Rec'd 08/11/2020 - NMOCD

Form 3160-3 (June 2015) UNITED STATES				APPROVI 5. 1004-01 nuary 31,	37		
DEPARTMENT OF THE IN			5. Lease Serial No.				
BUREAU OF LAND MANA			NMNM016131	or Tribo N			
APPLICATION FOR PERMIT TO DR	ILL OR REENTER		6. If Indian, Allotee	or Tribe N	ame		
1a. Type of work:	NTER		7. If Unit or CA Agr	reement, N	ame and No.		
1b. Type of Well: Image: Constraint of Well							
	le Zone Multiple Zon	ne	8. Lease Name and SHIRE 22-15 FED				
			SHIRE 22-131 ED	CON			
			613H				
2. Name of Operator DEVON ENERGY PRODUCTION COMPANY LP			9. API Well No. 3001547327				
	b. Phone No. (include area	a code)	10. Field and Pool, of	or Explora	torv		
	300) 583-3866		JENNINGS BONE				
4. Location of Well (Report location clearly and in accordance with	h any State requirements.*,)	11. Sec., T. R. M. or		Survey or Area		
At surface SWSE / 350 FSL / 1805 FEL / LAT 32.109517			SEC 22/T25S/R31	E/NMP			
At proposed prod. zone NWNE / 330 FNL / 1750 FEL / LA		03.7628653					
14. Distance in miles and direction from nearest town or post office	*		12. County or Parish EDDY		13. State NM		
location to nearest 350 feet	6. No of acres in lease 60	17. Spaci 320.0	ing Unit dedicated to the	his well			
18 Distance from proposed location*	9. Proposed Depth	20. BLM	/BIA Bond No. in file				
to nearest well, drilling, completed, applied for, on this lease, ft.	1780 feet / 21707 feet	FED: N	MB000801				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	2. Approximate date work	. Approximate date work will start*					
3347 feet 1	0/01/2020	0/01/2020			45 days		
	24. Attachments						
The following, completed in accordance with the requirements of C (as applicable)	nshore Oil and Gas Order	No. 1, and the l	Hydraulic Fracturing r	ule per 43	CFR 3162.3-3		
 Well plat certified by a registered surveyor. A Drilling Plan. 	Item 20 abc	ove).	ns unless covered by ar	n existing b	oond on file (see		
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).			rmation and/or plans as	may be ree	quested by the		
25. Signature (Electronic Submission)	Name (Printed/Typed) JENNY HARMS / P		3866	Date 10/11/20)19		
Title Regulatory Compliance Professional							
Approved by (Signature)	Name (Printed/Typed))		Date			
(Electronic Submission)	Cody Layton / Ph: (5)				
Title Assistant Field Manager Lands & Minerals	Office Carlsbad Field Office	۵					
Application approval does not warrant or certify that the applicant l applicant to conduct operations thereon. Conditions of approval, if any, are attached.			in the subject lease w	hich would	l entitle the		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, mal of the United States any false, fictitious or fraudulent statements or				iny departi	ment or agency		

District I

 1625 N. French Dr., Hobbs, NM 88240

 Phone: (575) 393-6161 Fax: (575) 393-0720

 District II

 811 S. First St., Artesia, NM 88210

 Phone: (575) 748-1283 Fax: (575) 748-9720

 District III

 1000 Rio Brazos Road, Aztec, NM 87410

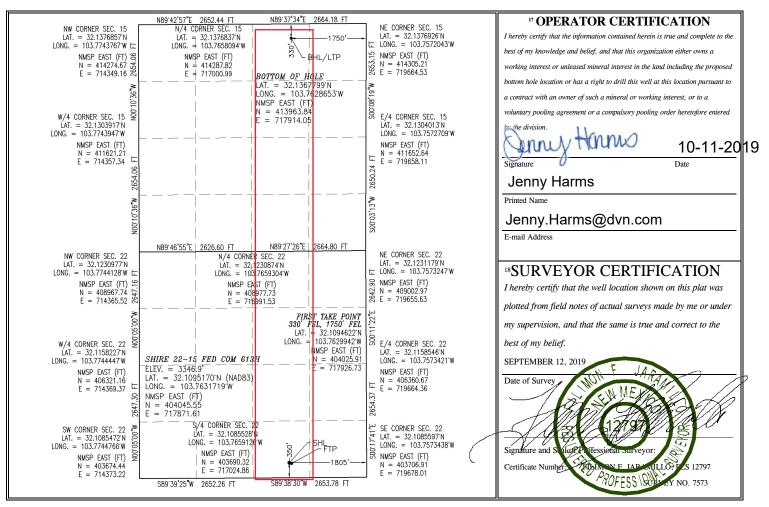
 Phone: (505) 334-6178 Fax: (505) 334-6170

 District IV

 2320.5 Et Fennin Dr., Sente Fa, NM 87505

1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

C	API Number	r	9822	² Pool Code 20	de ³ Pool Name Purple Sage Wolfcamp							
⁴ Property 0	Code		•		⁵ Property Name					⁶ Well Number		
328885				:	SHIRE 22-15	FED COM			613H			
⁷ OGRID I	No.				⁸ Operator	Name				⁹ Elevation		
6137			DEV	ON ENER	RGY PRODUC	CTION COMPAN	NY, L.P.			3346.9		
¹⁰ Surface Location												
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County		
0	22	25 S	31 E		350	SOUTH	1805	EA	ST	EDDY		
			п В	ottom Ho	ole Location	If Different Fr	om Surface					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/W	est line	County		
В	15	25 S	3 1E		330	NORTH	1750	EA	ST	EDDY		
¹² Dedicated Acre 640 20 320	Sres Joint	or Infill	Consolidatio	n Code	¹⁵ Order No.							

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Devon & OGRID No.: Devon Energy Production Co., L.P. 6137

GAS CAPTURE PLAN

Date: October 9, 2019

 \boxtimes Original

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Devon to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
SHIRE 22-15 FED COM 714H		UL P, SEC 22, T25S, 31E	350 FSL 845 FEL			SHIRE 22 CTB 3
SHIRE 22-15 FED COM 334H		UL P, SEC 22, T25S, 31E	350 FSL 815 FEL			SHIRE 22 CTB 3
SHIRE 22-15 FED COM 734H		UL P, SEC 22, T25S, 31E	350 FSL 785 FEL			SHIRE 22 CTB 3
SHIRE 22-15 FED COM 713H		UL O, SEC 22, T25S, 31E	350 FSL 1835 FEL			SHIRE 22 CTB 3
SHIRE 22-15 FED COM 613H		UL O, SEC 22, T25S, 31E	350 FSL 1805 FEL			SHIRE 22 CTB 3
SHIRE 22-15 FED COM 733H		UL O, SEC 22, T25S, 31E	350 FSL 1775 FEL			SHIRE 22 CTB 3

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if DCP system is in place. The gas produced from production facility is dedicated to <u>DCP</u> and will be connected to <u>DCP</u> low/high pressure gathering system located in Lea County, New Mexico. It will require 0' of pipeline to connect the facility to low/high pressure gathering system. <u>Devon</u> provides (periodically) to <u>DCP</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>Devon</u> and <u>DCP</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at <u>DCP</u> Processing Plant located in Sec 19, Twn. 19S, Rng. 32E, Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>DCP</u> system at that time. Based on current information, it is <u>Devon's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease

- \circ \quad Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

DEVON ENERGY PRODUCTION CO., L.P.	SHIRE 22-15 FED COM	613H
Operator Name:	Property Name:	Well Number
API #		
Intent X As Drilled		

Kick Off Point (KOP)

UL O	Section 22	Township 25S	Range 31E	Lot	Feet 100 FSL	From N/S	Feet 1750 FE	From E/W	County EDDY
Latitu	Latitude			Longitude		NAD			
32.10882900			-103.7629	99900	83				

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
O	22	25S	31E		330	SOUTH	1750	EAST	EDDY
Latitu	^{de} 32.109	4622			Longitude 103	8.7629942	2		NAD 83

Last Take Point (LTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
B	15	25S	31E		330	NORTH	1750	EAST	EDDY
Latitu		367799			Longitud	103.762	8653		NAD 83

YES

Is this well the defining well for the Horizontal Spacing Unit?

Is this well an infill well?

NO

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

API #			
Operator Name:	F	Property Name:	Well Number

KZ 06/29/2018

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 5M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 5,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

1. Geologic Formations

TVD of target	11780	Pilot hole depth	N/A
MD at TD:	21707	Deepest expected fresh water	

Basin

	Depth	Water/Mineral	
Formation	(TVD)	Bearing/Target	Hazards*
	from KB	Zone?	
RUSTLER	1160		
SALADO	1460		
TOP OF SALT	1460		
BASE OF SALT	4330		
Delaware	4380		
CHERRY CANYON	5295		
BRUSHY CANYON	6650		
BONE SPRING LIME	8250		
1ST BONE SPRING SAND	9320		
Bone Spring 2nd	9945		
Bone Spring 3rd	11215		
WOLFCAMP	11670		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

Shire 22-15 Fed Com 613H

Hole Size	Casing Interval		Csg. Size	Wt	Grade	Conn	Min SF	Min SF	Min SF
Hole Size	From	То	Csg. Size	(PPF)	(PPF) Grade		Collapse	Burst	Tension
17 1/2	0	1185 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	11215 TVD	7 5/8	29.7	P110	Flushmax III	1.125	1.25	1.6
6 3/4	0	TD	5 1/2	20.0	P110	Vam SG	1.125	1.25	1.6
					/inimum Sat	fety Factor	1.125	1	1.6 Dry 1.8 Wet

2. Casing Program (Primary Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

• A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.

• Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.

• A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

• A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Hole Size	Casing Interval		Csg. Size	Wt	Grade	Conn	Min SF	Min SF	Min SF
Hole Size	From	То	Csg. Size	(PPF)	(PPF) Grade		Collapse	Burst	Tension
17 1/2	0	1185 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	11215 TVD	8 5/8	32.0	P110	TLW	1.125	1.25	1.6
7 7/8	0	TD	5 1/2	17.0	P110	BTC	1.125	1.25	1.6
	BLM N	/linimum Saf	fety Factor	1.125	1	1.6 Dry 1.8 Wet			

Casing Program (Alternative Design)

• All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.

• Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.

• A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.

• Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.

• A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

•Variance requested to drill 10.625" hole instead of 9.875" for intermediate 1, the 8.625" connection will change from TLW to BTC.

• A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specificition sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Ν
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading	Y
assumptions, casing design criteria).	•
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating	Y
of the casing?	1
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous	
casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Ν
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	Ν
If yes, are there three strings cemented to surface?	

3. Cementing Program (Primary Design)						
Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description	
Surface	896	Surf	13.2	1.44	Lead: Class C Cement + additives	
Test 1	719	Surf	9	3.27	Lead: Class C Cement + additives	
Int 1	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives	
	880	Surf	9	3.27	1st stage Lead: Class C Cement + additives	
Int 1 Two Stage	93	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives	
w/ DV @ TVD of Delaware	426	Surf	9	3.27	2nd stage Lead: Class C Cement + additives	
	93	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives	
Int 1	As Needed	Surf	9	1.44	Squeeze Lead: Class C Cement + additives	
Intermediate	719	Surf	9	3.27	Lead: Class C Cement + additives	
Squeeze	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives	
Production	62	9212	9.0	3.3	Lead: Class H /C + additives	
Production	670	11212	13.2	1.4	Tail: Class H / C + additives	

3. Cementing Program (Primary Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

3. Cementing Program (Casing	# Sks	TOC	Wt. ppg	Yld (ft3/sack)	Slurry Description
Surface	896	Surf	13.2	1.44	Lead: Class C Cement + additives
	475	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
	517	Surf	9	3.27	1st stage Lead: Class C Cement + additives
Int 1 Two Stage	55	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives
w DV @ ~4500	302	Surf	9	3.27	2nd stage Lead: Class C Cement + additives
	55	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	475	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
Let 1 (10 (25" H-1- Si)	676	Surf	9	3.27	Lead: Class C Cement + additives
Int 1 (10.625" Hole Size)	768	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
Destruction	117	9212	9.0	3.3	Lead: Class H /C + additives
Production	1389	11212	13.2	1.4	Tail: Class H / C + additives

3. Cementing Program	(Alternative Design)
of comonting i rogram	(Internative Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	T <u>,</u>	уре	~	Tested to:
			An	nular	Х	50% of rated working pressure
Int 1	13-58"	5M		d Ram	Х	
int i	15 50	5101		Ram		5M
			Doub	le Ram	Х	5111
			Other*			
			Annul	ar (5M)	Х	50% of rated working pressure
Production	13-5/8"	5M	Blind	d Ram	Х	
Troduction	Pipe Ram				5M	
				le Ram	Х	5111
			Other*			
			Annul	ar (5M)		
			Blind Ram			
			Pipe Ram			
			Doub	le Ram		
			Other*			
	A variance is requested for the use of a diverter on the surface casing. See attached for schematic.					
Y A variance is requested to r	A variance is requested to run a 5 M annular on a 10M system					

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10-10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
---	-----------------------------

6. Logging and Testing Procedures

Logging, Co	Logging, Coring and Testing				
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the				
Х	Completion Rpeort and sbumitted to the BLM.				
	No logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain.				
	Coring? If yes, explain.				

Additional	logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
Х	CBL	Production casing
Х	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	6432
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren S	Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations								
greater than	greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is								
encountered	encountered measured values and formations will be provided to the BLM.								
Ν	H2S is present								
Y	H2S plan attached.								

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).

³ The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.

- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments

X Directional Plan Other, describe A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 5M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 5,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

WCDSC Permian NM

Eddy County (NAD 83 NM Eastern) Sec 27-T25S-R31E Shire 22-15 Fed Com 613H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

30 September, 2019

Planning Report - Geographic

Database: Company: Project: Site: Well: Wellbore: Design:	WCDS Eddy Sec 2 Shire Wellb	r5000.141_Pro SC Permian NM County (NAD & 7-T25S-R31E 22-15 Fed Cor ore #1 t Plan 1	M 33 NM Eastern)		TVD Refer MD Refer North Ref	Local Co-ordinate Reference:Well Shire 22-15 Fed Com 613HTVD Reference:RKB @ 3371.90ftMD Reference:RKB @ 3371.90ftNorth Reference:GridSurvey Calculation Method:Minimum Curvature				
Project	Eddy C	County (NAD 83	3 NM Eastern)							
Map System: Geo Datum: Map Zone:	North An	e Plane 1983 nerican Datum xico Eastern Zo			System Dat	tum:	Me	ean Sea Level		
Site	Sec 27	-T25S-R31E								
Site Position: From: Position Uncert	Maj ainty:		North Eastir 0.00 ft Slot R	-		,674.44 usft ,373.23 usft 13-3/16 "	Latitude: Longitude: Grid Converg	ence:		32.108547 -103.774477 0.30 °
Well	Shire 2	2-15 Fed Com	613H							
Well Position Position Uncert	+N/-S +E/-W ainty		0.00 ft Ea	orthing: sting: ellhead Eleva	tion:	404,045.55 717,871.61	usft Lor	itude: Igitude: Jund Level:		32.109517 -103.763172 3,346.90 ft
Wellbore	Wellbo	ore #1								
Magnetics	Мс	odel Name	Sampl	e Date	Declina (°)	tion	Dip A (°			Strength nT)
		IGRF2015		9/25/2019		6.79		59.90	47,6	517.24302792
Design	Permit	Plan 1								
Audit Notes:										
Version:			Phas	e: I	PROTOTYPE	Tie	On Depth:		0.00	
Vertical Section	1:	Γ	Depth From (T)	/D)	+N/-S (ft)		:/-W ft)	Dii	rection (°)	
			(ft) 0.00		0.00		.00		0.25	
Plan Survey To Depth Fro (ft) 1	om Dept (fi	t) Survey	9/30/2019 • (Wellbore) Plan 1 (Wellbor	re #1)	Tool Name MWD+HDGM	l	Remarks			
					OWSG MWD	+ HDGM				
Plan Sections										
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.00 3,500.00	0.00 0.00	0.00 0.00	0.00 3,500.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00 0.00	
	2.04	167.59	3,703.94 10,721.04	-3.55 -247.64	0.78 54.48	1.00 0.00	1.00 0.00	0.00 0.00	167.59 0.00	
3,703.98 10,725.53 10,861.52	2.04 0.00	167.59 0.00	10,857.00	-250.00	55.00	1.50	-1.50	0.00	180.00	

Planning Report - Geographic

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Shire 22-15 Fed Com 613H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3371.90ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3371.90ft
Site:	Sec 27-T25S-R31E	North Reference:	Grid
Well:	Shire 22-15 Fed Com 613H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
						. ,	. ,		-
0.00	0.00	0.00	0.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
100.00	0.00	0.00	100.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
200.00	0.00	0.00	200.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
300.00	0.00	0.00	300.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
400.00	0.00	0.00	400.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
500.00 600.00	0.00 0.00	0.00	500.00 600.00	0.00 0.00	0.00 0.00	404,045.55 404,045.55	717,871.61 717,871.61	32.109517	-103.763172 -103.763172
700.00		0.00 0.00	700.00	0.00		404,045.55	717,871.61	32.109517	-103.763172
800.00	0.00 0.00	0.00	800.00	0.00	0.00 0.00	404,045.55	717,871.61	32.109517 32.109517	-103.763172
900.00	0.00	0.00	900.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,000.00	0.00	0.00	1,000.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,100.00	0.00	0.00	1,100.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,200.00	0.00	0.00	1,200.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,300.00	0.00	0.00	1,300.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,400.00	0.00	0.00	1,400.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,500.00	0.00	0.00	1,500.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,600.00	0.00	0.00	1,600.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,700.00	0.00	0.00	1,700.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,800.00	0.00	0.00	1,800.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
1,900.00	0.00	0.00	1,900.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,000.00	0.00	0.00	2,000.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,100.00	0.00	0.00	2,100.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,200.00	0.00	0.00	2,200.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,300.00	0.00	0.00	2,300.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,400.00	0.00	0.00	2,400.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,500.00	0.00	0.00	2,500.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,600.00	0.00	0.00	2,600.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,700.00	0.00	0.00	2,700.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,800.00	0.00	0.00	2,800.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
2,900.00	0.00	0.00	2,900.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,000.00	0.00	0.00	3,000.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,100.00	0.00	0.00	3,100.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,200.00	0.00	0.00	3,200.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,300.00	0.00	0.00	3,300.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,400.00	0.00	0.00	3,400.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,500.00	0.00	0.00	3,500.00	0.00	0.00	404,045.55	717,871.61	32.109517	-103.763172
3,600.00	1.00	167.59	3,600.00	-0.85	0.19	404,044.70	717,871.79	32.109515	-103.763172
3,700.00	2.00	167.59	3,699.96	-3.41	0.75	404,042.14	717,872.36	32.109508	-103.763170
3,703.98	2.04	167.59	3,703.94	-3.55	0.78	404,042.00	717,872.39	32.109507	-103.763170
3,800.00	2.04	167.59	3,799.90	-6.88	1.51	404,038.67	717,873.12	32.109498	-103.763167
3,900.00	2.04	167.59	3,899.83	-10.36	2.28	404,035.19	717,873.89	32.109489	-103.763165
4,000.00	2.04	167.59	3,999.77	-13.84	3.04	404,031.71	717,874.65	32.109479	-103.763163
4,100.00	2.04	167.59	4,099.71	-17.31	3.81	404,028.24	717,875.41	32.109469	-103.763160
4,200.00	2.04	167.59	4,199.64	-20.79	4.57	404,024.76	717,876.18	32.109460	-103.763158
4,300.00	2.04	167.59	4,299.58	-24.27	5.34	404,021.28	717,876.94	32.109450	-103.763155
4,400.00	2.04	167.59	4,399.52	-27.74	6.10	404,017.81	717,877.71	32.109441	-103.763153
4,500.00	2.04	167.59	4,499.45	-31.22	6.87	404,014.33	717,878.47	32.109431	-103.763151
4,600.00	2.04	167.59	4,599.39	-34.69	7.63	404,010.85	717,879.24	32.109422	-103.763148
4,700.00	2.04	167.59	4,699.33	-38.17	8.40	404,007.38	717,880.00	32.109412	-103.763146
4,800.00	2.04	167.59	4,799.26	-41.65	9.16	404,003.90	717,880.77	32.109402	-103.763143
4,900.00	2.04	167.59	4,899.20	-45.12	9.93	404,000.43	717,881.53	32.109393	-103.763141
5,000.00	2.04	167.59	4,999.14	-48.60	10.69	403,996.95	717,882.30	32.109383	-103.763138
5,100.00	2.04	167.59	5,099.07	-52.08	11.46	403,993.47	717,883.06	32.109374	-103.763136
5,200.00	2.04	167.59	5,199.01	-55.55	12.22	403,990.00	717,883.83	32.109364	-103.763134
5,300.00	2.04	167.59	5,298.95	-59.03	12.99	403,986.52	717,884.59	32.109355	-103.763131

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Shire 22-15 Fed Com 613H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3371.90ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3371.90ft
Site:	Sec 27-T25S-R31E	North Reference:	Grid
Well:	Shire 22-15 Fed Com 613H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Map Northing	Map Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
5,400.00	2.04	167.59	5,398.88	-62.50	13.75	403,983.04	717,885.36	32.109345	-103.763129
5,500.00	2.04	167.59	5,498.82	-65.98	14.52	403,979.57	717,886.12	32.109335	-103.763126
5,600.00	2.04	167.59	5,598.76	-69.46	15.28	403,976.09	717,886.89	32.109326	-103.763124
5,700.00	2.04	167.59	5,698.69	-72.93	16.05	403,972.62	717,887.65	32.109316	-103.763122
5,800.00	2.04	167.59	5,798.63	-76.41	16.81	403,969.14	717,888.42	32.109307	-103.763119
5,900.00	2.04	167.59	5,898.57	-79.89	17.57	403,965.66	717,889.18	32.109297	-103.763117
6,000.00	2.04	167.59	5,998.50	-83.36	18.34	403,962.19	717,889.95	32.109288	-103.763114
6,100.00	2.04	167.59	6,098.44	-86.84	19.10	403,958.71	717,890.71	32.109278	-103.763112
6,200.00	2.04	167.59	6,198.38	-90.31	19.87	403,955.23	717,891.48	32.109269	-103.763110
6,300.00	2.04	167.59	6,298.31	-93.79	20.63	403,951.76	717,892.24	32.109259	-103.763107
6,400.00	2.04	167.59	6,398.25	-97.27	21.40	403,948.28	717,893.00	32.109249	-103.763105
6,500.00	2.04	167.59	6,498.19	-100.74	22.16	403,944.81	717,893.77	32.109240	-103.763102
6,600.00	2.04	167.59	6,598.12	-104.22	22.93	403,941.33	717,894.53	32.109230	-103.763100
6,700.00	2.04	167.59	6,698.06	-107.70	23.69	403,937.85	717,895.30	32.109221	-103.763097
6,800.00	2.04 2.04	167.59 167.59	6,798.00	-111.17 -114.65	24.46 25.22	403,934.38	717,896.06 717,896.83	32.109211 32.109202	-103.763095 -103.763093
6,900.00 7,000.00	2.04	167.59	6,897.93 6,997.87	-114.65	25.22 25.99	403,930.90 403,927.42	717,897.59	32.109202	-103.763090
7,100.00	2.04	167.59	0,997.87 7,097.81	-121.60	26.75	403,923.95	717,898.36	32.109192	-103.763088
7,100.00	2.04	167.59	7,197.74	-125.08	20.73	403,920.47	717,899.12	32.109173	-103.763085
7,300.00	2.04	167.59	7,297.68	-128.55	28.28	403,917.00	717,899.89	32.109163	-103.763083
7,400.00	2.04	167.59	7,397.61	-132.03	20.20	403,913.52	717,900.65	32.109154	-103.763081
7,500.00	2.04	167.59	7,497.55	-135.51	29.81	403,910.04	717,901.42	32.109144	-103.763078
7,600.00	2.04	167.59	7,597.49	-138.98	30.58	403,906.57	717,902.18	32.109135	-103.763076
7,700.00	2.04	167.59	7,697.42	-142.46	31.34	403,903.09	717,902.95	32.109125	-103.763073
7,800.00	2.04	167.59	7,797.36	-145.94	32.11	403,899.61	717,903.71	32.109115	-103.763071
7,900.00	2.04	167.59	7,897.30	-149.41	32.87	403,896.14	717,904.48	32.109106	-103.763069
8,000.00	2.04	167.59	7,997.23	-152.89	33.64	403,892.66	717,905.24	32.109096	-103.763066
8,100.00	2.04	167.59	8,097.17	-156.36	34.40	403,889.18	717,906.01	32.109087	-103.763064
8,200.00	2.04	167.59	8,197.11	-159.84	35.17	403,885.71	717,906.77	32.109077	-103.763061
8,300.00	2.04	167.59	8,297.04	-163.32	35.93	403,882.23	717,907.54	32.109068	-103.763059
8,400.00	2.04	167.59	8,396.98	-166.79	36.69	403,878.76	717,908.30	32.109058	-103.763057
8,500.00	2.04	167.59	8,496.92	-170.27	37.46	403,875.28	717,909.07	32.109048	-103.763054
8,600.00	2.04	167.59	8,596.85	-173.75	38.22	403,871.80	717,909.83	32.109039	-103.763052
8,700.00	2.04	167.59	8,696.79	-177.22	38.99	403,868.33	717,910.59	32.109029	-103.763049
8,800.00	2.04	167.59	8,796.73	-180.70	39.75	403,864.85	717,911.36	32.109020	-103.763047
8,900.00	2.04	167.59	8,896.66	-184.18	40.52	403,861.37	717,912.12	32.109010	-103.763044
9,000.00	2.04	167.59	8,996.60	-187.65	41.28	403,857.90	717,912.89	32.109001	-103.763042
9,100.00	2.04	167.59	9,096.54	-191.13	42.05	403,854.42	717,913.65	32.108991	-103.763040
9,200.00	2.04	167.59	9,196.47	-194.60	42.81	403,850.95	717,914.42	32.108982	-103.763037
9,300.00	2.04	167.59	9,296.41	-198.08	43.58	403,847.47	717,915.18	32.108972	-103.763035
9,400.00	2.04	167.59	9,396.35	-201.56	44.34	403,843.99	717,915.95	32.108962	-103.763032
9,500.00	2.04	167.59	9,496.28	-205.03	45.11	403,840.52	717,916.71	32.108953	-103.763030
9,600.00	2.04	167.59	9,596.22	-208.51	45.87	403,837.04 403,833.56	717,917.48	32.108943	-103.763028 -103.763025
9,700.00	2.04	167.59	9,696.16	-211.99	46.64	,	717,918.24	32.108934	
9,800.00 9,900.00	2.04 2.04	167.59 167.59	9,796.09 9,896.03	-215.46 -218.94	47.40 48.17	403,830.09 403,826.61	717,919.01	32.108924 32.108915	-103.763023 -103.763020
10,000.00	2.04	167.59	9,890.03 9,995.97	-210.94	48.17	403,823.14	717,919.77 717,920.54	32.108905	-103.763018
10,100.00	2.04	167.59	10,095.90	-225.89	40.93	403,819.66	717,921.30	32.108895	-103.763016
10,200.00	2.04	167.59	10,095.90	-229.37	49.70 50.46	403,816.18	717,922.07	32.108886	-103.763013
10,200.00	2.04	167.59	10,295.78	-232.84	51.23	403,812.71	717,922.83	32.108876	-103.763011
10,400.00	2.04	167.59	10,395.71	-236.32	51.99	403,809.23	717,923.60	32.108867	-103.763008
10,500.00	2.04	167.59	10,495.65	-239.80	52.76	403,805.75	717,924.36	32.108857	-103.763006
10,600.00	2.04	167.59	10,595.59	-243.27	53.52	403,802.28	717,925.13	32.108848	-103.763003
10,700.00	2.04	167.59	10,695.52	-246.75	54.28	403,798.80	717,925.89	32.108838	-103.763001
10,725.53	2.04	167.59	10,721.04	-247.64	54.48	403,797.91	717,926.09	32.108836	-103.763000
<u>.</u>									

Planning Report - Geographic

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Shire 22-15 Fed Com 613H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3371.90ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3371.90ft
Site:	Sec 27-T25S-R31E	North Reference:	Grid
Well:	Shire 22-15 Fed Com 613H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured Depth (ft)		Azimuth	Vertical Depth (ft)	+N/-S	+E/-W	Map Northing (usft)	Map Easting (usft)	l ottouto	Leveltede
	(°)	(°)		(ft)	(ft)	. ,		Latitude	Longitude
10,800.00		167.59	10,795.48	-249.52	54.89	403,796.03	717,926.50	32.108830	-103.762999
10,861.52		0.00	10,857.00	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
10,900.00		0.00	10,895.48	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
11,000.00		0.00	10,995.48	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
11,100.00	0.00	0.00	11,095.48	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
11,200.00		0.00	11,195.48	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
11,211.55		0.00	11,207.03	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
	11212' MD, 100								
11,211.56		0.00	11,207.04	-250.00	55.00	403,795.55	717,926.61	32.108829	-103.762999
11,300.00		359.93	11,295.13	-243.19	54.99	403,802.36	717,926.60	32.108848	-103.762999
11,400.00		359.93	11,392.10	-219.29	54.96	403,826.26	717,926.57	32.108913	-103.762998
11,500.00		359.93	11,483.45	-178.92	54.91	403,866.63	717,926.52	32.109024	-103.762998
11,600.00		359.93	11,566.40	-123.30	54.84	403,922.25	717,926.45	32.109177	-103.762997
11,700.00		359.93	11,638.43	-54.11	54.76	403,991.44	717,926.36	32.109368	-103.762996
11,743.88	53.23	359.93	11,666.02	-20.00	54.72	404,025.55	717,926.32	32.109461	-103.762996
-	1744' MD, 330	-							
11,800.00		359.93	11,697.36	26.52	54.66	404,072.07	717,926.26	32.109589	-103.762995
11,900.00		359.93	11,741.38	116.17	54.55	404,161.72	717,926.15	32.109836	-103.762994
12,000.00		359.93	11,769.17	212.10	54.43	404,257.65	717,926.04	32.110099	-103.762993
12,100.00		359.93	11,779.88	311.40	54.31	404,356.94	717,925.91	32.110372	-103.762991
12,111.56		359.93	11,780.00	322.96	54.29	404,368.51	717,925.90	32.110404	-103.762991
12,200.00		359.93	11,780.00	411.40	54.18	404,456.94	717,925.79	32.110647	-103.762990
12,300.00		359.93	11,780.00	511.40	54.06	404,556.94	717,925.67	32.110922	-103.762989
12,400.00		359.93	11,780.00	611.40	53.94	404,656.94	717,925.54	32.111197	-103.762988
12,500.00		359.93	11,780.00	711.40	53.81	404,756.94	717,925.42	32.111472	-103.762986
12,600.00		359.93	11,780.00	811.40	53.69	404,856.94	717,925.29	32.111747	-103.762985
12,700.00		359.93	11,780.00	911.40	53.57	404,956.94	717,925.17	32.112022	-103.762984
12,800.00		359.93	11,780.00	1,011.39	53.44	405,056.94	717,925.05	32.112296	-103.762982
12,900.00		359.93	11,780.00	1,111.39	53.32	405,156.94	717,924.92	32.112571	-103.762981
13,000.00		359.93	11,780.00	1,211.39	53.19	405,256.94	717,924.80	32.112846	-103.762980
13,100.00		359.93	11,780.00	1,311.39	53.07	405,356.94	717,924.68	32.113121	-103.762978
13,200.00		359.93	11,780.00	1,411.39	52.95	405,456.94	717,924.55	32.113396	-103.762977
13,300.00		359.93	11,780.00	1,511.39	52.82	405,556.94	717,924.43	32.113671	-103.762976
13,400.00		359.93	11,780.00	1,611.39	52.70	405,656.94	717,924.31	32.113946	-103.762974
13,500.00		359.93	11,780.00	1,711.39	52.58	405,756.94	717,924.18	32.114221	-103.762973
13,600.00		359.93	11,780.00	1,811.39	52.45	405,856.94	717,924.06	32.114495	-103.762972
13,700.00		359.93	11,780.00	1,911.39	52.33	405,956.94	717,923.94	32.114770	-103.762970
13,800.00		359.93	11,780.00	2,011.39	52.21	406,056.94	717,923.81	32.115045	-103.762969
13,900.00 14,000.00		359.93	11,780.00	2,111.39	52.08	406,156.94	717,923.69	32.115320	-103.762968 -103.762967
,		359.93 359.93	11,780.00	2,211.39	51.96	406,256.94	717,923.57	32.115595 32.115870	
14,100.00 14,200.00		359.93 359.93	11,780.00 11,780.00	2,311.39 2,411.39	51.84 51.71	406,356.94 406,456.94	717,923.44	32.115670	-103.762965 -103.762964
			11,780.00			406,556.94	717,923.32 717,923.20	32.116420	-103.762963
14,300.00 14,400.00		359.93 359.93	11,780.00	2,511.39 2,611.39	51.59 51.47	406,656.94	717,923.07	32.116695	-103.762961
14,500.00		359.93	11,780.00	2,011.39	51.47	406,756.94	717,923.07	32.116969	-103.762960
14,600.00		359.93	11,780.00	2,811.39	51.22	406,856.94	717,922.83	32.110909	-103.762959
14,700.00		359.93	11,780.00	2,011.39	51.22	406,956.94	717,922.70	32.117519	-103.762959
14,800.00		359.93	11,780.00	3,011.39	50.97	400,950.94	717,922.70	32.117519	-103.762956
14,900.00		359.93	11,780.00	3,111.39	50.85	407,050.94	717,922.36	32.117794	-103.762955
15,000.00		359.93	11,780.00	3,211.39	50.83	407,150.94	717,922.33	32.118344	-103.762953
15,100.00		359.93	11,780.00	3,311.39	50.60	407,356.94	717,922.21	32.118619	-103.762952
15,200.00		359.93	11,780.00	3,411.39	50.48	407,456.94	717,922.08	32.118894	-103.762951
15,300.00		359.93	11,780.00	3,511.39	50.35	407,556.94	717,921.96	32.119168	-103.762950
15,400.00		359.93	11,780.00	3,611.39	50.23	407,656.93	717,921.84	32.119100	-103.762948
.0,100.00	00.00	000.00	,. 00.00	0,011.00	50.20	,000.00	,021.07	02.110110	

Database:	EDM r5000.141_Prod US	Local Co-ordinate Reference:	Well Shire 22-15 Fed Com 613H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3371.90ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3371.90ft
Site:	Sec 27-T25S-R31E	North Reference:	Grid
Well:	Shire 22-15 Fed Com 613H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
15 500 00			11 790 00			407 756 02	717 001 71		-
15,500.00 15,600.00	90.00 90.00	359.93 359.93	11,780.00 11,780.00	3,711.39 3,811.39	50.11 49.98	407,756.93 407,856.93	717,921.71 717,921.59	32.119718 32.119993	-103.762947 -103.762946
15,700.00	90.00	359.93	11,780.00	3,911.39	49.98 49.86	407,956.93	717,921.39	32.119995	-103.762944
15,800.00		359.93	11,780.00	4,011.39	49.80 49.74	408,056.93	717,921.34	32.120208	-103.762943
15,900.00		359.93	11,780.00	4,011.39	49.74	408,156.93	717,921.22	32.120545	-103.762942
16,000.00		359.93	11,780.00	4,111.39	49.01	408,256.93	717,921.10	32.121093	-103.762940
16,100.00		359.93	11,780.00	4,211.39	49.49	408,356.93	717,920.97	32.121368	-103.762939
16,200.00	90.00	359.93	11,780.00	4,311.39	49.37	408,456.93	717,920.85	32.121642	-103.762938
16,300.00	90.00	359.93	11,780.00	4,411.39	49.24	408,556.93	717,920.72	32.121042	-103.762936
16,400.00		359.93	11,780.00	4,511.39	49.12	408,656.93	717,920.72	32.121917	-103.762935
16,500.00	90.00	359.93	11,780.00	4,011.39	49.00	408,756.93	717,920.00	32.122192	-103.762933
16,600.00		359.93	11,780.00	4,711.39	48.75	408,856.93	717,920.48	32.122407	-103.762932
16,700.00		359.93	11,780.00	4,011.39	48.75	408,956.93	717,920.23	32.123017	-103.762932
16,733.00		359.93	11,780.00	4,911.39	48.58	408,989.93	717,920.23	32.123108	-103.762931
				4,944.39	40.00	400,909.93	717,920.19	32.123100	-103.702931
	ection @ 1673	-	-	5 044 20	40.50	400.050.00	747.000.44	20 402000	400 700000
16,800.00	90.00	359.93	11,780.00	5,011.39	48.50	409,056.93	717,920.11	32.123292	-103.762930
16,900.00	90.00	359.93	11,780.00	5,111.39	48.38	409,156.93	717,919.98	32.123567	-103.762929
17,000.00		359.93	11,780.00	5,211.39	48.25	409,256.93	717,919.86	32.123841	-103.762927
17,100.00	90.00	359.93	11,780.00	5,311.39	48.13	409,356.93	717,919.74	32.124116	-103.762926
17,200.00	90.00	359.93	11,780.00	5,411.39	48.01	409,456.93	717,919.61	32.124391	-103.762925
17,300.00		359.93	11,780.00	5,511.39	47.88	409,556.93	717,919.49	32.124666	-103.762923
17,400.00		359.93	11,780.00	5,611.39	47.76	409,656.93	717,919.37	32.124941	-103.762922
17,500.00		359.93	11,780.00	5,711.39	47.64	409,756.93	717,919.24	32.125216	-103.762921
17,600.00		359.93	11,780.00	5,811.39	47.51	409,856.93	717,919.12	32.125491	-103.762919
17,700.00	90.00	359.93	11,780.00	5,911.39	47.39	409,956.93	717,919.00	32.125766	-103.762918
17,800.00		359.93	11,780.00	6,011.39	47.27	410,056.93	717,918.87	32.126041	-103.762917
17,900.00	90.00	359.93	11,780.00	6,111.39	47.14	410,156.93	717,918.75	32.126315	-103.762915
18,000.00	90.00	359.93	11,780.00	6,211.39	47.02	410,256.93	717,918.62	32.126590	-103.762914
18,100.00	90.00	359.93	11,780.00	6,311.39	46.90	410,356.93	717,918.50	32.126865	-103.762913
18,200.00	90.00	359.93	11,780.00	6,411.39	46.77	410,456.93	717,918.38	32.127140	-103.762912
18,300.00	90.00	359.93	11,780.00	6,511.39	46.65	410,556.93	717,918.25	32.127415	-103.762910
18,400.00		359.93	11,780.00	6,611.39	46.52	410,656.93	717,918.13	32.127690	-103.762909
18,500.00	90.00	359.93	11,780.00	6,711.39	46.40	410,756.93	717,918.01	32.127965	-103.762908
18,600.00		359.93	11,780.00	6,811.39	46.28	410,856.93	717,917.88	32.128240	-103.762906
18,700.00	90.00	359.93	11,780.00	6,911.39	46.15	410,956.93	717,917.76	32.128514	-103.762905
18,800.00	90.00	359.93	11,780.00	7,011.39	46.03	411,056.93	717,917.64	32.128789	-103.762904
18,900.00	90.00	359.93	11,780.00	7,111.39	45.91	411,156.93	717,917.51	32.129064	-103.762902
19,000.00	90.00	359.93	11,780.00	7,211.39	45.78	411,256.92	717,917.39	32.129339	-103.762901
19,100.00	90.00	359.93	11,780.00	7,311.39	45.66	411,356.92	717,917.27	32.129614	-103.762900
19,200.00	90.00	359.93	11,780.00	7,411.39	45.54	411,456.92	717,917.14	32.129889	-103.762898
19,300.00	90.00	359.93	11,780.00	7,511.39	45.41	411,556.92	717,917.02	32.130164	-103.762897
19,400.00		359.93	11,780.00	7,611.39	45.29	411,656.92	717,916.90	32.130439	-103.762896
19,500.00		359.93	11,780.00	7,711.39	45.17	411,756.92	717,916.77	32.130714	-103.762894
19,600.00		359.93	11,780.00	7,811.39	45.04	411,856.92	717,916.65	32.130988	-103.762893
19,700.00		359.93	11,780.00	7,911.39	44.92	411,956.92	717,916.52	32.131263	-103.762892
19,800.00		359.93	11,780.00	8,011.39	44.80	412,056.92	717,916.40	32.131538	-103.762891
19,900.00		359.93	11,780.00	8,111.39	44.67	412,156.92	717,916.28	32.131813	-103.762889
20,000.00		359.93	11,780.00	8,211.39	44.55	412,256.92	717,916.15	32.132088	-103.762888
20,100.00		359.93	11,780.00	8,311.39	44.42	412,356.92	717,916.03	32.132363	-103.762887
20,200.00		359.93	11,780.00	8,411.39	44.30	412,456.92	717,915.91	32.132638	-103.762885
20,300.00		359.93	11,780.00	8,511.39	44.18	412,556.92	717,915.78	32.132913	-103.762884
20,400.00		359.93	11,780.00	8,611.39	44.05	412,656.92	717,915.66	32.133187	-103.762883
20,500.00		359.93	11,780.00	8,711.39	43.93	412,756.92	717,915.54	32.133462	-103.762881
20,600.00	90.00	359.93	11,780.00	8,811.39	43.81	412,856.92	717,915.41	32.133737	-103.762880

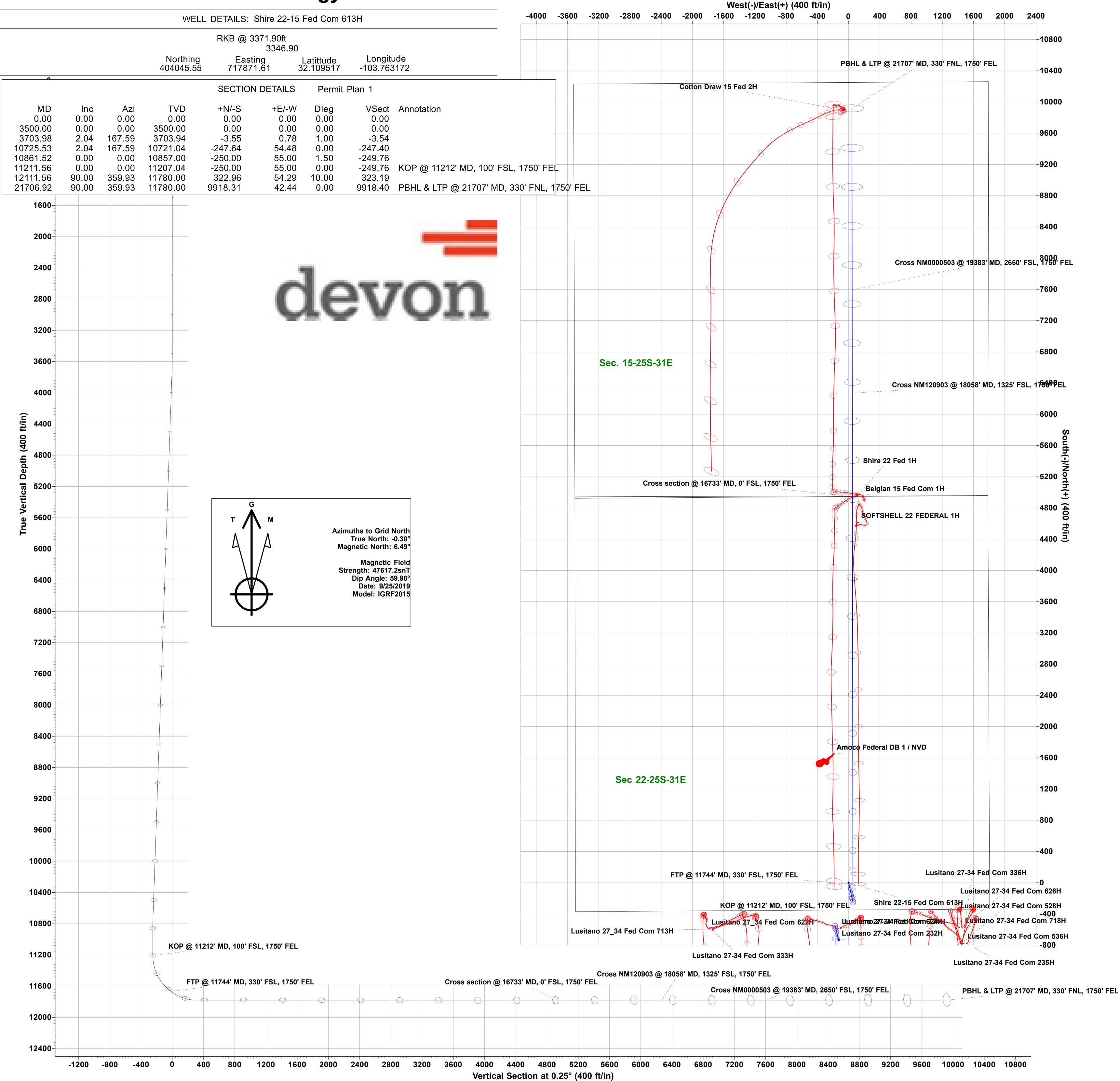
Planning Report - Geographic

Database:	EDM r5000.141 Prod US	Local Co-ordinate Reference:	Well Shire 22-15 Fed Com 613H
Company:	WCDSC Permian NM	TVD Reference:	RKB @ 3371.90ft
Project:	Eddy County (NAD 83 NM Eastern)	MD Reference:	RKB @ 3371.90ft
Site:	Sec 27-T25S-R31E	North Reference:	Grid
Well:	Shire 22-15 Fed Com 613H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Permit Plan 1		

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude
20,700.00	90.00	359.93	11,780.00	8,911.39	43.68	412,956.92	717,915.29	32.134012	-103.762879
20,800.00	90.00	359.93	11,780.00	9,011.39	43.56	413,056.92	717,915.17	32.134287	-103.762877
20,900.00	90.00	359.93	11,780.00	9,111.39	43.44	413,156.92	717,915.04	32.134562	-103.762876
21,000.00	90.00	359.93	11,780.00	9,211.39	43.31	413,256.92	717,914.92	32.134837	-103.762875
21,100.00	90.00	359.93	11,780.00	9,311.39	43.19	413,356.92	717,914.80	32.135112	-103.762873
21,200.00	90.00	359.93	11,780.00	9,411.39	43.07	413,456.92	717,914.67	32.135387	-103.762872
21,300.00	90.00	359.93	11,780.00	9,511.39	42.94	413,556.92	717,914.55	32.135661	-103.762871
21,400.00	90.00	359.93	11,780.00	9,611.39	42.82	413,656.92	717,914.43	32.135936	-103.762870
21,500.00	90.00	359.93	11,780.00	9,711.39	42.70	413,756.92	717,914.30	32.136211	-103.762868
21,600.00	90.00	359.93	11,780.00	9,811.39	42.57	413,856.92	717,914.18	32.136486	-103.762867
21,700.00	90.00	359.93	11,780.00	9,911.39	42.45	413,956.92	717,914.05	32.136761	-103.762866
21,706.91	90.00	359.93	11,780.00	9,918.30	42.44	413,963.83	717,914.05	32.136780	-103.762866
PBHL & L	TP @ 21707'	MD, 330' FNL	, 1750' FEL						
21,706.92	90.00	359.93	11,780.00	9,918.31	42.44	413,963.84	717,914.05	32.136780	-103.76286

Design Targets


Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL - Shire 22-15 Fed - plan misses target	0.00 center by 991	0.00 8.40ft at 0.00	0.00 ft MD (0.00	9,918.31 TVD, 0.00 N,	42.44 0.00 E)	413,963.84	717,914.05	32.136780	-103.762866

- Point

Plan Annotations

Measured	Vertical	Local Coordinates		
Depth	Depth	+N/-S	+E/-W	
(ft)	(ft)	(ft)	(ft)	Comment
11,211.55	11,207.03	-250.00	55.00	KOP @ 11212' MD, 100' FSL, 1750' FEL
11,743.88	11,666.02	-20.00	54.72	FTP @ 11744' MD, 330' FSL, 1750' FEL
16,733.00	11,780.00	4,944.39	48.58	Cross section @ 16733' MD, 0' FSL, 1750' FEL
21,706.91	11,780.00	9,918.30	42.44	PBHL & LTP @ 21707' MD, 330' FNL, 1750' FEL

Devon Energy

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Devon Energy Production Company LP	
LEASE NO.:	NMNM016131	
LOCATION:	Section 22, T.25 S., R.31 E., NMPM	
COUNTY:	Eddy County, New Mexico	
WELL NAME & NO.:	Shire 22-15 Fed Com 712H	
SURFACE HOLE FOOTAGE:	350'/S & 1855'/W	
BOTTOM HOLE FOOTAGE	330'/N & 1650'/W	
WELL NAME & NO.:	Shire 22-15 Fed Com 613H	
SURFACE HOLE FOOTAGE:	350'/S & 1805'/E	
BOTTOM HOLE FOOTAGE	330'/N & 1750'/E	

WELL NAME & NO.:	Shire 22-15 Fed Com 713H
SURFACE HOLE FOOTAGE:	350'/S & 1835'/E
BOTTOM HOLE FOOTAGE	330'/N & 2310'/E

WELL NAME & NO.:	Shire 22-15 Fed Com 714H
SURFACE HOLE FOOTAGE:	350'/S & 845'/E
BOTTOM HOLE FOOTAGE	330'/N & 990'/E

COA

H2S	C Yes	C No	
Potash	🖸 None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	🖸 Medium	🖸 High
Cave/Karst Potential	Critical		
Variance	🖸 None	🖸 Flex Hose	C Other
Wellhead	Conventional	🖸 Multibowl	🖸 Both
Other	□4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	Water Disposal	COM	🗖 Unit

OPERATOR IS ONLY APPROVED FOR THE FOLLOWING DESIGN, OTHER DESIGNS SUBMITTED WILL BE VOID.

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and

personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Alternate Casing Design:

- 1. The **13-3/8** inch surface casing shall be set at approximately **1100 feet** (a minimum of **70 feet (Eddy County)** into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the **8-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement might be required.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

Cement excess is less than 25%, more cement might be required.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

Page 5 of 8

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

Page 6 of 8

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.
- C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 8

Surface

Surface Casing Burst Design				
Load Case	External Pressure	Internal Pressure		
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-		
		section plus Test psi		
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole		
		section		
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point		

Surface Casing Collapse Design				
Load Case	External Pressure	Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None		
Cementing	Wet cement weight	Water (8.33ppg)		

Surface Casing Tension Design					
Load Case	Assumptions				
Overpull	100kips				
Runing in hole	3 ft/s				
Service Loads	N/A				

Casing Assumptions and Load Cases

Intermediate

Intermediate Casing Burst Design				
Load Case	External Pressure	Internal Pressure		
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-		
		section plus Test psi		
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole		
		section		
Fracture @ Shoe	Formation Pore Pressure	Dry gas		

Intermediate Casing Collapse Design				
Load Case	External Pressure	Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None		
Cementing	Wet cement weight	Water (8.33ppg)		

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 2 ft/s		
Service Loads N/A		

Production

Production Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced
		water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below
		surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest
		frac fluid

Production Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC.	None
Cementing	Wet cement weight	Water (8.33ppg)

Production Casing Tension Design			
Load Case Assumptions			
Overpull 100kips			
Runing in hole 2 ft/s			
Service Loads N/A			

Surface

Surface Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-
		section plus Test psi
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole
		section
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point

Surface Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing	Wet cement weight	Water (8.33ppg)

Surface Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 3 ft/s		
Service Loads N/A		

Casing Assumptions and Load Cases

Intermediate

Intermediate Casing Burst Design			
Load Case External Pressure Internal Pressure			
Pressure Test	Formation Pore Pressure	Max mud weight of next hole-	
		section plus Test psi	
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole	
		section	
Fracture @ Shoe	Formation Pore Pressure	Dry gas	

Intermediate Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC	None
Cementing	Wet cement weight	Water (8.33ppg)

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole 2 ft/s		
Service Loads N/A		

Production

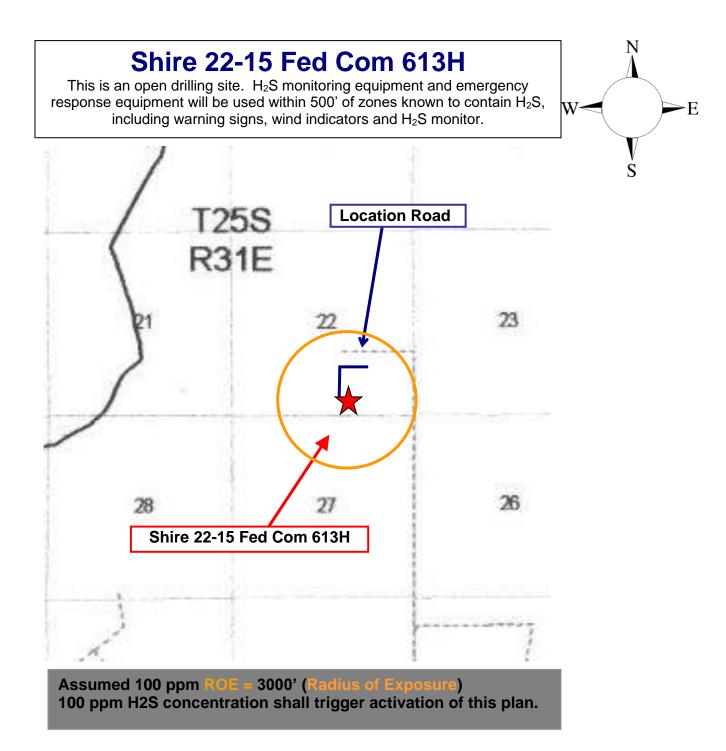
Production Casing Burst Design		
Load Case	External Pressure	Internal Pressure
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced
		water) + test psi
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below
		surface 8.6 ppg packer fluid
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest
		frac fluid

Production Casing Collapse Design		
Load Case External Pressure Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC.	None
Cementing	Wet cement weight	Water (8.33ppg)

Production Casing Tension Design				
Load Case	Assumptions			
Overpull	100kips			
Runing in hole	2 ft/s			
Service Loads	N/A			

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015

Hydrogen Sulfide (H₂S) Contingency Plan


For

Shire 22-15 Fed Com 613H

Sec-22 T-25S R-31E 350' FSL & 1805' FEL LAT. = 32.1095170' N (NAD83) LONG = 103.7631719' W

Eddy County NM

Devon Energy Corp. Cont Plan. Page 1

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE. <u>There are no homes or buildings in or near the ROE</u>.

Assumed 100 ppm ROE = 3000'

100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - Detection of H_2S , and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally, the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Common	Chemical	Specific	Threshold	Hazardous	Lethal
Name	Formula	Gravity	Limit	Limit	Concentration
Hydrogen Sulfide	H₂S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm

Characteristics of H₂S and SO₂

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H_2S zone (within 3 days or 500 feet) and weekly H_2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H_2S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H_2S .

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
 Possum Belly/Shale shaker
- Rig floor
 Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

4. Mud program:

The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:

- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office

7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.