SECRETARY'S POTASH

Form	3	160	-3
(Apri	1	200	4)

Type of work

OCD - Artegia

FORM APPROVED OMB No 1004-0137 Expires March 31, 2007

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

5	Lease Serial No	
	BHL: NM 068431	3H rc098431

APPLICATION FOR PERMIT TO DRILL OR REENTER

REENTER

6 If Indian, Allotee or Tribe Name See pg 1 of 8pt DP for lease info. 7 If Unit or CA Agreement, Name and No Poker Lake Unit NMNM 71016X

8 Lease Name and Well No Gas Well ✓ Single Zone Multiple Zone Poker Lake Unit 322H Type of Well ✓ Oil Well Name of Operator BOPCO, L. P.

3a Address P.O. Box 2760 3b Phone No. (include Midland, TX 79702

Location of Well (Report location clearly and in accordance with any State requirements *)

SENE UL 1130' FSL & 280' FEL, Lat: N 32.242486, Long: W 103.895289 At surface

Sec 05, T24S-R30E, Mer, NMF

At proposed prod zone 450' FNL&550' FWL,Sec15-T24S-R30E,Lat: N32:223653; Dg W 103.875292 14 Distance in miles and direction from nearest town or post office*

12 County or Parish 13 State Eddy

22 miles east of Malaga Distance from proposed 16 No of acres in lease 17 Spacing Unit dedicated to this well 280' FEL location to nearest property or lease line, ft (Also to nearest drig unit line, if any) 8859 18 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft 20 BLM/BIA Bond No on file 19 Proposed Depth 16,600' MD/ 7,588' TVD COB 000050 1,086

22 Approximate date work will start* 23 Estimated duration Elevations (Show whether DF, KDB, RT, GL, etc.) 3,336' GL 30 Days 02/01/2013

24. Attachments

The following, completed in accordance with the requirements of Onshore Oil and Gas Order No 1, shall be attached to this form

1 Well plat certified by a registered surveyor

DRILL

- 2 A Drilling Plan
- A Surface Use Plan (if the location is on National Forest System Lands, the SUPO shall be filed with the appropriate Forest Service Office)
- Bond to cover the operations unless covered by an existing bond on file (see Item 20 above)
- Operator certification
- Such other site specific information and/or plans as may be required by the

25 Signature Rem Bros	Name (Printed/Typed) Jeremy Braden	Date 7/1	2/1	2
Title Engineering Assistant				
Approved by (Signature) /s/ Jesse J. Ju	Name (Printed/Typed)	Dat OCT	4	2012
Title STATE DIRECTOR	Office NM STATE OFFICE			

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon Conditions of approval, if any, are attached

APPROVAL FOR TWO YEARS

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

*(Instructions on page 2)

Carlsbad Controlled Water Basin

RECEIVED OCT 11 2012 NMOCD ARTESIA

Approval Subject to General Requirements & Special Stipulations Attached

SEE ATTACHED FOR CONDITIONS OF APPROVAL DISTRICT I
1625 N French Dr. Hobbs, NM 68240
DISTRICT II
1301 W Grand Avenue, Artesia, NM 88210

DISTRICT III

State of New Mexico Energy, Minerals and Natural Resources Department

Form C-102 Revised July 16, 2010

Submit one copy to appropriate District Office

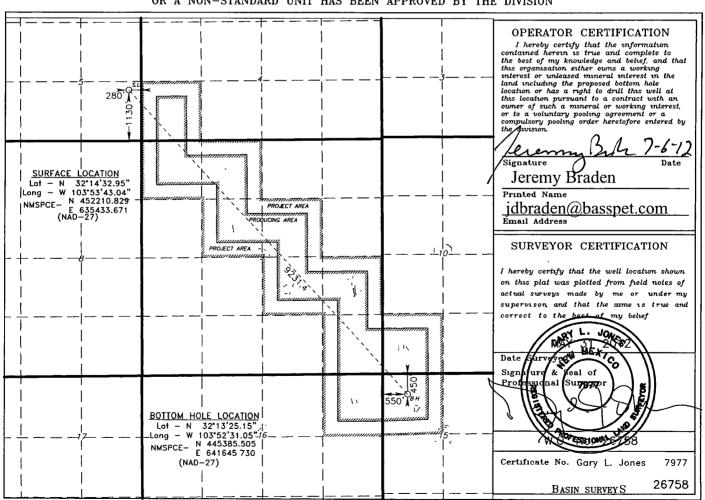
OIL CONSERVATION DIVISION

1220 South St. Francis Dr. Santa Fe, New Mexico 87505

1000 Rto Brazos Rd , Aztec, NM 87410 DISTRICT IV 1220 S St Francis Dr , Santa Fe, NM 87505

☐ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT DRAW Pool Name Pool Code API Number ildeat (Delaware) Delaware-Property Code Property Name Well Number 306400 322H POKER LAKE UNIT OGRID No Operator Name Elevation 260737 3336 BOPCO, L.P. Surface Location



UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
Р	5	24 S	30 E		1130'	SOUTH	280'	EAST	EDDY

Bottom Hole Location If Different From Surface

UL or lot No	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
D	15	24 S	30 E		450'	NORTH	550'	WEST	EDDY
Dedicated Acres Joint or Infill Consolidation Code Order No.									
440									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

BOPCO, L.P.

P. O. Box 2760 Midland, Texas 79702

432-683-2277

FAX-432-687-0329

June 29, 2012

Bureau of Land Management Carlsbad Field Office 620 East Green Street Carlsbad, New Mexico 88220-6292

Attn: Mr. Don Peterson - Assistant Field Manager, Minerals

RE. APPLICATION FOR PERMIT TO DRILL

POKER LAKE UNIT #322H

1130' FSL, 280' FEL, SEC. 5, T24S, R30E, EDDY COUNTY, NM

Dear Mr. Peterson.

In reference to the above captioned well, I hereby certify that I, or persons under my direct supervision have inspected the proposed drill site and access route; that I am familiar with the conditions which currently exist, that the statements made in the attached eight point drilling plan and multi-use surface plan are, to the best of my knowledge, true and correct, and that the work associated with operations proposed herein will be performed by BOPCO, L.P. and it's contractors and subcontractors in conformity with this plan and the terms and conditions under which it is approved. This statement is subject to the provisions of 18 U S.C. 1001 for the filing of a false statement.

If you have any questions regarding the accuracy of the plan provided herein, please do not hesitate to contact me at

(432) 683-2277.

Stephen M /Martinez

Division Drilling Superintendent

Surface casing is to be set into the Rustler below all fresh water sands at an approximate depth of 948' and cement circulated to surface

7" casing will be set at approximately 7,710' MD, 7,524' TVD (In curve) and cemented in two stages with DV Tool set at approximately 5,000'. Cement will be circulated 500' into the 9-5/8" intermediate casing

Drilling procedure, BOP diagram, and anticipated tops are attached.

This well is located outside the R111 Potash area and Secretary's Potash area

The surface location is nonstandard and located inside the Poker Lake Unit.

The bottom hole location is nonstandard and located inside the Poker Lake Unit.

Surface Lease Numbers-Federal Lease: LC 068431

Bottom Hole Lease Numbers - Federal Lease: LC 068431

BOPCO, L.P., at P. O. Box 2760, Midland, TX, 79702 is a subsidiary of BOPCO, L.P., 201 Main Street, Ft. Worth, TX, 76102. Bond No. COB000050 (Nationwide).

EIGHT POINT DRILLING PROGRAM BOPCO, L.P.

NAME OF WELL: Poker Lake Unit 322H

LEGAL DESCRIPTION - SURFACE: 1130' FSL, 280' FEL, Section 05, T24S, R30E, Eddy County, NM.

BHL: 450' FNL, 550' FWL, Section 15, T24S, R30E, Eddy County, New Mexico

POINT 1: ESTIMATED FORMATION TOPS (See No. 2 Below)

POINT 2: WATER, OIL, GAS AND/OR MINERAL BEARING FORMATIONS

Anticipated Formation Tops: KB 3358' (estimated)

GL 3336'

Formation Description	Est from KB (TVD)	· · · · · · · · · · · · · · · · · · ·	SUB-SEA TOP	BEARING
T/Fresh Water	200'	200'	+ 3,158'	Fresh Water
T/Rustler	608'	608'	+ 2,750'	Barren
T/Salado ·	958'	958'	+ 2,400'	Barren
B/Salt	3,603'	3,603'	- 245'	Oil/Gas
T/Lamar	3,723'	3,723'	- 365'	Oil/Gas
T/Ramsey	3,768'	3,768'	- 410'	Oil/Gas
Cherry Canyon	4,723'	4,723'	- 1,365'	Oil/Gas
Brushy Canyon	6,016'	6,016'	- 2,658'	Oil/Gas
KOP	7,010'	7,010'	- 3,652'	Oil/Gas
LBC "8A" Sand	7,298'	7,319'	- 3,940'	Oil/Gas
Target #1	7,473'	7,610'	- 4,115'	Oil/Gas
TD Horizontal Hole	7,588'	16,600'	- 4,230'	Oil/Gas

POINT 3: CASING PROGRAM

TYPE	INTERVAL MD	HOLE SIZE	PURPOSE	INSTALLATION TYPE
20"	0' – 120'	26"	Conductor	Contractor Discretion
13-3/8", 48#, H-40, or 54.5#, J-55 8rd, ST&C*	0' 948'	17-1/2"	Surface	New
9-5/8", 40#, N-80, 8rd, LT&C or 9-5/8" 40#, J-55, 8rd, LT&C*	0' - 3,743'	12-1/4"	Intermediate	New
7", 26#, N-80, Buttress or 8rd LTC*	0 - 7,710'	8-3/4"	Production	New

Completion System 4-1/2", 11.6#, HCP-110 8rd LT&C, 7,760' – 16,600' 6-1/8" Completion System New BTC, or Ultra flush

^{*} Depending on availability.

CASING DESIGN SAFETY FACTORS:

TYPE	TENSION	COLLAPSE	BURST
13-3/8", 48#, H-40, 8rd, ST&C*	8.30	1.57	1 66
13-3/8", 54.5#, J-55, 8rd, STC*	19 37	2.47	2.62
9-5/8", 40#, N-80, 8rd, LT&C*	5.41	1 44	2.75
9-5/8", 40#, J-55, 8rd, LT&C*	4 98	1.18	1.89
7", 26#, N-80, Buttress*	3 08	1 28	1 72
7", 26#, N-80, 8rd, LTC*	3 58	1 33	1.72

Completion System	接流量的影響		
4-1/2", 11 6#, HCP-110 8rd. LT&C	3 67	2.12	2.52
4-1/2", 11 6#, HCP-110 BTC	4.83	2 22	2 52
4-1/2", 11 6#, HCP-110 UFJ	3 16	1 79	2 52

^{*} Depending on availability.

DESIGN CRITERIA AND CASING LOADING ASSUMPTIONS:

SURFACE CASING - (13-3/8")

Tension A 1.6 design factor utilizing the effects of buoyancy (9 2 ppg)

Collapse A 1 0 design factor with full internal evacuation and a collapse force equal to the mud gradient in which the

casing will be run (0 48 psi/ft) The effects of axial load on collapse will be considered

Burst A 1.3 design factor with a surface pressure equal to the fracture gradient at setting depth less a gas

gradient to the surface Internal burst force at the shoe will be fracture pressure a that depth Backup pressure will be formation pore pressure. In all cases a conservative fracture pressure will be used such that it represents the upper limit of potential fracture resistance up to a 1.0 psi/ft gradient. The effects of

tension on burst will not be utilized

PROTECTIVE CASING - (9-5/8")

Tension A 1 6 design factor utilizing the effects of buoyancy (10.2 ppg)

Collapse A 1 125 design factor with full internal evacuation and a collapse force equal to the mud gradient in which

the casing will be run (0 52 psi/ft). The effects of axial load on collapse will be considered.

In the case of development drilling, collapse design should be analyzed using internal evacuation equal to 1/3 the proposed total depth of the well This criterion will be used when there is absolutely no potential of

the protective string being used as a production casing string.

Burst A 1.0 surface design factor and a 1.3 downhole design factor with a surface pressure equivalent to the fracture gradient at setting depth less a gas gradient to the surface. Internal burst force at the shoe will be

fracture gradient at setting depth less a gas gradient to the surface. Internal burst force at the shoe will be fracture pressure at that depth. Back pressure will be formation pore pressure. In all cases a conservative fracture pressure will be used such that it represents the upper limit of potential fracture resistance up to a

1 0 psi/ft gradient

Production CASING - (7")

Tension A 1.6 design factor utilizing the effects of buoyancy (9 0 ppg).

Collapse A 1 125 design factor with full internal evacuation and a collapse force equal to the mud gradient in which

the casing will be run (0 48 psi/ft) The effects of axial load on collapse will be considered

Burst A 1 25 design factor with anticipated maximum tubing pressure (5000 psig) on top of the maximum

anticipated packer fluid gradient (0 433 psi/ft) Backup on production strings will be formation pore

pressure (0.433 psi/ft) The effect burst will not be utilized

Completion System - (4-1/2")

Tension A 1.6 design factor utilizing the effects of buoyancy (9 0 ppg)

Collapse A 1 125 design factor with full internal evacuation and a collapse force equal to the mud gradient in which

the casing will be run (0 48 psi/ft) The effects of axial load on collapse will be considered.

Burst A 1.25 design factor with anticipated maximum tubing pressure (5000 psig) on top of the maximum anticipated packer fluid gradient. (0 433 psi/ft) Backup on production strings will be formation pore

pressure. (0 433 psi/ft) The effects of tension on burst will not be utilized

POINT 4: PRESSURE CONTROL EQUIPMENT (SEE ATTACHED DIAGRAM 1 & 2) #See COA

The BOPE when rigged up on the 13-3/8" surface casing head (12-1/4" open hole) will consist of 13-5/8" X 5,000 psi dual ram BOP's with mud cross, choke manifold, chokes, and hydril per Diagram 1 (5,000 psi WP). The pipe and blind rams, choke, kill lines, kelly cocks, inside BOP, etc. when installed on the surface casing head will be hydro-tested to 250-300 psig and 2000 psig by independent tester. The hydril when installed on surface casing head will be tested to 1000 psi

The BOPE when rigged up on the 9-5/8" intermediate casing spool (8-3/4" open hole) will consist of 13-5/8" x 5,000 psi annular, 13-5/8" x 5,000 psi pipe & blind rams with mud cross, choke manifold and chokes as in Diagram 1. The pipe and blind rams, choke, kill lines, kelly cocks inside BOP, etc. will be tested to 3000 psig by independent tester. In addition to the high pressure test, a low pressure (250-300 psig) test will be required. Hydril will be tested to 1500 psig.

The BOPE when rigged up on the 7" intermediate casing spool (6-1/8" open hole) will consist of 13-5/8" x 5,000 psi annular, 13-5/8" x 5,000 psi pipe & blind rams with mud cross choke manifold and chokes as in Diagram 1. The pipe and blind rams, choke, kelly lines, kelly cocks inside BOP, etc will be tested to 3000 psig by independent tester. In addition to the high pressure test, a low pressure (250-300 psig) test will be required. Hydril will be tested to 1500 psig.

These tests will be performed:

- a) Upon installation
- b) After any component changes
- c) Thirty days after a previous test
- d) As required by well conditions

A function test to insure that the preventers are operating correctly will be performed on each trip.

BOPCO, L.P. would like to utilize an armored, 3", 5000 psi WP flex hose for the choke line in the drilling of the well. This is rig equipment and will help quicken nipple up time thus saving money without a safety problem. The hose itself is rated to 5000 psi and has 5000 psi flanges on each end. This well is to be drilled to 16,600' MD (7588' TVD) and max surface pressure should be +/-1882 psi as prescribed in onshore order #2 shown as 0.22 psi/ft. Thus, 2000 psi BOPE (for 12-1/4" hole) and 3000 psi BOPE (for 8-3/4" and 6-1/8" hole) is all that is needed for this well. Please refer to diagram 2 for choke manifold and closed loop system layout. If an armored flex hose is utilized, the company man will have all of the proper certified paper work for that hose available on location. There is a list of possible flex hose serial numbers that could be used attached with the choke manifold diagram

See COA

Please refer to diagram 2 for choke manifold and closed loop system layout. .

POINT 5: MUD PROGRAM

I Chill of micr	J I KOOKANI								
DEPTH ***	是全球的場合,沒是在	MUD TYPE	WEIGHT	FV V	PV	YP	FL W	Ph	
0 - 948'	FW Spud Mud	85-92	38-70	NC	NC	NC	10.0		
948' – 3,743'	Brine Water	9.8 – 10 2	28-30	NC	NC	NC	95-105		
3,743' – 7,710'	FW/Gel	8.7 – 9 0	28-36	NC	NC	NC	9 5 – 10.0		
7,710'-16,600'	FW/Gel/Starch	8.7 – 9 0	28-36	NC	NC	<100	9.5 – 10 0		
	DEPTH 0 - 948' 948' - 3,743' 3,743' - 7,710'	0 - 948' FW Spud Mud 948' - 3,743' Brine Water 3,743' - 7,710' FW/Gel	DEPTH MUD TYPE 0 - 948' FW Spud Mud 8 5 - 9 2 948' - 3,743' Brine Water 9.8 - 10 2 3,743' - 7,710' FW/Gel 8.7 - 9 0	DEPTH MUD TYPE WEIGHT 0 - 948' FW Spud Mud 8 5 - 9 2 38-70 948' - 3,743' Brine Water 9.8 - 10 2 28-30 3,743' - 7,710' FW/Gel 8.7 - 9 0 28-36	DEPTH MUD TYPE WEIGHT FV 0 - 948' FW Spud Mud 8 5 - 9 2 38-70 NC 948' - 3,743' Brine Water 9.8 - 10 2 28-30 NC 3,743' - 7,710' FW/Gel 8.7 - 9 0 28-36 NC	DEPTH MUD TYPE WEIGHT FV PV 0 - 948' FW Spud Mud 8 5 - 9 2 38-70 NC NC 948' - 3,743' Brine Water 9.8 - 10 2 28-30 NC NC 3,743' - 7,710' FW/Gel 8.7 - 9 0 28-36 NC NC	DEPTH MUD TYPE WEIGHT FV PV YP 0 - 948' FW Spud Mud 8 5 - 9 2 38-70 NC NC	DEPTH MUD:TYPE WEIGHT FV PV YP FL 0 - 948' FW Spud Mud 8 5 - 9 2 38-70 NC NC NC 10.0 948' - 3,743' Brine Water 9.8 - 10 2 28-30 NC NC NC 9 5 - 10 5 3,743' - 7,710' FW/Gel 8.7 - 9 0 28-36 NC NC NC 9 5 - 10.0	DEPTH MUD TYPE WEIGHT FV YP FL Ph 0 - 948' FW Spud Mud 8 5 - 9 2 38-70 NC NC NC 10.0 10.0 948' - 3,743' Brine Water 9.8 - 10 2 28-30 NC NC NC 9 5 - 10 5 9 5 - 10.0 9 5 - 10.0 NC NC NC NC 9 5 - 10.0 9 5 - 10.0 NC NC

NOTE: May increase vis for logging purposes only.

POINT 6: TECHNICAL STAGES OF OPERATION

A) TESTING

None anticipated.

B) L

LOGGING

See COA

Run #1:

GR with MWD during drilling of build and horizontal portions of 8-3/4" and 6-1/8"

hole.

200 E

Run #2:

Shuttle log w/GR, PE, Density, Neutron, Resistivity in lateral leg open hole.

Mud Logger: Rigged up at 100'

C) CONVENTIONAL CORING

None anticipated

D) CEMENT

INTERVAL	AMOUNT		TYPE	GALS/SX	v PPG ≟	∌ FT³′SX
SURFACE: 13 ³ /4				Andread His House Control & Addition		Part Sept of Mrs.
Lead. 0' - 648'	524	648	Class C +2% CACL + 4% Bentonite + 0 25 LB/SK Cello Flake + 3 lb/sk LCM-1	8 69	13 50	1.75
Tail. 648' – 948'	345	300	Class C + 2% CACL + 0 25 LB/SK CF	6 35	14.80	1 35
INTERMEDIATE: 95/9			0.25LB/SK Cello Flake + 3 lb/sk LCM-1			
Lead 0' - 3,243'	980	3243	EconoCEM HLC + 5% CaCl + 5#/sk Gilsonite	9 32	12 90	1 85
Tail: 3,243' – 3,743'	271	500	HalCem C	6 34	14 80	1 33
Production 7 ll Stage 1			,			
Lead 5,000' - 7,010'	174	2010	Tuned Light + 0 75% + CFR-3 + 1.5#/sk CaCl	12 41	10 20	2 76
Tail: 7,010' – 7,710'	116	700	· VersaCem-PBSH2 + 0 4% Halad-9	8 76	13 0	1.65
DV Tool @ 5,000'			•			
Stage 2.						
Lead 3,243' – 4,500'	133	1257	EconCem HLC + 1% Econolite + 5% CaCl + 5#/sk Gilsonite	10 71	12 60	2 04
Tail: 4,500' - 5,000'	100	500	HalCem C	6 34	14.80	1.33

Cement excesses will be as follows:

Surface - 100% excess with cement circulated to surface.

1st Intermediate – 50% excess above fluid caliper with cement circulated to surface

Production – 50% above gauge hole or 35% above electric log caliper with cement circulated 500' up into the 9-5/8" 1st intermediate casing in areas outside the SOPA. Cement will be circulated to surface on areas inside the SOPA.

Cement volumes will be adjusted proportionately for depth changes of the multi stage tool

E) COMPLETIONS SYSTEM

A 4-1/2" completion system with open hole packers will be run in the producing lateral to a depth of 16,600'. The top of the Completion System will be set at approximately 7,760'. Cement will not be required for this system.

F) DIRECTIONAL DRILLING

BOPCO, L.P. plans to drill out the 9-5/8" intermediate casing with a 8-3/4" bit to a TVD of approximately 7,010' at which point a directional hole will be kicked off and drilled at an azimuth of 155.76 degrees, building angle at 12.00 deg/100' to 60 degrees at a TVD of 7,424' (MD 7,510'). This angle and azimuth will be maintained for 200' to a measured depth of 7,710' (7,524' TVD). At this depth 7", 26#, N80, Buttress, or 8rd LTC casing will be installed and cemented in two stages (DV Tool @ approximately 5000') with cement circulated 500' inside the 9-5/8" intermediate casing. A 6-1/8" open hole lateral will then be drilled out from 7" casing at an azimuth of 135.00 degrees, inclination of 90.00 degrees to a measured depth of 16,600', TVD 7,588'. At this depth a 4-1/2" Completion System with packers installed for zone isolation will be run into the producing lateral.

G) H2S SAFMEY EQUIPMENT

As stated in the BLM Onshore Order 6, for wells located inside the H2S area, H2S equipment will be rigged up after setting surface casing For the wells located inside the H2S area the flare pit will be located 150' from the location. For wells located outside the H2S area flare pit will be located 100' away from the location (See page 6 of Survey plat package and diagram 2) There is not any H2S anticipated in the area, although in the event that H2S is encountered, the H2S contingency plan attached will be implemented. (Please refer to diagram 2 for choke manifold and closed loop system layout.) Please refer to H2S location diagram for location of important H2S safety items.

H) CLOSED LOOP AND CHOKE MANIFLOLD

Please see diagram 2.

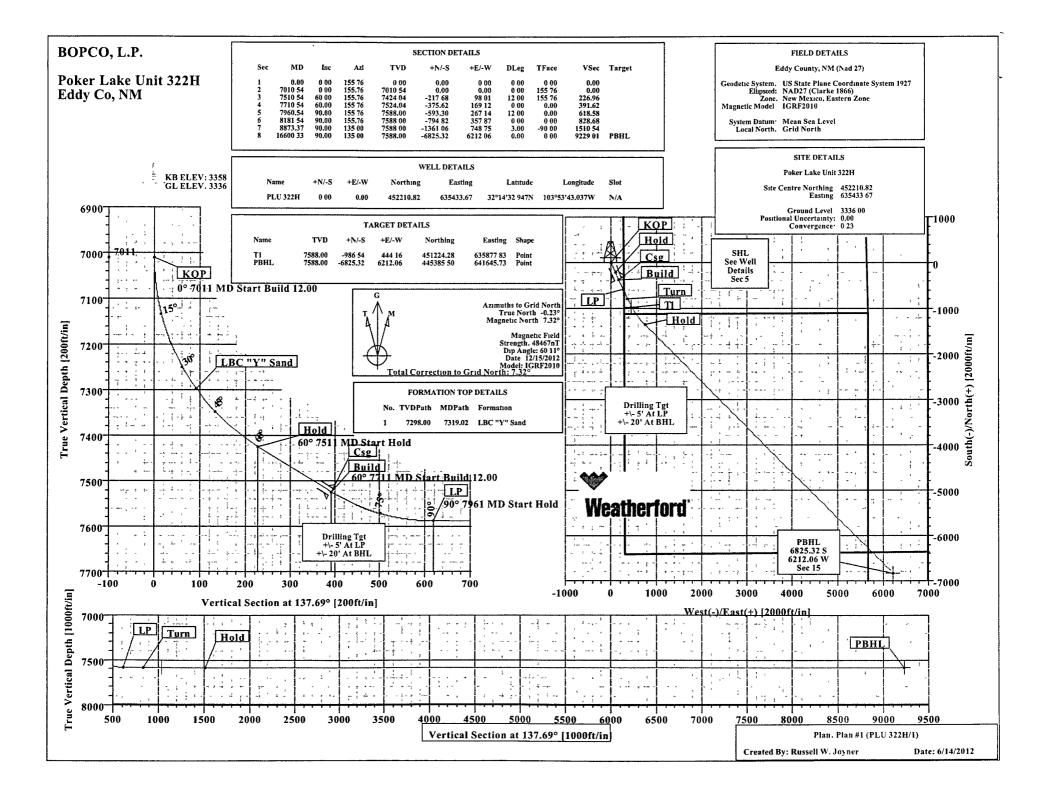
POINT 7: ANTICIPATED RESERVOIR CONDITIONS

Normal pressures are anticipated throughout Delaware section. A BHP of 3551 psi (max) or MWE of 9.0 ppg is expected. Lost circulation may exist in the Delaware Section from 3,723'-7,588' TVD.

POINT 8: OTHER PERTINENT INFORMATION

A) Auxiliary Equipment

Upper and lower kelly cocks. Full opening stab in valve on the rig floor.


B) Anticipated Starting Date

Upon approval

30 days drilling operations

14 days completion operations

JDB/KEK

Company: BOPCO, LP

Field:

Eddy County, NM (Nad 27)

Poker Lake Unit 322H

Well: **PLU 322H**

Wellpath:

Date: 6/14/2012 Co-ordinate(NE) Reference:

Vertical (TVD) Reference:

Survey Calculation Method:

Time: 11:36:30 : Well PLU 322H, Grid North

SITE 3358.0

Well (0.00N,0.00E,137 69Azı)

Minimum Curvature

Db: Sybase

Plan:

Site:

Plan #1

Yes

Date Composed: Version:

Section (VS) Reference:

Tied-to:

From Surface

6/14/2012

Principal: Field:

Eddy County, NM (Nad 27)

Map System: US State Plane Coordinate System 1927

Geo Datum: NAD27 (Clarke 1866) Sys Datum: Mean Sea Level

Map Zone: Coordinate System: Geomagnetic Model: New Mexico, Eastern Zone

Well Centre IGRF2010

Poker Lake Unit 322H

+N/-S

+E/-W

SITE

Site Position: From: Mag Position Uncertainty:

0 00 ft 3336 00 ft Northing:

Easting:

452210 82 ft 635433 67 ft Latitude: Longitude: 32 14 32 947 N 43.037 W

103 53 North Reference: **Grid Convergence:**

Grid 0.23 deg

PLU 322H

Well:

Ground Level:

0 00 ft Northing: 0 00 ft Easting:

452210 82 ft 635433 67 ft

Height 3358 00 ft

+N/-S

ft

0 00

Slot Name: Latitude: Longitude:

32 947 N 32 14 103 53 43 037 W

Position Uncertainty: Wellpath: 1

Current Datum:

Magnetic Data:

Field Strength:

Vertical Section:

Well Position:

0.00 ft

48467 nT

12/15/2012

Depth From (TVD)

ft

0 00

Surface **Drilled From:** 0.00 ft Tie-on Depth: Mean Sea Level **Above System Datum:**

Declination: Mag Dip Angle: +E/-W

7.55 deg 60 11 deg Direction

ft deg 137 69 0.00

Plan Section Information

MD ft	Incl deg	Azim deg	TVD ft	+N/-S ft	+E/-W ft	DLS deg/100f	Build t deg/100f	Türn t deg/100f	TFO deg	Target	14	
0.00	0 00	155.76	0 00	0 00	0 00	0 00	0 00	0 00	0 00			
7010 54	0 00	155 76	7010 54	0 00	0 00	0 00	0 00	0 00	155 76			
7510 54	60 00	155 76	7424 04	-217 68	98 01	12 00	12 00	0 00	155 76			
7710 54	60 00	155 76	7524 04	-375.62	169 12	0 00	0 00	0 00	0 00			i
7960 54	90 00	155 76	7588 00	-593.30	267 14	12 00	12.00	0.00	0 00			1
8181 54	90 00	155.76	7588 00	-794 82	357 87	0.00	0.00	0.00	0.00			l
8873.37	90 00	135.00	7588.00	-1361.06	748.75	3 00	0.00	-3.00	-90.00			
16600 33	90 00	135 00	7588 00	-6825 32	6212 06	0 00	0.00	0 00	0.00	PBHL		

Survey

•											
MD ft	Incl deg	Azim deg	TVD ft _,	N/S ft	E/W ft	VS , .	DLS deg/100ft	MapN (MapE I	- / / - //	Commer
7000 00	0 00	155.76	7000 00	0.00	0 00	0.00	0 00	452210 82	635433.67		
7010 54	0.00	155.76	7010 54	0 00	0 00	0.00	0 00	452210.82	635433.67	KOP	
7025 00	1.74	155 76	7025.00	-0.20	0 09	0 21	12.00	452210.62	635433 76		
7050 00	4 74	155 76	7049.96	-1.49	0 67	1 55	12 00	452209 33	635434.34		
7075.00	7 74	155.76	7074.80	-3 96	1 78	4 13	12 00	452206.86	635435.45		
7100 00	10 74	155.76	7099.48	-7.62	3 43	7.94	12.00	452203.20	635437.10		
7125 00	13 74	155 76	7123 91	-12 45	5 61	12 98	12.00	452198.37	635439.28		
7150 00	16.74	155 76	7148 03	-18.44	8 30	19 23	12 00	452192 38	635441.97		
7175 00	19 74	155 76	7171 77	-25 57	11.51	26.66	12 00	452185.25	635445.18		
7200 00	22 74	155 76	7195 07	-33 83	15 23	35 27	12 00	452176 99	635448 90		
7225 00	25 74	155.76	7217 86	-43 18	19 44	45 02	12 00	452167 64	635453.11		
7250 00	28 74	155 76	7240 09	-53 62	24 14	55 90	12 00	452157 20	635457 81		
7275 00	31 74	155 76	7261 68	-65 09	29 31	67.87	12 00	452145 73	635462 98		
7300.00	34 74	155 76	7282 59	-77 59	34 93	80 89	12 00	452133 23	635468 60		

Company: BOPCO, LP

Field:

Eddy County, NM (Nad 27) Poker Lake Unit 322H PLU 322H

Well: Wellpath

Date: 6/14/2012

Time: 11.36.30 I Well: PLU 322H, Grid North SITE 3358.0

Co-ordinate(NE) Reference:

Vertical (TVD) Reference:

Well (0 00N,0 00E,137 69Azi)
Minimum Curvature Db: Svbase Section (VS) Reference:

ellpath: 1					Su	rvey Calcul	ation Method:	Minimum Cu	ırvature	Db: Sybase
ırvey										
MD ft	Incl deg	Azim deg	TVD ft	N/S ft	E/W ft	VS ft	DLS deg/100ft	MapN ft	MapE ft	Comm
7319 02	37 02	155 76	7298 00	-87 75	39 51	91 48	12 00	452123 07	635473 18	LBC "Y" Sand
7325 00	37 74	155 76	7302 75	-91 06	41 00	94 94	12.00	452119 76	635474 67	
7350 00	40 74	155 76	7322 12	-105 48	47 49	109 97	12 00	452105 34	635481 16	
7375 00	43 74	155.76	7340 62	-120 80	54 39	125 94	12 00	452090 02	635488 06	
7400 00	46 74	155 76	7358 23	-136 98	61 68	142.81	12 00	452073 84	635495 35	
7425 00	49 74	155 76	7374 88	-153 98	69 33	160 54	12 00	452056 84	635503 00	
7450 00	52 74	155 76	7390 53	-171 75	77 33	179 07	12 00	452039 07	635511 00	
7475 00	55 74	155 76	7405 14	-190 25	85 66	198 35	12 00	452020 57	635519 33	
7500 00	58 74	155 76	7418 67	-209 41	94 29	218.34	12.00	452001 41	635527.96	
7510 54	60 00	155 76	7424.04	-217 68	98 01	226 96	12 00	451993 14	635531 68	Hold
7600 00	60 00	155 76	7468 77	-288.33	129 82	300 61	0.00	451922 49	635563 49	
7700 00	60 00	155 76	7518 77	-367 30	165 38	382 94	0 00	451843 52	635599 05	_
7710 54	60 00	155 76	7524.04	-375 62	169 12	391 62	0 00	451835 20	635602 79	Csg
7725 00	61 74	155 76	7531 08	-387 14	174 31	403 63	12 00	451823.68	635607.98	
7750 00 7775 00	64 74 67 74	155 76 155 76	7542 33 7552 41	-407 49 -428 35	183 47 192.87	424.85 446 59	12 00 12 00	451803 33 451782 47	635617 14 635626.54	
7800 00	70 74	155 76	7561 27	-449 66	202 46	468 82	12 00	451761 16	635636 13	
7825 00	73 74	155 76	7568 90	-471 37	212 24 222 16	491 45 514 43	12.00 12 00	451739 45	635645 91	
7850 00 7875 00	76 74 79 74	155 76 155 76	7575 27 7580 36	-493 41 -515 72	232 21	537 69	12 00	451717 41 451695 10	635655 83 635665 88	
7900 00	82 74	155 76	7584 17	-538 25	242 35	561 18	12 00	451672 57	635676 02	
7925 00	85 74	155 76	7586 68	-560 93	252 56	584 82	12 00	451649 89	635686 23	
7950 00	88 74	155 76	7587 89	-583 69	262 81	608 56	12 00	451627 13	635696 48	
7960 54	90 00	155 76	7588 00	-593.30	267 14	618 58	12.00	451617 52	635700 81	LP
8000 00	90 00	155 76	7588 00	-629 28	283 34	656 09	0 00	451581 54	635717 01	
8100 00	90 00	155 76	7588.00	-720 47	324 40	751 16	0 00	451490 35	635758.07	
8181 54	90 00	155 76	7588 00	-794 82	357.87	828 68	0 00	451416 00	635791 54	Turn
8200 00	90 00	155 21	7588.00	-811 61	365.53	846 25	3 00	451399 21	635799 20	
8300 00	90 00	152 21	7588.00	-901.26	409.83	942 36	3 00	451309 56	635843 50	
8400 00	90 00	149 21	7588 00	-988.46	458.75	1039 78	3 00	451222 36	635892 42	
8500 00	90 00	146 21	7588 00	-1072.98	512.17	1138 25	3 00	451137 84	635945 84	
8600.00	90 00	143 21	7588 00	-1154 59	569 94	1237 49	3 00	451056 23	636003 61	
8700 00	90 00	140 21	7588 00	-1233 07	631.90	1337 23	3 00	450977 75	636065 57	
8800 00	90 00 90 00	137 21	7588 00	-1308 19 -1361 06	697 89 748 75	1437.20	3 00	450902 63	636131 56	
8873 37 8900 00	90 00	135.00 135 00	7588 00 7588 00	-1361 06	748 75 767 58	1510 54 1537 14	3 00 0 00	450849 76 450830 93	636182 42 636201 25	Hold
9000 00	90 00	135 00	7588 00	-1450 61	838.29	1637 03	0 00	450760 21	636271 96	
9100 00	90 00	135 00	7588 00	-1521 33	908.99	1736 92	0 00	450689 49	636342.66	
9200 00	90 00	135 00	7588 00	-1592 04	979 69	1836 81	0 00	450618 78	636413 36	
9300 00	90 00	135 00	7588 00	-1662 76	1050 40	1936 70	0 00	450548 06	636484 07	
9400 00	90 00	135 00	7588 00	-1733 48	1121 10	2036 59	0.00	450477 34	636554 77	
9500 00	90 00	135 00	7588 00	-1804 19	1191 81	2136 48	0.00	450406 63	636625 48	
9600 00	90 00	135 00	7588 00	-1874 91	1262 51	2236 37	0.00	450335 91	636696 18	
9700 00	90 00	135 00	7588.00	-1945 63	1333 22	2336.26	0 00	450265 19	636766 89	
9800 00	90 00	135 00	7588 00	-2016 34	1403 92	2436 15	0 00	450194 48	636837 59	
9900 00	90 00	135 00	7588 00	-2087.06	1474 63	2536 04	0 00	450123 76	636908 30	
10000 00	90 00	135.00	7588 00	-2157 78	1545 33	2635 93	0 00	450053.04	636979 00	
10100 00	90 00	135 00	7588 00	-2228.49	1616.03	2735 82	0 00	449982 33	637049 70	
10200 00	90 00	135 00	7588.00	-2299.21	1686 74	2835 71	0 00	449911.61	637120 41	
10300 00 10400 00	90 00 90 00	135 00 135 00	7588.00 7588 00	-2369 93 -2440.65	1757 44 1828 15	2935 60 3035 49	0.00 0.00	449840.89 449770 17	637191 11 637261.82	
10500.00	90 00	135 00	7588 00	-2511 36	1898 85	3135 38	0 00	449699 46	637332 52	

Company: BOPCO, L P
Field: Eddy County, NM (Nad 27)
Site: Poker Lake Unit 322H
Well: PLU 322H

Wellpath: 1

Date: 6/14/2012 Co-ordinate(NE) Reference:

Vertical (TVD) Reference:

Time: 11:36:30 I : Well. PLU 322H, Grid North SITE 3358 0

Section (VS) Reference: Survey Calculation Method:

SITE 3358 0 Well (0.00N,0 00E,137 69Azı) Minimum Curvature Db: Sybase

ellpath: 1					S	urvey Calcul	ation Method:	Mınimum Cı	urvature	Db: Sybase
irvey										
MD ft	inci deg	Azim deg	TVD ft	N/S ft	E/W ft	VS ft	DLS deg/100ft	MapN ft	MapE ft	Com
10600 00	90 00	135 00	7588 00	-2582 08	1969 56	3235 27	0 00	449628 74	637403 23	
10700 00	90 00	135 00	7588 00	-2652 80	2040 26	3335 16	0 00	449558 02	637473 93	
10800 00	90 00	135 00	7588 00	-2723 51	2110 97	3435 05	0 00	449487 31	637544 64	
10900 00	90 00	135 00	7588 00	-2794 23	2181 67	3534 94	0 00	449416 59	637615 34	
11000 00	90 00	135 00	7588 00	-2864 95	2252 38	3634 83	0 00	449345 87	637686 05	
11100 00	90 00	135 00	7588 00	-2935 66	2323 08	3734 72	0 00	449275 16	637756 75	
11200 00	90 00	135 00	7588 00	-3006 38	2393 78	3834 61	0 00	449204 44	637827.45	
11300 00	90 00	135 00	7588 00	-3077 10	2464 49	3934 51	0 00	449133 72	637898 16	
11400 00	90 00	135 00	7588 00	-3147 81	2535 19	4034 40	0 00	449063 01	637968.86	
11500 00	90 00	135 00	7588 00	-3218 53	2605 90	4134 29	0 00	448992.29	638039 57	
11600 00	90 00	135 00	7588 00	-3289 25	2676 60	4234 18	0 00	448921 57	638110 27	
11700 00	90 00	135 00	7588 00	-3359 96	2747 31	4334 07	0 00	448850 86	638180 98	
11800 00	90 00	135 00	7588 00	-3430 68	2818 01	4433 96	0 00	448780 14	638251 68	
11900 00	90 00	135 00	7588 00	-3501 40	2888 72	4533 85	0 00	448709 42	638322.39	
12000 00	90 00	135 00	7588 00	-3572 11	2959 42	4633 74	0 00	448638 71	638393 09	
12100 00	90 00	135 00	7588 00	-3642 83	3030 13	4733 63	0 00	448567 99	638463 80	
12200 00	90 00	135 00	7588 00	-3713 55	3100 83	4833 52	0 00	448497 27	638534 50	
12300 00	90 00	135 00	7588 00	-3784 27	3171 53	4933 41	0 00	448426 55	638605.20	
12400 00	90 00	135.00	7588 00	-3854 98	3242 24	5033 30	0.00	448355 84	638675.91	
12500 00	90 00	135 00	7588 00	-3925 70	3312 94	5133 19	0.00	448285 12	638746 61	
12600 00	90 00	135 00	7588 00	-3996 42	3383 65	5233 08	0 00	448214 40	638817 32	
12700 00	90 00	135 00	7588 00	-4067 13	3454 35	5332 97	0.00	448143 69	638888.02	
12800 00	90 00	135 00	7588 00	-4137 85	3525 06	5432 86	0.00	448072 97	638958 73	
12900 00	90 00	135 00	7588.00	-4208 57	3595 76	5532 75	0 00	448002 25	639029 43	
13000 00	90 00	135 00	7588 00	-4279 28	3666 47	5632 64	0 00	447931 54	639100 14	
13100 00	90 00	135 00	7588 00	-4350 00	3737 17	5732 53	0 00	447860 82	639170 84	
13200 00	90 00	135 00	7588 00	-4420 72	3807 88	5832 42	0 00	447790 10	639241 55	
13300 00	90 00	135 00	7588 00	-4491 43	3878 58	5932 31	0 00	447719 39	639312 25	
13400 00	90 00	135 00	7588 00	-4562 15	3949 28	6032 20	0 00	447648.67	639382 95	
13500 00	90 00	135 00	7588 00	-4632 87	4019 99	6132 09	0 00	447577 95	639453.66	
13600 00	90 00	135 00	7588 00	-4703 58	4090 69	6231 98	0 00	447507 24	639524.36	
13700 00	90 00	135 00	7588 00	-4774 30	4161 40	6331 87	0 00	447436 52	639595 07	
13800 00	90 00	135 00	7588 00	-4845 02	4232.10	6431 76	0.00	447365 80	639665 77	
13900 00	90 00	135 00	7588 00	-4915 73	4302 81	6531 65	0.00	447295 09	639736.48	
14000 00	90 00	135 00	7588 00	-4986 45	4373 51	6631 54	0 00	447224 37	639807.18	
14100 00	90.00	135 00	7588 00	-5057 17	4444 22	6731 43	0.00	447153 65	639877 89	
14200.00	90.00	135 00	7588 00	-5127 88	4514 92	6831 32	0.00	447082 94	639948 59	
14300 00	90.00	135 00	7588 00	-5198.60	4585.62	6931 21	0.00	447012.22	640019 29	
14400 00	90 00	135 00	7588 00	-5269 32	4656 33	7031 10	0.00	446941 50	640090 00	
14500.00	90 00	135.00	7588 00	-5340 04	4727 03	7130 99	0 00	446870 78	640160 70	
14600 00	90 00	135.00	7588 00	-5410 75	4797 74	7230 88	0 00	446800 07	640231 41	
14700 00	90 00	135 00	7588 00	-5481 47	4868 44	7330 77	0 00	446729 35	640302 11	
14800 00	90.00	135 00	7588 00	-5552 19	4939 15	7430 66	0.00	446658 63	640372 82	
14900 00	90 00	135 00	7588 00	-5622 90	5009 85	7530 55	0.00	446587 92	640443 52	
15000 00	90 00	135 00	7588 00	-5693 62	5080 56	7630 44	0 00	446517 20	640514.23	
15100 00	90 00	135 00	7588 00	-5764 34	5151 26	7730 33	0 00	446446 48	640584 93	
15200 00	90 00	135 00	7588 00	-5835 05	5221 97	7830 22	0 00	446375 77	640655 64	
15300 00	90.00	135 00	7588 00	-5905 77	5292 67	7930 11	0 00	446305 05	640726 34	
15400 00	90 00	135 00	7588 00	-5976 49	5363 37	8030 00	0 00	446234 33	640797 04	
15500 00	90 00	135 00	7588 00	-6047 20	5434 08	8129 89	0 00	446163 62	640867.75	
15600 00	90 00	135 00	7588 00	-6117 92	5504 78	8229 78	0.00	446092 90	640938 45	
	00.00	135 00	7588 00	-6188 64	5575 49	8329 67	0 00	446022 18	641009.16	
15700 00	90 00	135 00	1 300 00	010004	5646 19	0020 07	0.00		0 1 1000.10	

Company: BOPCO, L.P Field: Eddy County, NM (Nad 27) Site: Poker Lake Unit 322H

PLU 322H

Well: Wellpath: 1 Date: 6/14/2012 Time: 11 36 30

Well: PLU 322H, Grid North SITE 3358 0 Co-ordinate(NE) Reference:

Vertical (TVD) Reference:

Well (0 00N,0 00E,137.69Azi)

Section (VS) Reference: Survey Calculation Method: Minimum Curvature Db: Sybase

~		
Su	rvev	

MD	Incl	Azim	TVD	N/S	E/W	VS	DLS	MapN	MapE	Comment
ft	deg	deg	ft	ft	ft	ft	deg/100ft	ft	ft	
15900 00	90 00	135 00	7588 00	-6330 07	5716 90	8529 46	0 00	445880 75	641150 57	A SACRAGE STATE OF THE SACRAGE
16000.00	90 00	135 00	7588 00	-6400 79	5787.60	8629 35	0 00	445810 03	641221 27	
16100 00	90 00	135 00	7588 00	-6471 50	5858 31	8729 24	0 00	445739.32	641291.98	
16200 00	90 00	135 00	7588 00	-6542 22	5929 01	8829 13	0 00	445668 60	641362 68	
16300 00	90 00	135 00	7588 00	-6612 94	5999 72	8929 02	0 00	445597 88	641433 39	
16400 00	90.00	135 00	7588 00	-6683 66	6070 42	9028 91	0.00	445527 16	641504 09	
						-				
16500 00	90 00	135.00	7588 00	-6754 37	6141 12	9128 80	0 00	445456 45	641574 79	PBHL
16600 33	90 00	135 00	7588 00	-6825 32	6212 06	9229 01	0 00	445385 50	641645 73	

Targets

Name	Description Dip. Dir	TVD . ft	+N/-S ft	+E/-W ft	Map Northing ft	Map Easting ft	< Latitude> Deg Min Sec	< Longitude> Deg Min Sec
T1		7588 00	-986 54	444 16	451224 28	635877 83	32 14 23 166 N	103 53 37 913 W
PBHL		7588 00	-6825 32	6212 06	445385 50	641645 73	32 13 25 147 N	103 52 31 046 W

Casing Points

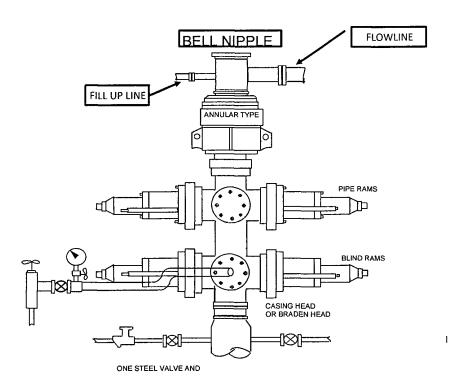
MD ft	TVD ft	Diameter in	Hole Size in	Name	
7710.54	7524 04	0 000	0 000	Csg	

Annotation

MD ft	TVD ft	
7010 54	7010.54	КОР
7510 54	7424 04	Hold
7710 54	7524.04	Build
7960 54	7588 00	_P
8181.54	7588 00	Turn
8873 37	7588 00	Hold
16600 32	7588 00	PBHL

Formations

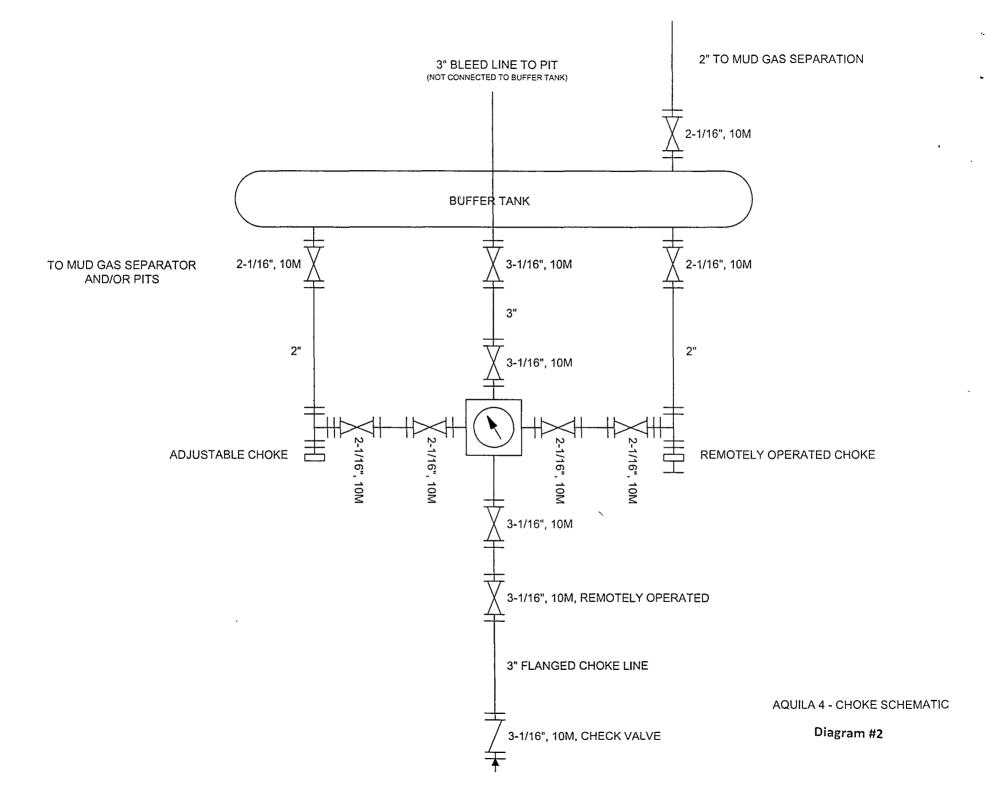
	MĎ	·TVD	Formations	Lithology	Dip Angle	Dip Direction
	ft ft	ft			deg	deg
-	7319 02	7298 00	LBC "Y" Sand		0 00	0 00

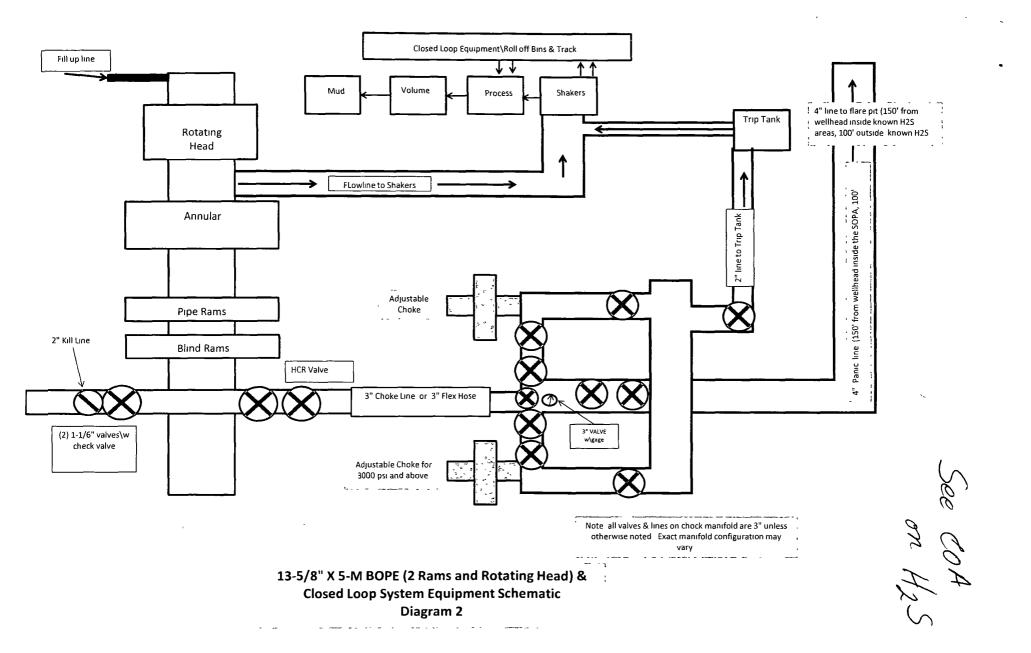


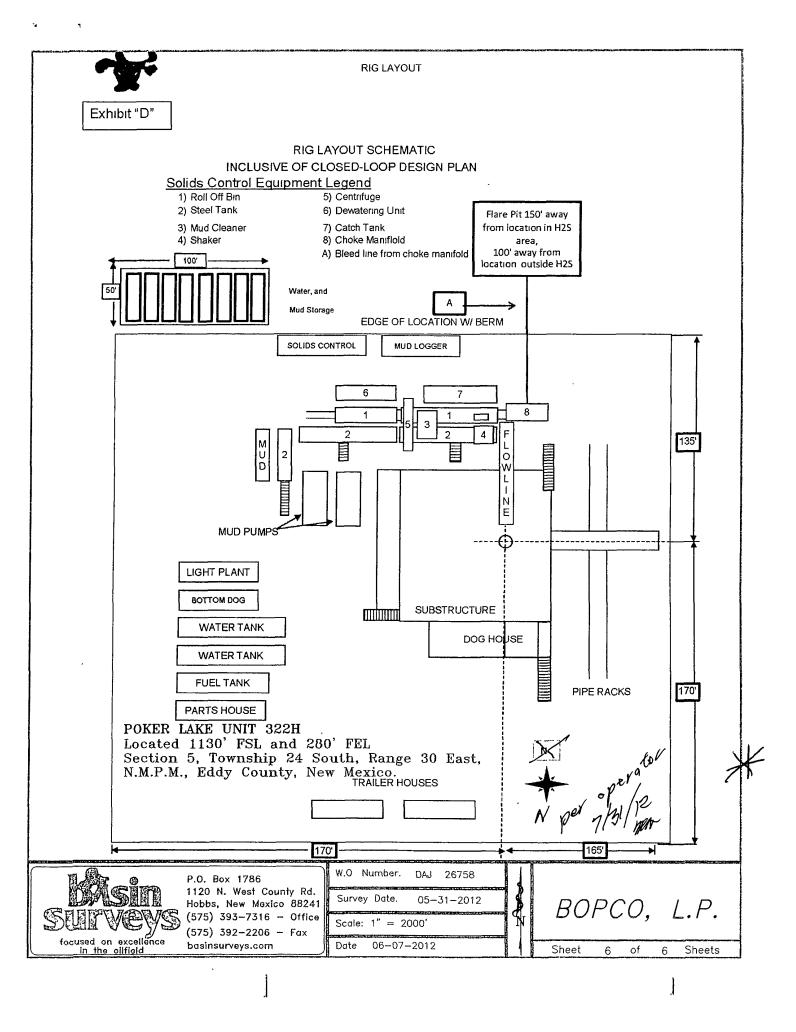
Weatherford Drilling Services

GeoDec v5.03

Report Date:									
•	June 14,								
Job Number: Customer:	BOPCO								
Well Name: API Number:	Poker La	ke Unit 3	22Н						
Rig Name:									
Location:	Eddy Co,	Eddy Co, NM							
Block:									
Engineer:	RWJ								
US State Plane 1	1927		Geodetic Latitude / Longi	tude					
System: New Me:	xico East 3001 ((NON-EXAC	T) System: Latitude / Longite	ude					
Projection: SPC2	7 Transverse M	ercator	Projection: Geodetic Latit	ude and Longitude					
Datum: NAD 192	7 (NADCON CC	ONUS)	Datum: NAD 1927 (NADCON CONUS)						
Ellipsoid: Clarke	1866		Ellipsoid: Clarke 1866						
North/South 452	210.820 USFT		Latitude 32.2424853 DE	G					
East/West 635433.670 USFT Longitude -103.8952882 DEG									
East/West 63543	33.670 USFT		Longitude -103.8952882	DEG					
East/West 63543 Grid Convergence			Longitude -103.8952882	DEG					
	e: .23°		Longitude -103.8952882	DEG					
Grid Convergence	e: .23° +7.32°	Elevati		DEG					
Grid Convergence Total Correction: Geodetic Location	e: .23° +7.32°	Elevation 32°	on = 0.0 Meters						
Grid Convergence Total Correction: Geodetic Location Latitude =	e: .23° +7.32° n WGS84	32°	on = 0.0 Meters						
Grid Convergence Total Correction: Geodetic Location Latitude =	e: .23° +7.32° n WGS84 32.24249° N 103.89529° W	32°	on = 0.0 Meters 14 min 32.947 sec	DEG					
Grid Convergence Total Correction: Geodetic Location Latitude = Longitude = 1	e: .23° +7.32° n WGS84 32.24249° N 103.89529° W	32° 103°	on = 0.0 Meters 14 min 32.947 sec 53 min 43.037 sec	DEG 6482					
Grid Convergence Total Correction: Geodetic Location Latitude = Longitude = 1 Magnetic Declina	e: .23° +7.32° n WGS84 32.24249° N 103.89529° W	32° 103° 7.55°	on = 0.0 Meters 14 min 32.947 sec 53 min 43.037 sec [True North Offset]						
Grid Convergence Total Correction: Geodetic Location Latitude = Longitude = 1 Magnetic Declina Local Gravity =	e: .23° +7.32° n WGS84 32.24249° N 103.89529° W	32° 103° 7.55° .9988 g	on = 0.0 Meters 14 min 32.947 sec 53 min 43.037 sec [True North Offset] CheckSum =	6482					
Grid Convergence Total Correction: Geodetic Location Latitude = Longitude = 1 Magnetic Declina Local Gravity = Local Field Streng	e: .23° +7.32° n WGS84 32.24249° N 103.89529° W etion =	32° 103° 7.55° .9988 g 48463 nT	on = 0.0 Meters 14 min 32.947 sec 53 min 43.037 sec [True North Offset] CheckSum = Magnetic Vector X =	6482 23940 nT					


BOPCO, L. P. 13 5/8" X 5-M WP BOPE WITH 5-M WP ANNULAR




THE FOLLOWING CONSTITUTE MINIMUM BLOWOUT PREVENTER REQUIREMENTS

- A One double gate Blowout preventer with lower pipe rams and upper blind rams, all hydraulically controlled
- B Opening on preventers between rams to be flanged, studded or clamped and at least two inches in diameter
- C All connections from operating manifold to preventers to be all steel hose or tube a mininum of one inch in diameter
- D The available closing pressure shall be at least 15% in excess of that required with suffficient volume to operate (close, open, and re-close) the preventers
- E All connections to and from preventers to have a pressure rating equivalent to that of the BOPs
- F Manual controls to be installed before drilling cement plug
- G Valve to control flow through drill pipe to be located on rig floor
- H Chokes must be adjustable Choke spool may be used between rams

DIAGRAM 1

TABLE OF CONTENTS

I. H₂S Contingency Plan

A. Scope

B. Objective

C. Discussion of Plan

See COP installation regarding installation of mud/gas
of mud/gas
separator

II. Emergency Procedures

- A. Emergency Procedures and Public Protection
- B. Emergency Procedures Implementation
- C. Simulated Blowout Control Drills

III. Ignition Procedures

- A. Responsibility
- B. Instructions
- IV. Training Requirements
- V. Emergency Equipment
- VI. Evacuation Plan
 - A. General Plan
 - B. Emergency Phone Lists

VII. General Information

- A. H₂S Toxicity Table
- B. Respirator Use
- C. Emergency Rescue

H2S CONTINGENCY PLAN SECTION

Scope:

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H₂S)

Objective:

Prevent any and all accidents, and prevent the uncontrolled release of H₂S into the atmosphere.

Provide proper evacuation procedures to cope with emergencies.

Provide immediate and adequate medical attention should an injury occur.

Discussion of Plan:

Suspected Problem Zones:

Implementation: This plan, with all details, is to be fully implemented 500' above or three days prior to drilling into the first known sour zone

Emergency Response and Public Protection Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency.

Emergency Equipment and Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well.

Training Provisions: This section outlines the training provisions that must be adhered to 500 feet above or three days prior to drilling into the first known sour zone.

Emergency call lists: Included are the telephone numbers of all persons that would need to be contacted should an H₂S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public Safety Personnel will be made aware of the drilling of this well.

EMERGENCY PROCEDURES AND PUBLIC PROTECTION SECTION

- I. In the event of any evidence of H₂S levels above 10 ppm, take the following steps immediately:
 - A. Secure breathing apparatus.
 - B. Order non-essential personnel out of the danger zone.
 - C. Take steps to determine if the H₂S level can be corrected or suppressed, and if so, proceed with normal operations.
- II. If uncontrollable conditions occur, proceed with the following:
 - A. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify necessary public safety personnel and the New Mexico Oil & Gas of the situation.
 - B. Isolate area and prevent entry by unauthorized persons into the 100 ppm ROE.
 - C. Remove all personnel to the Safe Briefing Area.
 - D. Notify public safety personnel for help with maintaining roadblocks and implementing evacuation. Phone number list attached.
 - E. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.

III. Responsibility:

- A. The Company Approved Supervisor shall be responsible for the total implementation of the plan.
- B. The Company Approved Supervisor shall be in complete command during any emergency.
- C. The Company Approved Supervisor shall designate a back up Supervisor in the event that he/she is not available.

EMERGENCY PROCEDURE IMPLEMENTATION

I. Drilling or Tripping

A. All Personnel

- 1. When alarm sounds, don escape unit and report to upwind Safe Briefing Area.
- 2. Check status of other personnel (buddy system).
- 3. Secure breathing apparatus.
- 4. Wait for orders from supervisor.

B. Drilling Foreman

- 1. Report to the upwind Safe Briefing Area.
- 2. Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system).
- 3. Determine the concentration of H₂S.
- 4. Assess the situation and take appropriate control measures.

C. Tool Pusher

- 1. Report to the upwind Safe Briefing Area.
- 2. Don breathing apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system).
- 3. Determine the concentration.
- 4. Assess the situation and take appropriate control measures.

D. Driller

- 1. Check the status of other personnel (in a rescue attempt, always use the buddy system).
- 2. Assign the least essential person to notify the Drilling Foreman and Tool Pusher, in the event of their absence.

3. Assume the responsibility of the Drilling Foreman and the Tool Pusher until they arrive, in the event of their absence.

E. Derrick Man and Floor Hands

1. Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor.

F. Mud Engineer

- 1. Report to the upwind Safe Briefing Area.
- 2. When instructed, begin check of mud for pH level and H₂S level.

G. On-site Safety Personnel

- 1. Don Breathing Apparatus.
- 2. Check status of all personnel.
- 3. Wait for instructions from Drilling Foreman or Tool Pusher.

II. Taking a Kick

- A. All personnel report to the upwind Safe Briefing Area.
- B. Follow standard BOP procedures.

III. Open Hole Logging

- A. All unnecessary personnel should leave the rig floor.
- B. Drilling Foreman and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations.

IV. Running Casing or Plugging

- A. Follow "Drilling or Tripping" procedures.
- B. Assure that all personnel have access to protective equipment.

SIMULATED BLOWOUT CONTROL DRILLS

All drills will be initiated by activating alarm devices (air horn). Use one long blast on the air horn for ACTUAL and SIMULATED Blowout Control Drills. This operation will be performed by the Drilling Foreman or Tool Pusher at least one time per week for each of the following conditions, with each crew:

Drill # 1 Bottom Drilling

Drill # 2 Tripping Drill Pipe

In each of these drills, the initial reaction time to shutting in the well shall be timed as well as the total time for the crew to complete its entire pit drill assignment. The times must be recorded on the IADC Driller's Log as "Blowout Control Drill".

Drill No.:

Reaction Time to Shut-In:
Total Time to Complete Assignment:

minutes, minutes,

seconds.

I. Drill Overviews

- A. Drill No. 1- Bottom Drilling
 - 1. Sound the alarm immediately.
 - 2. Stop the rotary and hoist kelly joint above the rotary table.
 - 3. Stop the circulatory pump.
 - 4. Close the drill pipe rams.
 - 5. Record casing and drill pipe shut-in pressures and pit volume increases.
- B. Drill No. 2 Tripping Drill Pipe
 - 1. Sound the alarm immediately.
 - 2. Position the upper tool joint just above the rotary table and set the slips.

- 3. Install a full opening valve or inside blowout preventor tool in order to close the drill pipe.
- 4. Close the drill pipe rams.
- 5. Record the shut-in annular pressure.

II. Crew Assignments

A. Drill No. 1 - Bottom Drilling

1. Driller

- a) Stop the rotary and hoist kelly joint above the rotary table.
- b) Stop the circulatory pump.
- c) Check flow.
- d) If flowing, sound the alarm immediately.
- e) Record the shut-in drill pipe pressure.
- f) Determine the mud weight increase needed or other courses of action.

2. Derrickman

- a) Open choke line valve at BOP.
- b) Signal Floor Man # 1 at accumulator that choke line is open.
- c) Close choke and upstream valve after pipe tams have been closed.
- d) Read the shut-in annular pressure and report readings to Driller.

Floor Man # 1

- a) Close the pipe rams after receiving the signal from the Derrickman.
- b) Report to Driller for further instructions.

4. Floor Man # 2

- a) Notify the Tool Pusher and Operator Representative of the H₂S alarms.
- b) Check for open fires and, if safe to do so, extinguish them.
- c) Stop all welding operations.
- d) Turn-off all non-explosion proof lights and instruments.
- e) Report to Driller for further instructions.

5. Tool Pusher

- a) Report to the rig floor.
- b) Have a meeting with all crews.
- c) Compile and summarize all information.
- d) Calculate the proper kill weight.
- e) Ensure that proper well procedures are put into action.

6. Operator Representative

- a) Notify the Drilling Superintendent.
- b) Determine if an emergency exists and if so, activate the contingency plan.

B. Drill No. 2 - Tripping Pipe

1. Driller

- a) Sound the alarm immediately when mud volume increase has been detected.
- b) Position the upper tool joint just above the rotary table and set slips.
- c) Install a full opening valve or inside blowout preventor tool to close the drill pipe.
- d) Check flow.

- e) Record all data reported by the crew.
- f) Determine the course of action.

2. Derrickman

- a) Come down out of derrick.
- b) Notify Tool Pusher and Operator Representative.
- c) Check for open fires and, if safe to do so, extinguish them.
- d) Stop all welding operations.
- e) Report to Driller for further instructions.

3. Floor Man # 1

- a) Pick up full opening valve or inside blowout preventor tool and stab into tool joint above rotary table (with Floor Man # 2).
- b) Tighten valve with back-up tongs.
- c) Close pipe rams after signal from Floor Man # 2.
- d) Read accumulator pressure and check for possible high pressure fluid leaks in valves or piping.
- e) Report to Driller for further instructions.

4. Floor Man # 2

- a) Pick-up full opening valve or inside blowout preventor tool and stab into tool joint above rotary table (with Floor Man # 1).
- b) Position back-up tongs on drill pipe.
- c) Open choke line valve at BOP.
- d) Signal Floor Man # 1 at accumulator that choke line is open.
- e) Close choke and upstream valve after pipe rams have been closed.
- f) Check for leaks on BOP stack and choke manifold.

- g) Read annular pressure.
- h) Report readings to the Driller.

5. Tool Pusher

- a) Report to the rig floor.
- b) Have a meeting with all of the crews.
- c) Compile and summarize all information.
- d) See that proper well kill procedures are put into action.

6. Operator Representative

- a) Notify Drilling Superintendent
- b) Determine if an emergency exists, and if so, activate the contingency plan.

IGNITION PROCEDURES

Responsibility:

The decision to ignite the well is the responsibility of the DRILLING FOREMAN in concurrence with the STATE POLICE. The State Police shall be the Incident Command on the scene of any major release. Intentional ignition must be coordinated with the NMOCD and local officials. In the event the Drilling Foreman is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- 1. Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Foreman is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet.
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Foreman.

NOTE: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide (SO₂), which is also highly toxic. Do not assume the area is safe after the well is ignited.

TRAINING REQUIREMENTS

When working in an area where Hydrogen Sulfide (H₂S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel at the well site, whether regularly assigned, contracted, or employed on an unscheduled basis, have had adequate training by a qualified instructor in the following:

- 1. Hazards and Characteristics of Hydrogen Sulfide and Sulfur Dioxide.
- 2. Physicals effects of Hydrogen Sulfide on the human body.
- 3. Toxicity of Hydrogen Sulfide and Sulfur Dioxide.
- 4. H₂S detection, emergency alarm and sensor location.
- 5. Emergency rescue.
- 6. First aid and artificial resuscitation.
- 7. The effects of Hydrogen Sulfide on metals.
- 8. Location safety.

In addition, Supervisory Personnel will be trained in the following areas:

- 1. If high tensile tubular are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well as blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Contingency Plan and the Public Protection Plan.

Service company personnel and visiting personnel must be notified if the zone contains H₂S, and each service company must provide adequate training and equipment for their employees before they arrive at the well site.

EMERGENCY EQUIPMENT

As stated in the BLM Onshore Order 6, for wells located in a known H₂S areas, H₂S equipment will be rigged up after setting surface casing. For wells located inside known H₂S areas, the flare pit will be located 150' from the location and for wells located outside known H₂S areas, the flare pit will be located 100' away from the location. (See page 6 of Survey plat package and diagram 2.)

It is not anticipated that any H_2S is in the area, however in the event that H_2S is encountered, the attached H_2S Contingency Plan will be implemented. (Please refer to diagram 2 for choke manifold and closed loop system layout.) See H_2S location layout diagram for location of all H_2S equipment on location.

All H_2S safety equipment and systems will be installed, tested and be operational when drilling reaches a depth of 500' above, or three days prior to penetrating a known formation containing H_2S .

Lease Entrance Sign:

Caution signs should be located at all roads providing direct access to the location. Signs shall have a yellow background with black lettering and contain the words "CAUTION" and "POISON GAS" that is legible from a distance of at least 50 feet.

LEASE NAME CAUTION – POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they
 may be seen from any point on location.
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times. (Corners of location)

Hydrogen Sulfide Detector and Alarms:

• H₂S monitors with alarms will be located on the rig floor, at the cellar, and at the mud pits. These monitors will be set to alarm at 10 PPM with a red light and to alarm at 15 PPM with a red light and audible alarm.

Well Condition Flags:

The Well Condition flags should be located at all roads providing direct access to the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN – Normal Operating Conditions YELLOW – Potential Danger RED – Danger, H₂S Gas Present

Respiratory Equipment:

- Fresh air breathing equipment should be placed at the company supervision trailer and the safe briefing areas and should include the following:
 - A minimum of two SCBA's at each briefing area and the supervisor company supervision trailer.
 - Enough air line units to operate safely, anytime the H₂S concentration reaches the IDLH level (100 PPM).
 - Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrickman and the other operation areas.

Fire Extinguishers:

Adequate fire extinguishers shall be located at strategic locations.

Mud Program:

The mud program has been designed to minimize the volume of H_2S circulated to the surface. Proper mud weight, safe drilling practices and the use of H_2S scavengers will minimize hazards when penetrating H_2S bearing zones.

Metallurgy:

All drill strings, casing, tubing, wellhead; blowout preventer, drilling spools, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.

Well Control Equipment:

- Flare Line (See diagram 2).
- Choke manifold (See diagram 2).
- Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing units.
- Auxiliary equipment may include, if applicable, annular preventer & rotating head.

Communication Equipment:

 Proper communication equipment such as cell phones or 2 – way radios should be available for communication between the company man's trailer, rig floor and tool pusher's trailer.

Well Testing:

There will be no drill stem testing.

Evacuation Plan:

- Evacuation routes should be established prior to spudding the well.
- Should be discussed with all rig personnel.

Designated Areas:

Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- A smoking area will be designated at a pre-determined safe distance from the wellhead and any other possible flammable areas.

Safe Briefing Areas:

 Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area. Personal protective equipment should be stored at both briefing areas or if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

NOTE:

• Additional equipment will be available at Indian Fire and Safety in Hobbs, NM or at Total Safety in Hobbs, NM.

EVACUATION PLAN

General Plan

The direct lines of action to protect the public from hazardous gas situations are as follows:

- When the company approved supervisor (Drilling Foremen, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the Area Map.
- 2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.

NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

5. After the discharge of gas has been controlled, Company approved safety personnel will determine when the area is safe for re-entry.

See Emergency Action Plan

Contacting Authorities

BOPCO L.P. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

H₂S CONTINGENCY PLAN EMERGENCY CONTACTS

BOPCO L.P. Midland Office

432-683-2277

Key Per	rsonnel		
	Name	Title	Cell Phone Number
	Stephen Martinez	Drilling Supt.	432-556-0262
	Buddy Jenkins	Assistant Supt	
	Bill Dannels	Engineer	
	Pete Lensing		
	Charles Warne	Engineer	
	Artesia		
	Ambulance		911
	State Police		575-746-2703
	City Police		575-746-2703
	Sheriff's Office		575-746-9888
	Fire Department		575-746-2701
	Local Emergency Plan	nning Committee	575-746-2122
	New Mexico Oil Conse	ervation Division	575-748-1283
	Carlsbad		
	State Police		575-885-3137
	City Police		575-885-2111
	Sheriff's Office		575-887-7551
	Fire Department		575-887-3798
	Local Emergency Plan	nning Committee	575-887-6544
	US Bureau of Land Ma	anagement	575-887-6544
	New Mexico Emergen	cy Response Commission (Santa I	
	24 Hour		505-827-9126
	New Mexico State Em	ergency Operations Center	505-476-9635
	National Emergency R	Response Center (Washington, DC)800-424-8802
	Other		
'	Wild Well Control	4	32-550-6202 (Permian Basin)
	Cudd PressureContro		32-570-5300 (Permian Basin)
	Flight For Life – 4000	24 th St. Lubbock, Texas	806-743-9911
	Aerocare – R3, Box 49	F, Lubbock, Texas	806-747-8923
		2301 Yale Blvd SE #D3, Albuq., NN	
		2505 Clark Carr Loop SE, Albuq.,	NM505-842-4949
	Indian Fire and Safety	v – 3317 NW Cnty Rd, Hobbs, NM_	575-393-3093
	Total Safety - 3229 In	dustrial Dr., Hobbs, NM	575-392-2973

TOXIC EFFECTS OF HYDROGEN SULFIDE

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM, which is .001% by volume. Hydrogen Sulfide is heavier than air (specific gravity = 1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in Table I. Physical effects at various Hydrogen Sulfide exposure levels are shown in Table II.

Table I - TOXICITY OF VARIOUS GASES

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
		(SC=1)	(1)	(2)	(3)
Hydrogen Cyanide	HCN	0.94	10 PPM	150 PPM/HR	300 PPM
Hydrogen Sulfide	H2S	1.18	10 PP M	250 PPM/HR	600 PPM
Sulfur Dioxide	SO2	2.21	5 PPM		1000 PPM
Chlorine	CL2	2.45	1 PPM	4 PPM/HR	1000 PPM
Carbon Monoxide	СО	0.97	50 PPM	400 PPM/HR	1000 PPM
Carbon Dioxide	CO2	1.52	5000 PPM	5%	10%
Methane	CH4	0.55	90,000 PPM	Combustible in air	Above 5%

- 1) Threshold Limit Concentration at which it is believed that all worker may be repeatedly exposed day after day without adverse effects.
- 2) Hazardous Limit Concentration that will cause death with short-term exposure.
- 3) Lethal Concentration Concentration that will cause death with short-term exposure.

Table II – PHYSICAL EFFECTS OF HYDROGEN SULFIDE

Percent (%)	PPM	Concentration Grains 100 STD. FT3*	Physical Effects
0.001	< 10	00.65	Obvious & unpleasant odor.
0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kills smell in 3-15 minutes. May sting eyes & throat.
0.020	200	12.96	Kills smell shortly; stings eyes & throat.
0.050	500	32.96	Dizziness; Breathing ceases in a few minutes. Needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; Death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; Followed by death within minutes.

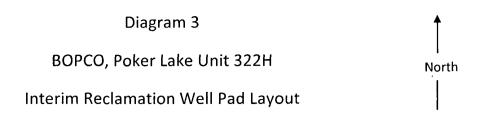
• At 15.00 PSIA and 60° F.

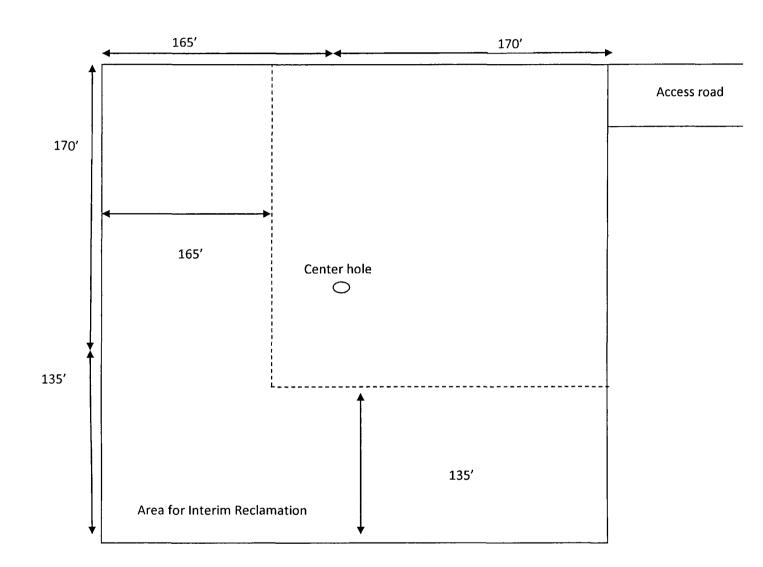
USE OF SELF-CONTAINED BREATHING APPARATUS

- Anyone who uses an SCBA shall: Be approved by a physician or licensed health care practitioner; Pass a fit test; Be trained in donning and doffing, proper use, including how to ensure a proper face seal, conducting an inspection of the SCBA, and conduct proper maintenance.
- 2. Such items as facial hair (beard or sideburns) and eyeglasses will not allow a proper face mask seal.
- 3. Anyone reasonably expected to wear SCBA's shall have these items removed before entering a toxic atmosphere.
- 4. A special mask with a mount for prescription glasses must be obtained for anyone who must wear eyeglasses in order to see while using an SCBA.
- 5. SCBA's should be worn in H₂S concentrations above 10 PPM.

RESCUE & FIRST AID FOR H2S POISONING

DO NOT PANIC - REMAIN CALM - THINK


- 1. Hold your breath do not inhale first.
- 2. Put on SCBA.
- 3. Remove victim(s) to fresh air as quickly as possible. Go upwind from source or at right angle to the wind. Do not go downwind.
- 4. Briefly apply chest pressure using arm lift method of artificial respiration to clean victim's lungs and to avoid inhaling any toxic gas directly from victim's lungs.
- 5. Provide artificial respiration if needed.
- 6. Provide for prompt transportation to the hospital and continue giving artificial respiration if needed.
- 7. Inform hospital/medical facilities of the possibility of H2S gas poisoning before they treat.


Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration and CPR, as well as first aid for eyes and skin contact with liquid H₂S.

Proposed H2S Safety Schematic

4) Terrain of surrounding area (Please refer to page 2 of survey plat package also see point 11 of multi-surface use plan) Location of windsocks. 2) Location of H2S alarms 5) Location of flare line(s) and pit(s) (Please refer to diagram 2 choke manifold diagram and or page six of survey plat packet) (6) H2S caution 3) Location of briefing areas. 6) Location of caution and/or danger signs. (7) Location of Breathing Equipment signs SOLIDS CONTROL MUD LOGGER Access Road (1) H2S Derrick Windsock Stand M D D ŏ 2 MUD PUMPS LIGHT PLANT BOTTOM DOG (3) H2S Briefing STRUCTURE Area WATER TANK DOG HOUSE WATER TANK (2) H2S Alarm FUEL TANK PE RACKS PARTS HOUSE Prevailing winds from the (7) Breathing SW to the NE (3) Primary H2S Equipment **Briefing Area** Secondary egress TRAILER HOUSES

V-Door West

Location On-Site Notes

Location on-site conducted by Cecil Watkins-BOPCO L.P., Randy Rust-BLM, and Robert Gomez-Basin Survey on 05/29/2012 The Poker Lake Unit 322H was moved 500' North & 50' East to avoid dune complex. A new surface footage call will be located at 1130' FSL & 280' FEL of Sec 5-T24S-R30E V-Door West.

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME: LEASE NO.: LC068431

WELL NAME & NO.: 322H-POKER LAKE UNIT

SURFACE HOLE FOOTAGE: 1130'/S. & 280'/E.

BOTTOM HOLE FOOTAGE 450'/N & 550'/W. (Sec. 15)

LOCATION: Section 5, Ţ. 24 S., R. 30 E., NMPM

COUNTY: Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Lesser Prairie-Chicken Timing Stipulations
Ground-level Abandoned Well Marker
Commercial Well Determination
☐ Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Drilling
Secretary's Potash
H2S – Onshore Order 6 Requirements
Medium Cave/Karst
Logging Requirements
Waste Material and Fluids
☐ Production (Post Drilling)
Well Structures & Facilities
Pipelines
•
Electric Lines – not requested
☐ Interim Reclamation
X Final Abandonment & Reclamation