	119	200	8.99	
EXT DRO >C28-C36	<10.0	10.0	01/16/2020	ND					
Surrogate: 1-Chlorooctane	103	% 41-142	,						
Surrogate: 1-Chlorooctadecane	114 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH MIKE CARMONA 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2020	Sampling Date:	01/13/2020
Reported:	01/16/2020	Sampling Type:	Soil
Project Name:	ROY BATTY FEDERAL COM 3H	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-01962 (8.29.19)	Sample Received By:	Tamara Oldaker
Project Location:	COG - LEA CO NM		

Sample ID: BOTTOMHOLE #13 (4-4.5' BEB) (H000144-02)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/16/2020	ND	1.72	86.0	2.00	16.1	
Toluene*	<0.050	0.050	01/16/2020	ND	1.75	87.7	2.00	15.4	
Ethylbenzene*	<0.050	0.050	01/16/2020	ND	1.77	88.3	2.00	16.8	
Total Xylenes*	<0.150	0.150	01/16/2020	ND	5.15	85.9	6.00	16.9	
Total BTEX	<0.300	0.300	01/16/2020	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8	% 73.3-12	9						
hloride, SM4500Cl-B mg/kg			Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	752	16.0	01/16/2020	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/16/2020	ND	219	110	200	18.0	
DRO >C10-C28*	<10.0	10.0	01/16/2020	ND	239	119	200	8.99	
EXT DRO >C28-C36	<10.0	10.0	01/16/2020	ND					
Surrogate: 1-Chlorooctane	104	% 41-142							
Surrogate: 1-Chlorooctadecane	115 9	37.6-14	7						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-02	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ed by OCD:	4/28/20	020 10:	<u>50:25</u>		1 1		-	T		-		1 -	1 =		1 7		Pa	ge 11
ed by OCD:	telinguished by:	Contraction of	Colinguished by:				1	-	LAB #	1000 INU	* Aesul	Hecelving Laboratory:	Invoice to:	Project Location: (county, state)	Project Name:	Client Name:	5	Analysis Re
	- Cale:	1/5/2020				15	Bottom Hole # 13 (4-4.5 BEB)	Bottom Hoic # 12 (4.4.5 BEB)	SAMPLE IDENTIFICATION		uts to MIKE only X	atory: CARDINAL	EUC TOUCHTERS COCA . IKE TAVAREZ	LEA COINM	204 BATTY FED LOWN 3H	CONCHO	Tetra Tech, Inc.	ge Analysis Request of Chain of Custody Record
	Booking by:	Heceived by:	D				1/13/20	1/13/20	DATE CO	SAMPLING		Sampler Signature:		Project #:	1 (8.29.14)	Site Manager:		
Jate:		Time:					×		WATER SOIL HCL HNO ₃ ICE None			Conner Moehring		212C-MD-01962		Mike Carmona	901W Wall Street, Ste 100 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	
、 し ん □ Special Report Limits or TRRP Report (Circle) HANG-DELIVEREP FEDEX UPS Tracking #:	Sample Temperature),						×	FILTERED (BTEX 8021E TPH TX1005 TPH 8015M PAH 8270C Total Metals / TCLP Metals TCLP Volatile TCLP Volatile TCLP Semi V RCI GC/MS Vol. (GC/MS Vol. (GC/MS Vol. (GC/MS Semi) PCB's 8082 / NORM PLM (Asbesto Chloride S General Wate Anion/Cation	Ag As B Ag As B Ag As B Ag As B Ag As B S Olatiles 8260B / Vol. 8/ 608 0/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/ 9/	DRO - C a Cd Cr F 3a Cd Cr F 624 270C/625 TDS nistry (se	PRO - M Pb Se H Pb Se	Hg	t)		ANALYSIS REQUEST		Page 1
*port	r 72 hr								Hold	DaidHU					_			of L