Nº IN TOTAS	ν ,	JAN 232013		· ·		
Form 3160 - 3 (March 2012)		DCD ARTES	A	FORM OMB Expires	M APPROV No. 1004-01 October 31,	ED 37 2014
DEPARTMENT OF T BUREAU OF LAND	ATES THE INTERIO MANAGEMEN	R . JT	·	5. Lease Serial No. NMNM 0531277	A	
APPLICATION FOR PERMIT	TO DRILL (DR REENTER		6. If Indian, Allote	æ or Tribe	Name 78
la. Type of work: DRILL R	EENTER			7 If Unit or CA Ag	reement, N	ame and No.
lb. Type of Well: 🗹 Oil Well 🗌 Gas Well 🗍 Other		Single Zone 🔲 Multij	ole Zone	8. Lease Name and FNR 26 FEDERA	I Well No. L #4H	3048
2. Name of Operator OXY USA INC		416096	7	9. API Well No.	5-4	1012
3a. Address P.O. BOX 4294 HOUSTON, TX 77210	3b. Phone 713-513	No. (include area code) -6640		10. Field and Pool, o FORTY NINER R	r Explorato	ry EL, SE C /
 Location of Well (Report location clearly and in accordance At surface 690' FSL & 373' FWL At proposed prod zone 690' FSL & 330' EEI 	with arry State requir	rements.*)		11. Sec., T. R. M. or M, SEC 26, T23S	Blk. and Su , R30E	nrvey or Area
 14. Distance in miles and direction from nearest town or post off 29 MILES SOUTHEAST OF CARLSBAD, NM 	ice*			12. County or Parish EDDY COUNTY,		13. State NM
 Distance from proposed* 373' location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of 960	f acres in lease	17. Spaci 160	ng Unit dedicated to this	s well	L
 Distance from proposed location* 317' to nearest well, drilling, completed, applied for, on this lease; ft. 	19. Propo 12054' M	sed Depth MD / 7766' TVD	20, BLM NMB00	/BIA Bond No. on file 00862 / ESB00226		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3381.4'	22. Appro 02/15/2	oximate date work will sta 013	rt*	23. Estimated durate 30 DAYS	ion	
	24. At	tachments	·	· · · · · · · · · · · · · · · · · · ·		
The following, completed in accordance with the requirements of	Onshore Oil and G	as Order No.1, must be a	ttached to t	his form:	n avisting	hand on file (s
 Wen plat centred by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest S NEPCO 11 (1997) 	System Lands, the	 Bond to cover t Item 20 above). Operator certification 	cation	ons uness covered by a	in existing	bond on the (s
SUPO must be filed with the appropriate Porest Service Orfi		6. Such other site BLM.	specific in	formation and/or plans	as may be i	required by the
25. Signature Multipoliticat		ne (Printed/Typed) NNIFER DUARTE (je	nnifer_du	uarte@oxy.com)	Date 08/31/	/2012
BECULATORY ANALYST J. Juen Approved by (Signal 48/ Jesse J. Juen	Nan	ne (Printed/Typed)			Date	AN 3-
Title. STATE DIRECTOR	. Offi	ce ATA	C'T' A'	TE AEEIAD		······································
Application approval does not warrant or certify that the application	int holds legal or ec	and the title to those right	ts in the su	bject lease which would	entitle the	applicant to
conduct operations thereon. Conditions of approval, if any, are attached.			APP	ROVAL FOR	TWO	YEARS
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, mak States any false, fictitious or fraudulent statements or representat	e it a crime for any ions as to any matte	person knowingly and r within its jurisdiction.	willfully to	make to any department	or agency	of the United

3

supulations Attached

SEE ATTACHED FOR CONDITIONS OF APPROVAL

<u>Dietmet 1</u> 1725 M. Freuels Er., Hobbs, NM 88240 Phone, (575) 393-6161 Fax: (575) 393-6129 <u>Distinct 10</u> 811 S. Fint St., Artesta, NM 88210 <u>Phone</u> (575) 1745-9726 <u>Pistner 101</u> 1896 Branes Road, Artee, NM 87416 <u>Phone</u> (505) 234-6176, Fax: (505) 334-6170 <u>Distinct 101</u> 1200 S. St. Pranets Dn., Santo Fe, NM 87508 Faunce (505) 476-3460 Fax: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

☐ AMENDED REPORT

		V	VELL LOCAT	TION ANE	ACF	REAGE D	EDICATIO	NPLAT			·
30-	DIS	(Number 5-4101	2964	nol Code	1	Fortu	Niner	Pool Name	e:De	lan	ane Shi
Prope	erty Code	,	· · · · · · · · · · · · · · · · · · ·		Property	·Name		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		We.	ll Number
SCH.	820	e l		FNR	"26"	" FED.	•				4 <i>H</i>
ÖGI	RID No.				Operator	r Name				E	levation
100	40			OXY	USA	INC.				33	81.4'
				Surfa	ace Le	ocation					
UL or lot no.	Section	Township	. Range	>	L of Idn	Feet from the	North/South line	Feet from the	East/Wes	t line	County
М	26	23 SOUTH	30 EAST, I	N. M. P. M.		690'	SOUTH .	. 373'	WES7	·	EDD Y
L.,		······································	Bottom H	ole Locatio	on If I	Different I	From Surfac	e			(.
UL or lot no.	Section	Township	Range	3	Lot Idn	Feet from the	North/South line	Feet from the	East/Wes	it line	County
Р	26	23 SOUTH	30 EAST, I	N. M. P. M.		690'	SOUTH	330'	EAST	-	EDD Y
Dedicated	Acres	Joint or Infill	Consolidation Code	· Order No.	1	L		, ,		•• •	2
160											12054

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

District 1 1635 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Far: (575) 393-0720 <u>District III</u> 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1282 Far: (575) 748-0720 <u>District III</u> 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Far: (505) 334-6170 <u>District IV</u> 1220 S. S. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Far: (505) 476-3462 State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

¢

AMENDED REPORT

		V	VELL LOCAT	ION ANL	ACR	EAGE D	EDICATIO	NPLAT	•	
-	API	Number	96L	ol Code	F	orth	Ninerh		Delaway	re Swio
Ртор	erty Code				Property	Name		0		Well Number
OG	RID No.		<u></u>	FNR	26 Operator	FED.				Flevation
11010Q	6			OXY	USA	INC.				3381.4'
				Surf	ace Lo	cation				
UL or lot no.	Section	Township	Range		Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
М	26	23 SOUTH	30 EAST, N	Г. М. Р. М .		690'	SOUTH	373'	WEST	EDD Y
			Bottom Ho	le Locati	on_If L	Different H	From Surfac	e		
UL or lot no.	Section	Township	Range		Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	26	23 SOUTH	30 EAST, N	<i>I. M. P. M.</i>		690'	SOUTH	330'	EAST	EDDY
Dedicated	d Acres	Joint or Infill	Consolidation Code	Örder No.						
No allow. division.	able wi	ll be assigned to	o this completion t	Intil all inter	rests ha	ve been con	solidated or a	non-standaro	unit has been ap	proved by the
		I .				I		0	PERATOR CERTIF.	CATION
								l hereby cer	tify that the information const	tined herein is true and
		1	1			ł	1	complete to	the best of my knowledge and	belief, and that this
								organizatio	n either owns a working interv	tst or unleased mineral
		I	1			I	,	. interest in the	he land including the proposes	bocom hale location or
								אינא מא טער אינא אינא אינא אינא אינא אינא אינא אינ	er of such a mineral or worki	ng interest, or to a
	<u> </u>	······		<u> </u>		'			oling agreement or a comput	sory pooling order
				-				herdosore e	neres fine accur. Negral tet	Detc
			1			1		'Ser	MAKE D	varte
·	<u> </u>			, 		·		Printed Nat	fer-duar	e Oory con
		1	ì			1		SUR	VEYOR CERTIFIC	A TION
SURFAC NEW M NA Y=4 LAT.: N LONG.: W	CE LOCAT 4EXICO EA 1927 462426.3 646735.8 32.2704.3 103.858	ON ST 344* 5875*				LAT.	DM HOLE LOCATION W MEXICO EAST NAD 1927 Y=462452.8 X=651380.4 : N 32.2704500 : W 103.8435605	I hereby plat was made by same is	ceruiji ihai the wellow plotted from the wellow me or funder mediate true druk correction the MARCH 0155	arian shown on this brained surveys appoint bigniba the best on belies BP2 E
z z z z z z z z z z z z z z z z z z z	(177777))	miamo	mummum		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ynnaad yn gan yn gan yn gan gan gan gan gan gan gan gan gan ga	zmn//m///	Date of i		
i Vina	anan	un de la comuna de la			330 ///////		uning.	Signatur Professi	e and Sociation	SNT SNT
									TVAL	LAND
373		GRIL	$\overline{AZ} = \overline{\theta} \overline{9^{\circ} 40}, +$	4644.7'				30%		1 phil
i i i i i i i i i i i i i i i i i i i	mm	PROL	DUCING AREA	**********	******			<u>Je</u>	ny (/ Usi	X B/M/RANZ
			COJECT AREA		330			Cerufica	wo# 1203	15079" 109WL-b (Rev. A) (KA)

OPERATOR CERTIFICATION

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed this 319 day of HUADE, 2012.

Name: Pater Lawrence
Norne,T digi Lawigile
Position:Reservoir Management Team Leader
Address:5 Greenway Plaza, Suite 110, Houston, TX 77046
Telephone:713-215-7644
E-mail: (optional):peter_tawrence@oxy.com
Company:OXY USA Inc
Field Representative (if not above signatory):Dusty Weaver
Address (If different from above): _P.O. Box 50250 Midland, TX 79710
Telephone (if different from above):432-685-5723
E-mail (if different from above): calvin_weaver@oxy.com

OXY USA Inc FNR 26 Federal #4H APD Data

OPERATOR NAME / NUMBER: OXY USA Inc LEASE NAME / NUMBER: FNR 26 Federal #4H STATE: NM COUNTY: Eddy SURFACE LOCATION: 690' FSL & 373' FWL, Sec 26, T23S, R30E BOTTOM HOLE LOCATION: 690' FSL & 330' FEL, Sec. 26, T23S, R30E C-102 PLAT APPROX GR ELEV: 3381.4' EST KB ELEV: 3405.4' (24' KB)

1. GEOLOGIC NAME OF SURFACE FORMATION

a. Permian

2. ESTIMATED TOPS OF GEOLOGICAL MARKERS & DEPTHS OF ANTICIPATED FRESH WATER, OIL OR GAS

Formation Tops	TV Depth Top	Expected Fluids
Rustler	365	-
Salado	690	-
Lamar (B. Anhydrite)	3901	-
Bell Canyon	3931	-
Cherry Canyon	4876	-
Brushy Canyon	6161	Oil
Brushy Canyon A4	7586	Oil
TD	7772	Oil

A. Fresh water has been found above the Rustler. The surface casing will cover this fresh water.

GREATEST PROJECTED TD 12054' MD/ 7766' TVD OBJECTIVE: 1st Bone Spring

3. CASING PROGRAM (All Casing is in NEW CONDITION)

Surface Casing: 13.375	" casing set at \pm 400	' MD/ 400' TVD in a	17.5" hole filled with	8.60 ppg mud
------------------------	---------------------------	---------------------	------------------------	--------------

											- 3		
	Interval	Length	Wt	Gr	Cplg	Coll Rating (psi)	Burst Rating (psi)	Jt Str (M-lbs)	ID (in)	Drift (in)	SF Coll	SF Burst	SF Ten
all/	0'-400	400'	48	H-40	ST&C	770	1730	322	12.72	12.56	4.47	1.29	16.77
10A	Interme	diate Casir	ng: 9 5/8	" casing	set at ± 4	1050 MD/	4050' TVE) in a 12.2	5" hole fil	led with 1	0 ppg m	ud	
	Interval	Length	Wt	Gr	Cplg	Coll Rating (psi)	Burst Rating (psi)	Jt Str (M-lbs)	ID (in)	Drift (in)	SF Coll	SF Burst	SF Ten
-	0'-4050'	4050	40	J-55	LT&C	2570	3950	520	8.84	8.75	1.20	1.62	2.35
	Producti	on Casing	: 5.5" ca	sing set	at ± 1205	54'MD / 77	766'TVD ir	n a 8.75" h	ole filled v	with 9.20	ppg muo	k	
				0		Coll Rating	Burst Rating	Jt Str	ID	Drift	SF	SF	SF
	Interval	Length	.Wt	Gr	_Cplg	(psi)	(psi)	(M-lbs)	(in)	(in)	Coll	Burst	Ten
	0-12054'	12054'	17	L-80	LTC	6290	7740	338	4.89	4.77	1.33	2.04	1.87

Collapse and burst loads calculated using Stress Check with actual anticipated loads.

4. CEMENT PROGRAM:

Interval	Amount sx	Ft of Fill	Туре	Gal/Sk	PPG	Ft ³ /s k	24 Hr Comp
Surface (TOC:	0')				·		
0' –400' (165% Excess)	580	400	Premium Plus cement with 2% Calcium Chloride - Flake, 4%	· 6.37	14.8	1.35	1608psi

Intermediate (TOC: 0')			· =·				
Lead: 0' – 3248' (105 % Excess)	1060	3248	Light Premium Plus cement with 1% Calcium Chloride - Flake, 0.5% Halad®-344, 0.125 lbm/sk Poly-E- Flake, 3 lbm/sk Kol-Seal, 5 % Salt	9.98	12.9	1.91	734 psi	
Tail: 3248' 4050' (105% Excess)	400	802	Premium Plus cement with 0.5% Well Life 734	6.36	14.8	1.33	2125 psi	
Production (TC	C: 6800')	Stage 1	DV Tool – 6800'					
Lead: 6800–12054 (85 % Excess)	1480	5254	Super H Cement– 0.5% Halad®-344, 0.4% CFR-3, 3 lbm/sk Kol-Seal, 0.125 lbm/sk Poly-E-Flake, 0.2% HR-601, 3lbm/sk Salt	8.45	13.20	1.67	1515 psi	
Production (TOC: 4100') Stage 2 PO Stage Tool – 4100'								
Lead: 4100' 6450' (125 % Excess)	640	2350	Light Premium – 3 lbm/sk Salt, 3lbm/sk Kol-Seal, 0.3% HR-601	11.75	12.40	2.12	283 psi	
Tail: 6450' 6800' (125% Excess)	150	350	Premium Plus cement	6.49	14.80	1.34	1907 psi	
Production (TC	C: 0') Sta	ge 3						
Lead: 0' - 3483' (10 % Excess)	490	348 <u>3</u>	Light Premium Plus – 3 lbm/sk Salt	11.67	12.40	2.08	511 psi	
Tail: 3483' 4100' (10% Excess)	150	617	Premium Plus cement with 2% Calcium Chloride	6.39	14.80	1.35	2025 psi	

Description of Cement Additives: Bentonite (Light Weight Additive), Poly-E-Flake (Lost Circulation Additive), Calcium Chloride – Flake (Accelerator), Kol-Seal (Lost Cirulation Additive), Well Life 734 (Cement Enhancer), Halad®-344 (Low Fluid Loss Control), CFR – 3 (Dispersant), HR – 601 (Retarder)

5. DIRECTIONAL PLAN

Please see attached directional plan

6. PRESSURE CONTROL EQUIPMENT Surface: <u>0 – 400'</u> None.

Intermediate: <u>0 - 4050'</u> Intermediate hole will be drilled with a 13-5/8" 10M three ram stack w/ 5M annular preventer, & 5M Choke Manifold.

Production: 0 - 12054' Production hole will be drilled with a 13 5/8" 10M three ram stack w/ 5M annular preventer, & 5M Choke Manifold. Oxy requires the use of a 5M BOP stack for this well.

I OHORE I

- a. All BOP's and associated equipment will be tested in accordance with Onshore Order #2 (250/5000 psi on rams for 10 minutes each and 250/3500 for 10 minutes for annular preventer, equal to 70% of working pressure) with a third party BOP testing service before drilling out the 13 3/8" casing shoe. Wellhead pressure rating will support this test and 13 3/8" casing will be protected from high pressure. Since the wellhead system is a multibowl design, this initial test will cover the requirements prior to drilling out the 9 5/8" casing shoe.
- b. Pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily driller's log. A 2" kill line and 3" choke line will be accommodated on the drilling spool below the ram-type BOP. Other accessory BOP equipment will include a Kelly cock, floor safety valve, choke lines, and choke manifold having a 5,000 psi WP rating. Oxy requests that the system be tested at 5,000 psi WP rating.
- c. Oxy also requests a variance to connect the BOP choke outlet to the choke manifold using a co-flex hose made by Contitech Rubber Industrial KFT. It is a 3" ID x 35' flexible hose rated to 5,000 psi working pressure. It has been tested to 10,000 psi and is built to API Spec 16C. Once the flex line is installed it will be tied down with safety clamps. Please see attached certifications.
- d. See attached BOP & Choke manifold diagrams.

7. MUD PROGRAM:

Depth	Mud Wt ppg	Vis Sec	Fluid Loss	Type System
0-400' 530	8.4 - 8.6	32 – 34	NC	Fresh Water /Spud Mud
400' - 4050'3885	9.8 - 10.0	28 – 29	NC	Brine Water
4050' - 7016'	8.6 - 8.8	28 - 29	NC	Brine Water
70 <u>16' – TD'</u>	8.8 - 9.2	. 40 - 50	8 - 15	Salt Gel

Remarks: Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times.

Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

8. AUXILIARY WELL CONTROL AND MONITORING EQUIPMENT

- a. A Kelly cock will be in the drill string at all times.
- **b.** A full opening drill pipe stabbing valve having the appropriate connections will be on the rig floor unobstructed and readily accessible at all times.
- c. Hydrogen Sulfide detection equipment will be in operation after drilling out the surface casing shoe until the production casing is cemented. Breathing equipment will be on location upon drilling the surface casing shoe until total depth is reached. If Hydrogen Sulfide is encountered, measured amounts and formations will be reported to the BLM

9. LOGGING / CORING AND TESTING PROGRAM:

- A. Mud Logger: Base of Intermediate Casing to TD.
- B. DST's: None.
- C. Open Hole Logs as follows: GR-NEU-DEN-RES from curve to surface. MWD-GR from kick-off point to TD.

10. POTENTIAL HAZARDS:

- A. H2S detection equipment will be in operation after drilling out the surface casing shoe until the production casing has been cemented. Breathing equipment will be on location from drilling out the surface shoe until production casing is cemented. If H2S is encountered the operator will comply with Onshore Order #6.
- B. The bottomhole pressure is anticipated to be between 3500 and 3700 psi
- C. No abnormal temperatures or pressures are anticipated. The highest anticipated pressure gradient is 0.47 psi/ft. All personnel will be familiar with all aspects of safe operation of equipment being used to drill this well. Adequate flare lines will be installed off the mud/gas separator where gas may be flared safely.

11. ANTICIPATED STARTING DATE AND DURATION OF OPERATIONS:

Road and location construction will begin after the BLM has approved the APD. Anticipated spud date will be as soon as possible after BLM approval and as soon as a rig will be available. Move in operations and drilling is expected to take 35 days. If production casing is run, then an additional 35 days will be needed to complete the well and construct surface facilities and/or lay flow lines in order to place well on production.

12. COMPANY PERSONNEL.

Phone
-3481
-3268
-3919
-9124
-

Drilling Services

Proposal

OCCIDENTAL PERMIAN LTD.

FNR 26 FED #4H

EDDY CO., NM

WELL FILE: PLAN 2

AUGUST 29, 2012

Weatherford International, Ltd. P.O. Box 61028 Midland, TX 79711 USA +1.432.561.8892 Main +1.432.561.8895 Fax www.weatherford.com

OXY

· ·

Weatherford International Ltd. WFT Plan Report - X & Y's

Company: C Field: E Site: F Well: F Wellpath: 1	Dccidenta Eddy Co, ENR 26 F ENR 26 F	I Permian L NM (Nad 27 ed #4H ed #4H	.td. 7) .		1	Date: 8/29 Co-ordinate Vertical (TV Section (VS) Survey Calc	9/2012 (NE) Reference: 'D) Reference: • Reference: ulation Method:	Time: 12:28:48 Well: FNR 3 SITE 3406. Well (0.00N Minimum C	3 26 Fed #4H, Gri 4 I,0.00E,89.67Az urvature	Page: 1 d North i) Db: Sybase	
Plan:	Plan #2					Date Co	mposed:	8/29/2012			
Principal:	Yes					Version Tied-to:		1 From Surface			
Site:	FNR 26	Fed #4H									
Site Position From: Position Unc Ground Lev	: Map certainty: el:	0	Nort East).00 ft .40 ft	hing: 46 ing: 64	2426.30 f 6735.80 f	ft Latitude ft Longitu North R Grid Co	e: 32 de: 103 eference: nvergence:	16 13.564 51 30.915 V Grid 0.25	N W deg		
Well:	FNR 26	Fed #4H				Slot Nai	ne:		· -		
Well Position	n: + + certainty:	N/-S 0 E/-W 0).00 ft Nort).00 ft East).00 ft	hing: 46 ing: 64	2426.30 1 6735.80 1	ft Latitude ft Longitu	e: 32 de: 103	16 13.564 51 30.915 \	N N		
Wellpath: Current Dat Magnetic Da Field Streng Vertical Sec	1 um: S ata: th: tion: D	GITE 12/15/2(484 epth From (ft	012 488 nT TVD)	Height +N/- ft	3406.40 1 S	Drilled Tie-on I ft Above S Declina Mag Di +E/-W ft	From: Depth: System Datum: tion: o Angle:	Surface 0.00 Mean Sea Le 7.54 60.14 Direction deg	ft vel deg deg		
		7766.00		0.00)	0.00		89.67	=	·····	
Plan Section	Informa	tion					<u> </u>				
MD ft	Incl deg	Azim deg	TVD ft	+N/-S ft	+E/-N ft	W DLS deg/1	Build 00ft deg/100ft d	Turn TFC deg/100ft deg) Target		
0.00 6999.86	0.00	89.67 89.67	0.00 6999.86	0.00 0.00	0.0 0.0	0 0.00 0 0.00) 0.00) 0.00	0.00 0.0)0)0		
8115.77	89.27 89.27	89.67 89.67	7716.00	4.03	707.0 4644.6	9 8.00 0 0.00	8.00	0.00 89.6)7)0 РВНІ		
Survey										<u> </u>	
MD	Incl	Azim	TVD	N/S	E/W	VS	DLS	MapN	MapE	Comme	nt
ft	deg	deg	ft		ft	ft	deg/100ft	ft	ft		
6900.00 6999.86	0.00	89.67 89.67	6900.00 6999.86	0.00 0.00	0.00	0.00	0.00	462426.30 462426.30	646735.80 646735.80	KOP	
7050.00	4.01	89.67	7049.96	0.01	. 1.7.5	1.75	8.00	462426.31	646737.55		
7100.00	8.01	89.67	7099.67	0.04	6.99	6.99	8.00	462426.34	646742.79	·	ľ
7150.00	12.01	89.67	7148.90	0.09	15,68	15.68	8.00	462426.39	646751.48		
7200.00	16.01	89.67	7197.41	0.16	27.78	27.78	8.00	462426.46	646763.58		
7250.00	20.01	89.67	7244.95	0.25	43.24	43.24	8.00	462426.55	646779.04		
7300.00	24.01	89.67	7291.29	0.35	61.97	61.97	8.00	462426.65	646797.77		
7350.00	28.01 32.01	89.67 89.67	7336.22 7379.51	0.48 0.62	83.90 108.90	83.90 108.90	8.00 8.00	462426.78 462426.92	646819.70 646844.70		
7450.00	36.01	89.67	7420 04	0 78	136.96	136.96	8 AA `	462427.09	646972 66		
7400.00	40.01	89.67	7460 33	0.70	167 64	130.00	0.UU 8.00	402427.00	646002 44		
7550.00	44 01	89.67	7497 47	1 15	201.10	201 10	8.00	462427 45	646936 90	-	
7600.00	48.01	89.67	7532.19	1.35	237 07	237 07	8 00	462427 65	646972 87		
7650.00	52.01	89.67	7564.32	1.57	275.37	275.37	. 8.00	462427.87	647011.17		
7687 12	54.98	89.67	7586 40	1 74	305 20	305 21	8.00	462428 04	647041 00	BC A4	
7700.00	56.01	89.67	7593.69	1.80	315.81	315.82	8.00	462428.10	647051.61		
7750.00	60.01	89.67	7620 18	2 04	358 21	358 22	.8.00	462428 34	647094 01		
7800.00	64.01	89.67	7643.64	2.30	402.36	402.36	8 00	462428.60	647138 16		
7850.00	68.01	89.67	7663.96	2.56	448.03	448.03	8.00	462428.86	647183.83		
7900.00	72.01	89 67	7681.05	2 82	495.00	405 01	8.00	462429 12	647230 80		
7950.00	76.01	89.67	7694.82	3.10	543.06	-93.01 543.07	8 00	462429 40	647278 86		
8000.00	80.01	89.67	7705.20	3.38	591.96	591.97	8.00	462429.68	647327.76		

Offset Well

PBHL

-Circle (Radius: 25)

0.00

7766.00

-26.90

26.50

284.90

4644.60

462399.40 647020.70

462452.80 651380.40

Weatherford International Ltd. WFT Plan Report - X & Y's

Weatherford

103 51 27.599 W

103 50 36.818 W

32 16 13.285 N

32 16 13.620 N

Company: O Field: E Site: F Well: F	occidenta ddy Co, NR 26 F NR 26 F	al Permian NM (Nad 2 ed #4H ed #4H	Ltd. 27) .			Date: 8/29 Co-ordinate Vertical (TV Section (VS)	9/2012 (NE) Reference: (D) Reference: Reference:	Time: 12:28:4 Well: FNR SITE 3406 Well (0.001	8 26 Fed #4H, Gr .4 N,0.00E,89.67A: Curvature	Page id Noi zi)	th
Survey	<u></u>					Survey Calc	mation method:				
MD ft	Incl	Azim deg	TVD	N/S ft	E/W ft	VS ft	DLS deg/100ft	MapN ft	MapE ft		Commen
8050.00	84.01	80.67	7712 15	3.66	641.46	641.47	8.00	462429.96	647377 26		
8100.00	88.01	89.67	7715.63	3.94	691.33	691.34	8.00	462430.24	647427.13		
8115.77	89.27	89.67	7716.00	4.03	707.09	707.10	8.00	462430.33	647442.89	LP	
8200.00	89.27	89.67	7717.07	4.51	791.32	791.33	0.00	462430.81	647527.12		
8300.00	89.27	89.67	7718.34	5.09	891.31	891.32	0.00	462431.39	647627.11		
8400.00	89.27	89.67	7719.61	5.66	991.30	991.31	0.00	462431.96	647727.10		
8500.00	89.27	89.67	7720.88	6.23	1091.29	1091.31	0.00	462432.53	647827.09		
8600.00	89.27	89.67	7722.15	6.80	1191.28	1191.30	0.00	462433.10	647927.08	- <u>.</u>	
8700.00	89.27	89.67	7723.42	7.37	1291.27	1291.29	0.00	462433.67	648027.07	`	
8800.00	89.27	89.67	7724.69	7.94	1391.26	1391.28	0.00	462434.24	648127.06		
8900.00	89.27	89.67	7725.96	8.51	1491.25	1491.27	0.00	462434.81	648227.05		
9000.00	89.27	89.67	7727.23	9.08	1591.24	1591.26	0.00	462435.38	648327.04		
9100.00	89 27	89.67	7728 50	9 65	1691 23	1691 26	0.00	462435 95	648427.03		
9200.00	89.27	89.67	7729 77	10.22	1791 22	1791 25	0.00	462436 52	648527 02		
9200.00	89 27	89.67	7731.04	10.22	1891.22	1891.20	0.00	462437.09	648627.01		•
9400.00	89 27	89.67	7732.31	11.36	1991 20	1991 23	0.00	462437.66	648727.00		
9500.00	89.27	89.67	7733.58	11.93	2091.19	2091.22	0.00	462438.23	648826.99		
9600.00	89.27	89.67	7734.85	12.50	2191.18	2191.22	0.00	462438.80	648926.98		• •
9700.00	89.27	89.67	7736.12	13.07	2291.17	2291.21	0.00	462439.37	649026.97		
9800.00	89.27	89.67	7737.39	13.64	2391.16	2391.20	0.00	462439.94	649126.96		
9900.00	89.27	89,67	7738.66	14.21	2491.15	2491.19	0.00	462440.51	649226.95		
10000.00	89.27	89.67	7739.92	14.78	2591.14	2591.18	0.00	462441.08	649326.94		
10100.00	89.27	89.67	7741.19	15.35	2691.13	2691.18	0.00	462441.65	649426.93	•.	
10200.00	89.27	89.67	7742.46	15.92	2791.12	2791.17	0.00	462442.22	649526.92		
10300.00	89.27	89.67	7743.73	16.50	2891.11	2891.16	0.00	462442.80	649626.91		
10400.00	89.27	89.67	7745.00	17.07	2991.10	2991.15	0.00	462443.37	649726.90		
10500.00	89.27	89.67	7746.27	17.64	3091.09	3091.14	0.00	462443.94	649826.89		
10600.00	89.27	89.67	7747.54	18.21	3191.08	3191.14	0.00	462444.51	649926.88		
10700.00	89.27	89.67	7748.81	18.78	3291.07	3291.13	0.00	462445.08	650026.87		
10800.00	89.27	89.67	7750.08	19.35	3391.06	3391.12	0.00	462445.65	650126.86		
10900.00	89.27	89.67	7751.35	19.92	3491.05	3491.11	0.00	462446.22	650226.85		
11000.00	89.27	89.67	7752.62	20.49	3591.05	3591.10	0.00	462446.79	650326.85		
11100.00	89.27	89.67	7753.89	21.06	3691.04	3691.10	0.00	462447.36	650426.84		
11200.00	89.27	89.67	7755.16	21.63	3791.03	3791.09	0.00	462447.93	650526.83		
11300.00	89.27	89.67	7756.43	22.20	3891.02	3891.08	0.00	462448.50	650626.82		
11400.00	89.27 89.27	89.67 89.67	7757.70	22.77	3991.01	3991.07	0.00	462449.07	650726.81		
11000.00	07.21	09.07	1100.91	20.04	4091.00	4091.00	0.00	402449.04	000020.80		
11600.00	89.27	89.67	7760.24	23.91	4190.99	4191.06	0.00	462450.21	650926.79		
11700.00	89.27	89.67	7761.51	24.48	4290.98	4291.05	0.00	462450.78	651026.78		٠.
-11800.00	89.27	89.67	7762.78	25.05	4390.97	4391.04	0.00	462451.35	651126.77		
11900.00	89.27	89.67	7764.05	25.62	4490.96	4491.03	0.00	462451.92	651226.76		
12000.00	89.27	89.67	7765.32	26.19	4590.95	4591.02	0.00	462452.49	651326.75		
12053.66	89.27	89.67	7766.00	26.50	4644.60	4644.68	0.00	462452.80	651380.40	PBI	ΗL
Targets							<u> </u>				
]	Map Ma	ър < L	atitude> <	Lo	ngitude
Name		Descripti Din.	ion T Dir	`VD +] ft	N/-S + ft	⊦E/-W No ft	orthing East	ing Deg M	in Sec I	Deg M	in Sec

Weatherford International Ltd. WFT Plan Report - X & Y's

Weatherford"

Company: Field: Site: Well: Wellpath:	Occidenta Eddy Co, FNR 26 F FNR 26 F 1	I Permian Ltd. NM (Nad 27) ed #4H ed #4H			Date: Co-orc Vertic: Section Survey	8/29/2012 Jinate(NE) Ref al (TVD) Refer n (VS) Referen y Calculation M	Tin ference: rence: ice: Method:	e: 12:28:48 Well: FNR 26 SITE 3406.4 Well (0.00N,0 Minimum Cur	Fed #4H, .00E,89.6 vature	Page: Grid Nori 7Azi) Db:	3 h Sybase
Targets											
Name		Description Dip. Dir.	TVD ft	+N/-S ft	+E/-W ft	Map Northing ft	Map Easting ft	< Latit Deg Min	ude> Sec	< Lor Deg Min	gitude> 1 Sec
Casing Po	ints										
MD	TVD	Diameter	Hole Size	Name							
ft	ft	in	in								
300.00	300.00	0.000	0.000	Csg							
4050.00	4050.00	0.000	0.000	Csg							
Annotatio	n										
MD ft	TVD ft										
6999.86	6999.86	KOP									
8115.77	7716.00	LP									
12053.65	7766.00	PBHL									
Formation	IS										
MD	TVD	Formation	8		Lith	ology		I)ip Angle	Dip Dire	ction
ft	ft								deg	deg	I
7687.12	7586.40	BC A4							0.00	0.0	0

Weatherford Drilling Services

GeoDec v5.03

Report Date: Job Number:	August 29, 2	2012	
Customer:	Occidental 1	Permian Ltd.	
Well Name:	FNR 26 Feder	ral #4H	
API Number:	· · · · · · · · · · · · · · · · · · ·		
Rig Name:		·	
Location:	Eddy Co, NM	(Nad 27)	
Block:	<u> </u>		
Engineer:	Patrick Rudo	olph	
A an		an a	
US State Plane 192	27	Geodetic Latitude / Longitude	9
System: New Mexic	o East 3001 (NOI	N-EXACT) System: Latitude / Longitude	
Projection: SPC27	Fransverse Merca	tor Projection: Geodetic Latitude	and Longitude
Datum: NAD 1927 (NADCON CONU	S) Datum: NAD 1927 (NADCON	NCONUS)
Ellipsoid: Clarke 18	66	Ellipsoid: Clarke 1866	
North/South 46242	6.300 USFT	Latitude 32 2704345 DEG	
East/West 646735.	800 USFT	Longitude -103.8585876 DE	G
East/West 646735. Grid Convergence:	800 USFT .25°	Longitude -103.8585876 DE	G
East/West 646735 Grid Convergence: Total Correction: +	800 USFT .25° 7.43°	Longitude -103.8585876 DE	G
East/West 646735 Grid Convergence: Total Correction: +	800 USFT .25° 7.43°	Longitude -103.8585876 DE	G
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location \	800 USFT .25° 7.43° VGS84	Longitude -103.8585876 DE Elevation = 0.0 Meters	G
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location \ Latitude = 32	800 USFT .25° 7.43° VGS84 2.27043° N	Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec	G
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location V Latitude = 32 Longitude = 103	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W	Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec 103° 51 min 30.915 sec	G
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location \ Latitude = 32 Longitude = 103 Magnetic Declinatio	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W	Longitude -103.8585876 DE Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec 103° 51 min 30.915 sec 7.68° [True North Offset]	G
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location V Latitude = 32 Longitude = 103 Magnetic Declinatio Local Gravity =	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W n =	Longitude -103.8585876 DE Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec 103° 51 min 30.915 sec 7.68° [True North Offset] 988 g CheckSum =	G 6505
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location V Latitude = 32 Longitude = 103 Magnetic Declinatio Local Gravity =	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W n = .9	Longitude -103.8585876 DE Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec 103° 51 min 30.915 sec 7.68° [True North Offset] 988 g CheckSum = 08 nT Magnetic Vector X =	G 6505 23956 рт
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location V Latitude = 32 Longitude = 103 Magnetic Declinatio Local Gravity = Local Field Strength	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W n = .9 1 = .9	Longitude-103.8585876 DELongitude-103.8585876 DEElevation =0.0 Meters32° 16 min 13.564 sec103° 51 min 30.915 sec7.68°[True North Offset]988 gCheckSum =08 nTMagnetic Vector X =0.11°Magnetic Vector X =	G 6505 23956 nT 3229 pT
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location V Latitude = 32 Longitude = 103 Magnetic Declinatio Local Gravity = Local Field Strength Magnetic Dip =	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W n = .9 1 = 485 6	Longitude -103.8585876 DE Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec 103° 51 min 30.915 sec 103° 51 min 30.915 sec 51 min 30.915 sec 7.68° [True North Offset] 988 g CheckSum = 08 nT Magnetic Vector X = 0.11° Magnetic Vector Y =	G 6505 23956 nT 3229 nT
East/West 646735 Grid Convergence: Total Correction: + Geodetic Location V Latitude = 32 Longitude = 103 Magnetic Declinatio Local Gravity = Local Field Strength Magnetic Dip = Magnetic Model =	800 USFT .25° 7.43° VGS84 2.27043° N 3.85859° W n = .9 1 = 485 6 bggn	Longitude -103.8585876 DE Longitude -103.8585876 DE Elevation = 0.0 Meters 32° 16 min 13.564 sec 103° 51 min 30.915 sec 103° 51 min 30.915 sec 51 min 30.915 sec 7.68° [True North Offset] 988 g CheckSum = 08 nT Magnetic Vector X = 0.11° Magnetic Vector Y = m2012 Magnetic Vector Z =	. G 6505 23956 nT 3229 nT 42056 nT

Signed:_____

Date:____

FLEX3 STD CHOKE MANIFOLD (COMPREHENSIVE)

OXY FLEX III PAD (SCOMI Closed Loop System)

Level Area-No Caliche-For;Offices and Living Quarters

IDD.R

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier : CONTITECH RUBBER INDUSTRIAL KFT. Equipment: 6 pcs. Choke and Kill Hose with installed couplings 3" x 10.67 m WP: 10000 psi Type : Supplier File Number 412638 Date of Shipment April. 2008 Phoenix Beattie Co. Customer Customer P.o. 002491 **Referenced Standards** / Codes / Specifications : API Spec 16 C Serial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed

Position: Q.C. Manager

ontiTech Rubber Industrial Kit. Quality Control Dept. (1)

Date: 04. April. 2008

Page: 1/1

4						Ĭ					ŀ		ļ		1					1		1			ľ	ľ	h	0	c.va (
明知	1. 1 . 1	<u> </u>			0 11 0									h										(on Rubber Ishel KfL
	+							Ì																			19 ·····		(D)
声力	* 4. 3								and the first state of the second sec					•															. .
12.1																													
	T F F										•																		
	÷		K A													6	d					Į 30							(
								Ì		Sources and the second									Ì		Ī		Ì			ĺ			
	÷.											·		-	Í					1							1		
-	7						9	-				Ī					Ì			Ī		Ī				Section of the sectio			
- 11												Ī																	
Ŧ	ł	Ħ	Ħ									-										Ţ	İ						
		Ħ	Ħ	Η	ł	$\frac{1}{2}$		Ì			Ť		h		1	t		t	\dagger	Ť	Í	t	İ		İ	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

PHOENIX Beattie Material Identification Certificate											
PA No 006	330 Client HE	LMERICH & PA	YNE INT'L DRILLING	Clent	Ref 37	70-369-001		· · · · · · · · · · · · · · · · · · ·	Page	1	
Part No	Description	Material Desc	Material Spec	Qty	WO No	Betch No	Test Cert No	Bin No	Drg No	Issue No	
HP10CK3A-35-4F1	3" 10K 16C C&K HOSE × 35Ft GAL		-	1	2491	52777/H884		WATER			
SECK3-HPF3	LIFTING & SAFETY EQUIPMENT TO			1	2440	002440		N/STK			
SC725-200CS	SAFETY CLAMP 200MM 7.25T	CARBON STEEL		1	2519	H665		22C			
SC725-132CS	SAFETY CLANP 132HH 7.25T	CARBON STEEL		1	2242	H139		22			
					ļ						
		· · · · ·						· · · ·			
					ļ					<u> </u>	
					L						
					I			······································			
					<u>i</u>						
			-		ļ		``				
										·	
					1		·				
										:	
				·	<u> </u>						
			-				·				
									·		
								ļ			
			· · ·					L		<u> </u>	
						1	ļ	ļ		· · ·	
				L	<u> </u>		· · · · · · · · · · · · · · · · · · ·	Į	L	<u> </u>	
	1					<u> </u>		L			

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beattle Corporation.

Coflex Hose Certification

÷.

Phoenix Beattie Corp

11535 Brittmoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail mail@phoenixbenttle.com www.phoenixbenttle.com

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Addre HELMERICH & PAYNE INT'L 1437 SOUTH BOULDER TULSA, OK 74129	ss Drilling Co	Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - RI 13609 Industrial Road Houston, TX 77015	G 370		

Customer Acc No	Phoenix Beattle Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

item No	Beattle Part Number / Description	Qty Ordered	Oty Sent	Qty To Follow
1	HP10CK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/16" API SPEC FLANGE E/ End 1: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange End 2: 4.1/16" 10Kpsi API Spec 6A Type 6BX Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10.000psi Test pressure: 15.000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	. 1	1	0
2	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1	1	
3	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	0

Continued...

Form No 100/12

Fluid Technology

Quality Document

	TY CONT	ROL CERTIFIC	ATE	CERT. Nº:		746	· · · · ·
PURCHASER:	Phoenix Bea	ttle Co.	n a hain a shen ingganish an	P.O. Nº:	00;	2491	Annual Control Statistics
CONTITECH ORDER Nº:	412638	HOSE TYPE:	3". ID	Chok	e and Kill	Hose	
HOSE SERIAL Nº:	52777	NOMINAL / ACT	TUAL LENGTH:		10,67 m		
W.P. 68,96 MPa 1	0000 psi	т.р. 103,4	MPa 1500	Q iaq 0)uration:	60 ~-	min.
Pressure test with water at ambient temperature			Man Mar M angapan yang kang dan Kang			<u>a~_n a 700 k toka an</u> a	
	_						
	See	attachment.	(1 page)			, ,	
	;		• •		•		
			· ·		e.		-
$^1_10 \text{ mm} = 10 \text{ Min}$ → 10 mm = 25 MP	a		INCR				-
Type	·	Dodol Nit		Ourselite :	···		
3ª coupling with	017						
4 1/16" Flange and	917	913	AIS	51 4130 SI 4130		26984	
INFOCHIP INSTALL	ED				Al Tem	PI Spec 16 perature rat	C te:"B"
WE CERTIFY THAT THE ABOV PRESSURE TESTED AS ABOVE	e hose has be With satisfac	EN MANUFACTU CTORY RESULT.	RED IN ACCORD	DANCE WITH	THE TERM	s of the orde	er and
Date: 04. April. 2008	Inspector		Quality Contro	l Indus Luality 2 2 2 2	ech Rubber strial Kit. Control Dept (1)	Janie	

Phoenix Beattie Corp 11535 Brittacore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-esti a: 18phoenixbeattie.com www.phoenixbeattie.com

Form No 100/12

Delivery Note

Customer Order Number	370-369-001	Delivery Note Number	003078	Page	· 2
Customer / Invoice Addres HELMERICH & PAYNE INT'L D 1437 SOUTH BOULDER TULSA, OK 74119	s Rilling Co	Delivery / Address Helmerich & Payne IDC Attn: Joe Stephenson - Ri 13609 Industrial Road Houston, Tx 77015	G 370		

Customer Acc'No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

ltem No	Beattie Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0
5	OOCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
6	DOCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
7	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERWORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT	1	. 1	0
	, T	Pap	\bigwedge	
	Phoenix Beattle Inspection Signature :	TWOMANY	Which	
· .	Received in Good Condition : Signature	FR		
•	Print Name	,	*	

All goods remain the property of Phoenix Beattle until paid for in full. Any demage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

Date

Choke Manifold – Gas Separator (Side View)

.

TAY

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

<u>Scope</u>

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Discussion

Implementation:

Emergency response Procedure:

Emergency equipment Procedure:

Training provisions:

Drilling emergency call lists:

Briefing:

Public safety:

Check lists:

General information:

This plan with all details is to be fully implemented before drilling to <u>commence</u>.

This section outlines the conditions and denotes steps to be taken in the event of an emergency.

This section outlines the safety and emergency equipment that will be required for the drilling of this well.

This section outlines the training provisions that must be adhered to prior to drilling.

Included are the telephone numbers of all persons to be contacted should an emergency exist.

This section deals with the briefing of all people involved in the drilling operation.

Public safety personnel will be made aware of any potential evacuation and any additional support needed.

Status check lists and procedural check lists have been included to insure adherence to the plan.

A general information section has been included to supply support information.

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Well control equipment

1.

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.
- 2. <u>Protective equipment for personnel</u>
 - A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
 - B. Adequate fire extinguishers shall be located at strategic locations.
 - C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.

3. <u>Hydrogen sulfide sensors and alarms</u>

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

- 4 -

Wind sock – wind streamers:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. Mud Program

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. <u>Evacuation plan</u>

- 5 -

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. <u>Designated area</u>

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
 - If uncontrollable conditions occur:

B.

1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.

C. Responsibility:

- 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:

- 1. On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
- 2. Check status of personnel (buddy system).
- 3. Secure breathing equipment.
- 4. Await orders from supervisor.

Drill site manager:

Tool pusher:

- 1. Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
- 3. Determine H2S concentrations.
- 4. Assess situation and take control measures.
- 1. Don escape unit Report to up nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
- 3. Determine H2S concentration.

- 7 -

4. Assess situation and take control measures.

1. Don escape unit, shut down pumps, continue rotating DP.

Driller:

muster area. 4. Check status of personnel (in an attempt to rescue, use the buddy system). Assigns least essential person to notify Drill Site 5. (Manager and tool pusher by quickest means in case of their absence. 6. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent. Derrick man Will remain in briefing / muster area until instructed 1. Floor man #1 by supervisor. Floor man #2 Report to nearest upwind designated safe briefing / Mud engineer: 1. muster area. 2. When instructed, begin check of mud for ph and H2S level. (Garett gas train.)

2. .

3.

1.

Check monitor for point of release.

Report to nearest upwind designated safe briefing /

Safety personnel:

Mask up and check status of all personnel and secure operations as instructed by drill site manager.

<u>Taking a kick</u>

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.

3

- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **<u>Do not assume the area is safe after the well is</u> ignited.**

- 9 -

Status check list

Note:	All items on this list must be completed before drilling to production casing point.
1.	H2S sign at location entrance.
2.	Two (2) wind socks located as required.
3.	Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
4.	Air packs inspected and ready for use.
5.	Cascade system and hose line hook-up as needed.
6.	Cascade system for refilling air bottles as needed.
7.	Condition flag on location and ready for use.
8.	H2S detection system hooked up and tested.
9.	H2S alarm system hooked up and tested.
10.	Hand operated H2S detector with tubes on location.
11.	1 – 100' length of nylon rope on location.
12.	All rig crew and supervisors trained as required.
13.	All outside service contractors advised of potential H2S hazard on well.
⁻ 14.	No smoking sign posted and a designated smoking area identified.
15.	Calibration of all H2S equipment shall be noted on the IADC report.

Checked by:

Date:

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask 'assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

<u>Well blowout – if emergency</u>

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i

Common nameChemical formulaSpecific gravity (sc=1)Threshold limitHazardous limitLethal concentration (3)Hydrogen CyanideHcn0.9410 ppm150 ppm/hr300 ppmHydrogen CyanideH2S1.1810 ppm250 ppm/hr600 ppmHydrogen SulfideH2S2.215 ppm-1000 ppmSulfur DioxideSo22.215 ppm-1000 ppmCarbon MonoxideCo0.9750 ppm400 ppm/hr1000 ppm						
nameformulagravitylimitlimitlimit(3)HydrogenHcn 0.94 10 ppm150 ppm/hr300 ppmCyanideH2S 1.18 10 ppm250 ppm/hr600 ppmHydrogenH2S 1.18 10 ppm250 ppm/hr600 ppmSulfideSo2 2.21 5 ppm-1000 ppmDioxideCl2 2.45 1 ppm4 ppm/hr1000 ppmCarbonCo 0.97 50 ppm400 ppm/hr1000 ppmMonoxideCo2 1.52 5000 ppm 5% 10%	Common	Chemical	Specific	Threshold	Hazardous	Lethal concentration
(sc=1)(1)(2)HydrogenHcn 0.94 10 ppm150 ppm/hr300 ppmCyanideH2S 1.18 10 ppm250 ppm/hr600 ppmHydrogenH2S 1.18 10 ppm250 ppm/hr600 ppmSulfideSo2 2.21 5 ppm-1000 ppmDioxideCl2 2.45 1 ppm4 ppm/hr1000 ppmCarbonCo 0.97 50 ppm400 ppm/hr1000 ppmMonoxideCo2 1.52 5000 ppm 5% 10%	name	formula	gravity	limit	limit	(3)
Hydrogen Hcn 0.94 10 ppm 150 ppm/hr 300 ppm Cyanide H2S 1.18 10 ppm 250 ppm/hr 600 ppm Hydrogen H2S 1.18 10 ppm 250 ppm/hr 600 ppm Sulfide So2 2.21 5 ppm - 1000 ppm Dioxide Cl2 2.45 1 ppm 4 ppm/hr 1000 ppm Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%			(sc=1)	(1)	(2)	. ,
Cyanide H2S 1.18 10 ppm 250 ppm/hr 600 ppm Sulfide So2 2.21 5 ppm - 1000 ppm Sulfur So2 2.21 5 ppm - 1000 ppm Dioxide Cl2 2.45 1 ppm 4 ppm/hr 1000 ppm Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%	Hydrogen	Hcn	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen H2S 1.18 10 ppm 250 ppm/hr 600 ppm Sulfide So2 2.21 5 ppm - 1000 ppm Dioxide Cl2 2.45 1 ppm 4 ppm/hr 1000 ppm Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%	Cyanide			••		
SulfideSo22.215 ppm-1000 ppmDioxideCl22.451 ppm4 ppm/hr1000 ppmCarbonCo0.9750 ppm400 ppm/hr1000 ppmMonoxideCo21 525000 ppm5%10%	Hydrogen	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur So2 2.21 5 ppm - 1000 ppm Dioxide Cl2 2.45 1 ppm 4 ppm/hr 1000 ppm Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%	Sulfide					* *
Dioxide ChlorineCl22.451 ppm4 ppm/hr1000 ppmCarbon MonoxideCo0.9750 ppm400 ppm/hr1000 ppmCarbon CarbonCo21 525000 ppm5%10%	Sulfur	So2	2.21	5 ppm	-	1000 ppm
Chlorine Cl2 2.45 1 ppm 4 ppm/hr 1000 ppm Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%	Dioxide			**		**
Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%	Chlorine	· Cl2	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Co 0.97 50 ppm 400 ppm/hr 1000 ppm Monoxide Co2 1 52 5000 ppm 5% 10%						
Monoxide Carbon Co2 1.52 5000 ppm 5% 10%	Carbon	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Co2 1.52 5000 npm 5% 10%	Monoxide					
CO2 1.52 5000 ppm 576 1070	Carbon	Co2	1.52	5000 ppm	5%	10%
Dioxide	Dioxide					
Methane Ch4 0.55 90,000 ppm Combustible above 5% in air	Methane	Ch4	0.55	90,000 ppm	Combustible	e above 5% in air

Toxicity of various gases

1) threshold limit – concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

2) hazardous limit – concentration that will cause death with short-term exposure.

3) lethal concentration – concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii <u>Physical effects of hydrogen sulfide</u>

		Concentration	Physical effects
Percent (%)	<u>Ppm</u>	Grains	l
		100 std. Ft3*	
0.001	<10	00.65	Obvious and unpleasant odor.

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in $3 - 15$ minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

*at 15.00 psia and 60'f.

ì

)

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.

3. Repair.

- 4. Storage.
- b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
- c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:

(

A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

B. When breaking out any line where H2S can reasonably be expected.

- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- Ε.
- At any time there is a doubt as to the H2S level in the area to be entered.

<u>Rescue</u> First aid for H2S poisoning

Do not panic!

Remain calm – think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012

Permian Drilling Hydrogen Sulfide Drilling Operations Plan FNR 26 Federal #4H

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the South side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

FLEX III PAD

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA INC.
LEASE NO.:	NM0531277A
WELL NAME & NO.:	4H-FNR 26 FEDERAL
SURFACE HOLE FOOTAGE:	690'/S. & 373'/W.
BOTTOM HOLE FOOTAGE	690'/S. & 330/.E.
LOCATION:	Section 26, T. 23 S., R. 30 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
⊠ Drilling
R-111-P Potash
High Cave/Karst
Waste Material and Fluids
Logging Requirements
Production (Post Drilling)
Well Structures & Facilities
Pipelines
Electric Lines
Interim Reclamation
Final Abandonment & Reclamation