Form 3160-3 (June 2015)

UNITED STATES

FORM APPROVED
OMB No. 1004-0137
Expires: January 31, 2013

DEPARTMENT OF THE INTE	RIOR	5. Lease Serial No.	
BUREAU OF LAND MANAGE	MENT		
APPLICATION FOR PERMIT TO DRILL	OR REENTER	6. If Indian, Allotee or	Tribe Name
1a. Type of work: DRILL REENT	ER	7. If Unit or CA Agree	ement, Name and No.
1b. Type of Well: Oil Well Gas Well Other			
	Zana Multiple Zone	8. Lease Name and W	ell No.
1c. Type of Completion: Hydraulic Fracturing Single Z	Zone Multiple Zone		
2. Name of Operator		9. API Well No. 30 015 47628	
3a. Address 3b. I	Phone No. (include area code)	10. Field and Pool, or	Exploratory
4. Location of Well (Report location clearly and in accordance with an	ny State requirements.*)	11. Sec., T. R. M. or B	Blk. and Survey or Area
At surface			
At proposed prod. zone			
14. Distance in miles and direction from nearest town or post office*		12. County or Parish	13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	No of acres in lease 17. Spaci	ng Unit dedicated to this	s well
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft.	Proposed Depth 20. BLM.	BIA Bond No. in file	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	Approximate date work will start*	23. Estimated duration	1
24.	Attachments		
The following, completed in accordance with the requirements of Onsh (as applicable)	ore Oil and Gas Order No. 1, and the I	Hydraulic Fracturing rule	e per 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan A Drilling Plan	4. Bond to cover the operation Item 20 above).	s unless covered by an e	existing bond on file (see
2. A Drilling Plan.3. A Surface Use Plan (if the location is on National Forest System Lan SUPO must be filed with the appropriate Forest Service Office).	,	mation and/or plans as m	nay be requested by the
25. Signature	Name (Printed/Typed)	Γ	Date
Title			
Approved by (Signature)	Name (Printed/Typed)		Date
Title	Office		
Application approval does not warrant or certify that the applicant hold applicant to conduct operations thereon. Conditions of approval, if any, are attached.	s legal or equitable title to those rights	in the subject lease which	ch would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it of the United States any false, fictitious or fraudulent statements or repr			y department or agency

Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

Will require a directional survey with the C-104

- Surface casing must be set 25' below top of Rustler
- Anhydrite in order to seal off protectable water

(Continued on page 2)

APPROVED WITH CONDITIONS **Approval Date: 09/25/2020**

Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string

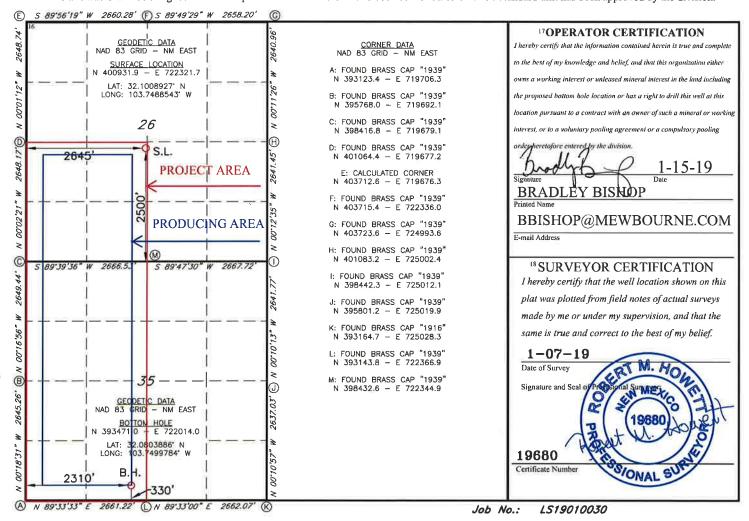
KP 11/4/2020 GEO Review

*(Instructions on page 2)

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720
District II
811 S. First St., Artesia, NM 88210
Phone: (575) 748-1283 Fax: (575) 748-9720
District III
1000 Rio Brazos Road, Aztec, NM 87410
Phone: (505) 334-6178 Fax: (505) 334-6170
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505
Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office


☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

API Numbe	r	² Pool Code		
30 015 47628		98220	CAMP GAS	
⁴ Property Code 329780			perty Name /35 WOKN FED COM	⁶ Well Number 3H
7 OGRID NO. 14744			erator Name COMPANY	⁹ Elevation 3339

UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County	
				Lot Iuli					,	
K	26	25S	31E		2500	SOUTH	2645	WEST	EDDY	
			11]	Bottom I	Iole Location	If Different From	om Surface			
UL or lot no.	Section	Township	Range	Lot Idn Feet from the North/South line Feet from the East/West line Count						
N	35	25S	31E		330	SOUTH	2310	WEST	EDDY	
12 Dedicated Acres	13 Joint	or Infill 14	4 Consolidation	Code 15	Order No.					
480										

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

Intent		As Dril	led											
Ope	rator Na	me: RNE OIL	COMPA	ANY			perty N MSTR			/35 V	VOKI	N FEI	D COM	Well Number 3H
		(4.2.2)												
UL K	Section 26	Township 25S	Range 31E	Lot	Feet 2500		From N	1/S	Feet 231		Fron	n E/W	County	
Latitu 32.	ide 100894	19			Longitu -103		9349)	1		1		NAD 83	
First 1	Гаke Poir	nt (FTP)												
UL K	Section 26	Township 25S	Range 31E	Lot	Feet 2318		From N	N/S	Feet 231		Fron	n E/W	County EDDY	
Latitu 32 . ′	^{ide} 100394	16			Longitu -103		9360)					NAD 83	
Last T	ake Poin	it (LTP)												
UL N	Section 35	Township 25S	Range 31E	Lot	Feet 330	S	m N/S	Feet 231		From W	E/W	Count		
32.0	^{ide} 080388	36			Longitu -103		9784	Ļ				NAD 83		
		e defining v infill well?	vell for th	e Horiz	zontal Sp	oacin	g Unit?	· [Y]				
Spacii	ng Unit.	lease prov	ide API if	availab	ole, Opei	rator	Name	and v	vell n	umbe	r for I	Definiı	ng well fo	r Horizontal
API#								•						
Ope	rator Na	me:				Pro	perty N	ıame	:					Well Number

Additional Operator Remarks

Location of Well

1. SHL: NESW / 2500 FSL / 2645 FWL / TWSP: 25S / RANGE: 31E / SECTION: 26 / LAT: 32.1008927 / LONG: -103.7488543 (TVD: 0 feet, MD: 0 feet) PPP: NESW / 2318 FSL / 2310 FWL / TWSP: 25S / RANGE: 31E / SECTION: 26 / LAT: 32.1003946 / LONG: -103.749936 (TVD: 11712 feet, MD: 11774 feet) PPP: NESW / 1324 FSL / 2310 FWL / TWSP: 25S / RANGE: 31E / SECTION: 26 / LAT: 32.0976622 / LONG: -103.7499418 (TVD: 11806 feet, MD: 12791 feet) PPP: NENW / 0 FNL / 2310 FWL / TWSP: 25S / RANGE: 31E / SECTION: 35 / LAT: 32.0940227 / LONG: -103.7499495 (TVD: 11791 feet, MD: 14115 feet) BHL: SESW / 330 FSL / 2310 FWL / TWSP: 25S / RANGE: 31E / SECTION: 35 / LAT: 32.0803886 / LONG: -103.7499784 (TVD: 11736 feet, MD: 19075 feet)

BLM Point of Contact

Name: Tenille Ortiz

Title: Legal Instruments Examiner

Phone: 5752342224 Email: tortiz@blm.gov

(Form 3160-3, page 3)

Approval Date: 09/25/2020

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Mewbourne Oil Company

LEASE NO.: NMNM128360

WELL NAME & NO.: Armstrong 26-35 W0KN Fed Com 3H

SURFACE HOLE FOOTAGE: 2500'/S & 2645'/W **BOTTOM HOLE FOOTAGE** 330'/S & 2310'/W

LOCATION: | Section 26, T.25 S., R.31 E., NMP

COUNTY: Eddy County, New Mexico

COA

H2S	O Yes	• No	
Potash	None	Secretary	© R-111-P
Cave/Karst Potential	O Low	• Medium	O High
Cave/Karst Potential	Critical		
Variance	O None	• Flex Hose	Other
Wellhead	Conventional	• Multibowl	OBoth
Other	☐4 String Area	☐ Capitan Reef	□WIPP
Other	✓ Fluid Filled	☐ Cement Squeeze	☐ Pilot Hole
Special Requirements	☐ Water Disposal	☑ COM	☐ Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 1100 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

- completing the cement job.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

First intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing shall be set at approximately 4250 feet is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 Excess cement calculates to 18%, additional cement might be required.
 - ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Production casing must be kept fluid filled to meet BLM minimum collapse requirement.

3. The minimum required fill of cement behind the 7 inch production casing is:

Option 1 (Single Stage):

Cement should tie-back at least 200 feet into previous casing string.
 Operator shall provide method of verification.
 Excess cement calculates to 4%, additional cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 4-1/2 inch production liner is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig

- Notify the BLM when moving in and removing the Spudder Rig.
- Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
- BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall

have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

OTA09012020

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

09/25/2020

APD ID: 10400038115

Submission Date: 03/12/2019

Highlighted data reflects the most recent changes

Operator Name: MEWBOURNE OIL COMPANY

Well Name: ARMSTRONG 26/35 W0KN FED COM

Well Number: 3H

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
375831	UNKNOWN	3339	27	27		NONE	N
375832	RUSTLER	2239	1100	1100	ANHYDRITE, DOLOMITE	USEABLE WATER	N
375833	TOP SALT	1949	1390	1390	SALT	NONE	N
375834	BASE OF SALT	-780	4119	4119	SALT	NONE	N
375838	LAMAR	-986	4325	4325	LIMESTONE	NATURAL GAS, OIL	N
375835	BELL CANYON	-1011	4350	4350	SANDSTONE	NATURAL GAS, OIL	N
375839	CHERRY CANYON	-1960	5299	5299	SANDSTONE	NATURAL GAS, OIL	N
375836	MANZANITA	-2159	5498	5498		NONE	N
375840	BONE SPRING	-4985	8324	8324	LIMESTONE, SHALE	NATURAL GAS, OIL	N
375841	BONE SPRING 1ST	-6218	9557	9557	SANDSTONE	NATURAL GAS, OIL	N
375842	BONE SPRING 2ND	-6611	9950	9950	SANDSTONE	NATURAL GAS, OIL	N
375844	BONE SPRING 3RD	-7878	11217	11217	SANDSTONE	NATURAL GAS, OIL	N
375845	WOLFCAMP	-8328	11667	11667	LIMESTONE, SANDSTONE, SHALE	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

Well Name: ARMSTRONG 26/35 WOKN FED COM Well Number: 3H

Pressure Rating (PSI): 10M Rating Depth: 19075

Equipment: Annular, Pipe Ram, Blind Ram

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. Anchors are not required by manufacturer. A multibowl wellhead is being used. See attached schematic.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Choke Diagram Attachment:

Armstrong_26_35_W0KN_Fed_Com_3H_Flex_Line_Specs_20191018112727.pdf

Armstrong_26_35_W0KN_Fed_Com_3H_Flex_Line_Specs_API_16C_20191018112727.pdf

Armstrong_26_35_W0KN_Fed_Com_3H_10M_BOPE_Choke_Diagram_20200820112311.pdf

BOP Diagram Attachment:

Armstrong_26_35_W0KN_Fed_Com_3H_10M_Annular_BOP_Variance_20200820112324.doc
Armstrong_26_35_W0KN_Fed_Com_3H_10M_BOPE_Schematic_20200820112324.pdf
Armstrong_26_35_W0KN_Fed_Com_3H_10M_Multi_Bowl_WH_20200820112324.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	1100	0	1100			1100	H-40	48	ST&C	1.53	3.44	DRY	6.1	DRY	10.2 5
2		12.2 5	9.625	NEW	API	Υ	0	4250	0	4250			4250	J-55	36	LT&C	1.13	1.96	DRY	2.9	DRY	3.61
	PRODUCTI ON	8.75	7.0	NEW	API	N	0	12097	0	11814			12097	HCP -110	26	LT&C	1.34	1.7	DRY	2.2	DRY	2.64
4	LINER	6.12 5	4.5	NEW	API	N	11343	19075	11814	11736				P- 110	13.5	LT&C	1.46	1.69	DRY	3.24	DRY	4.04

Casing Attachments

Well Name: ARMSTRONG 26/35 W0KN FED COM Well Number: 3H
Casing Attachments
Casing ID: 1 String Type: SURFACE Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Armstrong_26_35_W0KN_Fed_Com_3H_Csg_Assumptions_20190311145621.pdf
Casing ID: 2 String Type: INTERMEDIATE Inspection Document:
Spec Document:
Tapered String Spec:
Armstrong_26_35_W0KN_Fed_Com_3H_Intermediate_Tapered_String_Diagram_20190311145754.pdf
Casing Design Assumptions and Worksheet(s):
Armstrong_26_35_W0KN_Fed_Com_3H_Csg_Assumptions_20190311145724.pdf
Casing ID: 3 String Type: PRODUCTION Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Armstrong_26_35_W0KN_Fed_Com_3H_Csg_Assumptions_20190311145846.pdf

Well Name: ARMSTRONG 26/35 W0KN FED COM Well Number: 3H

Casing Attachments

Casing ID: 4 String Type: LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Armstrong_26_35_W0KN_Fed_Com_3H_Csg_Assumptions_20190311150052.pdf$

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	909	600	2.12	12.5	1272	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail		909	1100	200	1.34	14.8	268	100	Class C	Retarder
INTERMEDIATE	Lead		0	3558	650	2.12	12.5	1378	25	Class C	Salt, Gel, Extender, LCM
INTERMEDIATE	Tail		3558	4250	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTION	Lead	5498	4050	4811	70	2.12	12.5	148	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		4811	5498	100	1.34	14.8	134	25	Class C	Retarder
PRODUCTION	Lead	5498	5498	9618	370	2.12	12.5	784	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		9618	1209 7	400	1.18	15.6	472	25	Class H	Retarder, Fluid Loss, Defoamer
LINER	Lead		1134	1907 5	310	2.97	11.2	921	25	Class H	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-Settling Agent

Well Name: ARMSTRONG 26/35 W0KN FED COM Well Number: 3H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Lost circulation material Sweeps Mud scavengers in surface hole

Describe the mud monitoring system utilized: Pason, PVT, visual monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	РН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1100	4250	SALT SATURATED	10	10							
4250	1181 4	WATER-BASED MUD	8.6	9.5							
1173 6	1181 4	OIL-BASED MUD	10	13							
0	1100	SPUD MUD	8.6	8.8							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

GR/CNL will be run from KOP (11,343') to surface.

List of open and cased hole logs run in the well:

DS,GR,MWD,MUDLOG

Coring operation description for the well:

None

Well Name: ARMSTRONG 26/35 W0KN FED COM Well Number: 3H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7372 Anticipated Surface Pressure: 4774.68

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Armstrong_26_35_W0KN_Fed_Com_3H_H2S_Plan_20190311150627.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Armstrong_26_35_W0KN_Fed_Com_3H_Dir_Plan_20190311150701.pdf

Armstrong_26_35_W0KN_Fed_Com_3H_Dir_Plot_20190311150702.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

Armstrong_26_35_W0KN_Fed_Com_3H_C101_20190311150718.pdf

Armstrong_26_35_W0KN_Fed_Com_3H_Drlg_Program_20191216153222.doc

Other Variance attachment:

GATES E & S NORTH AMERICA, INC. **134 44TH STREET CORPUS CHRISTI, TEXAS 78405**

PHONE: 361-887-9807

361-887-0812 FAX:

EMAIL: Tim.Cantu@gates.com

www.gates.com

10K	CEMENTING	ASSEMBLY	PRESSURE TEST	CERTIFICATE
-----	-----------	-----------------	----------------------	--------------------

Customer:	AUSTIN DISTRIBUTING	Test Date:	4/30/2015
Customer Ref. :	4060578	Hose Serial No.:	D-043015-7
Invoice No. :	500506	Created By:	JUSTIN CROPPER
Product Description:		10K3.548.0CK4.1/1610KFLGE/E	LE
· · ·	4.46.104.55		
· · ·	4 1/16 10K FLG	End Fitting 2:	4 1/16 10K FLG
Product Description: End Fitting 1 : Gates Part No. :	4 1/16 10K FLG 4773-6290		

Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9.

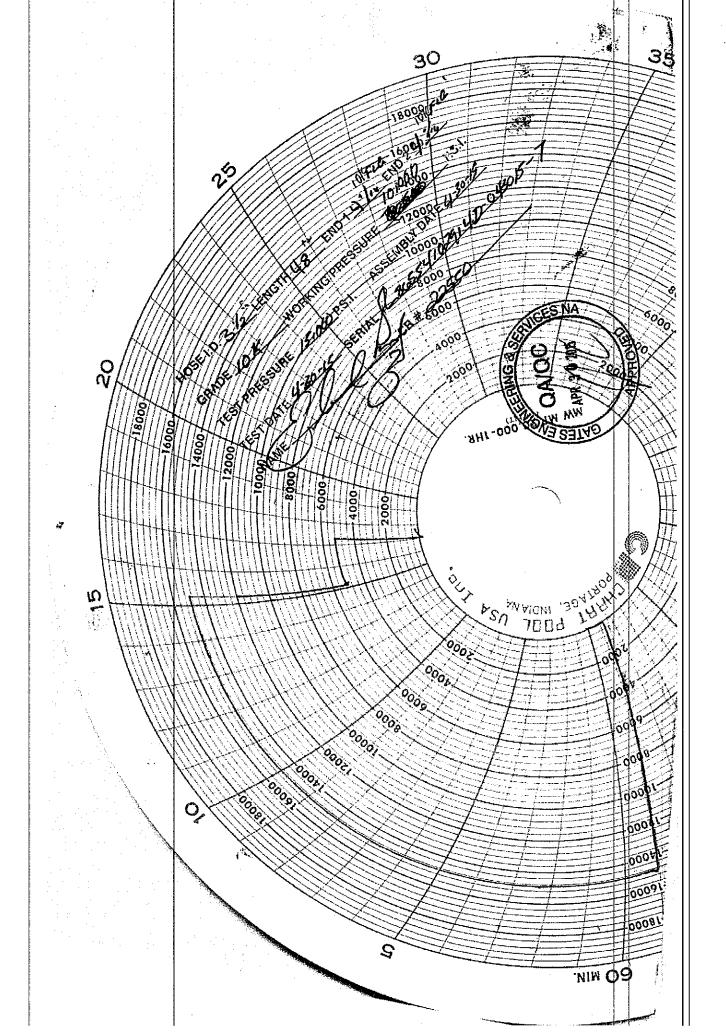
Quality Manager:

Date:

Signature:

QUALITY

Produciton:


4/30/2015 Date:

Signature :

PRODUCTION 4/30/2015

Forn PTC - 01 Rev.0 2

GATES ENGINEERING & SERVICES NORTH AMERICA 7603 Prairie Oak Dr. Houston, TX 77086 PHONE: (281) 602 - 4119

FAX:

EMAIL: Troy.Schmidt@gates.com

WEB: www.gates.com

10K CHOKE & KILL ASSEMBLY PRESSURE TEST CERTIFICATE

Customer:	A-7 AUSTIN INC DBA AUSTIN HOSE	Test Date:	8/20/2018
Customer Ref.:	4101901	Hose Serial No.:	H-082018-10
Invoice No.:	511956	Created By:	Moosa Naqvi
Draduot Description:	10VF	3 035 0CK41/1610KELGEXDVELT	I/E
Product Description:	10KF	3.035.0CK41/1610KFLGFXDxFLT	L/E
Product Description: End Fitting 1: Gates Part No.:	10KF 4 1/16 in. Fixed Flange 68503010-9721632	3.035.0CK41/1610KFLGFXDxFLT I	4 1/16 in. Float Flange L40695052218H-082018-10

Gates Engineering & Services North America certifies that the following hose assembly has successfully passed all pressure testing requirements set forth in Gates specifications: GTS-04-052 (for 5K assemblies) or GTS-04-053 (10K assemblies), which include reference to Specification API 16C (2nd Edition); sections 7.5.4, 7.5.9, and 10.8.7. A test graph will accompany this test certificate to illustrate conformity to test requirements.

Quality:

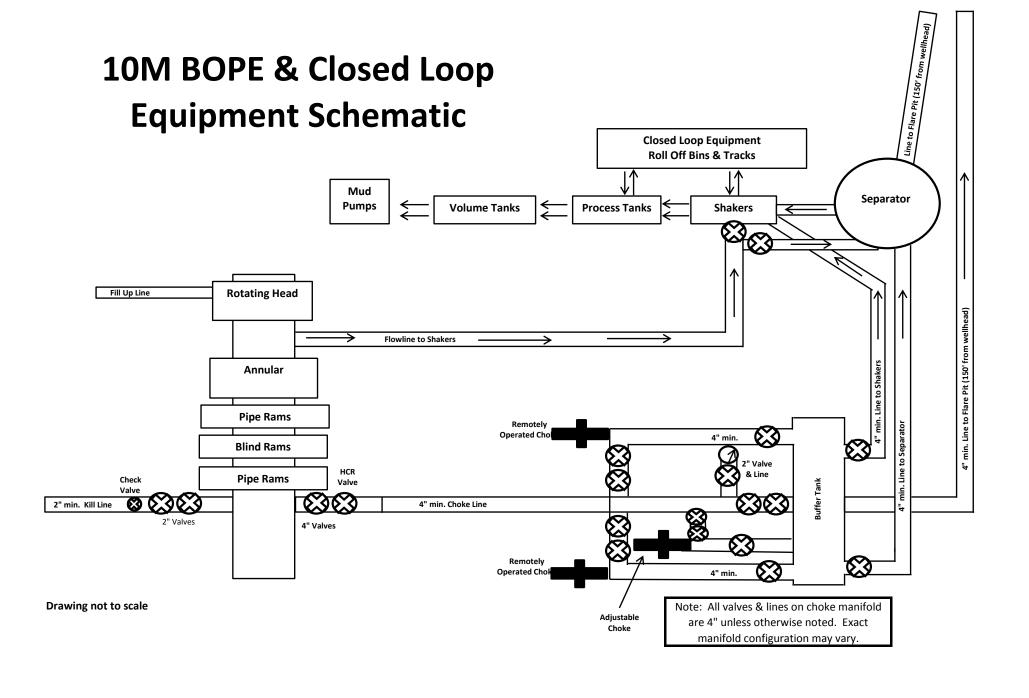
Date :

QUALITY

8/20/2018

Signature:

Production:


Date : Signature :

Form PTC - 01 Rev.0 2

PRODUCTION

8/20/2018

10,000 PSI Annular BOP Variance Request

Mewbourne Oil Company request a variance to use a 5000 psi annular BOP with a 10,000 psi BOP stack. The component and compatibility tables along with the general well control plans demonstrate how the 5000 psi annular BOP will be protected from pressures that exceed its rated working pressure (RWP). The pressure at which the control of the wellbore is transferred from the annular preventer to another available preventer will not exceed 3500 psi (70% of the RWP of the 5000 psi annular BOP).

1. Component and Preventer Compatibility Tables

The tables below outline the tubulars and the compatible preventers in use. This table, combined with the drilling fluid, documents that two barriers to flow will be maintained at all times.

12-1/4" Intermediate Hole Section 10M psi Requirement										
Component OD Primary Preventer RWP Alternate Preventer(s)										
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M					
	4.500"			Lower 3.5"-5.5" VBR	10M					
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M					
	4.500"			Lower 3.5"-5.5" VBR	10M					
Jars	6.500"	Annular	5M	ı	-					
DCs and MWD tools	6.500"-	Annular	5M	-	-					
	8.000"									
Mud Motor	8.000"-	Annular	5M	-	-					
	9.625"									
Intermediate Casing	9.625"	Annular	5M	-	-					
Open-Hole	-	Blind Rams	10M	-	-					

8-3/4" Production Hole Section 10M psi Requirement											
Component OD Primary Preventer RWP Alternate Preventer(s)											
Drillpipe	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M						
	4.500"			Lower 3.5"-5.5" VBR	10M						
HWDP	5.000" or	Annular	5M	Upper 3.5"-5.5" VBR	10M						
	4.500"			Lower 3.5"-5.5" VBR	10M						
Jars	6.500"	Annular	5M	-	-						
DCs and MWD tools	6.500"-	Annular	5M	-	-						
	8.000"										
Mud Motor	6.750"-	Annular	5M	-	-						
	8.000"										
Production Casing	7"	Annular	5M	-	-						

Open-Hole	-	Blind Rams	10M	-	-

6-1/8" Lateral Hole Section 10M psi Requirement										
Component OD Primary Preventer RWP Alternate Preventer(s)										
Drillpipe	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M					
				Lower 3.5"-5.5" VBR	10M					
HWDP	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M					
				Lower 3.5"-5.5" VBR	10M					
DCs and MWD tools	4.750"-	Annular	5M	Upper 3.5"-5.5" VBR	10M					
	5.500"			Lower 3.5"-5.5" VBR	10M					
Mud Motor	4.750"-	Annular	5M	Upper 3.5"-5.5" VBR	10M					
	5.500"			Lower 3.5"-5.5" VBR	10M					
Production Casing	4.500"	Annular	5M	Upper 3.5"-5.5" VBR	10M					
				Upper 3.5"-5.5" VBR	10M					
Open-Hole	-	Blind Rams	10M	-	-					

VBR = Variable Bore Ram

2. Well Control Procedures

Below are the minimal high-level tasks prescribed to assure a proper shut-in while drilling, tripping, running casing, pipe out of the hole (open hole), and moving the BHA through the BOPs. At least one well control drill will be performed weekly per crew to demonstrate compliance with the procedure and well control plan. The well control drill will be recorded in the daily drilling log. The type of drill will be determined by the ongoing operations, but reasonable attempts will be made to vary the type of drill conducted (pit, trip, open hole, choke, etc.). This well control plan will be available for review by rig personnel in the Mewbourne Oil Company drilling supervisor's office on location and on the rig floor. All BOP equipment will be tested as per Onshore O&G Order No. 2 with the exception of the 5000 psi annular which will be tested to 70% of its RWP.

General Procedure While Drilling

- 1. Sound alarm (alert crew)
- 2. Space out drill string
- 3. Shut down pumps (stop pumps and rotary)
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)

- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

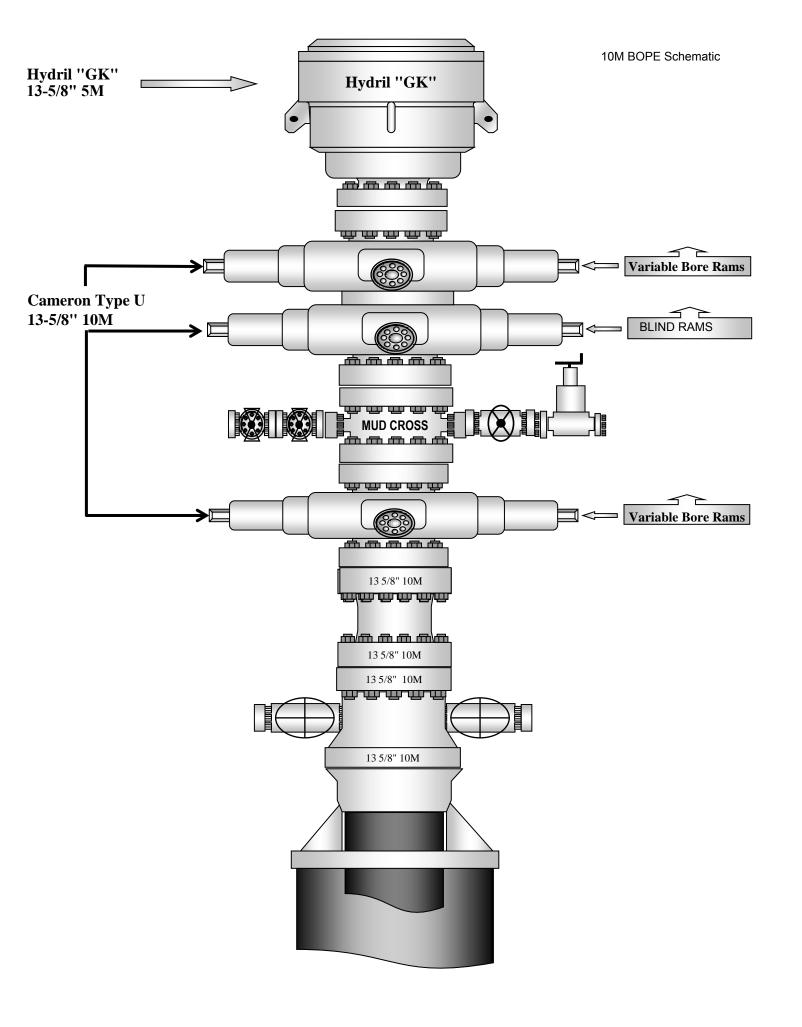
General Procedure While Tripping

- 1. Sound alarm (alert crew)
- 2. Stab full-opening safety valve & close
- 3. Space out drill string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.

General Procedure While Running Production Casing

1. Sound alarm (alert crew)

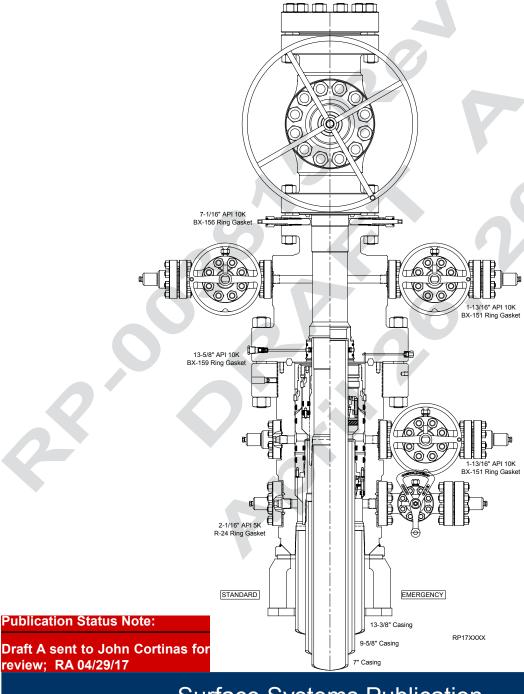
- 2. Stab crossover and full-opening safety valve and close
- 3. Space out string
- 4. Shut-in well (uppermost applicable BOP, typically annular preventer, first. HCR & choke will already be in the closed position.)
- 5. Confirm shut-in
- 6. Notify toolpusher/company representative
- 7. Read and record the following:
 - a. SIDPP & SICP
 - b. Pit gain
 - c. Time
- 8. Regroup and identify forward plan
- 9. If pressure has built or is anticipated during the kill to reach 70% or greater of the RWP of the annular preventer, confirm spacing and close the upper variable bore rams.


General Procedure With No Pipe In Hole (Open Hole)

- 1. Sound alarm (alert crew)
- 2. Shut-in with blind rams (HCR & choke will already be in the closed position)
- 3. Confirm shut-in
- 4. Notify toolpusher/company representative
- 5. Read and record the following:
 - a. SICP
 - b. Pit gain
 - c. Time
- 6. Regroup and identify forward plan

General Procedures While Pulling BHA Through Stack

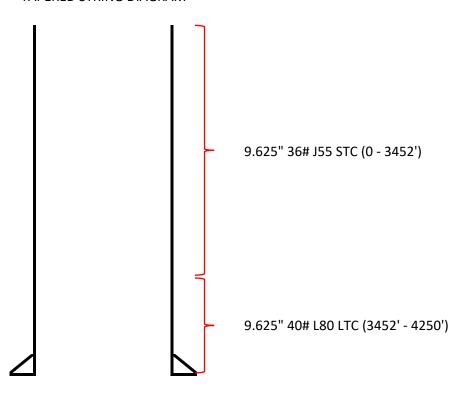
- 1. PRIOR to pulling last joint of drillpipe through stack:
 - a. Perform flow check. If flowing, continue to (b).
 - b. Sound alarm (alert crew)
 - c. Stab full-opening safety valve and close
 - d. Space out drill string with tool joint just beneath the upper variable bore rams
 - e. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - f. Confirm shut-in
 - g. Notify toolpusher/company representative
 - h. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - i. Regroup and identify forward plan
- 2. With BHA in the stack and compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. Stab crossover and full-opening safety valve and close
 - c. Space out drill string with upset just beneath the upper variable bore rams
 - d. Shut-in using upper variable bore rams (HCR & choke will already be in the closed position)
 - e. Confirm shut-in
 - f. Notify toolpusher/company representative
 - g. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain


- iii. Time
- h. Regroup and identify forward plan
- 3. With BHA in the stack and NO compatible ram preventer and pipe combination immediately available:
 - a. Sound alarm (alert crew)
 - b. If possible, pull string clear of the stack and follow "Open Hole" procedure.
 - c. If impossible to pull string clear of the stack:
 - d. Stab crossover, make up one joint/stand of drillpipe and full-opening safety valve and close
 - e. Space out drill string with tooljoint just beneath the upper variable bore ram
 - f. Shut-in using upper variable bore ram (HCR & choke will already be in the closed position)
 - g. Confirm shut-in
 - h. Notify toolpusher/company representative
 - i. Read and record the following:
 - i. SIDPP & SICP
 - ii. Pit gain
 - iii. Time
 - j. Regroup and identify forward plan

NOTE DRAFT Publication is for Review ONLY. NOT approved for System Installation. NOT approved for field usage. NOT approved for distribution. If you obtain a DRAFT copy - it is your responsibility to verify SAP revision level or contact Houston Engineering to ensure document has been approved and released.

RUNNING PROCEDURE

Mewbourne Oil Co



Surface Systems Publication

13-5/8" 10K MN-DS System 13-3/8" x 9-5/8" x 7" Casing Program RP-003815 Rev 01 Draft A

TAPERED STRING DIAGRAM

			JOINT	
	COLLAPSE	BURST	YIELD	BODY YIELD
36#	1.130	1.960	2.900	3.610
40#	1.400	2.600	22.780	28.700

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	1100'	13.375"	48	H40	STC	1.53	3.44	6.10	10.25
12.25"	0'	3452'	9.625"	36	J55	LTC	1.13	1.96	2.90	3.61
12.25"	3452'	4250'	9.625"	40	L80	LTC	1.40	2.60	22.78	28.70
8.75"	0'	12097'	7"	26	HCP110	LTC	1.34	1.70	2.20	2.64
6.125"	11343'	19075'	4.5"	13.5	P110	LTC	1.46	1.69	3.24	4.04
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	Y						
Is casing API approved? If no, attach casing specification sheet.							
Is premium or uncommon casing planned? If yes attach casing specification sheet.							
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y						
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y						
Is well located within Capitan Reef?	N						
If yes, does production casing cement tie back a minimum of 50' above the Reef?							
Is well within the designated 4 string boundary.							
Is well located in SOPA but not in R-111-P?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?							
Is well located in R-111-P and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2 nd string set 100' to 600' below the base of salt?							
Is well located in high Cave/Karst?	N						
If yes, are there two strings cemented to surface?	_						
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?							
Is well located in critical Cave/Karst?	N						
If yes, are there three strings cemented to surface?							

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	1100'	13.375"	48	H40	STC	1.53	3.44	6.10	10.25
12.25"	0'	3452'	9.625"	36	J55	LTC	1.13	1.96	2.90	3.61
12.25"	3452'	4250'	9.625"	40	L80	LTC	1.40	2.60	22.78	28.70
8.75"	0'	12097'	7"	26	HCP110	LTC	1.34	1.70	2.20	2.64
6.125"	11343'	19075'	4.5"	13.5	P110	LTC	1.46	1.69	3.24	4.04
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N						
Is casing new? If used, attach certification as required in Onshore Order #1	Y						
Is casing API approved? If no, attach casing specification sheet.							
Is premium or uncommon casing planned? If yes attach casing specification sheet.							
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y						
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y						
Is well located within Capitan Reef?	N						
If yes, does production casing cement tie back a minimum of 50' above the Reef?							
Is well within the designated 4 string boundary.							
Is well located in SOPA but not in R-111-P?	N						
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?							
Is well located in R-111-P and SOPA?	N						
If yes, are the first three strings cemented to surface?							
Is 2 nd string set 100' to 600' below the base of salt?							
Is well located in high Cave/Karst?	N						
If yes, are there two strings cemented to surface?	_						
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?							
Is well located in critical Cave/Karst?	N						
If yes, are there three strings cemented to surface?							

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	1100'	13.375"	48	H40	STC	1.53	3.44	6.10	10.25
12.25"	0'	3452'	9.625"	36	J55	LTC	1.13	1.96	2.90	3.61
12.25"	3452'	4250'	9.625"	40	L80	LTC	1.40	2.60	22.78	28.70
8.75"	0'	12097'	7"	26	HCP110	LTC	1.34	1.70	2.20	2.64
6.125"	11343'	19075'	4.5"	13.5	P110	LTC	1.46	1.69	3.24	4.04
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N				
Is casing new? If used, attach certification as required in Onshore Order #1	Y				
Is casing API approved? If no, attach casing specification sheet.					
Is premium or uncommon casing planned? If yes attach casing specification sheet.					
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y				
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y				
Is well located within Capitan Reef?	N				
If yes, does production casing cement tie back a minimum of 50' above the Reef?					
Is well within the designated 4 string boundary.					
Is well located in SOPA but not in R-111-P?	N				
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?					
Is well located in R-111-P and SOPA?	N				
If yes, are the first three strings cemented to surface?					
Is 2 nd string set 100' to 600' below the base of salt?					
Is well located in high Cave/Karst?	N				
If yes, are there two strings cemented to surface?	_				
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?					
Is well located in critical Cave/Karst?	N				
If yes, are there three strings cemented to surface?					

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

2. Casing Program

Hole	Casing Interval		Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	1100'	13.375"	48	H40	STC	1.53	3.44	6.10	10.25
12.25"	0'	3452'	9.625"	36	J55	LTC	1.13	1.96	2.90	3.61
12.25"	3452'	4250'	9.625"	40	L80	LTC	1.40	2.60	22.78	28.70
8.75"	0'	12097'	7"	26	HCP110	LTC	1.34	1.70	2.20	2.64
6.125"	11343'	19075'	4.5"	13.5	P110	LTC	1.46	1.69	3.24	4.04
				BLM Minimum Safety Factor			1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N				
Is casing new? If used, attach certification as required in Onshore Order #1	Y				
Is casing API approved? If no, attach casing specification sheet.					
Is premium or uncommon casing planned? If yes attach casing specification sheet.					
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y				
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y				
Is well located within Capitan Reef?	N				
If yes, does production casing cement tie back a minimum of 50' above the Reef?					
Is well within the designated 4 string boundary.					
Is well located in SOPA but not in R-111-P?	N				
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?					
Is well located in R-111-P and SOPA?	N				
If yes, are the first three strings cemented to surface?					
Is 2 nd string set 100' to 600' below the base of salt?					
Is well located in high Cave/Karst?	N				
If yes, are there two strings cemented to surface?	_				
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?					
Is well located in critical Cave/Karst?	N				
If yes, are there three strings cemented to surface?					

<u>Hydrogen Sulfide Drilling Operations Plan</u> **Mewbourne Oil Company**

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer.
- 2. <u>Protective Equipment for Essential Personnel</u>

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. <u>Visual Warning Systems</u>

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medical Cente	r of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Office Fax 2 nd Fax	575-393-5905 575-397-6252 575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
- -	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Armstrong 26/35 W0KN Fed Com #3H

SL: 2500 FSL & 2645 FWL (Sec 26)

Sec 26, T25S, R31E

BHL: 330 FSL & 2310 FWL (Sec 35)

Plan: Design #1

Standard Planning Report

05 March, 2019

Database: Hobbs

Project:

Company:

Mewbourne Oil Company Eddy County, New Mexico NAD 83

Armstrong 26/35 W0KN Fed Com #3H Site: Well: SL: 2500 FSL & 2645 FWL (Sec 26)

Wellbore: BHL: 330 FSL & 2310 FWL (Sec 35)

Design: Design #1 Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Armstrong 26/35 W0KN Fed Com #3H WELL @ 3366.0usft (Original Well Elev) WELL @ 3366.0usft (Original Well Elev)

Minimum Curvature

Project Eddy County, New Mexico NAD 83

US State Plane 1983 Map System: North American Datum 1983 Geo Datum:

New Mexico Eastern Zone Map Zone:

System Datum:

Mean Sea Level

Site Armstrong 26/35 W0KN Fed Com #3H

Northing: 400,931.90 usft 32.1008926 Site Position: Latitude: From: Мар Easting: 722,321.70 usft Longitude: -103.7488544 **Position Uncertainty:** 0.0 usft Slot Radius: 13-3/16 " **Grid Convergence:** 0.31

Well SL: 2500 FSL & 2645 FWL (Sec 26)

Well Position +N/-S 0.0 usft 400,931.90 usft Latitude: 32.1008926 Northing: +E/-W 0.0 usft Easting: 722,321.70 usft Longitude: -103.7488544

Position Uncertainty 0.0 usft Wellhead Elevation: 3,366.0 usft Ground Level: 3,339.0 usft

BHL: 330 FSL & 2310 FWL (Sec 35) Wellbore Field Strength Magnetics **Model Name** Sample Date Declination Dip Angle (nT) (°) (°) **I**GRF2010 3/5/2019 6.70 59.85 47,754

Design #1 Design Audit Notes: Tie On Depth: Version: Phase: **PROTOTYPE** 0.0 **Vertical Section:** Depth From (TVD) +N/-S +E/-W Direction (usft) (usft) (usft) (°) 0.0 0.0 0.0 182.36

Plan Sections										
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.00	0.00	0.00	0.00	
1,226.4	1.90	269.83	1,226.3	0.0	-2.1	1.50	1.50	0.00	269.83	
11,216.1	1.90	269.83	11,210.7	-1.0	-332.5	0.00	0.00	0.00	0.00	
11,342.5	0.00	0.00	11,337.0	-1.0	-334.6	1.50	-1.50	0.00	180.00	KOP: 2500 FSL & 231
12,097.2	90.64	179.79	11,814.0	-483.4	-332.9	12.01	12.01	0.00	179.79	
19,075.2	90.64	179.79	11,736.0	-7,460.9	-307.7	0.00	0.00	0.00	0.00	BHL: 330 FSL & 2310

Database: Hobbs

Design:

Company: Mewbourne Oil Company

 Project:
 Eddy County, New Mexico NAD 83

 Site:
 Armstrong 26/35 W0KN Fed Com #3H

 Well:
 SL: 2500 FSL & 2645 FWL (Sec 26)

 Wellbore:
 BHL: 330 FSL & 2310 FWL (Sec 35)

Design #1

Local Co-ordinate Reference:

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Site Armstrong 26/35 W0KN Fed Com #3H WELL @ 3366.0usft (Original Well Elev) WELL @ 3366.0usft (Original Well Elev)

Grid

Minimum Curvature

ned Survey									
ilieu Survey									
Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	SL & 2645 FWL (S	•							
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	1.50	269.83	1,200.0	0.0	-1.3	0.1	1.50	1.50	0.00
1,226.4	1.90	269.83	1,226.3	0.0	-2.1	0.1	1.50	1.50	0.00
1,300.0	1.90	269.83	1,299.9	0.0	-4.5	0.2	0.00	0.00	0.00
1,400.0	1.90	269.83	1,399.9	0.0	-7.8	0.3	0.00	0.00	0.00
1,500.0	1.90	269.83	1,499.8	0.0	-11.1	0.5	0.00	0.00	0.00
1,600.0	1.90	269.83	1,599.8	0.0	-14.4	0.6	0.00	0.00	0.00
1,700.0	1.90	269.83	1,699.7	-0.1	-17.8	0.8	0.00	0.00	0.00
1,800.0	1.90	269.83	1,799.7	-0.1	-21.1	0.9	0.00	0.00	0.00
1,900.0	1.90	269.83	1,899.6	-0.1	-24.4	1.1	0.00	0.00	0.00
2,000.0	1.90	269.83	1,999.6	-0.1	-27.7	1.2	0.00	0.00	0.00
2,100.0	1.90	269.83	2,099.5	-0.1	-31.0	1.4	0.00	0.00	0.00
2,200.0	1.90	269.83	2,199.4	-0.1	-34.3	1.5	0.00	0.00	0.00
2,300.0	1.90	269.83	2,299.4	-0.1	-37.6	1.7	0.00	0.00	0.00
2,400.0	1.90	269.83	2,399.3	-0.1	-40.9	1.8	0.00	0.00	0.00
2,500.0	1.90	269.83	2,499.3	-0.1	-44.2	2.0	0.00	0.00	0.00
2,600.0	1.90	269.83	2,599.2	-0.1	-47.5	2.1	0.00	0.00	0.00
2,700.0	1.90	269.83	2,699.2	-0.2	-50.8	2.2	0.00	0.00	0.00
2,800.0	1.90	269.83	2,799.1	-0.2	-54.1	2.4	0.00	0.00	0.00
2,900.0	1.90	269.83	2,899.1	-0.2	-57.4	2.5	0.00	0.00	0.00
3,000.0	1.90	269.83	2,999.0	-0.2	-60.8	2.7	0.00	0.00	0.00
3,100.0	1.90	269.83	3,099.0	-0.2	-64.1	2.8	0.00	0.00	0.00
3,200.0	1.90	269.83	3,198.9	-0.2	-67.4	3.0	0.00	0.00	0.00
3,300.0	1.90	269.83	3,298.8	-0.2	-70.7	3.1	0.00	0.00	0.00
3,400.0	1.90	269.83	3,398.8	-0.2	-74.0	3.3	0.00	0.00	0.00
3,500.0	1.90	269.83	3,498.7	-0.2	-77.3	3.4	0.00	0.00	0.00
3,600.0	1.90	269.83	3,598.7	-0.2	-80.6	3.6	0.00	0.00	0.00
3,700.0	1.90	269.83	3,698.6	-0.3	-83.9	3.7	0.00	0.00	0.00
3,800.0	1.90	269.83	3,798.6	-0.3	-87.2	3.9	0.00	0.00	0.00
3,900.0	1.90	269.83	3,898.5	-0.3	-90.5	4.0	0.00	0.00	0.00
4,000.0	1.90	269.83	3,998.5	-0.3	-93.8	4.1	0.00	0.00	0.00
4,100.0	1.90	269.83	4,098.4	-0.3	-97.1	4.3	0.00	0.00	0.00
4,200.0	1.90	269.83	4,198.3	-0.3	-100.4	4.4	0.00	0.00	0.00
4,300.0	1.90	269.83	4,298.3	-0.3	-103.8	4.6	0.00	0.00	0.00
4,400.0	1.90	269.83	4,398.2	-0.3	-107.1	4.7	0.00	0.00	0.00
4,500.0	1.90	269.83	4,498.2	-0.3	-110.4	4.9	0.00	0.00	0.00
4,600.0	1.90	269.83	4,598.1	-0.3	-113.7	5.0	0.00	0.00	0.00
4,700.0	1.90	269.83	4,698.1	-0.3	-117.0	5.2	0.00	0.00	0.00
4,800.0	1.90	269.83	4,798.0	-0.4	-120.3	5.3	0.00	0.00	0.00
4,900.0	1.90	269.83	4,898.0	-0.4	-123.6	5.5	0.00	0.00	0.00
5,000.0	1.90	269.83	4,997.9	-0.4	-125.0 -126.9	5.6	0.00	0.00	0.00
5,100.0	1.90	269.83	5,097.9	-0.4	-130.2	5.8	0.00	0.00	0.00

TVD Reference:

MD Reference:

Database: Company: Hobbs

Mewbourne Oil Company

 Project:
 Eddy County, New Mexico NAD 83

 Site:
 Armstrong 26/35 W0KN Fed Com #3H

 Well:
 SL: 2500 FSL & 2645 FWL (Sec 26)

 Wellbore:
 BHL: 330 FSL & 2310 FWL (Sec 35)

North Reference: Survey Calculation Method:

Local Co-ordinate Reference:

Site Armstrong 26/35 W0KN Fed Com #3H WELL @ 3366.0usft (Original Well Elev) WELL @ 3366.0usft (Original Well Elev)

Grid

Minimum Curvature

Design: Design #1

lanned Survey									
									_
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,200.0	1.90	269.83	5,197.8	-0.4	-133.5	5.9	0.00	0.00	0.00
5,300.0	1.90	269.83	5,297.7	-0.4	-136.8	6.0	0.00	0.00	0.00
5,400.0	1.90	269.83	5,397.7	-0.4	-140.1	6.2	0.00	0.00	0.00
5,500.0	1.90	269.83	5,497.6	-0.4	-143.4	6.3	0.00	0.00	0.00
5,600.0	1.90	269.83	5,597.6	-0.4	-146.8	6.5	0.00	0.00	0.00
5,700.0	1.90	269.83	5,697.5	-0.4	-150.1	6.6	0.00	0.00	0.00
5,800.0	1.90	269.83	5,797.5	-0.5	-153.4	6.8	0.00	0.00	0.00
5,900.0	1.90	269.83	5,897.4	-0.5	-156.7	6.9	0.00	0.00	0.00
6,000.0	1.90	269.83	5,997.4	-0.5	-160.0	7.1	0.00	0.00	0.00
6,100.0	1.90	269.83	6,097.3	-0.5	-163.3	7.2	0.00	0.00	0.00
6,200.0	1.90	269.83	6,197.3	-0.5	-166.6	7.4	0.00	0.00	0.00
6,300.0	1.90	269.83	6,297.2	-0.5	-169.9	7.5	0.00	0.00	0.00
6,400.0	1.90	269.83	6,397.1	-0.5	-173.2	7.7	0.00	0.00	0.00
6,500.0	1.90	269.83	6,497.1	-0.5	-175.2 -176.5	7.7	0.00	0.00	0.00
6,600.0	1.90	269.83	6,597.0	-0.5	-179.8	7.9	0.00	0.00	0.00
6,700.0	1.90	269.83	6,697.0	-0.5	-183.1	8.1	0.00	0.00	0.00
6,800.0	1.90	269.83	6,796.9	-0.6	-186.4	8.2	0.00	0.00	0.00
6,900.0	1.90	269.83	6,896.9	-0.6	-189.7	8.4	0.00	0.00	0.00
7,000.0	1.90	269.83	6,996.8	-0.6	-193.1	8.5	0.00	0.00	0.00
7,100.0	1.90	269.83	7,096.8	-0.6	-196.4	8.7	0.00	0.00	0.00
7,200.0	1.90	269.83	7,196.7	-0.6	-199.7	8.8	0.00	0.00	0.00
7,300.0	1.90	269.83	7,296.7	-0.6	-203.0	9.0	0.00	0.00	0.00
7,400.0	1.90	269.83	7,396.6	-0.6	-206.3	9.1	0.00	0.00	0.00
7,500.0	1.90	269.83	7,496.5	-0.6	-209.6	9.3	0.00	0.00	0.00
7,600.0	1.90	269.83	7,596.5	-0.6	-212.9	9.4	0.00	0.00	0.00
7,700.0	1.90	269.83	7,696.4	-0.6	-216.2	9.6	0.00	0.00	0.00
7,800.0	1.90	269.83	7,796.4	-0.7	-219.5	9.7	0.00	0.00	0.00
7,900.0	1.90	269.83	7,896.3	-0.7	-222.8	9.8	0.00	0.00	0.00
8,000.0	1.90	269.83	7,996.3	-0.7	-226.1	10.0	0.00	0.00	0.00
8,100.0	1.90	269.83	8,096.2	-0.7	-229.4	10.1	0.00	0.00	0.00
8,200.0	1.90	269.83	8,196.2	-0.7	-232.7	10.3	0.00	0.00	0.00
8,300.0	1.90	269.83	8,296.1	-0.7	-236.1	10.4	0.00	0.00	0.00
8,400.0	1.90	269.83	8,396.1	-0.7	-239.4	10.6	0.00	0.00	0.00
8,500.0	1.90	269.83	8,496.0	-0.7	-242.7	10.7	0.00	0.00	0.00
8,600.0	1.90	269.83	8,595.9	-0.7	-246.0	10.9	0.00	0.00	0.00
8,700.0	1.90	269.83	8,695.9	-0.7	-249.3	11.0	0.00	0.00	0.00
8,800.0	1.90	269.83	8,795.8	-0.8	-252.6	11.2	0.00	0.00	0.00
8,900.0	1.90	269.83	8,895.8	-0.8	-255.9	11.3	0.00	0.00	0.00
9,000.0	1.90	269.83	8,995.7	-0.8	-259.2	11.5	0.00	0.00	0.00
9,100.0	1.90	269.83	9,095.7	-0.8	-262.5	11.6	0.00	0.00	0.00
9,200.0	1.90	269.83	9,195.6	-0.8	-265.8	11.7	0.00	0.00	0.00
9,300.0	1.90	269.83	9,295.6	-0.8	-269.1	11.9	0.00	0.00	0.00
9,400.0	1.90	269.83	9,395.5	-0.8	-272.4	12.0	0.00	0.00	0.00
9,500.0	1.90	269.83	9,495.4	-0.8	-272.4 -275.7	12.0	0.00	0.00	0.00
9,600.0	1.90	269.83	9,595.4	-0.8	-279.1	12.3	0.00	0.00	0.00
9,700.0	1.90	269.83	9,695.3	-0.8	-282.4	12.5	0.00	0.00	0.00
9,800.0	1.90	269.83	9,795.3	-0.9	-285.7	12.6	0.00	0.00	0.00
9,900.0	1.90	269.83	9,895.2	-0.9	-289.0	12.8	0.00	0.00	0.00
10,000.0	1.90	269.83	9,995.2	-0.9	-209.0	12.0	0.00	0.00	0.00
10,100.0	1.90	269.83	10,095.1	-0.9	-295.6	13.1	0.00	0.00	0.00
10,200.0	1.90	269.83	10,195.1	-0.9	-298.9	13.2	0.00	0.00	0.00
10,300.0	1.90	269.83	10,295.0	-0.9	-302.2	13.4	0.00	0.00	0.00
10,400.0	1.90	269.83	10,395.0	-0.9	-305.5	13.5	0.00	0.00	0.00
10,500.0	1.90	269.83	10,393.0	-0.9 -0.9	-303.5	13.5	0.00	0.00	0.00

TVD Reference:

Database: Company: Hobbs

Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83
Site: Armstrong 26/35 W0KN Fed Com #3H
Well: SL: 2500 FSL & 2645 FWL (Sec 26)
Wellbore: BHL: 330 FSL & 2310 FWL (Sec 35)

MD Reference: North Reference:

Survey Calculation Method:

Local Co-ordinate Reference:

Site Armstrong 26/35 W0KN Fed Com #3H WELL @ 3366.0usft (Original Well Elev) WELL @ 3366.0usft (Original Well Elev)

Grid

Minimum Curvature

Design: Design #1

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
10,600.0 10,700.0 10,800.0	1.90	269.83 269.83 269.83	10,594.8 10,694.8 10,794.7	-0.9 -0.9 -1.0	-312.1 -315.4 -318.7	13.8 13.9 14.1	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
10,900.0 11,000.0 11,100.0 11,200.0 11,216.1	1.90 1.90 1.90	269.83 269.83 269.83 269.83 269.83	10,894.7 10,994.6 11,094.6 11,194.5 11,210.7	-1.0 -1.0 -1.0 -1.0 -1.0	-322.1 -325.4 -328.7 -332.0 -332.5	14.2 14.4 14.5 14.7 14.7	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
11,300.0 11,342.5	0.00	269.83 0.00	11,294.5 11,337.0	-1.0 -1.0	-334.4 -334.6	14.8 14.8	1.50 1.50	-1.50 -1.50	0.00 0.00
	FSL & 2310 FWL 6.90	•	11 201 2	4.5	224.6	10.0	12.01	10.01	0.00
11,400.0 11,500.0 11,600.0	18.92	179.79 179.79 179.79	11,394.3 11,491.6 11,582.2	-4.5 -26.8 -68.8	-334.6 -334.5 -334.4	18.2 40.5 82.5	12.01 12.01 12.01	12.01 12.01 12.01	0.00 0.00 0.00
11,700.0 11,773.8		179.79 179.79	11,662.0 11,711.9	-128.8 -183.0	-334.1 -333.9	142.5 196.6	12.01 12.01	12.01 12.01	0.00 0.00
	FSL & 2310 FWL	•							
11,800.0 11,900.0 12,000.0	66.96	179.79 179.79 179.79	11,727.5 11,776.0 11,805.2	-204.1 -291.3 -386.8	-333.9 -333.6 -333.2	217.6 304.8 400.2	12.01 12.01 12.01	12.01 12.01 12.01	0.00 0.00 0.00
12,097.2	90.64	179.79	11.814.0	-483.4	-332.9	496.7	12.01	12.01	0.00
12,100.0 12,200.0	90.64	179.79 179.79	11,814.0 11,812.9	-486.2 -586.2	-332.9 -332.5	499.5 599.4	0.00	0.00 0.00	0.00 0.00
12,300.0		179.79	11,811.7	-686.2	-332.1	699.3	0.00	0.00	0.00
12,400.0		179.79	11,810.6	-786.2	-331.8	799.2	0.00	0.00	0.00
12,500.0		179.79	11,809.5	-886.2	-331.4	899.1	0.00	0.00	0.00
12,600.0 12,700.0		179.79 179.79	11,808.4 11,807.3	-986.2 -1,086.2	-331.0 -330.7	999.0 1,098.9	0.00 0.00	0.00 0.00	0.00 0.00
12,790.8		179.79	11,806.2	-1,177.0	-330.4	1,189.6	0.00	0.00	0.00
PPP2: 132	4 FSL & 2310 FWL	_ (Sec 26)							
12,800.0		179.79	11,806.1	-1,186.1	-330.3	1,198.8	0.00	0.00	0.00
12,900.0		179.79	11,805.0	-1,286.1	-330.0	1,298.6	0.00	0.00	0.00
13,000.0 13,100.0		179.79 179.79	11,803.9 11,802.8	-1,386.1 -1,486.1	-329.6 -329.2	1,398.5 1,498.4	0.00 0.00	0.00 0.00	0.00 0.00
13,100.0		179.79	11,802.8 11,801.7	-1,406.1 -1,586.1	-329.2 -328.9	1,496.4	0.00	0.00	0.00
13,300.0		179.79	11,800.6	-1,686.1	-328.5	1,698.2	0.00	0.00	0.00
13,400.0		179.79	11,799.4	-1,786.1	-328.2	1,798.1	0.00	0.00	0.00
13,500.0		179.79	11,798.3	-1,886.1	-327.8	1,898.0	0.00	0.00	0.00
13,600.0 13,700.0		179.79 179.79	11,797.2 11,796.1	-1,986.1 -2,086.1	-327.4 -327.1	1,997.9 2,097.8	0.00 0.00	0.00 0.00	0.00 0.00
13,700.0		179.79	11,795.0	-2,066.1 -2,186.1	-326.7	2,197.7	0.00	0.00	0.00
13,900.0		179.79	11,793.8	-2,286.1	-326.4	2,297.6	0.00	0.00	0.00
14,000.0 14,100.0		179.79 179.79	11,792.7 11,791.6	-2,386.1	-326.0 -325.6	2,397.5 2,497.4	0.00	0.00 0.00	0.00 0.00
14,100.0		179.79	11,791.6	-2,486.1 -2,501.0	-325.6 -325.6	2,497.4 2,512.3	0.00 0.00	0.00	0.00
	NL & 2310 FWL (S		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,301.0	323.3	2,312.0	0.00	0.00	3.55
14,200.0	•	179.79	11,790.5	-2,586.1	-325.3	2,597.3	0.00	0.00	0.00
14,300.0		179.79	11,789.4	-2,686.0	-324.9	2,697.2	0.00	0.00	0.00
14,400.0		179.79	11,788.3	-2,786.0	-324.6	2,797.0	0.00	0.00	0.00
14,500.0		179.79	11,787.1	-2,886.0	-324.2	2,896.9	0.00	0.00	0.00
14,600.0		179.79	11,786.0	-2,986.0	-323.8 323.5	2,996.8	0.00	0.00	0.00
14,700.0		179.79	11,784.9	-3,086.0	-323.5	3,096.7	0.00	0.00	0.00
14,800.0	90.64	179.79	11,783.8	-3,186.0	-323.1	3,196.6	0.00	0.00	0.00

TVD Reference:

MD Reference:

Database: Company:

Project:

Wellbore:

Site:

Well:

Hobbs

Mewbourne Oil Company

Eddy County, New Mexico NAD 83
Armstrong 26/35 W0KN Fed Com #3H
SL: 2500 FSL & 2645 FWL (Sec 26)
BHL: 330 FSL & 2310 FWL (Sec 35)

North Reference: Survey Calculation Method:

Local Co-ordinate Reference:

Site Armstrong 26/35 W0KN Fed Com #3H WELL @ 3366.0usft (Original Well Elev) WELL @ 3366.0usft (Original Well Elev)

Grid

Minimum Curvature

Design: Design #1

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,900.0	90.64	179.79	11,782.7	-3,286.0	-322.8	3,296.5	0.00	0.00	0.00
15,000.0	90.64	179.79	11,781.6	-3,386.0	-322.4	3,396.4	0.00	0.00	0.00
15,100.0	90.64	179.79	11,780.4	-3,486.0	-322.0	3,496.3	0.00	0.00	0.00
15,200.0	90.64	179.79	11,779.3	-3,586.0	-321.7	3,596.2	0.00	0.00	0.00
15,300.0	90.64	179.79	11,778.2	-3,686.0	-321.3	3,696.1	0.00	0.00	0.00
15,400.0	90.64	179.79	11,777.1	-3,786.0	-321.0	3,796.0	0.00	0.00	0.00
15,500.0	90.64	179.79	11,776.0	-3,886.0	-320.6	3,895.9	0.00	0.00	0.00
15,600.0	90.64	179.79	11,774.8	-3,986.0	-320.2	3,995.8	0.00	0.00	0.00
15,700.0	90.64	179.79	11,773.7	-4,085.9	-319.9	4,095.7	0.00	0.00	0.00
15,800.0	90.64	179.79	11,772.6	-4,185.9	-319.5	4,195.6	0.00	0.00	0.00
15,900.0	90.64	179.79	11,771.5	-4,285.9	-319.1	4,295.4	0.00	0.00	0.00
16,000.0	90.64	179.79	11,770.4	-4,385.9	-318.8	4,395.3	0.00	0.00	0.00
16,100.0	90.64	179.79	11,769.3	-4,485.9	-318.4	4,495.2	0.00	0.00	0.00
16,200.0	90.64	179.79	11,768.1	-4,585.9	-318.1	4,595.1	0.00	0.00	0.00
16,300.0	90.64	179.79	11,767.0	-4,685.9	-317.7	4,695.0	0.00	0.00	0.00
16,400.0	90.64	179.79	11,765.9	-4,785.9	-317.3	4,794.9	0.00	0.00	0.00
16,500.0	90.64	179.79	11,764.8	-4,885.9	-317.0	4,894.8	0.00	0.00	0.00
16,600.0	90.64	179.79	11,763.7	-4,985.9	-316.6	4,994.7	0.00	0.00	0.00
16,700.0	90.64	179.79	11,762.5	-5,085.9	-316.3	5,094.6	0.00	0.00	0.00
16,800.0	90.64	179.79	11,761.4	-5,185.9	-315.9	5,194.5	0.00	0.00	0.00
16,900.0	90.64	179.79	11,760.3	-5,285.9	-315.5	5,294.4	0.00	0.00	0.00
17,000.0	90.64	179.79	11,759.2	-5,385.9	-315.2	5,394.3	0.00	0.00	0.00
17,100.0 17,200.0	90.64 90.64	179.79 179.79	11,758.1 11,757.0	-5,485.9 -5,585.8	-314.8 -314.5	5,494.2 5,594.1	0.00 0.00	0.00 0.00	0.00 0.00
17,300.0	90.64	179.79	11,755.8	-5,685.8	-314.1	5,694.0	0.00	0.00	0.00
17,400.0	90.64	179.79	11,754.7	-5,785.8	-313.7	5,793.8	0.00	0.00	0.00
17,500.0	90.64 90.64	179.79	11,753.6	-5,885.8	-313.4	5,893.7 5,993.6	0.00 0.00	0.00	0.00
17,600.0 17,700.0	90.64	179.79 179.79	11,752.5 11,751.4	-5,985.8 -6,085.8	-313.0 -312.7	6,093.5	0.00	0.00 0.00	0.00 0.00
17,800.0 17.900.0	90.64 90.64	179.79 179.79	11,750.3 11,749.1	-6,185.8 -6,285.8	-312.3 -311.9	6,193.4 6,293.3	0.00 0.00	0.00 0.00	0.00 0.00
18,000.0	90.64 90.64	179.79	11,749.1	-6,285.8 -6,385.8	-311.9 -311.6	6,393.2	0.00	0.00	0.00
18,100.0	90.64	179.79	11,746.9	-6,485.8	-311.0 -311.2	6,493.1	0.00	0.00	0.00
18,100.0	90.64	179.79	11,745.8	-6,585.8	-311.2 -310.9	6,593.0	0.00	0.00	0.00
18,300.0	90.64	179.79	11,744.7	-6,685.8	-310.5	6,692.9	0.00	0.00	0.00
18,300.0	90.64 90.64	179.79	11,744.7	-6,685.8 -6.785.8	-310.5 -310.1	6,792.8	0.00	0.00	0.00
18,500.0	90.64	179.79	11,743.5	-6,765.6 -6,885.8	-310.1 -309.8	6,892.7	0.00	0.00	0.00
18,600.0	90.64	179.79	11,742.4	-6,985.7	-309.6	6,992.6	0.00	0.00	0.00
18,700.0	90.64	179.79	11,740.2	-7,085.7	-309.1	7,092.5	0.00	0.00	0.00
18,800.0	90.64	179.79	11,739.1	-7,185.7	-308.7	7,192.4	0.00	0.00	0.00
18,900.0	90.64	179.79	11,738.0	-7,165.7 -7,285.7	-308.3	7,192.4	0.00	0.00	0.00
19,000.0	90.64	179.79	11,736.8	-7,285.7 -7,385.7	-308.0	7,392.1	0.00	0.00	0.00
19,075.2	90.64	179.79	11,736.0	-7,460.9	-307.7	7,467.2	0.00	0.00	0.00

Database: Company: Hobbs

Saac

Mewbourne Oil Company Eddy County, New Mexico NAD 83 Armstrong 26/35 W0KN Fed Com #3H

Well: Wellbore:

Project:

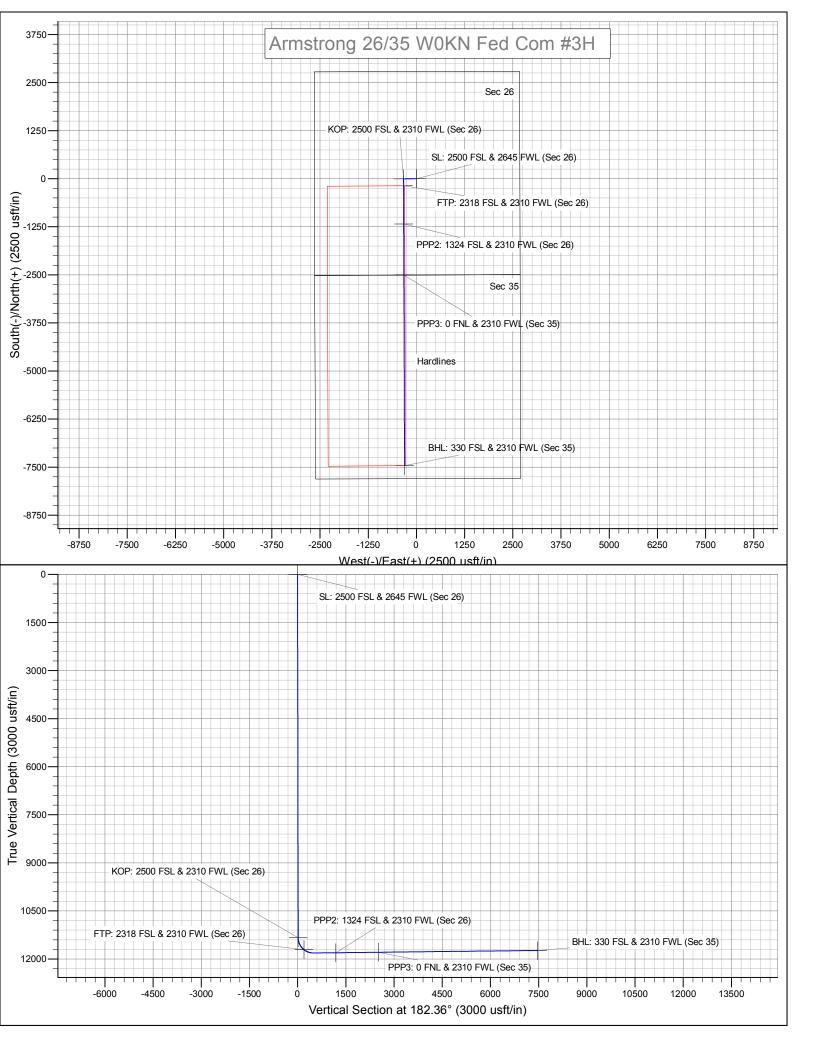
Site:

SL: 2500 FSL & 2645 FWL (Sec 26) BHL: 330 FSL & 2310 FWL (Sec 35)

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:


Survey Calculation Method:

Site Armstrong 26/35 W0KN Fed Com #3H WELL @ 3366.0usft (Original Well Elev) WELL @ 3366.0usft (Original Well Elev)

Grid

Minimum Curvature

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SL: 2500 FSL & 2645 FV - plan hits target cent - Point	0.00 er	0.00	0.0	0.0	0.0	400,931.90	722,321.70	32.1008926	-103.7488544
KOP: 2500 FSL & 2310 - plan hits target cent - Point	0.00 er	0.00	11,337.0	-1.0	-334.6	400,930.90	721,987.10	32.1008949	-103.7499349
FTP: 2318 FSL & 2310 F - plan hits target cent - Point	0.00 er	0.00	11,711.9	-183.0	-333.9	400,748.90	721,987.75	32.1003946	-103.7499360
BHL: 330 FSL & 2310 F\ - plan hits target cent - Point	0.00 er	0.00	11,736.0	-7,460.9	-307.7	393,471.00	722,014.00	32.0803885	-103.7499783
PPP3: 0 FNL & 2310 FV - plan hits target cent - Point	0.00 er	0.00	11,791.4	-2,501.0	-325.6	398,430.90	721,996.11	32.0940227	-103.7499495
PPP2: 1324 FSL & 2310 - plan hits target cent - Point	0.00 er	0.00	11,806.2	-1,177.0	-330.4	399,754.90	721,991.34	32.0976622	-103.7499418

Inten	t	As Dril	led										
API#	†												
Ope	rator Nai	ne:				Prop	perty N	ame	:				Well Number
Kick (Off Point	(KOP)											
UL	Section	Township	Range	Lot	Feet		From N	I/S	Feet	F	rom E/W	County	
Latit	<u>l</u> ude				Longitu	ude						NAD	
First Tul	Take Poir	nt (FTP)	Range	Lot	Feet		From N	ı/s	Feet	F	rom E/W	/ County	
Latit			age		Longitu	ıde						NAD	
Latit					Longite							10,15	
Last 1	Гake Poin	t (LTP)											
UL	Section	Township	Range	Lot	Feet	Fror	m N/S	Feet		From E/	W Cou	inty	
Latit	ude				Longitu	ıde		I			NAI)	
											<u> </u>		
Is this	s well the	defining v	vell for th	ne Hori	zontal Տլ	pacing	g Unit?]			
Is this	s well an	infill well?											
	ll is yes p ng Unit.	lease provi	ide API if	availal	ole, Ope	rator I	Name	and v	vell nı	umber f	or Defir	ning well f	or Horizontal
API#	ŧ												
Ope	rator Nai	me:	1			Prop	perty N	ame					Well Number

Mewbourne Oil Company, Armstrong 26/35 W0KN Fed Com #3H Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

1. Geologic Formations

TVD of target	11,814'	Pilot hole depth	NA
MD at TD:	19,075'	Deepest expected fresh water:	315'

Basin

Formation	Depth (TVD)	Water/Mineral Bearing/	Hazards*
	from KB	Target Zone?	
Quaternary Fill	Surface		
Rustler	1015		
Top of Salt	1390		
Base of Salt	4250		
Delaware (Lamar)	4325		
Bell Canyon	4350		
Cherry Canyon	5299		
Manzanita Marker	5498		
Brushy Canyon			
Bone Spring	8324	Oil/Gas	
1 st Bone Spring Sand	9557		
2 nd Bone Spring Sand	9950		
3 rd Bone Spring Sand	11217		
Abo			
Wolfcamp	11667	Target Zone	
Devonian			
Fusselman			
Ellenburger			
Granite Wash			

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	1100'	13.375"	48	H40	STC	1.53	3.44	6.10	10.25
12.25"	0'	3452'	9.625"	36	J55	LTC	1.13	1.96	2.90	3.61
12.25"	3452'	4250'	9.625"	40	L80	LTC	1.40	2.60	22.78	28.70
8.75"	0'	12097'	7"	26	HCP110	LTC	1.34	1.70	2.20	2.64
6.125"	11343'	19075'	4.5"	13.5	P110	LTC	1.46	1.69	3.24	4.04
	BLM Mini	mum Safety F	Factor 1.1	25 1	1.0	6 Dry	1.6 Dry		-	_
					119	8 Wet	1.8 Wet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
15 wen within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt.	Yld	H ₂ 0	500#	Slurry Description	
		lb/	ft3/	gal/	Comp.		
		gal	sack	sk	Strength		
					(hours)		
Surf.	600	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Inter.	650	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Prod.	370	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer +	
Stg 1						Extender	
	400	15.6	1.18	5.2	10	Tail: Class H + Retarder + Fluid Loss + Defoamer	
					ECP/DV T	ool @ 5498'	
Prod.	70	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
Stg 2	100	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Liner	310	11.2	2.97	18	16	Class C + Salt + Gel + Fluid Loss + Retarder +	
						Dispersant + Defoamer + Anti-Settling Agent	

A copy of cement test will be available on location at time of cement job providing pump times & compressive strengths.

Casing String	TOC	% Excess
Surface	0'	100%
Intermediate	0'	25%
Production	4050'	25%
Liner	11343'	25%

Mewbourne Oil Company, Armstrong 26/35 W0KN Fed Com #3H Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26)

BHL: 330' FSL & 2310' FWL (Sec 35)

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	System Rated WP	Ŋ	Гуре	✓	Tested to:
			Aı	nnular	X	2,500#
			Blii	nd Ram	X	
12-1/4"	13-5/8"	5M	Pip	e Ram	X	5,000#
			Dou	ble Ram		3,000#
			Other*			

^{*}Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X Formation integrity test will be performed per Onshore Order #2.
On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

Mewbourne Oil Company, Armstrong 26/35 W0KN Fed Com #3H Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.				
	N Are anchors required by manufacturer?				
Y	installa 30 day	tibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after ation on the surface casing which will cover testing requirements for a maximum of vs. If any seal subject to test pressure is broken the system must be tested.			
	•	Provide description here: See attached schematic.			

5. Mud Program

TVD		Type	Weight (ppg)	Viscosity	Water Loss
From	То				
0	1100	FW Gel	8.6-8.8	28-34	N/C
1100	4250	Saturated Brine	10.0	28-34	N/C
4250	11814	Cut Brine	8.6-9.5	28-34	N/C
11736	11814	OBM	10.0-12.0	30-40	<10cc

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. MW up to 13.0 ppg may be required for shale control. The highest MW needed to balance formation pressure is expected to be 12.0 ppg.

What will be used to monitor the loss or gain	Pason/PVT/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ging, Coring and Testing.
X	Will run GR/CNL from KOP (11,343') to surface (horizontal well – vertical portion of
	hole). Stated logs run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain
	Coring? If yes, explain

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

Addi	tional logs planned	Interval
X	Gamma Ray	11,343' (KOP) to TD
	Density	
	CBL	
	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	7372 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole. Weighted mud for possible over-pressure in Wolfcamp formation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

	H2S is present
X	H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe.

Sec 26 & 35, T25S, R31E

SL: 2500' FSL & 2645' FWL (Sec 26) BHL: 330' FSL & 2310' FWL (Sec 35)

Will be pre-setting casing? If yes, describe.
Attachments Directional Plan Other, describe

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Date	e: 1-15-19		GAS CA	PTURE PL	AN		
	Original Amended - Reason for A	Amendment:_	•	& OGRID N	No.: Mewbo	urne Oil Com	npany - 14744
	s Gas Capture Plan out completion (new drill,				reduce we	ll/production	facility flaring/venting for
Note	: Form C-129 must be sub	mitted and app	roved prior to excee	ding 60 days a	llowed by Rul	e (Subsection A	of 19.15.18.12 NMAC).
Wel	ll(s)/Production Facilit	ty – Name of	facility				
The	well(s) that will be loca	ated at the pro	oduction facility a	re shown in	the table bel	ow.	
1110	Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
	Armstrong 26/35 W0KN Fed Com #3H		K - 26- 25S - 31E	2500 FSL & 2645' FW	L 0	NA	ONLINE AFTER FRAC
Gat	hering System and Pip	neline Notific	eation				
				owback oper	ations are c	omplete, if g	as transporter system is in
plac	e. The gas produced	from product	tion facility is de	edicated to _	Western	F ***, 8	and will be connected to
							Mexico. It will require
3,400	' of pipeline to co	onnect the fa	cility to low/high	pressure ga	thering syste	em. Mewbou	urne Oil Company provides
(per	iodically) to Western	a a c	drilling, completio	n and estimat	ed first prod	uction date fo	or wells that are scheduled to
be d	drilled in the foreseeabl	e future. In	addition, Mewbo	ourne Oil Co	mpany and	Western	have periodic
conf							wells will be processed at
							unty, Texas. The actual flow
of th	ne gas will be based on co	ompression op	erating parameters	and gatherin	g system pre	ssures.	
	wback Strategy						
Afte	er the fracture treatment	/completion of	operations, well(s)) will be prod	luced to tem	porary produ	action tanks and gas will be

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on western system at that time. Based on current information, it

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

is Operator's belief the system can take this gas upon completion of the well(s).

- Power Generation On lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines