OCD Received 11/25/2020

Form 3160-3 (June 2015) UNITED STATE DEPARTMENT OF THE I BUREAU OF LAND MAN	NTERIOR	OMB	I APPROVED No. 1004-0137 January 31, 2018
APPLICATION FOR PERMIT TO D	6. If Indian, Allote	ee or Tribe Name	
1b. Type of Well: Image: Contract of Well	EENTER Other ingle Zone Multiple Zone	8. Lease Name an CABO WABO FE	
2. Name of Operator COG PRODUCTION LLC		804H 9. API Well No. 30	001547754
3a. Address 2208 West Main Street, Artesia, NM 88210	3b. Phone No. <i>(include area code)</i> (575) 748-6940) 10. Field and Pool	
4. Location of Well (Report location clearly and in accordance At surface NENW / 210 FNL / 1420 FWL / LAT 32.122 At proposed prod. zone SESW / 200 FSL / 2200 FWL / I	21873 / LONG -103.9419698	SEC 24/T25S/R2	or Blk. and Survey or Area 99E/NMP
14. Distance in miles and direction from nearest town or post off 23 miles	ĥce*	12. County or Par EDDY	ish 13. State
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 330 feet 18. Distance from proposed location*		17. Spacing Unit dedicated to 640.0 20. BLM/BIA Bond No. in fi	
to nearest well, drilling, completed, applied for, on this lease, ft.	11445 feet / 21672 feet	FED: NMB000215	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3154 feet	22. Approximate date work will st 01/01/2021	tart* 23. Estimated dura 30 days	ation
	24. Attachments		
 The following, completed in accordance with the requirements of (as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office 	4. Bond to cover the Item 20 above). 5. Operator certifica	operations unless covered by	an existing bond on file (see
25. Signature (Electronic Submission)	Name (Printed/Typed) STAN WAGNER / Ph: (57)	75) 748-6940	Date 09/10/2020
Title Regulatory Advisor	1		-
Approved by (Signature) (Electronic Submission)	Name (Printed/Typed) Cody Layton / Ph: (575) 2	34-5959	Date 10/23/2020
Title Assistant Field Manager Lands & Minerals Application approval does not warrant or certify that the applicat applicant to conduct operations thereon. Conditions of approval, if any, are attached.	Office Carlsbad Field Office nt holds legal or equitable title to the	ose rights in the subject lease	which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, r of the United States any false, fictitious or fraudulent statements			any department or agency
uds are not to be used until fresh water zones are cased and providing isolation from the oil or diesel. This includes synthetic sed mud, drilling fluids and solids must be contained in a steel o system.	VED WITH CONDITI	contamination thro	bud, to prevent ground water bugh whole or partial conduits or shall drill without interrup ne or zones and shall immedia

 $\frac{SL}{(Continued on page 2)}$

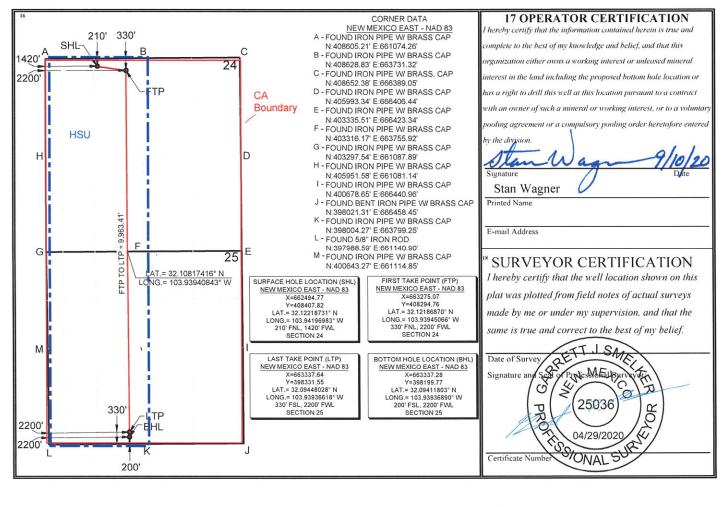
Approval Date: 10/23/2020

*(Instructions on page 2)

Entered - KMS NMOCD

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 <u>District III</u> 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 <u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


WELL LOCATION AND ACREACE DEDICATION DI AT

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

	WELL LOCATION AND ACREAGE DEDICATION PLAT										
17	API Number	r		2 Pool Code 3 Pool Name			me				
30-0	015- 477	754		98220	20	Pu	irple Sage; Wol	fcamp (G	Gas)		
4 Property 6	Code				5 Property				6	6 Well Number	
329794				CAE	BO WABO FE	EDERAL COM				804H	
7 OGRID	No.				8 Operator					9 Elevation	
2179	955			С	COG PRODUC	CTION LLC				3154'	
					Surface	Location					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/We	st line	County	
C	24	25-S	29-Е		210'	NORTH	1420'	WES	ST	EDDY	
			" Bo	ttom Ho	le Location	If Different Fro	m Surface				
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/We	st line	County	
N	25	25-S 29-E 200' SOUTH 2200' WEST EDDY						EDDY			
12 Dedicated Acre	s 13 Joint o	13 Joint or Infill 14 Consolidation Code 15 Order No.									
640											

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

Intent X As Drilled	
API #	
30-015-	
Operator Name: Property Name: Well	l Number
COG Production LLCCabo Wabo Federal Com8041	H

Kick Off Point (KOP)

UL C	Section 24	Township 25S	Range 29E	Lot	Feet	From N/S	Feet	From E/W	County Eddy
Latitu	ide			•	Longitude				NAD
									83

First Take Point (FTP)

UL	Section	Township	Range	Lot	Feet	From N/S	Feet	From E/W	County
C	24	25S	29E		330	North	2200	West	Eddy
	Latitude 32.12186870			Longitude	945066			NAD NAD 83	

Last Take Point (LTP)

UL N	Section 25	Township 25S	Range 29E	Lot	Feet 330	From N/S South	Feet 2200	From E/W West	County Eddy
Latitu	Latitude					de		NAD	
32.0	32.09448028				-103.	-103.93936618			NAD 83

Is this well the defining well for the Horizontal Spacing Unit?	NO
---	----

Is this well an infill well?

YES

If infill is yes please provide API if available, Operator Name and well number for Defining well for Horizontal Spacing Unit.

^{АРІ #} 30-015-			
Operator Name:		Property Name:	Well Number
COG Production LLC	2	Cabo Wabo Federal Com	705H

KZ 06/29/2018

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	COG Operating LLC
LEASE NO.:	NMNM-120895
WELL NAME & NO.:	Cabo Wabo Federal Com 804H
SURFACE HOLE FOOTAGE:	0210' FNL & 1420' FWL
BOTTOM HOLE FOOTAGE	0200' FSL & 2200' FWL Sec. 25, T.25 S., R.29 E.
LOCATION:	Section 24, T.25 S., R.29 E., NMPM
COUNTY:	Eddy County, New Mexico

COA

H2S	C Yes	🖸 No	
Potash	• None	C Secretary	© R-111-P
Cave/Karst Potential	• Low	C Medium	C High
Cave/Karst Potential	Critical		
Variance	C None	• Flex Hose	C Other
Wellhead	Conventional	C Multibowl	C Both
Other	□4 String Area	Capitan Reef	□ WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	□ Water Disposal	COM	🗖 Unit

Possible water flows in the Salado and Castile. Possible lost circulation in the Rustler, Red Beds, and Delaware.

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **10-3/4** inch surface casing shall be set at approximately **755** feet (a minimum of 25 feet (Lea County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the **7-5/8** inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification. **Excess calculates to 2% -Additional cement may be required.**

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance approved to use a 5M annular. The annular must be tested to 3500 psi.

Approval Date: 10/23/2020

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Santa Fe Office, 301 Dinosaur Trail Santa Fe, New Mexico 87508, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

Page 3 of 7

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 4. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 5. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 6. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 10192020

Approval Date: 10/23/2020

1. Geologic Formations

TVD of target	11,505' EOL	Pilot hole depth	NA
MD at TD:	21,672'	Deepest expected fresh water:	65'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	820	Water	
Top of Salt	980	Salt	
Base of Salt	3082	Salt	
Lamar	3333	Salt Water	
Bell Canyon	3376	Salt Water	
Cherry Canyon	4271	Oil/Gas	
Brushy Canyon	5463	Oil/Gas	
Bone Spring Lime	7174	Oil/Gas	
1st Bone Spring Sand	8117	Oil/Gas	
2nd Bone Spring Sand	8729	Oil/Gas	
3rd Bone Spring Sand	10035	Oil/Gas	
Wolfcamp	10404	Oil/Gas	
Wolfcamp B	10850	Oil/Gas	
Wolfcamp D	11400	Target Oil/Gas	

2. Casing Program

Hole Size	Casing	j Interval	Csg. Size	Weight	Grade	Conn.	SF	SF Burst	SF	SF
Hole Size	From	То	Csy. 512e	(lbs)	Grade	Conn.	Collapse	SF Buist	Body	Joint
14.75''	0	755	10.75''	45.5	N80	BTC	7.15	1.67	30.27	31.93
9.875''	0	8500	7.625"	29.7	HCL80	BTC	1.56	1.16	2.88	2.90
8.750''	8500	10800	7.625"	29.7	HCP110	TL-FJ	1.39	1.20	2.93	2.05
6.75"	0	10600	5.5"	20	P110	BTC	1.48	2.00	2.79	2.90
6.75"	10600	21,672	5.5"	20	P110	SF	1.48	2.00	2.79	2.90
				BLM M	inimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Surface burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface and All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

The 5" casing will be run back 200' into the intermediate casing to ensure the coupling OD clearance is greater than .422" for the cement bond tie in.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	Ν
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	YId ft3/ sack	H₂0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf.	360	13.5	1.75	9	12	Lead: Class C + 4% Gel + 1% CaCl2
Sun.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	810	10.3	3.3	22	24	Halliburton tunded light
Stage 1	250	14.8	1.35	6.6	8	Tail: Class H
Prod	492	12.7	2	10.7	72	Lead: 50:50:10 H Blend
FIUU	1044	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

If losses are encountered in the intermediate section a DV/ECP tool will be run ~50' above the Lamar Lime top, cement will be adjusted accordingly if this contingency is necessary.

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	8,000'	35% OH in Lateral (KOP to EOL)

4. Pressure Control Equipment

N	A variance is requested for the use of a diverter on the surface casing.
IN	See attached for schematic.

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	x	Tested to:	
			Ann	ular	х	2500psi	
	13-5/8"	5M	Blind Ram		х	5000psi	
9-7/8"			Pipe Ram		Х		
			Double Ram		Х		
			Other*				
			5M Ar	nnular	Х	5000psi	
		10M	Blind	Ram 2		10000	
6-3/4"	13-5/8"		Pipe Ram		Х		
			Double	e Ram	Х	10000psi	
			Other*				

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.					
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.					
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.					
	N Are anchors required by manufacturer?					
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.					

5. Mud Program

	Depth	Туре	Weight	Viscosity	Water Loss	
From	То	туре	(ppg)	VISCOSILY	Water L055	
0	Surf. Shoe	FW Gel	8.6 - 8.8	28-34	N/C	
Surf csg	9-5/8" Int shoe	Brine Diesel Emulsion	8.4 - 9	28-34	N/C	
7-5/8" Int shoe	Lateral TD	OBM	9.6 - 12.5	35-45	<20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging, Coring and Testing.					
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.				
Y	No Logs are planned based on well control or offset log information.				
N	Drill stem test? If yes, explain.				
N	Coring? If yes, explain.				

Ad	ditional logs planned	Interval
Ν	Resistivity	Pilot Hole TD to ICP
Ν	Density	Pilot Hole TD to ICP
Υ	CBL	Production casing (If cement not circulated to surface)
Y	Mud log	Intermediate shoe to TD
Ν	PEX	

7. Drilling Conditions

Condition	Specify what type and where?		
BH Pressure at deepest TVD	7480 psi at 11505' TVD		
Abnormal Temperature	NO 170 Deg. F.		

No abnormal pressure or temperature conditions are anticipated. Sufficient mud materials to maintain mud properties and weight increase requirements will be kept on location at all times.

Sufficient supplies of Paper/LCM for periodic sweeps to control seepage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

8. Other Facets of Operation

Y	Is it a walking operation?
Y	Is casing pre-set?

x	H2S Plan.
x	BOP & Choke Schematics.
x	Directional Plan

DELAWARE BASIN WEST

ATLAS PROSPECT (NM-E) CABO WABO FEDERAL PROJECT (ATLAS 2529) CABO WABO FED COM #804H

OWB

Plan: PWP1

Standard Survey Report

03 August, 2020

Survey Report

Company: DE	ELAWARE BAS	IN WEST		Local Co	-ordinate Re	ference:	Well CABO W	ABO FED CO	M #804H	
Project: AT	TLAS PROSPE	S PROSPECT (NM-E)			erence:		KB=30' @ 318	84.0usft (TBD)		
	ABO WABO FE	DERAL PROJE	ECT (ATLAS	MD Refer	rence:		KB=30' @ 318	84.0usft (TBD)		
	529)				_		A + 4			
	ABO WABO FE	D COM #804H		North Re			Grid			
	WB			-	alculation M		Minimum Curv	vature		
Design: P\	WP1			Database):		edm			
Project	ATLAS PROS	SPECT (NM-E))							
Map System:	US State Plan	e 1927 (Exact	solution)	System	Datum:		Mean Sea Le	vel		
Geo Datum:		DCON CONUS		Cystern	Dutum					
Map Zone:	New Mexico E	ast 3001								
Well	CABO WABC	FED COM #8	04H							
Well Position	+N/-S	0.0 usft	Northing:		408,349.	66 usft	Latitude:		32° 7' 19	428
	+E/-W	0.0 usft	Easting:		621,309.		Longitude:		103° 56' 29	
Position Uncertair	ntv	3.0 usft	Wellhead El	evation:	,		Ground Level	l:	3,154	
									-,	
Wellbore	OWB									
Magnetics	Model Na	me Sa	ample Date	Decl	ination	Di	p Angle	Field	Strength	
U			•		(°)		. (°)		(nT)	
	IGR	F2020	7/31/2020		6.81		59.78	3 47,4	487.83336658	
Design	PWP1									
Audit Notes:										
										~ ~
Version:			Phase:	PLAN		Tie On Dept	h:			0.0
								Direction		0.0
Version: Vertical Section:		Depth Fro (ust	om (TVD)	PLAN +N/-S (usft)	;	Tie On Dept +E/-W (usft)		Direction (°)		0.0
		Depth Fro	om (TVD)	+N/-S (usft)	;	+E/-W		(°)	5.27	0.0
	ram	Depth Fro	om (TVD) ft) 0.0	+N/-S (usft)	;)	+E/-W (usft)		(°)	5.27	0.0
Vertical Section: Survey Tool Progr From	То	Depth Fro (usi Date 8/3/202	om (TVD) ft) 20	+N/-S (usft) (; · · · · · · · · · · · · · · · · · · ·	+E/-W (usft)		(°)	5.27	0.0
Vertical Section: Survey Tool Progr From (usft)	To (usft) s	Depth Fro (ust Date 8/3/202 Survey (Wellbe	om (TVD) ft) 20	+N/-S (usft) (5. D.O Tool Name	+E/-W (usft) 0.0	Description	(°) 17		0.0
Vertical Section: Survey Tool Progr From	To (usft) s	Depth Fro (usi Date 8/3/202	om (TVD) ft) 20	+N/-S (usft) (; · · · · · · · · · · · · · · · · · · ·	+E/-W (usft) 0.0	Description	(°)		0.0
Vertical Section: Survey Tool Progr From (usft)	To (usft) s	Depth Fro (ust Date 8/3/202 Survey (Wellbe	om (TVD) ft) 20	+N/-S (usft) (5. D.O Tool Name	+E/-W (usft) 0.0	Description	(°) 17		0.0
Vertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey	To (usft) s	Depth Fro (ust Date 8/3/202 Survey (Wellbe	om (TVD) ft) 20 ore)	+N/-S (usft) (5. D.O Tool Name	+E/-W (usft) 0.0	Description OWSG MWE	(°) 17) + IFR1 + FDI	R Correction	0.0
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth	To (usft) s 21,672.6 l	Depth Fro (us) Date 8/3/202 Survey (Wellbo PWP1 (OWB)	om (TVD) ft) 0.0 20 ore) Vertical Depth	+N/-S (usft) () D.0 Tool Name MWD+IFR1+ +E/-W	+E/-W (usft) 0.0 FDIR Vertical Section	Description OWSG MWD Dogleg Rate	(°) 17) + IFR1 + FDI Build Rate	R Correction Turn Rate	0.0
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured	To (usft) s 21,672.6 l	Depth Fro (us) Date 8/3/202 Survey (Wellbo PWP1 (OWB)	om (TVD) ft) 0.0 20 ore) Vertical	+N/-S (usft) () D.0 Tool Name MWD+IFR1+	+E/-W (usft) 0.0 FDIR	Description OWSG MWD	(°) 17) + IFR1 + FDI Build	R Correction	0.0
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth	To (usft) s 21,672.6 I Inclination (°)	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	om (TVD) ft) 0.0 20 ore) Vertical Depth	+N/-S (usft) (usft) 0.0) D.0 Tool Name MWD+IFR1+ +E/-W	+E/-W (usft) 0.0 FDIR Vertical Section	Description OWSG MWD Dogleg Rate	(°) 17) + IFR1 + FDI Build Rate	R Correction Turn Rate	0.0
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft)	To (usft) s 21,672.6 I Inclination (°) 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°)	vm (TVD) ft) 0.0 20 ore) Vertical Depth (usft)	+N/-S (usft) (usft)) D.0 Tool Name MWD+IFR1+ +E/-W (usft)	+E/-W (usft) 0.0 FDIR Vertical Section (usft)	Description OWSG MWD Dogleg Rate (°/100usft)	(°) 17) + IFR1 + FDI Build Rate (°/100usft)	R Correction Turn Rate (°/100usft)	0.1
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0	To (usft) s 21,672.6 I Inclination (°) 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00	vm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0	+N/-S (usft) (usft) 0.0	5) 0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0	Description OWSG MWE Dogleg Rate (°/100usft) 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00	R Correction Turn Rate (°/100usft) 0.00	U.
/ertical Section: /ertical Section: furvey Tool Progr From (usft) 0.0 lanned Survey Measured Depth (usft) 0.0 100.0	To (usft) s 21,672.6 f Inclination (°) 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00	vm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0	+N/-S (usft) (usft) (usft) 0.0 0.0	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0	Description OWSG MWE OUSG MWE (°/100usft) 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0	To (usft) s 21,672.6 I Inclination (°) 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00	vm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0	+N/-S (usft) (usft) (usft) 0.0 0.0 0.0 0.0	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0	Description OWSG MWE OUSG MWE (°/100usft)	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0	To (usft) 9 21,672.6 F Inclination (°) 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00	wm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0	+N/-S (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0	5	+E/-W (usft) 0.0 FDIR FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE 0000 0.00 0.00 0.00 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0	To (usft) 9 21,672.6 F Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00	vm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE OWSG MWE (°/100usft) 0.00 0.00 0.00 0.00 0.00	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	U.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	vm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE 000000000000000000000000000000000000	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	U.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE 000000000000000000000000000000000000	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE OWSG MWE (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.000 0.00 0.	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 ore) Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Description OWSG MWE 000000000000000000000000000000000000	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 0 ore) 0.0 Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 900.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWD OWSG MWD (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 0 ore) 0.0 Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE C'/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.
/ertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 0 ore) 0.0 Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,100.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.
Vertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0 1,200.0	To (usft) S 21,672.6 I Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 0 ore) 0.0 Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,200.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.
Vertical Section: Survey Tool Progr From (usft) 0.0 Planned Survey Measured Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,100.0	To (usft) S 21,672.6 I Inclination (°) Inclination Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Depth Fro (usi Date 8/3/202 Survey (Wellbo PWP1 (OWB) Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	wm (TVD) ft) 0.0 20 0 ore) 0.0 Vertical Depth (usft) 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1,000.0 1,000.0 1,100.0	+N/-S (usft) (usft) (usft) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	5.0 Tool Name MWD+IFR1+ +E/-W (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	+E/-W (usft) 0.0 FDIR Vertical Section (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Description OWSG MWE OWSG MWE (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(°) 17 0 + IFR1 + FDI Build Rate (°/100usft) 0.00 0.0	R Correction Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well CABO WABO FED COM #804H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3184.0usft (TBD)
Site:	CABO WABO FEDERAL PROJECT (ATLAS 2529)	MD Reference:	KB=30' @ 3184.0usft (TBD)
Well:	CABO WABO FED COM #804H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
Start Build			,						
2,600.0	2.00	76.76	2,600.0	0.4	1.7	-0.3	2.00	2.00	0.00
2,700.0	4.00	76.76	2,699.8	1.6	6.8	-1.0	2.00	2.00	0.00
2,757.2	5.14	76.76	2,756.9	2.6	11.2	-1.7	2.00	2.00	0.00
	.0 hold at 2757								
2,800.0	5.14	76.76	2,799.5	3.5	15.0	-2.3	0.00	0.00	0.00
2,900.0	5.14	76.76	2,899.1	5.6	23.7	-3.6	0.00	0.00	0.00
3,000.0	5.14	76.76	2,998.7	7.6	32.4	-4.9	0.00	0.00	0.00
3,100.0	5.14	76.76	3,098.3	9.7	41.2	-6.3	0.00	0.00	0.00
3,200.0	5.14	76.76	3,197.9	11.7	49.9	-7.6	0.00	0.00	0.00
3,300.0	5.14	76.76	3,297.5	13.8	58.6	-8.9	0.00	0.00	0.00
3,400.0	5.14	76.76	3,397.1	15.8	67.3	-10.2	0.00	0.00	0.00
3,500.0	5.14	76.76	3,496.7	17.9	76.1	-11.6	0.00	0.00	0.00
3,600.0	5.14	76.76	3,596.3	19.9	84.8	-12.9	0.00	0.00	0.00
3,700.0	5.14	76.76	3,695.9	22.0	93.5	-14.2	0.00	0.00	0.00
3,800.0	5.14	76.76	3,795.5	24.1	102.3	-15.5	0.00	0.00	0.00
3,900.0	5.14	76.76	3,895.1	26.1	111.0	-16.9	0.00	0.00	0.00
4,000.0	5.14	76.76	3,994.6	28.2	119.7	-18.2	0.00	0.00	0.00
4,100.0	5.14	76.76	4,094.2	30.2	128.4	-19.5	0.00	0.00	0.00
4,200.0	5.14	76.76	4,193.8	32.3	120.4	-20.9	0.00	0.00	0.00
4,200.0	5.14	76.76	4,193.0	34.3	145.9	-20.3	0.00	0.00	0.00
.,	0			0.110			0100	0.00	0.00
4,400.0	5.14	76.76	4,393.0	36.4	154.6	-23.5	0.00	0.00	0.00
4,500.0	5.14	76.76	4,492.6	38.4	163.4	-24.8	0.00	0.00	0.00
4,600.0	5.14	76.76	4,592.2	40.5	172.1	-26.2	0.00	0.00	0.00
4,700.0	5.14	76.76	4,691.8	42.5	180.8	-27.5	0.00	0.00	0.00
4,800.0	5.14	76.76	4,791.4	44.6	189.6	-28.8	0.00	0.00	0.00
4,900.0	5.14	76.76	4,891.0	46.6	198.3	-30.1	0.00	0.00	0.00
5,000.0	5.14	76.76	4,990.6	48.7	207.0	-31.5	0.00	0.00	0.00
5,100.0	5.14	76.76	5,090.2	50.7	215.7	-32.8	0.00	0.00	0.00
5,200.0	5.14	76.76	5,189.8	52.8	224.5	-34.1	0.00	0.00	0.00
5,300.0	5.14	76.76	5,289.4	54.9	233.2	-35.5	0.00	0.00	0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well CABO WABO FED COM #804H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3184.0usft (TBD)
Site:	CABO WABO FEDERAL PROJECT (ATLAS 2529)	MD Reference:	KB=30' @ 3184.0usft (TBD)
Well:	CABO WABO FED COM #804H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,400.0	5.14	76.76	5,389.0	56.9	241.9	-36.8	0.00	0.00	0.00
5,500.0	5.14	76.76	5,488.6	59.0	250.7	-38.1	0.00	0.00	0.00
5,600.0	5.14	76.76	5,588.2	61.0	259.4	-39.4	0.00	0.00	0.00
5,700.0	5.14	76.76	5,687.8	63.1	268.1	-40.8	0.00	0.00	0.00
5,800.0	5.14	76.76	5,787.4	65.1	276.8	-42.1	0.00	0.00	0.00
5,900.0	5.14	76.76	5,887.0	67.2	285.6	-43.4	0.00	0.00	0.00
6,000.0	5.14	76.76	5,986.6	69.2	294.3	-44.7	0.00	0.00	0.00
6,100.0	5.14	76.76	6,086.2	71.3	303.0	-46.1	0.00	0.00	0.00
6,200.0	5.14	76.76	6,185.8	73.3	311.8	-47.4	0.00	0.00	0.00
6,300.0	5.14	76.76	6,285.4	75.4	320.5	-48.7	0.00	0.00	0.00
6,400.0	5.14	76.76	6,385.0	77.4	329.2	-50.1	0.00	0.00	0.00
6,500.0	5.14	76.76	6,484.6	79.5	338.0	-51.4	0.00	0.00	0.00
6,600.0	5.14	76.76	6,584.2	81.6	346.7	-52.7	0.00	0.00	0.00
6,700.0	5.14	76.76	6,683.8	83.6	355.4	-54.0	0.00	0.00	0.00
6,800.0	5.14	76.76	6,783.4	85.7	364.1	-55.4	0.00	0.00	0.00
6,900.0	5.14	76.76	6,883.0	87.7	372.9	-56.7	0.00	0.00	0.00
7,000.0	5.14	76.76	6,982.6	89.8	381.6	-58.0	0.00	0.00	0.00
7,100.0	5.14	76.76	7,082.2	91.8	390.3	-59.3	0.00	0.00	0.00
7,200.0	5.14	76.76	7,181.8	93.9	399.1	-60.7	0.00	0.00	0.00
7,300.0	5.14	76.76	7,281.4	95.9	407.8	-62.0	0.00	0.00	0.00
7,400.0	5.14	76.76	7,380.9	98.0	416.5	-63.3	0.00	0.00	0.00
7,500.0	5.14	76.76	7,480.5	100.0	425.2	-64.6	0.00	0.00	0.00
7,600.0	5.14	76.76	7,580.1	102.1	434.0	-66.0	0.00	0.00	0.00
7,700.0	5.14	76.76	7,679.7	104.1	442.7	-67.3	0.00	0.00	0.00
7,800.0	5.14	76.76	7,779.3	106.2	451.4	-68.6	0.00	0.00	0.00
7,900.0	5.14	76.76	7,878.9	108.2	460.2	-70.0	0.00	0.00	0.00
8,000.0	5.14	76.76	7,978.5	110.3	468.9	-71.3	0.00	0.00	0.00
8,100.0	5.14	76.76	8,078.1	112.4	477.6	-72.6	0.00	0.00	0.00
8,200.0	5.14	76.76	8,177.7	114.4	486.3	-73.9	0.00	0.00	0.00
8,300.0	5.14	76.76	8,277.3	116.5	495.1	-75.3	0.00	0.00	0.00
8,400.0	5.14	76.76	8,376.9	118.5	503.8	-76.6	0.00	0.00	0.00
8,500.0	5.14	76.76	8,476.5	120.6	512.5	-77.9	0.00	0.00	0.00
8,600.0	5.14	76.76	8,576.1	122.6	521.3	-79.2	0.00	0.00	0.00
8,700.0	5.14	76.76	8,675.7	124.7	530.0	-80.6	0.00	0.00	0.00
8,800.0	5.14	76.76	8,775.3	126.7	538.7	-81.9	0.00	0.00	0.00
8,900.0	5.14	76.76	8,874.9	128.8	547.5	-83.2	0.00	0.00	0.00
9,000.0	5.14	76.76	8,974.5	130.8	556.2	-84.6	0.00	0.00	0.00
9,100.0	5.14	76.76	9,074.1	132.9	564.9	-85.9	0.00	0.00	0.00
9,200.0	5.14	76.76	9,173.7	134.9	573.6	-87.2	0.00	0.00	0.00
9,300.0	5.14	76.76	9,273.3	137.0	582.4	-88.5	0.00	0.00	0.00
9,400.0	5.14	76.76	9,372.9	139.0	591.1	-89.9	0.00	0.00	0.00
9,500.0	5.14	76.76	9,472.5	141.1	599.8	-91.2	0.00	0.00	0.00
9,600.0	5.14	76.76	9,572.1	143.2	608.6	-92.5	0.00	0.00	0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well CABO WABO FED COM #804H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3184.0usft (TBD)
Site:	CABO WABO FEDERAL PROJECT (ATLAS 2529)	MD Reference:	KB=30' @ 3184.0usft (TBD)
Well:	CABO WABO FED COM #804H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,700.0	5.14	76.76	9,671.7	145.2	617.3	-93.8	0.00	0.00	0.00
9,800.0	5.14	76.76	9,771.3	147.3	626.0	-95.2	0.00	0.00	0.00
9,900.0	5.14	76.76	9,870.9	149.3	634.7	-96.5	0.00	0.00	0.00
10,000.0	5.14	76.76	9,970.5	151.4	643.5	-97.8	0.00	0.00	0.00
10,100.0	5.14	76.76	10,070.1	153.4	652.2	-99.2	0.00	0.00	0.00
10,200.0	5.14	76.76	10,169.7	155.5	660.9	-100.5	0.00	0.00	0.00
10,300.0	5.14	76.76	10,269.3	157.5	669.7	-101.8	0.00	0.00	0.00
10,400.0	5.14	76.76	10,368.9	159.6	678.4	-103.1	0.00	0.00	0.00
10,500.0	5.14	76.76	10,468.5	161.6	687.1	-104.5	0.00	0.00	0.00
10,600.0	5.14	76.76	10,568.1	163.7	695.9	-105.8	0.00	0.00	0.00
10,700.0	5.14	76.76	10,667.7	165.7	704.6	-107.1	0.00	0.00	0.00
10,800.0	5.14	76.76	10,767.3	167.8	713.3	-108.4	0.00	0.00	0.00
10,900.0	5.14	76.76	10,866.8	169.8	722.0	-109.8	0.00	0.00	0.00
10,956.2	5.14	76.76	10,922.9	171.0	727.0	-110.5	0.00	0.00	0.00
Start DLS	10.00 TFO 102								
11,000.0	5.97	122.47	10,966.4	170.2	730.8	-109.4	10.00	1.88	104.46
11,100.0	14.14	159.21	11,064.9	156.0	739.5	-94.5	10.00	8.17	36.74
11,200.0	23.74	168.09	11,159.4	124.8	748.0	-62.7	10.00	9.60	8.89
11,300.0	33.57	172.01	11,247.1	77.6	756.0	-15.0	10.00	9.83	3.91
11,400.0	43.47	174.29	11,325.2	15.8	763.3	47.1	10.00	9.90	2.29
11,500.0	53.40	175.87	11,391.5	-58.6	769.7	121.8	10.00	9.93	1.58
11,600.0	63.34	177.08	11,443.8	-143.5	774.8	206.8	10.00	9.95	1.21
11,700.0	73.30	178.10	11,480.7	-236.2	778.7	299.6	10.00	9.96	1.02
11,800.0	83.26	179.01	11,501.0	-334.0	781.2	397.2	10.00	9.96	0.91
11,871.2	90.35	179.64	11,505.0	-405.0	782.0	468.1	10.00	9.96	0.88
	.4 hold at 1187								
11,900.0	90.35	179.64	11,504.8	-433.8	782.2	496.8	0.00	0.00	0.00
12,000.0	90.35	179.64	11,504.2	-533.8	782.8	596.5	0.00	0.00	0.00
12,100.0	90.35	179.64	11,503.6	-633.8	783.4	696.2	0.00	0.00	0.00
12,200.0	90.35	179.64	11,503.0	-733.8	784.1	795.9	0.00	0.00	0.00
12,300.0	90.35	179.64	11,502.4	-833.8	784.7	895.6	0.00	0.00	0.00
12,400.0	90.35	179.64	11,501.8	-933.8	785.3	995.3	0.00	0.00	0.00
12,500.0	90.35	179.64	11,501.2	-1,033.8	786.0	1,095.0	0.00	0.00	0.00
12,600.0	90.35	179.64	11,500.5	-1,133.8	786.6	1,194.7	0.00	0.00	0.00
12,700.0	90.35	179.64	11,499.9	-1,233.8	787.2	1,294.4	0.00	0.00	0.00
12,800.0	90.35	179.64	11,499.3	-1,333.8	787.9	1,394.2	0.00	0.00	0.00
12,900.0	90.35	179.64	11,498.7	-1,433.8	788.5	1,493.9	0.00	0.00	0.00
13,000.0	90.35	179.64	11,498.1	-1,533.8	789.1	1,593.6	0.00	0.00	0.00
13,100.0	90.35	179.64	11,497.5	-1,633.8	789.8	1,693.3	0.00	0.00	0.00
13,200.0	90.35	179.64	11,496.9	-1,733.8	790.4	1,793.0	0.00	0.00	0.00
13,300.0	90.35	179.64	11,496.3	-1,833.8	791.0	1,892.7	0.00	0.00	0.00
13,400.0	90.35	179.64	11,495.6	-1,933.7	791.6	1,992.4	0.00	0.00	0.00
13,500.0	90.35	179.64	11,495.0	-2,033.7	792.3	2,092.1	0.00	0.00	0.00

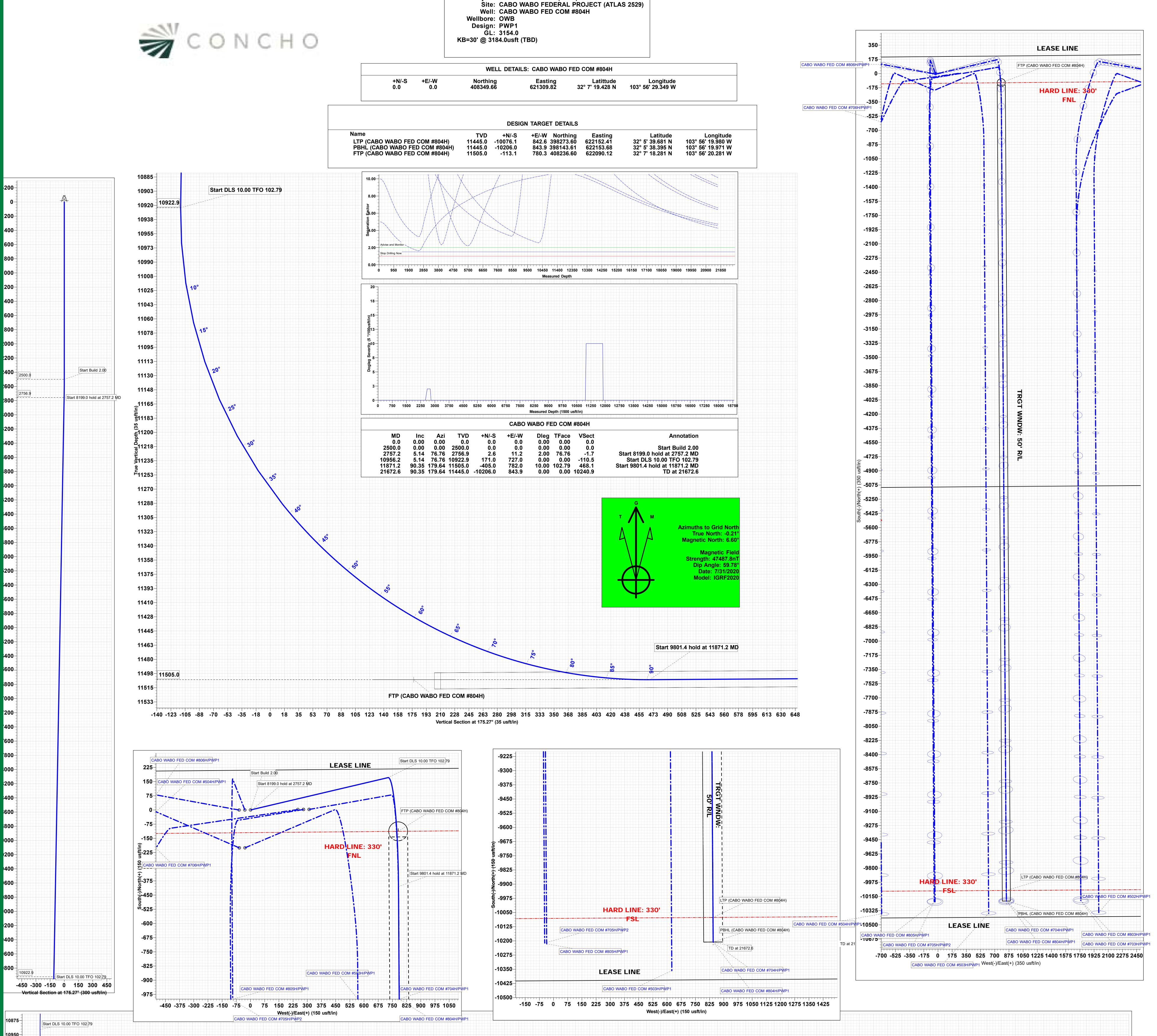
Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well CABO WABO FED COM #804H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3184.0usft (TBD)
Site:	CABO WABO FEDERAL PROJECT (ATLAS 2529)	MD Reference:	KB=30' @ 3184.0usft (TBD)
Well:	CABO WABO FED COM #804H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
13,600.0	90.35	179.64	11,494.4	-2,133.7	792.9	2,191.8	0.00	0.00	0.00
13,700.0	90.35	179.64	11,493.8	-2,233.7	793.5	2,291.5	0.00	0.00	0.00
13,800.0	90.35	179.64	11,493.2	-2,333.7	794.2	2,391.2	0.00	0.00	0.00
13,900.0	90.35	179.64	11,492.6	-2,433.7	794.8	2,490.9	0.00	0.00	0.00
14,000.0	90.35	179.64	11,492.0	-2,533.7	795.4	2,590.7	0.00	0.00	0.00
14,100.0	90.35	179.64	11,491.4	-2,633.7	796.1	2,690.4	0.00	0.00	0.00
14,200.0	90.35	179.64	11,490.7	-2,733.7	796.7	2,790.1	0.00	0.00	0.00
14,300.0	90.35	179.64	11,490.1	-2,833.7	797.3	2,889.8	0.00	0.00	0.00
14,400.0	90.35	179.64	11,489.5	-2,933.7	798.0	2,989.5	0.00	0.00	0.00
14,500.0	90.35	179.64	11,488.9	-3,033.7	798.6	3,089.2	0.00	0.00	0.00
14,600.0	90.35	179.64	11,488.3	-3,133.7	799.2	3,188.9	0.00	0.00	0.00
14,700.0	90.35	179.64	11,487.7	-3,233.7	799.9	3,288.6	0.00	0.00	0.00
14,800.0	90.35	179.64	11,487.1	-3,333.7	800.5	3,388.3	0.00	0.00	0.00
14,900.0	90.35	179.64	11,486.5	-3,433.7	801.1	3,488.0	0.00	0.00	0.00
15,000.0	90.35	179.64	11,485.8	-3,533.7	801.7	3,587.7	0.00	0.00	0.00
15,100.0	90.35	179.64	11,485.2	-3,633.7	802.4	3,687.4	0.00	0.00	0.00
15,200.0	90.35	179.64	11,484.6	-3,733.7	803.0	3,787.2	0.00	0.00	0.00
15,300.0	90.35	179.64	11,484.0	-3,833.7	803.6	3,886.9	0.00	0.00	0.00
15,400.0	90.35	179.64	11,483.4	-3,933.7	804.3	3,986.6	0.00	0.00	0.00
15,500.0	90.35	179.64	11,482.8	-4,033.7	804.9	4,086.3	0.00	0.00	0.00
15,600.0	90.35	179.64	11,482.2	-4,133.7	805.5	4,186.0	0.00	0.00	0.00
15,700.0	90.35	179.64	11,481.6	-4,233.7	806.2	4,285.7	0.00	0.00	0.00
15,800.0	90.35	179.64	11,480.9	-4,333.7	806.8	4,385.4	0.00	0.00	0.00
15,900.0	90.35	179.64	11,480.3	-4,433.7	807.4	4,485.1	0.00	0.00	0.00
16,000.0	90.35	179.64	11,479.7	-4,533.6	808.1	4,584.8	0.00	0.00	0.00
16,100.0	90.35	179.64	11,479.1	-4,633.6	808.7	4,684.5	0.00	0.00	0.00
16,200.0	90.35	179.64	11,478.5	-4,733.6	809.3	4,784.2	0.00	0.00	0.00
16,300.0	90.35	179.64	11,477.9	-4,833.6	810.0	4,883.9	0.00	0.00	0.00
16,400.0	90.35	179.64	11,477.3	-4,933.6	810.6	4,983.6	0.00	0.00	0.00
16,500.0	90.35	179.64	11,476.7	-5,033.6	811.2	5,083.4	0.00	0.00	0.00
16,600.0	90.35	179.64	11,476.1	-5,133.6	811.8	5,183.1	0.00	0.00	0.00
16.700.0	90.35	179.64	11,475.4	-5,233.6	812.5	5,282.8	0.00	0.00	0.00
16,800.0	90.35	179.64	11,474.8	-5,333.6	813.1	5,382.5	0.00	0.00	0.00
16,900.0	90.35	179.64	11,474.2	-5,433.6	813.7	5,482.2	0.00	0.00	0.00
17,000.0	90.35	179.64	11,473.6	-5,533.6	814.4	5,581.9	0.00	0.00	0.00
17,100.0	90.35	179.64	11,473.0	-5,633.6	815.0	5,681.6	0.00	0.00	0.00
17,200.0	90.35	179.64	11,472.4	-5,733.6	815.6	5,781.3	0.00	0.00	0.00
17,300.0	90.35	179.64	11,471.8	-5,833.6	816.3	5,881.0	0.00	0.00	0.00
17,400.0	90.35	179.64	11,471.2	-5,933.6	816.9	5,980.7	0.00	0.00	0.00
17,500.0	90.35	179.64	11,470.5	-6,033.6	817.5	6,080.4	0.00	0.00	0.00
17,600.0	90.35	179.64	11,469.9	-6,133.6	818.2	6,180.1	0.00	0.00	0.00
17,700.0	90.35	179.64	11,469.3	-6,233.6	818.8	6,279.9	0.00	0.00	0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well CABO WABO FED COM #804H
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3184.0usft (TBD)
Site:	CABO WABO FEDERAL PROJECT (ATLAS 2529)	MD Reference:	KB=30' @ 3184.0usft (TBD)
Well:	CABO WABO FED COM #804H	North Reference:	Grid
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature
Design:	PWP1	Database:	edm


Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
17,800.0	90.35	179.64	11,468.7	-6,333.6	819.4	6,379.6	0.00	0.00	0.00
17,900.0	90.35	179.64	11,468.1	-6,433.6	820.0	6,479.3	0.00	0.00	0.00
18,000.0	90.35	179.64	11,467.5	-6,533.6	820.7	6,579.0	0.00	0.00	0.00
18,100.0	90.35	179.64	11,466.9	-6,633.6	821.3	6,678.7	0.00	0.00	0.00
18,200.0	90.35	179.64	11,466.3	-6,733.6	821.9	6,778.4	0.00	0.00	0.00
18,300.0	90.35	179.64	11,465.6	-6,833.6	822.6	6,878.1	0.00	0.00	0.00
18,400.0	90.35	179.64	11,465.0	-6,933.6	823.2	6,977.8	0.00	0.00	0.00
18,500.0	90.35	179.64	11,464.4	-7,033.6	823.8	7,077.5	0.00	0.00	0.00
18,600.0	90.35	179.64	11,463.8	-7,133.5	824.5	7,177.2	0.00	0.00	0.00
10 700 0	00.05	470.04	44,400,0	7 000 5	005.4	7 070 0	0.00	0.00	0.00
18,700.0	90.35	179.64	11,463.2	-7,233.5	825.1	7,276.9	0.00	0.00	0.00
18,800.0	90.35	179.64	11,462.6	-7,333.5	825.7	7,376.6	0.00	0.00	0.00
18,900.0	90.35	179.64	11,462.0	-7,433.5	826.4	7,476.3	0.00	0.00	0.00
19,000.0	90.35	179.64	11,461.4	-7,533.5	827.0	7,576.1	0.00	0.00	0.00
19,100.0	90.35	179.64	11,460.7	-7,633.5	827.6	7,675.8	0.00	0.00	0.00
19,200.0	90.35	179.64	11,460.1	-7,733.5	828.3	7,775.5	0.00	0.00	0.00
19,300.0	90.35	179.64	11,459.5	-7,833.5	828.9	7,875.2	0.00	0.00	0.00
19,400.0	90.35	179.64	11,458.9	-7,933.5	829.5	7,974.9	0.00	0.00	0.00
19,500.0	90.35	179.64	11,458.3	-8,033.5	830.1	8,074.6	0.00	0.00	0.00
19,600.0	90.35	179.64	11,457.7	-8,133.5	830.8	8,174.3	0.00	0.00	0.00
10,000.0	00.00	110.01	11,101.11	0,100.0	000.0	0,111.0	0.00	0.00	0.00
19,700.0	90.35	179.64	11,457.1	-8,233.5	831.4	8,274.0	0.00	0.00	0.00
19,800.0	90.35	179.64	11,456.5	-8,333.5	832.0	8,373.7	0.00	0.00	0.00
19,900.0	90.35	179.64	11,455.9	-8,433.5	832.7	8,473.4	0.00	0.00	0.00
20,000.0	90.35	179.64	11,455.2	-8,533.5	833.3	8,573.1	0.00	0.00	0.00
20,100.0	90.35	179.64	11,454.6	-8,633.5	833.9	8,672.8	0.00	0.00	0.00
00 000 0	00.05	170.04	44 454 0	0 700 5	004.0	0 770 0	0.00	0.00	0.00
20,200.0	90.35	179.64	11,454.0	-8,733.5	834.6	8,772.6	0.00	0.00	0.00
20,300.0	90.35	179.64	11,453.4	-8,833.5	835.2	8,872.3	0.00	0.00	0.00 0.00
20,400.0	90.35	179.64	11,452.8	-8,933.5	835.8	8,972.0	0.00	0.00	
20,500.0	90.35	179.64 179.64	11,452.2	-9,033.5	836.5	9,071.7	0.00	0.00	0.00
20,600.0	90.35	179.04	11,451.6	-9,133.5	837.1	9,171.4	0.00	0.00	0.00
20,700.0	90.35	179.64	11,451.0	-9,233.5	837.7	9,271.1	0.00	0.00	0.00
20,800.0	90.35	179.64	11,450.3	-9,333.5	838.4	9,370.8	0.00	0.00	0.00
20,900.0	90.35	179.64	11,449.7	-9,433.5	839.0	9,470.5	0.00	0.00	0.00
21,000.0	90.35	179.64	11,449.1	-9,533.5	839.6	9,570.2	0.00	0.00	0.00
21,100.0	90.35	179.64	11,448.5	-9,633.5	840.2	9,669.9	0.00	0.00	0.00
,			,	,		,			
21,200.0	90.35	179.64	11,447.9	-9,733.4	840.9	9,769.6	0.00	0.00	0.00
21,300.0	90.35	179.64	11,447.3	-9,833.4	841.5	9,869.3	0.00	0.00	0.00
21,400.0	90.35	179.64	11,446.7	-9,933.4	842.1	9,969.1	0.00	0.00	0.00
21,500.0	90.35	179.64	11,446.1	-10,033.4	842.8	10,068.8	0.00	0.00	0.00
21,600.0	90.35	179.64	11,445.4	-10,133.4	843.4	10,168.5	0.00	0.00	0.00
21,672.6	90.35	179.64	11,445.0	-10,206.0	843.9	10,240.9	0.00	0.00	0.00
TD at 21672		170.04	11,440.0	10,200.0	040.0	10,240.0	0.00	0.00	0.00

Survey Report

Company:	DELAWARE BASIN WEST	Local Co-ordinate Reference:	Well CABO WABO FED COM #804H					
Project:	ATLAS PROSPECT (NM-E)	TVD Reference:	KB=30' @ 3184.0usft (TBD)					
Site:	CABO WABO FEDERAL PROJECT (ATLAS 2529)	MD Reference:	KB=30' @ 3184.0usft (TBD)					
Well:	CABO WABO FED COM #804H	North Reference:	Grid					
Wellbore:	OWB	Survey Calculation Method:	Minimum Curvature					
Design:	PWP1	Database:	edm					
Design Targets								

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL (CABO WABO - plan hits target c - Rectangle (sides			11,445.0 0.0)	-10,206.0	843.9	398,143.61	622,153.68	32° 5' 38.395 N	103° 56' 19.971 W
LTP (CABO WABO F - plan misses targ - Point			11,445.0 1542.6usft	-10,076.1 MD (11445.8	842.6 3 TVD, -1007	398,273.60 6.1 N, 843.0 E)	622,152.41	32° 5' 39.681 N	103° 56' 19.980 W
FTP (CABO WABO F - plan misses targ - Circle (radius 50	et center by		11,505.0 11600.0ust	-113.1 t MD (11443	780.3 .9 TVD, -143	408,236.60 5.5 N, 774.8 E)	622,090.12	32° 7' 18.281 N	103° 56' 20.281 W

De	sured pth sft)	Vertical Depth (usft)	Local Coor +N/-S (usft)	dinates +E/-W (usft)	Comment	
	2500	2500	0	0	Start Build 2.00	
	2757	2757	3	11	Start 8199.0 hold at 2757.2 MD	
1	0,956	10,923	171	727	Start DLS 10.00 TFO 102.79	
1	11,871	11,505	-405	782	Start 9801.4 hold at 11871.2 MD	
2	21,673	11,445	-10,206	844	TD at 21672.6	

Project: ATLAS PROSPECT (NM-E)

10950-

·200–

0-

200-

400-

600-

800-

000-

200-

400-

600-

800

2000-

200-

2600-

2800-

000

200-

400-

600-

800-

-000

200-

400-

600-

-800

000-

200-

400-

600-

800-

000-

200-

400-

600-

800-

'000

200-

400

'600–

'800–

000-

200-

400-

600-

800

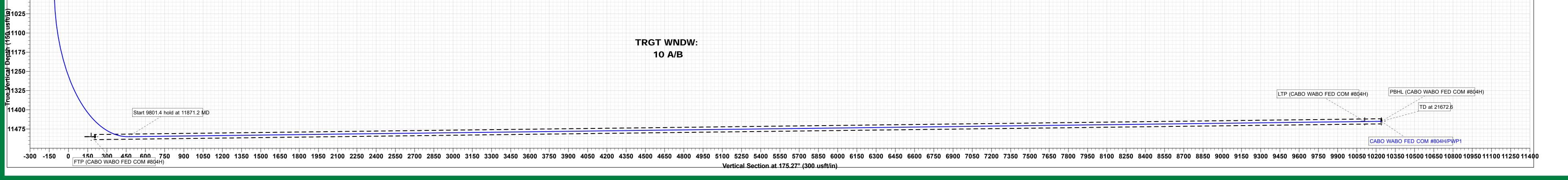
000-

200-

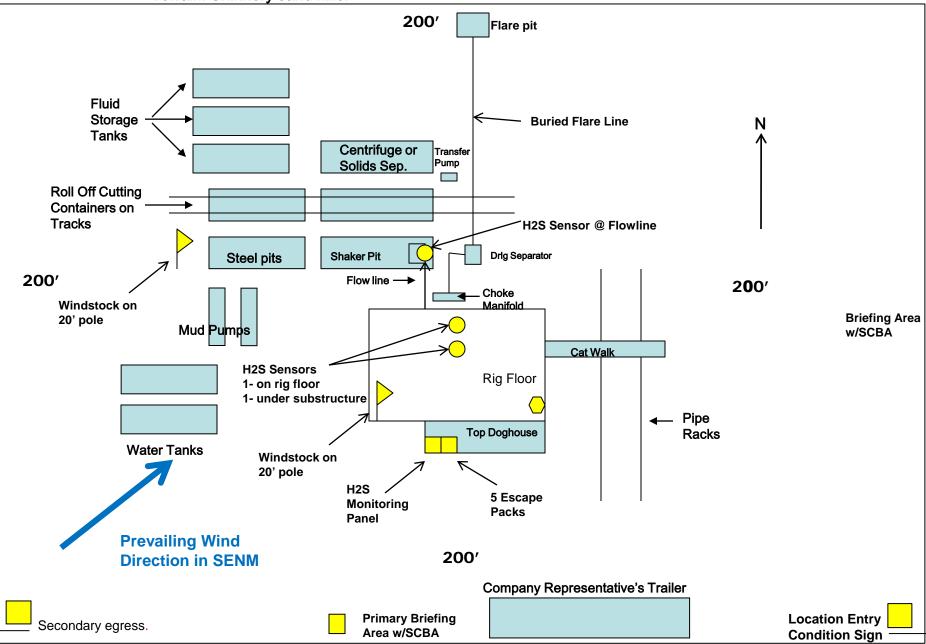
400-

600-

800-


000-

200-


400-

600-

800-

COG Operating LLC H_2S Equipment Schematic Terrain: Shinnery sand hills.

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

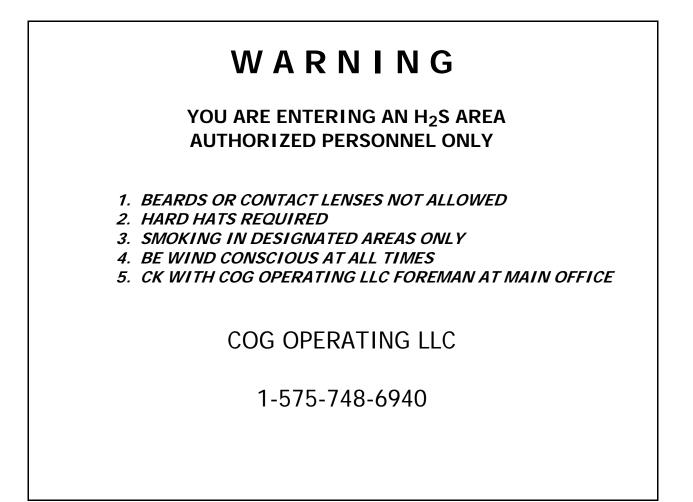
- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment: Flare line.
Choke manifold with remotely operated choke.
Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

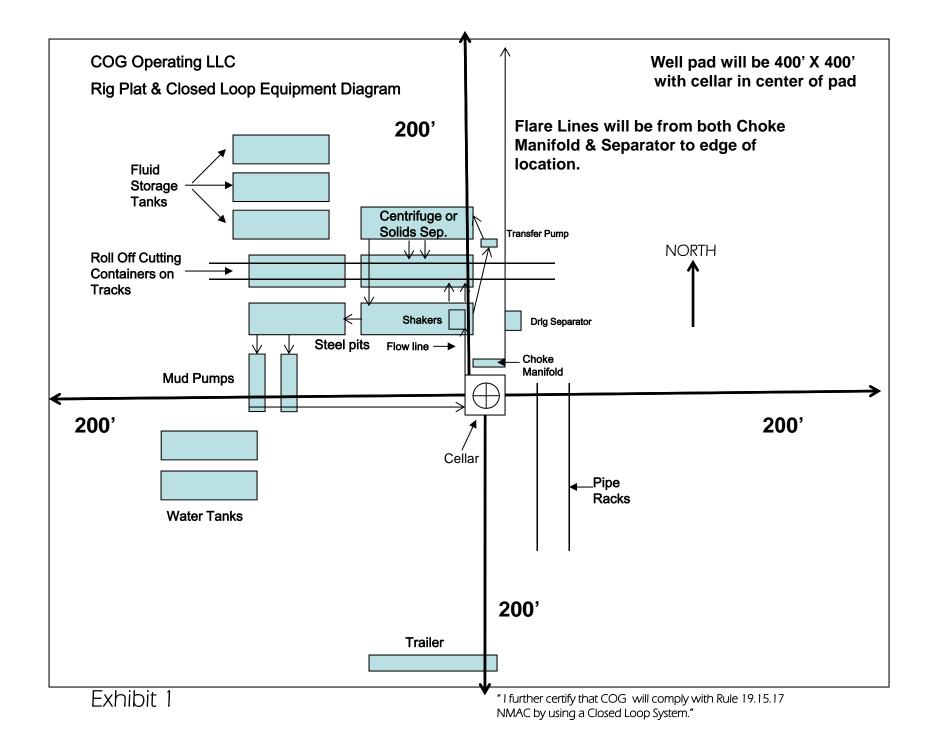

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 - 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.



EMERGENCY CALL LIST

	<u>OFFICE</u>	MOBILE
COG OPERATING LLC OFFICE	575-748-6940	
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	<u>OFFICE</u>
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: <u>9/08/20</u>

 \boxtimes Original

Operator & OGRID No.: COG Production LLC, (217955)

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility – Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Cabo Wabo Federal Com 801H	30-015-	A-24-25S-29E	210' FNL & 1140' FEL	±4200	None Planned	APD Submission Plan Subject to change
Cabo Wabo Federal Com 802H	30-015-	A-24-25S-29E	210' FNL & 1170' FEL	±4200	None Planned	APD Submission Plan Subject to change
Cabo Wabo Federal Com 803H	30-015-	A-24-25S-29E	210' FNL & 1200' FEL	±4200	None Planned	APD Submission Plan Subject to change
Cabo Wabo Federal Com 804H	30-015-	C-24-25S-29E	210' FNL & 1420' FWL	±4200	None Planned	APD Submission Plan Subject to change
Cabo Wabo Federal Com 805H	30-015-	C-24-25S-29E	210' FNL & 1390' FWL	±4200	None Planned	APD Submission Plan Subject to change
Cabo Wabo Federal Com 806H	30-015-	C-24-25S-29E	210' FNL & 1360' FWL	±4200	None Planned	APD Submission Plan Subject to change

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to **ETC Field Services LLC** and will be connected to **Red Bluff** low pressure gathering system located in **Culberson** County, Texas. **COG Operating LLC** provides (periodically) to **ETC Field Services LLC** a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, **COG Operating LLC** and **ETC Field Services LLC** have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at **ETC Field Services LLC** Processing Plant located in Sec. **35**, Blk. **57**, **T2**, **Culberson** County, Texas. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Gas Transporter</u> system at that time. Based on current information, it is <u>Operator's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines

- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines