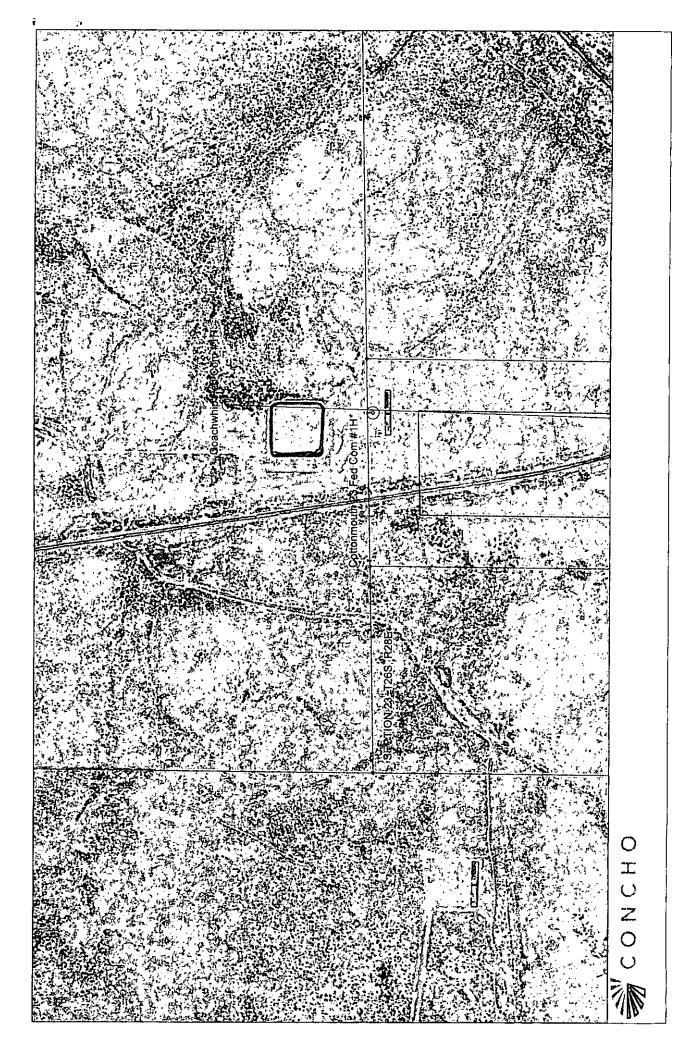

. ۲ .	OCD Artesla	15-480
Form 3160-3 (March 2012)	NM OIL CONSERVATION	FORM APPROVED OMB No. 1004-0137 Expires October 31, 2014
HIGH CAVEKARST UNITED ST	1 1 2016	5. Lease Serial No.
DEPARTMENT OF T		SHL: Private, BHL: Unleased
BUREAU OF LAND M		Sec 23 "UL C&F": NMNM012559
APPLICATION FOR PERMIT		6. If Indian, Allotee or Tribe Name
1a. Type of Work: 🗸 DRILL 🗌 REENT	ER	7. If Unit or CA Agreement, Name and No.
		8. Lease Name and Well No.
1b. Type of Well: Oil Well Gas Well Other	Single Zone Multiple Zone	
2. Name of Operator COG Operating	LC.	9. APLWAIT NO 015-43525
	one No. (include area code)	10. Field and Pool, or Exploratory
2208 West Main Street Artesia, NM 88210	575-748-6940	Tecolote Peak ; Delaware
4. Location of Well (Report location clearly and in accordance with any St		11. Sec., T.R.M. or Blk and Survey or Area
	it Letter N (SESW) Section 14 - T26S - R28E	
	t Letter N (SESW) Section 23 - T265 - R28E	Section 14 - T26S - R28E
14. Distance in miles and direction from nearest town or post office	*	12. County or Parish 13. State
Approximately 12 miles f	rom Malaga	Eddy County NM
15. Distance from proposed* location to nearest	16. No. of acres in lease 17. S	Spacing Unit dedicated to this well
property or lease line, ft.	NMNM012559: 1400	
(Also to nearest drig. Unit line, if any) 330'		160
18. Distance from location* SHL: 405:		BLM/BIA Bond No. on file
to nearest well, drilling, completed, BHL: Non applied for, on this lease, ft.	e TVD: 6,233' MD: 11,931'	NMB000740 & NMB000215
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approximate date work will start*	23. Estimated duration
2944.5' GL	12/1/2015	30 days
	24. Attachments	
The following, completed in accordance with the requirements of On	shore Oil and Gas Order No. 1, shall be attached to this f	form:
1. Well plat certified by a registered surveyor.	4. Bond to cover the operations unl	less covered by an existing bond on file (see
2. A Drilling Plan	ltem 20 above).	
3. A Surface Use Plan (if the location is on National Forest System I	-	
SUPO shall be filed with the appropriate Forest Service Office).	 Such other site specific information authorized officer. 	ion and/or plans as may be required by the
25. Signature	Name (Printed/Typed)	Date
MY Ate Kan	MAYTE REYES	9-8-2015
Title	MALLE PETER	
Regulatory Analyst		
Approved by (Signature)	Name (Printed/Typed)	Date LAN C OOTC
Steve Caffey		JAN - 6 2016
Title FIELD MANAGER	Office	
	CARLSBAD FIE	
Application approval does not warrant or certify that the applicant he conduct operations theron.		
Conditions of approval, if any, are attached.	A	PPROVAL FOR TWO YEARS
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it		
States any false, fictitious or fraudulent statements or representation		
(Continued on page 2)		*(Instructions on page 2)
		101
Carlsbad Controlled Water Basin		1/18/2016
- anosad controlled water Basin		
and a controlled water Dasin		

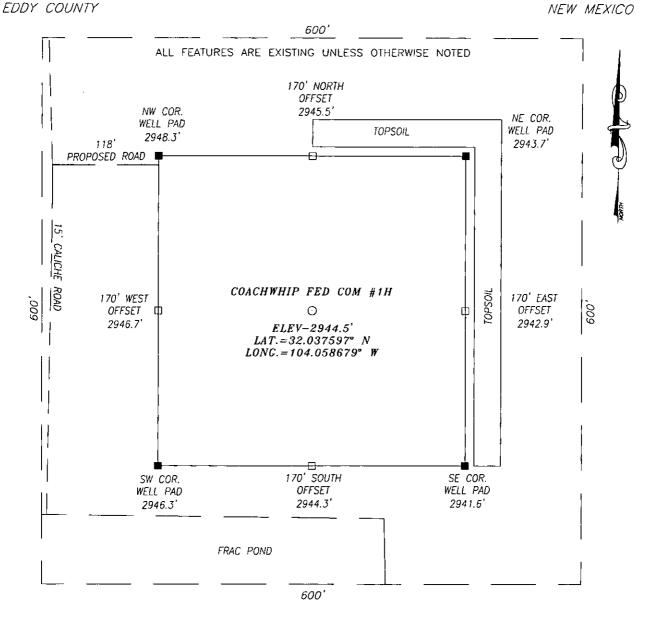
Approval Subject to General Requirements & Special Stipulations Attached SEE ATTACHED FOR CONDITIONS OF APPROVAL r

NM OIL CONSERVATION

Surface Use Plan COG Operating LLC Coachwhip Federal Com #1H SL: 900' FSL & 2350' FWL UL N Section 14, T26S, R28E BHL: 330' FSL & 2210' FWL UL N Section 23, T26S, R28E Eddy County, New Mexico


£

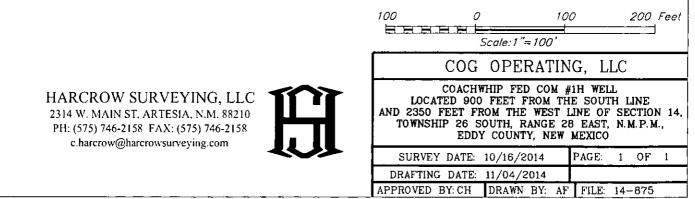
OPERATOR CERTIFICATION

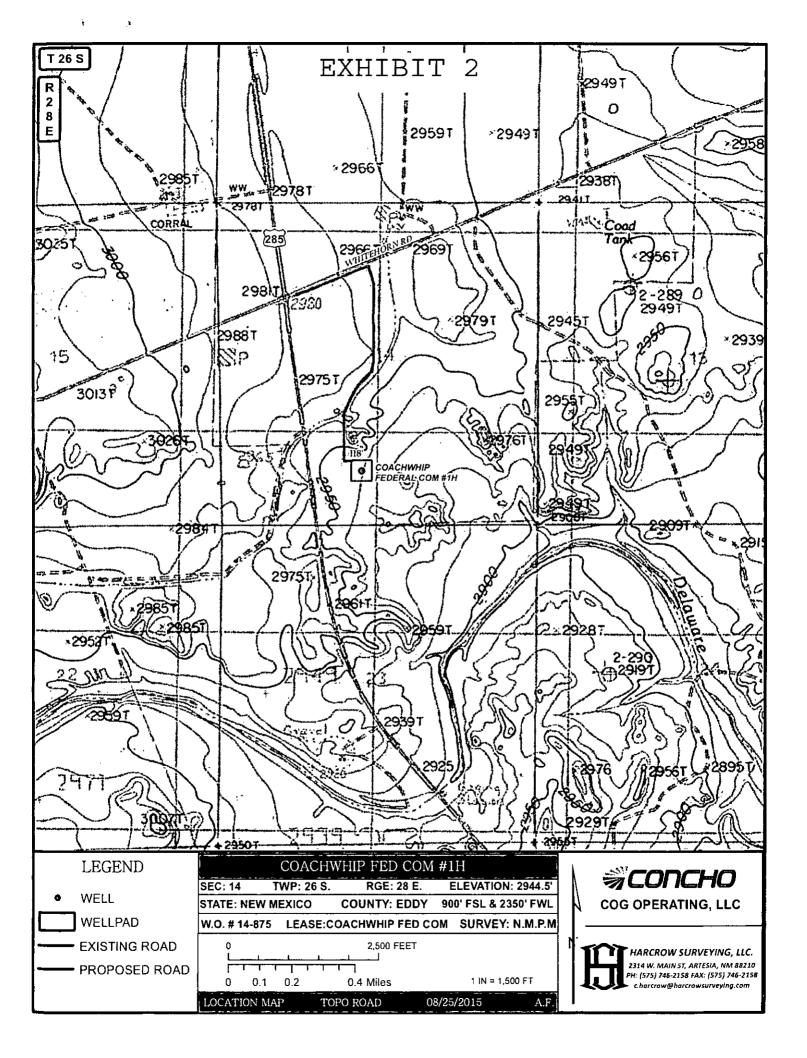

I hereby certify that I, or persons under my direct supervision, have inspected the drill site and access road proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or COG Operating LLC, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed this State and of State and I.S.C. 2015.

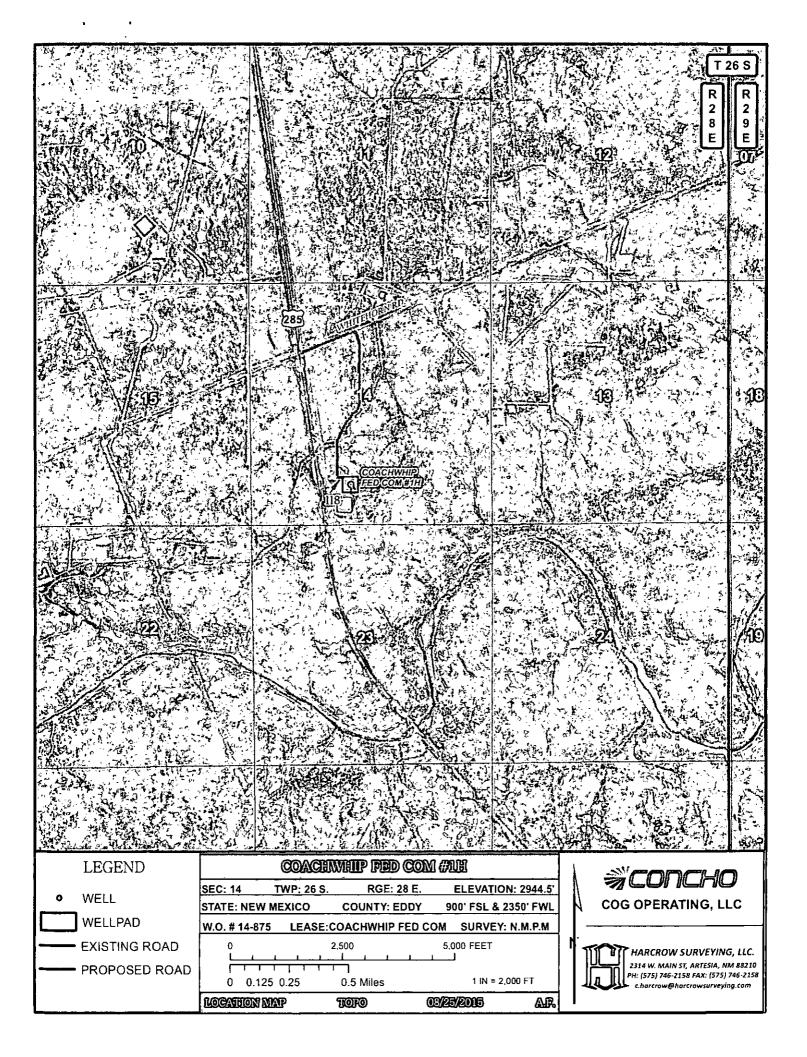
Maria Signed:

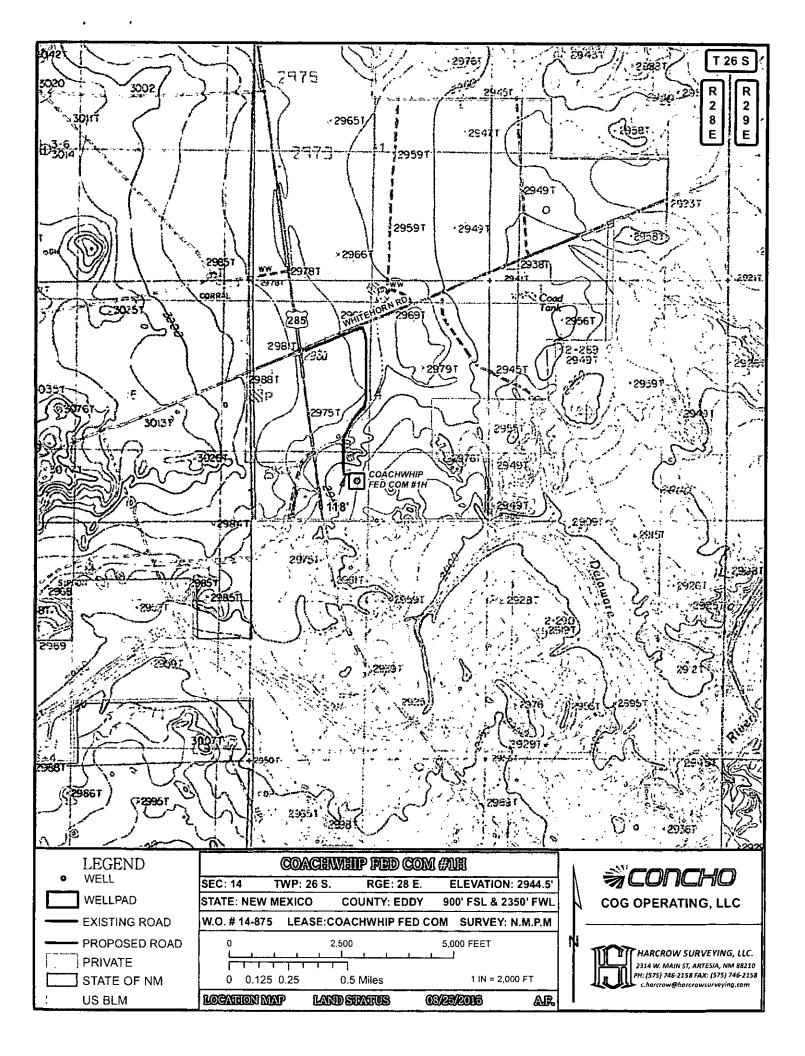
Printed Name: Mclanie J. Wilson Position: Regulatory Coordinator Address: 2208 W. Main Street, Artesia, NM 88210 Telephone: (575) 748-6940 Field Representative (if not above signatory): Rand French E-mail: <u>mwilson@concho.com</u>

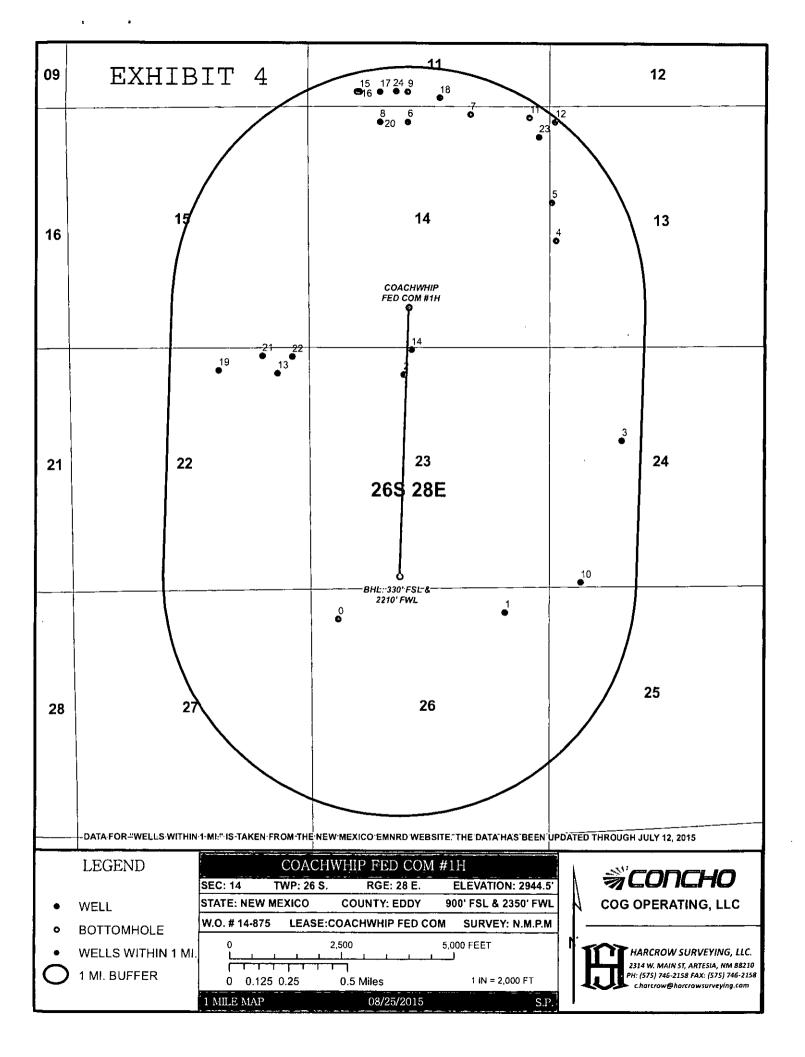
SECTION 14, TOWNSHIP 26 SOUTH, RANGE 28 EAST, N.M.P.M.,

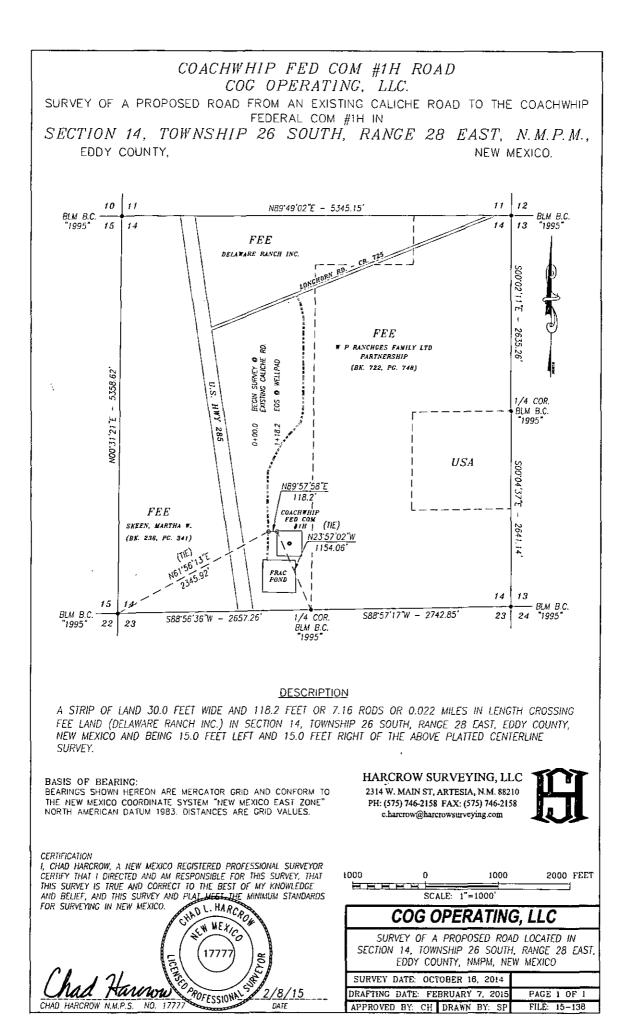



DIRECTIONS TO LOCATION


î.


1


FROM THE INTERSECTION OF HWY 285 AND WHITEHORN RD. TURN LEFT (WEST) ONTO WHITEHORN ROAD (CR 725) AND GO APPROX. .2 MILES; THEN TURN RIGHT (SOUTH) AND GO APPROX. .3 MILES; THEN TURN RIGHT (SOUTHWEST) GO APPROX. .15; THEN TURN LEFT (SOUTH) AND GO APPROX. .2 MILES AND PROPOSED WELL IS APPROX. 300' LEFT (WEST).



CTION TOWNSI RANGE FTG_NS_CD FTG_NS_CD FTG_NS_CD FTG_NS_CD FTG_SS 26 26 05 28E 547 N 23 26 23 26 23 26 23 26 23 26 23 26 23 28E 580 N 23 23 26 23 28 230 23 <t< th=""><th></th><th>TVD_DEPTH</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		TVD_DEPTH																						
LOACTIVATILITED CUMMENT IATITUDE CONGITUDE API SECTION TOWNSI RANGE 32.0199029 -104.065243 3E+09 26.26.05 28E 32.01917 -104.055545 3E+09 26.26.05 28E 32.01917 -104.055545 3E+09 26.26.05 28E 32.019717 -104.043589 3E+09 23 26.05 28E 32.01974 -104.043589 3E+09 23 26.05 28E 32.02974 -104.043899 3E+09 13 26.05 28E 32.049355 -104.059287 3E+09 13 26.05 28E 32.049355 -104.059291 3E+09 14 26.05 28E 32.049371 -104.059291 3E+09 14 26.05 28E 32.049171 -104.050541 3E+09 14 26.05 28E 32.049171 -104.050541 3E+09 14 26.05 28E 32.049171 -104.0505941 3E+09 14		FTG_EW EW_CD	660 W	930 E	2130 W	1650 W	190 W	95 W	2260 W	1700 E	1651 W	2260 W	745 W	400 E	170 W	660 E	2310 W	1195 W	1135 W	1650 W	2380 E	1960 E	1650 W	000 0
CONCINTER FOLCEMENT IATITUDE LONGITUDE SECTION 32.019417 -104.055255 354.09 26 32.019417 -104.055255 354.09 23 32.019417 -104.055255 354.09 23 32.019417 -104.055255 354.09 23 32.02974 -104.048589 354.09 24 32.044044 -104.048589 354.09 13 32.048922 -104.048589 354.09 13 32.048922 -104.059287 364.09 14 32.048922 -104.051262 364.09 14 32.048922 -104.051262 364.09 14 32.048922 -104.051262 364.09 14 32.048921 -104.05541 364.09 14 32.048921 -104.05541 364.09 23 1H 32.04891 364.09 23 32.033791 -104.055978 364.09 23 32.033791 -104.055978 364.09 23 32.033791 -104.055978 364.09 23		FTG_NS NS_CD	660 N			2030 N	2350 S	2100 N	330 N	170 N	N IEE	330 5	105 5		330 N	550 N		330 S	330 S	330 S	200 5	480 N	N 066	IN OCT
CONCINTER FOLCEMENT IATITUDE LONGITUDE SECTION 32.019417 -104.055255 354.09 26 32.019417 -104.055255 354.09 23 32.019417 -104.055255 354.09 23 32.019417 -104.055255 354.09 23 32.02974 -104.048589 354.09 24 32.044044 -104.048589 354.09 13 32.048922 -104.048589 354.09 13 32.048922 -104.059287 364.09 14 32.048922 -104.051262 364.09 14 32.048922 -104.051262 364.09 14 32.048922 -104.051262 364.09 14 32.048921 -104.05541 364.09 14 32.048921 -104.05541 364.09 23 1H 32.04891 364.09 23 32.033791 -104.055978 364.09 23 32.033791 -104.055978 364.09 23 32.033791 -104.055978 364.09 23		I RANGE	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	28E	305
IATITUDE CONGITUDE API SECTION 32.019029 -104.054224 3E+09 32.01917 104.055545 3E+09 32.01917 -104.055545 3E+09 32.01917 -104.055555 3E+09 32.01917 -104.055555 3E+09 32.02974 -104.048589 3E+09 32.044044 -104.048589 3E+09 32.049355 -104.048909 3E+09 32.048922 -104.048909 3E+09 32.048922 -104.059287 3E+09 32.048922 -104.059291 3E+09 32.048922 -104.055281 3E+09 32.049355 -104.055281 3E+09 32.04971 -104.055091 3E+09 32.023791 -104.055071 3E+09 32.033791 -104.055073 3E+09 32.050732 -104.055073 3E+09 32.050733 -104.05294 3E+09 32.050734 -104.05294 3E+09 32.050734 -104.05294 3E+09 32.050735 -104.055057 3E+09		TOWNS	16 26.05	16 26.0S	3 26.05	4 26.05	.3 26.05	.3 26.0S	4 26.05	4 26.05	4 26.05	.1 26.05	14 26.0S	4 26.05	3 26.05	2 26.05	3 26.0S	1 26.05	1 26.05	1 26.05	1 26.05	2 26.05	4 26.05	30 30 0
LATITUDE 32.019029 32.019029 32.0194175 32.01941757 32.024044 32.0449424 32.048922 32.048922 32.048911 1H 32.048914 1H 32.048914 1H 32.048914 11 32.035799 32.035791 32.035791 32.0356739 32.056741 32.0356739 32.056741 32.056741 32.056741 32.056774 32.0567774 32.0567774 32.0567774 32.056774 32.0567774 32.0567777777777777777777					_	_																	_	36,00
LATITUDE 32.019029 32.019029 32.0194175 32.02974 32.02974 32.048922 32.048925 32.048925 32.048927 32.0489171 1H 32.0489171 1H 32.035739 32.035739 32.035739 32.035739 32.050741 32.0507741 3	COACHWHIP FED COM #1H		-104.064224	-104.052255	-104.059545	-104.043839	-104.048589	-104.048909	-104.059287	-104.054758	-104.061262	-104.059291	-104.0468	-104.050541	-104.048691	-104.068594	-104.058978	-104.062746	-104.06294	-104.06127	-104.056967	-104.072811	-104.061265	-104 060676
WELL_NAME Sinclair 001 ATLANTIC 001 BRANTLEY FED 001 DELAWARE FEDERAL 001 BBABY BUDDAH 13 FEDERAL 001H DELAWARE RANCH 14 FED 002H DELAWARE RANCH 14 FED 002H DELAWARE RANCH 14 REB 002H DELAWARE RANCH 11 NC FEE 001H DELAWARE RANCH 11 NC FEE 001H DELAWARE RANCH 11 FEDERAL COM 001H	0		32.019029	32.019417	32.033712	32.02974	32.041757	32.044044	32.048922	32.049355	32.048922	32.050736	32.021234	32.049171	32.04891	32.033791	32.035209	32.050741	32.050741	32.050739	32.050375	32.033962	32.048924	
		WELL_NAME	Sinclair 001	ATLANTIC 001	BRANTLEY FED 001	DELAWARE FEDERAL 001		DELAWARE RANCH 13 EH FED COM 001H	DELAWARE RANCH 14 FEE 002H	DELAWARE RANCH 14 B2BO FEE 001H	DELAWARE RANCH 14 FEE 004	DELAWARE RANCH 11 NC FEE 001H	COTTONMOUTH 24 FEDERAL COM 001H	DELAWARE RANCH 11 FEDERAL COM 001H	DELAWARE RANCH 13 FEDERAL COM 001H	DIAMONDBACK 22 STATE COM 003H	COTTONMOUTH 23 FEDERAL COM 001H	DELAWARE RANCH 11 FEE 006H	DELAWARE RANCH 11 W2MD FEE 004H	DELAWARE RANCH 11 FEE 005H	DELAWARE RANCH 14 FEE 005H	DIAMONDBACK 22 STATE COM 001H	DELAWARE RANCH 14 CN FEE COM 001H	DIAMONDRACK 22 STATE COM NIGH
OPERATOR BENNETT J MAX WILSO POGO PRODI TXO PRODU TXO PRODU TXO PRODUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR MEWBOUR		FID Shape *	0 Point	1 Point	2 Point	3 Point	4 Point	5 Point	6 Point	7 Point	8 Point	9 Point	10 Point	11 Point	12 Point	13 Point	14 Point	15 Point	16 Point	17 Point	18 Point	19 Point	20 Point	21 Point

.

~

1 •

,

1. Geologic Formations

TVD of target	6233'	Pilot hole depth	NA
MD at TD:	11,931'	Deepest expected fresh water:	120

Basin

Formation	Depth (TVD))	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	373	Water	
Top of Salt	766	Salt	
Base of Salt	2373	Salt	
Lamar	2567	Barren	
Bell Canyon	2613	Oil/Gas	
Cherry Canyon	3426	Oil/Gas	
Brushy Canyon	4729	Oil/Gas	
Brushy Canyon –B	5886	Oil/Gas	
Brushy Canyon – A	6044	Oil/Gas	
Brushy Canyon -4	6105	Oil/Gas	
Brushy Canyon – 3	6136	Oil/Gas	
Brushy Canyon – 2	6181	Target Zone	
Bone Spring Lime	6273	Oil/Gas	

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casing	j Interval	Çsg	Weight	Grade	Conn	SF	SE	SF
Size	From'	To	Size	(lbs)			Collapse	Burst	Tension
17.5"	0	425 375	13.375"	54.5	J55	STC	3.45	2.02	22.19
12.25"	0	2550 2572)	9.625"	40	J55	LTC	1.49	1.126	4.93
8.75"	0	11,931	5.5"	17	P110	LTC	1.70	2.39	2.19
				BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry
						-			1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

VII & AND SIM AND A STATE OF THE	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	

Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	Y
the collapse pressure rating of the casing?	
A THE REAL AND A	
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
A CALL AND A	1917 - 1 - 2
Is well located in SOPA but not in R-111-P?	Ν
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
	n
Is well located in R-111-P and SOPA?	<u>N</u>
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
C. Frank M. C. Martin Manual Martin Martin and States in 1997 and 1997 and 1997 and 1997 and 1997 and	·
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing,	#)Sk \$)	Wt. IB/ gal	Yid) ft3// sackt	H ₂ 0 gal/s R	500#J (Comp) Strength (hours))	Slurry Description
Surf.						
	450	14.8	1.34	6.4	8	Tail: Class C + 2% CaCl2
Inter.	575	13.5	1.72	8.9	12	1 st stage Lead: Class C + 4% Gel + 1% CaCl
	250	14.8	1.34	6.4	8	1 st stage Tail: Class C + 1% CaCl
Prod.	610	11.9	2.50]4	60	1 st Lead: 50:50:10 Econocem H
	1125	14.4	1.25	5.7	20	1 st Tail: Versacem 50:50:2 Class H

Sel COA

Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	%Excess
Surface	0'	100%
Intermediate	0'	75%
Production	2 050° 2000	25% in Lateral – 40% OH in Vert - Tie In 500' Inside 9- 5/8" Casing Shoe @ 2550' + 100 sx Lead

4. Pressure Control Equipment

N A variance is requested for the use of a diverter on the surface casing. See attached for schematic.

BOP installed		Min.	Ť	ypè	1	Tested to:
and tested					(* 2	
before drilling		W P	5 '3' \$		3 	
	he char and the descence	the set in the start	kerin ken di	the stand a literation	لانتشا	Linking and the side in the market
				nular	<u>x</u>	2000 psi
			Bline	d Ram		
12-1/4"	13-5/8"	2M	Pipe	Ram		214
				le Ram		2M
			Other*			
			Ani	nular	X	50% testing pressure
			Bline	d Ram	х	
8-3/4"	11"	3M	Pipe	Ram	х	
0-5/4	11	5141	Doub	le Ram		3M
			Other	_		
			*			
			Ani	nular		
			Blind	d Ram		
]			Pipe	Ram		
			Doub	le Ram		
			Other			
			*			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above? If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X Formation integrity test will be performed per Onshore Order #2.
 On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

	3	iance is requested for the use of a flexible choke line from the BOP to Choke fold. See attached for specs and hydrostatic test chart.
	N	Are anchors required by manufacturer?
N	instal	Itibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after lation on the surface casing which will cover testing requirements for a maximum of ys. If any seal subject to test pressure is broken the system must be tested.

5. Mud Program

De	<u>pth:</u>	Type?	Weight (ppg)	Viscosity ***	Water Loss
From	Το				
0	Surf. shoe	FW Gel	8.6-8.8	28-34	N/C
Surf csg	Int shoe	Saturated Brine	10.0-10.2	28-34	N/C
Int shoe	TD	Cut Brine	8.5-9.3	28-34	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	PVT/Pason/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated
1	logs run will be in the Completion Report and submitted to the BLM.
N	No Logs are planned based on well control or offset log information.
N	Drill stem test? If yes, explain
N	Coring? If yes, explain

Add	litional logs planned;	Interval
N	Resistivity	
Ν	Density	
Y	CBL	Production casing (If cement to circulated to surface)
Y	Mud log	Intermediate shoe to TD
N	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	3127 psi at 6233' TVD

Abnormal Temperature	NO
Mitigation measure for abnor	mal conditions. Describe. Sufficient supplies of Paper/LCM for
neriodic sweeps to control se	enage and losses will be maintained on location.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM. N | H2S is present

Y H2S Plan attached

8. Other facets of operation

Is this a walking operation? NO If yes, describe. Will be pre-setting casing? NO If yes, describe.

Attachments

- Directional Plan
- BOP & Choke Schematics
- C102 and supporting maps
- Rig plat
- H2S schematic
- H2S contingency plan
- Interim reclamation plat

NM OIL CONSERVATION ARTESIA DISTRICT

JAN 11 2016

RECEIVED

NEW MEXICO BASIN

EDDY COUNTY, NM DELAWARE COACHWHIP FED COM #1H

OWB

Plan: PWP1

Standard Planning Report

25 August, 2015

ا الدر بيند الحم ال

. .

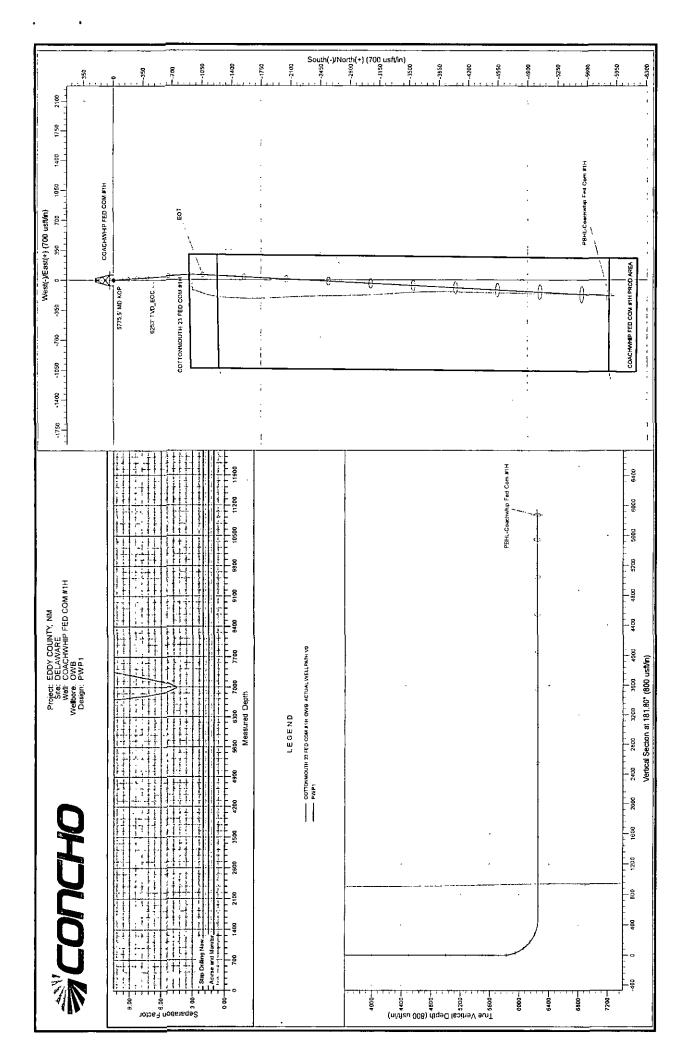
COG Operating LLC

Planning Report

Database:	EDM_Ü	sers			Local Co-	ordinate Refer	énce:	Nell COACHWH	HP FED COM	#1H		
Company:		IEXICO BASIN	a		TVD Refe		•	RKB=2944.5+18				
Project:	. 1	COUNTY, NM			MD Refer	-		RKB=2944.5+18	-			
Site:	DELAW				North Ref			Grid		((100)		
Well:	COACH	WHIP FED C	OM #1H		•	Iculation Meth		Minimum Curvat	ture			
Wellbore:	OWB											
Design:	PWP1	on the last set	م د میروند.	ann an de anna deal					م وال م مال	an fai ann de a star a s		
Project	EDDY C	OUNTY, NM							······································	• • • • • • • • • • • • • • • • • • •		
Map System:	ina ⊷ ⊷ … Lis State I	Plane 1927 (E	vact solution)		System Dat			an Sea Level		`` •• • •*- <u></u>		
Geo Datum:		(NADCON C	•		System Dat		1010					
Map Zone:		co East 3001	,									
										· · · · · · · · · · · · · · · · · · ·		
Site	DELAWA	ARE	<u>به د د د.</u> سف شد. به مد	- 1997 - 19 - 19 - 19 1997 - 1997 - 19 - 19 - 19 - 19 - 19 - 1			• · · · · · · · · · · · · · · · · · · ·					
Site Position:			North	ing:	376	,544,50 usft	Latitude:			32° 2' 6.703		
From:	Мар		Eastir	ig:	531	304.00 usft	Longitude:			104° 13' 56.325 \		
Position Uncertainty	r:	0.0	usft Slot R	adius:		13-3/16 "	Grid Converg	ence:		0.05		
Well	CÓACHV	WHIP FED CO	M #1H				-					
Well Position	+N/-S	967.	2 usft No	orthing:		377,511,70	usft Lati	tude:	~	32° 2' 15.349		
	+E/-W	53,802.		isting:		585,106.80		gitude:		104° 3' 31,244		
Position Uncertainty				ellhead Elevatio	on:			und Level:		2,944.5 u		
Wellbore	OWB	·····						a de la composition d La composition de la c				
Magnetics	Mod	el Name	Sampi	e Date	Declina	tion	Dip A	ngle	Field S	Strength		
					(°)		• (°)	{	nT)		
		WMM2015		8/25/2015		7.37		59.83		47,957		
Design	PWP1				5 A 3 AND AND 2 1 AND							
Audit Notes:												
			Phas	e: Pi	ROTOTYPE	Tie	On Depth:		0,0			
Version:			epth From (T	/0)				Dire	ection			
					+N/-S	+E						
Version: Vertical Section:		U			+N/-S (usft)		sft)	•	(°)			
			(usft) 0,0	· · · · · · · · · · ·			sft)		(°) 1.80			
			(usft)	· · · · · · · · · · · · · · · · · · ·	(usft)	(u:	sft)					
Vertical Section:			(usft) 0.0	· · · · · · · · · · · · · · · · · · ·	(usft)	(u: 0.	oft) 0	18				
Vertical Section: Plan Sections Measured	ination	Azimuth	(usft) 0.0 Vertical		(usft) 0.0	(u: 0. Dogleg	oft) 0 Build	18 Turn [`]	1.80			
Vertical Section: Plan Sections Measured Depth (ncl	ination (°)		(usft) 0.0	+N/-S (usft)	(usft)	(u: 0.	oft) 0	18		Target		
Vertical Section: Plan Sections Measured Depth (ncl		Azimuth	(usft) 0.0 Vertical Depth	+N/-S	(usft) 0.0 +E/-W	(us 0. Dogleg Rate	oft) 0 Build Rate	18 Turn Rate	1.80 	Target		
Vertical Section: Plan Sections Measured Depth (ncl (usft) 0.0	(°)	Azimuth (°)	(usft) 0.0 Vertical Depth (usft)	+N/-S (usft) 0.0	(usft) 0.0 +E/-W (usft) 0.0	(us 0. Dogleg Rate (°/100usft) 0.00	5ft) 0 Build Rate (°/100usft) 0.00	18 Turn Rate (*/100ùsft) 0.00	1.80 TFO (°) 0.00	Target		
Vertical Section: Plan Sections Measured Depth (ncl (usft) 0.0 5.775.5	(°) 0.00 0.00	Azimuth (°) 0.00 0.00	(usft) 0.0 Vertical Depth (usft) 0.0 5,775.5	+N/-S (usft) 0.0 0.0	(usft) 0.0 +E/-W (usft) 0.0 0.0	(us 0. Dogleg Rate (°/100usft) 0.00 0.00	Build Rate (°/100usft) 0.00 0.00	18 Turn Rate (*/100úsft) 0.00 0.00	1.80 TFO (°) 0.00 0.00	Target		
Vertical Section: Plan Sections Measured Depth (ncl) (usft) 0.0 5.775.5 6.527.2	(°) 0.00 0.00 90,20	Azimuth (°) 0.00 0.00 176.00	(usft) 0.0 Vertical Depth (usft) 0.0 5,775.5 6,253.0	+N/-S (usft) 0.0 0.0 -478.0	(usft) 0.0 +E/-W (usft) 0.0 0.0 33.4	(us 0. Dogleg Rate (°/100usft) 0.00 0.00 12.00	Build Rate (°/100usft) 0.00 0.00 12.00	18 Turn Rate (*/100usft) 0.00 0.00 0.00 0.00	1.80 TFO (°) 0.00 0.00 176.00	Target		
Vertical Section: Plan Sections Measured Depth (ncl) (usft) 0.0 5,775.5	(°) 0.00 0.00	Azimuth (°) 0.00 0.00	(usft) 0.0 Vertical Depth (usft) 0.0 5,775.5	+N/-S (usft) 0.0 0.0	(usft) 0.0 +E/-W (usft) 0.0 0.0	(us 0. Dogleg Rate (°/100usft) 0.00 0.00	Build Rate (°/100usft) 0.00 0.00	18 Turn Rate (*/100úsft) 0.00 0.00	1.80 TFO (°) 0.00 0.00	Target		

. .

•


• •

COG Operating LLC

Planning Report

Database: Company: Project: - Site: Well: Well: Wellbore: Design:	EDM_Users NEW MEXICO EDDY COUNT DELAWARE COACHWHIP OWB PWP1	Y, NM		TVD Re MD Re North I	Co-ordinate Re eference: ference: Reference: Calculation M		Well COACHWHIP FED COM #1H RKB=2944.5+18 @ 2962.5usft (TBD) RKB=2944.5+18 @ 2962.5usft (TBD) Grid Minimum Curvature			
Planned Survey					• • •		4		<u>بر بر میرد. اس بر میرد میرد میرد میرد میرد میرد میرد میر</u>	
Measured Depth (usft)	Inclination · (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S " (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (*/100usft)	Turn Rate (°/100usft)	
0.0 5,775.5 5775.5' MD	0,00 0.00	0.00 0.00	0.0 5,775.5	0.0 0.0	0.0 0.0	0.0	0.00 0.00	0.00 0.00	0,00 0.00	
6,527.2 6253' TVD	90.20	176.00	6,253.0	-478,0	33.4	476.7	12.00	12.00	0.00	
6,877.2 7,107.5 EOT	90.20 90,21	176.00 182,91	6,251.8 6,250.9	-827.1 -1,057.3	57.8 60.0	824.9 1,054.9	0.00 3.00	0.00 0.01	0.00 3,00	
11,928.9	90.21	182.91	6,233.0	-5,872.4	-184.5	5,875.3	0.00	0.00	0.00	

•				•					
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (ușft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL-Coachwhip Fed C - plan hits target cer - Point		0.00	6,233.0	-5,872.4	-184.5	371,639.30	584,922,30	32" 1' 17.237 N	104° 3' 33.561 W
Plan Annotations					··· , .				
Plan Annotations Measu Dept (usft	red Ver h De		Local +N/-S (usft)		-w	Comment	· · · · · · ·		
Measu Dept (usft	red Ver h De) (u	tical pth	+N/-\$.	+E (ui	/-W 5ft)	Comment 5775.5' MD KOP	······································	· · · · ·	~
Measu Dept (usft 5,7 6,5	red Ver h De) (u 75,5 (27,2 (ticai pth sft)	+N/-S (usft)	+E (ut	l-W Sft) 0.0 33.4		······································	· · · · · ·	

NEW MEXICO BASIN

EDDY COUNTY, NM DELAWARE COACHWHIP FED COM #1H

OWB PWP1

'#

.

Anticollision Report

25 August, 2015

*

COG Operating LLC

Anticollision Report

Filter type: Interpolation Method: Depth Range: Results Limited by:	MD Interval 100.0usft Unlimited Maximum center-center distance of 2,151	Scan Method:	Closest Approach 3D Circular Conic			
Interpolation Method:						
	MD interval 100.0usft	Error Model:	ISCIVISA			
Filter type:		Error Model:	ISCWSA			
Eller Arres	NO GLOBAL FILTER: Using user defined	selection & filtering criteria				
Reference	PWP1	ويراويه والمراجع فيستشقه والمحاد				
Reference Design:	(PWP1	Offset TVD Reference:	; Offset Datum			
Reference Wellbore	OWB	, Database:	EDM_Users			
Nell Error:	3.0 usft	Output errors are at	2.00 sigma			
Reference Well:	COACHWHIP FED COM #1H	Survey Calculation Method:	Minimum Curvature			
Site Error:	0.0 usft	North Reference:	Grid			
Reference Site:	DELAWARE	MD Reference:	¦ RKB≠2944.5+18 @ 2962.5usft (TBD)			
Project:	EDDY COUNTY, NM	TVD Reference:	RKB=2944.5+18 @ 2962.5usft (TBD)			
Impany: INEW MEXICO BASIN		' Local Co-ordinate Reference:	Well COACHWHIP FED COM #1H			

Survey Tool Program		Date	8/25/2015	· .				•			
From (usft)	To (usft)	Survey	(Wellbore)			 Tool Name	•	Description	-	• .	
0.0	11,928.9	PWP1 ((OWB)		**	MWD	• • • • • •	OWSG MWD - Standard			

Summary	in in a second	ست، سر سر ۱۰ م	· · · · ·					• • • • • • •		· -	
	•			Reference Measured	Offset Measured	Distar Between	nce Between	Separation		Warning	
Site Name Offset Well - Wellbo	re - Design			Depth (usft)	Depth (usft)	Centres (usft)	Ellipses (usft)	Factor			
DELAWARE COTTONMOUTH 23		- OWB - ACTI		6.985.0	6,250.8	149.5	116.7	4 556	CC. ES.	SE.	

Survey Prog		Standard Keep											Offset Well Error:	3.0 u
Refer		Offset		Semi Major				,	Drsta					
Veasured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (ustt)	Highside Toolface (*)	Offset Wellbor +N/-S (usft)	• Centre +E/-W (usft)	Between Centres (usft)	Betwaan Eilipsés (usft)	Minimum Separation (usft)	Separation Factor	Warning	
00	00	05	0 5	30	30	-177 09	-936 0	-47,5	937 2		1	******	antara anana ana ana'a ≌-ana -	
100 0	100 0	103 2	103 Z	30	30	-177.13	-935 9	-47.0	937 0	931 0	6 00	156 084		
159 2	159 2	159,7	159.7	30	30	-177.16	-935 8	-46 3	937.0	930 9	6 02	155 523		
200 0	200.0	200.0	200 0	30	30	-177.19	-935.9	-45 9	937 0	930 9	6 05	154 926		
300 0	300 0	298 8	298.7	3.1	30	-177.27	-936.1	-44.7	937 2	931 0	6.14	152 686		
400 0	400 0	394 4	394 4	32	30	-177.35	-936 6	-43 4	937 6	931.3	6 27	149 526		
500 0	500 0	493 4	493 4	34	3.1	-177.44	-937 4	-41.9	938 3	931 9	6 44	145 649		
600 0	600 0	598 2	598 2	36	3.1	-177.52	-938 0	-40 5	938 8	932 2	6 65	141.159		
700 0	700 0	706 3	706 2	38	3.1	-177 59	-937.8	-39 5	938 6	931.8	6 69	136 295		
800 0	600 0	810 8	610.7	4 0	3.1	-177,62	-936 9	-39 0	937 8	930 7	7.14	131.389		
900 0	800 0	914 4	914 4	43	3.1	-177 60	-935 6	-39 2	936 5	929.1	7 40	126.606		
1,000 0	1,000 0	1,015 2	1,015.1	4 5	32	-177.55	-934 0	-39 9	934 9	927.3	7.67	121.958		
1,100 0	1,100.0	1,112.7	1,112.6	48	32	-177 46	-932.5	-41.3	933 5	925.6	7.95	117 476		
1,200 0	1,200.0	1,212 3	1,212.1	5.1	32	-177.32	-931.2	-436	932 3	924 0	8 24	113 177		
1,300.0	1,300 0	1,313 4	1,313 2	54	32	-177.15	-929 7	-46.3	930 9	922 4	8 54	108 995		
1,400 0	1,400 0	1 409 3	1,409.1	5.7	32	-177.01	-928 5	-48 5	929 8	920 9	6 66	104.985		
1,500 0	1,500 0	1,511.7	1,511 4	60	32	-176 88	-927.3	-50 6	928 8	9196	9 1 9	101,115		
1,600 0	1,600 0	1,618.4	1,618.1	63	32	-176.76	-925.5	-52 3	927 2	917 8	9.53	97 278		
1,700.0	1,700.0	1,717.3	1,717.0	56	33	-176 68	-923.7	-53 5	925 4	915 5	9.89	93,592		
1,800 0	1,800.0	1,825.1	1,824 8	69	33	-176 65	- 9 21.3	-54.0	923 2	912 9	10 26	89.989		
1,900 O	1,900 0	1,931.7	1,931.3	7 2	34	-176.72	-918.1	-52 6	920.1	909 4	10 64	86 490		
2,000 0	2,000 0	2,027 4	2,025 9	7.6	34	-176 93	-915 2	-49 2	916 8	905 8	11.01	83 244		
2,100 0	2,100 0	2,118 0	2,117.5	7.9	35	-177.09	-913 2	-45 5	914.6	903 2	11 39	80 290		
2,200.0	2 200 0	2.215.7	2,215 0	82	35	-177.33	-911.7	-42 ö	912 8	901.1	11.77	77.537		
2,300 0	2,300 0	2.313 5	2,312 7	86	36	-177.66	-910 5	-37.2	911,3	899 2	12.16	74 970		
2,400 0	2 400 0	2 408 8	2,407.8	8.9	36	-177,93	-909.7	-32 8	910 3	897.7	12.54	72.574		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

8/25/2015 11:10:31AM

.

COG Operating LLC

Anticollision Report

Company:	(NEW MEXICO BASIN	Local Co-ordinate Reference:	Well COACHWHIP FED COM #1H
Project:	¿EDDY COUNTY, NM	TVD Reference:	, RKB=2944.5+18 @ 2962.5usft (TBD)
Reference Site:	DELAWARE	MD Reference:	RKB=2944.5+18 @ 2962.5usft (TBD)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	COACHWHIP FED COM #1H	Survey Calculation Method:	Minimum Curvature
Nell Error:	3.0 usft	Output errors are at	1 2.00 sigma
Reference Wellbore	OWB	Database:	EDM_Users
Reference Design:	1 PWP1	Offset TVD Reference:	Offset Datum

vey Prog	ram: 100	I DELAW		-MWD									Offset Well Error:	3 D u
Refer	ence	Óffs	et .	Semi Major	Axis			•	Dist	anca			· · ·	
asured Xepth Usft)	Vertical · Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (ustt)	Highside Toolface (*)	Offset Wellbor +N/-S (usft)	rs Centre +E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (ush)	Separation Factor	, Warning	
							لد مديمها يحفان الح		· · ·		-			
2,500 0 2,600.0	2,500 0 2,600 0	2,505 5 2,608 2	2,504 9 2,607.3	93 96	37 3.8	-178 07 -178.11	-909,1 -908 5	-30 7 -29 9	909.7 909 0	896.7 895.7	12.94 13 35	70 310		
2,700 0	2,300 0	2,008 2	2,007.3	9.9	3.8	-178.13	-908 5	-29 9	909 0 908 4	894 5	13 35	66.104 66.006		
2,800 0	2,800.0	2 606 9	2,805 9	10.3	39	-178.14	-907 4	-29 5	907.9	893.7	14.18	64 019		
2,900 0	2,900 0	2,907.3	2,906 4	10.6	40	-178.13	-906.7	-29 6	907 2	592.5	14 60	62.159		
3,000 0	3,000 0	3,007 4	3,006 4	11.0	40	-178.10	-906.1	-30 1	906 6	891.6	15 00	60 443		
3,100 0	3,100.0	3,106.7	3,105.7	11.3	4.1	-178 05	-905.4	-30 8	906 0	890 6	15 40	58 847		
3 200.0	3 200 0	3 205 5	3,204 5	11.7	4.1	-177.99	-904 9	-31,7	905 5	889.7	15.79	57.352		
3.300 0	3,300.0	3.306 5	3,305.5	12.0	4 2	-177,92	-904.3	-32.8	904 9	688 8	16.18	55 925		
3 400.0 3 443.9	3,400 0 3,443 9	3,401,9 3,445 4	3,401.0 3,444 4	12 3 12 5	42 42	-177.84 -177.80	-904 0 -904 0	-34.1 -34 6	904 6 904 6	888.1 887.9	16 57 16.73	54 601 54 057		
3,500 0	3,500.0	3,500.9	3,499 9	12.7	43	-177,74	-903.9	-35 7	904 6	887.7	16.95	53 374		
3,600 0	3,600 0	3,603 5	3,€02.5	13 0	4.3	-177 53	-903 8	-37.4	904.6	887.2	17,34	52.173		
3,700 D	3,700 0	3,701,9	3,700 9	13.4	43	-177.52	-903 6	-39 2	904 4	886.7	17,73	51,010		
3,800 0	3,500.0	3,502 4	3,801 4	13.7	4.4	-177 41	-903 4	409	904 4	886 2	18.13	49 892		
3,900 0	3,900 0	3,903 4	3,902.3	\$4.1	44	-177 29	-903 2	-42.8	904 2	885.7	18 53	48 802		
4,000 0	4,000 0	4,003.5	4,002.4	14.4	4.5	-177.15	-902 9	-44.8	904 0	885.1	18 93	47.744		
4,056.8	4,056 8	4,058 4	4,057 3	14 6	4.5	-177 09	-902 8	-45 9	903 9	884 8	19.16	47.171		
4,100 0	4,100 0	4,100.0	4,098 9	148	4 5	-177 04	-902 8	-46.7	904 0	884 6	19 34	46 745		
4,200 0	4.200 0	4,194.1	4,193 D	15 1	46	-176 92	-903 1	-48 6	904 5	884.7	19.73	45 836		
4.300 0	4,300 0	4,293 6	4,292 4	15 5	48	-176 79	-903 9	-50 7	905 4	885 2	20.13	44.982		
4,400.0	4,400 0	4,394 0	4,392.8	15 8	4.7	-176,64	-904 6	-53.1	906 2	885.7	20 53	44.150		
4,500 0	4,500.0	4,490,7	4,489 5	16 2	4.7	-176 50	-905 5	-55 4	907 2	886 3	20 92	43 357		
4,600 0	4,600 0	4,595.7	4 594 4	16 6	48	-176 34	-906 4	-57.9	905 2	886 9	21,33	42 576		
4,700 0	4,700 0	4,689.2	4.688 0	16.9	48	-176 23	-907 2	-59 8	909 2	887.5	21,73	41 840		
4,800 0	4,800.0	4,790 4	4,789 1	17.3	49	-176.14	-908 5	-61.3	910 6	888 5	22.13	41,151		
4,900 0	4,900 0	4.888.7	4,887 4	17.6	49	-176 04	-909.6	-62.9	911.9	889 4	22 53	40 461		
5,000 0	5,000 0	4,987,0	4,985 6	18 0	50	-175 93	-911.0	-64 8	913 5	890 5	22 93	39 836		
5,100 D	5,100 0	5.085 0	5,083 6	18 3	50	-175 79	-912 6	-67.1	915 2	8918	23.34	39 215		
5 200 0	5 200 0	5,185 0	5,183 6	18.7	5.1	-175 66	-914 3	-694	917.0	893 3	23,75	38 6 1 6		
5,300 0	5,300 0	5.284 5	5,283.1	19 0	5.1	-175 53	-916 0	-716	918.9	894 8	24.16	38.036		
5,400 0	5,400.0	5.379.7	5,378 2	19 4	5 2	-175 42	-917 8	-736	921 0	896 5	24 57	37 492		
5,500 0	5,500.0	5 477 4	5,475 8	19.7	5 2	-175 30	-920 2	-75 6	923 6	598.7	24 97	36 983		
5.600 D	5,600 0	5.575.0	5,573.4	20.1	53	-175.19	-922 8	-77.7	926 4	901.0	25 38	36 498		
5,700 0 5,800 0	5,700 0 5,800 0	5,676 3 5,779.9	5 674.6 5,778 2	204 208	53 54	-175 09 9 01	-925.5 -978 1	-796	929 3 931 3	903 5	25.79	36 031		
							-928.1	-812	931 3	905,1	26.20	35 545		
5,900 0 6,000 0	5.898 6 5,991.8	5,880.3	5,678 6 5,974 8	21.1	55	949	-930.3	-826	918 2	891.7	26.58	34.550		
6,100 D	5,991.6	5,976 5 6,063.7	5,974 8 6,062.0	21.4 21.7	55 56	10 70 13 03	-932 2 -933 8	-836 -846	885.0	858.1	26 93	32 860		
6 200 0	6,145 3	6,135.7	6,133.9	21.7	56	13.03	-933 8 -934 8	-84 6 -85 4	633 2 765 1	805 9 737 4	27 29 27.68	30 526 27.644		
6,300 0	6,200.7	6,190 3	6,188.5	22 4	57	25 65	-935.7	-85 4	684 2	656.1	27.68	24 353		
6,400.0	6,236.6	6,226 4	6,224 6	22 9	5.7	43 24	-936 3	-85.7	594 5	565 9	28.57	20 808		
6,500.0	6.252 3	6 243 2	6 241 4	23 4	5.7	76 36	-936 6	+87.0	500 2	471.1	29 09	17.191		
8,600,0	6 252.7	6 245 3	6 243.5	24 0	5.7	86.83	-935 7	-87.0	406.1	376 4	29 68	13 683		
6,700 0	6,252 4	6 246.7	6 244 9	24 7	5.7	87 36	-936.7	-87.1	315.7	285 3	30.37	10 395		
6,800 0	6,252 0	6,248,1	5.245.3	25 4	5.7	87.89	-936.7	-87.1	233.1	202 0	31.15	7 484		
0.009,8	6,251.7	6.249 6	6.247.7	26 3	5.7	88 42	-936 8	-87.1	170 3	138 3	32 02	5 3 1 9		
6,985 0	6,251.4	6,250 8	6,249.0	27.1	5.7	88 90	-936 8	-87.1	149 5	116.7	32 81	4 558 CC,	ES, SF	
7,000 0	6.251.3	6 251.1	8 249 2	27 2	5.7	88 99	-936 8	-87 2	150 2	117 2	32 95	4 558		
7,100.0	6 251.0	6.252.7	6,250.9	28 2	5.7	89 62	-936 8	-87.2	185 8	151.9	33 94	5 476		
7 200.0	6,250 6	6 254 4	6,252.5	29 2	5.7	90 25	-936 9	-87 2	255.1	221 2	34 96	7 326		
7,300.0	6,250.2	6 256.1	6,254.2	30 3	5,7	90 88	-936 9	-87.2	341 5	305 5	36 04	9 477		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

8/25/2015 11:10:31AM

•

٠

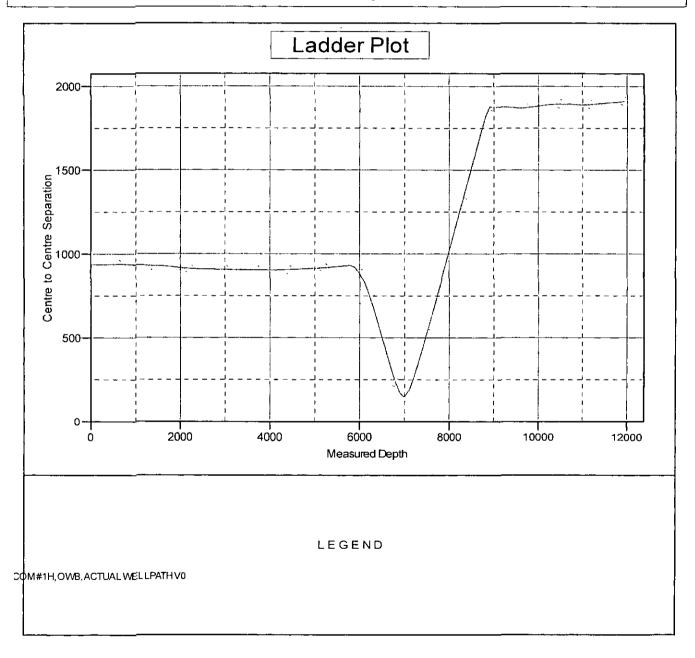
COG Operating LLC

Anticollision Report

Company:	NEW MEXICO BASIN	Local Co-ordinate Reference:	; Well COACHWHIP FED COM #1H
Project:	FEDDY COUNTY, NM	TVD Reference:	RKB=2944.5+18 @ 2962.5usft (TBD)
Reference Site:	DELAWARE	MD Reference:	RKB=2944.5+18 @ 2962.5usft (TBD)
Site Error:	0,0 usft	North Reference:	Grid
Reference Well:	COACHWHIP FED COM #1H	Survey Calculation Method:	Minimum Curvature
Well Error:	3.0 usft	Output errors are at	: 2.00 sigma
Reference Wellbore	OWB	Database:	EDM_Users
Reference Design:	PWP1	Offset TVD Reference:	Offset Datum

rvey Prog		Standard Kee					· ·	4	·				Offset Well Error:	3.0 u
Refer		Offs		Semi Major			-	_	Dista				•	•
easured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	Offset Wellbar +N/-S	re Céntre +E/-W	Between Centres	Between Elfipses	Minimum Separation	Separation Factor	Warning.	
(usft)	(ustt)	(usft)	(usfi)	(usft)	(usft)	(1)	(usft)	(usft)	(usft)	(usft)	(usft)		-	
7,400 0	6 249,9	6,257.8	6 255.9	31.5	5,7	91.53	-936 9	-87 3	433 2	396.1	37.17	11.856		
7,500 0	6 249.5	6 259 5	6,257.7	326	5.7	92.17	-937.0	-87.3	528 0	489 6	38 34	13 769		
7,600.0	6,249.1	6,261.3	6.259 4	33 8	5.7	92 83	-937.0	-87.3	624 3	584.8	39 56	15 783		
7,700 0	6 248.7	6 263 0	6,261 2	35.1	5.7	93 49	-937.0	-87.4	721.7	680 9	40 80	17 686		
7,800 0	6 248 4	6 264 8	6.263 0	36 4	5.7	94.16	-937.1	-87 4	819.7	777.6	42 08	19 477		
7,900 0	6 248 0	6 266.7	6 264 8	37.7	5.7	94 64	-937.1	-87.5	918 1	874 7	43 39	21.158		
8,000 0	6,247.6	6 268.5	6 266.7	39 0	5.7	95 52	-937.1	-87.5	1,016 8	972,1	44.73	22.734		
8,100 0	5 247.3	6,270 4	6,268 6	40 4	57	95 21	-937 2	-87.5	1,115.7	1,069.7	. 46 08	24 212		
8.200 0	6,246 9	6,272.3	6,270.4	41.7	5,7	96 90	-937 2	-87 6	1,214 9	1,167 4	47.48	25 598		
8,300 0	6 246 5	6 274 2	6.272 4	43 1	5.7	97 50	-937,3	-87 6	1,314.1	1,265 2	48,86	26 898		
8,400 0	6,246,1	6,276,1	6.274 3	44.5	5.7	98 31	-937.3	-67,7	1,413.5	1,363 2	50 27	28 118		
8,500.0	6 245 8	6 276.1	6,276 2	46 0	5,7	99 02	-937 3	•67.7	1,512.9	1,461 2	51.70	29 264		
8,600.0	6,245 4	6 280.1	6,278 2	47 4	5.7	99 74	-937.4	-87.7	1,512.4	1,559.2	53.14	30 342		
6,700 0	6,245 0	6 282.1	6,280 2	48 9	57	100 46	-937 4	-87.8	1,711.9	1,657,3	54 60	31.357		
8.500.0	6 244 6	6 284.1	5,282 3	50 3	5.7	101.19	-937.5	-87.8	1,811.5	1,755.5	58 06	32 313		
8,900 0	6 244 3	9,817.1	8,117 0	51.6	32.7	175 53	-2,869.5	-178.7	1,678 2	1,793.7	84 46	22 238		
8,997.2	6 243 9	9,892.0	8,116 8	53 2	33 9	175 70	-2,944 4	-176.7	1,677.5	1,790 4	87.13	21.550		
9,000.0	6,243.9	9 892 0	8,116 6	53 3	33 9	175.70	-2,944 4	-176.7	1,877 5	1,790.4	87.17	21.540		
9,100 0	6 243 5	9,988.0	8,117 2	54 8	35 5	175 96	-3,040 3	-173 3	1,877.9	1,787 6	90 23	20 811		
9 200.0	6,243 2	10,120 5	8,117.0	56 3	37.6	176 36	-3,172 7	-166 9	1,877.5	1,783.5	93.92	19 990		
9,300 0	6 242 8	10 214.7	8,116.1	57.8	39 2	176 68	-3 266 6	-160 8	1,876.1	1,779.1	96.99	19 344		
9,400 D	6,242.4	10.370 0	8.114 2	59 3	41.8	177 25	-3,421,5	-150 0	1,875 2	1,774.1	101 08	18.551		
9,500.0	6,242 0	10,432.2	8,112 5	50 8	42 8	177 45	-3,483 6	-146 5	1,872 2	1,768 6	103 64	18 065		
9,573.1	6,241.8	10,465 0	8,112.1	62.0	433	177.55	-3,516 4	-144 8	1,871.5	1,766 2	105 30	17,773		
9,600.0	6,241.7	10 455 0	6,112.1	62 4	437	177 62	-3,539 3	-143 8	1,871.5	1,765 4	106 10	17 640		
9,700 0	6,241.3	10.561 0	8,113 8	63 9	44 9	177.82	-3,612.3	-141.1	1,873 6	1,764.7	108 84	17 214		
9,800 0	6,240 9	10,637 2	8,116.5	654	46 2	178 01	-3 888 4	-138 8	1,877.0	1,765 4	111 65	16 812		
9,900.0	6.240 6	10,746 0	8,119 6	67 0	48 0	178 25	-3,797 2	-136.7	1,880 0	1,765 0	114 99	16 349		
10,000 0	6,240 2	10,819.8	8,122 0	68.5	49 2	178 37	-3,870 9	-136 4	1,863.5	1,765.7	117.76	15 995		
10,100 0	6 239 8	10,924.6	8,126 3	70 1	50 9	178 51	-3,975 6	+137,1	1,887.9	1,768 9	121.03	15 598		
10,200 0	6 239 4	11,049 B	8,130.1	71.7	53 0	178 62	-4,100.7	-140.1	1,891.2	1,766 6	124 64	15.173		
10,300 0	6,239.1	11,180 5	5,132 2	73 2	55.1	178.71	4 774 7	142.0	1 802 1	1 784 8				
10,400 0	6,238.7	11,291.5	8,132 4	74 6	56 9	178.81	-4 231.3 -4,342 3	-143.9 -146.3	1,893 1 1,893 6	1,764.8 1,761,9	128 34 131.73	14.751 14 375		
10,500.0	6,238.3	11,392 9	8,132 5	764	586	178 88	-4,443 7	-149.0	1,894.0	1,759,1	131.73	14 034		
10,600.0	6,237.9	11,487 2	8,132 6	77,9	50 0 60.1	178 98	-4,538 0	-1490	1,894 0	1,756 4	134 90	13 720		
10,700 0	6 237.6	11,614 5	8,132 5	79 5	62 2	179 14	-4,665 2	-151.5	1,894.7	1,753 0	141.75	13 366		
10,800 0	6,237 2	11,739,1	8,130 4	81.1	64.3	179 28	-4,789 B	-153 4	1,893 4	1,748 0	145 38	13 024		
0,900.0	6 236 8	11,837,8	8,127.6	82.7	65.9	179 37	-4,888 5	-155 3	1,890 9	1,742 3	143.58	13 024		
10,996 8	6,236.5	11,697.0	8,126.7	84 2	66 9	179 43	-4,947 6	-155 3	1,889.8	1,738.7	140.58	12.720		
11,000 0	6,236 5	11,897.0	8,126.7	84 2	66 9	179 43	-4,947 6	-156 3	1,889.8	1,738.7	151,14	12 508		
11,100 0	6,236,1	11,969 4	8,125 9	858	58 1	179 50	-5,020 0	-157 8	1,690 5	1,736.6	153.92	12 283		
11,200.0	6,235 7	12,053 1	8,128.5	87 4	69 5	179 56	-5,103 7	-160 0	1,892 7	1,735.9	156 88	12 065		
11,300.0	6 235.3	12,148 5	8,130 7	89.0	710	179 65		-161,8	1,895.4	1,735.9				
11,400.0	6,235.0	12,148 3	8,133,1	906	72 7	179.05	-5,199 1 -5,302 5	-161.6	1,898.1	1,735 3	160 Q4 163 34	11 843 11.621		
11,500.0	5,233 6	12,359 4	8,135.1 8,135.2	92.2	74,7	179.90	-5,419 9	-163.5	1,895.1	1,734.6	165 87	11.388		
11,600 0	5,234 G	12,369 4	8,135 2 8,136 5	93 6	76.2	179 99	-5,4199	-164.9	1,900 2	1,732.1	169,98	11.368		
11,700 0	6 233 9	12,585 0	5,137.8	95.4	77.9	-179 92	-5,616 4	-168.7	1,903 6	1,730,3	173 30	10 985		
11,800 0	6,233 5	12,630 1	8,139 0	97.0	790	-179 84	-5,680 5	-169 5	1,906.1	1,730,1	175.96	10 833		
11,900.0	6,233.1	12,595 0	8,141,9	98 6	80 1	-179.74	-5,746 3	-169 4	1,910 9	1,732 2	178 65	10 696		
11,928 9	6,233 0	12,719.7	8,143.2	99.0	80 5	-179.70	-5,769 9	-169 3	1,912 5	1,733 0	179 50	10 654		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation



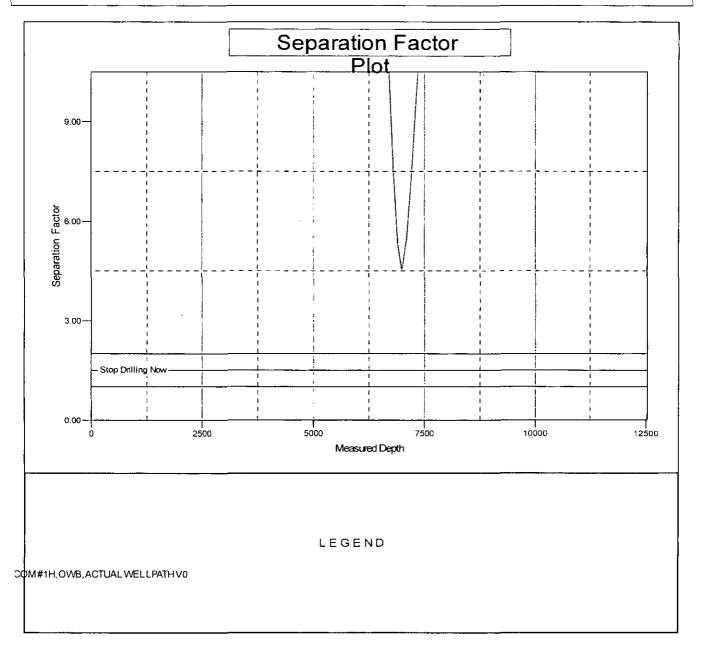
COG Operating LLC

Anticollision Report

Company:	⁾ NEW MEXICO BASIN	ⁱ Local Co-ordinate Reference:	Well COACHWHIP FED COM #1H
Proječt:	EDDY COUNTY, NM	TVD Reference:	RKB=2944.5+18 @ 2962.5usft (TBD)
Reference Site:	DELAWARE	MD Reference:	RKB≈2944.5+18 @ 2962.5usft (TBD)
Site Error:	0.0 usft	North Reference:	∔ Grid
Reference Well:	COACHWHIP FED COM #1H	Survey Calculation Method:	⁴ Minimum Curvature
Well Error:	i 3.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM_Users
Reference Design:	PWP1	Offset TVD Reference:	Offset Datum

Reference Depths are relative to RKB=2944.5+18 @ 2962.5usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: COACHWHIP FED COM #1H Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.15°

(



COG Operating LLC

Anticollision Report

Company:	NEW MEXICO BASIN	; Local Co-ordinate Reference:	, Well COACHWHIP FED COM #1H
Project:	EDDY COUNTY, NM	TVD Reference:	RKB=2944.5+18 @ 2962.5usft (TBD)
Reference Site:	DELAWARE	MD Reference:	· · ' RKB=2944.5+18 @ 2962.5usft (TBD)
Site Error: .	0.0 usft	North Reference:	Grid
Reference Well:	COACHWHIP FED COM #1H	Survey Calculation Method:	 Minimum Curvature
Vell Error:	.3.0 usft	Output errors are at	, 2.00 sigma
Reference Wellbore	+ OWB	; Database:	EDM_Users
Reference Design:	PWP1	Offset TVD Reference:	, Offset Datum

Reference Depths are relative to RKB=2944.5+18 @ 2962.5usft (TBD) Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: COACHWHIP FED COM #1H Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.15°

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replace O=orphaned, C=the file is closed)	(qua						N 4=SE) :) (NAD)	33 UTM in meters)	(In feel	t)
POD Number	POD) Sub÷ Code basin	Count		Q 16		c. Tws	Ring	· , ·	ζΥ,			Water Column
C 02160		ED	4	1	2 14	26S	28E	589243	3546044* 🚱	300	120	180
C 02160 S		ED	1	1 :	2 14	26S	28E	589043	3546244* 🚱	300	120	180
<u>C 02160 S2</u>		ED	1	1.	2 14	26S	28E	589043	3546244* 🚱	300	120	180
C 02160 S3		ED	2	2	1 14	26S	28E	588834	3546241* 🚱	300	120	180
<u>C 02160 S4</u>		ED	2	2	1 14	26S	28E	588834	3546241* 🚱	300	120	180
<u>C_02160 S5</u>		ED	1	1	1 14	26S	28E	588225	3546237* 🚱	300	120	180
C 02160 S6		ED	3	3	1 14	26S	28E	588232	3545635* 🚱	300	120	180
<u>C 02481</u>	CUB	ED		1	1 14	26S	28E	588326	3546138* 🚱	200		
									Average Depth t	o Water:	120 f	eet
									Minimur	n Depth:	120 f	eet
									Maximur	n Depth:	120 f	eet
Record Count: 8				***					9,00, 200, 200, 900, 900, 900, 900, 900			9791 MBN BAL JAL

PLSS Search:

Section(s): 14

Township: 26S

Range: 28E

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

PLSS Search:

Section(s): 23

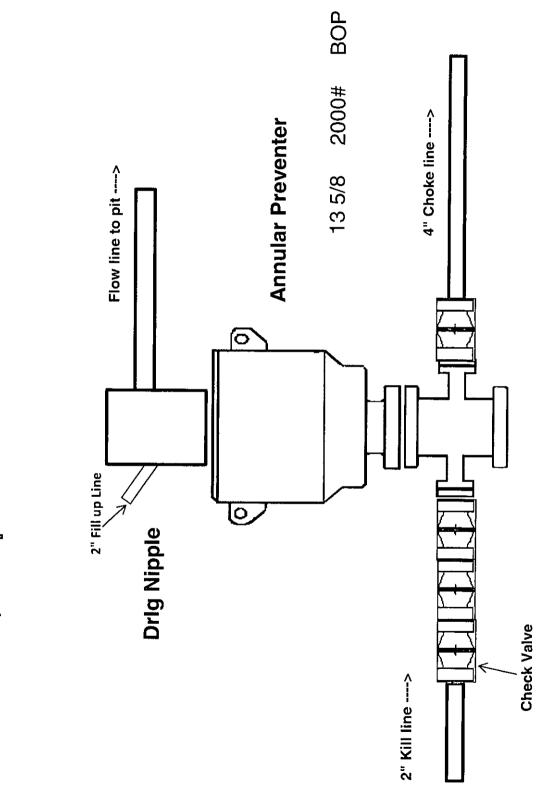
Township: 26S

Range: 28E

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Water Column/Average Depth to Water

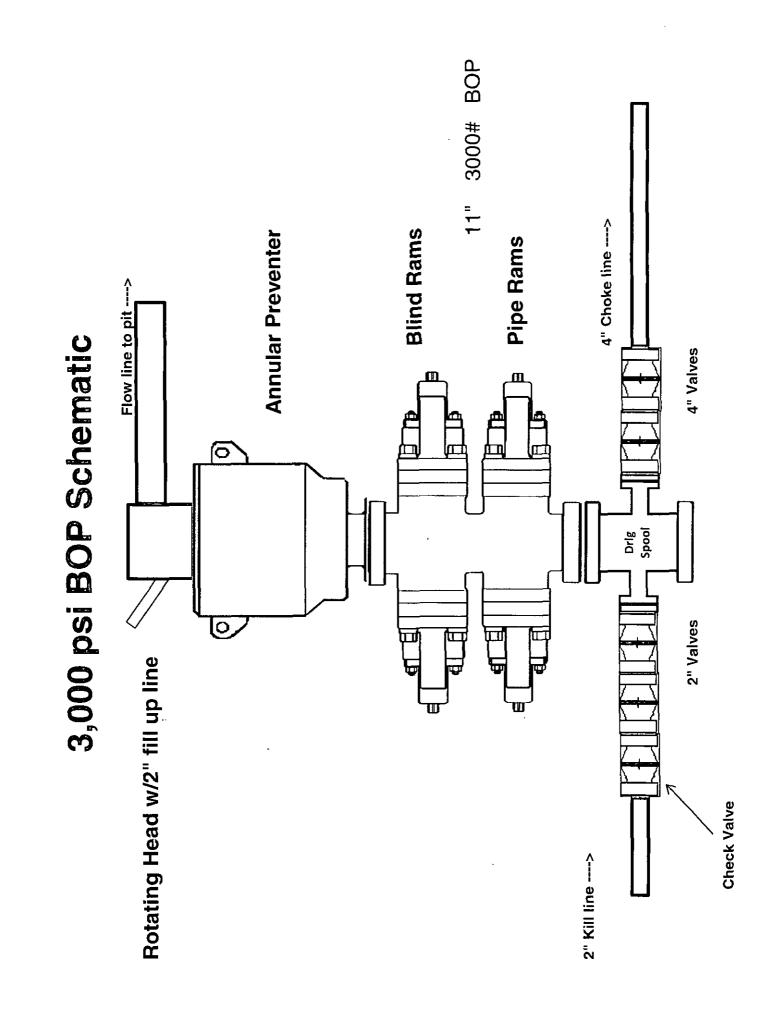
(A CLW###### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replace O≃orphaned, C≈the file is closed)	d, (qua					NE 3=SV p largest)		33 UTM in me	eters)		(In feet)
POD Number	POD Sub- Code basin	County			<u>4 S</u>			X	and the second sec				Wàter Column
<u>C 01668</u>		ED		3	31	2 26S	28E	589957	3546554*	6.	250	100	150
C 02160		ED	4	1	21	4 26S	28E	589243	3546044*	B	300	120	180
C 02160 S		ED	1	1	2 1	4 26S	28E	589043	3546244*	6	300	120	180
C 02160 S2		ED	1	1	2 1	4 26S	28E	589043	3546244*	6	300	120	180
C 02160 S3		ËD	2	2	1 1	4 26S	28E	588834	3546241*	6	300	120	180
C 02160 S4		ED	2	2	1 1	4 26S	28E	588834	3546241*	6)	300	120	180
C 02160 S5		ED	1	1	1 1	4 26S	28E	588225	3546237*	6	300	120	180
C 02160 S6		ED	3	3	11	4 26S	28E	588232	3545635*	6	300	120	180
C 02160 S7		ED	3	3	12	2 26S	28E	586638	3543998*	6	300	120	180
C 02160 S8		ED	2	3	3 1	2 26S	28E	590056	3546653*	•	200	120	80
C 02160 S9		ED	3	3	20	2 26S	28E	589020	3548868*	6	300	120	180
C 02477	CUB	ED		1	1 0	3 26S	28E	586687	3549347*	6	150		
<u>C 02478</u>	CUB	ED		2	1 0	5 26S	28E	583848	3549325*	•	100		
<u>C 02479</u>	CUB	ED		4	4 1	0 26S	28E	587909	3546534*	\$	200		
<u>C 02480</u>	CUB	ED		4	4 1	D 26S	28E	587909	3546534*	6	150		
C 02481	CUB	ED		1	1 1	4 26S	28E	588326	3546138*	\$	200		
<u>C 02894</u>	С	ED	2	2	3 1	2 26S	28E	590458	3547061*	69	240		
<u>C 02924</u>	С	ED	1	3	2 1	1 26S	28E	589032	3547451*	69			
									Average De	epth to \	Nater:	118 fe	et
									Min	nimum (Depth:	100 fe	et
									Мах	cimum E	Depth:	120 fe	et
Bocord Count: 19	ي المراجع		• ~• ••		~						-	a 470 mm 4m/ 4	


Record Count: 18

PLSS Search:

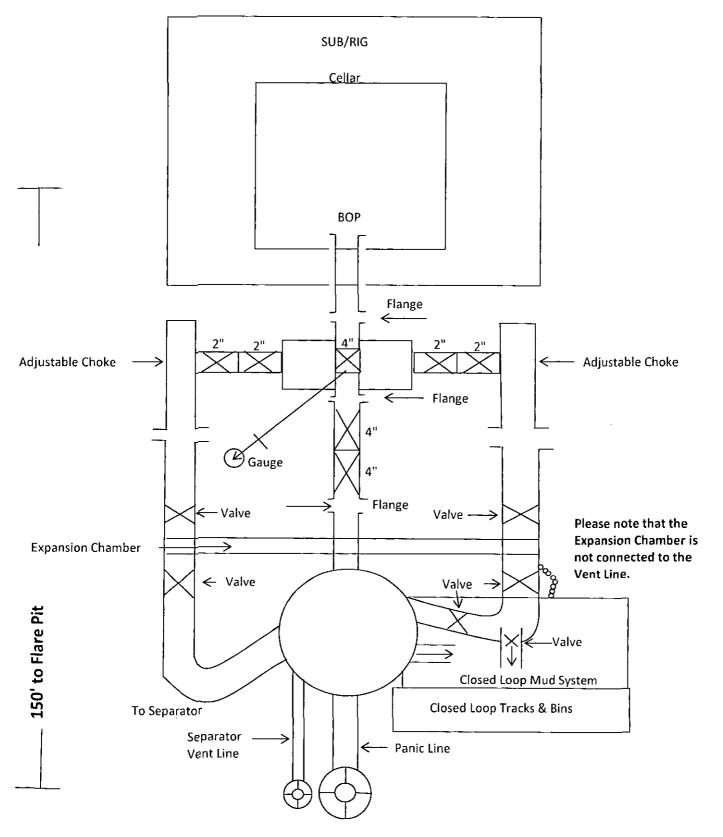
Township: 26S Range: 28E

*UTM location was derived from PLSS - see Help


The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2,000 psi BOP Schematic

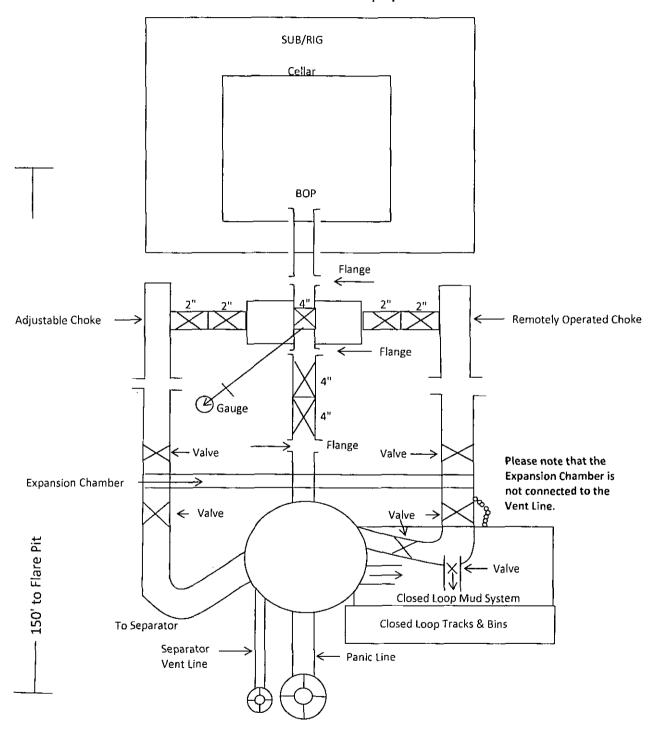
ŝ

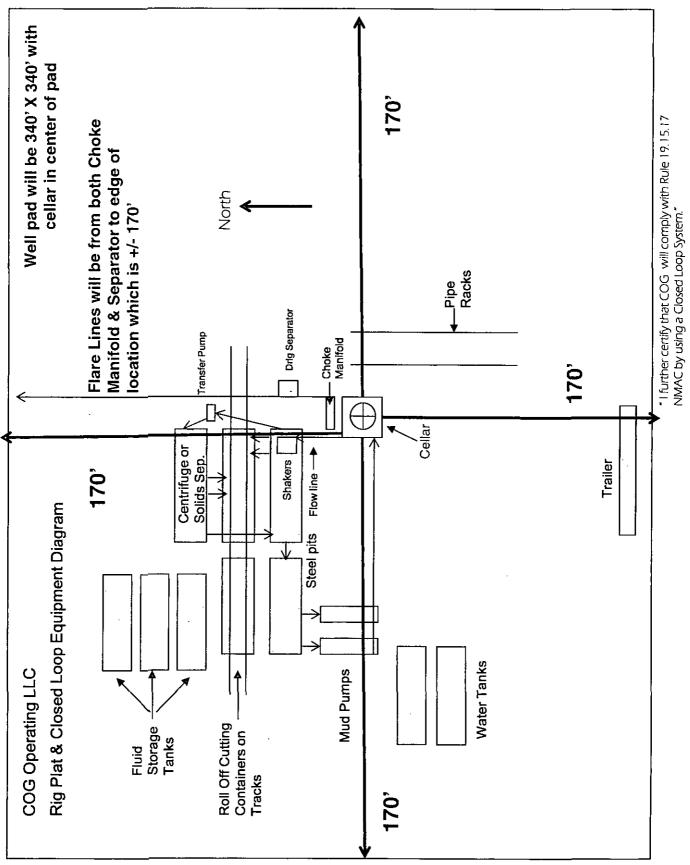

•

2M Choke Manifold Equipment

, L

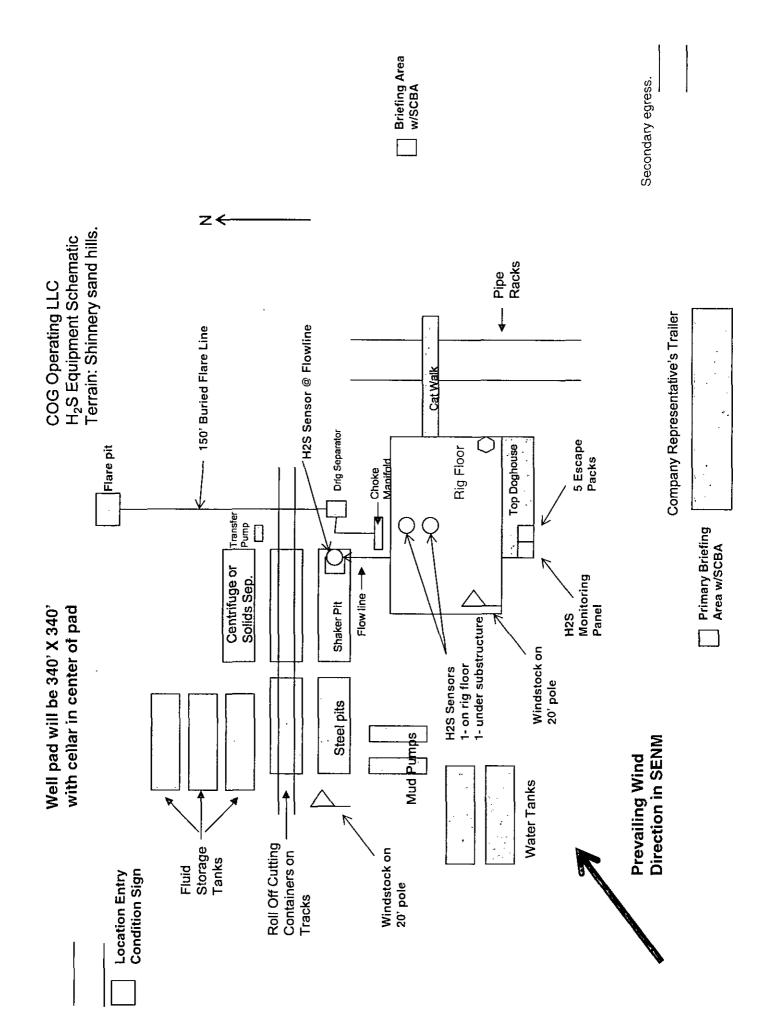
.

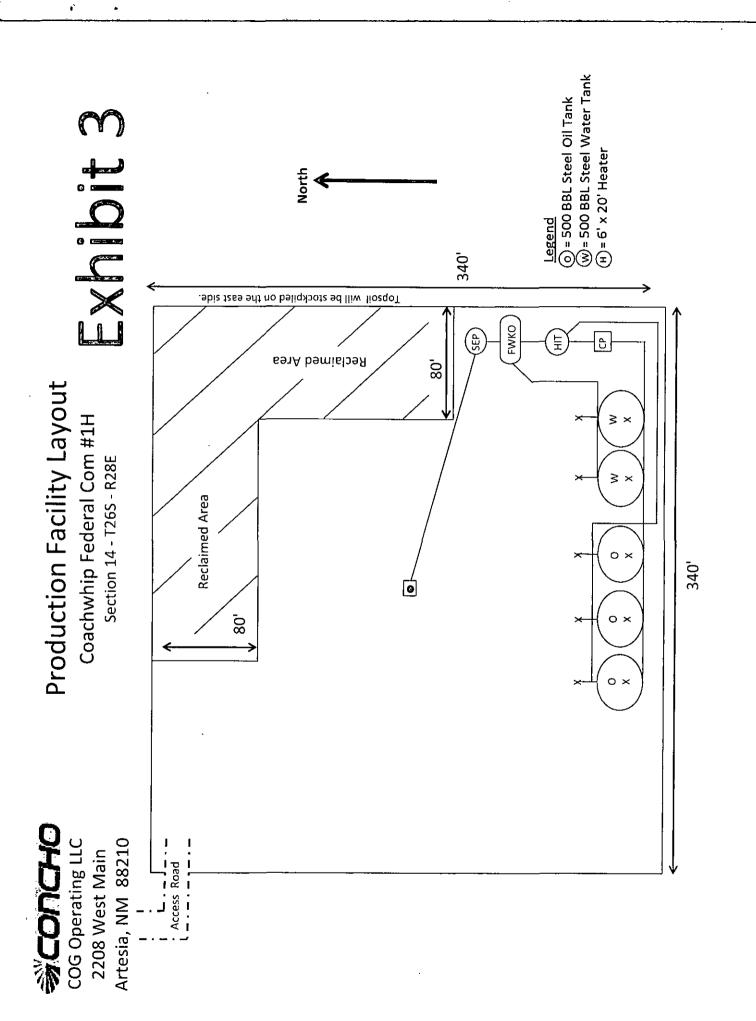



3M Choke Manifold Equipment

ĉ

٠


· · ...


ĩ

.

.

.

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. <u>HYDROGEN SULFIDE TRAINING</u>

ä

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

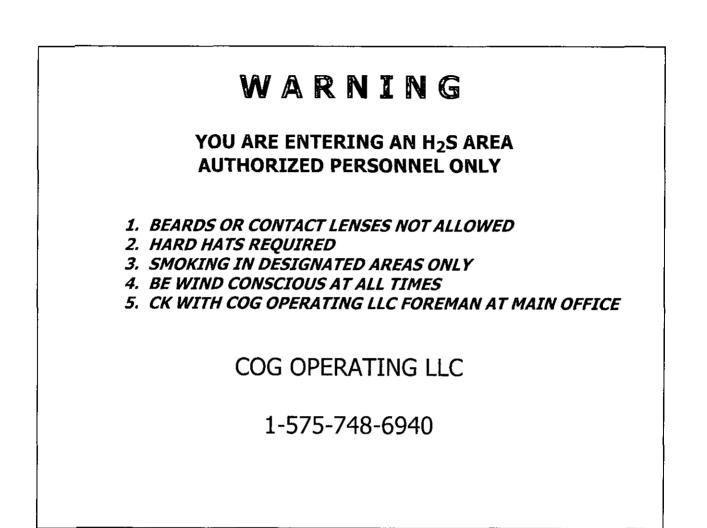
2. H₂S SAFETY EQUIPMENT AND SYSTEMS

a.

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

Well Control Equipment: Flare line. Choke manifold with remotely operated choke. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit. Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:
 2 portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.
- Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:


ê

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

. . . .

÷

. هو ۱ • · · · · · · ·

EMERGENCY CALL LIST

٠

سہ د

	<u>OFFICE</u>	MOBILE
COG OPERATING LLC OFFICE	575-748-6940	
SHERYL BAKER	575-748-6940	432-934-1873
KENT GREENWAY	575-746-2010	432-557-1694
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

· ',

*

٠

··· •

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

Surface Use & Operating Plan

Coachwhip Federal Com #1H

- Surface Owner: Draper Brantley, 706 Riverside Drive, Carlsbad, NM 88220. 575-706-3169
- New Road: 118'
- Flow Line: On well pad
- Facilities: Will be constructed on well pad see Exhibit 3

Well Site Information

V Door: East Topsoil: East Interim Reclamation: North and East

<u>Notes</u>

Onsite: On-site was done by Jesse Rice (BLM); Rand French (COG); Gerald Herrera (COG) on September 9th, 2014.

SURFACE USE AND OPERATING PLAN

1. Existing & Proposed Access Roads

- A. The well site survey and elevation plat for the proposed well is attached with this application. It was staked by Harcrow Surveying, Artesia, NM.
- B. All roads to the location are shown on the Location Verification Map Exhibit 2. The existing lease roads are illustrated and are adequate for travel during drilling and production operations. Upgrading existing roads prior to drilling the well will be done where necessary. The road route to the well site is depicted in Exhibit #2. The road shown in Exhibit #2 will be used to access the well.
- C. Directions to location: See 600 x 600 plat
- D. Based on current road maintenance performed on other roads serving existing wells, we anticipate maintaining the lease roads leading to the proposed well pad at least once a year on dry conditions and twice a year in wetter conditions.

2. Proposed Access Road:

The Location Verification Map shows that 118' of new access road will be required for this location. If any road is required it will be constructed as follows:

The maximum width of the running surface will be 14'. The road will be crowned, ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 4 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

- A. The average grade will be less than 1%.
- B. No turnouts are planned.
- C. No cattleguard, culvert, gates, low water crossings or fence cuts are necessary.
- D. Surfacing material will consist of native caliche. Caliche will be obtained from the actual well site if available. If not available onsite, caliche will be hauled from the nearest BLM approved caliche pit. Candidate source will be caliche pit from Draper Brantley Phone (575) 703-3169.

3. Location of Existing Well:

The One-Mile Radius Map Exhibit 4 shows existing wells within a one-mile radius of the proposed wellbore.

Location of Existing and/or Proposed Facilities:

- A. COG Operating LLC does not operate an oil production facility on this lease.
- B. If the well is productive, contemplated facilities will be as follows:
 - 1) A tank battery and facilities will be constructed as shown on Exhibit 3.
 - 2) The tank battery and facilities including all flow lines and piping will be installed according to API specifications.
 - 3) Any additional caliche will be obtained from the actual well site. If caliche does not exist or is not plentiful from the well site, the caliche will be hauled from a BLM approved caliche pit. Candidate source will be caliche pit from Draper Brantley phone (575) 703-3169. Any additional construction materials will be purchased from contractors.
 - 4) It will be necessary to run electric power if this well is productive. Power will be provided by Xcel Energy and they will submit a separate plan and ROW for service to the well location.
 - 5) If the well is productive, rehabilitation plans will include the following:
 - The original topsoil from the well site will be returned to the location, and the site will be re-contoured as close as possible to the original site.

4. Location and Type of Water Supply:

The well will be drilled with combination brine and fresh water mud system as outlined in the drilling program. The water will be obtained from a private source (Draper Brantley 575- 703-3169) or if necessary commercial water stations in the area and hauled to location by transport truck over the existing and proposed access roads shown in Exhibit #2. If a commercial fresh water source is nearby, fast line may be laid along existing road ROW's and fresh water pumped to the well. No water well will be drilled on the location.

5. Source of Construction Materials and Location "Turn-Over" Procedure:

Obtaining caliche: One primary way of obtaining caliche to build locations and roads will be by "turning over" the location. This means, caliche will be obtained from the actual well site. Amount will vary for each pad. The procedure below has been approved by BLM personnel:

- A. The top 6 inches of topsoil is pushed off and stockpiled along the side of the location.
- B. An approximate 160' X 160' area is used within the proposed well site to remove caliche.
- C. Subsoil is removed and stockpiled within the surveyed well pad.
- D. When caliche is found, material will be stock piled within the pad site to build the location and road.
- E. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road.
- F. Once well is drilled, the stock piled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced.
- G. Neither caliche, nor subsoil will be stock piled outside of the well pad. Topsoil will be stockpiled along the edge of the pad as depicted in the Well Site Layout or survey plat.

In the event that no caliche is found onsite, caliche will be hauled in from a BLM approved caliche pit or other established mineral pit. Candidate source will be caliche pit from Draper Brantley Phone (575) 703-3169.

Methods of Handling Water Disposal:

- A. The well will be drilled utilizing a closed loop mud system. Drill cuttings will be held in roll-off style mud boxes and taken to R360's disposal site.
- B. Drilling fluids will be contained in steel mud pits.
- C. Water produced from the well during completion will be held temporarily in steel tanks and then taken to an NMOCD approved commercial disposal facility.
- D. Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved landfill. No toxic waste or hazardous chemicals will be produced by this operation.

- E. Human waste and grey water will need to be properly contained and disposed of. Proper disposal and elimination of waste and grey water may include but are not limited to portable septic systems and/or portable waste gathering systems (i.e. portable toilets).
- F. After the rig is moved out and the well is either completed or abandoned, all waste materials will be cleaned up within 30 days. In the event of a dry hole only a dry hole marker will remain.

6. Ancillary Facilities:

No airstrip, campsite or other facilities will be built as a result of the operation on this well.

7. Well Site Layout:

- A. The drill pad layout, with elevations staked by Harcrow Surveying, is shown in the Elevation Plat. Dimensions of the pad and pits are shown on the Rig Layout. V door direction is East. Topsoil, if available, will be stockpiled per BLM specifications. Because the pad is almost level no major cuts will be required.
- B. The Rig Layout Closed-Loop exhibit shows the proposed orientation of closed loop system and access road. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations.

8. Plans for Restoration of the Surface:

A. Interim Reclamation will take place after the well has been completed. The pad will be downsized by reclaiming the areas not needed for production operations. The portions of the pad that are not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused to either build another pad site or for road repairs within the lease. The stockpiled topsoil will then be spread out reclaimed area and reseeded with a BLM approved seed mixture. In the event that the well must be worked over or maintained, it may be necessary to drive, park, and/or operate machinery on reclaimed land. This area will be repaired or reclaimed after work is complete.

B. Final Reclamation: Upon plugging and abandoning the well all caliche for well pad and lease road will be removed and surface will be recountoured to reflect its surroundings as much as possible. Caliche will be recycled for road repair or reused for another well pad within the lease. If any topsoil remains, it will be spread out and the area will be reseded with a BLM approved mixture and re-vegetated as per BLM orders. When required by BLM, the well pad site will be restored to match pre-construction grades.

9. Surface Ownership:

- A. The surface is owned by Draper Brantley, 706 Riverside Drive, Carlsbad, NM 88220, (575) 703-3169. The surface is multiple uses with the primary uses of the region for grazing of livestock and the production of oil and gas. The surface owner was notified before staking this well. COG Operating LLC is currently negotiating a Surface Use Agreement with the surface owner.
- B. The proposed road routes and surface location will be restored as directed by the BLM.

10. Other Information:

- A. The area around the well site is grassland and the topsoil is sandy. The vegetation is moderately sparse with native prairie grasses, some mesquite and shinnery oak. No wildlife was observed but it is likely that mule deer, rabbits, coyotes and rodents traverse the area.
- B. There is no permanent or live water in the immediate area.
- C. There are no dwellings within 2 miles of this location.
- D. If needed, a Cultural Resources Examination is being prepared by Boone Arch Services of NM, LLC., 2030 North Canal, Carlsbad, New Mexico, 88220, phone # 575-885-1352 and the results will be forwarded to your office in the near future. Otherwise, COG will be participating in the Permian Basin MOA Program.

11. Bond Coverage:

Bond Coverage is Statewide Bonds # NMB000740 and NMB000215

.

14. Lessee's and Operator's Representative:

The COG Operating LLC representative responsible for assuring compliance with the surface use plan is as follows:

Sheryl Baker Drilling Superintendent COG Operating LLC 2208 West Main Street Artesia, NM 88210 Phone (575) 748-6940 (office) (432) 934-1873 (cell) Ray Peterson Drilling Manager COG Operating LLC One Concho Center 600 W Illinois Ave Midland, TX 79701 Phone (432) 685-4304 (office) (432) 818-2254 (business)

NM OIL CONSERVATION

ARTESIA DISTRICT

JAN 11 2016

PECOS DISTRICT CONDITIONS OF APPROVAL

RECEIVED

OPERATOR'S NAME:	COG Operating, LLC.
LEASE NO.:	NMNM-12559
WELL NAME & NO.:	Coachwhip Fed Com 1H
SURFACE HOLE FOOTAGE:	0900' FSL & 2210' FWL
BOTTOM HOLE FOOTAGE	0330' FSL & 2210' FWL Sec. 23, T. 26 S., R 28 E.
LOCATION:	Section 14, T. 26 S., R 28 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions Permit Expiration Archaeology, Paleontology, and Historical Sites Noxious Weeds Special Requirements Communitization Agreement Cave/Karst Watershed **Construction** Notification Topsoil Closed Loop System Federal Mineral Material Pits Well Pads Roads **Road Section Diagram** 🛛 Drilling **Cement Requirements** High Cave/Karst Logging Requirements Waste Material and Fluids **Production (Post Drilling)** Well Structures & Facilities **Interim Reclamation Final Abandonment & Reclamation**

F

I. GENERAL PROVISIONS

F

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Communitization Agreement

A Communitization Agreement covering the acreage dedicated to this well must be filed for approval with the BLM. The effective date of the agreement shall be prior to any sales. In addition, the well sign shall include the surface and bottom hole lease numbers. If the Communitization Agreement number is known, it shall also be on the sign. If not, it shall be placed on the sign when the sign is replaced.

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production.

Construction:

ĩ

In the advent that any underground voids are opened up during construction activities, construction activities will be halted and the BLM will be notified immediately.

No Blasting:

No blasting will be utilized for pad construction. The pad will be constructed and leveled by adding the necessary fill and caliche.

Pad Berming:

The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.

- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g. caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised. (Any access road crossing the berm cannot be lower than the berm height.)

Tank Battery Liners and Berms:

Tank battery locations and all facilities will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain $1\frac{1}{2}$ times the content of the largest tank.

Leak Detection System:

7

A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing electronic sensors to alarm when a leak is present. Leak detection plan will be submitted to BLM for approval.

Automatic Shut-off Systems:

Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and ground water concerns:

Rotary Drilling with Fresh Water:

Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

Kick off for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

ALL lost circulation zones from the surface to the base of the cave occurrence zone will be logged and reported in the drilling report.

Regardless of the type of drilling machinery used, if a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cavebearing zone, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

Upon well abandonment in high cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

Annual pressure monitoring will be performed by the operator on all casing annuli and reported in a sundry notice. If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Watershed

¢

- The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

VI. CONSTRUCTION

٢.

.)

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

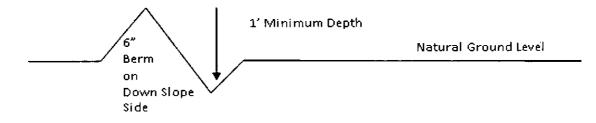
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

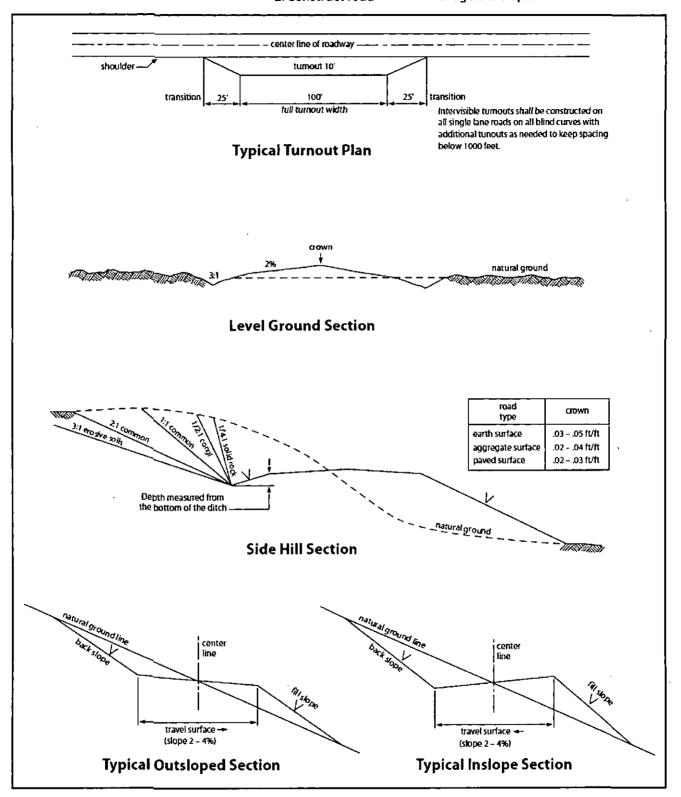
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\underline{400'} + 100' = 200'$ lead-off ditch interval 4%

Cattleguards

An appropriately sized cattleguard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattleguards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps1. Salvage topsoil3. Redistribute topsoil2. Construct road4. Revegetate slopes

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Call the Carlshad Field

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

₽.

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

High Cave/Karst Possibility of water flows in the Salado and Castile. Possibility of lost circulation in the Rustler and Delaware.

<u>A MINIMUM OF TWO CASING STRINGS CEMENTED TO SURFACE IS</u> <u>REQUIRED IN HIGH CAVE/KARST AREAS.</u> THE CEMENT MUST BE IN A SOLID SHEATH. THEREFORE, ONE INCH OPERATIONS ARE NOT SUFFICIENT TO PROTECT CAVE KARST RESOURCES. A CASING DESIGN THAT HAS A ONE INCH JOB PERFORMED DOES NOT COUNT AS A SOLID SHEATH. IF THE PRIMARY CEMENT JOB ON THE SURFACE CASING DOES NOT CIRCULATE, THEN THE NEXT TWO CASING STRINGS MUST BE CEMENTED TO SURFACE.

- 1. The 13-3/8 inch surface casing shall be set at approximately 375 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing, which shall be set at approximatley 2500 feet (Lamar Limestone or basal anhydrite of the Castile formation), is:

Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 500 feet into previous casing string. Operator shall provide method of verification. Excess calculates to 16% Additional cement may be required.
- 4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

Ð

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 2000 (2M) psi (Installing 2M annular).
 - a. For surface casing only: If the BOP/BOPE is to be tested against casing, the wait on cement (WOC) time for that casing is to be met (see WOC statement at start of casing section). Independent service company required.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be 3000 (3M) psi.
- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin

after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- d. The results of the test shall be reported to the appropriate BLM office.
- e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 081915

2

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Э.

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the

largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

 \mathbb{T}

c

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

IX. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

X. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by

drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

e 🗧

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	lb/acre
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed