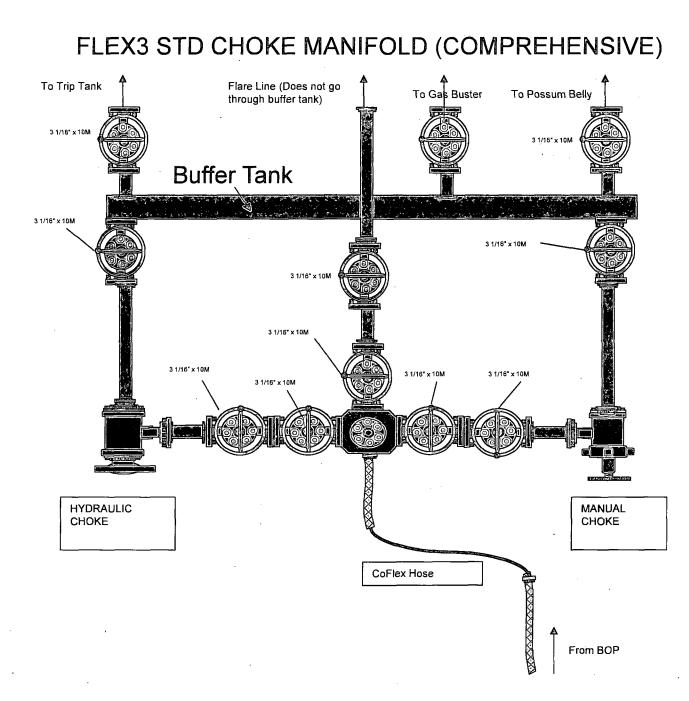
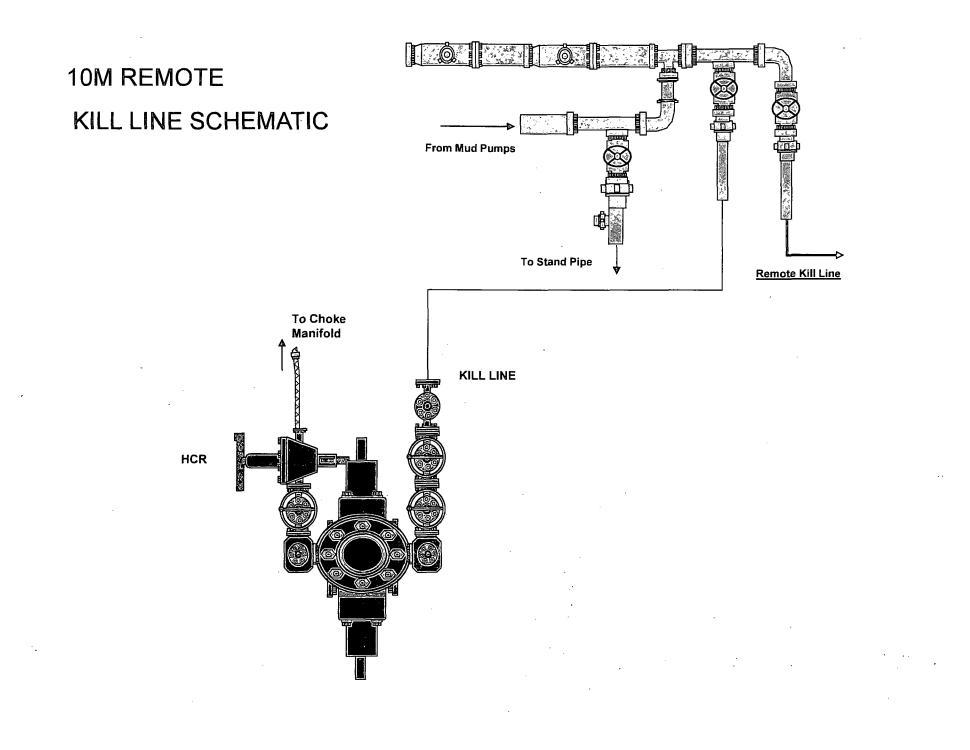
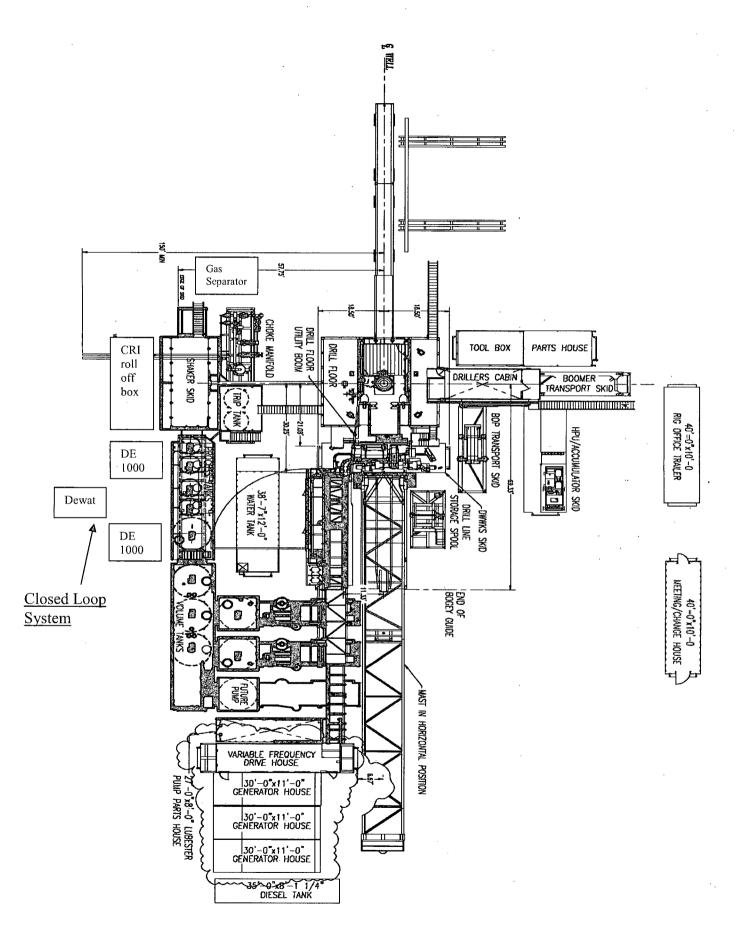
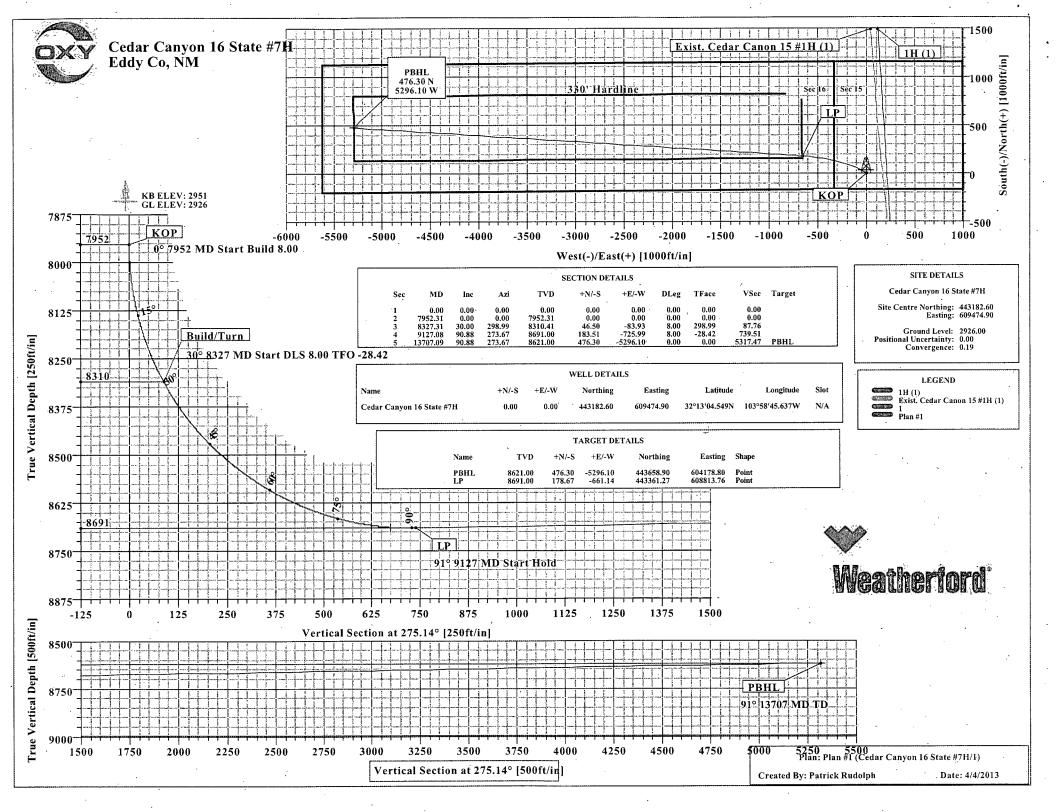

	tor Name Name/Nu	mber [.]	OXY USA Inc. Cedar Canyon 16 State #7H								
Pool Name/Number: Pier											
				Pierce Crossing Bone Spring, East 964 2485 FNL 330 FWL E Sec 15 T24S R29E							
	e Locatio				Sec 16 T24		, <u>.</u>				
	n Hole Lo				Sec 16 T24						
102	Plats:	4/1/13	4/3/13	4/4/13	•	Elevation:	2926'	GL			
	sed TD:		TVD	13707'	TMD		· ,				
L:	at: 32.217	'930 Long	: 103.97934	4	X=609474.9	Y=443	182.6		NAD - 192	7	
P - L	at: 32.218	•	: 103.98147		X=608813.9				NAD - 192		
H - L	at: 32.219	9286 Long	j: 103.99646	4	X=604178.8	Y=443	658.9		NAD - 192	7	
asin	g Prograr	n:									
	Hole Size	<u>Interval</u>	<u>OD Csg</u>	<u>Weight</u>	<u>Collar</u>	<u>Grade</u>	Condition	<u>Collapse</u> <u>Design</u>	<u>Burst</u> Design	<u>Tensio</u> Desigr	
-				: 			i 1	Factor	Factor	Factor	
╞	14-3/4	0-320'	11-3/4"	42	ST&C	H-40	New	6.1	1.52	2.24	
⊢	10.5/01	0.0100	0.5/01	.,	Hole filled w			<u> 1070# ·</u>	1980#	0.00	
-	10-5/8"	0-3100'	8-5/8"	32	LT&C	J-55	New -	1.62	1.86	2.29	
⊢	7-7/8"	0-13707'	5-1/2"	17	Hole filled w			<u>2530#</u>	3930# 1.3	1.68	
ŀ	1-7/8	0-13707	5-1/2	17	BT&C Hole filled w	L-80	New	6390# -	7740#	1.08	
Ľ	Collanso	and burst load		Lucing Strop				0390#	1140#		
	Conapse	and buist load	us calculated	rusing stres	S CHECK WII	anticipate	u loaus				
emei	nt Progra	m:									
a. 1	11-3/4"	Surface				sx PP cmt v	v/ 2% CaCl2,	14.8ppg 1.3	35 yield		
			1346# [.] 2 [\] 4h	r CS 150% I	Excess						
			0		1 1000						
b. 9	}- 5/₿"	Intermediate									
					xcess followe	ed by 230s	« PPC, 14.8p	pg 1.33 yield	l 1571# 24hi	· CS	
			125% Exce	ess			+				
	1/01	Production	0								
c. 5	5-1/2"					Olli	EQ/EQ Diamal	. 1 C #/au O -		2 0000	
		Troduction					50/50 Blend				
		Troduction	1#/sx Cal 8	Seal 60 + .5#	#/sx CF _. R-3 +	.15#/sx W	G-17 + 1.5#/	sx salt + 2%	CaCl2, 10.6	ppg [.]	
		Troduction	1#/sx Cal 8 2.69 yield 6	Seal 60 + .5‡ 646# 24hr C	#/sx CF _. R-3 + S 80% Exces	.15#/sx W ss followed	G-17 + 1.5#/ by 860sx Su	sx salt + 2% per H cmt w	CaCl2, 10.6 / 3#/sx salt -	ppg +	
		Troduction	1#/sx Cal 8 2.69 yield 6	Seal 60 + .5‡ 646# 24hr C	#/sx CF _. R-3 + S 80% Exces	.15#/sx W ss followed	G-17 + 1.5#/	sx salt + 2% per H cmt w	CaCl2, 10.6 / 3#/sx salt -	ppg +	
		Troduction	1#/sx Cal 8 2.69 yield 6	Seal 60 + .5# 546# 24hr C 3 + .5% Hala	#/sx CF _. R-3 + S 80% Exces	.15#/sx W ss followed	G-17 + 1.5#/ by 860sx Su	sx salt + 2% per H cmt w	CaCl2, 10.6 / 3#/sx salt -	ppg +	
[Descriptio	on of Cement	1#/sx Cal 8 2.69 yield 6 .4% CFR-3 Calc TOC-	Seal 60 + .5# 646# 24hr C 8 + .5% Hala 2500'	≇/sx CFR-3 + S 80% Exces id-344 + .2%	.15#/sx W ss followed HR-800, 1	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y	sx salt + 2% per H cmt w vield 1447# 2	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg ⊦ 6 Excess	
			1#/sx Cal 8 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6	Seal 60 + .5# 546# 24hr C 3 + .5% Hala 2500' Calcium Chl	#/sx CF <u>R</u> -3 + S 80% Exces Id-344 + .2% oride, Cal-Se	.15#/sx W ss followed HR-800, 1 eal 60, Salt	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator)	sx salt + 2% per H cmt w vield 1447# 2 ; Silicalite (A	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg ⊦ 6 Excess	
(CFR-3 (Di	on of Cement	1#/sx Cal 8 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling	Seal 60 + .5‡ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch	#/sx CFR-3 + S 80% Exces d-344 + .2% oride, Cal-Se notchlite HGS	.15#/sx W ss followed HR-800, 1 eal 60, Salt	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator)	sx salt + 2% per H cmt w vield 1447# 2 ; Silicalite (A	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg + 6 Excess	
(CFR-3 (Di	on of Cement spersant); WC	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling oss Control);	Seal 60 + .5† 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re	#/sx CFR-3 + S 80% Exces id-344 + .2% oride, Cal-Se notchlite HGS starder)	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Ligl	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad	sx salt + 2% per H cmt w, /ield 1447# 2 ; Silicalite (A ditive);	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg + 6 Excess	
(CFR-3 (Di Halad-344	on of Cement spersant); WG (Low Fluid Lc The above co	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling bss Control); ement volum	Seal 60 + .5† 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re	#/sx CFR-3 + S 80% Exces id-344 + .2% oride, Cal-Se notchlite HGS starder)	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Ligl	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad	sx salt + 2% per H cmt w, /ield 1447# 2 ; Silicalite (A ditive);	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg + 6 Excess	
(CFR-3 (Di Halad-344 sed Mud	on of Cement spersant); WC (Low Fluid Lc	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling bss Control); ement volum	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement.	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg ⊦ 6 Excess	
(CFR-3 (Di Halad-344	on of Cement spersant); WG (Low Fluid Lc The above co	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling bss Control); ement volum	Seal 60 + .5# 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u>	#/sx CFR-3 + S 80% Exces id-344 + .2% oride, Cal-Se notchlite HGS starder)	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Ligl	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement.	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg + 6 Excess	
(H opo <u>I</u>	CFR-3 (Di Halad-344 sed Mud	on of Cement spersant); WG (Low Fluid Lc The above co	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling bss Control); ement volum	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be	#/sx CFR-3 + S 80% Excee Id-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> sec	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cat <u>Fluid</u>	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure <u>Type Syste</u>	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u>	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg + 6 Excess	
) + opo [CFR-3 (Di Halad-344 sed Mud <u>Depth</u>	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling bss Control); ement volum	Seal 60 + .5# 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> 	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid Loss</u> NC	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure <u>Type Syste</u> Fresh Wate	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u>	CaCl2, 10.6 / 3#/sx salt - 24hr CS 40%	ippg ⊦ 6 Excess	
0 H OPO []	CFR-3 (Di Halad-344 sed Mud <u>Depth</u>) - 320' 320 - 3100	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 3-17 (Gelling bss Control); ement volum	Seal 60 + .5# 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid Loss</u> NC NC	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure <u>Type Syste</u> Fresh Wate NaCl Brine	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u>	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate	ippg ⊦ 6 Excess	
0 F opo [[]]	CFR-3 (Di Halad-344 Sed Mud Depth 0 - 320' 320 - 3100 3100 - TD	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal § 2.69 yield (.4% CFR-3 Calc TOC- Additives: (G-17 (Gelling bss Control); ement volum system:	Seal 60 + .5# 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cat Fluid Loss NC NC NC	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/S	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> r/Spud Mud alt Gel-Starc	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate	ppg 6 Excess erial);	
0 F OPO [] () () () () () () () () () () () () ()	CFR-3 (Di Halad-344 Sed Mud Depth D - 320' 320 - 3100 3100 - TD Pump high	on of Cement spersant); WG (Low Fluid Lo The above co Circulation S	1#/sx Cal S 2.69 yield (.4% CFR-3 Calc TOC- Additives: (G-17 (Gelling bss Control); ement volum system:	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC e mud syst	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate h h	ppg 5 Excess erial); 	
0 F OPO [] [] [] [] [] [] [] [] [] [] [] [] []	CFR-3 (Di Halad-344 Sed Mud Depth D - 320' 320 - 3100 3100 - TD Pump high well as wit	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield (.4% CFR-3 Calc TOC- Additives: (G-17 (Gelling bss Control); ement volum system:	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC e mud syst	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate h h	ppg 6 Excess erial); 	
0 F OPO [] [] [] [] [] [] [] [] [] [] [] [] []	CFR-3 (Di Halad-344 Sed Mud Depth D - 320' 320 - 3100 3100 - TD Pump high	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield (.4% CFR-3 Calc TOC- Additives: (G-17 (Gelling bss Control); ement volum system:	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC e mud syst	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate h h	ppg 6 Excess erial); 	
+ + <u>1</u> 1 1 1 1 1 1	CFR-3 (Di Halad-344 Sed Mud Depth D - 320' 320 - 3100 3100 - TD Pump high well as wit	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield (.4% CFR-3 Calc TOC- Additives: (G-17 (Gelling bss Control); ement volum system:	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC e mud syst	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate h h	ppg F Excess erial); Iv as	
) ۲ ۱ ۱ ۲ ۲ ۲ ۲ ۹ ۹ ۹ ۹ ۹ ۹	CFR-3 (Di Halad-344 sed Mud Depth 0 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield (.4% CFR-3 Calc TOC- Additives: (G-17 (Gelling bss Control); ement volum system:	Seal 60 + .5/ 546# 24hr C 3 + .5% Hala 2500' Calcium Chl Agent); Sch HR-800 (Re es could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole	#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS starder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC e mud syst	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate h h	ppg F Excess erial); Iv as	
) H D opo I I F V V V V V V V V V V V V V V V V V	CFR-3 (Di Halad-344 Sed Mud Depth 0 - 320' 320 - 3100 3100 - TD Pump high well as with ocation at Program: Surface	on of Cement spersant); WG (Low Fluid Lc The above co Circulation S	1#/sx Cal S 2.69 yield (.4% CFR-3 Calc TOC- Additives: (3-17 (Gelling bass Control); ement volum System: System: Seps as need c PVT. The	Seal 60 + .54 Seal 60 + .54 Seal 62 24hr C Seal 5200' Calcium Chl Agent); Sch HR-800 (Re ses could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None	#/sx CFR-3 + S 80% Exces d-344 + .2% oride, Cal-Se motchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products	.15#/sx W ss followed HR-800, 1 aal 60, Salt 3-6000 (Lig ding the cal <u>Fluid Loss</u> NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m hal weight an	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
(و ۲ ۱ ۱ ۱ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	CFR-3 (Di Halad-344 Sed Mud Depth) - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia	on of Cement spersant); WG (Low Fluid Lo The above co Circulation S circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid</u> Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/S em will be m nal weight an	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); hy as e on	
(و ۲ ۱ ۱ ۱ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	CFR-3 (Di Halad-344 Sed Mud Depth) - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia	on of Cement spersant); WG (Low Fluid Lo The above co Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid</u> Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/S em will be m nal weight an	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); hy as e on	
(ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	CFR-3 (Di Halad-344 Sed Mud Depth) - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th nud products M three ram se Anticipatec <u>Depth</u></pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid</u> Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/S em will be m nal weight an	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
(+ - 	CFR-3 (Di Halad-344 Sed Mud Depth 0 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia ated Tops	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	#/sx CFR-3 + S 80% Exceed ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. The nud products M three ram s Anticipatec	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid</u> Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste NaCl Brine Cut Brine/Si em will be m hal weight an 1 annular pre-	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
0000 <u>1</u> 000 000 000 000 000 000 000 0	CFR-3 (Di Halad-344 Sed Mud Depth 0 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia ated Tops Geologica	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th nud products M three ram se Anticipatec <u>Depth</u></pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid</u> Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste NaCl Brine/Si em will be m nal weight an A annular prev tter, Oil or G Type	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
Copo []]]]]]]]]]]]]]]]]]	CFR-3 (Di Halad-344 Sed Mud Depth - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia ated Tops Geologica Rustler	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th nud products M three ram s f Anticipated <u>Depth</u> 286'</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Type Syste Cut Brine/Si em will be m hal weight an annular prev tter, Oil or G <u>Type</u> Formation	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
() opo [] () () () () () () () () () ()	CFR-3 (Di Halad-344 Sed Mud Depth 0 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia ated Tops Geologica Rustler Top Salt	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th nud products M three ram s f Anticipated <u>Depth</u> 286' 386'</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/Si em will be m hal weight an A annular prev tter, Oil or G <u>Type</u> Formation Formation	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
) H H Popo F F V V V V C F C F C C E C C C C C C C C C C C C C	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Base Anhy	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: ceps as need c PVT. The	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> </pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/Si em will be m hal weight an A annular prev tter, Oil or G <u>Type</u> Formation Formation	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
COPO F F F F V V COPF S S S S S C F V V C C F S S C C S S S S S S S S S S S S S	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Delaware-	on of Cement spersant); WG (Low Fluid Lo The above co Circulation S circulation S of content all times. ate/Production s of Geologic I Marker alt ydrite Bell Canyon	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: 	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products M three ram s Anticipated <u>386'</u> 386' 1376' 2961' 3034'</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m hal weight an annular prev tter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
Copo	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Delaware- Delaware-	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S 	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: 	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee d-344 + .2% oride, Cal-Se notchlite HGS etarder) revised pend <u>Visc</u> <u>sec</u> .28-38 28-32 28-34 cleaning. Th nud products M three ram s f Anticipated <u>Depth</u> 286' 386' 1376' 2961' 3034' 5116'</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine Cut Brine/Si em will be m hal weight an A annular prev tter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
(oppo [[[[[[]]]]]]]]]]]]]	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Delaware- Delaware- 1st Bone S	on of Cement spersant); WG (Low Fluid Lo The above co Circulation S (Circulation	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: 	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite, HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products M three ram s f Anticipated <u>Depth</u> 286' 386' 1376' 2961' 3034' 5116' 6686'</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/Si em will be m nal weight an A annular prev tter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
() () () () () () () () () ()	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Delaware- Delaware- 1st Bone S 2nd Bone	on of Cement spersant); WG (Low Fluid Lc The above c Circulation S (Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: 	Seal 60 + .5# 546# 24hr C 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Ref tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10h	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite, HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products M three ram s f Anticipated <u>Depth</u> 286' 386' 1376' 2961' 3034' 5116' 6686' 8026'</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC e mud syst for addition	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/Si em will be m hal weight an A annular prev tter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate additive Mate h nally/manual control will be	ppg 6 Excess erial); y as e on	
) () () () () () () () () () () () () ()	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia ated Tops Geologica Rustler Top Salt Bottom Sa Base Anh Delaware- Delaware- 1st Bone S 2nd Bone	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S (Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling biss Control); ement volum system: 	Seal 60 + .5/ 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Reference) es could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10N 3 Depths of	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite, HGS etarder) revised pend <u>Visc</u> <u>sec</u> </pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid Loss</u> NC NC NC NC e mud syst for addition stack w/ 5M I Fresh Wa	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/S em will be m hal weight an annular prev ter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate hally/manual control will be	bppg 6 Excess erial); y as e on	
Copo Copo	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Delaware- Delaware- Delaware- 1st Bone S 2nd Bone Fresh wat	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S (Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: 	Seal 60 + .5/ 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Re tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10 X Depths of the Rustler for the Rustler for	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite, HGS etarder) revised pend <u>Visc</u> <u>sec</u> </pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid Loss</u> NC NC NC NC e mud syst for addition stack w/ 5M I Fresh Wa	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/S em will be m hal weight an annular prev ter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate hally/manual control will be	bppg 6 Excess erial); y as e on	
() () () () () () () () () ()	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as wit ocation at Program: Surface Intermedia Base Anhy Delaware- Delaware- Delaware- 1st Bone S 2nd Bone Fresh wati which will	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S (Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling bss Control); ement volum system: 	Seal 60 + .5/ 546# 24hr C 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Re tes could be <u>Mud Wt.</u> <u>PP9</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10 X Depths of the Rustler for the Rustler for	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite, HGS etarder) revised pend <u>Visc</u> <u>sec</u> </pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal <u>Fluid Loss</u> NC NC NC NC e mud syst for addition stack w/ 5M I Fresh Wa	G-17 + 1.5#// by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure Type Syste Fresh Wate NaCl Brine/S em will be m hal weight an annular prev ter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate hally/manual control will be	bppg 6 Excess erial); y as e on	
Copo	CFR-3 (Di Halad-344 Sed Mud Depth 320 - 320' 320 - 3100 3100 - TD Pump high well as with ocation at Program: Surface Intermedia Base Anhy Delaware- Delaware- Delaware- 1st Bone S 2nd Bone Fresh wath which will ng Unit:	on of Cement spersant); WG (Low Fluid Lo The above c Circulation S (Circulation S	1#/sx Cal S 2.69 yield 6 .4% CFR-3 Calc TOC- Additives: 6 a-17 (Gelling biss Control); ement volum system: 	Seal 60 + .54 546# 24hr C 546# 24hr C Calcium Chl Agent); Sch HR-800 (Re les could be <u>Mud Wt.</u> <u>ppg</u> 8.5-9.0 9.8-10.2 8.8-9.6 led for hole necessary n None 13-5/8" 10N 3 Depths of he Rustler for sources.	<pre>#/sx CFR-3 + S 80% Excee ad-344 + .2% oride, Cal-Se notchlite, HGS etarder) revised pend <u>Visc</u> <u>sec</u> 28-38 28-32 28-34 cleaning. Th nud products M three ram s FAnticipated Depth 286' 386' 1376' 2961' 3034' 5116' 6686' 8026' 8481' ormation. Su</pre>	.15#/sx W ss followed HR-800, 1 eal 60, Salt S-6000 (Lig ding the cal Fluid Loss NC NC NC NC NC e mud syst for addition stack w/ 5M I Fresh Wa	G-17 + 1.5#/ by 860sx Su 3.2ppg 1.64 y (Accelerator) ht Weight Ad liper measure <u>Type Syste</u> Fresh Wate NaCl Brine/S em will be m hal weight an A annular prev tter, Oil or G <u>Type</u> Formation Formation Formation Oil/Gas Oil/Gas Oil/Gas Oil/Gas	sx salt + 2% per H cmt w, vield 1447# 2 ; Silicalite (A ditive); ement. <u>m</u> <u>r/Spud Mud</u> <u>alt Gel-Starc</u> onitored visu d fluid loss c venter, 5M C as:	CaCl2, 10.6 / 3#/sx salt - 24hr CS 409 additive Mate hally/manual control will be hoke Manife	ppg 6 Excess erial); y as e on	


Harroun 15 #15 - 30-015-33317 - TVD 7808' - Units E,F Sec 15
 H Buck State #4 - 30-015-34444 - TVD 7689' - Units H,G,F Sec 16


Operator: OXY USA INC , 16696 Well: CEDAR CANYON 16 STATE #007H API:


Created By	Comment	Comment Date
STEWARTD	Penetration Point - 2310 FNL 330 FEL H Sec 16 T24S R29E - Lat:32.218372 Long:103.981479	4/5/2013
STEWARTD	Penetration Point - 2310 FNL 330 FEL H Sec 16 T24S R29E - Lat:32.218372 Long:103.981479	4/5/2013
STEWARTD	BOP - 13-5/8" 10M three ram stack w/ 5M annular, 5M choke manifold	4/5/2013
STEWARTD	This well is proposed to be completed in the 2nd Bone Spring. The H Buck State #4, 30-015- 34444 is completed in the 1st Bone Spring.	4/5/2013


https://wwwapps.emnrd.state.nm.us/OCD/OCDPermitting/Report/C101/C101All.aspx?Per... 4/5/2013

Weatherford International Ltd. WFT Plan Report - X & Y's

Company: Occidental Permian Ltd: Field: Eddy Co. NM (Nad 27) Site: Cedar Canyon 16 State #7H Date: 4/4/2013 Time: 15:50:18 Page: 1

 Co-ordinate(NE) Reference:
 Well: Cedar Canyon 16 State:#7H

 Vertical (TVD) Reference:
 SITE 2951:0

 Section (VS) Reference:
 Well (0:00N;0:00E;275:14Azi)

 Section (VS) Reference: Well (0.00N,0.00E,275.14Azi)
Survey Calculation Method: Minimum Curvature Db Well: Cedar Canyon 16 State #7H Sybase Wellpath: 1 Db Plan #1 4/4/2013 Plan: Date Composed: Version: **Principal:** Yes Tied-to: From Surface Site: Cedar Canyon 16 State #7H Site Position: Northing: 443182.60 ft 32 13 4.549 N Latitude: Longitude: From: Map Easting: 609474.90 ft 103 58 45.637 W **Position Uncertainty:** 0.00 ft North Reference: Grid 2926.00 ft **Ground Level: Grid Convergence:** 0.19 deg Cedar Canyon 16 State #7H Well: Slot Name: +N/-S0.00 ft 443182.60 ft 13 Well Position: Latitude: 32 4.549 N Northing: +E/-W 0.00 ft 609474.90 ft 103 58 45.637 W Easting : Longitude: **Position Uncertainty:** 0.00 ft Wellpath: 1 **Drilled From:** Surface 0.00 ft Tie-on Depth: Current Datum: SITE Height 2951.00 ft **Above System Datum:** Mean Sea Level 6/1/2013 Declination: 7.53 deg **Magnetic Data: Field Strength:** 48397 nT Mag Dip Angle: 60.06 deg Vertical Section: Depth From (TVD) +N/-S+E/-WDirection ft ft deg ft 8621.00 0.00 0.00 275.14 **Plan Section Information** MD Incl Azim TVD +N/-S +E/-W DLS Build Turn TFO Target ft. deg/100ft deg/100ft deg/100ft ft 💦 🖓 , ft deg deg 🙀 ft deg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7952.31 0.00 0.00 0.00 7952.31 0.00 0.00 0.00 0.00 0.00 8327.31 30.00 298.99 8310.41 46.50 -83.93 8.00 8.00 0.00 298.99 9127.08 90.88 273.67 8691.00 183.51 -725.998.00 7.61 -3.17 -28.42 13707.09 90.88 273.67 8621.00 476.30 -5296.10 0.00 0.00 0.00 0.00 PBHL Survey
 Azim
 TVD
 N/S:
 E/W
 VS
 DLS

 deg
 .ft
 .ft
 .ft
 .ft
 .deg/100ft
 MapE Comment MD Incl Azim MapN ft 🖉 , ft deg 7900.00 0.00 7900.00 0.00 0.00 0.00 0.00 0.00 443182.60 609474.90 7952.31 609474.90 7952.31 0.00 · 0.00 0.00 0.00 0.00 0.00 443182.60 KOP 1.45 8000.00 3.82 298.99 7999.96 0.77 -1.398.00 443183.37 609473.51 8050.00 7.82 298.99 8049.70 3.22 -5.82 6.08 8.00 443185.82 609469.08 8100.00 11.82 298.99 8098.96 -13.27 13.88 443189.95 609461.63 7.35 8.00 298.99 8147.50 -23.71 24.80 8.00 443195.74 609451.19 8150.00 15.82 13.14 298.99 -37.09 8200.00 19.82 8195.09 20.55 38.78 8.00 443203 15 609437.81 8250.00 23.82 298.99 8241.50 29.56 -53.34 55.77 8.00 443212.16 609421.56 8300.00 27.82 298.99 8286.50 40.11 -72.38 75.68 8.00 443222.71 609402.52 8327.31 30.00 298.99 8310.41 46.50 -83.93 87.76 8.00 443229.10 609390.97 Build/Turn 443234.58 8350.00 31.61 297.34 8329.90 51.98 -94.17 98.45 8.00 609380.73 443246.51 609355.93 8400.00 35.21 294.19 8371.63 63.91 -118.97 124.22 8.00 291.56 -146.73 443258.20 8450.00 38.89 8411.53 75.60 152.91 8.00 609328.17 2 8500.00 42.61 289.33 8449.41 86.97 -177.31 184.39 8.00 443269.57 609297.59 287.39 8485.07 8550.00 97.98 -210.56 218.49 443280.58 609264.34 46.37 8.00 285.67 8.00 8600.00 50.16 8518.35 108.58 -246.33 255.07 443291.18 609228.57 8650.00 53.98 284.14 8549.08 118.71 -284.44 293.93 8.00 443301.31 609190.46 8700.00 57.81 282.75 8577.11 128.33 -324.69 334.88 8.00 443310.93 609150.21 8602.31 443319.98 609107.99 8750.00 61.65 281,48 137.38 -366.91 377.74 8.00 8800.00 65.51 280.29 8624.55 145.82 -410.87 422.28 8.00 443328.42 609064.03 279.17 153.62 -456.38 468.30 8.00 443336.22 609018.52 8850.00 69.37 8643.73 443343.33 8900.00 73.25 278.11 8659.75 160.73 -503.19 515.57 8.00 608971.71

12700.00

12800.00

12900.00

13000.00

13100.00

13200.00

13300.00

13400.00

13600.00

13707.09

13500.00 90.88

90.88

90.88

90,88

90.88

90.88

90.88

90.88

90.88

90.88

90.88

273.67

273.67

273.67

273.67

273.67

273.67

273.67

273.67

273.67

273.67

273.67

8636:39

8634.86

8633.34

8631.81

8630.28

8628.75

8627.22

8625.69

8624.17

8622.64

8621.00

100

Weatherford International Ltd. WFT Plan Report - X & Y's

 Company:
 Occidental Permian Ltd.
 Date:
 4/4/2013
 Time:
 15:50:18
 Page:
 2:

 Field:
 Eddy. Co, NM (Nad 27)
 Co-ordinate(NE). Reference:
 Well: Cedar Canyon 16 State #7H

		NM (Nad 2		Crimet de la		Co-ordinate(NI	.) Reference	: Well: Ceda	ir Canyon 16 St	ate #7H	
Site: C		nyon 16 SI	tate #7H			Vertical (TVD)	Reference:	: Well: Ceda SITE 2951 Well (0.001	.0	Sec. 19	
Well: C	edar Cai	nyon 16 SI	tate #7H	1.14.44.6.6		Section (VS) Re	ference:	Well (0.001	N,0.00E,275.14/	Azi)	8 . N . S . S . S . S
Wellpath: 1						Survey Calcula	tion Method	: Minimum C	Curvature	Db:	Sybase
	On 19, 1994, 41, 694, 697, 697	alahan karat ing sa			Concern Concerning and and and		<u>e no en esta o esta con co</u>	an Andria Anghericana ang		and a second second	Long (MATE START 1 GOOD AT 1 G
Survey								4			
MD	Incl	Azim 🕙	TVD	N/S	E/W	VS	DLS	MapN	MapE		Comment
ft ft	deg	déa	- • ft	ft	ft		eq/100ft	ft	ft		
	where the party of		e and Walts in Article		sa gara kana sang		Carlos Carlos Maria		A SHORE AND A S		
8950.00	77.12	277.09	8672.53	167.11	-551.10	563.85	8.00	443349.71	.608923.80		
9000.00	, 81.00	276.10	8682.02	172.75	-599.85		8.00	443355.35	608875.05		
9050.00	84.89	27.5.14	8688.16	177.61	-649.23	662.53	8.00	443360.21	608825.67		
9100.00	88.77	274.18	8690.92	181.66	-698:98	712.44	8.00	443364.26	608775.92		
9127.08	90.88	273.67	8691.00	183.51	-725.99	739.51	8.00	443366.11	608748.91	LP	
9200.00	90.88	273.67	8689.89	188.17	-798.75	812.40	0.00	443370.77	608676.15		
9300.00	90.88	273.67	8688.36	194.57	-898.54	912.35	0.00	443377.17	608576.36		
9400.00	90.88	273.67	8686.83	200.96	-998.32	1012.31	0.00	443383.56	608476.58		·
0400.00	00.00	2/0.01	0000.00	200.00		1012.01	0.00	110000.00	000110.00		
9500:00	.90.88	273.67	[.] 8685.30	207.35	-1098.10	1112.26	0.00	443389.95	608376.80		
9600.00		273.67	8683.78	207.35	-1197.89	1212.22	0.00	443396.35	608277.01		
9700.00	90.88	273.67	8682.25	220.14	-1297.67	1312.17	0.00	443402.74	608177.23		
9800.00	90.88	273.67	8680.72	226.53	-1397.46	1412.13	0.00	443409.13	608077.44		
9900.00	90.88	273.67	8679.19	232.92	-1497.24	1512.08	0.00	443415.52	607977.66		
				·							
10000.00	90.88	273.67	8677.66	239.32	-1597.02	1612.04	0.00	443421.92	607877.88		
10100.00	90.88	273.67	8676.13	245.71	-1696.81	1711.99	0.00	443428.31	607778.09		
10200.00	90.88	273.67	8674.60	252.10	-1796.59	1811.95	0.00	443434.70	607678.31	•	
10300.00	90.88	273.67	8673.08	258.49	-1896.37	1911.91	0.00	443441.09	607578.53		
10400.00	90.88	273.67	8671.55	264.89	-1996.16	2011.86	0.00	443447.49	607478.74		
10500.00	90.88	273.67	8670.02	271.28	-2095.94	2111.82	0.00	443453.88	607378.96		
10600.00	90.88	273.67	8668.49	277.67	-2195.73	2211.77	0.00	443460.27	607279.17		
10700.00	90.88	273.67	8666.96	284.07	-2295.51	2311.73	0.00	443466.67	607179.39		
10800.00	90.88	273.67	8665.43	290.46	-2395.29	2411.68	0.00	443473.06	607079.61		
10900.00			8663.91	290.40	-2395.29	2511.64		443479.45	606979.82		
10900.00	90.88	273.67	0003.91	290.00	-2495.06	2311,04	0.00	445479.45	000979.02	-	
11000.00	00.00	272 67	9663.39	202.24	2504.96	2611 50	0.00	112105 01	606000.04		
11000.00	90.88	273.67	8662.38	303.24	-2594.86	2611.59	0.00	443485.84	606880.04		
11100.00	90.88	273.67	8660.85	309.64	-2694.64	2711.55		. 443492.24	606780.26		
11200.00	90.88	273.67	8659.32	316.03	-2794.43	2811.50	0.00	443498.63 [.]	606680.47		
11300.00	90.88	273.67	8657.79	322.42	-2894.21	2911.46	0.00	443505.02	606580.69		
11400.00	90.88	273.67	8656.26	328.81	-2994.00	3011.41	0.00	443511.41	606480.90		
								···			
11500.00	90.88	273.67	8654.73	335.21	-3093.78	3111.37	0.00	443517.81	606381.12		
. 11600.00	90.88	273.67	8653.21	341.60	-3193.56	3211.32	0.00	443524.20	606281.34		
11700.00	90.88	273.67	8651.68	347.99	-3293.35	3311,28	0.00	443530.59	606181.55		
11800.00	90.88	273.67	8650.15	354.39	-3393.13	3411.23	0.00	443536.99	606081.77		
11900.00	90.88	273.67	8648.62	360.78	-3492.91	3511.19	0.00	443543.38	605981.99		.
12000.00	90.88	273.67	8647.09	367.17	-3592.70	3611.14	0.00	443549.77	605882.20		
12100.00	90.88	273.67	8645.56	373.56	-3692.48	3711.10	0.00	443556.16	605782.42		
12200.00	90.88	273.67	8644.04	379.96	-3792.27	3811.06	0.00	443562.56	605682.63		·
12300.00	90.88	273.67	8642.51	386.35	-3892.05	3911.01	0.00	443568.95	605582.85		
12400.00	90.88	273.67	8640.98	392.74	-3991.83	4010.97	0.00	443575.34	605483.07		
12400.00	00.00	210.01	00-0.00	032.14	-0001.00	1010.07	0.00		000400.07		
12500.00	90.88	27,3.67	8639.45	399.13	-4091.62	4110.92	0.00	443581.73	605383.28		
12600.00	90.88 90.88	273.67	8637.92	405.53	-4091.62	4110.92	0.00	443588.13			
12600.00	90.88	2/3.0/	8637.92	405.53	-4191.40	4210.88	0.00	443588.13	605283.50		

-4291.18

-4390.97

-4490.75

-4590.54

-4690.32

-4790.10

-4889.89

-4989.67

-5089.45

-5189.24

-5296.10

411.92

418.31

424.70

431.10

437.49

443.88

450.28

456.67

463.06

469.45

476.30

4310.83

4410.79

4510.74

4610.70

4710.65

4810.61

4910.56

5010.52

5110.47

5210.43

5317.47

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

443594.52

443600.91

443607.30

443613.70

443620.09

443626.48

443632.88

443639.27

443645.66

443652.05

443658.90

605183.72

605083.93

604984.15

604884.36

604784.58

604684.80

604585.01

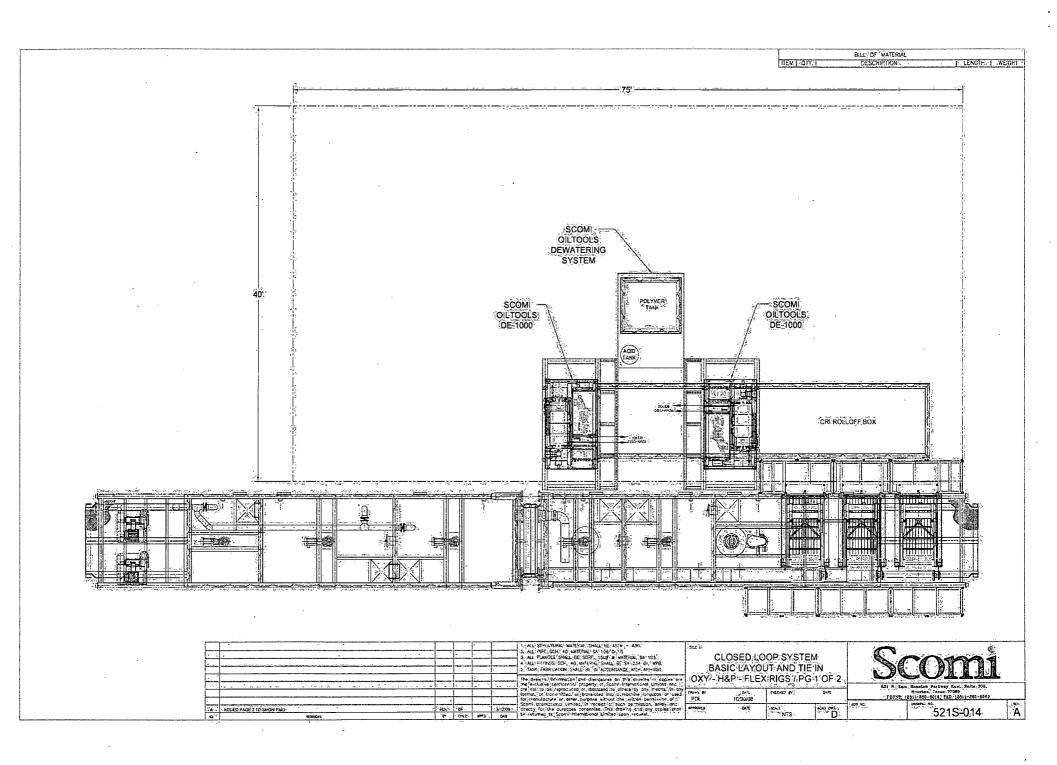
604485.23

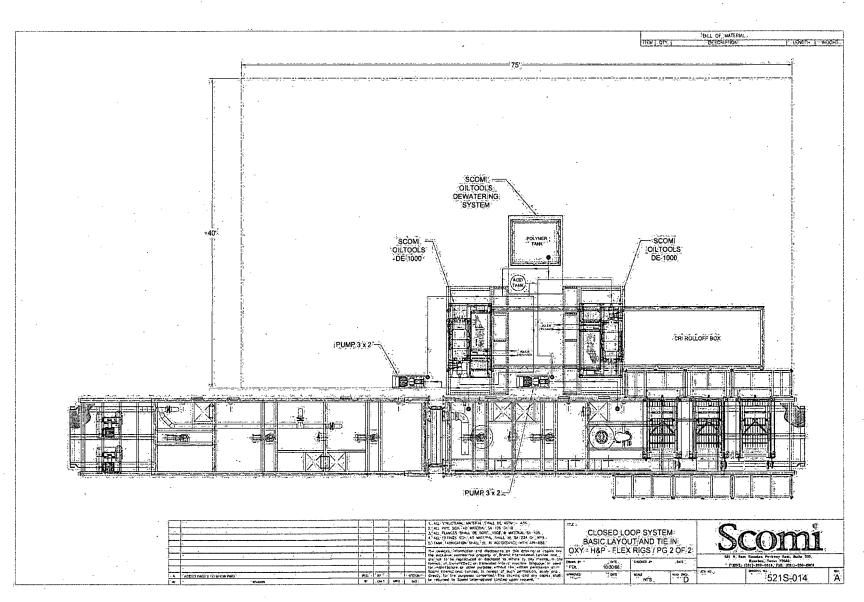
604385.45

604285.66

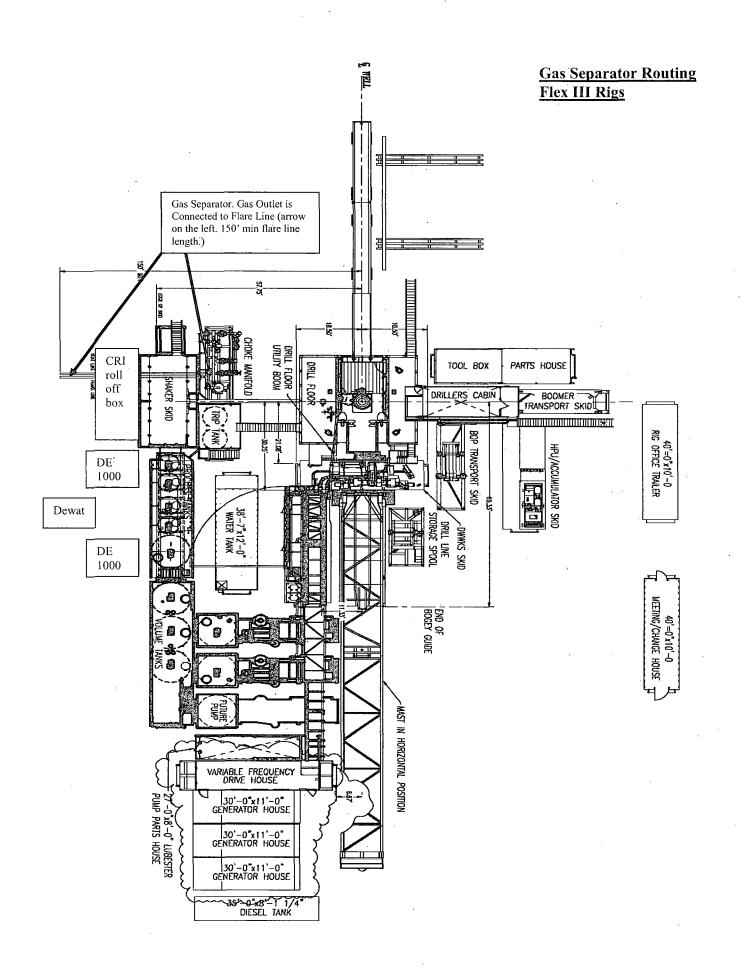
604178.80

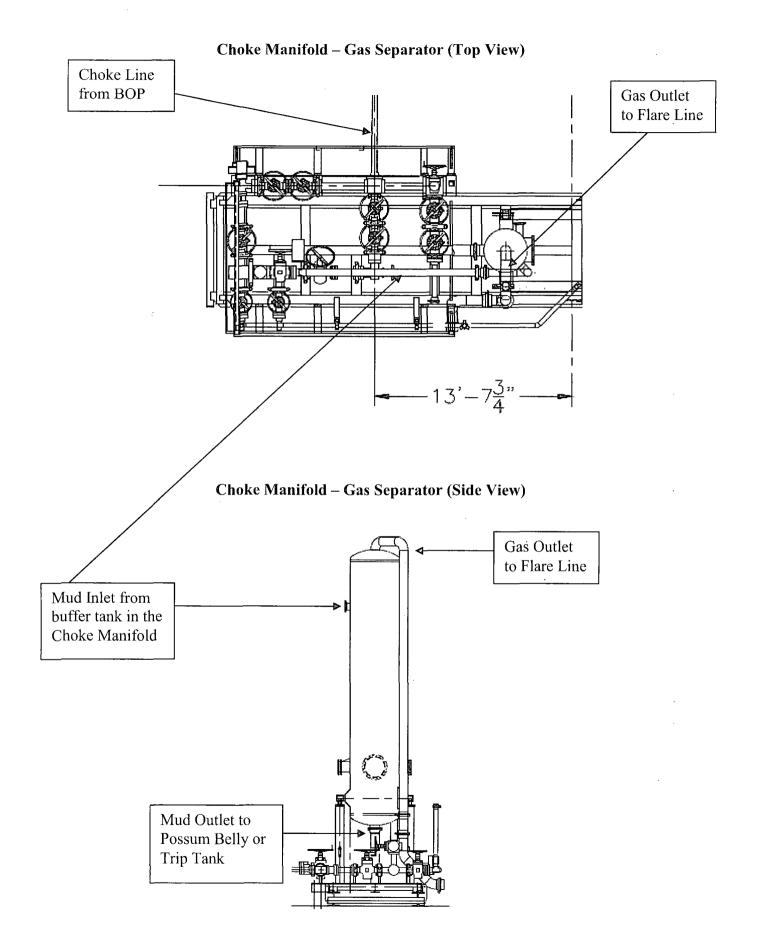
PBHL


Weatherford International Ltd. WFT Plan Report - X & Y's



 Company:
 Occidental Permian Ltd.
 Date:
 4/4/2013
 Time:
 15:50:18
 Page:
 3


 Field:
 Eddy Co; NM (Nad 27)
 Co-ordinate(NE) Reference:
 Well:
 Cedar Canyon 16 State #7H
 Yertical (TVD) Reference:
 Well:
 Cedar Canyon 16 State #7H
 Stet:
 Stet:</


	lin Sec
MD TVD Diameter Hole Size Name 1 11 in in 1 320.00 320.00 0.000 0.000 Csg 320.00 3050.00 0.000 0.000 Csg Annotation Image: Comparison of the system in the system	9 47.269 V
MD TVD Diameter, in Hole Size in Name in 320.00 320.00 0.000 0.000 Csg 3050.00 3050.00 0.000 0.000 Csg sunotation	3 53.326 V
ft ft in 320.00 320.00 0.000 0.000 Csg 3050.00 3050.00 0.000 0.000 Csg snotation	
320.00 320.00 0.000 0.000 Csg 3050.00 3050.00 0.000 0.000 Csg Innotation MD TVD T rg52.31 7952.31 KOP 327.31 8310.41 Build/Turn 327.31 8691.00 LP 3707.09 8621.00 PBHL Dip Angle Dip Dip 'ormations Lithology Dip Angle Dip Dip 'ield: Eddy Co, NM (Nad 27) Map Zone: New Mexico, Eastern Zone 'ield: Eddy Co, NM (Nad 27) Map Zone: New Mexico, Eastern Zone 'ieo Datum: NAD27 (Clarke 1866) Coordinate System: Well Centre	
MD ft TVD ft 7952.31 7952.31 8310.41 Build/Turn Dip Angle 2010 9127.08 8691.00 127.08 8691.00 93707.09 8621.00 PBHL PBHL Formations Dip Angle 2 Dip Dip WD TVD Formations Lithology WD TVD Formations Dip Angle 2 Dip Dip Field: Eddy Co, NM (Nad 27) Map System:US State Plane Coordinate System 1927 Map Zone: Coordinate System: Well Centre	
ft ft 7952.31 7952.31 KOP 3327.31 8310.41 Build/Turn 9127.08 8691.00 LP 3707.09 8621.00 PBHL ormations Dip Angle Dip Dip MD TVD Formations ield: Eddy Co, NM (Nad 27) Map System:US State Plane Coordinate System 1927 Map Zone: New Mexico, Eastern Zone Geo Datum: NAD27 (Clarke 1866) Coordinate System: Well Centre	
7952.31 7952.31 KOP 3327.31 8310.41 Build/Turn 9127.08 8691.00 LP 3707.09 8621.00 PBHL "ormations Lithology Dip Angle Dip Dip "MD TVD Formations "ield: Eddy Co, NM (Nad 27) Map System:US State Plane Coordinate System 1927 Map Zone: New Mexico, Eastern Zone Geo Datum: NAD27 (Clarke 1866) Coordinate System: Well Centre	
MD TVD Formations Lithology Dip Angle Dip Di 	<u></u>
ield: Eddy Co, NM (Nad 27) fap System:US State Plane Coordinate System 1927 Map Zone: New Mexico, Eastern Zone Geo Datum: NAD27 (Clarke 1866) Coordinate System: Well Centre	
Aap System:US State Plane Coordinate System 1927 Map Zone: New Mexico, Eastern Zone Geo Datum: NAD27 (Clarke 1866) Coordinate System: Well Centre	rection
Geo Datum: NAD27 (Clarke 1866) Coordinate System: Well Centre	

.

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

<u>Scope</u>

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Discussion

Implementation:

Emergency response Procedure:

Emergency equipment Procedure:

Training provisions:

Drilling emergency call lists:

Briefing:

Public safety:

Check lists:

General information:

This plan with all details is to be fully implemented before drilling to <u>commence</u>.

This section outlines the conditions and denotes steps to be taken in the event of an emergency.

This section outlines the safety and emergency equipment that will be required for the drilling of this well.

This section outlines the training provisions that must be adhered to prior to drilling.

Included are the telephone numbers of all persons to be contacted should an emergency exist.

This section deals with the briefing of all people involved in the drilling operation.

Public safety personnel will be made aware of any potential evacuation and any additional support needed.

Status check lists and procedural check lists have been included to insure adherence to the plan.

A general information section has been included to supply support information.

- 2 -

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Emergency Equipment Requirements

1. Well control equipment

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. Protective equipment for personnel

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. <u>Hydrogen sulfide sensors and alarms</u>

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. Visual Warning Systems

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

- 4 -

Wind sock – wind streamers:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. Well Testing

No drill stem test will be performed on this well.

8. Evacuation plan

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. Designated area

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
- B. If uncontrollable conditions occur:
 - 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.
- C. Responsibility:
 - 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:	1.	On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
	2.	Check status of personnel (buddy system).
	3.	Secure breathing equipment.
	4.	Await orders from supervisor.
Drill site manager:	1.	Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
	3.	Determine H2S concentrations.
· .	4.	Assess situation and take control measures.
Tool pusher:	1.	Don escape unit Report to up nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
	3.	Determine H2S concentration.
	4.	Assess situation and take control measures.
Driller:	1.	Don escape unit, shut down pumps, continue rotating DP.

- 2. Check monitor for point of release.
- 3. Report to nearest upwind designated safe briefing / muster area.
- Check status of personnel (in an attempt to rescue, 4. use the buddy system).
- Assigns least essential person to notify Drill Site 5. Manager and tool pusher by quickest means in case of their absence.
- 6. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.
- 1. Will remain in briefing / muster area until instructed by supervisor.
- 1. Report to nearest upwind designated safe briefing / muster area.
- When instructed, begin check of mud for ph and 2. H2S level. (Garett gas train.)

Mask up and check status of all personnel and secure operations as instructed by drill site manager.

Taking a kick

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

1.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Derrick man Floor man #1 Floor man #2

Mud engineer:

Safety personnel:

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **<u>Do not assume the area is safe after the well is ignited.</u>**

Status check list

Note: All items on this list must be completed before drilling to production casing point.

- 1. H2S sign at location entrance.
- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1-100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.

- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by:

Date:

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

Important: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

1.	Evacuate all	personnel to	"Safe Briefing	/ Muster Areas"	or off location if	needed.
----	--------------	--------------	----------------	-----------------	--------------------	---------

- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hcn	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm		1000 ppm
Chlorine	Cl2	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Methane	Ch4	0.55	90,000 ppm	Combustibl	e above 5% in air

Toxicity of various gases

1) threshold limit – concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

2) hazardous limit – concentration that will cause death with short-term exposure.

3) lethal concentration – concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii

Physical effects of hydrogen sulfide

		Concentration	Physical effects
Percent (%)	<u>Ppm</u>	Grains	
		100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in $3 - 15$ minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

٢

*at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

<u>Rescue</u> First aid for H2S poisoning

Do not panic!

Remain calm – think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012