:•						14-9	
Somi 3160-3) (March 2012)		• -			APPROVEI lo. 1004-0137 October 31, 20	, ·	
UNITED STAT	ES	CARDAN	50		october 31, 20	14 / C	
DEPARTMENT OF THE	INTERIOR			5. Lease Serial No. NM 26684		1/=	
RTHODOX BUREAU OF LAND MA CATION APPLICATION FOR PERMIT TO				6. If Indian, Allotee N/A	or Tribe N	ame	
Ia. Type of work:	ITER A-	75-14-84	- D	7. If Unit or CA Agre N/A	ement, Nan	ne and No.	
			-	8. Lease Name and V	Well No.	F2128	
Ib. Type of Well: 🖌 Oil Well 🗌 Gas Well 🛄 Other		ngle Zone 📃 Multi	ple Zone	HANNIBAL FE	DERAL #	3H T3138	
2. Name of Operator NADEL AND GUSSMAN PERMIAN,			56157	9. API Well No. 30- 0/S	5-4	2775	
3a. Address 601 NORTH MARIENFELD, SUITE 508 MIDLAND, TX 79701	3b. Phone No (432) 68	. (include area code) 32-4429		10. Field and Pool, or I CULEBRA BLUF			
4. Location of Well (Report location clearly and in accordance with	any State requirem	ents.*)	· · · · · · · · · · ·	11. Sec., T. R. M. or B	lk.and Surv	rey or Area	
At surface 200' FNL, 1660' FWL				SEC. 31-T22S-F	R28E		
At proposed prod: zone 330' FSL, 1660' FWL							
 Distance in miles and direction from nearest town or post office* APPROX. 5 MILES NORTH OF LOVING, NM 				12. County or Parish EDDY		13. State NM	
 15. Distance from proposed* 200 FT property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of a 678.08		17. Spacin 160	g Unit dedicated to this w	vell		
18. Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 213 FT 19. Proposed Depth 20. BLM/BIA Bond No. on file NM: 2812 NM: 2812							
21. Elevations (Show whether DF, KDB, RT, GL, etc.)					23. Estimated duration		
3053' GL	11/15/201		·····	45 DAYS			
	24. Attac						
The following, completed in accordance with the requirements of Onsi	hore Oil and Gas	Order No.1, must be a	ttached to thi	is form:			
1. Well plat certified by a registered surveyor.			he operation	ns unless covered by an	existing bo	nd on file (see	
2. A Drilling Plan.	T 1 .1	Item 20 above).	ation				
3. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office).	m Lands, the	 Operator certific Such other site BLM. 		ormation and/or plans as	may be rec	juired by the	
25. Signature		(Printed/Typed) NGOSS			Date 05/20/20)14	
Title				l			
						n n 9014	
Approved by (Signature) James A. Amos	<u></u>	(Printed/Typed)				2 8 2014	
Title FIELD MANAGER	Office	CARL	SBAD FI	ELD OFFICE			
Application approval does not warrant or certify that the applicant he conduct operations thereon.	olds legal or equit	able title to those righ			•	•	
Conditions of approval, if any, are attached.				PROVAL FOF			
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a States any false, fictitious or fraudulent statements or representations a	crime for any pe as to any matter w	erson knowingly and v ithin its jurisdiction.	willfully to m	ake to any department of	r agency of	f the United	
(Continued on page 2)				*(Instr	ructions	on page 2)	
		NM OIL	CONSI TESIA DIS	ERVATION			
		V D.					
Carlsbad Controlled Water Basin				2014			
Carlsbad Controlled Water Basin			0V 04	2014			
Carlsbad Controlled Water Basin		N					

:

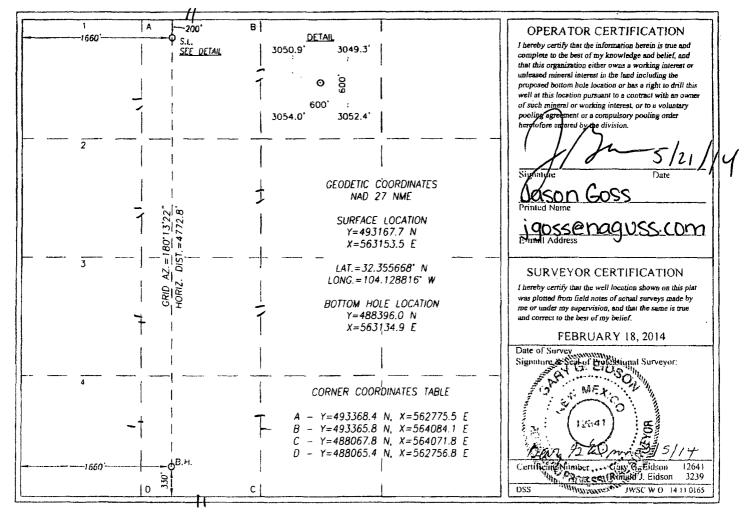
Approval Subject to General,Requirements & Special Stipulations Attached

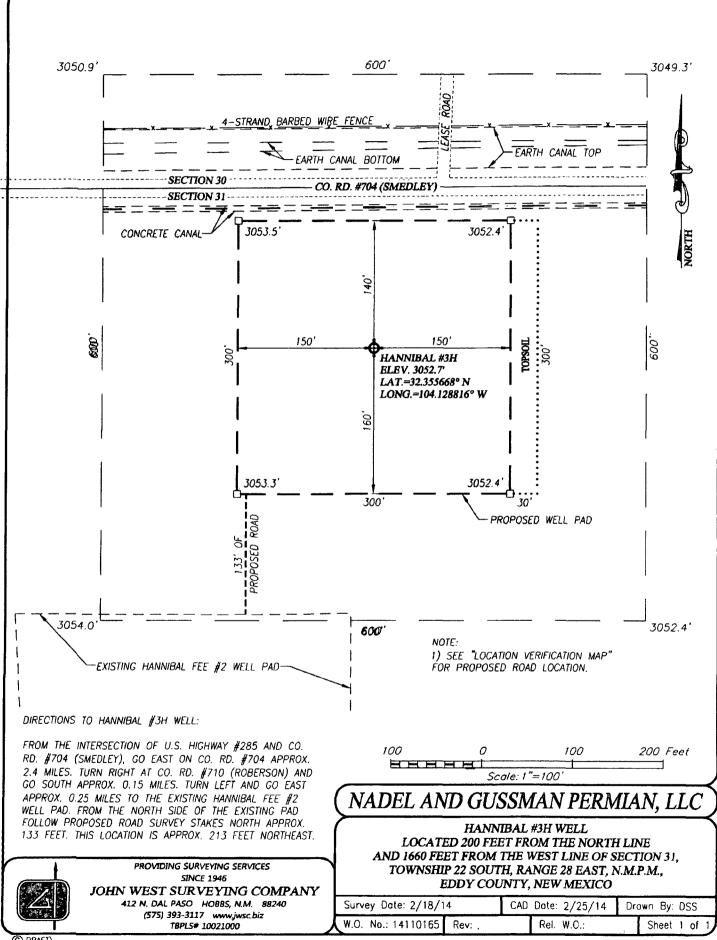
Ş

SEE ATTACHED FOR CONDITIONS OF APPROVAL

OPERATOR CERTIFICATION

I certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal Laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true, and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed the 20th day of May 2014.

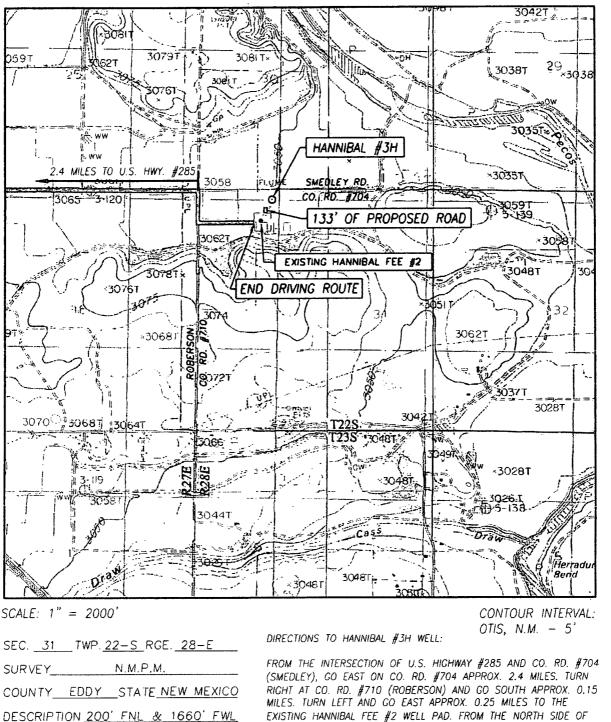

Name: Jason Goss Position: Drilling Engineer Address: <u>601 N. Marienfeld Suite 508</u> Telephone: <u>432-682-4429</u> Email: jgoss@naguss.com


Signed:

DISTRICT I 1625 N French Dr., Hobb Phone: (575) 393-6161 Fa DISTRICT II 811 S First St., Artesu, N Phone (575) 748-1283 Fa DISTRICT III 1000 Rio Brgzos Roud, A: Phone (505) 334-6178 Fa DISTRICT IV	ax (575) 393-4 M 88210 x (575) 748-9 zec, NM 87410	720 0	State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, New Mexico 87505					Submit on	Form C-102 vised August 1, 2011 e copy to appropriate District Office ENDED REPORT			
1220 S St Francis Dr. Sa Phone (505) 476-3460 Fa		462	ELL LOCATION AND ACREAGE DEDICATION PLAT						28-4			
30-015 3138 1551015	Number - 42 44 2	77.	5	ISC	EL A	, 	Property Name HANNIBA Operator Name GUSSMAN	IL Fede	VFF <u>S;</u> B Hal	bne	Ē	Il Number 3H 3B 3B 3053'
<u>_</u>		¥					Surface Location	on				
UL or lot No C	Section 31	Town: 22-	•	Range 28-E	Lot	ldn	Feet from the 200	North/South line NORTH	Feet from the 1660	1	/West line VEST	County EDDY
L		!		l I	Bottor	n Hol	L le Location If Diffe	rent From Surface		l		J
UL or lot No, N	Section 31	Town		Range 28-E	Loi		Feet from the 330	North/South line	Feet from the 1660	1	/West line VEST	County EDDY
Dedicated Acres	Joint or	l <u>.</u> Infill	С	ansolidation C	nie	Ord	ler No.	.		J		

1

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION



C DRAFT\

•

LOCATION VERIFICATION MAP

ELEVATION

OPERATOR_

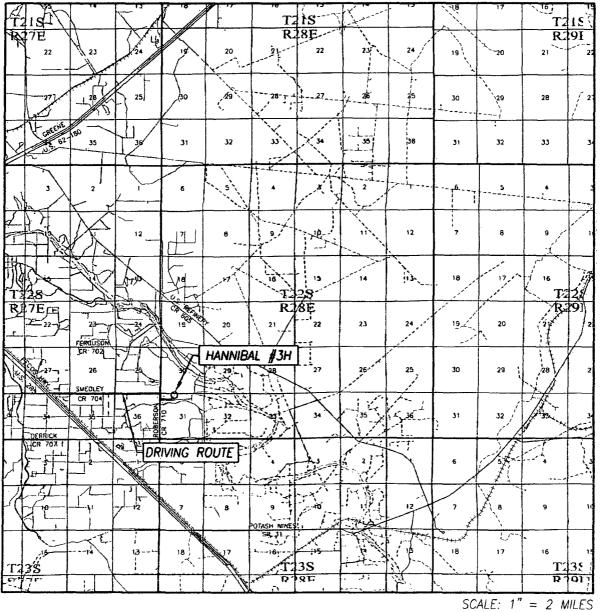
LEASE____

OTIS, N.M.

