-amended*

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 **District IV**

State of New Mexico Energy, Minerals and Natural Resources

Oil Conservation Division

Form C-101 August 1, 2011

Permit 217818

NM OIL CONSERVATION

ARTESIA DISTRICT

	1220 S. St Francis Dr., Santa Fe, NM 87505 Phone (505) 476-3470 Fay (505) 476-3462						1220 S. St Francis Dr.					MAR 18 ZUID			
	,	,			S	anta F	e, N	M 8	7505				RECEI	VED	
	APPLICA	TION FO	RPE	RMITT		RILL, RE-E	NTER	, DEEF	PEN, PI	JUGB/	ACK, O	RA	DD A ZC	NE	
	Name and Address		-										Number		
1	PO Box 4294										3	API	16696 Number		
	Houston, TX 772											3/	2-015-	436	73
4. Property	3047	90	5. Prope	erty Name Ceda		on 27 State	Com.				6.	Well	No. 010H		
			1			7. Surfac									
UL - Lot					Lot Idn F	eet From	1154	N/S Line	N Fee	From 12		/W Line W	County	EDDY	
					8. P	roposed Bot	tom Ho	ole Loca	ition:						
UL - Lot	Section 27	Township	248	Range	29E	Lot ldn A	Feet Fr		N/S Line		et From	50	E/W Line	County	
	, , , -		243		290			355	<u> </u>	N		50	<u> </u>	=	Eddy
Piero (了:WOLFCAMP C	111				9. Pool I	nforma	tion				т	96794~	<u>دم</u> ک	٦ ٦
***************************************	T, FVOLI O/ IVII C	<u> </u>					Ja 11 1 - 6 -	41					40134	503	12
11. Work T	ype	12. Weit T	уре `			Additional Wable/Rotary	eli inte		n ease Type		15. Gr	ound	Level Elevati	ion	
	New Well		OIL			<u> </u>		Private			2919				
16. Multiple	N .	17. Propos	sed Dep 14757		18. Formation Wolfcami			19. Contractor		20. Sp	20. Spud Date 7/1/2016				
Depth to G	round water				Distar	nce from neares	fresh w	ater well			Distan		nearest surfa	ce water	
X We will	be using a clos	ed-loon s	vetem	in lieu c	of line	d nite					<u> </u>				
			,			•			D						
Туре	Hole Size	Casing	Size			Weight/ft		and Cement Program Setting Depth Sacks of C			cks of Cen	ement Estimated TOC			
Surf	14.75	10.				0.5		500		330			0		
Int1 Prod	9.875 6.75	7.62		-		9.7		9013		2030 580			0		
Prod	6.75	5.: 4.:				3.5	10400 14757		580 8013 580 10250						
·				Casi		ment Progra			C	-4-					-
cementin USF @ 0 9013' End	I Casing/Cement g operation, DVT -10250' followed erSeal (MMH) - 9 I information will	cancellati by 4-1/2" 013'-TD C	ion con 13.5# F il Base	ermediate le will be 2110 DQ ed Mud.	e 2 – 0 run ai X @ 1 BOP F	Contingency E nd 2nd stage 10250-14757 Program: 13-5	OVT/EC cancel . Propo	P @ +/- led. Prop sed Mu	2950'. I oosed Pr d Progra	cement oduction m: 0-500	n Casing O' Spud I	con: Mud	sisting of 5 - 500-3000	-1/2" 20#)' Brine -	P110 3000-
				22.	. Prop	osed Blowo	ut Prev	ention l	Program	ı					
	Туре			W		ressure				ressure		lacksquare	Mai	nufacturer	
	Double Ram				100					000	<u>-</u>	+-			
Annular 5000 5000															
23. I hereby certify that the information given above is true and complete to the best of my knowledge and belief. I further certify I have complied with 19.15.14.9 (A) NMAC X and/or 19.15.14.9 (B) NMAC X, if applicable.					OIL CONSERVATION DIVISION										
Printed Nar		onically file	ed by K	ELLEY	MONT	GOMERY	Appro	ved By:						····-	
Title:		ger Regula					Title:								
Email Addr		_montgom		xy.com			Appro	ved Date:					Expiration D	ate:	
Date:	3/15/2	2016	Ph	one: 713-	-366-5	716 (E	Cond	itions of	Approva	I Attach	ed				
	3. 3. 3. 2010 Name of the Control of						•		-						

NM OIL CONSERVATION

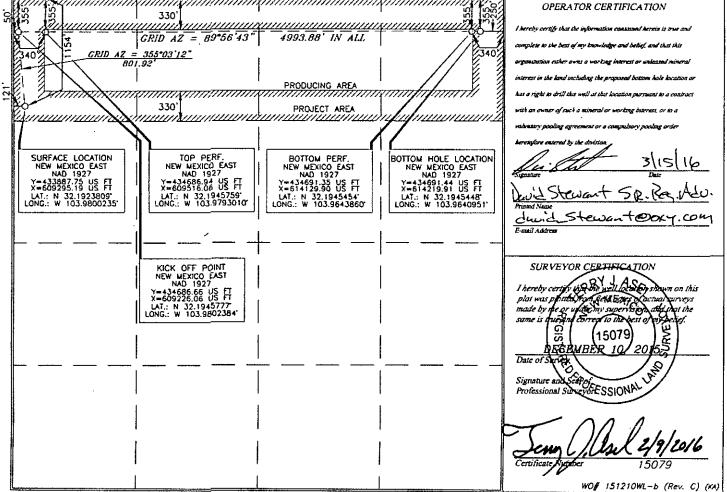
ARTESIA DISTRICT

District III 1000 Rio Brason Road, Aziec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (\$0.5) 476-3460 Fax: (\$0.5) 476-3462 State of New Mexico

MAR 18 2016

Form C-102

Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION


Revised August 1, 2011 RECEIVED Submit one copy to appropriate

District Office

1220 South St. Francis Dr. Santa Fe, NM 87505

☐ AMENDED REPORT

			И	/ELL .	LOCA	TION ANI	D ACF	REAGE D.	EDICATIO	N PLAT			
	API Number Pool Code So						0373	'	are Cross	Inc Pool Name	^		. (
30-0					-14	010			W. Lecc	TA MOI	+ can	y O	; (
Prope	rty Code	_		Property Name Well Number								ell Number	
_30°	179	0		_	CED/	AR CANYO	<u>2" אכ</u>	'7" STAT	E COM			_	10H
OGR	RID No.						Operator	· Name				į	Elevation
166	96			_		OX!	Y USA	1 INC.			İ	29	918.91
				-		Suri	face Lo	ocation					
UL or lot no.	Section	Tov	vaship		Ran	ige	Lot Ida	Feet from the	North/South line	Feet from the	East/Wes	st line	Сошиту
D	27	24 5	SOUTH 29 EAST, N.M.P.M.			1154'	NORTH	121'	WES	T	EDDY		
	Bottom Hole Location If Different From Surface												
UL or lot no.	Section	Tov	enship		Ran	ige	Lot Idn	Feet from the	North/South line	Feet from the	East/Wes	st line	Сошту
A	27	24 5	SOUTH	29	EAST,	N. M. P. M.		355'	NORTH	250'	EAS	T	EDDY
Dedicated	Acres	Joint (er Infill	Consoli	idation Cod	de Order No.						***	
160	<u> </u>	N											
No allowa	ible wil	ll be as	signed to	this co	mpletio	n until all inte	rests ha	ve been con:	solidated or a t	non-standard	unit has b	ееп аррго	oved by the
division.	· · · · · · · · · · · · · · · · · · ·												
	'												
17/1/194	7//////	7777777	7777777		THIN	a mminini	<i>17777777</i>	77777777777		<u>ා</u> යි	PERATOR C	ERTIFICA	TION
\$55	<u> </u>	<u> </u>	(<i>((((((</i> (((((((((((((((((((((((((((((<u>XIIIII</u>			<u> </u>	<u>mikiiiii</u>	mining .	I hereby cen	tifs that the inform	ution consumed	kereis is true and
	GRID AZ = 89°56'43" 4993.88' IN ALL.								of, and that this				

OXY USA Inc. proposes to drill a pilot hole 150' into the Wolfcamp E formation; then sidetrack and drill a lateral wellbore into the Wolfcamp A formation.

- Drill 14-3/4" surface hole to 500' MD; run 10-3/4" casing and cement to surface.
- Drill 9-7/8" intermediate hole to ±9,013' MD (approximately 200' into Third Bone Spring formation); run 7-5/8" casing and cement to surface.
- Drill 6-3/4" pilot hole to 11,373' MD (150' into Wolfcamp E formation), log as per program and abandon with two cement plugs. See below for details.
- Sidetrack from top cement plug and drill 6-3/4" lateral to 14,757' MD targeting Wolfcamp A formation (~10,035' TVD).

During 2015 & 2016, Oxy has successfully drilled 8 Second Bone Spring lateral wells in Federal lands (Peaches & Cedar Canyon fields in Eddy County, NM) that set a deep intermediate casing string. These deep intermediate sections were drilled from Surface Casing Point, through the salts and Delaware formations, setting casing at either the First or Second Bone Spring formation. In all 8 cases, the intermediate casing was successfully cemented to surface (on 5 of these wells, cement returned to surface during the first stage, and 3 required a second stage to bring cement back to surface).

Oxy proposes setting the 7-5/8" casing for this well at 9,013' MD (200' into Third Bone Spring formation) in order to ensure a competent intermediate casing shoe that can withstand the potential high pressure in the Wolfcamp E formation (12.0 – 13.5 ppg). When setting this casing at 9,013', the resulting kick tolerance to drill the pilot hole to 11,373' is **24.2 bbl** (based on 15.0 ppg fracture gradient at 9,013' MD and 13.5 ppg max expected pore pressure at 11,373' MD).

No high pore pressures are expected when drilling through the Second and top of the Third Bone Springs formation. Maximum mud weight expected to drill the 9 7/8" intermediate is 10.0 ppg, which is within the fracture gradient limits of the Delaware formation in this field.

1. Geologic Formations

TVD of target	10,035'	Pilot hole depth	11,373' MD
MD at TD:	14,757'	Deepest expected fresh water:	386'

Delaware Basin

Formation	TVD - RKB	Expected Fluids
T. Rustler	386	
T. Salt	766	
T. Delaware / Lamar / B. Anhydrite	2962	
T. Bell Canyon*	2976	Water/Oil/Gas
T. Cherry Canyon*	3677	Oil/Gas
T. Brushy Canyon*	5082	Oil/Gas
T. BSPG	6644	Oil/Gas
T. 1st BSPG	7624	Oil/Gas
T. 2 nd BSPG	7885	Oil/Gas
T. 3 rd BSPG	8827	Oil/Gas
T. Wolfcamp	9952	Oil/Gas
Target Wolfcamp	10,250	Oil/Gas
T. Strawn	12209	Oil/Gas

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casin	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF
Size	From	To	Size	(lbs)			Collapse	Burst	Tension
14.75"	0'	500'	10.75"	40.5	J55	BTC	7.05	1.40	3.67
9.875"	0'	9,013'	7.625"	29.7	L80	BTC	3.41	1.27	1.84
6.75"	0'	10,250'	5.5"	20	P-110	Ultra SF	2.25	1.24	1.80
6.75"	10,250'	14,757'	4.5"	13.5	P-110	DQX	2.10	1.24	2.47
				BLM Min	imum Saf	ety Factor	1.125	(1	1.6 Dry
									1.8 Wet

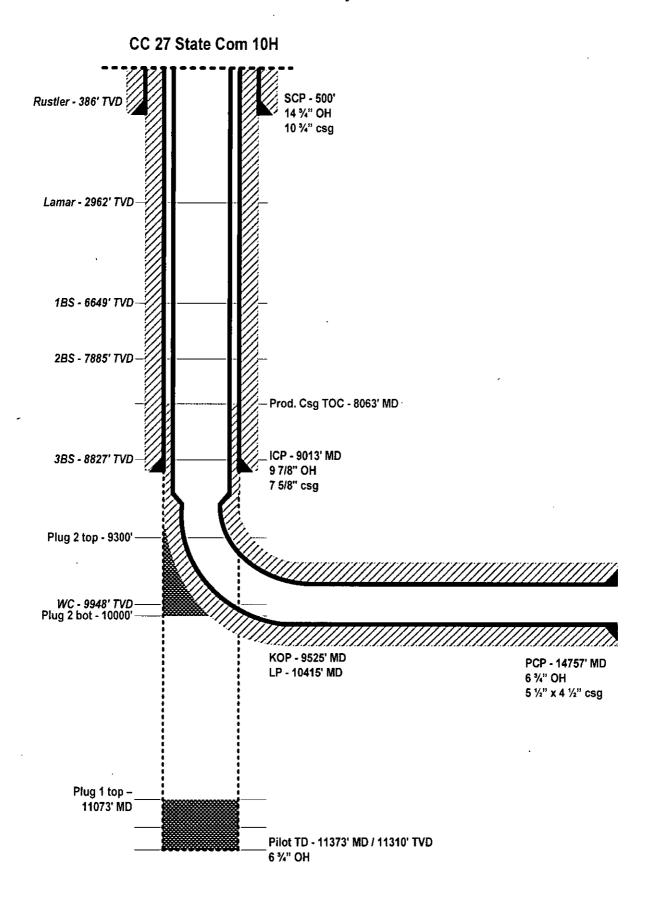
	Y or N					
Is casing new? If used, attach certification as required in Onshore Order #1	Y					
Does casing meet API specifications? If no, attach casing specification sheet.	Y					
Is premium or uncommon casing planned? If yes attach casing specification sheet.						
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).						
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y					
Is well located within Capitan Reef?	N					
If yes, does production casing cement tie back a minimum of 50' above the Reef?						
Is well within the designated 4 string boundary.						
Is well located in SOPA but not in R-111-P?	N					
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?						
Is well located in R-111-P and SOPA?	N					
If yes, are the first three strings cemented to surface?						
Is 2 nd string set 100' to 600' below the base of salt?						
Is well located in high Cave/Karst?	N					
If yes, are there two strings cemented to surface?						
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?						
Is well located in critical Cave/Karst?	N					
If yes, are there three strings cemented to surface?						

2. Cementing Program

Casing	# Sks	Wt	Yld	H ₂ 0	500#	Slurry Description
		gāl	ft3/ sack	gal/sk	Comp. Strength (hours)	
Surf.	330	14.8	1.35	6.53	6:50	Premium Plus Cement 2% Calcium Chloride – Flake (Accelerator)
Inter.	1090	10.3	3.05	15.63	15:07	TUNED LIGHT (TM) SYSTEM 0.80% HR-601(Retarder), 3 lbm/sk Kol-Seal (Lost Circulation Additive), 0.125 lbm/sk Poly-E-Flake (Lost Circulation Additive)
	250	13.2	1.65	8.45	12:57	Super H Cement, 0.1 % HR-800 (Retarder), 0.5 % Halad(R)-344 (Low Fluid Loss Control), 0.3 % CFR-3 (Dispersant), 2 lbm Kol-Seal, 3 lbm Salt (Accelerator)
						est the option to cancel the second stage if cement is
	circulate	ed to surf	ace during	g the first	stage of cem	ent operations)
	520	12.9	1.85	9.86	12:44	Halliburton Light Premium Plus Cement with 5% Salt, 0.125 lbs/sk Poly-E-Flake, 5 lbs/sk Kol-Seal, 0.35% HR-800
	170	14.8	1.33	6.34	6:31	Premium Plus cement
Prod.	580	13.2	1.631	8.37	15:15	Super H Cement, 0.1 % HR-800, 0.5 % Halad(R)-344, 0.4 % CFR-3, 3 lbm Salt

Casing String	TOC OF ACCUMENTAL AND ACCUMENT	% Excess (Lead/Tail)
Surface	0'	50%
Intermediate	0'	100% / 20%
Intermediate Contingency	0'	100% / 100%
2 nd Stage		
Production	8,013'	15%

Include Pilot Hole Cementing specs:


Pilot hole depth: 11,373' MD

KOP 9,525' MD

Plug	Plug Bottom	Excess	Sacks	Wt. lb/gal	Yld. ft3/sack	- " (P. 45)	Slurry Description and Cement Type
11,073' MD	11,373' MD	40	85	14.4	1.246	5.73	VersaCem H, 50% Cement H, 50% Poz mix, 2% Bentonite (Light Weight Additive), 0.3% CFR-3
9,300' MD	10,000' MD	40	260	17.5	0.952	3.51	PlugCem, Cement H, 0.5% CFR-3, 0.25% HR-601

Note: The first plug is designed to be 300' in length (150' above/below Wolfcamp E top) to isolate the upper Wolfcamps from potential high pressure zones in the Wolfcamp E.

The second plug will isolate the Wolfcamp from Third Bone Spring formation. It is designed to be 700' in length and will be used to sidetrack a Wolfcamp A lateral target. The production casing is planned to be cemented 1000' inside the previous intermediate casing. A CBL-VDL log will be run after the rig is released to evaluate the cement at the Third Bone Spring – Wolfcamp transition.

4 Drilling Plan

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре	*	Tested to:		
		5M	Annular	1	70% of working pressure		
	13-5/8"	10M	Blind Ram	1			
9-7/8"			Upper Pipe Ram	✓			
Intermediate			Double Ram		250 / 10,000psi		
			Lower Pipe Ram	✓			

^{*}Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Formation integrity test will be performed per Onshore Order #2.

On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.

Y | Are anchors required by manufacturer?

A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

See attached schematic.

We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

5. Mud Program

To the second of	Depth :	Type	Weight (ppg)	Viscosity	Water Loss
From	To				
0	Surf. TD 500'	EnerSeal (MMH)	8.4-8.8	40-60	N/C
500'	3,000'	Brine	9.8-10.5	35-45	N/C
3,000'	Int. TD 9,013'	EnerSeal (MMH)	9.4-9.7	38-50	N/C
9,013'	Pilot TD 11,373'	Oil-Based Mud	10.0 – 13.0	35-50	N/C
9,013'	Prod. TD 14,757'	Oil-Based Mud	8.8-9.4	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Oxy proposes to drill out the 10-3/4" surface casing shoe with a saturated brine system from 500'-3,000', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the intermediate TD @ 9,013'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.
Yes	Will run GR from TD to surface (pilot, horizontal well – vertical portion of hole).
	Stated logs run will be in the Completion Report and submitted to the BLM.
Yes	Logs are planned based on well control or offset log information.
No	Drill stem test? If yes, explain
No	Coring?

Addi	tional logs planned	Interval
Yes	CBL	0' - 10100' Note: Will run CBL in production casing until
		refusal, to evaluate cement around Bone Spring – Wolfcamp transition
Yes	Mud log	Surface Shoe - TD
Yes	PEX	9,013' – Pilot TD

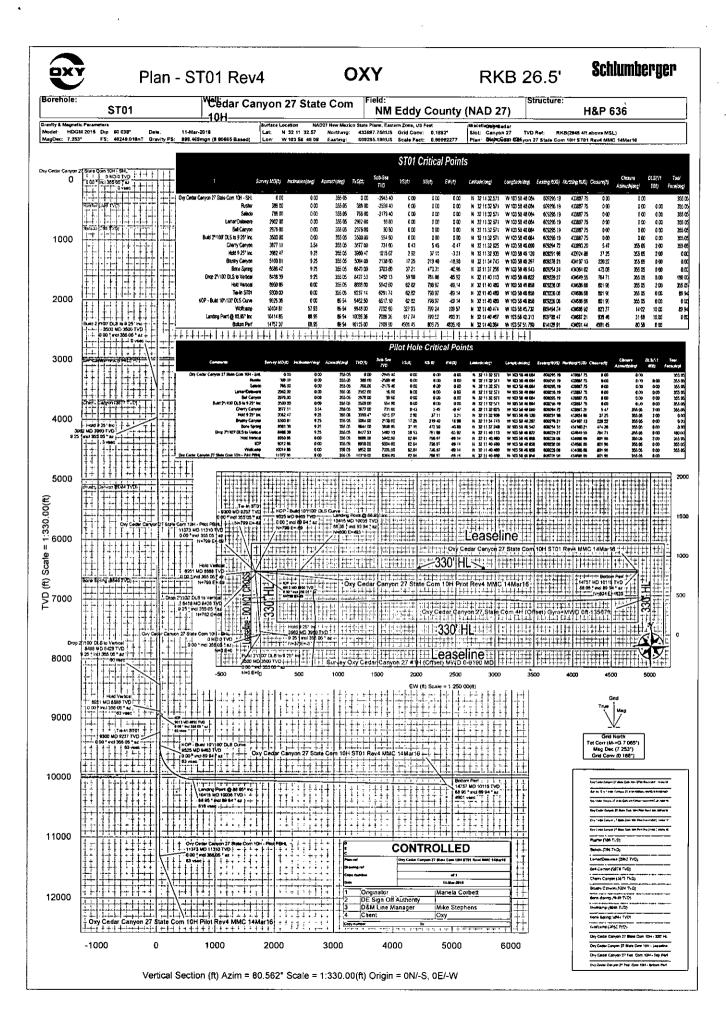
. 7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	7645 psi (pilot) / 4778 psi (lateral)
Abnormal Temperature	No

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hyd	rogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If										
H2S is detected in concentrations greater than 100 ppm, the operator will comply with the											
prov	provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured										
valu	values and formations will be provided to the BLM.										
N	H2S is present										
Y	H2S Plan attached										

8. Other facets of operation


	Yes/No
 Will the well be drilled with a walking/skidding operation? If yes, describe. We plan to drill the two well pad in batch by section with the 27 Federal 5H well: all surface sections, intermediate sections and production sections. 	Yes
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

Attachments

- _x__ Directional Plan
- _x__ H2S Contingency Plan

Company Personnel:

<u>Name</u>	<u>Title</u>	Office Phone	Mobile Phone
Ludwing Franco	Drilling Engineer	(713)366-5174	(832) 523-6392
Miranda Hust	Drilling Engineer	(713)215-7576	(832) 390-0645
Diego Tellez	Drilling Engineering Team Lead	(713)350-4602	(713) 303-4932
Ryan Farrell	Drilling Engineer Supervisor	(713)366-5058	(832) 914-7443
Travis Samford	Drilling Superintendent	(713)522-8652	(281) 684-6897
Daniel Holderman	Drilling Manager	(713)497-2006	(832) 525-9029

Schlumberger

Oxy Cedar Canyon 27 State Com 10H ST01 Rev4 MMC 14Mar16 Proposal **Geodetic Report**

(Non-Def Plan)

Report Date: Client:

Field:

March 14, 2016 - 02 00 PM

NM Eddy County (NAD 27)

Structure / Slot:

Oxy Cedar Canyon 27 State Com 10H / Oxy Cedar Canyon 27 State Com 10H.

Oxy Cedar Canyon 27 State Com 10H ST01 Rev4 MMC 14Mar16

Oxy Cedar Canyon 27 State Com 10H Well:

Borehole:

UWI / API#:

Unknown / Unknown

Survey Name:

Survey Date: January 07, 2016

Tort / AHD / DDI / ERD Ratio: 107 448 * / 5706 200 ft / 5.952 / 0 564

Coordinate Reference System: NAD27 New Mexico State Plane, Eastern Zone, US Feet Location Lat / Long:

N 32° 11' 32.57143', W 103° 58' 48 08448"

Location Grid N/E Y/X:

CRS Grid Convergence Angle: 0,1882 *

Grid Scale Factor: Version / Patch:

2 9 365.0

N 433887,750 ftUS, E 609295.190 ftUS

Survey / DLS Computation:

Vertical Section Azimuth; Vertical Section Origin:

Minimum Curvature / Lubinski 60 560 * (Grid North)

0.000 ft, 0 000 ft

TVD Reference Datum: RKB

TVO Reference Elevation:

2945 400 ft above MSL 2918 900 ft above MSL

Seabed / Ground Elevation: Magnetic Declination:

7.253 *

Total Gravity Field Strength:

998 4683mgn (9 80665 Based)

Gravity Model:

GARM

Total Magnetic Field Strength: 48249 018 nT

Magnetic Dip Angle:

Declination Date: Magnetic Declination Model:

March 11, 2016 HDGM 2015

60 038 *

North Reference: Grid Convergence Used:

Grid North 0.1682 * Total Corr Mag North->Grid North: 7,0646 *

Local Coord Referenced To:

Structure Reference Point

Comments	OM (ft)	inci _(*)	Azim Grid (*)	TVD (ft)	TVDSS (ft)	VSEC (ft)	NS (ft)	EW (ft)	OLS ("/100fl)	Northing (ftUS)	Easting (MUS)	Latitude (N/S * ' *)	Longitude (E/W * * *)
Tie-In ST01	9300 00	0 00	355 05	9237.14	6291.74	62.84	798 97	-69.14	N/A	434688.66	609225.06	N 32 11 40 48	W 103 58 48.86
KOP - Build													
10"/100" DLS	9525.36	0 00	89 94	9462 50	6517.10	62 84	798.97	-69.14	0.00	434686.66	609226.06	N 32 11 40.48	W 103 58 48.86
Curve													
Landing Point @ 88.95° Inc	10414 85	88.95	89.94	10035 36	7089 96	617.77	799 52	493 31	10,00	434687 21	609788 47	N 32 11 40 47	W 103 58 42.31
Bottom Perf	14757,37	88.95	89.94	10115 00	7169 60	4901 45	803.75	4835 10	0.00	434691 44	614129.91	N 32 11 40.36	W 103 57 51,79

Survey Type:

Non-Det Plan

Survey Error Model:

ISCWSA Rev 0 *** 3-D 95.000% Contidence 2.7955 sigma

Description	Part	MD From (ft)	MD To (ft)	EOU Freq (ft)	Hole Size Casii (in)	ng Diameter (in)	Expected Max inclination (deg)	Survey Tool Type	Borehole / Survey
	1	0 000	25.500	1/100.000	30 000	30 000		SLB_MWD-STD_HDGM-Depth Only	Pilot Hole / Oxy Cedar Canyon 27 State Com 10H Pilot Rev4 MMC 14Mar16
	1,	26 500	9300 000	1/100.000	30 000	30 000		SLB_MWD-STD_HDGM	Pilot Hole / Oxy Cedar Canyon 27 State Corn 10H Pilot Rev4 MMC
	1	9300.000	14757.371	1/100 000	30 000	30 000		SLB_MWD-STD_HDGM	ST01 / Oxy Cedar Canyon 27 State Com 10H ST01 Rev4 MMC

Schlumberger

Oxy Cedar Canyon 27 State Com 10H ST01 Rev4 MMC 14Mar16 Proposal **Geodetic Report**

(Non-Def Plan)

Report Date:

March 14, 2016 - 01:58 PM

Client: Field;

Structure / Slot:

OXY NM Eddy County (NAD 27) Oxy Cedar Canyon 27 State Com 10H / Oxy Cedar Canyon 27 State Com 10H

N 32° 11' 32.57143°, W 103° 58' 48 08448°

Well:

Oxy Cedar Canyon 27 State Com 10H

Borehole:

STOI UWI / API#:

Survey Name:

Unknown / Unknown Oxy Cedar Canyon 27 State Com 10H ST01 Rev4 MMC 14Mar16

Survey Date: January 07, 2016

Torl / AHD / DDI / ERD Ratio: 107 448 * / 5706 200 ft / 5 952 / 0 564

Coordinate Reference System: NAD27 New Mexico State Plane, Eastern Zone, US Feet

Location Lat / Long:

Location Grid N/E Y/X:

N 433887.750 ftUS, E 609295.190 ftUS CRS Grid Convergence Angle: 0.1882 *

Version / Patch:

2.9 365 0

Survey / DLS Computation:

Vertical Section Azimuth: Vertical Section Origin:

TVO Reference Datum:

TVD Reference Elevation: Seabed / Ground Elevation:

Magnetic Declination: Total Gravity Field Strength:

Gravity Model: Total Magnetic Field Strength:

Magnetic Dip Angle:

Declination Date: Magnetic Declination Model:

North Reference: Grid Convergence Used: Total Corr Mag North->Grid North: 7.0646 *

Local Coord Referenced To:

Structure Reference Point

Minimum Curvature / Lubinski

80 560 * (Gnd North) 0 000 ft, 0.000 ft

2945.400 ft above MSL

2918 900 ft above MSL

998 4683mgn (9 80665 Based)

RKB

7.253 *

GARM

60 038 *

48249 018 nT

March 11, 2016

HDGM 2015

Grid North

Comments	MD (ft)	inci (*)	Azim Grid (°)	TVD (ft)	TVDSS (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (*/100ft)	Northing (MUS)	Easting Latitu (HUS) (N/S °	
Oxy Cedar						,		1				
Canyon 27 State Com 10H - SHL	0.00	0 00	355 05	0 00	-2945 40	0.00	0 00	0.00	N/A	433887.75	609295 19 N 32 11 32	57 W 103 58 48.08
	100.00	0.00	355.05	100 00	-2845 40	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	57 W 103 58 48 08
	200 00	0.00	355 05	200 00	-2745.40	0 00	0.00	0 00	0.00	433887.75	809295 19 N 32 11 32	57 W 103 58 48.08
	300 00	0 00	355.05	300 00	-2645 40	0 00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	
Rustler	386.00	0 00	<i>355 05</i> 355.05	<i>386.00</i> 400 00	-2559 40 -2545 40	0 00	0.00	0.00	0.00	433887,75	609295 19 N 32 11 32.	
	400 00 500.00	0.00	355.05	500 00	-2445.40	0.00	0.00	0 00	0.00	433887.75 433887.75	609295.19 N 32 11 32 609295 19 N 32 11 32	
	600.00	0.00	355.05	600 00	-2345 40	0.00	0 00	0.00	0.00	433887.75	609295.19 N 32 11 32	
	700.00	0 00	355 05	700 00	-2245.40	0 00	0.00	0.00	0 00	433887.75	609295.19 N 32 11 32	
Salado	766.00	0 00	355.05	766,00	-2179.40	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32.	
	800.00 900.00	0.00 0.00	355.05 355.05	800.00 900.00	-2145 40 -2045 40	0 00	0.00	0.00 0.00	0 00 0 00	433887,75 433887,75	609295.19 N 32 11 32 609295.19 N 32 11 32	
	1000.00	0.00	355 05	1000.00	-1945 40	0 00	0.00	0.00	0.00	433887,75	609295.19 N 32 11 32	
	1100 00	0 00	355.05	1100 00	-1845.40	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	
	1200 00	0.00	355 05	1200.00	-1745.40	0.00	0.00	0 00	0.00	433887.75	609295.19 N 32 11 32	
	1300 00	0 00	355 05 355 05	1300 00 1400.00	-1645 40 -1545 40	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	
	1400 00 1500 00	0 00	355 05	1500.00	-1445 40	0.00	0.00	0.00	0.00	433887.75 433887.75	609295.19 N 32 11 32 609295.19 N 32 11 32	
	1600 00	0.00	355 05	1600 00	-1345.40	0.00	0 00	0 00	0.00	433887.75	809295.19 N 32 11 32	
	1700.00	0 00	355.05	1700 00	-1245.40	0.00	0.00	0 00	0.00	433887.75	609295.19 N 32 11 32	
	1800 00	0.00	355 05	1800 00	-1145.40	0 00	0 00	0.00	0 00	433887,75	609295.19 N 32 11 32	
	1900 00 2000 00	0 00	355.05 355.05	1900.00 2000.00	-1045 40 -945 40	0.00	0.00	0.00	0 00	433887.75 433887.75	609295.18 N 32 11 32 609295.19 N 32 11 32	
	2100 00	0.00	355.05	2100.00	-845 40	0 00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	
	2200.00	0.00	355 05	2200.00	-745 40	0.00	0.00	0.00	0.00	433887.75	609295 19 N 32 11 32	
	2300 00	0.00	355.05	2300.00	-645 40	0.00	0.00	0 00	0.00	433887.75	609295.19 N 32 11 32	
	2400.00	0.00	355 05	2400.00	-545 40	0.00	0.00	0 00	0.00	433887.75	609295 19 N 32 11 32	
	2500 00 2600 00	0.00	355.05 355.05	2500.00 2600.00	-445 40 -345 40	0.00	0.00	0.00 0.00	0.00 0.00	433887,75 433887,75	609295 19 N 32 11 32 609295.19 N 32 11 32	
	2700.00	0.00	355 05	2700.00	-245 40	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	
	2800 00	0.00	355.05	2800 00	-145 40	0.00	0.00	0 00	0.00	433887.75	609295.19 N 32 11 32	
	2900 00	0.00	355.05	2900.00	-45 40	0.00	0.00	0 00	0.00	433887.75	609295.19 N 32 11 32	
Lemar/Delaware	2962.00	0.00	355.05	2962.00	16.60	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32.	
Bell Canyon	<i>2976.00</i> 3000 00	0.00 0.00	355.05 355.05	<i>2976.00</i> 3000.00	30.60 54.60	0.00 0.00	0,00 0.00	0.00 0.00	0.00 0.00	433887.75 433887.75	609295.19 N 32 11 32. 609295.19 N 32 11 32	
	3100.00	0.00	355.05	3100.00	154 60	0.00	0.00	0.00	0.00	433887.75	609295.19 N 32 11 32	
	3200 00	0.00	355 05	3200.00	254.60	0.00	0.00	0.00	0.00	433887.75	609295 19 N 32 11 32	57 W 103 58 48.08
	3300 00	0.00	355 05	3300.00	354.60	0.00	0.00	0.00	0.00	433887.75	509295.19 N 32 11 32	
	3400 00	0 00	355 05	3400 00	454.60	0 00	0 00	0 00	0 00	433887.75	609295.19 N 32 11 32	57 W 103 58 48.08
Build 2*/100* DLS to 9 25" Inc	3500 00	0.00	355 05	3500.00	554 60	0 00	0 00	0 00	0 00	433887.75	609295.19 N 32 11 32	57 W 103 58 48.08
	3600 00	5 00	355 05	3599 98	654.58	0 14	1 74	-0.15	2.00	433889 49	609295 04 N 32 11 32	
Cherry Canyon	3677.11	3.54	<i>355.05</i> 355.05	3677.00 3699 84	731.60 754.44	0.43 0.55	5.45	-0.47	2.00	433893.20	609294.72 N 32 11 32.	
	3700 00 3800.00	4.00 6.00	355.05	3799 45	854 05	1.23	6.95 15. 6 4	-0.60 -1.35	2 00 2 00	433894.70 433903 38	609294.59 N 32 11 32 609293.84 N 32 11 32	
	3900.00	8 00	355 05	3898 70	953.30	2.18	27 78	-2 40	2.00	433915 52	609292.79 N 32 11 32	
Hold 9 25° inc	3962 47	9 25	355 05	3960 47	1015.07	2.92	37 11	-3 21	2.00	433924 86	609291.98 N 32 11 32	
	4000 00	9 25	355 05	3997.51	1052 11	3 39	43.12	-3.73	0 00	433930 87	609291.46 N 32 11 33	
	4100.00 4200.00	9.25 9.25	355.05 355.05	4096 21 4194 91	1150.81 1249.51	4 65 5.91	59 13 75.15	-5.12 -6.50	0.00	433946 88 433962.89	609290 07 N 32 11 33 609288 69 N 32 11 33	
	4300.00	9.25	355 05	4293 61	1348.21	7.17	91.16	-7.89	0.00	433978 90	609287.30 N 32 11 33	
	4400 00	925	355 05	4392.31	1446.91	8.43	107.17	-9 27	0 00	433994.91	609285 92 N 32 11 33	
	4500.00	9 25	355 05	4491.00	1545 60	9.69	123.19	-10 66	0 00	434010.93	609284.53 N 32 11 33	
	4600 00	9 25	355.05	4589.70	1644 30	10 95	139 20	-12.04	0.00	434026 94	609283.15 N 32 11 33	
	4700 00 4800 00	9 25 9 25	355 05 355 05	4688 40 4787,10	1743 00 1841.70	12 21 13 47	155.21 171.23	-13.43 -14.82	0.00	434042 95 434058.96	609281.76 N 32 11 34 609280 37 N 32 11 34	
	4900 00	9 25	355 05	4885 80	1940 40	14.73	187.24	-16 20	0.00	434074.98	609278.99 N 32 11 34	
•	5000 00	9 2 5	355 05	4984 50	2039.10	15 99	203 25	-17.59	0.00	434090 99	609277.60 N 32 11 34	
	5100 00	9 25	355 05	5083 20	2137.80	17 25	219 27	-18.97	0.00	434107.00	609276 22 N 32 11 34	74 W 103 58 48 30
Genetal Comme	5100.81	9.25	355.05	5084.00	2138.60	17.26	219 40	-18.98	0.00	434107.13	609276 21 N 32 11 34,	
Brushy Canyon	5200 00 5300 00	9 25	355.05 355.05	5181.90 5280.60	2236 50 2335 20	18 51 19 77	235.28 251 29	-20 36 -21.74	0 00	434123 D1 434139 02	609274.83 N 32 11 34 609273 45 N 32 11 35	
orusny Canyon		9 25	355.05	5379 30	2433.90	21.03	267 31	-21.74 -23.13	0 00	434155 04	609272.06 N 32 11 35	
Brushy Canyon		0.25										
orusny Canyon	5400 00 5500 00	9 25 9 25	355 05	5478.00	2532.60	22 28	283 32	-24.52	0.00	434171.05	809270 68 N 32 11 35	38 W 103 58 48.36
orusny Canyon	5400 00 5500 00 5600 00	9 25 9 25	355.05 355.06	5478.00 5576.70	2631 30	23 54	299.33	-25.90	0 00	434187.06	609269 29 N 32 11 35	53 W 103 58 48 37
erusny Canyon	5400 00 5500 00	9 25	355 05	5478.00								53 W 103 58 48 37 59 W 103 58 48 39

Comments	MD (ft)	inci (°)	Azim Grid	TVD (ft)	TVDSS (ft)	VSEC (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Northing (MUS)	Easting (ftUS)	Latitude (N/S * * *)	Longitude (E/W * ' *)
***	5900 00	9 25	355.05	5872.80	2927.40	27.32	347.37	-30.06	0.00	434235 10	609265.13	N 32 11 36.01	W 103 58 48.42
	6000 00	9.25	355 05	5971 50	3026.10	28 58	363 39	-31.44	0.00	434251.11		N 32 11 36 17	W 103 58 48 44
	6100 00	9.25 9.25	355.05 355.05	6070.20 6168.90	3124.80 3223.50	29 84 31,10	379 40 395.41	-32.83 -34.22	0.00	434267.12		N 32 11 36 33 N 32 11 36.49	W 103 58 48 45 W 103 58 48 47
	6200.00 6300.00	9.25	355.05	5267.60	3322 20	32.36	411 43	-34 22 -35 60	0.00	434283 13 434299.15		N 32 11 36 64	W 103 58 48 48
	6400.00	9.25	355 05	6366 30	3420 90	33 62	427.44	-36.99	0.00	434315 16		N 32 11 36 80	W 103 58 48.50
	6500.00	9 25	355.05	6465.00	3519 60	34 88	443.45	-38 37	0 00	434331.17		N 32 11 36.96	W 103 58 48 51
B C	6600.00	9 25 <i>9.25</i>	355.05 355.05	6563.70	3618 30 3703.60	36 14 <i>37.23</i>	459.47	-39 76	0 00	434347 18 434361.02		N 32 11 37.12 V <i>32 11 37.26</i>	W 103 58 48 53
Bone Spring	6686.42 6700 00	9.25	355.05	6649.00 6662.40	3717 00	37.23	473.31 475.48	-40.96 -41.14	0.00 0 00	434363.02		N 32 11 37.28	W 103 58 48,54 W 103 58 48 55
	6800 00	9.25	355 05	6761.10	3815.70	38.66	491.50	-42 53	0.00	434379.21		N 32 11 37 44	W 103 58 48 56
	6900 00	9.25	355.05	6859.80	3914 40	39 92	507.51	-43.91	0 00	434395.22		N 32 11 37.59	W 103 58 48 58
	7000 00	9 25	355 05	6958 50	4013 10	41.18	523 52	-45 30	0.00	434411.23		N 32 11 37.75	W 103 58 48.59
	7100 00 7200.00	9.25 9.25	355.05 355.05	7057.20 7155 90	4111 80 4210 50	42 4 4 43.70	539.54 555.55	-46.69 -48.07	0.00 0.00	434427.24 434443 25		N 32 11 37.91 N 32 11 38 07	W 103 58 48 61 W 103 58 48 62
	7300.00	9.25	355.05	7254.60	4309.20	44 96	571,56	-49.46	0.00	434459.27		N 32 11 38 23	W 103 58 48.64
	7400.00	9 25	355.05	7353 30	4407.90	46 22	587 58	-50 84	0.00	434475.28		N 32 11 38 39	W 103 58 48 65
	7500 00	9 25	355 05	7452.00	4506 60	47.48	603 59	-52.23	0.00	434491 29		N 32 11 38.55	W 103 58 48.67
	7600.00	9 25 9 25	355 05 355 05	7550 70 7649 40	4605.30 4704 00	48.74 50 00	619 60 635 62	-53.61 -55.00	0.00 0.00	434507.30		N 32 11 38 70 N 32 11 38.86	W 103 58 48 68 W 103 58 48 70
	7700 00 7800,00	9.25	355 05	7748 10	4802,70	51.25	651 63	-56.39	0.00	434523 32 434539.33		N 32 11 39.02	W 103 58 48.70
	7900.00	9 25	355 05	7846.80	4901.40	52 51	667,64	-57.77	0.00	434555 34		N 32 11 39.18	W 103 58 48.73
	8000 00	9.25	355.05	7945.50	5000.10	53 77	683.66	-59.16	0 00	434571.35	609236.04	N 32 11 39 34	W 103 58 48.75
	8100 00	9 25	355.05	8044.20	5098 80	55 03	699.67	-60 54	0 00	434587 36		N 32 11 39.50	W 103 58 48.76
	8200 00	9.25 9.25	355.05 355,05	8142.90	5197 50 5296 20	56.29 57 55	715 68 731,70	-61 93 -63.31	0 00	434603 38		N 32 11 39 66 N 32 11 39.81	W 103 58 48.78
	8300 00 8400.00	9.25	355 05	8241.60 8340.30	5394 90	58.81	747.71	-64 70	0.00 0 00	434619 39 434635.40		N 32 11 39 97	W 103 58 48.79 W 103 58 48 81
Drop 2°/100	6488.39	9 25	355 05	8427.53	5482.13	59 93	761.85	-65.92	0.00	434649 55		N 32 11 40 11	W 103 58 48.82
DLS to Vertical	8500 00	9 02	355 05	8439.00	5493.60	60 07	763.70	-66.08	2 00	434651.39	609229 11 N	N 32 11 40.13	W 103 58 48.82
	8600 00	7.02	355 05	8538 02	5592 62	61.16	777.59	-67 29	2.00	434665.28		N 32 11 40 27	W 103 58 48 84
	8700 00	5 02 `` 3 02	355 05 355 05	8637.46	5692 06 5791 81	61.98 62.53	788.04	-68.19 -68.79	2.00	434675.73		N 32 11 40 37 N 32 11 40.44	W 103 58 48 85 W 103 56 48 85
	6800 00 6900 00	1.02	355.05	8737 21 8837.14	5891.74	62.81	795 02 798.52	-69.10	2 00 2.00	434682.70 434686.21		N 32 11 40.44 N 32 11 40 48	W 103 58 48 85 W 103 58 48.86
Hold Vertical	8950 86	0.00	355.05	8888 00	5942.60	62 84	798.97	-69 14	2.00	434686 66		N 32 11 40.48	W 103 58 48 86
riora voltica	9000.00	0.00	355.05	8937.14	5991.74	62.84	798.97	-69.14	0 00	434686 66		N 32 11 40 48	W 103 58 48.86
	9100 00	0.00	355.05	9037 14	6091.74	62.84	798 97	-69,14	0.00	434686.66		N 32 11 40.48	W 103 58 48 86
	9200 00	0.00	355 05	9137.14	6191.74	62 84	798.97	-69.14	0 00	434686 66		N 32 11 40.48	W 103 58 48 86
Tie-in ST01	9300 00 9400 00	0 00	355 05 89.94	9237.14 9337.14	6291.74 6391.74	62 84 62 84	798 97 798.97	-69.14 -69.14	0.00 0.00	434686 66 434686 66		N 32 11 40 48 N 32 11 40.48	W 103 58 48 86 W 103 58 48 86
	9500.00	0.00	89 94	9437.14	6491.74	62 84	798.97	-69.14	0.00	434686 66		N 32 11 40 48	W 103 58 48.86
KOP - Build 10°/100' DLS Curve	9525 36	0 00	89,94	9462.50	6517.10	62 84	798.97	-69.14	0 00	434686 66	609226.06	N 32 11 40.48	W 103 56 48 86
	9600 00	7.46	89.94	9536.93	6591 53	67.63	798.98	-64 28	10 00	434686 66		N 32 11 40.48	W 103 58 48 60
	9700.00	17 46 27.46	69 94	9634.45 9726.74	6689.05 6781 34	68.90 126.55	799 00 799.04	-42.72	10.00	434686 69		N 32 11 40 48 N 32 11 40 48	W 103 58 48.55 W 103 58 48.11
	9800.00 9900.00	37 46	69.94 69.94	9811.01	6865.61	179 44	799.04	-4 56 49.05	10 00 10.00	434686.72 434686.78		N 32 11 40 48	W 103 58 47.48
	10000.00	47.46	89 94	9884 69	6939 29	245.97	799.15	116 47	10.00	434686.84		N 32 11 40 48	W 103 58 46.70
	10100.00	57.46	89 94	9945 54	7000.14	324 11	799.23	195.67	10 00	434686 92		N 32 11 40 47	W 103 58 45.78
Wolfcamp	10104.61	57.93	89.94	9948.00	7002.60	327.95	799.24	199,57	10.00	434686.92		N 32 11 40.47	W 103 58 45.73
	10200 00	67.46 77.46	89.94	9991.71	7046.31 7076.40	411.48 505.44	799.32	284.23	10.00	434687.00		N 32 11 40 47	W 103 58 44.75
	10300.00 10400.00	87.46	89 94 89.94	10021.80 10034.90	7089.50	603.12	799.41 799.51	379.46 478.47	10 00 10.00	434687,10 434687,19		N 32 11 40.47 N 32 11 40 47	W 103 56 43 64 W 103 58 42 49
Landing Point @	10414.85	88.95	89.94	10035,36	7089.96	617.77	799 52	493 31	10.00	434687 21		N 32 11 40.47	W 103 58 42.31
88.95° Inc	10500 00	88.95	89.94	10036.92	7091.52	701.76	799.60	578.45	0 00	434687 29		N 32 11 40.47	W 103 58 41.32
	10600 00	88 95	89 94	10038 76	7093 36	800 41	799 70	678.43	0.00	434687.39		N 32 11 40 46	W 103 58 40 16
	10700 00 10800 00	88 95 88.95	89.94 89.94	10040.59 10042.42	7095.19 7097,02	899 05 ¹ 997.70	799.80 799.90	778.42 878 40	0 00	434587 49 434687.58		N 32 11 40.46 N 32 11 40 46	W 103 58 39 00 W 103 58 37 83
	10900 00	88.95	89 94	10042.42	7098 86	1096 34	799.99	978.38	0.00	434687.58		N 32 11 40.46	W 103 58 36.67
	11000.00	68.95	89 94	10046.09	7100 69	1194.99	800 09	1078 37	00.0	434687.78		N 32 11 40 45	W 103 58 35 51
	11100.00	88 95	89 94	10047.93	7102.53	1293 63	800,19	1178.35	0.00	434687 88		N 32 11 40 45	W 103 58 34 34
	11200.00	88.95 88 95	89 94	10049.76	7104 36	1392.28	800 29	1278 33	0 00	434687.97		N 32 11 40 45	W 103 58 33 18
	11300.00 11400.00	88.95	89 94 6 9 94	10051.59 10053.43	7106.19 7108.03	1490 92 1589.57	800 38 800 48	1378.32 1478.30	0.00 0.00	434688 07 434688.17		N 32 11 40 45 N 32 11 40 44	W 103 58 32.01 W 103 58 30 85
	11500.00	88 95	89.94	10055 26	7109 86	1688 21	800 58	1578.28	0.00	434688.27		N 32 11 40 44	W 103 58 29.69
	11600.00	88.95	69.94	10057.10	7111 70	1786.86	800.68	1678 26	0 00	434688 36		N 32 11 40 44	W 103 56 28 52
	11700 00	88.95	89.94	10058.93	7113 53	1885 51	800.77	1778.25	0 00	434688.46	611073 30	N 32 11 40.44	W 103 58 27.36
	11800 00	88.95 88 95	89.94 89.94	10060 76	7115 36 7117.20	1984.15 2082 80	800 87 800.97	1878 23 1978.21	0 00	434688.56 434688.66		N 32 11 40 43 N 32 11 40 43	W 103 58 26 20 W 103 58 25.03
	11900 00 12000 00	88.95	89.94 89.94	10062.60 10064.43	7119.03	2181.44	800.97 801.07	2078 20	0 00	434688.66 434688.75	611373.22	N 32 11 40 43	W 103 58 23 87
	12100.00	86.95	89 94	10066.27	7120.87	2280 09	801.16	2178.18	0.00	434688 85	611473.20 N	N 32 11 40 43	W 103 58 22.71
	12200 00	86.95	89 94	10068 10	7122.70	2376.73	601 26	2278 16	0.00	434688.95	611573.17 N	N 32 11 40.43	W 103 58 21.54
	12300.00	88.95	89 94	10069.93	7124 53	2477.38	801.36	2378.15	0.00	434689 05	611673.15	N 32 11 40 42	W 103 58 20.38
	12400 00	88.95 88.95	89.94 89.94	10071 77	7126.37 7128.20	2576 02 2674 67	801 46	2478.13	0.00 0.00	434689.14	611773.12 N	N 32 11 40 42 N 32 11 40.42	W 103 58 19.22 W 103 58 18.05
	12500.00 12600.00	88.95	89.94	10073.60 10075.44	7130.04	2773.31	801.55 801.65	2578.11 2678.10	0.00	434689 24 434689 34	611873.1V C	N 32 11 40 42	W 103 58 16 89
	12700 00	88 95	89 94	10077 27	7131.87	2871,96	801.75	2778 08	0.00	434689 44		N 32 11 40.41	W 103 58 15.73
	12800.00	88 95	89,94	10079.10	7133.70	2970 60	801.85	2878 06	0 00	434689 53		N 32 11 40.41	W 103 58 14.56
	12900 00	88 95	89.94	10080.94	7135 54	3069 25	801.94	2978 05	0.00	434689 63		N 32 11 40.41	W 103 58 13.40
	13000 00 13100 00	88 95 88 95	69.94 89.94	10082.77 10084.61	7137.37 7139 21	3167.89 3266 54	802.04 802.14	3078 03 3178.01	0.00	434689.73 434689 82	612372.97 N	N 32 11 40 41 N 32 11 40 40	W 103 58 12 24 W 103 58 11.07
,-	13200.00	88.95	89 94	10086 44	7141.04	3365 18	802.24	3277.99	0.00	434689.92	612572 92 N	N 32 11 40 40	W 103 58 9.91
	13300.00	88.95	89 94	10088 27	7142.87	3463.83	802 33	3377 98	0 00	434690 02	612672 90 N	V 32 11 40 40	W 103 58 8 75
	13400 00	88.95	89 94	10090.11	7144.71	3562 47	802.43	3477.96	0.00	434690 12	612772.88 N	V 32 11 40 40	W 103 58 7.58
	13500.00	88.95 88.95	89 94 89.94	10091.94 10093.77	7146.54 7148.37	3661 12 3759 76	802.53 802.63	3577.94 3677.93	0.00	434690.21 434690.31		V 32 11 40.39 V 32 11 40.39	W 103 58 6.42 W 103 58 5 26
	13600.00 13700 00	88.95	89.94	10095 61	7150.21	3858.41	802.53	3777 91	0.00	434690.31			W 103 58 4 09
	13800.00	88 95	89 94	10097 44	7152 04	3957.05	802.82	3877 89	0.00	434690.51			W 103 58 2 93
	13900.00	88 95	89.94	10099 28	7153.88	4055.70	802.92	3977.88	0.00	434690 60	613272.75 N	N 32 11 40.38	W 103 58 1.76
	14000.00	88 95	89 94	10101.11	7155 71	4154.34	803 02	4077.86	0.00	434690.70			W 103 58 0.60
	14100 00	88 95 88 95	89 94 89,94	10102 94 10104.78	7157.54 7159.38	4252.99 4351 63	803.11 803.21	4177.84 4277.83	0.00	434690 80 434690.90		N 32 11 40 38 N 32 11 40 38	W 103 57 59 44 W 103 57 58.27
	14200 00 14300 00	88.95	89.94 89.94	10106 61	7161.21	4450.28	803.31	4377.81	0.00	434690.90 434690.99		N 32 11 40 38	W 103 57 58.27 W 103 57 57 11
	14400 00	88 95	89.94	10108.45	7163 05	4548 92	803.41	4477.79	0 00	434691 09	613772.63 N	N 32 11 40.37	W 103 57 55.95
	14500.00	88 95	89 94	10110 28	7164.88	4647.57	803 50	4577.78	0.00	434691.19	613872 60 N	N 32 11 40 37	W 103 57 54.78
	14600.00	68.95	89 94	10112.11	7166.71	4746.21	803 60	4677.76	0.00	434691.29		N 32 11 40 37	W 103 57 53 62
Bottom Bf	14700 00	88.95 88 95	89.94 89.94	10113 95 10115 00	7168 55 7169 60	4844 86 4901 45	803.70 803.75	4777.74	0.00	434691.38			W 103 57 52 46 W 103 57 51.79
Bottom Perf	14757.37	50 93	pa 94	1011300	, 108 60	75V 43	uua 15	4835.10	0.00	434691.44	D14123,31 P	N 32 11 40.36	** 103 37 31.79

Survey Type:

Non-Det Plan

Survey Error Model: Survey Program:

ISCWSA Rev 0 *** 3-D 95 000% Confidence 2.7955 sigma

	Description	Part	MD From MD To EOU (ft) (ft)		EOU Freq (ft)	Hole Size Ca (in)	asing Diameter (in)	Expected Max Inclination (deg)	Survey Tool Type	Borehole / Survey
_		1	0.000	26 500	1/100 000	30.000	30.000		SLB_MWD-STD_HDGM-Depth Only	Pilot Hole / Oxy Cedar Canyon 27 State Com 10H Pilot Rev4 MMC 14Mar16

Comments	MD (ft)	Incl (°)	Azim Grid	TVD (ft)	TVDSS (ft)	VSEC (ft)	NS (#)	EW (ft)	DLS (*/100ft)	Northing (HUS)	Easting (HUS)	Latitude (N/S * ' *)	Longitude (E/W ° <u>' ")</u>
		1	26.500	9300.000	1/100.000	30 000	30 000		SLB_MWD-STD		Pilot Hole / Oxy Ced State Com 10H Pilot	ar Canyon 27	
		1	9300 000	14757.371	1/100 000	30 000	30.000		SLB_MWD-STD	HDGM	ST01 / Oxy Cedar State Com 10H ST0		

OXY USA INC. CEDAR CANYON "27" STATE COM #10H SITE PLAN

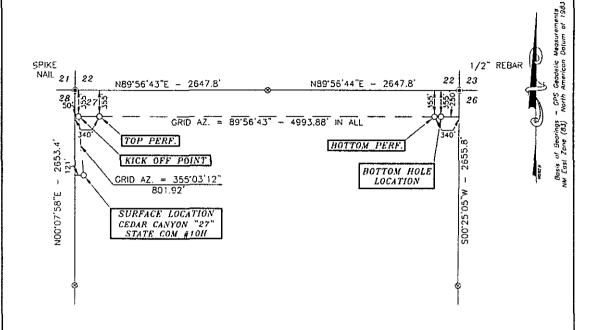
FAA PERMIT: NO CEDAR CANYON "27" STATE COM #10H ELEV. 2918.9' (NAD 27) LAT.=32.1923809*N CEDAR CANYON "27" LONG. = 103.9800235° W FEDERAL COM #5H 2920.0 2920.2 10° ADDITIONAL DISTURBANCE AREA 230 PAD EXTENSION 220 TOP SOIL 2919.4 ACDONALD ROAD CALICHE ROAD PROPOSED WELL PAD <u>LEGEND</u> -- DENOTES PROPOSED WELL PAD POLESSIONAL LAND - - DENOTES PROPOSED ROAD ZZZ - DENOTES STOCK PILE AREA SURVEYORS CERTIFICATE I, TERRY J. ASEL, NEW MEXICO PROFESSIONAL SURVEYOR 2001 400' FEET n 200 NO. 15079, DO HEREBY CERTIFY THAT I CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS SCALE: 1"=200 TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND

PROFESSIONAL ENGINEERS AND SURVEYORS. Jesus 2/19/20/6 Terry J. Asel (M.M. R.P.L.S. No. 15079

BELIEF, AND MEETS THE "MINIMIUM STANDARDS FOR SURVEYING IN NEW MEXICO" AS ADOPTED BY THE NEW

MEXICO STATE BOARD OF REGISTRATION FOR

Asel Surveying

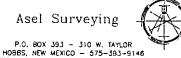

P.O. BOX 393 - 310 W. TAYLOR HOBBS, NEW MEXICO - 575-393-9146

CEDAR CANYON "27" STATE COM #10H LOCATED AT 1154' FNL & 121' FWL IN SECTION 27, TOWNSHIP 24 SOUTH, RANGE 29 EAST, N.M.P.M., EDDY COUNTY, NEW MEXICO

Survey Date: 12/10/15	Sheet 1 of	f 1 Sheets
W.O. Number: 151210WL-b (Rev. D)	Drawn By: KA	Rev: D
Date: 02/18/16	151210WL-b	Scale:1"=200'

SECTION 27, TOWNSHIP 24 SOUTH, RANGE 29 EAST, N.M.P.M., EDDY COUNTY NEW MEXICO

DRIVING DIRECTIONS: FROM THE INTERSECTION OF U.S. HWY. #285 AND BLACK RIVER VILLAGE ROAD IN #285 AND BLACK RIVER VILLAGE ROAD IN MALAGA, GO EAST ON COUNTY ROAD #720 FOR 1.3 MILES, TURN RIGHT ON COUNTY ROAD #746 (MCDONALD ROAD) AND GO SOUTH FOR 0.8 MILES, CONTINUE SOUTHEAST/EAST FOR 4.8 MILES, CURVE TO THE LEFT FOR 0.4 MILES, IURN LEFT AND GO WEST FOR 0.1 MILES TO LOCATION.

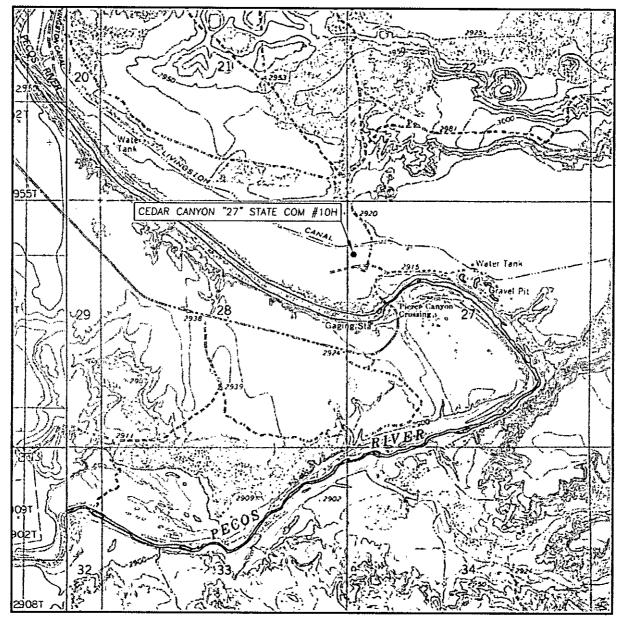


SURVEYORS CERTIFICATE

I, TERRY J. ASEL, NEW MEXICO PROFESSIONAL SURVEYOR NO. 15079, DO HEREBY CERTIFY THAT I CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND MEETS THE "MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO" AS ADOPTED BY THE NEW MEXICO STATE BOARD OF REGISTRATION FOR PROFESSIONAL ENGINEERS AND SURVEYORS.

Jany / Uaul 2/ Terry J. Asel/ N.M. R.P.L.S. No. 15078

Asel Surveying


LEGEND - DENOTES FOUND MONUMENT AS NOTED
- DENOTES CALCULATED CORNER

1000*	0	10001	2000	FEET
	SCALE	1"-1000"		

CEDAR CANYON "27" STATE COM #10H LOCATED AT 1154' FNL & 121' FWL IN SECTION 27, TOWNSHIP 24 SOUTH, RANGE 29 EAST, N.M.P.M., EDDY COUNTY, NEW MEXICO

Survey Date: 12/10/15	Sheet 1 of	1 Sheets
W.O. Number: 151210WL+6 (Rev. C)	Drown By: KA	Rev: C
Date: 02/08/16	151210WL-b	Scale:1"=1000'

LOCATION VERIFICATION MAP

SCALE: 1" = 2000'

CONTOUR INTERVAL: 10'

SEC. 27 TWP. 24-S RGE. 29-E

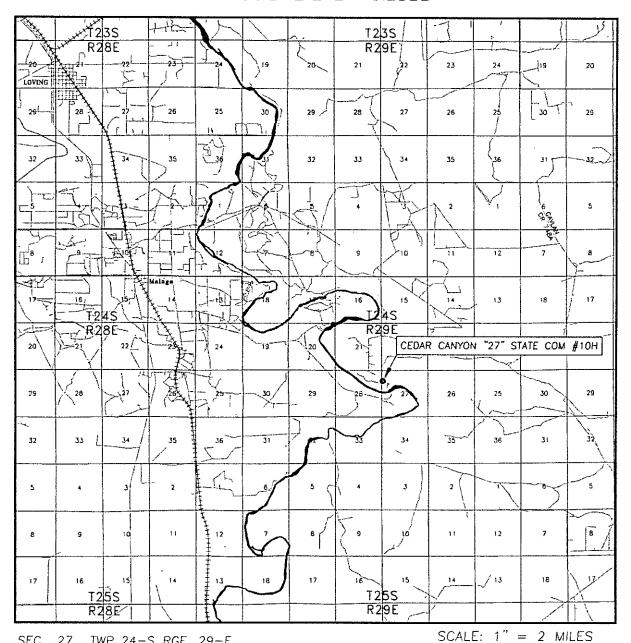
SURVEY_____N.M.P.M.

COUNTY EDDY

DESCRIPTION 1154' FNL & 121' FWL

ELEVATION 2918.9'

OPERATOR____OXY USA INC.


LEASE CEDAR CANYON "27" STATE COM #10H

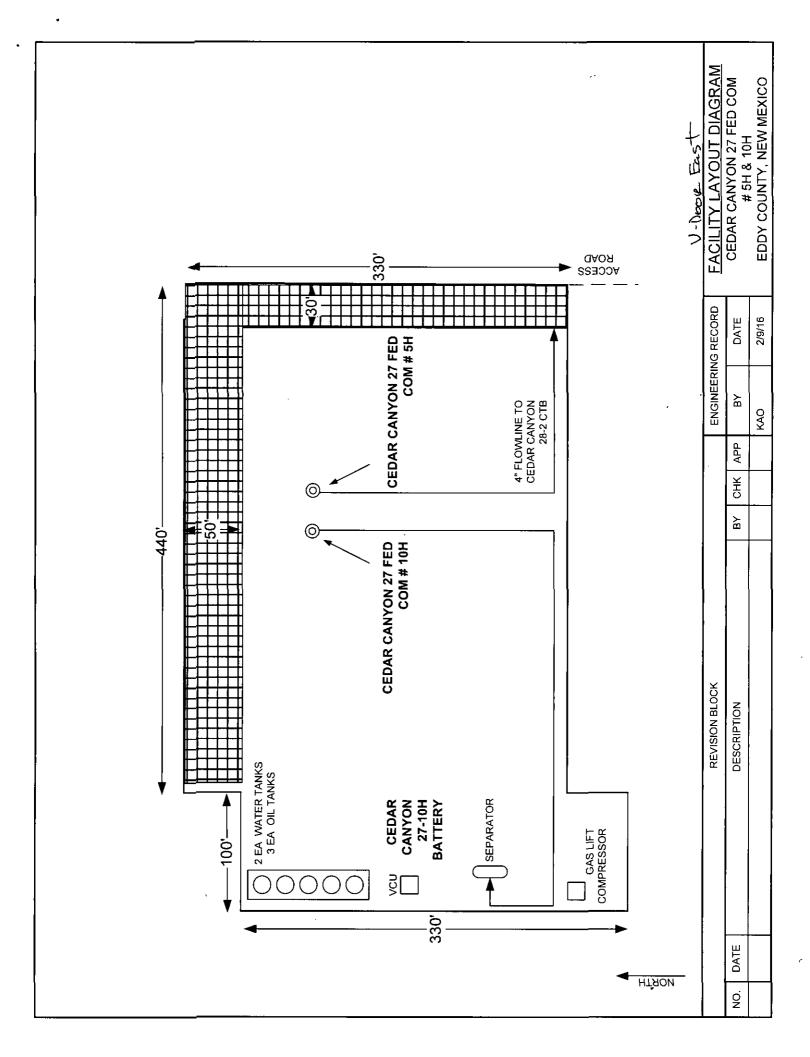
U.S.G.S. TOPOGRAPHIC MAP PIERCE CANYON, N.M.

VICINITY MAP

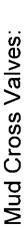
SEC. 27 TWP. 24-S RGE. 29-E SURVEY____ N.M.P.M. COUNTY EDDY DESCRIPTION 1154' FNL & 121' FWL

2918.9 ELEVATION_____ OPERATOR OXY USA INC.

LEASE CEDAR CANYON "27" STATE COM #10H

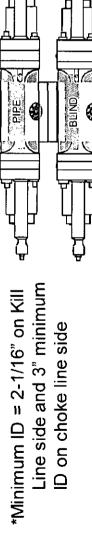

Asel Surveying

P.O. BOX 393 - 310 W. TAYLOR HOBBS, NEW MEXICO - 575-393-9146



DIRECTIONS FROM THE INTERSECTION OF U.S. HWY. #285 AND BLACK RIVER VILLAGE ROAD IN MALAGA, GO EAST ON COUNTY ROAD #720 FOR 1.3 MILES, TURN RIGHT ON COUNTY ROAD #746 (MCDONALD ROAD) AND GO SOUTH FOR 0.8 MILES, CONTINUE SOUTHEAST/EAST FOR 4.8 MILES, CURVE TO THE LEFT FOR 0.4 MILES, TURN LEFT AND GO WEST FOR 0.1 MILES TO LOCATION.

10M BOP Stack

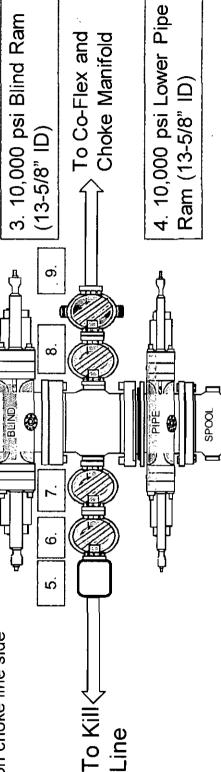


E

- 10M Check Valve
- Outside 10M Kill Line Valve

Fill Line

- Inside 10M Kill Line
- Outside10M Kill Line Valve ∞
- 10M HCR Valve <u>ග</u>

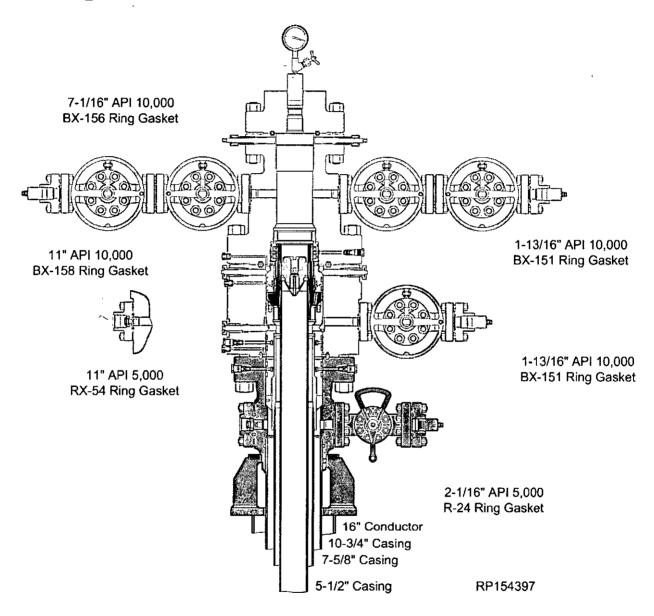


2. 10,000 psi Upper Pipe Ram

(13-5/8" ID)

1. 5,000 psi Annular

(13-5/8" ID)



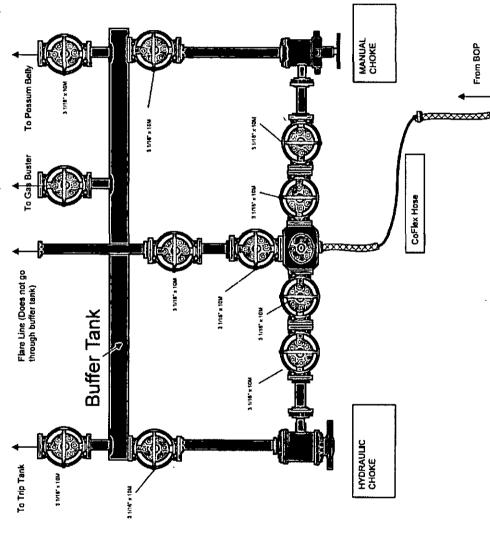
Line

RUNNING PROCEDURE

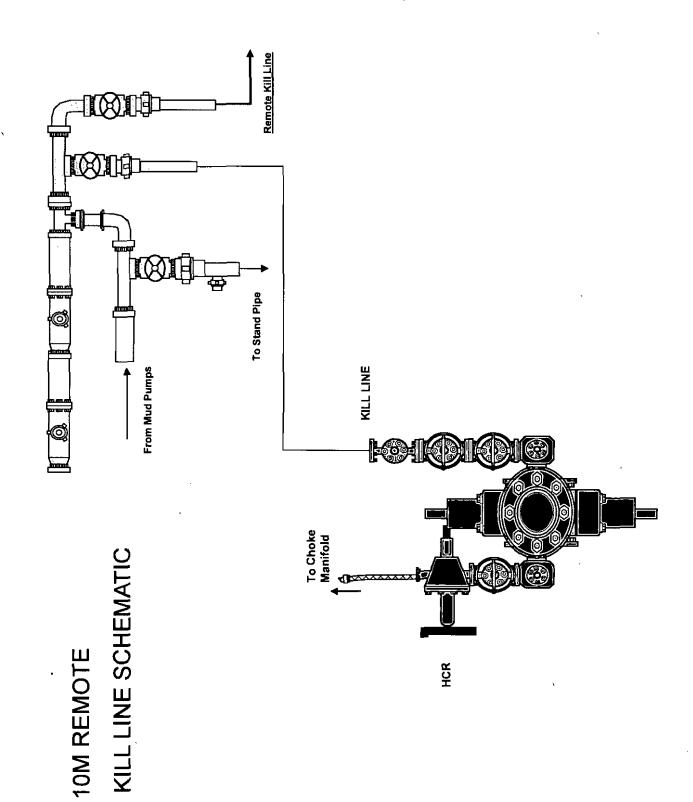
Oxy

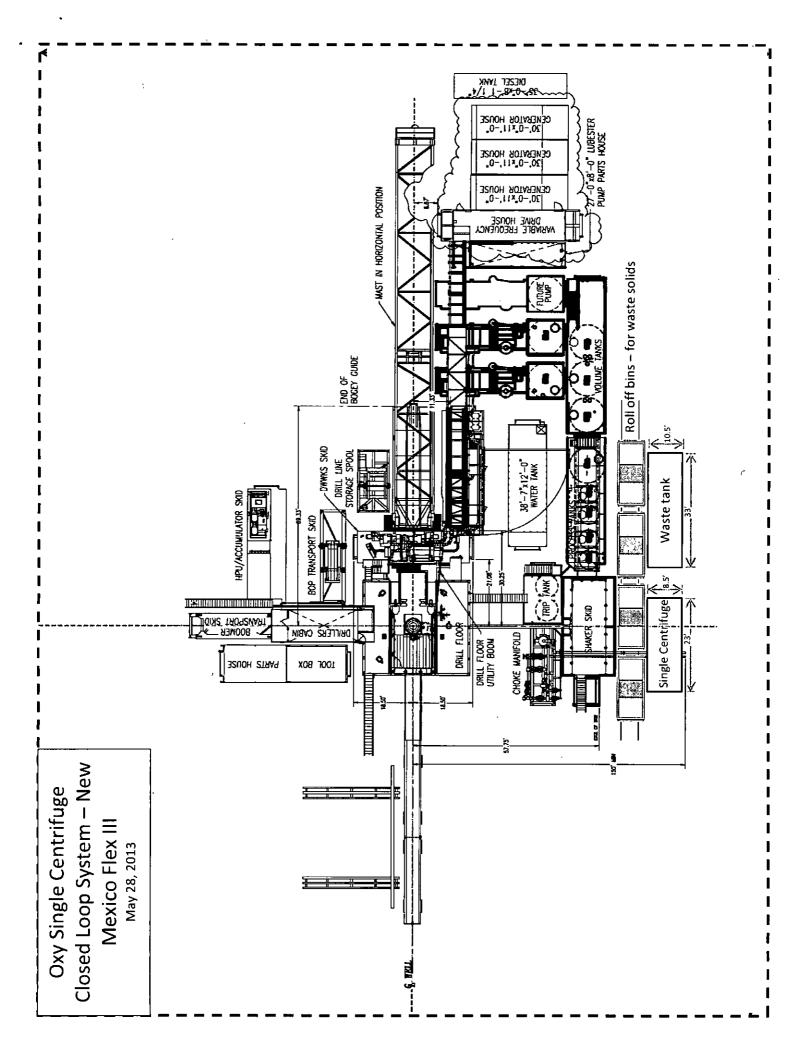
A CAUTION Must verify Running Procedure Revision level in SAP prior to usage.

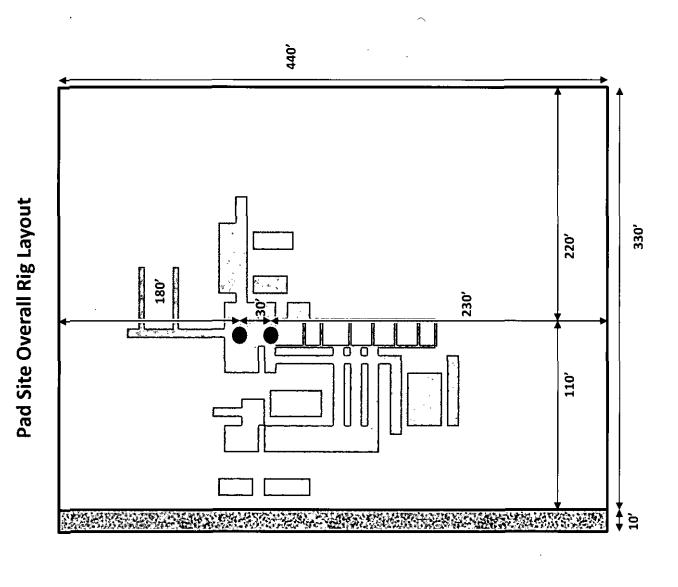
Surface Systems Publication

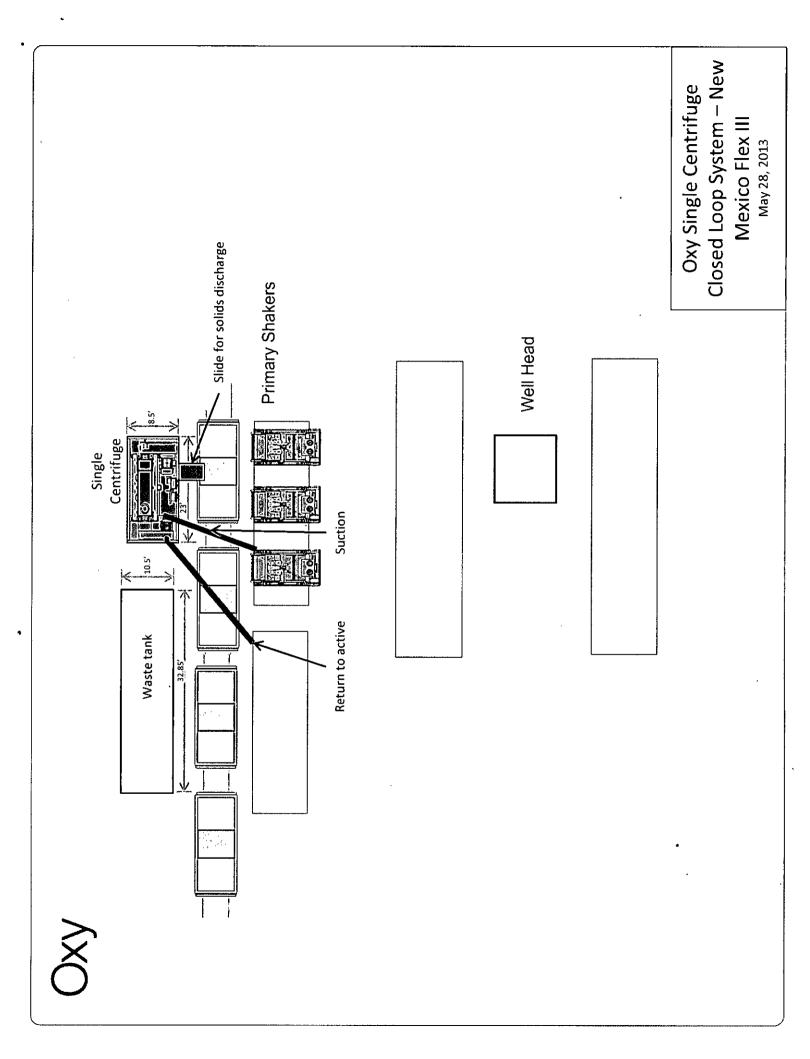


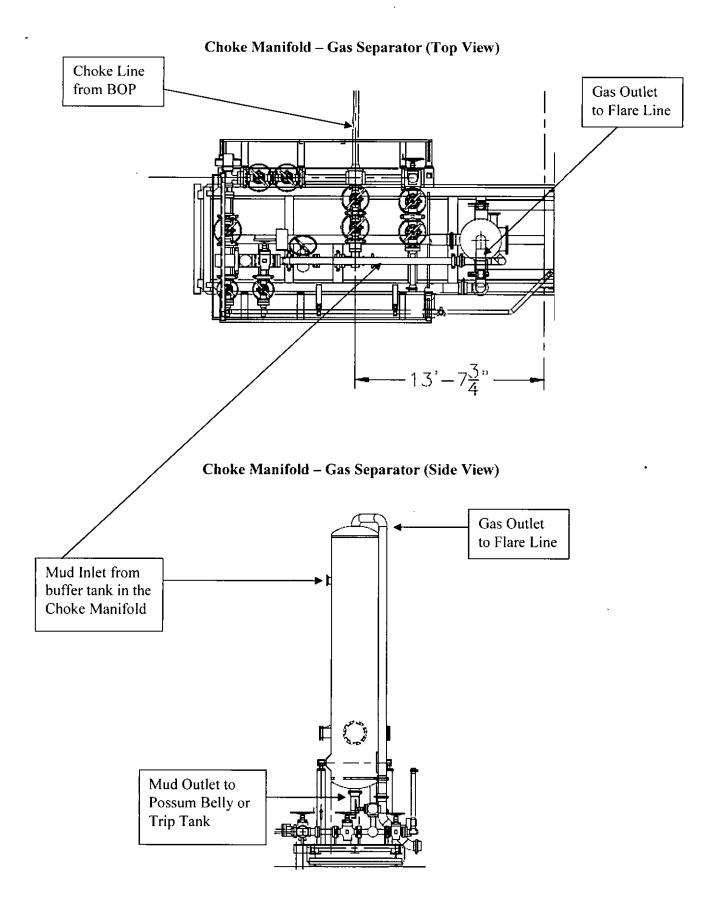
11" 10M MBS System
16" x 10-3/4" x 7-5/8" x 5-1/2" Casing Program
With Spacer Spool Contingency


RP-003263 Rev 05


10M Choke Panel


FLEX3 STD CHOKE MANIFOLD (COMPREHENSIVE)



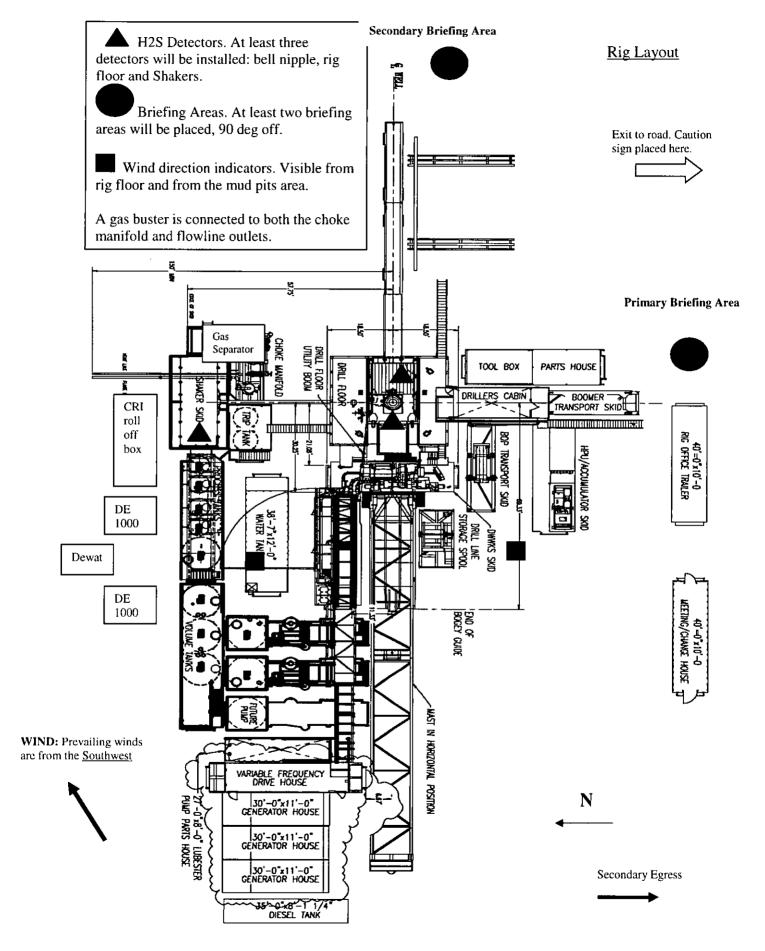


NM OIL CONSERVATION

ARTESIA DISTRICT

MAR 18 2016

RECEIVED



Permian Drilling Hydrogen Sulfide Drilling Operations Plan Cedar Canyon 27 State Com 10H

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

ARTESIA DISTRICT

MAR 1 8 2016

RECEIVED

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

Scope

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Discussion

Implementation: This plan with all details is to be fully implemented

before drilling to commence.

Emergency response

Procedure:

This section outlines the conditions and denotes steps

to be taken in the event of an emergency.

Emergency equipment

Procedure:

This section outlines the safety and emergency

equipment that will be required for the drilling of this

well.

Training provisions: This section outlines the training provisions that must

be adhered to prior to drilling.

Drilling emergency call lists: Included are the telephone numbers of all persons to

be contacted should an emergency exist.

Briefing: This section deals with the briefing of all people

involved in the drilling operation.

Public safety: Public safety personnel will be made aware of any

potential evacuation and any additional support

needed.

Check lists: - Status check lists and procedural check lists have been

included to insure adherence to the plan.

General information: A general information section has been included to

supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.
- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Emergency Equipment Requirements

1. Well control equipment

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.'
 - Rig floor and trailers.
 - Vehicle.

3. Hydrogen sulfide sensors and alarms

- A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
- B. Hand operated detectors with tubes.
- C. H2S monitor tester (to be provided by contract Safety Company.)
- D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

Wind sock – wind streamers:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

A. One each condition flag to be displayed to denote conditions.

```
green – normal conditions
yellow – potential danger
red – danger, H2S present
```

B. Condition flag shall be posted at each location sign entrance.

5. Mud Program

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. Metallurgy

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. Well Testing

No drill stem test will be performed on this well.

8. Evacuation plan

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. <u>Designated area</u>

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.

B. If uncontrollable conditions occur:

1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.

C. Responsibility:

- 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

Al	1 .	n	Δ,	rc	\sim	n	n	Ω	1	•
-		ν	Ų١	IJ	v	IJ	ы	ı,	L	٠

- 1. On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
- 2. Check status of personnel (buddy system).
- 3. Secure breathing equipment.
- 4. Await orders from supervisor.

Drill site manager:

- 1. Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system).
- 3. Determine H2S concentrations.
- 4. Assess situation and take control measures.

Tool pusher:

- 1. Don escape unit Report to up nearest upwind designated safe briefing / muster area.
- 2. Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
- 3. Determine H2S concentration.
- 4. Assess situation and take control measures.

Driller:

1. Don escape unit, shut down pumps, continue

- rotating DP.
- 2. Check monitor for point of release.
- 3. Report to nearest upwind designated safe briefing / muster area.
- 4. Check status of personnel (in an attempt to rescue, use the buddy system).
- 5. Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case of their absence.
- 6. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.

Derrick man Floor man #1 Floor man #2 1. Will remain in briefing / muster area until instructed by supervisor.

Mud engineer:

- Report to nearest upwind designated safe briefing / muster area.
- 2. When instructed, begin check of mud for ph and H2S level. (Garett gas train.)

Safety personnel:

1. Mask up and check status of all personnel and secure operations as instructed by drill site manager.

Taking a kick

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

<u>Instructions for igniting the well</u>

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. <u>Do not assume the area is safe after the well is ignited.</u>

Status check list

Note:	All items on this list must be completed before drilling to production easing point.
1.	H2S sign at location entrance.
2.	Two (2) wind socks located as required.
3.	Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
4.	Air packs inspected and ready for use.
5.	Cascade system and hose line hook-up as needed.
6.	Cascade system for refilling air bottles as needed.
7.	Condition flag on location and ready for use.
8.	H2S detection system hooked up and tested.
9.	H2S alarm system hooked up and tested.
10.	Hand operated H2S detector with tubes on location.
11.	1 – 100' length of nylon rope on location.
12.	All rig crew and supervisors trained as required.
13.	All outside service contractors advised of potential H2S hazard on well.
14.	No smoking sign posted and a designated smoking area identified.

Checked by:	Date:	
oneened by	Dutc	

Calibration of all H2S equipment shall be noted on the IADC report.

15.

Procedural check list during H2S events

Perform each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

Important: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

Emergency actions

Well blowout – if emergency

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity – 1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i Toxicity of various gases

Common name	Chemical formula	Specific gravity (sc=1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hen	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	C12	2.45	1 ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	10%
Methane	Ch4	0.55	90,000 ppm	Combustible	e above 5% in air

- threshold limit concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.
- 2) hazardous limit concentration that will cause death with short-term exposure.
- 3) lethal concentration concentration that will cause death with short-term exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

	`		Concentration	Physical effects
	Percent (%)	<u>Ppm</u>	Grains	
			100 std. Ft3*	
,	0.001	<10	00.65	Obvious and unpleasant odor.

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in $3 - 15$ minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

^{*}at 15.00 psia and 60'f.

Use of self-contained breathing equipment (SCBA)

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a
 test atmosphere. (note: such items as facial hair {beard or sideburns} and
 eyeglasses will not allow proper seal.) Anyone that may be reasonably expected
 to wear SCBA's should have these items removed before entering a toxic
 atmosphere. A special mask must be obtained for anyone who must wear
 eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:
 - a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
 - b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
 - c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

Rescue First aid for H2S poisoning

Do not panic!

Remain calm - think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012