					ATS-1	4-10	32
Form 3160 - 3 (March 2012)			OCD Art	esla	FORM OMB N Expires (APPROVED No. 1004-0137 October 31. 20) 14
DEF	UNITED STATE ARTMENT OF THE REALLOFLAND MA	S INTERIOR NAGEMENT			5. Lease Serial No. SL:NMLC061672B	BHL:NML	_C063136
APPLICATION	N FOR PERMIT TO	DRILL OF		.∩.v	6. If Indian, Allotee	or Tribe Na	aine
la. Type of work: 🚺 DRILL	REEN	TER U	NORTHUL LOCATIO	N	7 If Unit or CA Agree Poker Lake Unit N	eement, Nam MNM7101	ne and No. 6X
Ib. Type of Well: Oil Well	I: Oit Well Gas Well Other Single Zone Multiple Zone					Well No. VX JV PB	012H
2. Name of Operator BOPCO, L.P.		2h Phone No	(include area coda)		9. API well No. <u>30</u> - <u>015</u>	5 - 433	809
3a. Address PO Box 2760 Midland, TX 79702		432-683-22	277		Undesignated; Bor	ne Spring	
 Location of Well (Report location of At surface SESW, UL N, 100' F 	learly and in accordance with SL & 2125' FWL, Lat: 32	any State requirem 2.079553, Lg:	^{ents.*)} 103.784475		Sec 33; T25S-R31	E	ey or Area
At proposed prod. zone 2310' FSI 14. Distance in miles and direction from	_&1980' FWL, Sec 28-29 nearest town or post office*	5-31E. Lat:32.	100206,Lg:103.78	4917	12. County or Parish	1	3. State
15. Distance from proposed* location to nearest property or lease line, ft.	20 miles southeast of Malaga, NM 15. Distance from proposed* location to nearest property or lease line, ft.				ng Unit dedicated to this es	well	
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	 (Also to nearest drig. unit line, if any) 18. Distance from proposed location* to nearest well, drilling, completed, unit 60 applied for, on this lease, ft. 				MBIA Bond No. on file 00050		
21. ¹ Elevations (Show whether DF, KDE 3304' GL	3, RT, GL, etc.)	22. Approxit	nate date work will sta 4	.[urt*	23. Estimated duratio 30 days	n	
		24. Attac	hments				
The following, completed in accordance w	with the requirements of Onsh	ore Oil and Gas	Order No.1, must be a	ittached to th	uis form:		
 Well plat certified by a registered surv A Drilling Plan. A Surface Use Plan (if the location 	eyor. is on National Forest Syster	n Lands, the	 Bond to cover Item 20 above). Operator certification 	the operation	ons unless covered by an	existing bo	nd on file (
SUPO must be filed with the appropri	ate Forest Service Office).	<u></u>	6. Such other site BLM.	specific inf	ormation and/or plans as	s may be req	uired by th
25. Signature	eka	Name Whitn	(Printed/Typed) ey McKee	•		$\frac{Date}{7/2}$	1/14
Engineering Assistant	N 60	Name	(Printed/Typed)			Date	1.0.0
Title Steve (Caffey	Office	······			AUG	1-3-2
FIELD MANAG	ER certify that the applicant ho	lds legal or equit	able title to those rigi	AD FIELD	OFFICE	entitle the ap	plicant to
Conditions of approval, if any, are attach	ed. .S.C. Section 1212 make it a	crime for any n	erson knowingly and	APP	nake to any department of	I WU Y	LARS
States any false, fictitious or fraudulent st	atements or representations a	s to any matter w	ithin its jurisdiction.				
(communed on page 2)		ARTESIA (8 2015		~(inst	AUCTIONS (on page
Carlsbad Controlled Water	Basin	RECE	IVED	SEI CO	E ATTACHI Ndition <mark>s</mark>	ed fo of a)R PPRC
	Approval	Subject to G	eneral Requirem	ents		8) 8/1	1) 9/15

DISTRICT I 1625 N. French Dr., Hobbs, NM 88240 Phone (575) 393-6161 Fax: (575) 393-0720 DISTRICT II 811 S. First St., Artesia, NM 88210 Phone (575) 748-1283 Fax: (575) 748-9720

DISTRICT III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone (505) 334-8178 Faz: (505) 334-8170 DISTRICT IV

1225 S. St. Francis Dr., Santa Fe, NM 87505 Phone (505) 476-3480 Pax: (505) 478-3462

Property Code

OGRID No.

260737

40065-

API Number

015-432

313363

State of New Mexico Energy, Minerals and Natural Resources Department

Revised August 1, 2011 Submit one copy to appropriate District Office

Form C-102

OIL CONSERVATION DIVISION 1225 South St. Francis Dr.

Santa Fe, New Mexico 87505

WELL LOCATION AND ACREAGE DEDICATION PLAT

Property Name

POKER LAKE UNIT CVX JV PB

Operator Name

Surface Location

BOPCO, L.P.

Pool Code

97913

□ AMENDED REPORT wc- GOG 52530020 UNDESIGNATED, BONE SPRING Well Number 012H Elevation 3304

Pool Name

UL or lot No.	Section	Township	Range	Lot Idn	FEET from the	North/NORTH LINE	FEET from the	East/WEST LINE	County
N	33	25 S	31 E		100	SOUTH	2125	WEST	EDDY

Bottom Hole Location If Different From Surface

UL or lot No.	Section	Township	Range	Lot Idn	FEET from the	North/NORTH LINE	FEET from the	East/WEST LINE	County
К	28	25 S	31 E		2310	SOUTH	1980	WEST	EDDY
Dedicated Acres	Joint o	r Infill C	onsolidation	Code Or	der No.				
240									

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

30613 Drawn By: K. NORRIS Date: 06-26-2014

DRILLING PROGRAM BOPCO, L.P.

NAME OF WELL: Poker Lake Unit CVX JV PB #012

1. LEGAL DESCRIPTION - SURFACE: 100' FSL, 2125' FWL, Sec 33-T25S-R31E. BHL: 2310' FSL, 1980' FWL, Sec 28-T25S-R31E.

2. Ground level elevation: 3304' KB elevation (estimated): 3191'

3. Proposed Drilling Depth: 17,468' MD 10,294' TVD

4. WATER, OIL, GAS AND/OR MINERAL BEARING FORMATIONS:

Formation Description	Est from KB	BEARING
T/Fresh Water	401'	Fresh Water
T/Rustler	777'	Barren
T/Salado	1,154'	Barren
T/Lamar	4,100'	Barren
Ramsey	4,132'	Oil/Gas
Cherry Canyon	4,994'.	Oil/Gas
Brushy Canyon	6,328'	Oil/Gas
Bone Spring	8,057'	Oil/Gas ,
1 st Bone Spring Sand	9,100'	Oil/Gas
2 nd Bone Spring Sand	9,833'	Oil/Gas
TD Horizontal	10,294'	Oil/Gas

5. Possible mineral bearing formation: Shown above

6. Casing Program

	s.	ţ.		0' 0	Hall Parks			n n			
D.		Sec.0	ၣ	Siz .	ъ В	· 20	R		<u></u>	: josd	5
all se	Standard State St	et D	asir ze	ole	asii leig	asiir	, jë	- jo	Sue		- ISIN
O .		ν N N N N N N N N N N N N N	ଁ୦୦	Ŧ	ξ <mark>Ο</mark> ≤ ∵a	0.0	$F_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}}}}$	Ŭ	ाम् जः	୍ୱିଠ୍ୱାଦ୍	т Ш
Surface	0-1140'	1140'	13-3/8"	17-1/2"	54.5 #	J-55	ST&C	New	15.97	2.03	1.76
Intermediate	0-4120'	4120'	9-5/8"	12-1/4"	40 #	N-80	LT&C	New	5.30	1.30	2.50
Production	0-10418'	10191'	7"	8-3/4"	26 #	HCP-110	LT&C	New	3.03	1.36	1.75
Completion	103 6 8'-17468'	10294'	4-1/2"	6-1/8"	11.6 #	HCP-110	LT&C	New	2.71	1.44	1.86
System/Liner	10318'										

* Depending on availability. I must the back a minimum of 100

DESIGN CRITERIA AND CASING LOADING ASSUMPTIONS:

SURFACE CASING - (13-3/8")

Tension A 1.6 design factor utilizing the effects of buoyancy (9.2 ppg).

- Collapse A 1.0 design factor with full internal evacuation and a collapse force equal to the mud gradient in which the casing will be run (0.48 psi/ft). The effects of axial load on collapse will be considered.
- Burst A 1.3 design factor with a surface pressure equal to the fracture gradient at setting depth less a gas gradient to the surface. Internal burst force at the shoe will be fracture pressure a that depth. Backup pressure will be formation pore pressure. In all cases a conservative fracture pressure will be used such that it represents the upper limit of potential fracture resistance up to a 1.0 psi/ft gradient. The effects of tension on burst will not be utilized.

PROTECTIVE CASING - (9-5/8")

Tension A 1.6 design factor utilizing the effects of buoyancy (10.2 ppg).

Collapse A 1.125 design factor with full internal evacuation and a collapse force equal to the mud gradient in which the casing will be run (0.52 psi/ft). The effects of axial load on collapse will be considered.

In the case of development drilling, collapse design should be analyzed using internal evacuation equal to 1/3 the proposed total depth of the well. This criterion will be used when there is absolutely no potential of the protective string being used as a production casing string.

Burst A 1.0 surface design factor and a 1.3 downhole design factor with a surface pressure equivalent to the fracture gradient at setting depth less a gas gradient to the surface. Internal burst force at the shoe will be fracture pressure at that depth. Back pressure will be formation pore pressure. In all cases a conservative fracture pressure will be used such that it represents the upper limit of potential fracture resistance up to a 1.0 psi/ft gradient.

Production CASING - (7")

- Tension A 1.6 design factor utilizing the effects of buoyancy (9.0 ppg).
- Collapse A 1.125 design factor with full internal evacuation and a collapse force equal to the mud gradient in which the casing will be run (0.48 psi/ft). The effects of axial load on collapse will be considered.
- Burst A 1.25 design factor with anticipated maximum tubing pressure (5000 psig) on top of the maximum anticipated packer fluid gradient.⁻ (0.433 psi/ft) Backup on production strings will be formation pore pressure. (0.433 psi/ft) The effects of tension on burst will not be utilized.

Completion System - (4-1/2")

Tension A 1.6 design factor utilizing the effects of buoyancy (9.0 ppg).

- Collapse A 1.125 design factor with full internal evacuation and a collapse force equal to the mud gradient in which the casing will be run (0.48 psi/ft). The effects of axial load on collapse will be considered.
- Burst A 1.25 design factor with anticipated maximum tubing pressure (5000 psig) on top of the maximum anticipated packer fluid gradient. (0.433 psi/ft) Backup on production strings will be formation pore pressure. (0.433 psi/ft) The effects of tension on burst will not be utilized.

7. CEMENT

Surface	Sacks	Weight (ppg)	Yield (FT ^{3/} SX)	GALS/SX	Cement Blend
Lead	670	13.50	1.75	8.69	Class C +2% CACL + 4% Bentonite + 0.25 LB/SK Cello Flake + 3 lb/sk LCM-1
Tail	340	14.80	1.35	6.35	Class C + 2% CACL + 0.25 LB/SK CF, 0.25LB/SK Cello Flake +3 lb/sk LCM-1

TOC: 0' 100% Excess

	Sacks	Weight. (ppg)	Yield (FT ^{3/} SX)	GALS/SX	Cement Blend
Lead	810	12.90	1.85	9.32	EconoCEM HLC + 5% CaCl + 5#/sk Gilsonite
Tail	190	14.80	1.33	6.34	HalCem C
TOC: 0'	30% E	Excess	·····		

Production Sacks Weight GAĽS/SX Cement Blend. *ielc* Stage 1 S (ppg) Tuned Light + 0.125 pps Poly-E-Flake Lead 400 11.0 2.64 14.87 Class "H" + 0.5% Halad-344 + 0.25% CFR-3 + 0.5% Tail 100 12.00 2.03 11.41 Econolite 50% Excess TOC: 5000' DV Tool @ 5000'

Production Stage 2	Sacks	Weight (ppg)	(FT ^{3/} SX)	GALS/SX	Cement Blend
🕤 Lead	130	11.0	2.35	11.70	Tuned Light + 0.125 pps Poly-E-Flake
TOC: 0	10% E	xcess ins	ide casin	g, 50% exce	ss in open hole
200 tubac	k mini	mien	•		

Cemented	Sacks	Weight.	· Yield (FT ^{3/} SX)	∴GALS/SX+,	Cement Blend
Primary	430	12.0	2.03	11.41	Class "H" + 0.5% Halad-344 + 0.25% CFR-3 + 0.5%
					Econolite

TOC: 10368' 10% Excess inside casing, 30% excess in open hole Cement volumes will be adjusted proportionately for depth changes of the multi stage tool.

COMPLETIONS SYSTEM

A 4-1/2" cemented liner will be run in the producing lateral to a depth of 17468'. The top of the liner will be set approximately 10368. BOPCO, L.P. plans to selectively perforate the 4-1/2" cemented liner. The estimated top perforation will be located below the top of the target formation at a depth of 10,518' MD.

10318 (must tie back a minimum of 100)

See COA

8. PRESSURE CONTROL EQUIPMENT (SEE ATTACHED DIAGRAM A, B, C or Z)

After running the 13-3/8" surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 3M will be installed on the Cameron Multi-Bowl System wellhead. The BOP/BOPE will be pressure tested to 250 psi low and 3000 psi high after installation on the surface casing which will cover testing requirements for the duration of the well as per Onshore Order #2. The 9-5/8" intermediate casing and 7" production casing will be run with a mandrel hanger through the 13-5/8" BOP/BOPE system without breaking any connections on the BOP/BOPE system and thus not requiring a pressure test. Please find attached wellhead schematic. The field reports from the Cameron representative and the BOP test information will be provided in a subsequent report.

These tests will be performed:

a) Upon installation

b) After any component changes

c) Thirty days after a previous test

d) As required by well conditions

e) Any time a seal is broken within a system

A function test to insure that the preventers are operating correctly will be performed on each trip cv?

² BOPCO, L.P. would like to request a variance to use an armored, 3" flex hose for the choke line in the drilling of the well if the rig is equip with hose. (See specification for hose that might be used, attached with APD exhibits). If an armored flex hose is utilized, the company man will have all of the proper certified paper work for that hose available on location.

9. MUD PROGRAM

DEPTH	MUD TYPE			••• <u>PV</u>	• <u>YP</u> •	<u>Ph</u>
0 -1140'	FW Spud Mud	8.5 – 9.2	38-70	NC	NC	9.5 – 10.5
1140' – 4120'	Brine Water	9.8 – 10.2	28-30	NC	NC	9.5 - 10.5
4120' — 10418'	FW/Gel	8.7 – 9.0 🧋	28-36	NC	NC	9.5 – 10.5
10418'-17468'	FW/Gel/Starch	8.7 – 9.0	36-55	16-30	16-30	NA

NOTE: Sufficient mud materials will be kept on location at all times in order to combat lost circulation or control unexpected kicks. May increase vis for logging purposes only.

The mud monitoring system installed on the rig is an electronic Pason, which satisfies onshore order 1 requirements.

10. Drilling Plan

KOP: 9618' EOC: 10,745' MD (10,249' TVD)

Set surface and intermediate casing strings. Drill production hole to KOP, continue drilling curve. Set and cement production casing at end of 70 degree, 100' tangent (in curve). Drill completion hole to TD. Run cemented liner.

4

11. TECHNICAL STAGES OF OPERATION

- A) TESTING None anticipated.
- B) LOGGING
 - <u>Run #1</u>: GR with MWD during drilling of build and horizontal portions of 8-3/4" and 6-1/8" hole.
 - Run #2: Shuttle log w/GR, PE, Density, Neutron, Resistivity in lateral leg open hole are possible.
 - Mud Logger: Rigged up at 100'
- C) CONVENTIONAL CORING None anticipated

12. H2S SAFETY EQUIPMENT

H2S monitors shall be installed prior to drilling out the surface shoe. If H2S is encountered in quantities greater than 10 PPM, the well will be shut in and H2S equipment will be installed, including a flare line that will be extended pursuant to Onshore Oil and Gas Order #6. (Please refer to diagram A, B, or C for choke manifold and closed loop system layout when H2S is present) Please refer to H2S location diagram for location of important H2S safety items.

13. ANTICIPATED RESERVOIR CONDITIONS

Normal pressures are anticipated throughout Delaware and Bone Spring sections. A BHP of 4817 psi (max) or MWE of 9.0 ppg is expected. Lost circulation may exist in the Delaware and Bone Spring sections from 4,132'-10,294' TVD.

14. OTHER PERTINENT INFORMATION

A) Auxiliary Equipment

Upper and lower kelly cocks. Full opening stab in valve on the rig floor.

B) Anticipated Starting Date

Upon approval

30 days drilling operations

14 days completion operations

JRB

5D Plan Report

1

BOPCO, L.P.	
Field Name:	Eddy Co, NM Nad27 NMEZ
Site Name:	Poker Lake Unit CVX JV PB #012H
Well Name:	Poker Lake Unit CVX JV PB #012H
Plan:	P1:V2

11 July 2014

Weatherford International Limited

5D 7.5.8 : 11 July 2014, 16:21:29 UTC

Target Name: PBHL #012H	+N // -S : 751 +E / -W :-1	Po 2.10US ft No 74:20 US ft Ea	sition (Relative to Slot centr orthing : 400608.00 US ft isting : 669825.50US ft	e) Latitude ::32°6'0.72" Longitude ::=103°47:5:66"
Shapet	TVD (Kelly B	ushing) : 10294.00 US	S ft	
Cuboid	Orientation	Azimuth : 0.00°	Inclination : 0.00°	
	Dimensions	Length : 20.00 US ft	Breadth : 20.00 US ft	Height : 20.00 US ft
			·	

Casing Points (Re MD, (US ft)	lative to Slot	centre, TVD rel Az (?)	ative to Kelly Bu TVD (US ft)	N.Offset (US ft)	E.Offset F(US ft)	Northing (US ft)	Easting: (US(ft))	 Name
10418.83	70.00	358.67	10191.44	470.84	-10.93	393566.74	669988.77	7 in

Weatherford International Limited

٠

.

Salient Poin	ts (Relative	to Slothcan	re, TVD relat	ive to 🐩 Kell	y Bushing)					200 - AV	
MD (US R)	ارچی <mark>Inc</mark> در 1 (°)?2 ارچی (°)?2	γ , Az y -e ti 4 (°) ≤5 8	311 TVD {(US ft): +;	N.Offset	E.Offset (US R)-(, VS ¹ . (ÚS,R)	DLS (*/100 US R)	B.Rate :	T.Rate in (100 USI (100 USI	, T.Face , (°)	Comment
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
9618.83	0.00	0.00	9618.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	KOP
10318.83	70.00	358.67	10157.23	376.89	-8.75	376.99	10.00	10.00	0.00	358.67	Hold
10418.83	70.00	358.67	10191.44	470.84	-10.93	470.96	0.00	0.00	0.00	0.00	Build 6's; 7 in
10745.77	89.62	358.67	10249.00	790.97	-18.36	791.18	6.00	6.00	0.00	0.01	LP
17468.86	89.62	358.67	10294.00	7512.10	-174.20	7514.12	0.00	0.00	0.00	0.00	PBHL #012H

Well path created using minimum curvature

Interpolated	Points (Rela	tive to Slot; o	entre, TVD rel	ative to Kell	y Bushing)			States States		
(US ft)	ی <mark>المد</mark> ۲ + (۹)	کې کې Az کې ⊈ (°)	(US ft) (US ft)	N.Offset st (US.ft)	E.Offset	VS (US ft)	DLS (%/100 US ft)	Northing A (US ft)	Easting () (US ft)	Comment
9600.00	0.00	0.00	9600.00	· 0.00	0.00	0.00	0.00	393095.90	669999.70	
9618.83	0.00	0.00	9618.83	0.00	0.00	0.00	0.00	393095.90	669999.70	KOP
9700.00	8.12	358.67	9699.73	5.74	-0.13	- 5.74	10.00	393101.64	669999.57	
9800.00	18,12	358.67	9797.00	28.40	-0.66	28.41	10.00	393124.30	669999.04	
9838.33	21.95	358.67	9833.00	41.52	-0.96	41.53	10.00	393137.42	669998.74	2nd BS Sand :
9900.00	28.12	358.67	9888.85	67.60	-1.57	67.62	10.00	393163.50	669998.13	
10000.00	38.12	358.67	9972.50	122.15	-2.84	122.18	10.00	393218.05	669996.86	
10100.00	48.1Z	358.67	10045.40	190.39	-4.42	1 9 0.44	10.00	393286.29	669995.28	
10200.00	58.12	358.67	10105.34	270.26	-6.27	270.33	10.00	393366.16	669993.43	
10300.00	68.12	358.67	10150.50	359.31	-8.34	359.41	10.00	393455.21	669991.36	
10318.83	70.00	358.67	10157.23	376.89	-8.75	376.99	10.00	393472.79	669990.95	Hold
10400.00	70.00	358.67	10185.00	453.15	-10.52	453.27	0.00	393549.05	669989.18	
10418.83	70.00	358.67	10191.44	470.84	-10.93	470.96	0.00	393566.74	669988.77	Build 6's; 7 in
10500.00	74.87	358.67	10215.92	548.18	-12.73	. 548.33	6.00	393644.08	669986.97	
10600.00	80.87	358.67	10236.93	645.87	-14.99	646.05	6.00	393741.77	669984.71	
10700.00	86.87	358.67	10247.60	745.23	-17.30	745.43	6.00	393841.13	669982.40	
10745.77	89.62	358.67	10249.00	790.97	-18.36	791.18	6.00	393886.87	669981.34	LP
10800.00	89.62	358.67	10249.37	845.18	-19.62	845.40	0.00	393941.08	669980.08	
10900.00	89.62	358.67	10250.04	945.15	-21.93	945.40	0.00	394041.05	669977.77	
11000.00	89.62	358.67	10250.71	1045.12	-24.25	1045.40	0.00	394141.02	669975.45	
11100.00	89.62	358.67	10251.37	1145.09	-26.57	1145.40	0.00	394240.99	669973.13	
11200.00	89.62	358,67	10252.04	1245.06	-28.89	1245.40	0.00	394340.96	669970.81	
11300.00	89.62	358.67	10252.71	1345.03	-31.21	1345.39	0.00	394440.93	669968.49	
11400.00	89.62	358.67	10253.38	1445.00	-33.52	1445.39	0.00	394540.90	669966.18	
11500.00	89.62	358.67	10254.05	1544.97	-35.84	1545.39	0.00	394640.87	669963.86	
11600.00	89.62	358,67	10254.72	1644,94	-38.16	1645.39	0.00	394740.84	669961.54	
11700.00	89.62	358.67	10255.39	1744.92	-40.48	1745.38	0.00	394840.82	669959.22	
11800.00	89.62	358.67	10256.06	1844.89	-42.80	1845.38	0.00	394940.79	669956.90	•
11900.00	89.62	358.67	10256.73	1944.86	-45.11	1945.38	0.00	395040.76	669954.59	
12000.00	89.62	358.67	10257.40	2044.83	-47.43	2045.38	0.00	395140.73	669952.27	
12100.00	89.62	358.67	10258.07	2144.80	-49.75	2145.38	0.00	395240.70	669949.95	
12200.00	89.62	358.67	10258.74	2244 .77 [′]	-52.07	2245.37	0.00	395340.67	669947.63	
12300.00	89.62	358.67	10259.41	2344.74	-54.39	2345.37	0.00	395440.64	669945.31	
12400.00	89.62	358.67	10260.08	2444.71	-56.70	2445.37	0.00	395540.61	669943.00	
12500.00	89.62	358.67	10260.74	2544.68	-59.02	2545.37	0.00	395640.58	669940,68	
12600,00	89.62	358.67	10261.41	2644.65	-61.34	2645.36	0.00	395740.55	669938.36	•
12700.00	89,62	358.67	10262.08	2744,62	-63.66	2745.36	0.00	395840,52	669936.04	
12800.00	89.62	358.67	10262.75	2844.59	-65,98	2845,36	0.00	395940.49	669933.72	
12900.00	89.62	358.67	10263.42	2944.57	-68.29	2945.36	0.00	396040.47	669931.41	
13000.00	89.62	358.67	10264.09	3044.54	-70.61	3045.36	0.00	396140.44	669929.09	
13100.00	89.62	358.67	10264,76	3144.51	-72.93	3145.35	0.00	396240.41	669926.77	
13200.00	89.62	358.67	10265.43	3244.48	-75.25	3245.35	0.00	396340.38	669924.45	
13300.00	89.62	358.67	10266.10	3344.45	-77.57	3345.35	0.00	396440.35	669922.13	
13400.00	89.62	358.67	10266.77	3444.42	-79.88	3445.35	0.00	396540.32	669919.82	

Weatherford International Limited

. 5D 7.5.8 : 11 July 2014, 16:21:29 UTC

an India Constant

DU FIOL NEUMA	5D	P	an	Re	por	t
---------------	----	---	----	----	-----	---

,

ı.

ੇ (US ft) + }	(°)	AZ ۵۱ مرجع (۹)	(US ft)	(US ft)	(US ft)	د (JS ft) کې	(%/100 US ft	(US ft).12	ية (US ft)≩.	a connenca
13500.00	89.62	358.67	10267,44	3544.39	⁷ -82.20	3545.34	0.00	396640.29	669917.50	
13600.00	89.62	358.67	10268.11	3644.36	-84.52	3645.34	0.00	396740.26	669915.18	
13700.00	89.62	358.67	10268.78	3744.33	-86.84	3745.34	0.00	396840.23	669912.86	
13800.00	89,62	358.67	10269.45	3844.30	-89.16	3845.34	0.00	396940.20	669910.54	
13900.00	89.62	358.67	10270.11	3944.27	-91.47	3945.34	0.00	397040.17	669908.23	
14000.00	89.62	358.67	10270.78	4044.25	-93.79	4045.33	0.00	397140.15	669905.91	
14100.00	89.62	358.67	10271.45	4144.22	-96.11	4145.33	0.00	397240.12	669903.59	
14200.00	89.62	358.67	10272.12	4244.19	-98.43	4245.33	0.00	397340.09	669901.27	
14300.00	89.62	358.67	10272.79	4344.16	-100.75	4345.33	0.00	397440.06	669898.95	
14400.00	89.62	358.67	10273.46	4444.13	-103.06	4445.32	0.00	397540.03	669896.64	
14500.00	89.62	358.67	10274.13	4544.10	-105.38	4545.32	0.00	397640.00	669894.32	
14600.00	89.62	358.67	10274.80	4644.07	-107.70	4645.32	0.00	397739.97	669892.00	
14700.00	89.62	358.67	10275.47	4744.04	-110.02	4745.32	0.00	397839.94	669889.68	
14800.00	89.62	358.67	10276.14	4844.01	-112.34	4845.32	0.00	397939.91	669887.36	
14900.00	89.62	358.67	10276.81	4943,98	-114.65	4945.31	0.00	398039.88	669885.05	
15000.00	89.62	358.67	10277.48	5043.95	-116.97	5045.31	0.00	398139.85	669882.73	
15100.00	89.62	358.67	10278.15	5143.93	-119.29	5145.31	0.00	398239.83	669880.41	
15200.00	89,62	358.67	10278.82	5243.90	-121.61	5245.31	0.00	398339.80	669878.09	
15300.00	89.62	358.67	10279.48	5343.87	-123.93	5345.30	0.00	398439.77	669875.77	
15400.00	89.62	358.67	10280.15	5443.84	-126.24	5445.30	0.00	398539.74	669873.46	
15500.00	89.62	358.67	10280.82	5543.81	-128.56	5545.30	0.00	398639.71	669871.14	
15600.00	89.62	358.67	10281.49	5643.78	-130.88	5645.30	0.00	398739.68	669868.82	
15700.00	89.62	358.67	10282.16	5743.75	-133.20	5745.29	0.00	398839.65	669866.50	
15800.00	89.62	358.67	10282.83	5843.72	-135.52	5845.29	0.00	398939.62	669864.18	
15900.00	89.62	358.67	10283.50	5943.69	-137.83	5945.29	0.00	399039.59	669861.87	
16000.00	89.62	358.67	10284.17	6043.66	-140.15	6045.29	0.00	399139.56	669859.55	
16100.00	89.62	358.67	10284.84	6143.63	-142.47	6145.29	0.00	399239.53	669857.23	
16200.00	89.62	358.67	10285.51	6243.61	-144.79	6245.28	0.00	399339.51	669854.91	
16300.00	89.62	358.67	10286.18	6343.58	-147.11	6345.28	0.00	399439.48	669852.59	
16400.00	89.62	358.67	10286.85	6443.55	-149.42	6445.28	0.00	399539.45	669850.28	
16500.00	89.62	358,67	10287,52	6543,52	-151.74	6545.28	0.00	399639,42	669847,96	
16600.00	89.62	358.67	10288.18	6643.49	-154.06	6645.27	0.00	399739.39	669845.64	•
16700.00	89.62	358.67	10288,85	6743.46	-156.38	6745.27	0.00	399839.36	669843.32	-
16800.00	89.62	358.67	10289,52	6843.43	-158.70	6845.27	0,00	399939.33	669841.00	
16900.00	89.62	358.67	10290.19	6943.40	-161.01	6945.27	0.00	400039.30	669838.69	
17000.00	89.62	358.67	10290.86	7043.37	-163.33	7045.27	0.00	400139.27	669836.37	
17100.00	89.62	358.67	10291.53	7143.34	-165.65	7145.26	0.00	400239.24	669834.05	
17200.00	89.62	358.67	10292.20	7243.31	-167.97	7245.26	0.00	400339.21	669831.73	
17300.00	89.62	358.67	10292.87	7343.28	-170.29	7345.26	0.00	400439.18	669829.41	
17400.00 -/	89.62	358.67	10293.54	7443.26	-172.60	7445.26	0.00	400539.16	669827.10	
17468.86	89.62	358.67	10294.00	7512.10	-174.20	7514.12	0.00	400608.00	669825.50	PBHL #012H
	•									
Formation Poi	nts (Relat	ive to Slot	entre, TVD rel	ative to Kell	, Bushing)	9 (s. 17)				
	Inc.	Az .	TVD	N.Of	set <u>E.C</u>	ffset	rthing	Easting	Name a	Comment
ው (US ft) 👘	े ¤ क (°) ¥ 😸	al the state (°) at	(US ft) 🗿 🖓 🖓 🖓	ft) : (U	S ft) 🖓 🖓 🖓 (U	IS ft)	(USIII)	(factorial)	

t

Interpolated Points (Relative to Slot centre, TVD relative to Kelly Bushing)

 (US,t)
 (US,t)<

BOPCO, L.P.

Closest Approach Page 1 of 12

REFER	ENCE WELLPATH IDENTIFICATION	e e service de la company	alles and the second states and
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

REPORT SETU	PINFORMATION	an 16 and a c	
Projection System	NAD27 / TM New Mexico SP, Eastern Zone (3001), US feet	Software System	WellArchitect® 4.1.1
North Reference	Grid	User	BWGentry
Scale	0.999942	Report Generated	8/11/2015 at 1:31:47 PM
Convergence at slot	0.29° East	Database/Source file	WellArchitectDB/No.012H_PWB_CR.xml

WELLPATH LOCATION									
	Local coordinates		Grid co	ordinates	Geographi	c coordinates			
	North[ft]	East[ft]	Easting[US ft]	Northing[US ft]	Latitude	Longitude			
Slot Location	0.00	0.00	669999.70	393095.90	32°04'46.371"N	103°47'04.082"W			
Facility Reference Pt	• •		669999.70	393095.90	32°04'46.371"N	103°47'04.082"W			
Field Reference Pt			675156.40	424489.10	32°09'56.776"N	103°46'02.231"W			

WELLPATH DATUM								
Calculation method	Minimum Curvature	Rig on No.012H SHL (KB) to Facility Vertical Datum	20.00ft					
Horizontal Reference Pt	Slot	Rig on No.012H SHL (KB) to Mean Sea Level	3324.00ft					
Vertical Reference Pt	Rig on No.012H SHL (KB)	Rig on No.012H SHL (KB) to Mud Line at Slot (No.012H SHL)	20.00ft					
MD Reference Pt	Rig on No.012H SHL (KB)							
Field Vertical Reference	Mean Sea Level							

POSITIONAL UNCER	TAINTY CALCU	LATION SETTI	NGS				
Ellipse Confidence Limit	3.00 Std Dev	Ellipse Start MD	20.00ft	Surface Position Uncertainty	included		
Declination	7.24° East of TN	Dip Angle	59.92°	Mag Field Strength	48021 nT		
Slot Surface Uncertainty @	,1SD	Horizontal	0.100ft	Vertical	0.100ft		
Facility Surface Uncertainty	/ @1SD	Horizontal	1.000ft	Vertical	1.000ft		
Positional Uncertainty values in the WELLPATH DATA table are the projection of the ellipsoid of uncertainty onto the vertical and horizontal							
planes				v	. · ·		

ANTI-COLLISION RUL	E		
Rule Name	Separation Factor : R-type Closest Approach w/Hole&Csg Limit:1.0 StdDev:3.00 w/Surface Uncert R=(D-H&C)/PU	Rule Based On	Ratio
Plane of Rule	Closest Approach	Threshold Value	1.00
Subtract Casing & Hole Size	yes	Apply Cone of Safety	no

SURVEY	SURVEY PROGRAM - Ref Wellbore: No.012H PWB Ref Wellpath: B-1								
Start MD [ft]	End MD [ft]	Positional Uncertainty Model	Log Name/Comment	Wellbore					
20.00	500.00	Generic gyro - northseeking (Standard)		No.012H PWB					
500.00	17469.31	ISCWSA MWD, Rev. 3 (Standard)		No.012H PWB					

Closest Approach Page 2 of 12

BOPCO, L.P.

REFER	ENCE WELLPATH IDENTIFICATION	str por	and a second second second second
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		· · · · · · · · · · · · · · · · · · ·

CALCULATION RANGE & CUTOFF 1 50 3 63 6 From: 20.00ft MD To: 17469.31ft MD C-C Cutoff: (none)

OFFSET	WELL	CLEA	RANCES	SUMMAR	(2 Offset W	/ellpathsisele	ected) Ratios	are calculate	d in Cl	osest Approa	ch plane
	C-C Clearance Distance			tance .	ACR Separation Ratio						
Offset Facility	Offset Slot	Offset Well	Offset Wellbore	Offset Wellpath	Ref MD [ft]	Min C-C Clear Dist [ft]	Diverging from MD [ft]	Ref MD of Min Ratio [ft]	Min Ratio	Min Ratio Dvrg from [ft]	ACR Status
PLU No.052	No.52 SHL	No.52	No.52 AWB	No.52 AWP	14506.69	70.00	14506.69	14506.86	0.10	14506.86	FAIL
PLU No.057	No.57 SHL	No.57	No.57 AWB	No.57 AWP	15485.00	,1773.47	15485.00	17053.51	6.47	17053.51	PASS

1

Clearance Report B-1 Closest Approach Page 3 of 12

REFER	ENCE WELLPATH IDENTIFICATION	N N	
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

CLEARA	CE DA	TA - Off	set Wel	lbore: No.5	52 AWB 0	ffset Wellpa	th: No:52	AWP				
Facility: PLU	No.052	Slot: N	No.52 S	HĽ, 🐝 Wel	l: No.52	Threshold	Value=1.0	0%;†/= in	terpolated/e	xtrapola	ted stat	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	C-C	ACR	Sep	ACR
[ft]	[ft]	[ft]	[ft]	[ft] [.]	[ft]	[ft]	[ft]	Bearing	Clear Dist	MASD	Ratio	Status
20.00	20.00	0.00	0.00	88.20	20.00	4540.19	175 51	257.70			67.61	DV26
120.00	120.00	0.00	0.00	188.30	120.00	4549.10	-175.51	357.79	4552.57	72.26	63.00	PASS
220.00+	220.00	0.00	0.00	288.30	220.00	4549.10	-175.51	357.79	4552.57	77.23	58.00	PASS
320.00+	320.00	0.00	0.00	200.30	320.00	4549.10	-175.51	357.79	4552.57	82.25	55 35	PASS
320.00	320.00	0.00	0.00	000.00	320.00	4549.10	-175.51 影明第175851	Weig 57470	4002.07	87:22	\$52 AM	
520.00+	520.00		0.00	588 30	520.00	4549 18	-175 51	357 70	4552 57	Q2 31	10 32	
620.00	620.00	0.00	0.00	688 30	620.00	4549.18	-175.51	357.79	4552.57	97.22	46.83	PASS
720.00+	720.00	0.00	0.00	788 30	720.00	4549 18	-175.51	357 79	4552.57	102.16	44 56	PASS
820.00+	820.00	0.00	0.00	888.30	820.00	4549 18	-175 51	357 79	4552.57	107.13	42 50	PASS
920 00+	920.00	0.00	0000	988 30	黨 續920:00	4549118	調整175151	357779	4552 57	11212	40 60	PASS
1020.00+	1020.00	0.00	0.00	1088.30	1020.00	4549.18	-175.51	357.79	4552.57	117.14	38.87	PASS
1120.00+	1120.00	0.00	0.00	1188.30	1120.00	4549,18	-175.51	357.79	4552.57	122.17	37.26	PASS
1220.00+	1220.00	0.00	0.00	1288.30	1220.00	4549.18	-175.51	357.79	4552.57	127.23	35.78	PASS
1320.00+	1320.00	0.00	0.00	1388.30	1320.00	4549.18	-175.51	357.79	4552.57	132.30	34,41	PASS
1420.00	1420.00	0.00	0.00	1488.30	1420:00	4549118	175!51	357.79	4552.57	137.38	33.14	PASS
1520.00+	1520.00	0.00	0.00	1588.30	1520.00	4549.18	-175.51	357.79	4552.57	142.48	31.95	PASS
1620.00 †	1620.00	0.00	0.00	1688.30	1620.00	4549.18	-175.51	357.79	4552.57	147.59	30.85	PASS
1720.00 †	1720.00	0.00	0.00	1788.30	1720.00	4549.18	-175.51	357.79	4552.57	152.71	29.81	PASS
1820.00	1820.00	0.00	0.00	1888.30	1820.00	4549.18	-175.51	357.79	4552.57	157.84	28.84	PASS
1920.00 †	1920:00	0.00	2.00	1988.30	1920.00	4549.18	£175.51	國357479	4552.57	162!98	\$,27,93	PASS
2020.00†	2020.00	0.00	0.00	2088.30	2020.00	4549.18	-175.51	357.79	4552.57	168.12	27.08	PASS
2120.00	2120.00	0.00	0.00	2188.30	2120.00	4549.18	-175.51	357.79	4552.57	173.27	26.27	PASS
2220.00 †	2220.00	0.00	0.00	2288.30	2220.00	4549.18	-175.51	357.79	4552,57	178.43	25.52	PASS
2320.00 †	2320.00	0.00	0.00	2388.30	2320.00	4549.18	-175.51	357.79	4552.57	183.59	24.80	PASS
2420'00†	2420.00	80:00	.20100	2488 30	書く2420:00	454918	17.5!51	357.79	4552.57	188 75	-24.12	PASS:
2520.00 †	2520.00	0.00	0.00	2588.30	2520.00	4549.18	-175.51	357.79	4552.57	193.92	23.48	PASS
2620.00 †	2620.00	0.00	0.00	2688.30	2620.00	4549.18	-175.51	357.79	4552.57	199.09	22.87	PASS
2720.00 †	2720.00	0.00	0.00	2788.30	2720.00	4549.18	-175.51	357.79	4552.57	204.26	22.29	PASS
2820.00 †	· 2820.00	0.00	0.00	2888.30	2820.00	4549.18	-175.51	357.79	4552.57	209.43	21.74	PASS
激2920:00†	2920:00	0?00	1320.00	2988:30	<u>2:-2920:00</u>	4549 18	》是17.5.51	357.79	4552.57	1,214.61	21-21	PASS
3020.00	3020.00	0.00	0.00	3088.30	3020.00	4549.18	-175.51	357.79	4552.57	219.79	20.71	PASS
3120.00 1	3120.00	0.00	0.00	3188.30	3120.00	4549.18	-175.51	357.79	4552.57	224.97	20.24	PASS
3220.00	3220.00	0.00	0.00	3288.30	3220.00	4549.18	-1/5.51	357.79	4552.57	230.16	19.78	PASS
3320.00	3320.00	0.00	0.00	3388.30	3320.00	4549.18	-1/5.51	357.79	4552.57	235.34	19.34	PASS
3420.00T	2520.00	0.00	0.00	3488.30	3420:00	4549418	475.51	357/19 257 70	4552.57	***240:53	218:93	PASS:
3520.00T	3520.00	0.00	0.00	3588.30	3520.00	4549.18	-1/5.51	357.79	4552.57	245.72	18.53	PASS
3720.00+	3020.00	0.00	0.00	3000.30	3020.00	4549.10	-175.51	257.79	4552.57	250.91	17 70	PASS
3820.00	3120.00	0.00	0.00	3888 30	3820.00	4045.10 AEA0.10	-175.51	357.79	4002.07	200.10	17.70	PASS
3020.00	3020.00	0.00	0.00	3000.30	3020.00	4049.10	-175,51	337.79	4002.07	201.29	17.42	DACC
4020.00+	4020.00		n nn	4088 30	4020.00	A540 19	-175 51	367 70	A552 57	271 67	16 76	
4120.00+	4120.00	0.00	0.00	4188 30	4120.00	4549.10	-175.51	357 70	4552.57	276.96	16.70	DASS
4220 00+	4220.00	. 0.00	0.00	4288 20	4220.00	4540 19	-175.51	357 70	4552.57	282.00	16.14	PAGG
4320.00+	4320.00	0.00	0.00	4388 30	4320.00	4540 18	-175 51	357 70	4552.57	287.25	15.85	PASS
4420:00+	4420.00	0.00	XX0:00	4488 30	4420 00	4549 18	S 175°51	35779	4552 57	292 45	\$15:57	PASS

B-1

Closest Approach Page 4 of 12

BOPCO, L.P.

 REFERENCE WELLPATH IDENTIFICATION

 Operator
 WTD - West Texas Division
 Slot
 No.012H SHL

 Area
 Eddy County, NM
 Well
 No.012H

 Field
 Poker Lake Unit
 Wellbore
 No.012H PWB

 Facility
 PLU CVX JV PB No.012H
 Image: Constraint of the second second

CLEARA		TA - Off	fset Wel	lbore: No.	52 AWB 0	ffset Wellpa	th: No.52	AWP				
Facility: PLU	No.052	Slöt: I	No.52 SI	HLSWWel	l: No.52	Threshold	Value=1.0	0 †:= in	terpolated/e	xtrapola	ed stat	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	C-C	ACR	Sep	ACR
[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	Bearing	Clear Dist	MASD	Ratio	Status
4520.004	4500.00	0.00	0.00	4500.00	4500.00	4540.48	475.54				45 00	DACO
4520.001	4520.00	0.00	0.00	4000.00	4520.00	4549.10	-1/0.01	357.79	4002.07	297.00	15.30	PASS
4620.001	4020.00	0.00	0.00	4000.30	4020.00	4049.10	-1/0.01	357.79	4002.07	302.64	15.03	PASS
4720.001	4720.00	0.00	0.00	4708.30	4720.00	4549.18	-1/0.01	357.79	4002.07	308.04	14.78	PASS
4820.00T	4620.00	0.00	0.00	4000.30	4820.00	4049.18	-175.51	357.79	4552.57	313.24	14.53	PASS
1920:00T	£020.00		b@@U!UU	4988.30	E84920:00	454918	1425.21	Se 357.9	Mill 4552:57	編318.43	骤14:30	READOR
5020.00T	5020.00	0.00	0.00	5088.30	5020.00	4549.18	-1/5.51	357.79	4552.57	323.63	14.07	PASS
5120.00T	5120.00	0.00	0.00	5188.30	5120.00	4549.18	-1/5.51	357.79	4552.57	328.83	13.84	PASS
5220.00T	5220.00	0.00	0.00	5288.30	5220.00	4549.18	-175.51	357.79	4552.57	334.03	13.63	PASS
5320.00T	5320.00	0.00	0.00	5388.30	5320.00	4549.18	-175.51	357.79	4552.57	339.23	13.42	PASS
5420.00T	5520.00			5500 30	\$\$420:00	A549.18	an 175 51	257.49	224552157	344:43	(B) 3:22	PASS#
5520.00T	5520.00	0.00	0.00	5588.30	5520.00	4549.18	-175.51	357.79	4552.57	349.63	13.02	PASS
5620.00 T	5620.00	0.00	0.00	5688.30	5620.00	4549.18	-175.51	357.79	4552.57	354.83	12.83	PASS
5720.00T	5720.00	0.00	0.00	5788.30	5720.00	4549.18	-1/5.51	357.79	4552.57	360.03	12.64	PASS
5820.00T	5820.00	0.00	0.00	5888.30	5820.00	4549.18	-175.51	357.79	4552.57	365.23	12.46	PASS
5920.00T	5920.00		0.00	\$\$988:30 6000.00	· 100 000 000 000 000 000 000	454918	-1/5.51	35////9	4552.57	370.44	12.29	PASS
6020.00T	6020.00	0.00	0.00	6088.30	6020.00	4549.18	-175.51	357.79	4552.57	375.64	12.12	PASS
6120.00T	6120.00	0.00	0.00	6188.30	6120.00	4549.18	-1/5.51	357.79	4552.57	380.84	11.95	PASS
6220.00T	6220.00	0.00	0.00	6288.30	6220.00	4549.18	-175.51	357.79	4552.57	386.04	11.79	PASS
6320.00T	6320.00	0.00	0.00	6388.30	6320.00	4549.18	-1/5.51	357.79	4552.57	391.24	11.64	PASS
226420.00 T	226420.00	3780:UU	220.00	126488.30	臺灣26420:00	4549:18	1/5.51	國家357479	4552:57	396:45	潮11:48	PASS
6520.001	6520.00	0.00	0.00	6588.30	6520.00	4549.18	-1/5.51	357.79	4552.57	401.65	11.33	PASS
6620.00 †	6620.00	0.00	0.00	6688.30	6620.00	4549.18	-1/5.51	357.79	4552.57	406.85	11.19	PASS
6720.00	6720.00	0.00	0.00	6788.30	6720.00	4549.18	-1/5.51	357.79	4552.57	412.05	11.05	PASS
6820.00 1	6820.00	0.00	0.00	6888.30	6820.00	4549.18	-175.51	357.79	4552.57	417.26	10.91	PASS
6920:00T	5920.00	10:00		6988:30	囊腔6920:00	4549.18	Fight 17.5:51	357.79	臺灣黑4552-57	422.46	10:78	PASS
7020.00	7020.00	0.00	0.00	7088.30	7020.00	4549.18	-1/5.51	357.79	4552.57	427.66	10.65	PASS
7120.00	7120.00	0.00	0.00	/188.30	7120.00	4549.18	-1/5.51	357.79	4552.57	. 432.87	10.52	PASS
7220.00	7220.00	0.00	0.00	7288.30	7220.00	4549.18	-1/5.51	357.79	4552.57	438.07	10.39	PASS
7320.00T	7320.00	0.00	0.00	7388.30	7320.00	4549.18	-1/5.51	357.79	4552.57	443.27	10.27	PASS
7520.00T	7520.00			7599.30	××1420:00	454918	475.51	357-79	4552.57	448.48	##10:15	PASS
7520.001	7520.00	0.00	0.00	7588.30	7520.00	4549.18	-175.51	357.79	4552.57	453.68	10.03	PASS
7620.001	7020.00	0.00	0.00	7000.30	7620.00	4549.18	-1/5.51	357.79	4552.57	458.89	9.92	PASS
7920.00	7920.00	0.00	0.00	7000.30	7720.00	4549.18	-1/5.51	357.79	4552.57	464.09	9.81	PASS
7020.001	7020.00		0.00	7000.30	7020.00	4049.10	-1/3.31	· 357.79	4552.57	469.29	9.70	PASS
9020.00	2020.00 2020.00	Sec. 00	P##%{U:UU	0000 20	8020.00	4540 19	175 51	総理357479	资源。4552:57	47.4:50	9:59	PASS
8120.00+	0020.00	0.00	0.00	0000.30	8120.00	4549.10	-1/5.51	357.79	4552.57	479.70	9.49	PASS
8720.00	8220.00	0.00	0.00	0100.30	0120.00	4549.10	-175.51	357.79	4552.57	484.91	9.39	PASS
8220.001	0220.00	0.00	0.00	0200.30	0220.00	4549.18	-1/5.51	357.79	4552.57	490.11	9.29	PASS
0320.001	0320.00	0.00		0300.30	0320.00	4049.18	-1/3,31	337.79	4352.57	495.32	9.19	TASS
	0500 00			0600.00	9500.00	AE40 40	175.54	257.79	MR:4332.57	E05 70	回题9310	*E#22
0520.00T	0520.00	0.00	0.00	0000.30	0020.00	4049.18	-1/5.51	357.79	4552.57	505.73	9.00	PASS
0020.00T	0020.00	0.00	0.00	0000.30	0020.00	4549.18	-1/5.51	357.79	4552.57	510.93	8.91	PASS
0120.00T	0/20.00	0.00	0.00	0100.30	0/20.00	4049.18	-1/5.51	357.79	4552.57	516.14	8.82	PASS
0020.00T	0020.00		0.00	0000.30	0020.00	4349.18	-1/5.51	357.79	4552.57	521.34	8./3	PASS
:変感のSZU:UUT	2209ZU.UU	文: 20.00	しの感じ:UU	11.00000:30	12 @@OSZU:UU	1週9回入4049510	10%愛し1/10?O/	r≫‱soo/?//9	I‰**™400Z*07	i‱≊o∠o.oo	⊳⊚⊛ດະບວ	REASS

B-1 Closest Approach Page 5 of 12

BOPCO, L.P.

REFERENCE WELLPATH IDENTIFICATION Operator WTD - West Texas Division No.012H SHL Slot No.012H Eddý County, NM Well Area Poker Lake Unit No.012H PWB Wellbore Field PLU CVX JV PB No.012H Facility

CLEARAR	ICE DAT	A'- Offse	t Wellbo	re: No.52 A	WB Offse	t Wellpath: I	No.52 AM	/P				
Facility: PLU	No:052	Slot: No.	52 SHL	Well: N	o.52 Th	reshold Val	ue=1.00	† = inter	polated/ext	rapolate	d stat	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	С-С	ACR	Sep	ACR
[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	Bearing ren	Clear Dist	MASD	Ratio	Status
9020.00+	9020.00	20.0		9088 30	9020.00	4549.18	-175 51	357 79	4552.57	531.75	8.56	PASS
9120.00+	9020.00	0.00	0.00	9188.30	9120.00	4549 18	-175.51	357 79	4552.57	536.96	8 48	PASS
9220.00+	9220.00	0.00	0.00	9288.30	9220.00	4549 18	-175 51	357 79	4552 57	542.16	8.40	PASS
9320.00+	9220.00	0.00	0.00	9388.30	9320.00	4549.18	175.51	357.79	4552.57	547.37	8.32	PASS
1020.00	MESQ420100	NOTOC	1000 Ballant	题题948830	9420/00	4549.18	175 51	357479	4552 57	\$552157	8.24	PASS
9520.00+	9520.00	0.00	0.00	9588.30	9520.00	4549.18	-175.51	357.79	4552.57	557.78	8.16	PASS
9618,83	9618.83	0.00	0.00	9687.13	9618.83	4549.18	-175.51	357.79	4552.57	562.92	8.09	PASS
9620.00+	9620.00	0.00	0.00	9688.30	9620.00	4549.18	-175.51	357.79	4552.57	562.98	8.09	PASS
9720.001	9719.48	8.91	-0.21	9787.78	9719.48	4549.18	-175.51	357.79	4543.66	568.16	8.00	PASS
9820:00 1	9815-89	34195	· · · · · · · · · · · · · · · · · · ·	119884	981589	4549 18	175.51	357-78	4517 62	\$573 19	7.88	PASS
9920.00	9906.32	77.33	-1.79	9974.62	9906.32	4549.18	-175.51	357.78	4475.23	577.91	7.74	PASS
10020.00	9988.02	134.76	-3.12	10056.32	9988.02	4549.18	-175.51	357.76	4417.79	582.17	7.59	PASS
10120.00	10058.49	205.51	-4.76	10126.79	10058.49	4549.18	-175.51	357.75	4347.03	585.85	7.42	PASS
10220.00	10115.61	287.42	-6.66	10183.91	10115.61	4549.18	-175.51	357.73	4265.11	588.83	7.24	PASS
10318!83	#10157-23	376:89	8:74	10225!53	10/157/23	4549.18	175.51	357471	4175.62	\$591.00	1 7.07	PASS
10320.00+	10157.63	377.99	-8.76	10225.93	10157.63	4549.18	-175.51	357.71	4174.52	591.03	7.06	PASS
10418.83	10191.44	470.84	-10.92	10259.74	10191.44	4549.18	-175.51	357.69	4081.67	592.78	6.89	PASS
10420.00	10191.84	471.94	-10.94	10260.14	10191.84	4549.18	-175.51	357.69	4080.57	592.80	6.88	PASS
10520.00	10220.94	567.53	-13.16	10289.24	10220.94	4549.18	-175.51	357.67	3984.96	594.31	6.71	PASS
10620.00	10239.89	665.65	15:43	10308.19	10239.89	4549 18	-175.51	357.64	3886:83	595:31	6:53	PASS
10720.00	10248.48	765.21	-17.74	10316.78	10248.48	4549.18	-175.51	357.61	3787.27	595.77	6.36	PASS
10745.77	10249.00	790.97	-18.34	10317.30	10249.00	4549.18	-175.51	357.61	3761.50	595.81	6.31	PASS
10820.00†	10249.50	865.17	-20.06	10317.80	10249.50	4549.18	-175.51	357.58	3687.29	595.85	6.19	PASS
10920.00	10250.17	965.14	-22.38	10318.47	10250.17	4549.18	-175.51	357.55	3587.31	595.92	6.02	PASS
11020.00	10250:84	50106511	24 70	10319114	10250.84	4549:18	175.51	357 52	3487:33	\$595.99	5:85	PASS
11120.00	10251.51	1165.08	-27.01	10319.81	10251.51	4549.18	-175.51	357.49	3387.36	596.06	5.68	PASS
11220.00	10252.18	1265.06	29.33	10320.48	10252.18	4549.18	-175.51	357.45	3287.38	596.13	5.51	PASS
11320.00	10252.85	1365.03	-31.65	10321.15	10252.85	4549.18	-175.51	357.41	3187.41	596.21	5.35	PASS
11420.00	10253.52	1465.00	-33.97	10321.82	10253.52	4549.18	-175.51	357.37	3087.43	596.29	5.18	PASS
11520.00	10254.19	1564.97	\$-36!29	10322.49	1025419	4549:18	繁荣17.5!51	,\$357433	2987.46	\$596.37	5:01	PASS
11620.00	10254.85	1664.94	-38.60	10323.15	10254.85	4549.18	-175.51	357.28	2887.49	'596.46	4.84	PASS
11720.00	10255.52	1764.91	-40.92	10323.82	10255.52	4549.18	-175.51	357.23	2787.53	596.55	4.67	PASS
11820.00	10256.19	1864.88	-43.24	10324.49	10256.19	4549.18	-175.51	357.18	2687.56	596.64	4.50	PASS
11920.00m	10256.86	1964.85	-45.56	10325.16	10256.86	4549.18	-175.51	357.12	2587.60	596.73	4.34	PASS
12020:00T	\$10257 <u>.53</u>	2064:82	47:88	Jan 10325:83	10257.53	4549.18	175 51	357206	2487:64	<u>\$59683</u>	41/	PASS
12120.00T	10258.20	2164.79	-50.20	10326.50	10258.20	4549.18	-175.51	356.99	2387.68	596.94	4.00	PASS
12220.00T	10258.87	2264.70	-52.51	10327.17	10258.87	4549.18	-1/5.51	356.92	2287.73	597.04	3.83	PASS
12320.00T	10259.54	2364.73	-54.03	10327.84	10259.54	4549.10	-1/5.51	356.84	2187.70	597.15	3.00	PASS
12420.00T	10260.21	2464.71	-57.15	10328.5 1	10260.21	4549.10	-1/5.5	356.75	2087.84	591.21	3.50	PASS
12220:00	10200.00	2504:00	A 70	1002910	10200:00	1540.10	175 F1	2000 55	1987.90	59/209	2 16	EASS
12620.00T	10261.55	2664.00	-61.79	10329.00	10201.55	4549.10	-1/5.51	350.55	1887.90	597.51	3.10	PASS
12/20.00T	10262.22	2/64.62	-64.11	10330.54	10202.22	4549.10	-1/5.51	350.43	1/88.04	597.04	2.99	PASS
12820.00	10202.09	2864.59	-00.42	10331.15	10262.09	4549.10	-1/5.5	350.30	1000.12	597.70	2.04	PASS
12920.001	10203.55	2904.00	-00./4	10331.85	10203.55	4549.10	-1/0.01	350.15	1588.22	597.93	2.00	PASS
13020:00T	10204.22	【観然びじり4!!りで	「憲法」を注いつ	1週回10332:32	1 WellUZ04:22	4549.10	10:01 SI	1000000000	1400:32	590:00	2:45	AFASS.

Clearance Report B-1 Closest Approach Page 6 of 12

REFER	ENCE WELLPATH IDENTIFICATION		
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

CLEARAP	ICE DAT	A - Offse	t Wellbor	e: No.52 A	WB Offset	Wellpath: I	No.52 AW	/ P				
Facility: PLU	No:052	Slot: No	.52 SHL	Well: No	.52 Thi	reshold Val	ue=1.00	t = interr	oolated/ext	rapolate	distati	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	C-C	ACR	Sep	ACR
[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	Bearing	Clear Dist		Ratio	Status
13120.00+	10264 89	3164 50	-73.38	10333.19	10264.89	4549.18	-175 51	355.78	1388.44	598.25	2 32	PASS
13220.00+	10265 56	3264 47	-75 70	10333.86	10265.56	4549 18	175.51	355.56	1288 58	598 43	2 15	PASS
13320.001	10266.23	3364.44	-78.02	10334.53	10266.23	4549.18	-175.51	355.30	1188.74	598.64	1,99	PASS
13420.00+	10266.90	3464 41	-80.33	10335.20	10266.90	4549.18	-175.51	354.99	1088.94	598.87	1.82	PASS
13520:00+	10267 57	356439	82 65	10335187	10267/57	4549418	175/51	354 61	B*** 989 17	\$599 14	11:65	PASS
13620.00	10268.24	3664.36	-84.97	10336.54	10268.24	4549.18	-175.51	354.16	889.45	599.46	1.48	PASS
13720.00	10268.91	3764.33	-87.29	10337.21	10268.91	4549.18	-175.51	353.59	789.80	599.87	1.32	PASS
13820.00+	10269.58	3864.30	-89.61	10337.88	10269.58	4549 18	-175 51	352.85	690.25	600.42	1 15	PASS
13920.00	10270.25	3964.27	-91.93	10338.55	10270.25	4549.18	-175.51	351.87	590.86	601.19	0.98	EAIL
at 14020/00+	10270 92	4064 24	94 24	10339 22	JU270 92	4549.18	ME 175 51	350 49	491 71	#602/39	10.82	FAIL
14120 00+	10271 59	4164.21	-96.56	10339.89	10271 59	4549 18	-175 51	348.41	392.98	604 45	0.65	FAIL
14220.001	10272.25	4264.18	-98.88	10340.55	10272.25	4549.18	-175.51	344.95	295.12	608.49	0.49	FAILS
14320.00	10272.92	4364.15	-101.20	10341.22	10272.92	4549.18	-175.51	338.12	199.40	618.00	0.32	EAU
14420.001	10273.59	4464.12	-103.52	10341.89	10273.59	4549.18	-175.51	319.76	111.44	646.09	0.17	FAIL
¥ 14506 69t	\$10274417	4550 79	105 53	10342 33	\$\$10274503	454918	Se175-51	268 69	Z0 00	68862	MOSIC	EAll
14506.86	10274.17	4550.96	-105.53	10342.47	10274.17	4549.18	-175.51	268.54	70.00	688.63	0.10	FAIL
14520.001	10274.26	4564.09	-105.84	10342.56	10274.26	4549.18	-175.51	257.92	71.25	686.98	0.10	FAIL
14620.00	10274.93	4664.07	-108.15	10343.23	10274.93	4549.18	-175.51	210.38	133.17	638.10	0.21	FAIL
14720.001	10275.60	4764.04	-110.47	10343.90	10275.60	4549.18	-175.51	196.84	224.48	617.54	0.36	FAIL
148201001	10276527	\$\$ ^{4864*01}	S=112'79	10344157	10276-27	454918	× 175 51	191127	¥**321*01	SE10:05	WO:53	FAIL
14920.001	10276.94	4963.98	-115.11	10345.24	10276.94	4549.18	-175.51	188.29	419.17	606.70	0.69	EAIL
15020.001	10277.61	5063.95	-117.43	10345.91	10277.61	4549.18	175.51	186.44	518.03	604.99	0.86	FAIL
15120.001	10278.28	5163.92	-119.75	10346.58	10278.28	4549.18	-175.51	185.18	617.26	604.05	1.02	PASS
15220.00	10278.95	5263.89	-122.06	10347.25	10278.95	4549.18	-175.51	184.28	716.70	603.50	1.19	PASS
15320:00	×10279.62	5363.86	124.38	10347.92	10279.62	454918	175 51	183.59	816:28	7603:18	1811835	PASS
15420.00	10280.29	5463.83	-126.70	10348.59	10280.29	4549.18	-175.51	183.05	915.95	603.00	1.52	PASS
15520.00	10280.95	5563.80	-129.02	10349.25	10280.95	4549.18	-175.51	182.62	1015.68	602.92	1.68	PASS
15620.00	10281.62	5663.77	-131.34	10349.92	10281.62	4549.18	-175.51	182.27	1115.46	602.90	1.85	PASS
15720.00	10282.29	5763.74	-133.66	10350.59	10282.29	4549.18	-175.51	181.97	1215.28	602.92	2.02	PASS
15820.00	10282!96	5863 72	135 97	1035126	10282.96	4549.18	175 51	181.72	1315.13	602.98	2.18	PASS
15920.00	10283.63	5963.69	-138.29	10351.93	10283.63	4549.18	-175.51	181.51	1414.99	603.06	2.35	PASS
16020.00	10284.30	6063.66	-140.61	10352.60	10284.30	4549.18	-175.51	181.32	1514.88	603.16	2.51	PASS
16120.00	10284.97	6163.63	-142.93	10353.27	10284.97	4549.18	-175.51	181.16	1614.77	603.27	2.68	PASS
16220.00	10285.64	6263.60	-145.25	10353.94	10285.64	4549.18	-175.51	181.01	1714.68	603.40	2.84	PASS
16320.00	10286.31	6363!57	2-147 :57	10354.61	M10286.31	4549.18	CI75.51	180.88	1814.60	5603!53	3.01	PASS
16420.00	10286.98	6463.54	-149.88	10355.28	10286.98	. 4549.18	-175.51	180.77	1914.53	603.68	3.17	PASS
16520.00	10287.65	6563.51	-152.20	10355.95	10287.65	4549.18	-175.51	180.66	2014.46	603.83	3.34	PASS
16620.00	10288.32	6663.48	-154.52	10356.62	10288.32	4549.18	-175.51	180.57	2114.40	603.99	3.50	PASS
16720.00	10288.99	6763.45	-156.84	10357.29	10288.99	4549.18	-175.51	180.48	2214.35	604.15	3.67	PASS
16820.00	10289.65	6863:42	8:159.16	10357.95	10289.65	\$4549.18	175:51	180:41	2314:30	604:32	. 3:83	PASS
16920.00	10290.32	6963.40	-161.48	10358.62	10290.32	4549.18	-175.51	180.33	2414.25	604.50	3.99	PASS
17020.00	10290.99	7063.37	-163.79	10359.29	10290.99	4549.18	-175.51	180.27	2514.21	604.67	4.16	PASS
17120.00	10291.66	7163.34	-166.11	10359.96	10291.66	4549.18	-175.51	180.21	2614.17	604.85	4.32	PASS
17220.00	10292.33	7263.31	-168.43	10360.63	10292.33	4549.18	-175.51	180.15	2714.13	605.04	4.49	PASS
17320:00+	10293 00	7363 28	170 75	10361.30	10293.00	4549-18	-175.51	180 10	2814-10	605!23	4:65	PASS

BOPCO, L.P.

Closest Approach

. 6		Page 7 of	12	
REFE	RENCE WELLPATH IDEN	DIFICATION		
Operat	or WTD - West Texas Division		Slot	No.012H SHL
Area	Eddy County, NM		Well	No.012H
Field	Poker Lake Unit	·.	Wellbore	No.012H PWB

Poker Lake Unit PLU CVX JV PB No.012H Field Facility

CLEARAP		A - Offse	t Wellbor	e: No.52 A	WB_Offset	Wellpath: I	No.52 AW	P	Sec. S.			
Facility: PLU	No.052	Slot: No	.52 SHL	🔌 Well: No	.52 Thi	reshold Val	ue=1.00 🗞	† = interp	olated/extr	apolate	l stati	on
Ref MD [ft]	Ref TVD [ft]	Ref North [ft]	Ref East [ft]	Offset MD [ft]	Offset TVD [ft]	Offset North [ft]	Offset East [ft]	Horiz Bearing	C-C Clear Dist	ACR MASD	Sep Ratio	ACR Status
17420.00	10293.67	7463.25	-173.07	10361.97	10293.67	4549.18	-175.51	180.05	2914.07	605.42	4.81	PASS
17469.31	10294.00	7512.55	-174.21	10362.30	10294.00	4549.18	-175.51	180.03	2963.37	605.51	4.89	PASS

POSITIONAL UNCERTAINTY - Offset Wellb	ore: No.52 AWB	Offset Wellpath:	No.52 AWP	
Slot Surface Uncertainty @1SD	Horizontal	0.100ft	Vertical	0.100ft
Facility Surface Uncertainty @1SD	Horizontal	20.000ft	Vertical	3.000ft

WELLPATI	H COMPOSI	TION - Offset Wellbore: No.52 AWB	ffset Wellpath: No.52 AWP	
Start MD	End MD	Positional Uncertainty Model	Log Name/Comment	Wellbore
[ft]	[ft]		,	
0.00	15700.00	Unknown Tool (Standard)	Unknown <15700>	No.52 AWB

OFFSET WELLPATH MD REFERENCI	E - Offset Wellbore: No.52 AWB Offset Wellpath: No.52 AWP
MD Reference: Rig on No.52 SHL (RT)	Offset TVD & local coordinates use Reference Wellpath settings
	(See WELLPATH DATUM on page 1 of this report)
Ellipse Start MD	0.00ft

Clearance Report B-1 Closest Approach Page 8 of 12

REFER	ENCE WELLPATH IDENTIFICATION	n An Th	·····································
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

CLEARA	NCE DA	TA - Off	set Wel	lbore: No.5	57.AWB 0)ffset Wellpa	ith: No.57 ,	AWP		Alexandra Alexandra Alexandra		
Facility: PLU	J No.057	Slot: N	No.57 SI	HĽ Wel	l: No.57 🐼	Threshold	Value=1.0	0 🦛 † 😑 in	terpolated/e	xtrapolat	ed stat	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	C-C	ACR	Sep	ACR
[ft]	[ft]	[ft]	[ft]	(ft]	. [ft]	[ft]	[ft] ·	Bearing rei	Clear Dist	MASD	Ratio	Status
20.00	20.00	0.00	0.00	11 90	20.00	5539.22	-182.09	358 12	5542.21	63.56	87 19	PASS
120.00+	120.00	0.00	0.00	111 90	120.00	5539.22	-182.09	358.12	5542.21	68.19	81.27	PASS
220.00+	220.00	0.00	0.00	211.90	220.00	5539.22	-182.09	358,12	5542.21	72.88	76.05	PASS
320.00+	320.00	0.00	0.00	311.90	320.00	5539.22	-182.09	358.12	5542.21	77.61	71.41	PASS
420.00†	420.00	0.00	0!00	411.90	420.00	5539!22	-182.09	358.12	5542.21	82.38	67.28	PASS
520.00+	520.00	0.00	0.00	511.90	520.00	5539.22	-182.09	358.12	5542.21	87.08	63.64	PASS
620.00+	620.00	0.00	0.00	611.90	620.00	5539.22	-182.09	358.12	5542.21	91.71	60.43	PASS
720.00†	720.00	0.00	0.00	711.90	720.00	5539.22	/ -182.09	358.12	5542.21	96.36	57.52	PASS
820.00+	820.00	0.00	0.00	811.90	820.00	5539.22	-182.09	358.12	5542.21	101.03	54.86	PASS
920.00	920.00	0.00	0.00	911.90	920!00	5539 22	-182.09	358.12	5542.21	105 73	\$52.42	PASS
1020.00†	1020.00	0.00	0.00	1011.90	1020.00	5539.22	-182.09	358.12	5542.21	110.46	50.18	PASS
1120.00 †	1120.00	0.00	0.00	1111.90	1120.00	5539.22	-182.09	358.12	5542.21	115.20	48.11	PASS
1220.00+	1220.00	0.00	0.00	1211.90	1220.00	5539.22	-182.09	358.12	5542.21	119.97	46.20	PASS
1320.00 †	1320.00	0.00	0.00	1311.90	1320.00	5539.22	-182.09	358.12	5542.21	124.75	44.43	PASS
1420.00†	1420.00	0.00	00!00	141190	1420.00	5539!22	182.09	358.12	5542.21	129.54	42.78	PASS
1520.00 †	1520.00	0.00	0.00	1511.90	1520.00	5539.22	-182.09	358.12	5542.21	134.35	41.25	PASS
1620.00†	1620.00	0.00	0.00	1611.90	1620.00	5539.22	-182.09	358.12	5542.21	139.17	39.82	PASS
1720.00 †	1720.00	0.00	0.00	1711.90	1720.00	5539.22	-182.09	358.12	5542.21	144.00	38.49	PASS
1820.00†	1820.00	0.00	0.00	18,11.90	1820.00	5539.22	-182.09	358.12	5542.21	148.84	37.24	PASS
1920.00†	1920!00	0.00	0.00	1911.90	1920.00	5539.22	182.09	358.12	5542.21	153.69	#36!06	PASS
2020.00	2020.00	0.00	0.00	2011.90	2020.00	5539.22	-182.09	358.12	5542.21	158.54	34.96	PASS
2120.00 †	2120.00	0.00	0.00	2111.90	2120.00	5539.22	-182.09	358.12	.5542.21	163.40	33.92	PASS
2220.00†	2220.00	0.00	0.00	2211.90	2220.00	5539.22	-182.09	358.12	5542.21	168.26	32.94	PASS
2320.00†	2320.00	0.00	0.00	2311.90	2320.00	5539.22	-182.09	358.12	5542.21	<u>173.13</u>	32.01	PASS
2420:00†	2420.00	0.00	0:00	2411.90	2420:00	5539!22	=182.09	358.12	5542!21	178.00	31.14	PASS
2520.00†	2520.00	、0.00	0.00	2511.90	2520.00	5539.22	-182.09	358.12	5542.21	182.88	30.30	PASS
2620.00	2620.00	0.00	0.00	2611.90	2620.00	5539.22	-182.09	358.12	5542.21	187.76	29.52	PASS
2/20.00	2720.00	0.00	0.00	2/11.90	2720.00	5539.22	-182.09	358.12	5542.21	192.64	28.77	PASS
2820.00	2820.00	0.00	0.00	2811.90	2820.00	5539.22	-182.09	358.12	5542.21	<u>197.53</u>	28.06	PASS
2920:00T	2920:00	0.00	0.00	2911.90	2020:00	sing 5539:22	-182:09	358.12	5542.21	202:42	27.38	PASS
3020.00T	3020.00	0.00	0.00	3011.90	3020.00	5539.22	-182.09	358.12	5542.21	207.31	26.73	PASS
3120.00T	3120.00	0.00	0.00	3111.90	3120.00	5539.22	-182.09	358.12	5542.21	212.20	26.12	PASS
3220.00	3220.00	0.00	0.00	3211.90	3220.00	5539.22	-162.09	350.12	5542.21	217.09	25.53	PASS
3320.00+	3320.00	0.00	0.00	2/11/00	3320.00	5559.22	-102.09	300.1Z	5542.21	221.90	24.97	PASS
3520.00+	3520.00	0.00	0.00	3511.00	3520.00	5520.22	192.09	259 12	6542.21	220:00	22 01	DASS
3620.00+	3620.00	0.00	· 0.00	3611.90	3620.00	5530.22	-102.09	259 12	6542.21	231.70	23.91	DASS
3720.00+	3720.00	0.00	0.00	3711.90	3720.00	5530.22	-102.09	259 12	5542.21	241.59	23.42	DASS
3820.00+	3820.00	0.00	0.00	3811.00	3820.00	5539.22	-182.09	358,12	5542.21	241.00	· 22.34	PASS
3920.00+	3920:00		0.00	301.100	3020.00	5520122	-182.09	330.12	5542.21	2-10.40	22.93	
4020 00+	4020.00		0.00	4011 00	4020.00	5530.22	-182.09	368 12	5542.21	256 22	21 63	DV66
4120.00	4120.00	0.00	0.00	4111 00	4120.00	5530.22	-182.09	368 12	5542.21	261 19	21.00	DASS
4220.00+	4220.00		0.00	4211 00	4220.00	5530.22	182.09	368 12	- 5542.21	201.10	20.82	DASS
4320.00+	4320.00		0.00	4311 00	4320.00	5530.22	-102.09	368 12	5542.21	200.09	20.03	DASS
4420 00+	4420.00		0.00	4011.90	4320.00	5539.22	182/00	358 12	5542.21	270.99	20.43	PASS
2028/00/2011 1 to T 40 . U.U.U.	Walker of LO.00	Same C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.		MARCHINE T & T & I WILL DO	AN CARD TOT CO. U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U.U	SKIENSKE COUS"LL	104.UJ	388 J J J J J J Z	1988記録 ししてとてと引	122210.20	120.UJ	薬うらうい薬

Clearance Report B-1 **Closest Approach** Page 9 of 12

REFER	ENCE WELLPATH IDENTIFICATION	114. AN	and the second
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

CLEARA	NCE DA	TA - Off	set Wel	lbore: No.5	57 AWB C	ffset Wellpa	th: No.57	AWP			7. A.S	
Facility: PLU	J No.057	Slöt: N	No.57 SI	HĽ 🤍 Wel	l: No.57	Threshold	Value=1.0	0 • <u>†</u> = int	erpolated/e	xtrapolat	ed stat	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	С-С ·	ACR	Sep	ACR
[ft]	[ft]	[ft]	[#]	[ft]	[ft] _	, [ft]	[ft]	Bearing rº1	Clear Dist	MASD fft1	Ratio	Status
4520.00+	4520.00	0.00	0.00	4511.90	4520.00	5539 22	-182 09	358 12	5542 21	280.80	19 74	PASS
4620.00+	4620.00	0.00	0.00	4611.90	4620.00	5539.22	-182.09	358.12	5542.21	285.71	19.40	PASS
4720.00+	4720.00	0.00	0.00	4711.90	4720.00	5539.22	-182.09	358.12	5542.21	290.61	19.07	PASS
4820.00+	4820.00	0.00	0.00	4811.90	4820.00	5539.22	-182.09	358.12	5542.21	295.52	18.75	PASS
4920.00 1	4920.00	0.00	0.00	4911.90	4920!00	5539.22	-182.09	358-12	5542.21	300.43	18:45	PASS
5020.00+	5020.00	0.00	0.00	5011.90	5020.00	5539.22	-182.09	358.12	5542.21	305.34	18.15	PASS
5120.00+	5120.00	0.00	0.00	5111.90	5120.00	5539.22	-182.09	358.12	5542.21	310.25	17.86	PASS
5220.00+	5220.00	0.00	0.00	5211.90	5220.00	5539.22	-182.09	358.12	5542.21	315.16	17.59	PASS
5320.00 †	5320.00	0.00	0.00	5311.90	5320.00	5539.22	-182.09	358.12	5542.21	320.06	17.32	PASS
5420 00+	5420.00	0.00	0:00	5411.90	5420.00	5539 22	-182.09	358.12	5542.21	324.97	17:05	PASS
5520.00 †	5520.00	0.00	0.00	5511.90	5520.00	5539.22	-182.09	358.12	5542.21	329.88	16.80	PASS
5620.00 †	5620.00	0.00	0.00	5611.90	5620.00	5539.22	-182.09	358.12	5542.21	334.79	16.55	PASS
5720.00 †	5720.00	0.00	0.00	5711.90	5720.00	5539.22	-182.09	358.12	5542.21	339.70	16.31	PASS
5820.00 †	5820.00	0.00	0.00	5811.90	5820.00	5539.22	-182.09	358.12	5542.21	344.61	16.08	PASS
\$\$5920!00	5920!00	0.00	0.00	5911.90	5920.00	5539.22	-182.09	358:12	5542.21	349.53	15.86	PASS
6020.00 †	6020.00	0.00	0.00	6011.90	6020.00	5539.22	-182.09	358.12	5542.21	354.44	15.64	PASS
6120.00†	6120.00	.0.00	0.00	6111.90	6120.00	5539.22	-182.09	358.12	5542.21	359.35	15.42	PASS
6220.00 †	6220.00	0.00	0.00	6211.90	6220.00	5539.22	-182.09	358.12	5542.21	364.26	15.22	PASS
6320.00 †	6320.00	0.00	0.00	6311.90	6320.00	5539.22	-182.09	358.12	5542.21	369.17	15.01	PASS
. \$6420.00 †	6420.00	0.00	0.00	64,11.90	6420.00	5539:22	-182!09	358!12	5542 21	374:08	14 82	PASS
6520.00 †	6520.00	0.00	0.00	6511.90	6520.00	5539.22	-182.09	358.12	5542.21	379.00	14.62	PASS
6620.00 †	6620.00	0.00	0.00	6611.90	6620.00	5539.22	-182.09	358.12	5542.21	383,91	14.44	PASS
6720.00+	· 6720.00	0.00	0.00	6711.90	6720.00	5539.22	-182.09	358.12	5542.21	388.82	14.25	PASS
6820.00 †	6820.00	.0.00	0.00	_6811.90	6820.00	5539.22	-182.09	358.12	5542.21	393.73	14.08	PASS
6920!00 †	6920.00	0.00	0:00	6911.90	6920.00	5539.22	-182.09	358.12	5542.21	398.65	13.90	PASS
7020.00	7020.00	0.00	0.00	7011.90	7020.00	\$ 5539.22	-182.09	, 358.12	5542.21	403.56	13.73	PASS
7120.00	/120.00	0.00	0.00	7111.90	7120.00	5539.22	-182.09	358.12	5542.21	408.47	13.57	PASS
7220.00	7220.00	0.00	0.00	7211.90	7220.00	5539.22	-182.09	358.12	5542.21	413.38	13.41	PASS
/320.00T	7320.00	0.00	0.00	7311.90	7320.00	5539.22	-182.09	358.12	5542.21	418.30	13.25	PASS
<u>≈</u> ≋/420:00T	· 7520.00		0.00	7511.00	7520.00	5539:22	102.09	35831Z	5542*21	423:24	離13回し	RASS
7520.001	7520.00	0.00	0.00	7511.90	7520.00	5539.22	-182.09	308.12	5542.21	428.12	12.95	PASS
7620.00	7020.00	0.00	0.00	7011.90	7620.00	5539.22	-102.09	300.12	5542.21	433.04	12.00	PASS
7820.00+	7820.00	0.00	0.00	7811.90	7820.00	5530.22	-102.09	259 12	5542.21	437.93	12.00	PASS
7820.00	7020.00	0.00	0.00	7011.90	7020.00	5539.22	-102.09	358 12	5542.21	442.07	12.31	DACC
8020.00+	8020.00	0.00	0.00	8011 90	8020.00	5530.22	_182.09	358 12	5542.21	452.60	12:30	DASS
8120.00+	8120.00	0.00	0.00	8111 90	8120.00	5539.22	-182.00	358 12	5542.21	457.61	12.24	PASS
8220.00+	8220.00	0.00	0.00	8211.90	8220.00	5539 22	-182.00	358.12	5542.21	462.52	11 98	PASS
8320 00+	8320.00	0.00	0.00	8311.90	8320.00	5539 22	-182.00	358 12	5542 21	467 44	11 86	PASS
8420 00+	8420 00	0.00	0.00	8411 90	8420 00	5539-22	-182 09	358 12	5542 21	a 47.2 35	811873	PASS
8520.00+	8520.00	0.00	0.00	8500 00	8508 10	5539 22	-182.09	358.12	5542 23	476.72	11.63	PASS
8620.00+	8620.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5543.34	476.94	11.62	PASS
8720.00+	8720.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5546.26	477.01	11.63	PASS
8820.00+	8820.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5550.98	476.93	11.64	PASS
8920.00†	8920.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5557.50	476.71	11.66	PASS

Clearance Report B-1 **Closest Approach** Page 10 of 12

BOPCO, L.P.

REFER	ENCE WELLPATH IDENTIFICATION		
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

Facility: ptU: No.057 ⁻¹ ; Storithic ST: 914U ² , St. Weith Ro, 57. ¹⁰ ; Thoreishold VX Line 100 ⁻⁵ ; Fit Formal Action 100	CLEARAN		A - Offset	Wellbor	e: No.57 /	WB Offs	et Wellpath:	No.57 A	WP.				1.6.9119
Ref TVD Ref Forth Fort E ast [II] Offset TVD Offset	Facility: PLU	No 057	Slot: No.	57 SHL	Well: N	о.57. 🔨 Т	hreshold V	alue=1.00	»⊧† = inte	rpolated/ex	trapolat	ed stati	on
9020.007 9120.00 0.000 0.00 8508.10 5539.22 182.09 358.12 5555.84 77.5 41 17.2 PASS 9120.007 9120.00 0.000 0.00 8508.10 5539.22 182.09 358.12 5557.59 47.5 41 17.2 PASS 9320.007 9220.00 0.000 0.00 8508.10 5539.22 182.00 358.12 5557.59 47.5 41 17.2 PASS 9320.007 9320.00 0.000 0.00 8508.10 5539.22 182.00 358.12 5557.59 47.5 41 17.2 PASS 9520.007 9520.00 9220.00 0.000 0.00 8508.10 5539.22 182.00 358.12 5553.22 47.13 0 11.98 PASS 9520.007 9520.00 90.00 0.00 0.00 8508.10 5539.22 182.00 358.12 5563.24 47.13 0 11.99 PASS 9520.00 9520.00 0.00 0.00 0.00 8508.10 5539.22 182.00 358.11 5563.24 47.13 0 11.99 PASS 9620.00 9905.20 7.13 4.17 3 550.00 8508.10 5539.22 182.00 358.11 5562.24 47.13 0 1.99 PASS 9720.007 9719.48 8.91 4.0.2 14500.00 8508.10 5539.22 182.00 358.11 5662.64 47.128 11.99 PASS 9920.007 9906.32 7.73 3 1.73 550.00 8508.10 5539.22 182.00 358.11 5660.73 466.94 142.09 PASS 10020.001 9906.32 17.13 4500.00 8508.10 5539.22 182.00 358.11 5660.24 466.94 142.09 PASS 10120.001 10958.02 134.72 3500.00 8508.10 5539.22 182.00 358.11 5600.24 466.94 142.09 PASS 10120.001 10058.49 205.51 4.476 4500.00 8508.10 5539.22 182.00 358.11 5600.24 465.47 11.99 PASS 10120.001 10156.1 287.42 -66 8500.00 8508.10 5539.22 182.00 358.10 5506.22 465.17 12.05 PASS 10120.001 10156.1 287.42 -66 8500.00 8508.10 5539.22 182.00 338.10 5506.24 465.17 12.09 PASS 10120.001 10156.3 1267.42 -66 8500.00 8508.10 5539.22 182.00 338.00 5459.1 463.46 11.99 PASS 10220.007 10115.61 1267.42 -66 8500.00 8508.10 5539.22 182.00 338.00 5459.1 463.47 11.90 PASS 10220.007 10125.04 567.51 13.16 8500.00 8508.10 5539.22 182.00 83.08 550.67 534.33 467.67 11.86 PASS 10320.007 10175.63 37.79 9 -8.7 4500.00 8508.10 5539.22 182.00 83.08 550.67 534.34 458.76 11.65 PASS 10720.007 10248.48 765.21 11.7.7 8500.00 8508.10 5539.22 182.00 83.08 5506.00 564.01 454.67 11.86 PASS 10720.007 10248.48 765.21 11.7.7 8500.00 8508.10 5539.22 182.00 83.03 5064.01 454.67 11.86 PASS 10720.007 10248.48 765.21 11.7.7 8500.00 8508.10 5539.22 182.00 83.03 5064.01 454.44 867.72 11.18 PASS 10720.007	Ref MD [ft]	Ref TVD [ft]	Ref North [ft]	Ref East [ft]	Offset MD [ft]	Offset TVD [ft]	Offset North [ft]	Offset East [ft]	Horiz Bearing [°]	C-C Clear Dist [ft]	ACR MASD [ft]	Sep Ratio	ACR Status
9120.007 9220.00 0.000 0.000 8508.10 5539.22 182.09 358.12 557.58 475.84 17.2 PASS 9320.007 9220.00 0.000 8508.10 5539.22 182.09 358.12 5567.13 475.44 11.81 PASS 94500 9520.00 9.000 920.00 0.000 8508.10 5539.22 182.09 358.12 5567.33 474.41 11.81 PASS 9450 9520.00 9520.00 0.000 8500.00 8508.10 5539.22 182.09 358.12 5661.33 472.44 11.82 PASS 9520.00 9520.00 0.000 0.00 8508.10 5539.22 182.09 358.12 5662.42 477.30 11.92 PASS 9720.00 9719.48 8.31 0.000 8508.10 5539.22 182.09 358.12 5662.42 477.30 11.99 PASS 9720.00 9719.48 8.31 -0.21 8500.00 8508.10 5539.22 182.09 358.11 5662.42 471.30 11.99 PASS 9720.007 9719.48 8.31 -0.21 8500.00 8508.10 5539.22 182.09 358.11 5662.42 471.30 11.99 PASS 9720.007 9719.48 8.41 -0.21 8500.00 8508.10 5539.22 182.09 358.11 5660.43 469.96 12.05 PASS 10020.007 9980.32 77.33 1.73 8500 00 8508.10 5539.22 182.09 338.11 5660.43 469.96 12.05 PASS 10020.007 9980.32 77.33 1.73 8500.00 8508.10 5539.22 182.09 338.11 5660.91 4668.86 12.08 PASS 10020.007 9980.32 77.33 1.73 8500.00 8508.10 5539.22 182.09 338.11 5660.21 4667.17 12.05 PASS 10220.007 10156.1 287.42 -6.66 8500.00 8508.10 5539.22 182.09 338.10 5567.31 463.46 11.99 PASS 10220.007 10156.1 287.42 -6.66 8500.00 8508.10 5539.22 182.09 338.10 5567.31 463.46 11.99 PASS 10220.007 10156.1 287.42 -6.66 8500.00 8508.10 5539.22 182.09 338.10 5567.31 463.47 11.89 PASS 10220.007 10176.61 287.42 -6.66 8500.00 8508.10 5539.22 182.09 338.07 5343.24 468.74 11.89 PASS 10420.007 10176.61 287.42 -6.66 8500.00 8508.10 5539.22 182.09 338.07 5343.24 458.74 11.89 PASS 10420.007 10176.03 377.99 -8.76 8500.00 8508.10 5539.22 182.09 338.07 5343.34 458.74 11.89 PASS 10420.007 10176.03 377.99 -8.76 8500.00 8508.10 5539.22 182.09 338.07 5342.44 467.74 11.89 PASS 10420.007 10176.03 377.99 -8.76 8500.00 8508.10 5539.22 182.09 338.07 5342.44 458.74 11.85 PASS 10420.007 10220.44 875.24 11.84 500.00 48508.10 5539.22 182.09 338.03 5008.09 8543.33 458.77 33 458.74 11.85 PASS 10420.007 10240.47 17.94 500.00 8508.10 5539.22 182.09 357.93 4461.74 446.77 21.17.8 PASS 10420.007 102	9020.00†	9020.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5565.80	476.35	11.68	PASS
9220.001 9220.00 0.00 0.00 0.00 8508.10 5539.22 182.09 358.12 5687.75 475.19 11.76 PASS 9320.01 9320.00 0.00 0.00 8508.10 5539.22 182.09 358.12 5661.33 472.45 11.81 PASS 9520.01 9520.00 880.00 8808.10 5539.22 182.00 358.12 5663.33 472.45 11.92 PASS 9620.01 9620.00 0.00 8500.00 8508.10 5539.22 182.00 358.12 5662.42 471.32 11.99 PASS 9620.00 9802.00 0.00 0.00 8508.10 5539.22 182.00 358.12 5662.42 471.32 11.99 PASS 9720.00 9719.48 191 -0.21 8500.00 8508.10 5539.22 182.00 358.12 5662.42 471.32 11.99 PASS 9720.00 9719.48 191 -0.21 8500.00 8508.10 5539.22 182.00 358.12 5662.44 71.28 11.99 PASS 9720.00 9906.32 77.33 -1.73 550.02 8508.10 8508.10 5539.22 182.00 358.11 5660.43 649.64 12.06 PASS 10920.00 9906.32 77.33 -1.73 550.00 8508.10 5539.22 182.00 358.11 5660.41 8469.47 812.08 PASS 10020.00 9906.32 77.33 -1.73 550.00 8508.10 5539.22 182.00 358.11 5660.41 8469.47 812.08 PASS 10220.00 10058.49 205.51 -4.76 5500.00 8508.10 5539.22 182.00 358.11 5606.28 4651.71 2.06 PASS 10220.00 10156.61 287.42 -6.66 8500.00 8508.10 5539.22 182.00 358.10 5565.21 461.72 11.99 PASS 10220.00 10156.61 377.99 -4.76 8500.00 8508.10 5539.22 182.00 358.10 5565.11 6606.28 4651.71 12.06 PASS 10220.00 10157.63 377.99 -4.76 8500.00 8508.10 5539.22 182.00 358.10 5565.11 6460.27 11.99 PASS 10220.00 10157.63 377.99 -4.76 8500.00 8508.10 5539.22 182.00 358.10 5567.31 463.46 11.99 PASS 10220.00 10157.63 37.99 -4.76 8500.00 8508.10 5539.22 182.00 358.00 5495.11 460.02 8447.28 11.99 PASS 10220.00 10157.63 37.99 -4.76 8500.00 8508.10 5539.22 182.00 358.00 5495.11 460.27 11.78 PASS 1042.00 70 10157.63 37.99 -4.76 8500.00 8508.10 5539.22 182.00 358.00 54014 845.72 11.58 PASS 10520.00 1022.09 4567.53 11.36 8500.00 8508.10 5539.22 182.00 358.00 5501.11 860.2744 458.74 11.85 PASS 10520.00 1022.04 567.72 31.3.64 8500.00 8508.10 5539.22 182.00 358.00 5501.14 840.27 4445.87 11.65 PASS 10520.00 1024.80 7591.71 47.94 8500.00 8508.10 5539.22 182.00 358.00 5504.01 454.66 11.18 PASS 10520.00 1024.80 7591.71 40.800.71 45539.22 182.00 357.92 442.44 458.74 11.65 PASS 110	9120.00	9120.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5575.89	475.84	11.72	PASS
9320.007 9320.00 0.00 0.00 8500.00 8508.10 5539.2 142.00 3358.12 5601.3 474.41 1181 PASS 9392 87942000 478942000 84850070 94850070 8473150 47486 PASS) 9592 877400 4755912 877455912 877455912 87745 1192 PASS 9618.3 9618.3 0.00 0.00 8508.10 5539.2 182.00 358.12 5633.8 472.45 1192 PASS 9620.00 9620.00 0.00 0.00 8508.10 5539.2 182.00 358.12 5652.42 471.3 11.9 PASS 9720.00 971.48 8.3 10.02 8500.00 8508.10 5539.2 182.00 358.12 5662.54 471.26 11.99 PASS 9720.00 9906.32 77.33 1.76 8500.00 8508.10 5539.2 142.00 358.12 5664.33 469.96 12.05 PASS 1020.00 9906.32 77.33 1.77 8500.00 8508.10 5539.2 142.00 358.11 5660.31 4665.17 12.05 PASS 1020.00 1998.02 134.76 3.12 8500.00 8508.10 5539.2 142.00 358.11 5660.28 465.17 12.08 PASS 1020.00 1998.02 147.66 3.12 8500.00 8508.10 5539.2 142.00 358.11 5640.91 465.86 17 12.08 PASS 1020.00 10058.49 20551 4.76 8500.00 8508.10 5539.2 142.00 358.10 5557.31 463.46 11.99 PASS 1020.00 10058.49 20551 4.76 8500.00 8508.10 5539.2 142.00 358.10 5557.31 463.46 11.99 PASS 1020.00 10151561 287.42 -566 8500.00 8508.10 5539.2 142.00 358.08 542.13 460.27 11.78 PASS 1032.00 010157.53 377.99 8.76 8500.00 8508.10 5539.2 142.00 356.08 542.13 460.27 11.78 PASS 1032.00 010157.53 377.99 8.76 8500.00 8508.10 5539.2 142.00 356.08 542.13 460.27 11.78 PASS 10420.00 10191.44 471.94 1.0.94 8500.00 8508.10 5539.2 142.00 356.08 542.13 460.27 11.78 PASS 10420.00 10191.44 470.84 1.0.92 8500.00 8508.10 5539.22 142.00 356.08 542.13 460.27 11.78 PASS 10420.00 10191.44 470.84 1.0.92 8500.00 8508.10 5539.22 142.00 356.08 542.13 460.27 11.78 PASS 10420.00 1020.94 657.53 1.31 8500.00 8508.10 5539.22 142.00 356.08 542.13 460.27 11.78 PASS 10420.00 1021.94 675.3 1.31 8500.00 8508.10 5539.22 142.00 356.08 542.13 460.27 11.78 PASS 10420.00 1023.04 565.55 11.457.4 38500.00 8508.10 5539.22 142.00 356.08 560.1 543.34 456.7 11.65 PASS 10420.00 1023.04 765.23 1.15 8500.00 8508.10 5539.22 142.00 356.08 5608.17 143.83 445.74 11.57 PASS 10420.00 1023.04 675.33 1.44 470.84 10.8500.00 8508.10 5539.22 142.00 356.03 5608.1 5634.34 456.74 11.7	9220.00	9220.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5587.75	475.19	11.76	PASS
3#2794201001 ##96201001 @#801001 @#8509100 #8508101 \$539.22 182.09 358.12 5652.42 471.32 11.19 PASS 9618.83 9618.83 9018.83 0.00 0.00 8500.00 8509.10 5539.22 -182.09 358.12 5652.42 471.32 11.19 PASS 9618.00 9620.001 9719.48 8.91 -0.21 8500.10 8539.22 -182.09 358.12 5662.65 471.22 11.19 PASS 9720.001 9719.48 8.91 -0.21 8500.10 8509.10 5539.22 182.09 358.11 5660.43 466.96 12.06 PASS 10220.001 9906.32 77.33 -1.72 8500.00 8508.10 5539.22 -182.09 358.10 5560.93 465.17 12.09 PASS 10220.001 10156.44 205.51 4.76 8500.00 8508.10 5539.22 -182.09 356.08 549.57.31 463.46 11.99 PASS 10220.001 1015.63 7.733 7.76 8500.00 8508.10 5539.22	9320.00	9320.00	0.00	• 0.00	8500.00	8508.10	5539.22	-182:09	358.12	5601.37	474.41	11.81	PASS
9620.007 9520.00 0.00 0.00 8500.00 8508.10 5539.22 1-82.09 358.12 6533.8 472.45 11.92 PASS 9720.007 9719.48 8.91 0.02 8500.00 8508.10 5539.22 1-82.09 358.12 5652.42 471.28 11.99 PASS 9720.007 98.9131589 3.25656.31 3469.96 12.05 PASS 9720.007 98.9131589 3.25656.31 3469.96 12.05 PASS 9920.007 98.9131589 3.25656.31 3469.96 12.05 PASS 9920.007 98.961359 3.25656.31 3469.96 12.05 PASS 10020.007 9988.02 1347.65 -3.1 2 8500.00 8508.10 5539.22 1-82.09 358.11 5640.91 465.61 12.08 PASS 10020.007 9988.02 1347.65 -3.1 2 8500.00 8508.10 5539.22 1-82.09 358.11 5640.91 465.61 12.08 PASS 10020.007 19988.02 1347.65 -3.1 2 8500.00 8508.10 5539.22 1-82.09 358.10 5567.31 463.46 11.99 PASS 10220.007 10058.49 205.51 4.76 8500.00 8508.10 5539.22 1-82.09 358.10 5557.31 463.46 11.99 PASS 10220.007 1015.61 287.42 -566 8500.00 8508.10 5539.22 1-82.09 358.10 5557.31 463.46 11.99 PASS 10420.007 1015.76 327.79 8.76 3500.00 8508.10 5539.22 1-82.09 358.01 5540.9 1467.51 12.05 PASS 10420.007 1015.76 327.79 8.76 3500.00 8508.10 5539.22 1-82.09 358.01 5543.92 456.76 11.65 PASS 10420.007 10191.84 471.94 1.0.92 8500.00 8508.10 5539.22 1-82.09 358.01 5543.32 456.76 11.65 PASS 10420.007 10191.84 471.94 1.0.94 8500.00 8508.10 5539.22 1-82.09 358.07 5343.32 456.76 11.65 PASS 10420.007 10191.84 471.94 1.0.94 8500.00 8508.10 5539.22 1-82.09 358.07 5343.32 456.76 11.65 PASS 10420.007 10124.96 0565 257.41 34800.00 8508.10 5539.22 1-82.09 358.07 5343.32 456.76 11.65 PASS 10420.007 10224.94 567.51 -1.77.4 8500.00 8508.10 5539.22 1-82.09 358.07 5343.32 456.76 11.65 PASS 10420.007 1024.94 0567.55 27.44 34.83 8500.00 8508.10 5539.22 1-82.09 358.03 508.01 454.66 11.18 PASS 1042.000 1024.95 066.517 -20.06 8500.00 8508.10 5539.22 1-82.09 358.03 508.01 454.66 11.18 PASS 1042.000 1024.95 066.517 -20.06 8500.00 8508.10 5539.22 1-82.09 358.03 508.01 454.66 11.49 PASS 1042.000 1024.95 066.517 -20.06 8500.00 8508.10 5539.22 1-82.09 357.93 443.83 4457.74 1.95 PASS 1122.000 10252.18 126.00 337.98 4500.00 8508.10 5539.22 1-82.00 357.93 443.83 4457.74 19.99 PASS 1122.00 102	\$ 9420 !00†	副9420.00	0.00	绿鳞0!00	\$8500.00	8508.10	5539.22	182!09	2358 12	關於5616473	473.50	織1186	PASS
9618.83 9618.83 0.00 0.00 8500.00 8508.10 5539.22 -182.09 358.12 5652.62 471.28 11.99 PASS 9720.007 9719.48 8.91 -0.21 8500.00 8508.10 5539.22 182.09 358.12 5666.43 466.86 12.06 PASS 9920.007 9906.32 77.33 -1.73 8500.00 8508.10 5539.22 182.09 358.11 5640.91 466.86 12.08 PASS 10120.007 9906.32 77.33 -1.77 8500.00 8508.10 5539.22 182.09 358.11 5606.21 465.11 12.06 PASS 10120.007 10058.49 205.51 -1.76 8500.00 8508.10 5539.22 182.09 358.06 542.11 460.02 11.78 PASS 10320.007 10157.63 377.99 -8.76 8500.00 8508.10 539.22 182.09 358.06 542.11 460.27 11.78 PASS 10418.63 10197.44 471.94 10.99 858.05 538.07 538.07 538.07	9520.00	9520.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5633.83	472.45	11.92	PASS
9620.001 9620.00 0.00 8500.00 8508.10 6539.22 -182.09 358.12 5662.26 471.28 11.99 PASS 9720.007 9719.48 8.91 -0.21 8500.00 #509.92 182.09 358.11 5664.35 449.96 12.00 PASS 9920.007 9906.32 77.33 -1.73 8500.00 8508.10 5539.22 182.09 358.11 5660.41 4466.84 11.20 PASS 10020.007 19986.02 127.73 -1.73 8500.00 8508.10 5539.22 182.09 358.10 5567.31 463.74 11.99 PASS 10202.007 10115.61 287.42 8500.00 8508.10 5539.22 182.09 358.00 5495.12 441.78 17.78 PASS 10318/832 461.0157.63 37.99 -8.76 8500.00 8508.10 5539.22 182.09 358.07 534.33 445.72 11.78 PASS 10420.001 10129.44 470.84 10.98 8500.00 8508.10 5539.22 182.09 358.07 534.33 4	9618.83	9618.83	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5652.42	471.30	11.99	PASS
9720.00 9719.48 8,991 902.00 9719.48 8,991 902.00 9719.48 970319 8763495 97031 97030 9703 97030 9703 97030 9703 97030 9703 9703	9620.00	9620.00	0.00	0.00	8500.00	8508.10	5539.22	-182.09	358.12	5652.65	471.28	` 11.99	PASS
************************************	9720.00	9719.48	8.91	-0.21	8500.00	8508.10	5539.22	-182.09	358.12	5664.35	469.96	12.05	PASS
9920.001 9980.02 77.33 -1.73 8500.00 8508.10 5539.22 -182.09 358.11 5640.91 466.8G 12.08 PASS 1020.007 10058.42 203 134.76 8500.00 8508.10 5539.22 -182.09 358.10 5606.28 4651.7 12.05 PASS 10220.001 1015.61 287.42 -6.66 8500.00 8508.10 5539.22 -182.09 358.10 5557.31 463.46 11.99 PASS 1020.007 1015.61 287.42 -6.66 8500.00 8508.10 5539.22 -182.09 358.03 542.21 142.04 27.114 60.27 11.79 PASS 10418.83 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.07 5343.35 458.76 11.65 PASS 10420.007 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.07 5343.35 458.76 11.65 PASS 10420.007 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 458.74 11.65 PASS 10420.007 10191.48 471.94 -10.94 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 458.74 11.65 PASS 10520.007 10220.94 567.53 -13.16 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 458.74 11.65 PASS 10520.007 10248.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09 358.03 5024.01 454.56 11.18 PASS 10720.007 10249.00 790.97 -18.34 8500.00 8508.10 8539.22 -182.09 358.03 5084.01 454.66 11.18 PASS 10720.007 10249.00 790.97 -18.34 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.10 PASS 10820.007 10249.00 790.97 -18.34 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.14 PASS 10820.007 10249.00 790.97 -18.34 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.10 PASS 10820.007 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.10 PASS 10820.007 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.10 PASS 1120.007 10251.51 1165.06 -23.03 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.10 PASS 1120.007 10252.18 1265.06 -23.33 8500.00 8508.10 5539.22 -182.09 357.97 441.43.445.66 10.29 PASS 1120.007 10252.18 1265.06 -23.33 8500.00 8508.10 5539.22 -182.09 357.97 441.43 49.90 PAT PASS 1120.007 10252.52 1365.00 -395.00 8508.10 5539.22 -182.09 357.97 441.43 8.445.78 9.95 PASS 1142.007 10252.45 1365.03 -31.66 8500.00 8508.10 5539.22 -182.09 357.93 4434.33 4343.33 6444.22 8390	9820!00†	9815:89	34 95	*1-0:81	8500:00	850810	\$\$539!22	182.09	358.11	5660.41	468.47	图12:08	PASS
10020.001 998.02 134.76 -3.12 8500.001 8508.10 5539.22 -182.09 358.10 5567.31 663.461.19 PASS 10220.001 10115.61 287.42 -6.66 8500.001 8508.10 5539.22 -182.09 358.00 5557.31 663.461.19 PASS 10220.001 10157.63 367.39 8-76 8500.00 8508.10 5539.22 -182.09 358.06 5495.12 461.73 11.90 PASS 10320.001 10157.63 377.99 8-76 8500.00 8508.10 5539.22 -182.09 358.07 5343.35 458.76 11.65 PASS 10418.83 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 458.76 11.65 PASS 10420.001 1022.034 665.65 315.43 8500.00 8508.10 5539.22 -182.09 358.07 534.24 458.76 11.65 PASS 10720.001 10248.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09	9920.00	9906.32	77.33	-1.79	8500.00	8508.10	5539.22	-182.09	358.11	5640.91	466.86	12.08	PASS
10120.001 10058.49 205.51 -4.76 8500.00 8508.10 5539.22 -182.09 358.09 549.57.31 463.46 11.99 PASS 10220.001 10115.61 287.42 -6.66 8500.00 8508.10 5539.22 -182.09 358.09 5422.11 84.60127 11.97 11.97 11.78 PASS 10318183 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 460.27 11.78 PASS 10420.001 10220.94 567.53 -13.16 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 457.23 11.51 PASS 10720.001 10229.94 665.65 57.51 8500.00 8508.10 5539.22 -182.09 358.03 504.01 457.23 11.51 PASS 10720.001 10249.00 790.97 -18.4 8500.00 8508.10 5539.22 -182.09 358.03 504.01 453.58 11.00 PASS 10820.001 10249.00 790.71 48.500.000 8508.10	10020.00	9988.02	134.76	-3.12	8500.00	8508.10	5539.22	-182.09	358.10	5606.28	465.17	12.05	PASS
10220.001 10115.61 28.4.22 -6.66 8500.00 5509.22 182.09 358.08 5495.12 461.79 11.90 PASS 10320.001 10157.63 377.99 -8.76 8500.00 8508.10 5539.22 -182.09 358.08 5542.11 460.27 11.78 PASS 10418.03 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.06 534.33 458.76 11.65 PASS 10420.001 10120.94 471.94 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.05 524.24 456.74 11.65 PASS 10520.001 10220.94 567.53 -13.16 8500.00 8508.10 5539.22 -182.09 358.05 5064.01 457.92 11.61 PASS 10720.001 10249.00 790.97 -18.34 8500.00 8508.10 5539.22 -182.09 358.03 5084.01 453.58 11.00 PASS 10420.001 10249.50 865.17 -20.06 8500.00 8508.10 5539.22 <td>10120.00</td> <td>10058.49</td> <td>205.51</td> <td>-4.76</td> <td>8500.00</td> <td>8508.10</td> <td>5539.22</td> <td>-182.09</td> <td>358.10</td> <td>5557.31</td> <td>463.46</td> <td>11.99</td> <td>PASS</td>	10120.00	10058.49	205.51	-4.76	8500.00	8508.10	5539.22	-182.09	358.10	5557.31	463.46	11.99	PASS
10320.007 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1015/0/3 1040 11.178 PASS 10420.007 10127.04 471.94 -10.94 8500.00 8508.10 5539.22 -182.09 358.07 5343.35 458.77 11.65 PASS 10520.007 10220.94 567.51 457.21 17.74 8500.00 8508.10 5539.22 -182.09 358.03 5084.01 454.38 11.14 PASS 10720.007 10249.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09 358.03 5059.93 454.38 11.14 PASS 10740.07 10249.48 765.21 -77.74 8500.00 8508.10 5539.22 -182.09 358.03 5059.93 454.38 11.14 PASS 10740.07 10249.40 79.97 -183.4 8500.00 8508.10 5539.22 -182.09 357.99 451.	10220.00	10115.61	287.42	-6.66	8500.00	8508.10	5539.22	-182.09	358.09	\$495.12	461.79	11.90	PASS
10120.007 10157.63 377.99 -8.76 8500.00 8508.10 5539.22 -182.09 358.08 7543.39 458.76 11.65 PASS 10418.43 10191.44 470.84 -10.92 8500.00 8508.10 5539.22 -182.09 358.07 5342.34 458.76 11.65 PASS 10420.007 10191.84 471.94 -10.94 8500.00 8508.10 5539.22 -182.09 358.05 5261.18 455.186 455.185 455.10 455.39.22 -182.09 358.03 5059.99 454.32 11.149 PASS 10429.00 10249.50 865.17 -20.08 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.32 11.149 PASS 10420.007 10259.17 965.14 -22.38 8500.00 8508.10 5539	1031883	\$4,10,15/ <u>*</u> 23	3/,6:89	8.1.4	18500.00	850810	AMR 5539:22	182:09	358.08	5422.11	£460.27	\$111°7.8	IRASS
101918.83 10191.44 470.84 -10.92 \$500.00 \$503.02 -182.09 358.07 5343.35 458.76 11.65 PASS 10420.001 10220.94 567.53 -13.16 8500.00 8508.10 5539.22 -182.09 358.05 5261.18 457.23 11.51 PASS 10720.001 10220.94 567.53 -17.74 8500.00 8508.10 5539.22 -182.09 358.03 5084.01 454.66 11.18 PASS 10720.001 10249.00 70.97 -18.34 8500.00 8508.10 5539.22 -182.09 358.03 5059.92 454.38 11.14 PASS 10820.001 10249.50 865.17 -20.06 8500.00 8508.10 5539.22 -182.09 358.03 4990.54 453.58 11.00 PASS 11120.001 10255.11 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.94 4618.84 448.66 10.29 PASS 11120.001 10255.11 1165.08 -27.01 8500.00 8508.10 5539.22 -18	10320.00	10157.63	377.99	-8.76	8500.00	8508.10	5539.22	-182.09	358.08	5421.19	460.27	11.78	PASS
10420.007 10191.84 471.94 -10.94 8500.00 8508.10 5539.22 -182.09 358.07 5342.44 458.74 11.65 PASS 10520.007 10229.4567.53 -13.16 8500.00 #8508.10 \$5539.22 -182.09 358.03 5084.01 454.64 11.18 PASS 10720.007 10248.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09 358.03 5064.01 454.66 11.18 PASS 10720.007 10249.50 865.17 -20.06 8508.10 5539.22 -182.09 358.03 5069.94 453.88 11.00 PASS 10920.007 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 357.99 48148.04 448.66 10.29 PASS 11202.007 10251.11 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.93 10.47 PASS 11202.007 10252.18 1265.00 -33.97 8500.00 8508.10 5539.22 -182.09	10418.83	10191.44	470.84	-10.92	8500.00	8508.10	5539.22	-182.09	358.07	5343.35	458.76	11.65	PASS
10220.007 10220.94 367.53 -13.16 8500.00 8508.10 5539.22 -182.09 358.03 5261.18 457.23 11.51 PASS 10720.007 10248.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.14 PASS 10720.007 10248.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09 358.02 4990.54 453.58 11.14 PASS 10820.007 10249.50 865.17 -20.06 8500.00 8508.10 5539.22 -182.09 358.02 4990.54 453.58 11.10 PASS 10920.007 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11220.007 10252.151 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11220.007 10252.85 1365.00 -31.65 8500.00 8508.10 5	10420.00	10191.84	4/1.94	-10.94	8500.00	8508.10	5539.22	-182.09	358.07	5342.44	458.74	11.65	PASS
10220101 2023030 2023030 2023030 2023030 2023030 2024300 2358102 2024300 2358102 2024300 2358102 25084.01 455180 455180 455180 455180 455180 455180 455180 455180 45182 455180 45182 455180 455182 450180 455182 450180 455182 450180 455182 450180 455182 450180 455182 450180 455182 450180 4551822 <td< td=""><td>10520.00</td><td>10220.94</td><td>567.53</td><td>-13.16</td><td>8500.00</td><td>8508.10</td><td>5539.22</td><td>-182.09</td><td>358.05</td><td>5261.18</td><td>457.23</td><td>11.51</td><td>PASS</td></td<>	10520.00	10220.94	567.53	-13.16	8500.00	8508.10	5539.22	-182.09	358.05	5261.18	457.23	11.51	PASS
10/20.001 10248.48 765.21 -17.74 8500.00 8508.10 5539.22 -182.09 358.03 5084.01 454.66 11.18 PASS 10745.77 10249.50 865.17 -20.06 8500.00 8508.10 5539.22 -182.09 358.03 5059.99 454.38 11.10 PASS 10920.001 10249.50 865.17 -20.06 8500.00 8508.10 5539.22 -182.09 358.00 4890.54 453.58 11.00 PASS 10920.001 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 357.95 4618.84 448.66 10.29 PASS 11120.001 10252.18 1265.06 -29.33 8500.00 8508.10 5539.22 -182.09 357.95 4618.84 448.66 10.12 PASS 11320.001 10252.48 1365.03 -31.65 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 447.26 10.12 PASS 11420.001 10254.85 1466.00 -33.97 8500.00 8508.10 55	10620:00	10239.89	1665:65	15:43	8500:00	8508110	5539.22	-182.09	358:04		\$455.86	11.35	PASS
10745.77 10249.00 790.97 -18.34 8500.00 8508.10 5539.22 -182.09 358.03 5059.92 453.58 11.00 PASS 10820.001 10249.50 865.17 -20.06 8508.10 5539.22 -182.09 358.02 4990.54 453.58 11.00 PASS 10920.001 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 357.99 44804.12 453.58 11.00 PASS 11120.001 10251.51 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11220.001 10252.18 1265.06 -29.33 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11320.001 10253.52 1465.00 -33.97 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.76 9.95 PASS 11420.001 10254.51 1664.94 -38.60 8508.10 5539.22 -182.09 3	10720.00	10248.48	/65.21	-1/./4	8500.00	8508.10	5539.22	-182.09	358.03	5084.01	454.66	11.18	PASS
10249.50 855.17 -20.06 8500.00 8508.10 5539.22 -182.09 358.02 4990.54 453.58 11.00 PASS 10920.001 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 358.02 4897.19 452.44 10.82 PASS 11120.001 10250.151 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.99 4418.48 449.99 10.47 PASS 11220.001 10252.18 1265.06 -29.33 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11420.001 10252.18 1265.00 -33.97 8500.00 8508.10 5539.22 -182.09 357.97 4434.83 445.78 9.95 PASS 11420.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.88 4252.27 442.56 9.61 PASS 11620.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -1	10745.77	10249.00	790.97	-18.34	8500.00	8508.10	5539.22	-182.09	358.03	5059.99	454.38	11.14	PASS
10920.001 10250.17 965.14 -22.38 8500.00 8508.10 5539.22 -182.09 358.00 4897.19 452.44 10.82 PASS 111020001 10251.51 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.99 44804.12 448.66 10.29 PASS 111220.001 10252.18 1265.06 -29.33 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11320.001 10252.85 1365.03 -31.65 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.78 9.95 PASS 11420.001 10254.85 1664.94 3.860 8500.00 8508.10 5539.22 -182.09 357.90 4434.83 445.78 9.95 PASS 11620.001 10254.85 1664.94 3.860 8500.00 8508.10 5539.22 -182.09 357.80 4161.59 440.80 9.44 PASS 11720.001 10256.61 1664.88 43.24 8500.00 8508.10 55	10820.00	10249.50	865.17	-20.06	8500.00	8508.10	5539.22	-182.09	358.02	4990.54	453,58	11.00	PASS
11020001 10250/84 1065/11 124/04 8500/00 8508/10 5539/22 182/09 357/99 4404/12 451/25 310/65 IPASS 11120.001 10251.51 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.95 4618.84 448.66 10.27 PASS 11320.001 10252.18 1265.06 -29.33 8500.00 8508.10 5539.22 -182.09 357.95 4618.84 448.66 10.27 PASS 11420.001 10252.85 1365.03 -31.65 8500.00 8508.10 5539.22 -182.09 357.95 4434.83 445.78 9.95 PASS 11420.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.84 4252.27 442.56 9.61 PASS 11620.001 10256.45 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.84 4161.59 440.80 9.44 PASS 11720.001 10256.45 1964.85 -45.56 8500.00 8508.10	10920.00	10250.17	965.14	-22.38	8500.00	8508.10	5539.22	-182.09	358.00	4897.19	452.44	10.82	PASS
11120.001 10251.51 1165.08 -27.01 8500.00 8508.10 5539.22 -182.09 357.97 4711.33 449.99 10.47 PASS 11220.001 10252.15 1365.03 -31.65 8500.00 8508.10 5539.22 -182.09 357.94 4526.66 447.26 10.12 PASS 11420.001 10253.52 1465.00 33.97 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.78 9.95 PASS 11420.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.80 4434.33 6 4444.22 9.97.87 PASS 11620.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11820.001 10256.19 1864.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.81 3981.57 436.94 9.11 PASS 11920.001 10256.86 1964.85 -45.56 8500.00 8508	11020:00	at 10250 84	21065.11	電-24:/0	8500:00	8508.10	5539:22	-182:09	357/99	4804.12	451:25	\$10.65	PASS
11220.001 10252.18 1265.06 -29.33 8500.00 8508.10 5539.22 -182.09 357.95 4618.84 448.66 10.29 PASS 11320.001 10252.85 1365.03 -31.65 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.78 9.95 PASS 11420.001 10253.52 1465.497 743.629 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.78 9.95 PASS 11520.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11720.001 10256.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11820.001 10256.68 1964.85 -45.56 8500.00 8508.10 5539.22 -182.09 357.87 438.93 9.28 PASS 11920.001 10256.86 1964.85 -45.56 8500.00 8508.10 5539.22	11120.00	10251.51	1165.08	-27.01	8500.00	8508.10	5539.22	-182.09	357.97	4711.33	449.99	10.47	PASS
11320.001 10252.85 1365.03 -31.65 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.78 9.95 PASS 11420.001 10253.52 1465.00 -33.97 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 4445.78 9.95 PASS 11520.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.86 44252.27 442.56 9.61 PASS 11720.001 10255.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 1120.001 10256.19 1864.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.81 497.15 436.94 9.41 PASS 11202.001 10256.86 1964.85 -45.56 8500.00 8508.10 5539.22 -182.09 357.81 3982!30 443432 8895 PASS 1220.001 10258.87 2264.76 -52.51 8500.00 8508.10 5539	11220.00	10252.18	1265.06	-29.33	8500.00	8508.10	5539.22	-182.09	357.95	4618.84	448.66	10.29	PASS
11420.007 10253.52 1465.00 -33.97 8500.00 8508.10 5539.22 -182.09 357.92 4434.83 445.78 9.95 PASS 1115201007 1025419 4156497 33629 8500.00 8508.10 5539.22 357.90 4343.36 444422 9978 PASS 11620.007 10255.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4252.27 442.56 9.61 PASS 11720.007 10255.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11820.007 10256.86 1964.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.84 4071.35 436.94 9.11 PASS 11920.007 10256.86 1964.85 -45.56 8500.00 8508.10 5539.22 -182.09 357.73 3891.57 436.94 9.11 PASS 12020.007 10258.20 2164.79 -50.20 8500.00 8508.10 5539.22 -182	11320.00	10252.85	1365.03	-31.65	8500:00	8508.10	5539.22	-182.09	357.94	4526.66	447.26	10.12	PASS
11520:001 10254919 156497 13629 8500:00 8508:10 553922 182:09 357.90 4443336 444422 94/8 PASS 11620.001 10254.85 1664.94 -38.60 8500.00 8508.10 5539.22 -182.09 357.88 4252.27 442.56 9.61 PASS 11720.001 10255.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11820.001 10256.19 1864.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.81 3981.57 436.94 9.11 PASS 112020:001 **10257/53 *2064/82 *47/88 8500:00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 1220.001 10258.20 2164.79 -50.20 8500.00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 12220.001 10258.87 2264.76 -52.51 8500.00 8508.10 5539	11420.00	10253.52	1465.00	-33.97	8500.00	8508.10	5539.22	-182.09	357.92	4434.83	445.78	9.95	PASS
11620.001 10254.83 1664.94 -38.60 6500.00 8508.10 5539.22 -182.09 357.86 4252.27 442.56 9.61 PASS 11720.001 10255.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11820.001 10256.19 1864.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.84 4071.35 438.93 9.28 PASS 11920.001 10256.86 1964.85 -45.56 8500.00 8508.10 5539.22 -182.09 357.79 3892.50 4434.82 48595 PASS 12020:001 -10257.53 2064.82 -47.88 8500.00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 1220.001 10258.20 2164.79 -50.20 8500.00 8508.10 5539.22 -182.09 357.70 3803.55 432.57 8.79 PASS 12220.001 10258.87 2264.76 -52.51 8500.00 8508.10 5	連続11520:001	10254 95	1664.04	1.8:30.29	8500.00	\$ 8508 IU	\$5539:22	402.09	\$2357.9U	2004343.30	@444:22	A 91/8	PASS
11720.001 10255.52 1764.91 -40.92 8500.00 8508.10 5539.22 -182.09 357.86 4161.59 440.80 9.44 PASS 11820.001 10256.19 1864.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.84 4071.35 438.93 9.28 PASS 11920.001 10256.86 1964.85 -45.56 8500.00 8508.10 5539.22 -182.09 357.81 3981.57 436.94 9.11 PASS 12020:001 -10257/53 2064/82 -47.88 8500.00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 1220.001 10258.20 2164.79 -50.20 8500.00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 12220.001 10258.87 2264.76 -52.51 8500.00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.48 PASS 12420.001 10260.21 264.71 -57.15 8500.00 8508.10 5539	11620.00	10254.65	1004.94	-38.60	8500.00	8508.10	5539.22	-182.09	357.88	4252.27	442.56	9.61	PASS
11820.001 10256.19 1864.88 -43.24 8500.00 8508.10 5539.22 -182.09 357.84 4071.35 438.93 9.28 PASS 11920.001 10256.86 1964.85 -45.56 8500.00 8508.10 5539.22 -182.09 357.81 3981.57 436.94 9.11 PASS 12020:001 -10257/53 2064/82 -47.88 8500:00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 12120.001 10258.20 2164.79 -50.20 8500.00 8508.10 5539.22 -182.09 357.76 3803.55 432.57 8.79 PASS 12220.001 10258.87 2264.76 -52.51 8500.00 8508.10 5539.22 -182.09 357.70 3627.82 427.58 8.48 PASS 12220.001 10260.21 264.71 -54.83 8500.00 8508.10 5539.22 -182.09 357.67 364.92 424.82 8.34 PASS 12420.001 10260.21 2464.71 -57.15 8500.00 8508.10 5539	11/20.00	10255.52	1764.91	-40.92	8500.00	8508.10	5539.22	-182.09	357.86	4161.59	440.80	9.44	PASS
11920.001 10256.00 1964.85 -45.56 6500.00 6508.10 5539.22 -182.09 357.81 3981.57 436.94 9.11 PASS 12020:001	11820.00T	10250.19	1004.00	-43.24	8500.00	8508.10	5539.22	-182.09	357.84	4071.35	438.93	9.28	PASS
1220.001 10257/55 10257/57 10257/57 10257/57 10257/57 10257/57 10257/57 10257/57 10257/57 10257/57 1125/55 10257/57 1125/55 10257/57 1125/55 10257/57 1125/55 10257/57 1125/55 10257/57 1125/55 10257	11920.00T	10250.00	1904.00	-40.00	0500.00	0000.10	2239.22	-182.09	357.81	3981.57	430.94	9.11	PASS
12120.001 10258.20 2104.75 -50.20 8500.00 6508.10 5539.22 -162.05 357.76 3800.55 432.57 8.73 PASS 12220.007 10258.87 2264.76 -52.51 8500.00 8508.10 5539.22 -182.09 357.73 3715.38 430.16 8.64 PASS 1220.007 10259.54 2364.73 -54.83 8500.00 8508.10 5539.22 -182.09 357.70 3627.82 427.58 8.48 PASS 12420.007 10260.21 2464.71 -57.15 8500.00 8508.10 5539.22 -182.09 357.67 3540.92 424.82 8.34 PASS 12420.007 10260.21 2464.71 -57.15 8500.00 8508.10 5539.22 -182.09 357.64 3454.473 424.82 8.34 PASS 12620.007 10260.88 2564.68 59.47 8500.00 8508.10 5539.22 -182.09 357.64 3454.473 424.86 8.49 PASS 12620.007 10262.22 2764.62 -61.79 8500.00 8508.10 553	12020.001	10257.55	2164 70	50 20	8500.00	8509 10	SE20 22	102:09	離つ31279 2F7 76	3892:50	404.02	0:90	PASS
12220.00 10258.87 2264.76 -52.51 8500.00 6508.10 5539.22 -182.09 357.73 3715.38 430.16 8.64 PASS 12320.001 10259.54 2364.73 -54.83 8500.00 8508.10 5539.22 -182.09 357.70 1 3627.82 427.58 8.48 PASS 12420.001 10260.21 2464.71 -57.15 8500.00 8508.10 5539.22 -182.09 357.67 3540.92 424.82 8.34 PASS 12520.001 10260.88 2564.68 594.77 8500.00 8508.10 5539.22 -182.09 357.67 3540.92 424.82 8.34 PASS 12620.001 10260.88 2564.68 594.77 8500.00 8508.10 5539.22 -182.09 357.67 3369.31 418.69 8.05 PASS 12620.001 10261.55 2664.65 -61.79 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 415.28 7.91 PASS 12720.001 10262.22 2764.62 -64.11 8500.00 8508.10 <td>12120.00</td> <td>10256.20</td> <td>2104.79</td> <td>-50.20</td> <td>8500.00</td> <td>8508.10</td> <td>5539.22</td> <td>-182.09</td> <td>357.70</td> <td>3803.55</td> <td>432.57</td> <td>8.79</td> <td>PASS</td>	12120.00	10256.20	2104.79	-50.20	8500.00	8508.10	5539.22	-182.09	357.70	3803.55	432.57	8.79	PASS
12320.001 10239.34 2364.75 -54.85 6500.00 6508.10 5539.22 -182.09 357.701 3627.82 427.38 8.46 PASS 12420.001 10260.21 2464.71 -57.15 8500.00 8508.10 5539.22 -182.09 357.64 3540.92 424.82 8.34 PASS 12420.001 10260/88 2564/68 5947 8500.00 8508.10 5539.22 -182.09 357.64 3454.73 424.86 8.34 PASS 12620.001 10261.55 2664.65 -61.79 8500.00 8508.10 5539.22 -182.09 357.60 3369.31 418.69 8.05 PASS 12620.001 10262.22 2764.62 -64.11 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 415.28 7.91 PASS 12820.001 10262.89 2864.59 -66.42 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 415.28 7.91 PASS 12820.001 10263.55 2964.56 -68.74 8500.00 8508.10 5539	12220.00	10250.67	2204.70	-52.51	8500.00	8508.10	5539.22	-102.09	357.73	3715.30	430.10	0.04	PASS
1220.001 10260.21 2404.71 -57.15 5500.00 5500.10 5539.22 -162.09 357.67 3540.92 424.82 8.34 PASS 2125201001 210260188 2564/68 25947 28500100 28508.10 5539/22 218209 357.64 3454/73 4424.82 8.34 PASS 12620.001 10261.55 2664.65 -61.79 8500.00 8508.10 5539.22 -182.09 357.64 3454/73 4424.82 8.34 PASS 12620.001 10261.55 2664.65 -61.79 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 418.69 8.05 PASS 12720.001 10262.22 2764.62 -64.11 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 415.28 7.91 PASS 12820.001 10263.25 2964.56 -66.42 8500.00 8508.10 5539.22 -182.09 357.52 3200.99 411.60 7.78 PASS 12920.001 10263.55 2964.56 -68.74 8500.00 8508.10	12420.00	10209.04	2004.73	-57 15	8500.00	8509.10	5520.22	102.09	257.70	1 3021.82	421.38	0.48	PASS
12620.001 10261.55 2664.65 -61.79 8500.00 8508.10 5539.22 -182.09 357.60 3369.31 418.69 8.05 PASS 12720.001 10262.22 2764.62 -64.11 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 415.28 7.91 PASS 12820.001 10262.89 2864.59 -66.42 8500.00 8508.10 5539.22 -182.09 357.57 3284.70 415.28 7.91 PASS 12820.001 10262.89 2864.59 -66.42 8500.00 8508.10 5539.22 -182.09 357.52 3200.99 411.60 7.78 PASS 12920.001 10263.55 2964.56 -68.74 8500.00 8508.10 5539.22 -182.09 357.48 3118.23 407.63 7.65 PASS 12920.001 10263.55 2964.56 -68.74 8500.00 8508.10 5539.22 -182.09 357.48 3118.23 407.63 7.65 PASS 1430201001 10263.45 -68.74 8500.00 8508.10 5539.22 -1	12420.00	10200.21	2404./1	-07.10 28350247	8288500100	0000.10	5530.22	-102.09	307.07	3040.92	424.02	0.34	TASS DASS
12020.00 10201.00 2004.00 -01.75 0000.00 <	12620.001	10200:00	2661 65	_61 70	8500.00	8509 10	5520 22	102:09	367 60	2260 24			ILE HOOS
12/20.001 10202.22 2/04.02 -04.11 0300.00 0300.10 5539.22 -102.09 357.37 3284.70 415.28 7.91 PASS 12820.001 10262.89 2864.59 -66.42 8500.00 8508.10 5539.22 -182.09 357.52 3200.99 411.60 7.78 PASS 12920.001 10263.55 2964.56 -68.74 8500.00 8508.10 5539.22 -182.09 357.48 3118.23 407.63 7.65 PASS 12920.001 10263.55 2964.56 -68.74 8500.00 8508.10 5539.22 -182.09 357.48 3118.23 407.63 7.65 PASS 130201004 1026422 306453 7406 850840 553922 -182.09 357.48 3118.23 407.63 7.65 PASS	12020.00	10201.00	2764.62	-6/ 11	8500.00	8508.10	5530.22	182.09	257 57	3309.31	410.09	0.00	PASS
12020.001 10202.03 2004.03 -00.42 000.00 0000 0000 0000 0000 0000 00	12820.00	10202.22	2864.50	66.42	8500.00	8508 10	5530.22	192.09	257 52	3204.70	410.20	7.9	PASS
12320.0011 12200.001 2304.001 2007.001 0000.001 00000.101 0003.221 -102.031 007.40 0118.231 407.03 7.001 PASS	12020.00	10202.09	2004.09	-68 74	8500.00	8508 10	5530 22	192.09	357 49	2110 22	411.00	7.65	PASS
	Mil 3020100+	AMR 10262 22	306452	7/1/06	8500.00	8508.10	5530122	-102.09	357.40	3110.23	407.03	7.00	PA33

ί

Clearance Report B-1 Closest Approach Page 11 of 12

ворсо,	L.P.
--------	------

राचनचाः	RENCE WELLPATH IDENTIFICATION	e setti s é	and the second
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field .	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		

CLEARAP	ICE DAT	A - Offse	t Wellborr	a: No.57 A	WB Offs	et Wellpath	No.57 A	NP	2212 C 242 C 20			SEA.
Facility: PLU	No.057	Slot: No.	.57 SHL	Well: N	0.57. T	hreshold V:	ălue=1.00)		rpolated/ex	trapolat	ed stat	ion
Ref MD	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz	C-C	ACR	Sep	ACR
[ft]	[ft]	[ft]	[ft]	[ft]	[ft] /	[ft]	[ft]	Bearing [°]	Clear Dist	MASD [ft]	Ratio	Status
13120.00	10264.89	3164.50	-73.38	8500.00	8508.10	5539.22	-182.09	357.38	2955.91	398.72	7.41	PASS
13220.00†	10265.56	3264.47	-75.70	8500.00	8508.10	5539.22	-182.09	357.32	2876.54	393.71	7.31	PASS
13320.00+	10266.23	3364.44	-78.02	8500.00	8508.10	5539.22	-182.09	357.26	2798.48	388.27	7.21	PASS
13420.00	10266.90	3464.41	-80.33	8500.00	8508.10	5539.22	-182.09	357.19	2721.87	382.37	7.12	PASS
13520 00+	10267.57	3564.39	-82 65	8500!00	8508110	Min 5539!22	182/09	357/12	2646.81	\$375.96	7:04	PASS
13620.00+	10268.24	3664.36	-84.97	8500.00	· 8508.10	5539.22	-182.09	357.04	2573.45	368.98	6.97	PASS
13720.00	10268.91	3764.33	-87.29	8500.00	8508.10	5539.22	-182.09	356.94	2501.94	361.38	6.92	PASS
13820.00+	10269.58	3864.30	-89.61	8500.00	8508.10	5539.22	-182.09	356.84	2432.43	353.11	6.89	PASS
13920.00+	10270.25	3964.27	-91.93	8500.00	8508.10	5539.22	-182.09	356.72	2365.11	344.09	6.87	PASS
14020.00 1	10270 92	4064.24	94-22	8500:00	8508 10	\$\$5539122	182!09	356.59	2300518	1334-27	6.88	PASS
14120.00†	10271.59	4164.21	-96.56	8500.00	8508.10	5539.22	-182.09	356.44	2237.82	323.57	6.92	PASS
14220.00+	10272.25	4264.18	-98.88	8500.00	8508.10	5539,22	-182.09	356,27	2178,28	311.94	6,98	PASS
14320.00†	10272.92	4364.15	-101.20	8500.00	8508.10	5539.22	-182.09	356.06	2121.78	299.30	7.09	PASS
14420.00+	10273.59	4464.12	-103.52	8500.00	8508.10	5539.22	-182.09	355.82	2068.57	285.59	7.24	PASS
14520.00+	10274 26	4564:05	105/8/	1228500100	850810	5539 22	182:00	355 53	2018.91	\$27078	19807/4F	PASS
14620.00+	10274.93	4664.07	-108.15	8500.00	8508.10	5539.22	-182.09	355.17	1973.08	254.83	1 7.74	PASS
14720.00+	10275.60	4764.04	-110.47	8500.00	8508.10	5539.22	-182.00	354.72	1931.35	237.72	8.12	PASS
14820.00+	10276.27	4864.01	-112.75	8500.00	8508.10	5539.22	-182.00	354.14	1893.98	219.49	8.63	PASS
14920.00+	10276.94	4963.98	-115,11	8500.00	8508.10	5539.22	-182.09	353.36	1861.23	200.18	9.30	PASS
15020100t	職10277/61	188506395	潮港1117742	188500:00	850810	188+5539122	· · · · · · · · · · · · · · · · · · ·	352 25	WINE1833:36	1.7.9.92	MANA	PASS
15120.00+	10278.28	5163.92	-119.75	8500.00	8508.10	5539.22	-182.09	350.57	1810.60	158.91	11.30	PASS
15220.00+	10278.95	5263.85	-122.06	8500.00	8508.10	5539.22	182.09	347.70	1793.13	137.56	13.04	PASS
15320.00+	10279.62	5363.86	-124 38	8500.00	8508 10	5539.22	-182.00	341 78	1781 11	116 74	15.26	PASS
15420 00+	10280.29	5463.83	-126.70	8500.00	8508.10	5539.22	-182.00	323.69	1774.65	99.30	17 87	PASS
15485100t	10280172	315528 81	128:21	18850010C	850810	\$553922	A ##1182100	280.93	Carrier 1773147	1 94:07	1 <u>81885</u>	PASS
15520.00+	10280.95	5563.80	-129.02	8500.00	8508.10	5539.22	-182.09	245.15	1773.82	94.95	18.68	PASS
15620.001	10281.62	5663.77	-131,34	8500.00	8508.10	5539.22	-182.00	202.17	1778.62	109.49	16.24	PASS
15720.00+	10282.29	5763.74	-133.6€	8500.00	8508.10	5539.22	-182.09	192:17	1789.00	131.37	13.62	PASS
15820.00+	10282.96	5863.72	-135.97	8500.00	8508.10	5539.22	-182.09	188.09	1804.87	154.76	11.66	PASS
15920.00 1	10283.63	5963 69	138:25	8500100	\$850810	5539.22	AND 182100	185,89	1826.09	178106	10.26	IPASS
16020,00+	10284.30	6063.66	-140.61	8500.00	8508.10	.5539.22	-182.00	184.52	1852.47	200.67	9,23	PASS
16120.00+	10284,97	6163.63	-142.9?	8500.00	8508.10	5539.27	-182.09	183.59	1883.80	222.31	8.47	PASS
16220.00+	10285.64	6263.60	-145,25	8500.00	8508.10	5539.27	-182.00	182,91	1919.82	242.80	7.91	PASS
16320.00+	10286.31	6363.57	-147.57	8500.00	8508.10	5539.22	-182.09	182.40	1960.30	262.05	7.48	PASS
16420.00 t	10286.98	6463 54	149/88	8500.00	8508 10	5539 22	182709	182.00	××200495	280104	1987/16	PASS
16520.00+	10287.65	6563.51	-152.20	8500.00	8508.10	5539.22	-182.09	181.67	2053.50	296.74	6.92	PASS
16620.00+	10288,32	6663.48	-154.52	8500.00	8508.10	5539.22	-182.09	181,41	2105.68	312.20	6.74	PASS
16720.00+	10288.99	6763.45	-156.84	8500.00	8508.10	5539.22	-182.09	181.18	2161.23	326.45	6.62	PASS
16820 00+	10289.65	6863.42	-159.16	8500.00	8508.10	5539.22	-182.09	180 99	2219.90	339.56	6.54	PASS
16920i00+	10200132	A 696340	16148	18500000	R50810	553922	182:00	180.00	2210.00	11150 111150	1111614C	DASS
17020 00+	10200.90	7063.37	-163 75	1 8500 0C	8508 10	5539.22	-182 00	180.60	2345 65	362.62	647	DASS
17053 511	10200.00	7096.86	-164.57	8500.00	8508.10	5539.27	-182.00	180.64	2340.00	266 10	6 47	DASS
17120 00+	10201.66	7163 3/	166 11	8500.00	9508.10	5530.22	182.00	180.56	2307.71	272 72	6.47	PAGE 1
17220.00	10202.32	2 7263 31	-168.47	2 8500.00	8508.10	5539.22	-182.05	180.45	2412.20	381.06	6.50	I DASS
17220.00	10292.00	7363 25	170.75	2000.00	8508.10	5539.22	182:03	180.40	2401.10	301.30	0.00	FASS
1.28%か日だしという。	(影響) じとうし:しい	A物心にひしつ:とい	イ製造されたらしてたい	/ 競鳥しししし;しし	A SER OOO CONTO	New JUJJILE	「新設備に「していいい	「製飯IOU.UU	「別題編ZOUZ?UU	「渡しつしいせん	「観烈しい」	心気ないい

Closest Approach Page 12 of 12

REFER	ENCE WELLPATH IDENTIFICATION	796 B. J	·····································
Operator	WTD - West Texas Division	Slot	No.012H SHL
Area	Eddy County, NM	Well	No.012H
Field	Poker Lake Unit	Wellbore	No.012H PWB
Facility	PLU CVX JV PB No.012H		·

CLEARAN	ICE DAT	A - Offset	Wellbore	: No.57 A	WB Offse	t Wellpath:	No.57 AV	/P				
Facility: PLU	No.057	Slot: No.	57/SHL	Well: No	.57. TI	reshold Va	lue=1.00	† ≡ inter	polated/ext	rapolate	dstati	on
Ref MD [ft]	Ref TVD	Ref North	Ref East	Offset MD	Offset TVD	Offset North	Offset East	Horiz Bearing	C-C Clear Dist	ACR MASD	Sep Ratio	ACR Status
[···]		L. 13.	L3	[]	1.4	[**]	[14]	[°]	[ft]	[ft]	T Callo	otatus
17420.00	10293.67	7463.25	-173.07	8500.00	8508.10	5539.22	-182.09	180.27	2624.92	398.16	6.59	PASS
17469.31	10294.00	7512.55	-174.21	8500.00	8508.10	5539.22	-182.09	180.23	2661.49	401.74	6.62	PASS

POSITIONAL UNCERTAINTY - Offset Wellb	ore: No:57 AWB 🔨 🕻	Offset Wellpath:	No.57 AWP	
Slot Surface Uncertainty @1SD	Horizontal	0.100ft	Vertical	0.100ft
Facility Surface Uncertainty @1SD	Horizontal	20.000ft	Vertical	3.000ft

WELLPATH COMPOSITION - Offset Wellbore: No.57 AWB Offset Wellpath: No.57 AWP						
Start MD	End MD	Positional Uncertainty Model	Log Name/Comment	Wellbore		
[ft]	[ft]		, ,			
0.00	8500.00	Unknown Tool (Standard)	Unknown <8500>	No.57 AWB		

OFFSET WELLPATH MD REFERENCE - Offset Wellbore: No.57 AWB. Offset Wellpath: No.57 AWP					
MD Reference: Rig on No.75 SHL (RT)	Offset TVD & local coordinates use Reference Wellpath settings (See WELLPATH DATUM on page 1 of this report)				
Ellipse Start MD	0.00ft				

· · · · ·

.

April 4, 2012 Internal Hydrostatic Test Graph មរើលទ Customer: Latshaw Pick Ticket #: 81610 Midwest Hose & Specialty, Inc. Hose Specifications Verification Hose Type Length Type of Fitting **Coupling Method** 41/165K Swage 30' p <u>Die Size</u> Final O.D. LD. <u>O.D.</u> 3" 415/32 5.12" 5.16" Base Assembly Serial # Working Pressure Burst Pressure Hose Serial # 5000 P51 6884 81610 Standard Solicy Multiplies Applies **Pressure Test** 12000 10090 8000 6000 PSI 4000 2000 ٥ 1.03 AL 4-DH 441 4.05 AA * 05 ft. CO3 ALL 5-07 AN 4.00 ASA **Time in Minutes** Actual Burst Pressure Time Held at Test Pressure Peak Pressure Test Pressure 10195 PSI 10000 PSI 5 1/4 Minutes Comments: Hose assembly pressure tested with water at ambient temperature. Tested By: Donnie Mclemore Approved By: Bobby Fink

732 NO.

 \circ

مح HOSE MIDWEST

SPEC

4:49PM 2012 Ś

ę. API

MIDWEST

The second s

-

- Charling and Charles

and the second second

HOSE AND SPECIALTY INC.

INTERNAL HYDROSTATIC TEST REPORT					
Customer	r;		<u></u>	P.O. Numbe	er:
LATSHAW	DRILLING		`	RIG#4	
		HOSE SPECI	FICATIONS		
Туре:	CHOKE LIN	E		Length:	30'
1.D.	3"	INCHES	O.D.	6''	INCHES
WORKING P	RESSURE	TEST PRESSUR	E	BURST PRESS	URE
5,000	PSI	10,000	PSI		PSI
		COUP	LINGS		
Type of E	nd Fitting 4 1/16 5K FL	ANGE			
Type of C	Type of Coupling: MANUFACTURED BY SWEDGED MIDWEST HOSE & SPECIALTY			.TY	
<u>_</u>		PROC	EDURE		<u></u>
	Hose assembly	/ pressure tested w	ith water at ambier	<u>nt temperature</u> .	
	TIME HELD AT TEST PRESSURE			SURST PRESSUR	ε:
	1	MIN.			0 PSI
COMMENT	rs:		· · · · · · · · · · · · · · · · · · ·		
	SO#81610				
Hose is covered with stainless steel armour cover and			,		
wraped with fire resistant vermiculite coated fiberglass					
Dete	Insulation ra	Hed for 1500 ue	grees complete	Approved:	yes
Date.	3/2/2011	BOBBY FINK		MENDI JA	CKSON

TABLE OF CONTENTS

I. H₂S Contingency Plan

- A. Scope
- B. Objective
- C. Discussion of Plan

II. Emergency Procedures

A. Emergency Procedures and Public Protection

1

- **B.** Emergency Procedures Implementation
- C. Simulated Blowout Control Drills

III. Ignition Procedures

- A. Responsibility
- B. Instructions

IV. Training Requirements

V. Emergency Equipment

VI. Evacuation Plan

- A. General Plan
- B. Emergency Phone Lists

VII. General Information

- A. H₂S Toxicity Table
- B. Respirator Use
- C. Emergency Rescue

H₂S CONTINGENCY PLAN SECTION

Scope:

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H_2S).

Objective:

Prevent any and all accidents, and prevent the uncontrolled release of H_2S into the atmosphere.

Provide proper evacuation procedures to cope with emergencies.

Provide immediate and adequate medical attention should an injury occur.

Discussion of Plan:

Suspected Problem Zones:

Implementation: This plan, with all details, is to be fully implemented 500' above or three days prior to drilling into the first known sour zone

Emergency Response and Public Protection Procedure: This section outlines the conditions and denotes steps to be taken in the event of an emergency.

Emergency Equipment and Procedure: This section outlines the safety and emergency equipment that will be required for the drilling of this well.

Training Provisions: This section outlines the training provisions that must be adhered to 500 feet above or three days prior to drilling into the first known sour zone.

Emergency call lists: Included are the telephone numbers of all persons that would need to be contacted should an H_2S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public Safety Personnel will be made aware of the drilling of this well.

EMERGENCY PROCEDURES AND PUBLIC PROTECTION SECTION

- I. In the event of any evidence of H_2S levels above 10 ppm, take the following steps immediately:
 - A. Secure breathing apparatus.
 - B. Order non-essential personnel out of the danger zone.
 - C. Take steps to determine if the H₂S level can be corrected or suppressed, and if so, proceed with normal operations.
- II. If uncontrollable conditions occur, proceed with the following:
 - A. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify necessary public safety personnel and the New Mexico Oil & Gas of the situation.
 - B. Isolate area and prevent entry by unauthorized persons into the 100 ppm ROE.
 - C. Remove all personnel to the Safe Briefing Area.
 - D. Notify public safety personnel for help with maintaining roadblocks and implementing evacuation. Phone number list attached.
 - E. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.

III. Responsibility:

- A. The Company Approved Supervisor shall be responsible for the total implementation of the plan.
- B. The Company Approved Supervisor shall be in complete command during any emergency.
- C. The Company Approved Supervisor shall designate a back up Supervisor in the event that he/she is not available.

3

EMERGENCY PROCEDURE IMPLEMENTATION

I. Drilling or Tripping

- A. All Personnel
 - 1. When alarm sounds, don escape unit and report to upwind Safe Briefing Area.
 - 2. Check status of other personnel (buddy system).
 - 3. Secure breathing apparatus.
 - 4. Wait for orders from supervisor.
- B. Drilling Foreman
 - 1. Report to the upwind Safe Briefing Area.
 - 2. Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system).
 - 3. Determine the concentration of H_2S .
 - 4. Assess the situation and take appropriate control measures.
- C. Tool Pusher
 - 1. Report to the upwind Safe Briefing Area.
 - 2. Don breathing apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system).
 - 3. Determine the concentration.
 - 4. Assess the situation and take appropriate control measures.

D. Driller

- 1. Check the status of other personnel (in a rescue attempt, always use the buddy system).
- 2. Assign the least essential person to notify the Drilling Foreman and Tool Pusher, in the event of their absence.

- 3. Assume the responsibility of the Drilling Foreman and the Tool Pusher until they arrive, in the event of their absence.
- E. Derrick Man and Floor Hands
 - 1. Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor.
- F. Mud Engineer
 - 1. Report to the upwind Safe Briefing Area.
 - 2. When instructed, begin check of mud for pH level and H₂S level.
- G. On-site Safety Personnel
 - 1. Don Breathing Apparatus.
 - 2. Check status of all personnel.
 - 3. Wait for instructions from Drilling Foreman or Tool Pusher.

II. Taking a Kick

- A. All personnel report to the upwind Safe Briefing Area.
- B. Follow standard BOP procedures.

III. Open Hole Logging

- A. All unnecessary personnel should leave the rig floor.
- B. Drilling Foreman and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations.

IV. Running Casing or Plugging

- A. Follow "Drilling or Tripping" procedures.
- B. Assure that all personnel have access to protective equipment.

SIMULATED BLOWOUT CONTROL DRILLS

All drills will be initiated by activating alarm devices (air horn). Use one long blast on the air horn for ACTUAL and SIMULATED Blowout Control Drills. This operation will be performed by the Drilling Foreman or Tool Pusher at least one time per week for each of the following conditions, with each crew:

Drill # 1 Bottom Drilling

Drill # 2 Tripping Drill Pipe

In each of these drills, the initial reaction time to shutting in the well shall be timed as well as the total time for the crew to complete its entire pit drill assignment. The times must be recorded on the IADC Driller's Log as "Blowout Control Drill".

Drill No.:		
Reaction Time to Shut-In:	minutes,	seconds
Total Time to Complete Assignment:	minutes.	seconds

I. Drill Overviews

A. Drill No. 1- Bottom Drilling

1. Sound the alarm immediately.

2. Stop the rotary and hoist kelly joint above the rotary table.

3. Stop the circulatory pump.

- 4. Close the drill pipe rams.
- 5. Record casing and drill pipe shut-in pressures and pit volume increases.
- B. Drill No. 2 Tripping Drill Pipe

1. Sound the alarm immediately.

2. Position the upper tool joint just above the rotary table and set the slips.

- 3. Install a full opening valve or inside blowout preventor tool in order to close the drill pipe.
- 4. Close the drill pipe rams.
- 5. Record the shut-in annular pressure.

II. Crew Assignments

A. Drill No. 1 – Bottom Drilling

- 1. Driller
 - a) Stop the rotary and hoist kelly joint above the rotary table.
 - b) Stop the circulatory pump.
 - c) Check flow.
 - d) If flowing, sound the alarm immediately.
 - e) Record the shut-in drill pipe pressure.
 - f) Determine the mud weight increase needed or other courses of action.
- 2. Derrickman
 - a) Open choke line valve at BOP.
 - b) Signal Floor Man # 1 at accumulator that choke line is open.
 - c) Close choke and upstream valve after pipe tams have been closed.
 - d) Read the shut-in annular pressure and report readings to Driller.
- 3. Floor Man # 1
 - a) Close the pipe rams after receiving the signal from the Derrickman.
 - b) Report to Driller for further instructions.

- 4. Floor Man # 2
 - a) Notify the Tool Pusher and Operator Representative of the H₂S alarms.
 - b) Check for open fires and, if safe to do so, extinguish them.
 - c) Stop all welding operations.
 - d) Turn-off all non-explosion proof lights and instruments.
 - e) Report to Driller for further instructions.
- 5. Tool Pusher
 - a) Report to the rig floor.
 - b) Have a meeting with all crews.
 - c) Compile and summarize all information.
 - d) Calculate the proper kill weight.
 - e) Ensure that proper well procedures are put into action.
- 6. Operator Representative
 - a) Notify the Drilling Superintendent.
 - b) Determine if an emergency exists and if so, activate the contingency plan.

B. Drill No. 2 – Tripping Pipe

- 1. Driller
 - a) Sound the alarm immediately when mud volume increase has been detected.
 - b) Position the upper tool joint just above the rotary table and set slips.
 - c) Install a full opening valve or inside blowout preventor tool to close the drill pipe.
 - d) Check flow.

- e) Record all data reported by the crew.
- f) Determine the course of action.
- 2. Derrickman
 - a) Come down out of derrick.
 - b) Notify Tool Pusher and Operator Representative.
 - c) Check for open fires and, if safe to do so, extinguish them.
 - d) Stop all welding operations.
 - e) Report to Driller for further instructions.
- 3. Floor Man # 1
 - a) Pick up full opening valve or inside blowout preventor tool and stab into tool joint above rotary table (with Floor Man # 2).
 - b) Tighten valve with back-up tongs.
 - c) Close pipe rams after signal from Floor Man # 2.
 - d) Read accumulator pressure and check for possible high pressure fluid leaks in valves or piping.
 - e) Report to Driller for further instructions.
- 4. Floor Man # 2
 - a) Pick-up full opening valve or inside blowout preventor tool and stab into tool joint above rotary table (with Floor Man # 1).
 - b) Position back-up tongs on drill pipe.
 - c) Open choke line valve at BOP.
 - d) Signal Floor Man # 1 at accumulator that choke line is open.
 - e) Close choke and upstream valve after pipe rams have been closed.
 - f) Check for leaks on BOP stack and choke manifold.

9

g) Read annular pressure.

h) Report readings to the Driller.

5. Tool Pusher

- a) Report to the rig floor.
- b) Have a meeting with all of the crews.
- c) Compile and summarize all information.
- d) See that proper well kill procedures are put into action.

6. Operator Representative

- a) Notify Drilling Superintendent
- b) Determine if an emergency exists, and if so, activate the contingency plan.

IGNITION PROCEDURES

Responsibility:

The decision to ignite the well is the responsibility of the DRILLING FOREMAN in concurrence with the STATE POLICE. The State Police shall be the Incident Command on the scene of any major release. Intentional ignition must be coordinated with the NMOCD and local officials. In the event the Drilling Foreman is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- 1. Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Foreman is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet.
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Foreman.

NOTE: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide (SO_2) , which is also highly toxic. Do not assume the area is safe after the well is ignited.

TRAINING REQUIREMENTS

When working in an area where Hydrogen Sulfide (H_2S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel at the well site, whether regularly assigned, contracted, or employed on an unscheduled basis, have had adequate training by a qualified instructor in the following:

1. Hazards and Characteristics of Hydrogen Sulfide and Sulfur Dioxide.

2. Physicals effects of Hydrogen Sulfide on the human body.

3. Toxicity of Hydrogen Sulfide and Sulfur Dioxide.

4. H_2S detection, emergency alarm and sensor location.

- 5. Emergency rescue.
- 6. First aid and artificial resuscitation.
- 7. The effects of Hydrogen Sulfide on metals.
- 8. Location safety.

In addition, Supervisory Personnel will be trained in the following areas:

- 1. If high tensile tubular are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well as well as blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Contingency Plan and the Public Protection Plan.

Service company personnel and visiting personnel must be notified if the zone contains H_2S , and each service company must provide adequate training and equipment for their employees before they arrive at the well site.

EMERGENCY EQUIPMENT

As stated in the BLM Onshore Order 6, for wells located in a known H_2S areas, H_2S equipment will be rigged up after setting surface casing. For wells located inside known H_2S areas, the flare pit will be located 150' from the location and for wells located outside known H_2S areas, the flare pit will be located 100' away from the location. (See page 6 of Survey plat package and diagram B or C.)

It is not anticipated that any H_2S is in the area, however in the event that H_2S is encountered, the attached H_2S Contingency Plan will be implemented. (Please refer to diagrams B or C for choke manifold and closed loop system layout.) See H_2S location layout diagram for location of all H_2S equipment on location.

All H_2S safety equipment and systems will be installed, tested and be operational when drilling reaches a depth of 500' above, or three days prior to penetrating a known formation containing H_2S .

Lease Entrance Sign:

Caution signs should be located at all roads providing direct access to the location. Signs shall have a yellow background with black lettering and contain the words "CAUTION" and "POISON GAS" that is legible from a distance of at least 50 feet.

LEASE NAME CAUTION – POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they may be seen from any point on location.
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times. (Corners of location)

Hydrogen Sulfide Detector and Alarms:

• H₂S monitors with alarms will be located on the rig floor, at the cellar, and at the mud pits. These monitors will be set to alarm at 10 PPM with a red light and to alarm at 15 PPM with a red light and audible alarm.

Well Condition Flags:

The Well Condition flags should be located at all roads providing direct access to the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN – Normal Operating Conditions YELLOW – Potential Danger RED – Danger, H₂S Gas Present

Respiratory Equipment:

- Fresh air breathing equipment should be placed at the company supervision trailer and the safe briefing areas and should include the following:
 - A minimum of two SCBA's at each briefing area and the supervisor company supervision trailer.
 - Enough air line units to operate safely, anytime the H₂S concentration reaches the IDLH level (100 PPM).
 - Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrickman and the other operation areas.

Fire Extinguishers:

Adequate fire extinguishers shall be located at strategic locations.

Mud Program:

The mud program has been designed to minimize the volume of H_2S circulated to the surface. Proper mud weight, safe drilling practices and the use of H_2S scavengers will minimize hazards when penetrating H_2S bearing zones.

Metallurgy:

All drill strings, casing, tubing, wellhead; blowout preventer, drilling spools, kill lines, choke manifold and lines, and valves shall be suitable for H₂S service.

Well Control Equipment:

- Flare Line (See page 6 of survey plat package for flare line reference).
- Choke manifold (See diagram B or C and refer to H2S location diagram for location of important H2S safety items).
- Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing units.
- Auxiliary equipment may include, if applicable, annular preventer & rotating head.

Communication Equipment:

• Proper communication equipment such as cell phones or 2 – way radios should be available for communication between the company man's trailer, rig floor and tool pusher's trailer.

Well Testing:

• There will be no drill stem testing.

Evacuation Plan:

- Evacuation routes should be established prior to spudding the well.
- Should be discussed with all rig personnel.

Designated Areas:

Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- A smoking area will be designated at a pre-determined safe distance from the wellhead and any other possible flammable areas.

Safe Briefing Areas:

• Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area.

• Personal protective equipment should be stored at both briefing areas or if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

NOTE:

1

• Additional equipment will be available at Indian Fire and Safety in Hobbs, NM or at Total Safety in Hobbs, NM.

EVACUATION PLAN

General Plan

The direct lines of action to protect the public from hazardous gas situations are as follows:

- 1. When the company approved supervisor (Drilling Foremen, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the Area Map.
- 2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.

NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

5. After the discharge of gas has been controlled, Company approved safety personnel will determine when the area is safe for re-entry.

See Emergency Action Plan

Contacting Authorities

BOPCO L.P. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available including directions to site. The following call list of essential and potential responders has been prepared for use during a release. (Operator Name)'s response must be in coordination with the State of New Mexico's "Hazardous Materials Emergency Response Plan" (HMER).

H₂S CONTINGENCY PLAN EMERGENCY CONTACTS

BOPCO L.P. Midland	432-683-2277	
Key Personnel		
Name	Title	Cell Phone Number
Stephen Martinez	Drilling & Completions Manager	432-556-0262
Charles Warne	Division Engineer	432-312-4431
Don Wood	Division Drilling Specialist	432-266-2674
Leo Bojorquez	Area Drilling Superintendent	702-280-4424
Chris Giese	Engineer	432-661-7328
Chris Volek	Engineer	785-979-2643
Brian Braun	Engineer	210-683-9849
Jeremy Braden	Engineer	432-312-1113
Kevin Burns	Engineer	432-934-5499

<u>Artesia</u>

.

Ambulance	911
State Police	575-746-2703
City Police	575-746-2703
Sheriff's Office	575-746-9888
Fire Department	575-746-2701
Local Emergency Planning Committee	575-746-2122
New Mexico Oil Conservation Division	575-748-1283

Carlsbad Ambulance . 911 State Police_____ 575-885-3137 City Police 575-885-2111 Sheriff's Office 575-887-7551 Fire Department 575-887-3798 Local Emergency Planning Committee 575-887-6544 US Bureau of Land Management 575-887-6544

New Mexico Emergency Response Commission (Santa Fe)	505-476-9600
24 Hour	505-827-9126
New Mexico State Emergency Operations Center	505-476-9635
National Emergency Response Center (Washington, DC)	800-424-8802

Other

Wild Well Control	432-550-6202 (Permian Basin)
Cudd PressureControl432-580-35	544 or 432-570-5300 (Permian Basin)
Flight For Life – 4000 24th St. Lubbock, Texas	806-743-9911
Aerocare – R3, Box 49F, Lubbock, Texas	806-747-8923
Med Flight Air Amb - 2301 Yale Blvd SE #D3, Al	buq., NM505-842-4433
S B Air Med Service - 2505 Clark Carr Loop SE,	Albuq., NM505-842-4949
Indian Fire and Safety – 3317 NW Cnty Rd, Hobl	bs, NM575-393-3093
Total Safety – 3229 Industrial Dr., Hobbs, NM	575-392-2973

TOXIC EFFECTS OF HYDROGEN SULFIDE

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM, which is .001% by volume. Hydrogen Sulfide is heavier than air (specific gravity = 1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in Table I. Physical effects at various Hydrogen Sulfide exposure levels are shown in Table II.

Common Name	Chemical Formula	Specific Gravity (SC=1)	Threshold Limit (1)	Hazardous Limit (2)	Lethal Concentration (3)
Hydrogen Cyanide	HCN	0.94	10 PPM	150 PPM/HR	300 PPM
Hydrogen Sulfide	H2S	1.18	10 PPM	250 PPM/HR	600 PPM
Sulfur Dioxide	SO2	2.21	5 PPM		1000 PPM
Chlorine	CL2	2.45	1 PPM	4 PPM/HR	1000 PPM
Carbon Monoxide	CO	0.97	50 PPM	400 PPM/HR	1000 PPM
Carbon Dioxide	CO2	1.52	5000 PPM	5%	10%
Methane	CH4	0.55	90,000 PPM	Combustible in air	Above 5%

Table I - TOXICITY OF VARIOUS GASES

- 1) Threshold Limit Concentration at which it is believed that all worker may be repeatedly exposed day after day without adverse effects.
- 2) Hazardous Limit Concentration that will cause death with short-term exposure.
- 3) Lethal Concentration Concentration that will cause death with short-term exposure.

Table II – PHYSICAL EFFECTS OF HYDROGEN SULFIDE

Percent (%)	PPM	Concentration Grains 100 STD. FT3*	Physical Effects
0.001	< 10	00.65	Obvious & unpleasant odor.
0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kills smell in 3-15 minutes. May sting eyes & throat.
0.020	200	12.96	Kills smell shortly; stings eyes & throat.
0.050	500	32.96	Dizziness; Breathing ceases in a few minutes. Needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; Death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; Followed by death within minutes.

• At 15.00 PSIA and 60° F.

ï

ň

USE OF SELF-CONTAINED BREATHING APPARATUS

- 1. Anyone who uses an SCBA shall: Be approved by a physician or licensed health care practitioner; Pass a fit test; Be trained in donning and doffing, proper use, including how to ensure a proper face seal, conducting an inspection of the SCBA, and conduct proper maintenance.
- 2. Such items as facial hair (beard or sideburns) and eyeglasses will not allow a proper face mask seal.
- 3. Anyone reasonably expected to wear SCBA's shall have these items removed before entering a toxic atmosphere.
- 4. A special mask with a mount for prescription glasses must be obtained for anyone who must wear eyeglasses in order to see while using an SCBA.
- 5. SCBA's should be worn in H₂S concentrations above 10 PPM.

RESCUE & FIRST AID FOR H₂S POISONING

DO NOT PANIC - REMAIN CALM - THINK

- 1. Hold your breath do not inhale first.
- 2. Put on SCBA.
- 3. Remove victim(s) to fresh air as quickly as possible. Go upwind from source or at right angle to the wind. Do not go downwind.
- Briefly apply chest pressure using arm lift method of artificial respiration to clean victim's lungs and to avoid inhaling any toxic gas directly from victim's lungs.
- 5. Provide artificial respiration if needed.
- 6. Provide for prompt transportation to the hospital and continue giving artificial respiration if needed.
- 7. Inform hospital/medical facilities of the possibility of H2S gas poisoning before they treat.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration and CPR, as well as first aid for eyes and skin contact with liquid H_2S .

Proposed H2S Safety Schematic

6) Location of caution and/or danger signs.

1) Location of windsocks.

4) Terrain of surrounding area (Please refer to page 2 of survey plat package also see point 11 of multi-surface use plan)

5) Location of flare line(s) and pit(s) (Please refer to diagram 2 choke manifold diagram and or page six of survey plat packet)

2) Location of H2S alarms

 \cdot 3) Location of briefing areas.

(7) Location of Breathing Equipment

Location On-Site Notes

Location on-site conducted by Todd Carpenter, Wesley Hanna -BOPCO L.P., Amanda Lynch-BLM, and Robert Gomez, Basin Surveyor on 06/25/2014. The Poker Lake Unit CVX JV PB 012H was moved from the surface footage call of 100' FSL & 2310' FWL of Sec 33-T25S-R31E to a new surface footage call of 100' FSL & 2125' FWL of Sec 33-T25S-R30E in order to avoid a hillside. Location layout is as follows: v-door will face the north, frac tank pad will be on west/southwest corner, access road will enter location from the northeast corner and topsoil will be stockpiled to the south side of location. A 600' x 300' facility pad was also onsited and approved along the new access road to the well pad.

MULTI-POINT SURFACE USE PLAN

NAME OF WELL: Poker Lake Unit CVX JV PB 012H

LEGAL DESCRIPTION - SURFACE: 100' FSL, 2125' FWL, Section 33, T25S, R31E, Eddy County, NM.

BHL: 2310' FSL, 1980' FWL, Section 28, T25S, R31E, Eddy County, New Mexico.

POINT 1: EXISTING ROADS

A) Proposed Well Site Location:

See Form C-102 (Survey Plat).

B) Existing Roads:

From the intersection of 128 and CR 178, go South on CR 178 15.3 miles. Turn Northeast on caliche road, 0.4 miles to proposed location.

C) Existing Road Maintenance or Improvement Plan:

Existing roads will be maintained and kept in the same or better condition than before operations began. See the Well Pad Layout and Topo Map of the survey plat (Sheet 1 and 2 of plat package)

POINT 2: NEW PLANNED ACCESS ROUTE

A) Route Location:

There will be 4416' of new road built. (See the Well Pad Layout of the survey plat (Sheet 1 of plat package).

B) Width

14' wide

C) Maximum Grade

Grade to match existing topography or as per BLM requirements.

D) Turnout Ditches

As required by BLM stipulations.

E) Culverts, Cattle Guards, and Surfacing Equipment

If required, culverts and cattle guards will be set per BLM Specs.

POINT 3: LOCATION OF EXISTING WELLS

The following wells are located within a one-mile radius of the location site. See the One-Mile Radius Map (Sheet 5 of the plat package).

Existing wells	3 (*	Three)
Water wells	0	(Zero)

POINT 4: LOCATION OF EXISTING OR PROPOSED FACILITIES

- A) No existing production facilities operated by BOPCO, L.P. are located within one mile of the Poker Lake Unit CVX JV PB 012H.
- B) In the Event of Production:

New production facilities will be built to the north of the proposed well pad, following the access road. The Phantom Banks 33 25 31 Battery located within Sec 33, T25S, R31E. A 2-7/8" or 3-1/2" in diameter steel flowline is to be run above ground, approx. 4200' in length. The flowline is expected to carry oil, water, and gas. In the event that the power is not accessible or insufficient, power will be supplied by a generator until adequate power can be supplied from the utility company.

C) Rehabilitation of Disturbed Areas Unnecessary for Production:

Following the construction, those access areas required for continued production will be graded to provide drainage and minimize erosion. The areas unnecessary for use will be graded to blend in with the surrounding topography (see Point 10).

POINT 5: LOCATION AND TYPE OF WATER SUPPLY

A) Location and Type of Water Supply

Fresh water will be hauled from Johnson Station 50 miles east of Carlsbad, New Mexico or other commercial facilities. Brine water will be hauled from commercial facilities.

B) Water Transportation System

Water hauling to the location will be over the existing and proposed roads.

POINT 6: SOURCE OF CONSTRUCTION MATERIALS

A) Materials

On-site caliche will be used. If this is not sufficient, caliche will be hauled from a BLM approved pit.

- B) Land Ownership Federally Owned
- C) Materials Foreign to the Site

No construction materials foreign to this area are anticipated for this drill site.

D) Access Roads

See the Well Pad Layout and Aerial Map of the survey plat (Sheet 1 and 4 of plat package).

POINT 7: METHODS FOR HANDLING WASTE MATERIAL

A) Cuttings

Cuttings will be contained in the roll off bins and disposed at R360 Environmental located in Lea County, NM.

B) Drilling Fluids

Drilling fluids will be contained in the steel pits, frac tanks and disposed at licensed disposal sites.

C) Produced Fluids

Water production will be contained in the steel pits.

Hydrocarbon fluid or other fluids that may be produced during testing will be retained in test tanks. Prior to cleanup operations, any hydrocarbon material in the reserve pit will be removed by skimming or burning as the situation would dictate.

D) Sewage

Current laws and regulations pertaining to the disposal of human waste will be complied with.

E) Garbage

Portable containers will be utilized for garbage disposal during the drilling of this well.

F) Cleanup of Well Site

Upon release of the drilling rig, the surface of the drilling pad will be graded to accommodate a completion rig if electric log analysis indicate potential productive zones. Reasonable cleanup will be performed prior to the final restoration of the site.

POINT 8: ANCILLARY FACILITIES

None required.

POINT 9: WELL SITE LAYOUT

A) Rig Orientation and Layout

The "Rig Layout Schematic" (Sheet 6 of plat package) shows the dimensions of the well pad, closed loop system, and the location of major rig components. Only minor leveling of the well site will be required. No significant cuts or fills will be necessary. The top soil will be stockpiled on the south side of the location.

B) Locations of Access Road

See the Well Pad Layout, Topo Map, and Vicinity Map of the survey plat (Sheet 1, 2, and 3 of plat package).

C) Lining of the Pits

No reserve pits - closed loop system.

POINT 10: PLANS FOR RESTORATION OF THE SURFACE

- A) Reserve Pit Cleanup Not applicable. Closed loop drilling fluid system will be used.
- B) Restoration Plans Production Developed

BOPCO, L.P. has no plans for interim reclamation to allow for future wells to be drilled from this pad.

C) Restoration Plans - No Production Developed

BOPCO, L.P. has no plans for interim reclamation to allow for future wells to be drilled from this pad.

POINT 11: OTHER INFORMATION

A) On-Site

Location on-site conducted by Todd Carpenter, Wesley Hanna -BOPCO L.P., Amanda Lynch-BLM, and Robert Gomez, Basin Surveyor on 06/25/2014. The Poker Lake Unit CVX JV PB 012H was moved from the surface footage call of 100' FSL & 2310' FWL of Sec 33-T25S-R31E to a new surface footage call of 100' FSL & 2125' FWL of Sec 33-T25S-R30E in order to avoid a hillside. Location layout is as follows: v-door will face the north, frac tank pad will be on west/southwest corner, access road will enter location from the northeast corner and topsoil will be stockpiled to the south side of location. A 600' x 300' facility pad was also onsited and approved along the new access road to the well pad.

B) Soil

Caliche and sand.

C) Vegetation

Sparse, primarily grasses and mesquite with very little grass.

D) Surface Use

Primarily grazing.

E) Surface Water

There are no ponds, lakes, streams or rivers within several miles of the wellsite.

F) Water Wells

There are no water wells located within a 1 mile radius of the proposed location.

G) Residences and Buildings

None in the immediate vicinity.

H) Historical Sites

None observed.

I) Archeological Resources

No independent archeological survey has been done. This well location is located in the area covered by Memorandum of Agreement – Permian Basin. A Payment of \$2,171.20 fee for this project is included in this application. Any location or construction conflicts will be resolved before construction begins. Please see diagram 4 for flowline route.

J) Surface Ownership

The well site is on federally owned land. There will be 4416' of new road required for this location.

- K) Well signs will be posted at the drilling site.
- L) Open Pits

No open pits will be used for drilling or production. Any open top tanks will be netted.

M) Terrain

Slightly rolling hills.

POINT 12: OPERATOR'S FIELD REPRESENTATIVE

(Field personnel responsible for compliance with development plan for surface use).

DRILLING Stephen Martinez Box 2760 Midland, Texas 79702 (432) 683-2277 PRODUCTION Gary Fletcher 3104 East Green Street Carlsbad, New Mexico 88220 (575) 887-7329

Fritz Schoch Box 2760 Midland, Texas 79702 (432) 683-2277

BTC

OPERATOR'S CERTIFICATION

APPLICATION FOR PERMIT TO DRILL Poker Lake Unit CVX JV PB 012H 100' FSL, 2125' FWL, Section 33, T25S, R31E, Eddy County, NM.

In reference to the above captioned well, I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in the APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Executed this 14th day of July , 2014.

If you have any questions regarding the accuracy of the plan provided herein, please do not hesitate to contact me at (432) 683-2277.

white B. Meker

Whitney McKee Engineering Assistant

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	BOPCO, L.P.
LEASE NO.:	NMLC-063136A
WELL NAME & NO.:	Poker Lake Unit CVX JV PB 12H
SURFACE HOLE FOOTAGE:	0100' FSL & 2125' FWL
BOTTOM HOLE FOOTAGE	2310' FSL & 1980' FWL Sec. 28, T. 25 S., R 31 E.
LOCATION:	Section 33, T. 25 S., R 31 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions Permit Expiration] Archaeology, Paleontology, and Historical Sites Noxious Weeds Special Requirements **Commercial Well Determination** Unit Well Sign Specs Lesser Prairie-Chicken **Timing Stipulations** Ground-level Abandoned Well Marker Cave/Karst Construction Notification Topsoil Closed Loop System Federal Mineral Material Pits Well Pads Roads **Road Section Diagram** Drilling **Cement Requirements** Medium Cave/Karst Logging Requirements Waste Material and Fluids **Production (Post Drilling)** Well Structures & Facilities Pipelines **Interim Reclamation Final Abandonment & Reclamation**

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.
V. SPECIAL REQUIREMENT(S)

Timing Limitation Stipulation / Condition of Approval for lesser prairie-chicken: Oil and gas activities including 3-D geophysical exploration, and drilling will not be allowed in lesser prairie-chicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities, pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Additionally, no new drilling will be allowed within up to 200 meters of leks known at the time of permitting. Normal vehicle use on existing roads will not be restricted. Exhaust noise from pump jack engines must be muffled or otherwise controlled so as not to exceed 75 db measured at 30 feet from the source of the noise.

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well. For more installation details, contact the Carlsbad Field Office at 575-234-5972.

This authorization is subject to your Certificate of Participation and/or Certificate of Inclusion under the New Mexico Candidate Conservation Agreement. Because it involves surface disturbing activities covered under your Certificate, your Habitat Conservation Fund Account with the Center of Excellence for Hazardous Materials Management (CEHMM) will be debited according to Exhibit B Part 2 of the Certificate of Participation.

Karst Resources Conditions of Approval

Construction

To mitigate the impacts from construction activities on cave and karst resources, the following Conditions of Approval will apply to this APD:

- In the event that any underground voids are encountered during construction activities, construction activities will be halted and the BLM will be notified immediately.
- No Blasting to prevent geologic structure instabilities.
- Pad Berming to minimize effects of any spilled contaminates.

Drilling

Federal regulations and standard Conditions of Approval applied to all APDs require that adequate measures are taken to prevent contamination to the environment. Due to the extreme sensitivity of the cave and karst resources in this project area, the following additional Conditions of Approval will be added to this APD.

Page 3 of 20

To prevent cave and karst resource contamination the following will be required.

- Closed Mud System using steel tanks with all fluids and cuttings hauled off.
- Rotary drilling with fresh water where cave or karst features are expected to prevent contamination of freshwater aquifers.
- Directional Drilling allowed after at least 100 feet below the cave occurrence zone to prevent additional impacts resulting from directional drilling.
- Lost Circulation zones logged and reported in the drilling report so BLM can assess the situation and work with the operator on corrective actions.
- Additional drilling, casing, and cementing procedures to protect cave zones and fresh water aquifers. See Drilling COAs.

Production

To mitigate the impacts from production activities and due to the nature of karst terrain, the following Conditions of Approval will apply to this APD:

- Tank battery liners and berms to minimize the impact resulting from leaks.
- Leak detection system to provide an early alert to operators when a leak has occurred.
- Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of line failures used in production or drilling.

Tank Battery COAs Only:

- Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.
- Automatic shut off, check values, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

Surface Pipeline COAs Only:

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating values and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Drilling:

<u>Commercial Well Determination</u>

A commercial well determination shall be submitted after production has been established for at least six months.

Unit Wells

The well sign for a unit well shall include the unit number in addition to the surface and bottom hole lease numbers. This also applies to participating area numbers. If a participating area has not been established, the operator can use the general unit designation, but will replace the unit number with the participating area number when the sign is replaced.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL -

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\underline{400'}_{4\%} + 100' = 200'$ lead-off ditch interval

Cattleguards

An appropriately sized cattleguard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattleguards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is encountered in quantities greater than 10 PPM the well shall be shut in and H2S equipment shall be installed and flare line must be extended pursuant to Onshore Oil and Gas Order #6. Report measured values and formation to the BLM. After detection, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Medium Cave/Karst

Possibility of water flows in the Salado and Castile. Possibility of lost circulation in the Rustler, Red Beds, and Delaware.

- 1. The 13-3/8 inch surface casing shall be set at approximately 1140 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.

c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Centralizers required through the curve and a minimum of one every other joint.

3. The minimum required fill of cement behind the 7 inch production casing is:

Operator has proposed DV tool at depth of 5000', but will adjust cement proportionately if moved. DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range.

- a. First stage to DV tool:
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve approved top of cement on the next stage.
- b. Second stage above DV tool:
- Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.
- 4. The minimum required fill of cement behind the 4-1/2 inch production Liner is:

Cement as proposed. Operator shall provide method of verification.

5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.

- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 2000 (2M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the 9-5/8" and 7" casing integrity tests to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.

- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 081115

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the

largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the application (Grant, Sundry Notice, APD) and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. The holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. The holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

- a. Activities of the holder including, but not limited to construction, operation, maintenance, and termination of the facility.
- b. Activities of other parties including, but not limited to:
 - (1) Land clearing.
 - (2) Earth-disturbing and earth-moving work.
 - (3) Blasting.
 - (4) Vandalism and sabotage.
- c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of the holder, regardless of fault. Upon failure of the holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve the holder of any responsibility as provided herein.

6. All construction and maintenance activity will be confined to the authorized right-ofway width of 20 feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline must be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline must be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity will be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation will be allowed unless approved in writing by the Authorized Officer.

8. The holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline will be "snaked" around hummocks and dunes rather then suspended across these features.

9. The pipeline shall be buried with a minimum of <u>24</u> inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation

measures will be made by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines must be less than or equal to 4 inches and a working pressure below 125 psi.

- 18. Special Stipulations:
 - a. <u>Lesser Prairie-Chicken:</u> Oil and gas activities will not be allowed in lesser prairiechicken habitat during the period from March 1st through June 15th annually. During that period, other activities that produce noise or involve human activity, such as the maintenance of oil and gas facilities and pipeline, road, and well pad construction, will be allowed except between 3:00 am and 9:00 am. The 3:00 am to 9:00 am restriction will not apply to normal, around-the-clock operations, such as venting, flaring, or pumping, which do not require a human presence during this period. Normal vehicle use on existing roads will not be restricted.

This authorization is subject to your Certificate of Participation and/or Certificate of Inclusion under the New Mexico Candidate Conservation Agreement. Because it involves surface disturbing activities covered under your Certificate, your Habitat Conservation Fund Account with the Center of Excellence for Hazardous Materials Management (CEHMM) will be debited according to Exhibit B Part 2 of the Certificate of Participation.

IX. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored

interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

X. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).