3053'

NADEL AND GUSSMAN PERMIAN, LLC

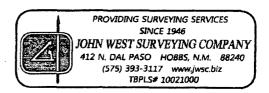
HANNIBAL


U.S.G.S. TOPOGRAPHIC MAP

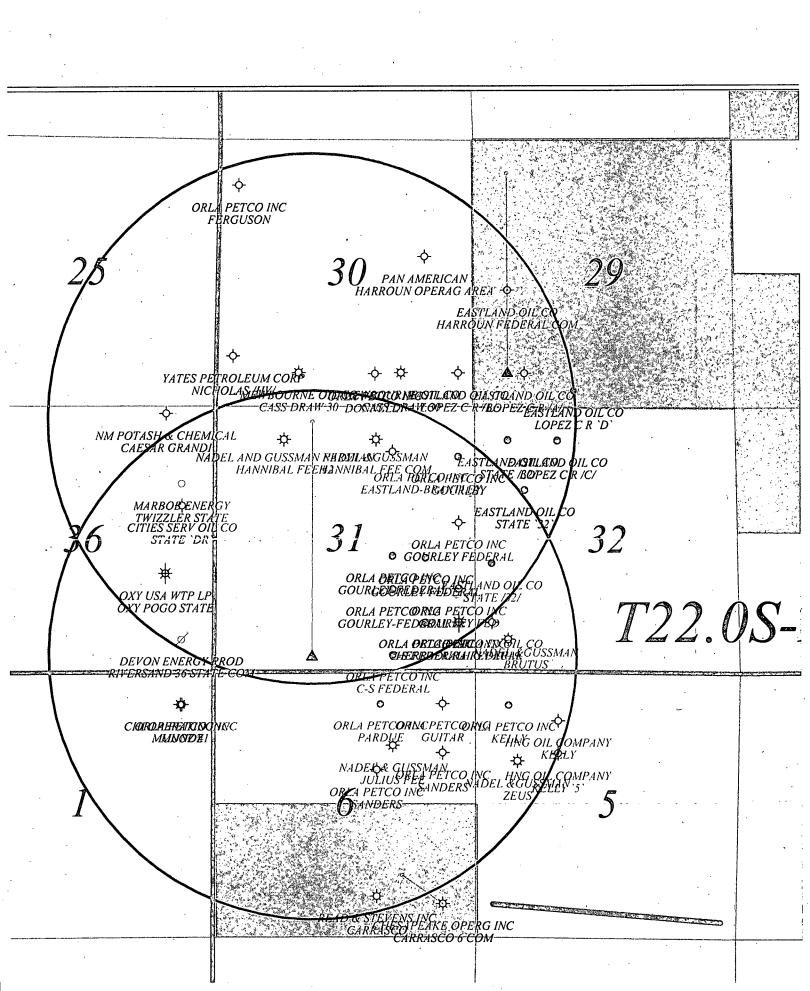
MILES. TURN LEFT AND GO EAST APPROX. 0.25 MILES TO THE EXISTING HANNIBAL FEE #2 WELL PAD. FROM THE NORTH SIDE OF THE EXISTING PAD FOLLOW PROPOSED ROAD SURVEY STAKES NORTH APPROX. 133 FEET. THIS LOCATION IS APPROX. 213 FEET NORTHEAST. NORTH

VICINITY MAP

. ,



DRIVING ROUTE: SEE LOCATION VERIFICATION MAP


SEC	TWP. <u>22-5</u> RGE. <u>28-E</u>
SURVEY	
COUNTY <u> </u>	DDYSTATENEW_MEXICO
DESCRIPTION	200' FNL & 1660' FWL
ELEVATION	3053'
OPERATOR _	NADEL AND GUSSMAN PERMIAN, LLC
	HANNIBAL

• • •

т 1

Hãon

.

٣

DRILLING AND OPERATIONS PLAN NADEL AND GUSSMAN PERMIAN, L.L.C. HANNIBAL FEDERAL #3H Surface: 200' FNL, 1660' FWL, UL C

BH: 330' FSL, 1660' FWL, UL N Sec 31, T-22-S, R-28-E Eddy County, New Mexico

- 1. Geological Surface Formation: Quaternary to eroded Permian
- 2. Horizontal Oil well, single zone. No pilot hole, depth to Fresh Water 400'. Elevation 3053'

3. TOPS OF IMPORTANT GEOLOGICAL MARKERS: TVD

Rustler	150'
Top Salt	1289'
BX	2063'
Lamar	2331'
Delaware Mountain Group	2419'
Bone Springs Ls	5837'
1 st Bone Springs Sand	6917'
Bone Springs 'B' Carbonate	7137'
2 nd Bone Springs Sand Target	7593'

4. Estimated Depth of Anticipated/Possible Water, Oil or Gas:

	0-400'	Possible Ground Water
Delaware	5200'	Oil, gas and water
Bone Springs	7150'	Oil, gas and water

No other formations are expected to yield oil, gas or fresh water in measurable volumes. The surface fresh water will be protected by setting 13 3/8" casing at 400' and circulating cement back to surface, all other intervals will be isolated by the 9 5/8 intermediate and 5-1/2" production casing.

:

•

.

¹ 0A ^{5.}	Proposed Casi	ng Program				
HOLE S Conduc 17.5" 12.25" *8.75"	ctor 20" 13 3/8" (i 9 5/8" (n 5-1/2	94# H-4 new) 48# H- ew) 36# J-4 " (new) 17# P-1	40 8rd S 40 8rd S 55 8rd L 110HC 8rd	TC TC TC	ETTING DEPTH 60' 400' <u>7</u> 300 <u>-2,500</u> ' 1'2,340'	TOP CEMENT Surface Surface Surface 2,000'
			BURST 1.125	COLLAPSE	1.125	TENSION 1.8
<u>ALL CA</u>	SING WILL BE NEV	V API APPROVED				
CEMEN	T PROGRAM-ALL C	EMENT BLENDS WI	LL BE TESTED TO	BLM MINIMUM R	REQUIREMENTS.	
Α.	13 3/8"	SURFACE	Семе	INT TO SURFACE	E 100% EX	CESS OVER CALCULATED
В.	9 5/8"	INTERMEDIATE	Семе	ENIT TO SURFACE	50% EXC	ESS OVER CALCULATED
					ass "C" + .25%	DEFOAMER, 14.8 PPG, 1.33
C.	5-1/2"	PRODUCTION	Семе		•	,
			RETA	RDER +3# ST	TAR SEAL +.39	6 C-12 FLUID LOSS+3%
			+3# (GILSONITE+.25%		,
	HOLE S Conduc 17.5" 12.25" *8.75" *7-7/8 I MINIMU <u>ALL CA</u> CEMENT A. B.	OP HOLE SIZE CASING SIZ Conductor 20" 17.5" 13 3/8" (n 12.25" 9 5/8" (n *8.75" 5-1/2" *7-7/8 hole from end of c MINIMUM SAFETY FACTOR ALL CASING WILL BE NEW	HOLE SIZE CASING SIZE WT./GRA Conductor 20" 94# H-4 17.5" 13 3/8" (new) 48# H- 12.25" 9 5/8" (new) 36# J- *8.75" 5-1/2" (new) 17# P- *7-7/8 hole from end of curve (8053 'md) to MINIMUM SAFETY FACTORS: ALL CASING WILL BE NEW API APPROVED CEMENT PROGRAM-ALL CEMENT BLENDS WIL A. 13 3/8" SURFACE B. 9.5/8" INTERMEDIATE	CH HOLE SIZE CASING SIZE WT./GRADE THREAD/ Conductor 17.5" 13 3/8" (new) 48# H-40 8rd S 12.25" 9 5/8" (new) 36# J-55 8rd L *8.75" 5-1/2" (new) 17# P-110HC 8rd L *7-7/8 hole from end of curve (8053 'md) to TD of 12,340' MINIMUM SAFETY FACTORS: BURST 1.125 ALL CASING WILL BE NEW API APPROVED Surface CEME CEMENT PROGRAM-ALL CEMENT BLENDS WILL BE TESTED TO I A. 13 3/8" SURFACE CEME B. 9 5/8" INTERMEDIATE CEME 420 DEFO B. 9 5/8" INTERMEDIATE CEME C. 5-1/2" PRODUCTION CEME LEAD SALT- TAIL 3 YIELD C. 5-1/2" PRODUCTION CEME	CH HOLE SIZE CASING SIZE WT./GRADE THREAD/COLLAR S Conductor 20" 94# H-40 8rd STC 17.5" 13.3/8" (new) 48# H-40 8rd STC 17.5" 13.3/8" (new) 36# J-55 8rd LTC * * * 12.25" 9.5/8" (new) 36# J-55 8rd BTC * * * *7.7/8 hole from end of curve (8053 'md) to TD of 12,340' * * * * * MINIMUM SAFETY FACTORS: BURST 1.125 COLLAPSE ALL CASING WILL BE NEW API APPROVED * * * CEMENT PROGRAM-ALL CEMENT BLENDS WILL BE TESTED TO BLM MINIMUM F A. 13.3/8" SURFACE CEMENT TO SURFACE 420 SACKS CLASS DEFOAMER, 14.8 PPC B. 9.5/8" INTERMEDIATE CEMENT TO SURFACE LEAD 475 SACKS SALT+.25% DEFOAM C. 5-1/2" PRODUCTION CEMENT TO 2,000 'r OVER FLUID C VIELD, 6.34 GAL/SK VIELD, 6.34 GAL/SK C C. 5-1/2" PRODUCTION CEMENT TO 2,000 'r OVER FLUID C LEAD 1100 SACKS C RETARDER +3# S SALT+.25% DEFOAM	CH HOLE SIZE CASING SIZE WT./GRADE THREAD/COLLAR SETTING DEPTH Conductor 20" 94# H-40 8rd STC 60' 17.5" 13 3/8" (new) 48# H-40 8rd STC 400' 23 co 12.25" 9 5/8" (new) 36# J-55 8rd LTC -2,500" 2,760" *8.75" 5-1/2" (new) 17# P-110HC 8rd BTC 12,340' *7-7/8 hole from end of curve (8053 'md) to TD of 12,340' MINIMUM SAFETY FACTORS: BURST 1.125 COLLAPSE 1.125 ALL CASING WILL BE NEW API APPROVED CEMENT PROGRAM-ALL CEMENT BLENDS WILL BE TESTED TO BLM MINIMUM REQUIREMENTS. A. 13 3/8" SURFACE CEMENT TO SURFACE 100% EX B. 9 5/8" INTERMEDIATE CEMENT TO SURFACE 100% EX LEAD 475 SACKS CLASS "C" 35 SALT+.25% DEFOAMER 12.8 PPG, 1.9 TAIL 200 SACKS CLASS "C" 35 SALT+.25% DEFOAMER 12.8 PPG, 1.9 TAIL 200 SACKS CLASS C. 5-1/2" PRODUCTION CEMENT TO 2,000' MIN. (WILL RUN FPOVED LEAD 1100 SACKS CLASS C 50/50 +1 RE

3000 - per

Tason

9-18-14

SPECIFICATIONS FOR PRESSURE CONTROL EQUIPMENT: (EXHIBIT #5)

A 2000# WP Annular will be installed after running the 13-3/8" casing. 3,000# WP Double Ram BOP and 2,000 annular will be installed after running the 9-5/8". Pressure test will be conducted prior to drilling out under all casing strings. BOP controls will be installed prior to drilling under surface casing and will remain in use until completion of drilling operations. BOP's will be inspected and operated as recommended in Onshore Order #2. A Kelly cock and a sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position when the Kelly is not in use. 9-5/8" BOP will be tested to 3000# and the annular to 1500# with a third party testing company before drilling below each shoe. If operations last more than 30 days from 1st test, will test again as per BLM Onshore Oil and Gas order #2.

See COA

MUD PROGRAM:

Spud and drill 17 $\frac{1}{2}$ " surface hole with fresh water (8.4 to 8.7 ppg) to a depth of approx 400'. Control lost circulation with paper and LCM pills. Viscosity 28-55, no fluid loss control. Fresh water gel sweeps.

Drill 12 ¼" hole from 400' to 2,500' with Brine (10.0 ppg). Control lost circulation with paper and LCM pills. Viscosity 28-30, no fluid loss control. Salt water gel sweeps.

Drill 8 ³/₄" production hole from 2,600 to 8,053' (7,302 KOP) 7-7/8 hole from 8,053 to 12,341 with fresh water (8.4 to 8.7 ppg) or cut brine (9.1 to 9.4 ppg). Control lost circulation with paper and LCM pills. From 2,500' to 7,100 Clean hole with pre-hydrated freshwater sweeps as necessary, system properties: viscosity 29-34, fluid loss NC. From 7,100' to 12,341 use polymer mud for 34-38 seconds funnel viscosity and <20ml water loss.

All necessary mud products for weight addition and fluid loss control will be on location at all times. Mud program subject to change due to hole conditions.

Mud monitoring system: Mud will be maintained and checked daily for mud weight, viscosity, API water loss, pH, etc. Additional electronic monitoring will include a pit volume totalizer to monitor mud volume in active system, pump rate, and mud return flow percentage. H2S monitors and alarms will be located on rig floor, shale shakers, and mud tanks (see rig plat). Gas chromatograph with monitor hydrocarbon gas content of mud from 3,000' to TD. Third party corrosion company will utilize H2S/oxygen scavengers to monitor for corrosion and limit damage to tubulars.

Auxiliary Equipment

- A. A Kelly cock will be in the drill string at all times.
- B. A full opening drill pipe stabbing valve having the appropriate connections will be on the rig floor at all times
- C. Hydrogen Sulfide detection equipment will be in operation after drilling out the 13 3/8" casing shoe until the $5 \frac{1}{2}$ " casing is run and set and rigging down operations have begun.

TESTING, LOGGING & CORING PROGRAM:

- a. No DST's will be conducted.
- b. Open hole logs are not planned, cased hole CBL and Gamma is planned before completion.
- c. Mud logging will take place from 3,000ft to TD 10ft samples
- d. Gyro survey will be run at KOP of 7,302'
- e. MWD (directional) and LWD (gamma) surveys will be taken from KOP (7,302') to TD 12,341ft

POTENTIAL HAZARDS:

No significant hazards are expected, no abnormal pressures or temperatures are expected, **Expected pressure** gradient will be that of .433 psi/ft or less approx. 3413psi at 7,880 TVD, expected temperature at 7,880 TVD is 113 deg F based on temperature gradient of Hannibal Fee #2. Lost circulation may occur, no H₂S is expected, but the operator will utilize a 3rd party H₂S monitoring package from 400' to TD. If H2S is encountered the operator will comply with the provisions of onshore oil and gas order no 6. All personnel will be familiar with all aspects of safe operation of equipment being used to drill this well.

ANTICIPATED STARTING DATE & DURATION:

Nadel & Gussman Permian, LLC anticipates drilling operations to begin around November 15, 2014 and completed in approximately 45 days. An additional 15 days will be needed for completion activities. Road and location construction will begin after the BLM has approved the APD.

Jason Goss Nadel & Gussman Permian, LLC

5/21/14

Nadel & Gussman Permian, LLC

Eddy County, NM (NAD27) Sec 31, T22-S, R28-E Hannibal Federal #3H

Wellbore #1

Plan: Design #1

DDC Well Planning Report

15 May, 2014

DDC Well Planning Report

Database:	EDM 6000	Single User Db		Local Co-ordinate R	oforonco:	Site Sec 31, T22	S R28-F	an a
Database: Company:		single Oser Do	uc	TVD Reference:	ច្បើបដែលក្នុង	Well @ 3053:0us		
Project:		NM (NAD27)						
1. N	5 M			MD Reference:		Well @ 3053.0us	STL .	
Site:	Sec 31, T22			North Reference:		Grid		
Well:	Hannibal Fe	deral #3H		Survey Calculation	Method:	Minimum Curvata	ure	
Wellbore:	Wellbore #1				한 일을 알았다.			•
Design:	Design #1					4 -{ 		
Marie Constant								
Project	Eddy County	NM (NAU27)				and the second	i and a state in the	
Map System:		e 1927 (Exact so DCON CONUS)		System Datum:	I	Mean Sea Level		
Geo Datum:	•	•						
Map Zone:	New Mexico Ea	IST 3001						
Site	Sec 31, T22-	S, R28-E	میرون به این از میرون به میرون میرون این میرون این میرون این میرون این م			an a		
Site Position:		an a	Northing:	493,167.70 us	ft Latitude:	-man		32° 21' 20,404 N
From:	Мар		Easting:	563,153.50 us				104° 7' 43.736 W
	•	0.0 usft	Slot Radius:	13-3/16	-			0.11 °
Position Uncertainty	y:	0.0 usit	SIOT Radius:	13-3/10	" Grid Conve	ingence:		U.11
Well	Hannibal Fed	eral #3H			د. مەلىكە كەركەرىيى بىرىيەر بەرمەرىيەر بەرمەرىيەر بەرمەرىيەر بەرمەرىيەر بەرمەرىيەر بەرمەرىيەر بەرمەرىيەر بەرمەر	and a strange of a strange of the strange of		an a
	+N/-S	0.0 usft	Northing:	493,16	7.70 usft L	atitude:		32° 21' 20.404 N
Well Position	TIN-3							
well Position			Easting:	563 15	3.50 usft t	onaitude:		104° 7' 43 736 W
Position Uncertainty	+E/-W	0.0 usft 0.0 usft	Easting: Wellhead Elevat			ongitude: iround Level:		104° 7' 43.736 W 3,053.0 usfi
	+E/-W	0.0 usft	•			-		
	+E/-W	0.0 usft	•			-		
Position Uncertainty Wellbore	+E/-W	0.0 usft 0.0 usft	Wellhead Elevat		0.0 usft G	round Level:	Field S	3,053.0 usf
Position Uncertainty	+E/-W	0.0 usft 0.0 usft	•	ion:	0.0 usft G	Angle	6	
Position Uncertainty Wellbore	+E/-W VVellbore #1 Model Na	0.0 usft 0.0 usft ime	Wellhead Elevat	ion: Declination	0.0 usft G	round Level: Angle (°)	6	3,053.0 usf trength 17)
Position Uncertainty Wellbore	+E/-W VVellbore #1 Model Na	0.0 usft 0.0 usft	Wellhead Elevat	ion:	0.0 usft G	Angle	6	3,053.0 usf
Position Uncertainty Wellbore	+E/-W VVellbore #1 Model Na	0.0 usft 0.0 usft ime	Wellhead Elevat	ion: Declination	0.0 usft G	round Level: Angle (°)	e	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime	Wellhead Elevat	ion: Declination	0.0 usft G	round Level: Angle (°)	e	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime	Wellhead Elevat Sample Date 5/14/2014	ion: Declination	0.0 usft G	Angle (°) 60.17	e	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime 200510	Wellhead Elevat Sample Date 5/14/2014	ion: Declination (a) 7.4	0.0 usft G	Angle (°) 60.17		3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft me 200510 Depth Fr	Wellhead Elevat Sample Date 5/14/2014 Phase: P	ion: Declination (°) 7.40	0.0 usft G	Angle (°) 60.17	(i).0 ction	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime 200510 Depth Fr	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (TVD); sR)	ion: Declination (°) 7.4(2LAN +N/-S (usft)	0.0 usft G .Dir .Dir	Angle (°) 60.17	(i).0 Ction	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime 200510 Depth Fr	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (TVD)	ion: Declination (°) 7.4(2LAN +N'-S	0.0 usft G Dip Dip Tie On Depth: +EI-W	Angle (°) 60.17	(i).0 ction	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime 200510 Depth Fr	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (TVD); sR)	ion: Declination (°) 7.4(2LAN +N/-S (usft)	0.0 usft G .Dir .Dir	Angle (°) 60.17	(i).0 Ction	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime 200510 Depth Fr	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (TVD); sR)	ion: Declination (°) 7.4(2LAN +N/-S (usft)	0.0 usft G .Dir .Dir	Angle (°) 60.17	(i).0 Ction	3,053.0 usf trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0 usft ime 200510 Depth Fr	Wellhead Elevat	ion: Declination (°) 7.4 2LAN +N/-S (usft) 0.0	0.0 usft G .Dir .Dir	Angle (°) 60.17 Dire 180 Turn	(i).0 Ction	3,053.0 usi trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured	+E/-W Vellbore #1 Model Na IGRF	0.0 usft 0.0	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (IVD) 0	ion: Declination (*) 7.44 *N/-S (usft) 0.0	0.0 usft G .Dir .Dir	round Level: Angle (°) 60.17 Dire 180	(i).0 Ction	3,053.0 usi trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	+E/-W Vellbore #1 Model Na IGRF Design #1	0.0 usft 0.0	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (IVD) 0 al, N/-S	ion: Declination (°) 7.4 2LAN +N/-S (usft) 0.0	0.0 usft G .Dir .Dir 	round Level: Angle (°) 60.17 0 Dire (180 180 180 180 180 180 180 180 180 180	() .0 .22	3,053.0 usi trength 17)
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	+E/-W VVellbore #1 Model Na IGRF Design #1	0.0 usft 0.0 usft ime 200510 Depth Fr (u (u 0 Veritic uth. Dept	Wellhead Elevat Sample Date 5/14/2014 Phase: P om.(TVD) o al. h +N/S (usft)	ion: Declination (°) 7.4(2LAN +N/-S (usft) 0.0 Doğlég +E/-W' Rate (usft) (°/100ust	0.0 usft G .Dir .Dir .Dir .Dir	round Level: Angle (°) 60.17 00.17 00.17 00.17 00.17 00.17 00.17 00.17 00.17	(i).0 (tion).22 TFO (f)	3,053.0 usf trength 17) 48,396
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	+E/-W Velibore #1 Model Na IGRF Design #1	0.0 usft 0.0 usft me 200510 Depth Fr (u 0 Vertic Dept	Wellhead Elevat Sample Date 5/14/2014 Phase: P om (IVD) 0 al, N/-S	ion: Declination (°) 7.4(2LAN +N/-S (usft) 0.0 Doğlég +E/-W' Rate (usft) (°/100ust	0.0 usft G .Dir .Dir 	round Level: Angle (°) 60.17 00.17 00.17 00.17 00.17 00.17 00.17 00.17 00.17	(i).0 (tion).22 (tion).22	3,053.0 usi itrength 17) 48,396
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli	+E/-W VVellbore #1 Model Na IGRF Design #1	0.0 usft 0.0 usft 	Wellhead Elevat Sample Date 5/14/2014 Phase: P om.(TVD) o al. h +N/S (usft)	ion: Declination (°) 7.4(PLAN +N/-S (usft) 0.0 Doğlég +E/-W' Rate (usft) (°/100ust 0.0 0	0.0 usft G .Dir .Dir .Dir .Dir	round Level: Angle (°) 60.17 60.17 C Dire 180 180 180 180 180 180 180 0.00	(i).0 (tion).22 TFO (f)	3,053.0 usf trength 17) 48,396
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0	+E/-W VVellbore #1 Model Na IGRF Design #1 Design #1	0.0 usft 0.0 usft 200510 Depth Fr (u uth. Dept uth. Dept (usft)	Wellhead Elevat Sample Date 5/14/2014 Phase: Phase: Form (TVD) 0 al. h +N/S 0.0	ion: Declination (°) 7.4(PLAN +N/-S (usft) 0.0 Doğlég +E/-W' Rate (usft) (°/100ust 0.0 0 0.0 0	0.0 usft G Dir Dir Dir Dir Dir Dir Dir Dir Dir Dir	round Level: Angle (°) 60.17 60.17 C Dire 200 000 0.00 0.00	(i 0.0 ction) 0.22 TFO (i) 0.00	3,053.0 usf trength 17) 48,396
Position Uncertainty Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (ust) 0.0 7,302.5	+E/-W VVellbore #1 Model Na IGRF Design #1 Design #1	0.0 usft 0.0 usft 200510 200500 200500 200500 200500 200500 2005000 200500000000	Wellhead Elevat Sample Date 5/14/2014 Phase: Phase: Form (TVD) 0 al. h +N/S 0.0 0.0 0.0 0.0	ion: Declination (°) 7.4(*N/-S (usit) 0.0 Doğlég *E/-W' Rate (usit) (°/100ust 0.0 0 0.0 0 0.0 19 12	0.0 usft G 	round Level: Angle (°) 60.17 60.17 Dire (°) 00 0.00 0 0.00 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0	(i) 0.0 ction) 0.22 TFO (') 0.00 0.00 180.22	3,053.0 usf trength 17) 48,396

•

. '

.

DDC Well Planning Report

Database:	EDM 5000.1 Singl	e User Db	643 X 20	Local Co	ordinate Refer	ence:	Site Sec 31, T22	-S, R28-E	
Company:	Nadel & Gussman)	TVD Refe			Well @ 3053 0u	sft	· · · ·
Project:	Eddy County, NM	(NAD27)	· · · · ·	MD Refer	L COMPANY A		Well @ 3053.0u		
Site:	Sec 31, T22-S, R2	• •		North Re		5. P	Gridi		
Well:	Hannibal Federal I		• •	1	alculation Met	hod:	Minimum Curvat	ure	
Wellbore:	Wellbore #1						n na shi a shi Ali shi shi		
Design:	Design #1						Advantation and the store of the state	anna 2 19 Decembra de La como Decembra	in the second
Planned Survey	(منصح المنصوف المراجع الم	4	Sun and and the second second		aine anti-trafontana 1	الجانب فسد الاستقار وتدي	فتستمس والإفراقة المشتجب سيتستنه	م من الارتباع من على مان تقال المان الم	<u></u>
Flaimed Survey		Well-	A DATE (SALE - THE		States and	A Stan Land		A A A A A A A A A A A A A A A A A A A	A CARE CONTRACT
Measured			Vertical	4		/ertical	Dogleg	Build/	Turn
Depth	Inclination	zimuth	Depth	+N/-S		Section	Rate	Rate	Rate
(usft)	(*)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft) (°	/100usft)	°/100usft)
the second s	Alter and the second	- m la	the state of the s	tinte to a strain at the					
0.0	0.00	0.00	0.0	0.0 0:0	0:0 0:0	0.0 0:0	0:00 0.00	0.00 0.00	0.00 0.00
100.0 200.0	0.00 0.00	0.00 0.00	100:0 200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0:0	0:0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0:0	0.0	0.0	0.00	0.00	0.00
			500.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0 600.0	0.00 0.00	0.00 0.00	600.0	0:0	0:0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0:0	0:0	0.0	0:00	0.00	0:00
800.0	0.00	0.00	800.0	0.0	0.0	0:0	0.00	0.00	0.00
900.0	0.00	0.00	900.0	0:0	0.0	0.0	0.00	0.00	0.00
		0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0 1,100.0	0.00 0.00	0.00	1,100.0	0.0	0.0	0:0	0.00	0.00	0.00
1,200.0	0:00	0.00	1,200.0	0.0	0:0	0.0	0.00	0.00	0.00
1,300.0	0:00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0	0:00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,500.0	0,00	0.00	1,500.0	0:0	0.0	0.0	0.00	0.00	0.00
1,600.0	0:00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0:00	0.00	1,700.0	0.0	0:0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0	0:0	0.0	0.0	0.00	0.00	0.00
1,900.0	0:00	0.00	1,900.0	0:0	0.0	0.0	0.00	0.00	0.00
	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0 2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0	0:00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0:0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600:0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,800.0	0.00	0.00	2,800:0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0	0.00	0.00	3,000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200.0	0.00	0.00	3,200.0	0.0	0.0	0.0	0.00	0.00	0.00
3,300.0	0.00	0.00	3,300.0	0.0	0.0	0.0	0.00	0.00	0.00
3,400.0	0.00	0.00	3,400.0	0.0	0.0	0.0	0.00	0.00	0.00
3,500.0	0.00	0.00	3,500.0	0.0	0.0	0.0	0.00	0.00	0.00
3,600.0	0.00	0.00	3,600.0	0.0	0.0	0.0	0.00	0.00	0.00
3,700.0	0.00	0.00	3,700.0	0.0	0.0	0.0	0.00	0.00	0.00
3,800.0	0.00	0.00	3,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,900.0	0.00	0.00	3,900:0	0.0	0.0	0.0	0.00	0.00	0.00
4,000.0	0.00	0.00	4,000:0	0.0	0.0	0.0	0.00	0.00	0.00
4,100.0	0.00	0.00	4,100.0	0.0	0.0	0.0	0.00	0.00	0.00
4,200.0	0.00	0.00	4,200.0	0:0	0.0	0.0	0.00	0.00	0.00
4,300.0	0.00	0.00	4,300.0	0.0	0.0	0.0	0.00	0.00	0.00
4;400.0	0.00	0.00	4,400.0	0.0	0.0	0.0	0.00	0.00	0.00
4,500.0	0.00	0.00	4,500.0	0.0	0.0	0.0	0.00	0.00	0.00
4,600.0	0.00	0.00	4,600.0	0.0	0.0	0.0	0.00	0.00	0.00
4,700.0	0.00	0.00	4,700.0	0.0	0.0	0.0	0.00	0.00	0.00
4,800.0	0.00	0.00	4,800.0	0.0	0.0	0.0	0.00	0.00	0.00
4,900.0	0.00	0.00	4,900:0	0.0	0.0	0.0	0.00	0.00	0.00
5,000:0	0.00	0.00	5,000.0	0.0	0.0	0.0	0.00	0.00	0.00
5,100.0	0.00	0.00	5,100.0	0.0	0.0	0.0	0.00	0.00	0.00
5,200:0	0.00	0.00	5,200.0	0.0	0.0	0.0	0.00	0.00	0.00
5,300.0	0.00	0.00	5,300:0	0.0	0.0	0.0	0.00	0.00	0.00

•

COMPASS 5000.1 Build 72

DDC

the subscription of the second s	۵۰٬۰۰۰ مارستان المارین المارین میرون المارین ال	an a	
Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Site Sec 31, T22-S; R28-E
Company:	Nadel & Gussman Permian, LLC	TVD Reference:	Well @:3053:0usft
Project:	Eddy County, NM (NAD27)	MD Reference:	Welli@ 3053:0usft
Site:	Sec 31, T22-S, R28-E	North Reference:	Gridi
Well	Hannibal Federal #3H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Planned Survey

.

lanned Survey		Luin						· · · · · · · · · · · · · · · · · · ·	سيديد سيبي مستعمل المستعمل	
	5									<u> </u>
Measured		16.9	0	Vertical			Vertical	Dogleg	Build	Turn
Depth (usft)	inc	lination (°)	Ažimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W	Section (usft)	Rate (°/100usft)	(°/100usft)	Rate /100usft)
5,400	.0	0.00	0.00	5,400.0	0.0	0.0	0.0	0.00	0.00	0.00
5,500	0	0:00	0.00	5,500.0	0.0	0.0	0.0	0.00	0.00	0.00
5,600		0.00	0.00	5,600.0	0.0	0:0	0.0	0:00	0.00	0.00
5,700		0.00	0.00	5,700.0	0.0	0.0	0.0	0.00	0.00	0.00
,								0.00		
5,800		0.00	0.00	5,800.0	0.0	0:0	0.0		0.00	0.00
5,900		0.00	0.00	5,900.0	0.0	0:0	0.0	0.00	0.00	0.00
6,000		0.00	0.00	6,000.0	0.0	0.0	0.0	0:00	0.00	0.00
6,100		0.00	0.00	6,100.0	0.0	0.0	0.0	0:00	0.00	0.00
6,200	.0	0.00	0.00	6,200.0	0.0	0.0	0.0	0.00	0.00	0.00
6,300	.0	0.00	0.00	6,300.0	0.0	0:0	0.0	0.00	0.00	0.00
6,400	.0	0.00	0.00	6,400.0	0.0	0.0	0.0	0:00	0.00	0.00
6,500	.0	0.00	0.00	6,500.0	0:0	0.0	0:0	0.00	0.00	0.00
6,600		0.00	0.00	6,600.0	0.0	0.0	0.0	0.00	0.00	0.00
6,700		0.00	0.00	6,700.0	0.0	0.0	0.0	0.00	0.00	0.00
						0.0		0:00		
6,800		0.00	0.00	6,800.0	0.0		0.0		0.00	0.00
6,900	.0	0.00	0.00	6,900.0	0.0	0.0	0:0	0:00	0.00	0.00
7,000	.0	0.00	0.00	7,000.0	0.0	0.0	0.0	0.00	0.00	0.00
7,100	.0	0.00	0.00	7,100.0	0.0	0.0	0.0	0.00	0.00	0.00
7,200	.0	0.00	0:00	7,200.0	0.0	0.0	0.0	0.00	0.00	0.00
7 300		0.00	0.00	7,300.0	0.0	0.0	0.0	0.00	0.00	0.00
KOP / Bu				,						
7,302		0.00	0.00	7,302.5	0.0	0.0	0.0	0.00	0.00	0.00
7,400	.0	11.70	180.22	7.399:3	-9.9	0.0	9.9	12.00	12.00	0.00
7,500		23.70	180.22	7,494.4	-40.3	-0.2	40.3	12.00	12.00	0.00
7,600		35.70	180:22	7,581.1	-89:7	-0.3	89.7	12.00	12.00	0.00
7,800			180.22		-156.1	-0.5	156.1	12.00	12.00	0.00
		47.70		7,655.6						
7,800	.0	59.70	180.22	7,714.7	-236.6	-0.9	236.6	12.00	12.00	0.00
7,900		71.70	180.22	7,755.8	-327.5	-1.3	327.5	12.00	12.00	0.00
8,000	.0	83.70	180.22	7,777.1	-425.1	-1.7	425.1	12.00	12.00	0.00
End of C	urve @ 8	053' MD / 90'	2 / 7780' TVD							
8,052	.5	90:00	180.22	7,780.0	-477.5	-1.9	477.5	12.00	12.00	0.00
8,100	0	90.00	180.22	7,780.0	-525.0	-2.0	525.0	0.00	0.00	0.00
8,200		90.00	180.22	7,780.0	-625.0	-2.4	625.0	0.00	0.00	0.00
8,300	0	90.00	180.22	7,780.0	-725.0	-2.8	725.0	0.00	0.00	0.00
8,400		90.00	180.22	7,780.0	-825.0	-3.2	825.0	0.00	0.00	0.00
8,500		90.00	180.22	7,780.0	-925.0	-3.6	925.0	0.00	0.00	0.00
8,600 8,700		90.00 90.00	180.22 180.22	7,780.0 7,780.0	-1,025.0 -1,125.0	-4.0 -4.4	1,025.0 1,125.0	0.00 0.00	0.00 0.00	0.00 0.00
8,800	0	90.00	180.22	7,780.0	-1,225.0	-4.8	1,225.0	0.00	0.00	0.00
8,900	0	90.00	180.22	7,780.0	-1,325.0	-5.2	1,325.0	0.00	0.00	0.00
9,000	0	90.00	180.22	7,780.0	-1,425.0	-5.6	1,425.0	0.00	0.00	0.00
9,100	0	90.00	180.22	7,780.0	-1,525.0	-5.9	1,525.0	0.00	0.00	0.00
9,200	0	90.00	180.22	7,780.0	-1,625.0	-6.3	1,625.0	0.00	0.00	0.00
9,300	n.	90.00	180.22	7,780.0	-1,725.0	-6.7	1,725.0	0.00	0.00	0.00
9;400		90.00	180.22	7,780.0	-1,825.0	-7.1	1,825.0	0.00	0.00	0.00
9,500		90.00	180.22	7,780.0	-1,925.0	-7.5	1,925.0	0.00	0.00	0.00
9,600		90.00	180.22	7,780.0	-2,024.9	-7.9	2,025.0	0.00	0.00	0.00
9,700.		90.00	180.22	7,780.0	-2,124.9	-8.3	2,125.0	0.00	0.00	0.00
9,800		90.00	180.22	7,780.0	-2,224.9	-8.7	2,225.0	0.00	0.00	0.00
9,900	0	90.00	180.22	7,780.0	-2,324.9	-9.1	2,325.0	0.00	0.00	0.00
10,000	0	90.00	180.22	7,780.0	-2,424.9	-9.5	2,425.0	0.00	0.00	0.00
10,100		90.00	180.22	7,780.0	-2,524.9	-9.8	2,525.0	0.00	0.00	0.00
10,200		90.00	180.22	7,780.0	-2,624.9	-10.2	2,625.0	0.00	0.00	0.00
							•			

COMPASS 5000.1 Build 72

DDC Well Planning Report

EDM 5000.1 Single User Db	Local Co-ordinate Reference: Site Sec 31, T22-S, R28-E
mpany: Nadel & Gussman Permian, LLC	TVD Reference Well @ 3053.0usft
oject Eddy County, NM (NAD27)	MD Reference Well @ 3053.0usft
te: Sec 31, T22-S, R28-E	NorthReference
ell. Hannibal Federal #3H	Survey Calculation Method
ellbore: Wellbore #1	
sign: Design #1	
anned Survey	1944

Measured			Vertical		a second	Vertical	Dogleg	Build	Turn
1. 1. 1. 1. 1. A. A.	nclination	Azimuth	Depth	+N/-S		Section	Rate	Rate	Rate
(usft)	er (°) 19	(9)	(usft) 👾	(usft)	(usft)	(usft)	((°/100usft)	(°/100usft)	°/100usft)
10,300.0	90.00	180.22	7,780.0	-2,724.9	-10.6	2,725.0	0.00	0.00	0.00
10,400.0	90.00	180.22	7,780.0	-2,824.9	-11.0	2;825.0	0.00	0.00	0.00
10,500.0	90.00	180.22	7,780.0	-2;924.9	-11.4	2,925.0	0.00	0.00	0.00
10,600.0	90.00	180.22	7,780.0	-3,024.9	-11.8	3,025.0	0.00	0.00	0.00
10,700.0	90.00	180.22	7,780.0	-3,124.9	-12.2	3,125.0	0.00	0.00	0.00
10,800.0	90.00	180.22	7,780.0	-3,224.9	-12:6	3,225.0	0.00	0.00	0.00
10,900.0	90.00	180:22	7,780.0	-3,324.9	-13.0	3,325.0	0:00	0.00	0.00
11,000.0	90.00	180.22	7,780.0	-3,424.9	-13.3	3,425.0	0.00	0:00	0.00
11,100.0	90.00	180.22	7,780:0	-3,524.9	-13.7	3,525.0	0.00	0.00	0.00
11,200.0	90.00	180.22	7,780.0	-3,624.9	-14.1	3,625.0	0.00	0.00	0.00
11,300.0	90.00	180.22	7,780.0	-3,724.9	-14.5	3,725.0	0.00	0.00	0.00
11,400.0	90.00	180.22	7,780.0	-3,824.9	-14.9	3,825.0	0.00	0.00	0.00
11,500.0	90.00	180.22	7,780.0	-3,924.9	-15.3	3,925.0	0.00	0.00	0.00
11,600.0	90.00	180.22	7,780:0	-4,024.9	-15.7	4,025.0	0.00	0.00	0.00
11,700.0	90.00	180.22	7,780.0	-4,124.9	-16.1	4,125.0	0.00	0:00	0.00
11,800.0	90.00	180.22	7,780.0	-4,224:9	-16.5	4,225.0	0.00	0.00	0.00
11,900.0	90.00	180.22	7,780.0	-4,324.9	-16.9	4,325.0	0.00	0.00	0.00
12,000.0	90.00	180.22	7,780.0	-4,424.9	-17.2	4,425.0	0.00	0.00	0.00
12,100.0	90:00	180.22	7,780.0	-4,524.9	-17.6	4,525.0	0.00	0.00	0.00
12,200.0	90.00	180.22	7,780.0	-4,624.9	-18.0	4,625.0	0.00	0.00	0.00
12,300.0	90.00	180.22	7,780.0	-4,724.9	-18.4	4,725.0	0.00	0.00	0.00
TD @ 12342' M	D / 7780' TVD								
12,341.8	90.00	180.22	7,780.0	-4,766.7	-18.6	4,766.7	0.00	0.00	0.00

Design Targets Target Name hit/miss.target Shape	ip Angle – D (?)	ip Dir	71 in 1966 Suit in 1967 i	,	. Northing (usft)	· Easting (usft)	Latitude	Longitude
PBHL Hannibal #3H - plan hits target center - Point	0.00	0:00 7,7	80.0 -4,766.7	-18.6	488,401.00	563,134.92	32° 20' 33.232 N	104° 7' 44.059 W
Plan Annotations Measured Depti (usft)	Vertica Depth (usft)	+N/ (us		Ē/-Ŵ	omment			

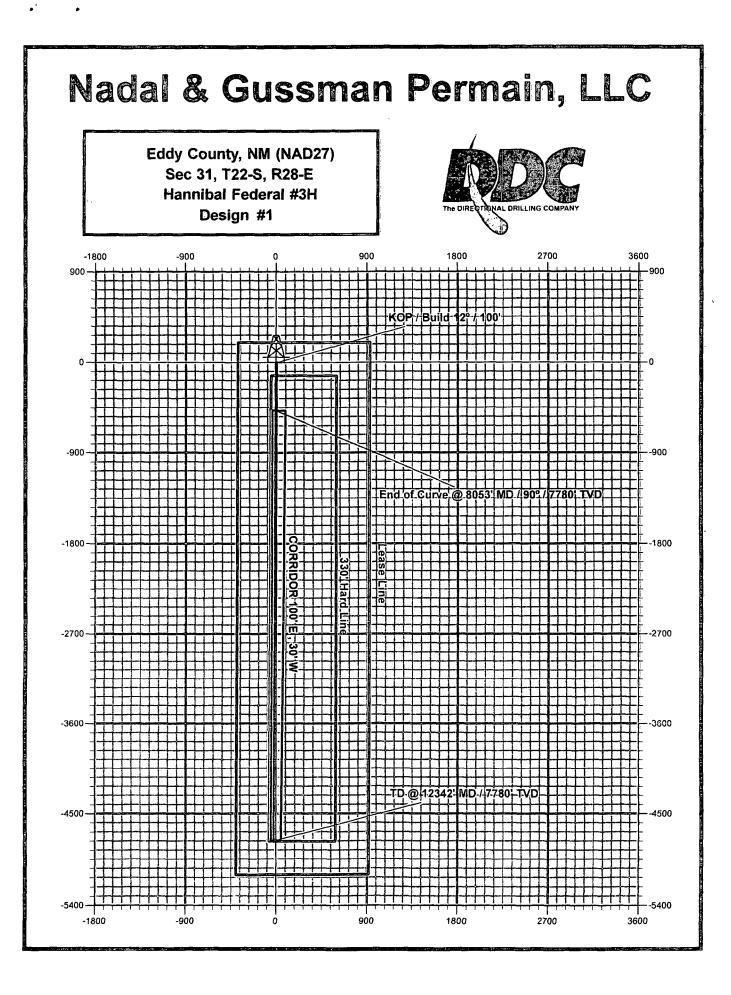
0.0

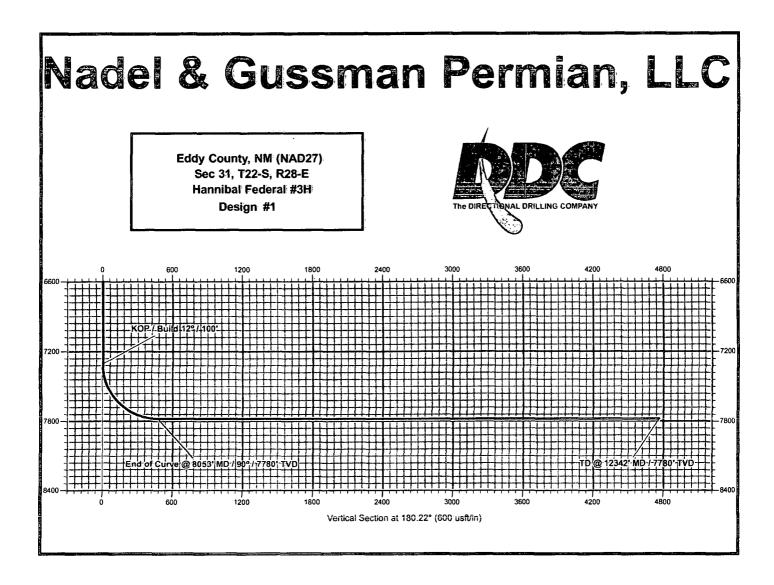
-1.9

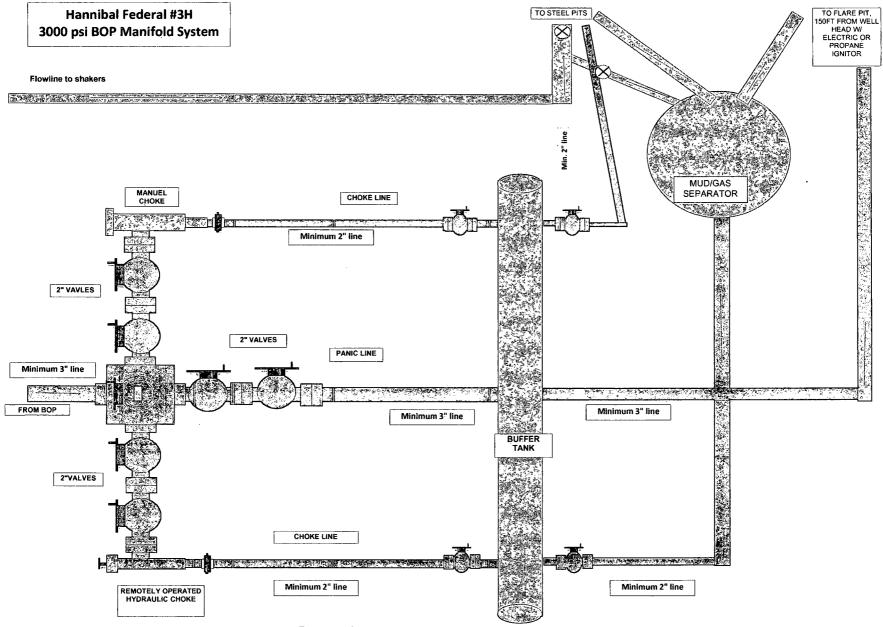
-18.6

KOP / Build 12º / 100'

End of Curve @ 8053' MD / 90° / 7780' TVD TD @ 12342' MD / 7780' TVD

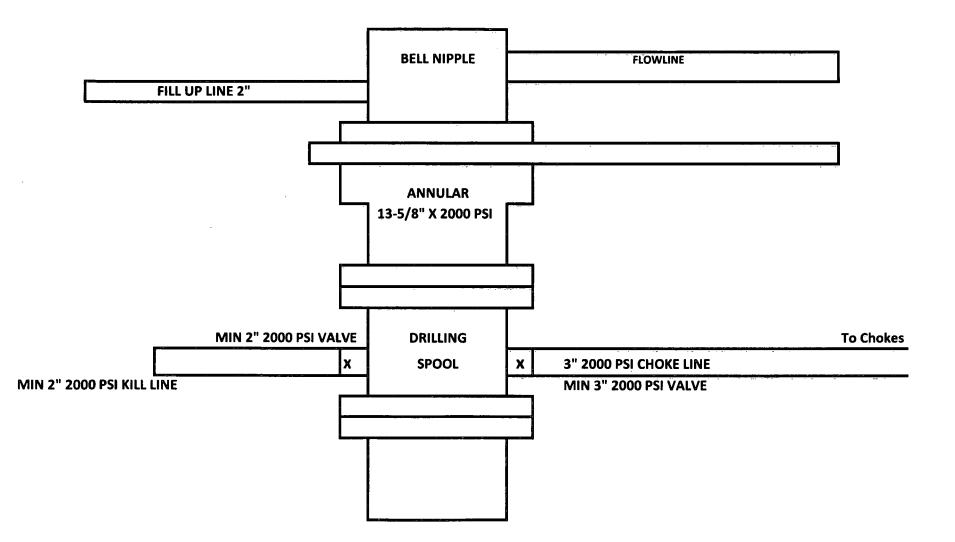

7,302.5


8,052.5 12,341.8 7,302.5


7,780.0 7,780.0 0.0

-477.5

-4,766.7

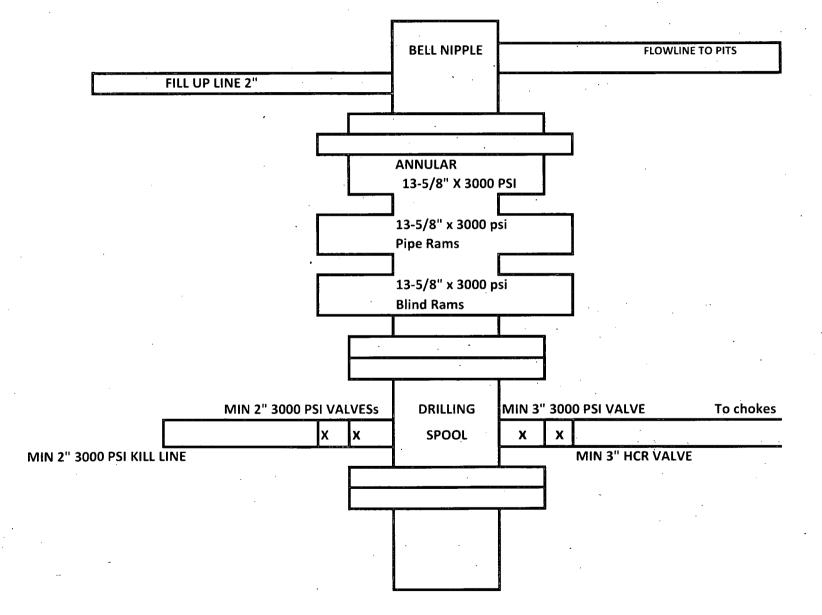

Exact manifold configuration may vary

Well: Hannibal Federal #3H

200' FNL, 1660' FWL, Sec. 31-T22S-R28E

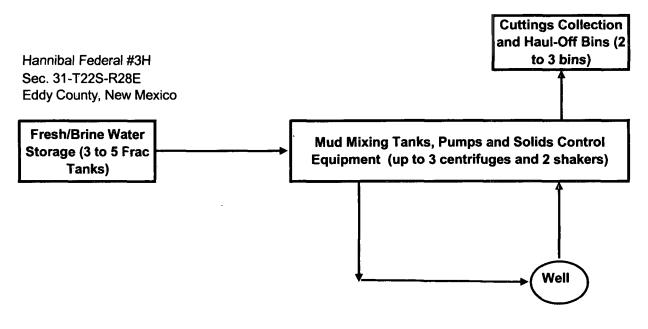
Eddy County, New Mexico

Nadel and Gussman Permian, L.L.C. BOP Scematic 12.25" hole



Well: Hannibal Federal #3H

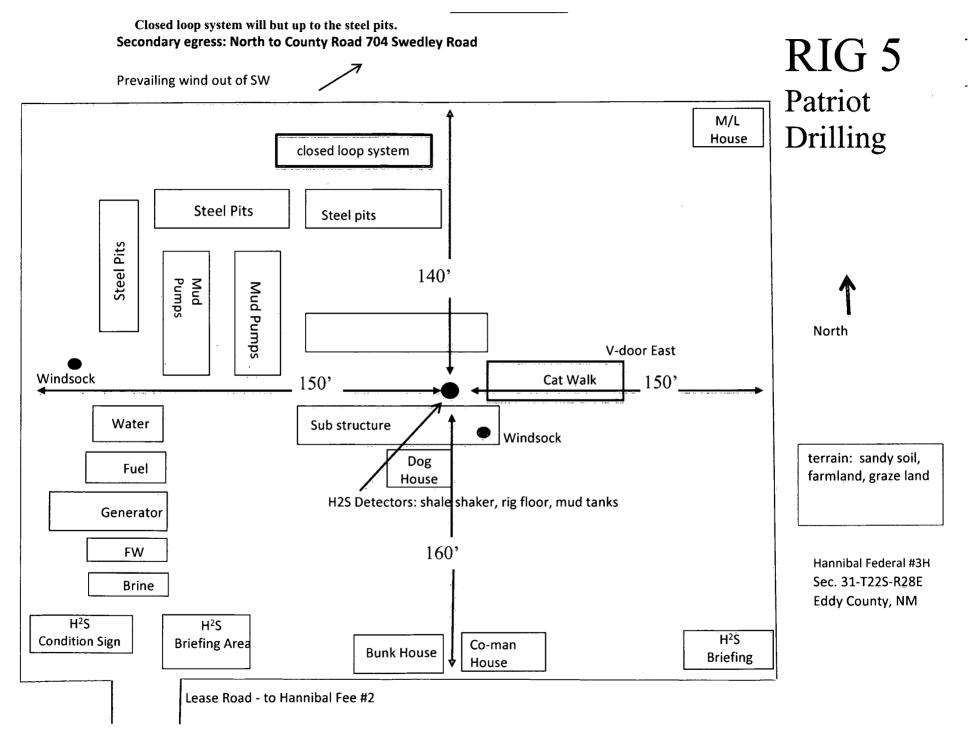
200' FNL, 1660' FWL, Sec. 31-T22S-R28E


Eddy County, New Mexico

Nadel and Gussman Permian, L.L.C. BOP Scematic 8.75" & 7.875" hole

CLOSED-LOOP SYSTEM

Design Plan:



Operating and Maintenance Plan:

During drilling operations, third party service companies will utilize solids control equipment to remove cuttings from the drilling fluid and collect it in haul-off bins. Equipment will be closely monitored at all times while drilling by the derrick man and the service company employees.

Closure Plan:

During drilling operations, third party service companies will haul-off drill solids and fluids to an approved disposal facility. At the end of the well, all closed loop equipment will be removed from the location.

Location road

NADEL AND GUSSMAN PERMIAN, L.L.C. 601 N. MARIENFELD STE. 508 MIDLAND, TX 79701 (432) 682-4429 (Office) (432) 682-4325 (Fax)

May 20, 2014

÷

Mr. Ingram Carlsbad BLM Field Office 620 E. Greene St. Carlsbad, NM 88220

Re: Hannibal Federal #3H SHL: 200' FNL, 1660' FWL Sec. 31, T22S, R28E Eddy County, NM Rule 118 H2S Exposure

Dear Mr. Ingram,

Nadel and Gussman Permian, LLC have evaluated this well and we do not expect to encounter hydrogen sulfide. However, we will employ a third party monitoring system. We will begin monitoring prior to drilling out the surface casing and will continue monitoring the remainder of the well.

Please contact me if you have any additional questions.

Sincerely Jason Gos

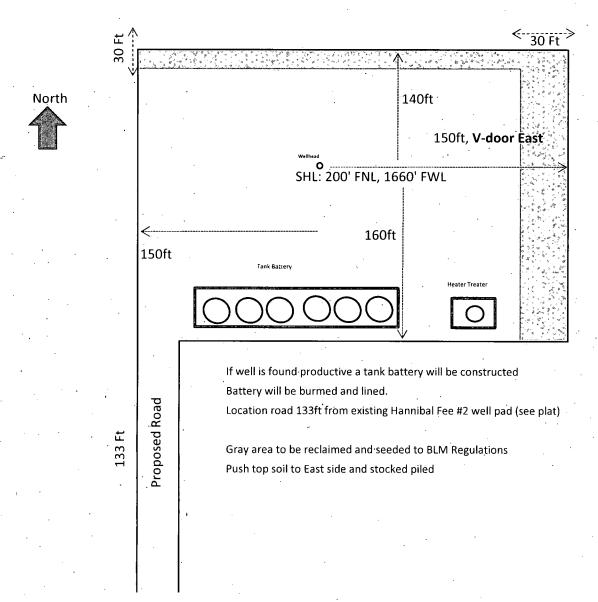
Drilling Engineer

Hydrogen Sulfide Drilling Operations Plan Hannibal Federal #3H Sec. 31, T22S, R28E Eddy County, NM

- 1. Company and contract personnel admitted on location should be trained by a qualified H₂S safety instructor to the recognize and handle following:
 - A. Characteristics of H₂S gas
 - B. Physical effects and hazards
 - C. Proper use of safety equipment and life support systems
 - D. Principle and operation of H₂S detectors, warning system and briefing knowledge
 - E. Evacuation procedure, routes and first aid support
 - F. Proper use of 30 minutes Pressure-on-Demand Air Pack
- 2. Supervisory personnel will be trained in the following areas:
 - A. Effects of H2S on metal components.
 - B. Corrective action and shut in procedures, blowout prevention, and well control procedure.
 - C. Contents of Hydrogen Sulfide Drilling Operations Plan.
- 3. H₂S Detection and Alarm Systems (will be in place after setting surface casing and will not drill ahead without alarm system working)
 - A. H₂S detectors and audio alarm system to be located at bell nipple, shale shaker and on derrick floor or doghouse installed and maintained by a third party safety company.
 - B. Thirty minute self-contained work unit located in dog house and at briefing areas.
- 3. Windsock and/or Wind Streamers
 - A. Windsock at mud pit area (high enough to be visible)
 - B. Windsock on dog house (high enough to be visible)
- 4. Condition Flags and Signs
 - A. H₂S warning signs on lease access road into location
 - B. Flags displayed on sign at location entrance
 - 1. Green flag indicates "Normal Safe Conditions"
 - 2. Yellow Flag indicates "Potential Pressure and Danger"
 - 3. Red Flag indicates "Danger H₂S Present in High Concentrations" admit only emergency personnel
- 5. Well Control Equipment
 - A. See BOP, Choke, and Mud/Gas Separator exhibit.
 - B. Blow out preventers will be equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit. Annular type blowout preventer will also be in place. Supplemental fuel will be provided for flaring noncombustible gas.
- 6. Communication
 - A. While working under masks chalkboards will be used for communication
 - B. Hand signals will be used where chalk board is inappropriate
 - C. Two -way radios or cell phones used to communicate off location or minimally in Drilling Foreman's trailer or living quarters
- 7. Drillstem Testing (not planned)
 - A. Exhausts watered
 - B. Flare line equipped with electric Igniter/propane pilot light in case gas reaches surface

C. If location near dwelling closed DST will be performed

· · ·


.

- 9. If H₂S encountered, mud system shall be addressed to maintain control of formation. A mud gas separator will be brought into service along with H₂S scavengers, if necessary. pH will be maintained at 10, to minimize h2S in the system. Hydrogen sulfide scavengers will also be used to minimize hazards while drilling the well.
- 10. Mud program: pH of 10 will be maintained with additives to minimize hazards of H2S. H2S scavengers will also be used to minimize effects on tubulars and well control equipment and control effects of H2S on metallurgy.

٠.,

NADEL AND GUSSMAN Permian, LLC		(432) 682-4429		
Company Personne	<u>əl</u>			
Jason Goss	Drilling Engineer	432-682-4429		
Kurt Hood	Foreman	512-784-2613 575-513-1499		
		575-746-1428		
ARTESIA N.M.				
Ambulance		911		
State Police		575-748-9718		
City Police		575-746-5000		
Sheriff's Office		575-746-9888		
Fire Department		575-746-5050 or 575	5-746-5051	
N.M.O.C.D		575-748-1283		
CARLSBAD N.M.				
Ambulance		911		
State Police		575-885-3138		
City Police		575-885-2111		
Sheriff's Office		575-887-7551 575-885-3125 or 575	005 0111	
Fire Department Carlsbad BLM		575-234-5972	5-003-2111	
		540-234-3972		
HOBBS N.M.				
Ambulance		911		
State Police		575-392-5580		
City Police		575-397-9265		
Sheriff's Office		575-396-3611		
Fire Department		575-397-9308		
N.M.O.C.D		575-393-6161		
Hobbs BLM		575-393-3612		
Flight for Life (Lubbo	ck Tx)	806-743-9911		
Aerocare (Lubbock T	īx)	806-747-8923		
Med flight air Ambulance (Albuq NM)		505-842-4433		
SB air Med Services	(Albuq NM)	505-842-4949		
Wild Well Control		281-784-4700		Emergency Number 24 Hour
Boots & Coots IWC		281-931-8884		Emergency Number 24 Hour
Cudd Pressure Cont		713-849-2769		Emergency Number 24 Hour
BJ Services	(Artesia NM)	575-746-3569		
	(Hobbs NM)	575-392-5556		
	ncy Response Commi	ssion (Santa Fe)	505-476-9	
24 Hour			505-827-9	
New Mexico State Er	mergency Operations (Center	505-476-9	1635

LOCATION/BATTERY DIAGRAM Hannibal Federal #3H Section 31, T-22-S, R-28-E, Eddy County, NM

1. Existing Roads:

Exhibit 1 contains the surveys and a map with proposed location and lease roads. The location is approximately 5 miles North of Loving, NM. From the intersection of U. S. Highway 285 and Co. Rd. 704 (Smedley), go East on Co. Rd. 704 Approx. 2.4 miles. Turn right at Co. Rd. 710 (Roberson) and go south approx. 0.15 miles turn left and go east approx. 0.25 miles to the existing Hannibal Fee #2 well pad. From the North side of the existing pad follow proposed road survey stakes North approx. 133 feet to new Location, Hannibal Federal #3H. Nadel and Gussman Permian, LLC will improve or maintain existing roads in a condition the same as or better than before operations began. Nadel and Gussman Permian will repair pot holes, clear ditches, etc. All existing structures on the entire access route will be repaired or replaced if they are damaged or have deteriorated beyond practical use, BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

2. Planned Access Roads:

From the North side of the existing Hannibal Fee #2 follow proposed road survey stakes North approx. 133 feet to new Location, Hannibal Federal #3H, Drilling pad (approximately 300' x 300' location) will be constructed. See road plat. The maximum width of the driving service will be 14 feet. The maximum width of surface disturbance needed to construct the road will be 25 feet. The road will be crowned and ditched with a 2 % slope from the tip of the crown to the edge of the driving surface. The ditches will be 3 feet wide with 3:1 slopes. The driving surface will be made of 6" rolled and compacted caliche.

3. Location of Existing Wells:

See 1 mile radius map, existing wells within 1 mile.

4. Location of Tank Batteries, Electric Lines, Etc.:

- a. In the event the well is found productive, the tank battery would be utilized and the necessary production equipment (tanks, separator) would be built on location see battery diagram.
- b. NGP plans to use a generator for electric supply initially. Will submit a sundry for electric line construction when needed.

5. Location and Types of Water Supply:

This location will be drilled using a combination of water mud systems (outlined in the drilling program). Water will be obtained from commercial water stations in the area and hauled in by transport truck using the existing and proposed roads shown in the C-102.

6. Sources of Construction Material:

Top soil will be stock piled on the east of location and will be used after drilling and completion operations to reduce location size and reclaim and reseeded to BLM specifications. All caliche utilized for the drilling pad and proposed access road will be obtained from an existing BLM / State approved pit or from prevailing deposits found under the location. All roads will be constructed of 6" rolled and compacted caliche.

7. Methods of Handling Waste Disposal:

- a. All trash, junk, and other waste material will be contained in trash cages or trash bin to prevent scattering. When the job is completed, all contents will be removed and disposed of in an approved sanitary landfill. The wellsite will be cleaned of all waste within 30 days of final completion of the well.
- b. A portable toilet will be provided for the rig crews. This equipment will be properly maintained during the drilling and completion operations and will be removed when all operations are complete.
- c. Disposal of fluids to be transported by trucks to a nearby approved disposal.
- d. Closed loop solid control will be used. Drill solids waste will be collected in bins and hauled to permitted disposal facility in accordance with NM OCD rules. Should any incidental oil be recovered during testing of this well, this oil will be considered waste oil and not sellable due to contamination by drilling and/or completion fluids.

8. Ancillary Facilities:

Nadel and Gussman Permian will explore all options for obtaining water storage for stimulation and completion, a frac pit may be needed.

9. Wellsite Layout

- a. Rig Plat shows the relative location and dimensions of the well pad and major rig components, a frac pit may be needed.
- b. The land is relatively flat with scattered dunes and sandy soil.
- c. The pad area has been staked.

10. Plan for Restoration of the Surface:

- a. After drilling and completion operations are completed, all equipment and other materials not needed for further operations will be removed. The location cleaned of all trash to leave the wellsite as pleasant in appearance as possible.
- b. If the proposed operation is nonproductive, all restoration and/or vegetation requirements of the BLM will be complied with, and will be accomplished as quickly as possible. Will remove all base material from pad and restore to pre-existing conditions.
- c. Interim reclamation consists of minimizing the footprint of disturbance by reclaiming all portions of the well site not needed for production operations. Topsoil is respread over areas not needed for production operations and recontoured to the surrounding area and reseeded, will remove base material from pad in reclaimed area.

11. Surface Ownership:

- a. The surface owner of the well pad and road is Brantley Farms; being Draper Brantley and George Brantley, 706 W. Riverside Drive, Carlsbad, NM 88220. (575) 706-3169
- b. A copy of the surface use plan has been provided to Draper Brantley and George Brantley.
- c. A surface use agreement has been reached with Draper Brantley and George Brantley.

12. Other Information:

- a. The mineral owner of the South Half of Section 31 is the Federal Government.
- b. An onsite with Indra Dahal was conducted on 3/5/2014.
- c. The topography consists of sandy soil with native grasses. No wildlife was observed, but the usual inhabitants of this region are Jackrabbits, Reptiles, Coyotes, etc.
- d. There are no ponds, lakes, or rivers in this area.
- e. Surface is farmland under cultivation. There is no evidence of any significant archaeological, historical, or cultural sites in the area. Further, there are no occupied dwellings or windmills in the area.

13. Operator's Representative:

The Nadel and Gussman Permian, LLC Company representatives responsible for ensuring compliance of the Surface Use plan are listed below.

Kurt Hood, Production Foreman

Jason Goss, Drilling Engineer Nadel and Gussman Permian, L.L.C. 601 N. Marienfeld, Suite 508 Midland, TX 79701 (432) 682-4429

August 5, 2014

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Nadel and Gussman Permian, L.L.C.
LEASE NO.:	NMNM-26684
WELL NAME & NO.:	Hannibal Federal 3H
SURFACE HOLE FOOTAGE:	0200' FNL & 1660' FWL
BOTTOM HOLE FOOTAGE	0330' FSL & 1660' FWL
LOCATION:	Section 31, T. 22 S., R 28 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General	Provisions
----------------	-------------------

``

] Permit Expiration

Archaeology, Paleontology, and Historical Sites

Noxious Weeds

Special Requirements

Communitization Agreement

Construction

Notification Topsoil Closed Loop System Federal Mineral Material Pits Well Pads Roads

Road Section Diagram

Drilling

Cement Requirements Medium Cave/Karst Logging Requirements Waste Material and Fluids

Production (Post Drilling)

Well Structures & Facilities

Interim Reclamation

Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

ł

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Communitization Agreement

A Communitization Agreement covering the acreage dedicated to this well must be filed for approval with the BLM. The effective date of the agreement shall be prior to any sales. In addition, the well sign shall include the surface and bottom hole lease numbers. If the Communitization Agreement number is known, it shall also be on the sign. If not, it shall be placed on the sign when the sign is replaced. **Operator shall add "COM" to the name.**

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

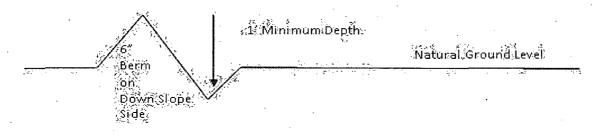
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

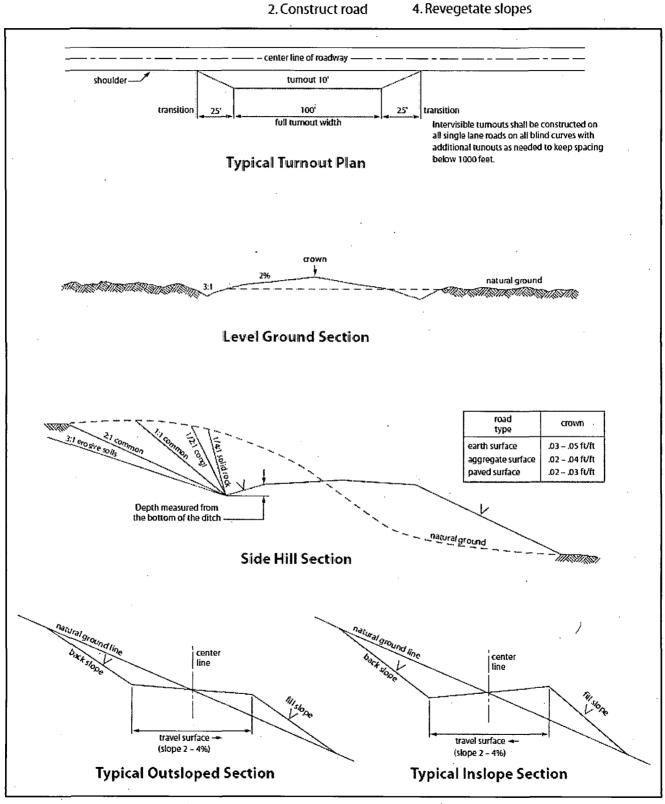
Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

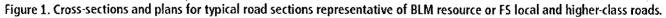
400 foot road with 4% road slope: $\underline{400'} + 100' = 200'$ lead-off ditch interval 4%

Cattleguards

An appropriately sized cattleguard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattleguards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguards that are in place and are utilized during lease operations.

Fence Requirement


Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.


Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps

1. Salvage topsoil3. Redistribute topsoil2. Construct road4. Revegetate slopes

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
- 1. Although Hydrogen Sulfide has not been reported in the area, it is always a potential hazard. Operator has stated that they will have monitoring equipment in place prior to drilling out of the surface shoe. If Hydrogen Sulfide is encountered, report measured amounts and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) time prior to drilling out for a primary cement job will be a minimum 18 hours for a water basin, 24 hours in the potash area, or 500 pounds compressive strength, whichever is greater for all casing strings. DURING THIS WOC TIME, NO DRILL PIPE, ETC. SHALL BE RUN IN THE HOLE. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. IF OPERATOR DOES NOT HAVE THE WELL SPECIFIC CEMENT DETAILS ONSITE PRIOR TO PUMPING THE CEMENT FOR EACH CASING STRING, THE WOC WILL BE 30 HOURS. See individual casing strings for details regarding lead cement slurry requirements.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Medium Cave/Karst

Possibility of water flows in the Salado and Castile. Possibility of lost circulation in the Rustler, Salado, and Delaware.

- 1. The 13-3/8 inch surface casing shall be set at approximately 400 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at approximately 2300 feet (basal anhydrite of the Castile formation), is:

Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

3. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Cement should tie-back at least 300 feet into previous casing string. Operator shall provide method of verification.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 2000 (2M) psi (Installing 2M annular).
 - a. For surface casing only: If the BOP/BOPE is to be tested against casing, the wait on cement (WOC) time for that casing is to be met (see WOC statement at start of casing section). Independent service company required.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be 3000 (3M) psi.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (18 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 091814

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the

largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

IX. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

X. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

Seed Mixture 1, for Loamy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species

<u>lb/acre</u>	
0.5	
1.0	
5.0	
2.0	
	1.0 5.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed