4) ⁻ 4,				OCD Arts	SJan I	ATF-	16-2	84	
·	Form 3160-3 (March 2012)	Nik	OIL C	OCD AT		OMB N	APPROVI 0. 1004-01	37	
	UNITED ST DEPARTMENT OF T BUREAU OF LAND	ΓΗΕ ΙΝΤΕ	rioMA			5. Lease Serial No. NMNM-557370	October 31.	2014	
						6. If Indian, Allotee N/A	or Tribe	Name	
	la. Type of work: 🔽 DRILL	EENTER				7 If Unit or CA Agreement, Name and No. N/A			
	lb. Type of Well: 🖌 Oil Well 🔲 Gas Well 🚺 Other		🖌 Sing	le Zone 🔲 Multi	ole Zone	8. Lease Name and EAGLE 34 J FEDE			
	2. Name of Operator LIME ROCK RESOURCES II-A,					9. API Well Na 30-015- 437	72		
	3a. Address 1111 BAGBY ST., SUITE 4600 HOUSTON, TX 77002		hone No. (292-952	include area code) 8		10. Field and Pool, or RED LAKE; GLOR	-		
	4. Location of Well (Report location clearly and in accordance At surface 1790' FSL & 1650' FEL	with any State	requiremen	(5.*)		11. Sec., T. R. M. or B NWSE 34-17S-27E		rvey or Area	
	At proposed prod. zone 1670' FSL & 1650' FEL	····				12. County or Parish		13. State	
	14. Distance in miles and direction from nearest town or post offi 8 AIR MILES SE OF ARTESIA, NM					EDDY		NM	
Ł	 Distance from proposed* SHL: 330' location to nearest property or lease line, ft. BHL: 330' (Also to nearest drig. unit line, if any) 	16. 720	No. of acr	es in lease	17. Spacir NWSE	ng Unit dedicated to this	well		
ل م	 Distance from proposed location* to nearest well, drilling, completed, BHL 100' (Eagle 34 applied for, on this lease, ft. 	J Z V)	Proposed I D = 5250	Depth ' & MD = 5254'		BIA Bond No. on file 00797 & NMB-00081	7	<u></u>	
and a	21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3,590.8' UNGRADED		Approxim: /10/2016	te date work will sta	ťť*	23. Estimated duratio 1 MONTH	n		
え		24	Attach	ments					
0	 The following, completed in accordance with the requirements of Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest S SUPO must be filed with the appropriate Forest Service Official 	System Lands		 Bond to cover t Item 20 above). Operator certific 	he operatio ation	vis form: ons unless covered by an formation and/or plans as	·	·	
	25. Signature		Name (I BRIAN	rinted/Typed) WOOD (PH	ONE: 505	5 466-8120)	Date 12/29/2	2015	
	Title			(FA	X: 505 46	6-9682)	•.		
	Approved by (Signature)/s/George MacDonell		Name (1	Printed/Typed)			DaMAY	' - 4 2016	
	Title FIELD MANAGER		Office		CARLS	SBAD FIELD OFFIC	Έ.		
	Application approval does not warrant or certify that the application conduct operations thereon. Conditions of approval, if any, are attached.	ant holds lega	l or equita	ole title to those righ	ts in the sul	oject lease which would e	DR TV	VO YEARS	
	Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make States any false, fictitious or fraudulent statements or representat	e it a crime f tions as to any	or any per matter wit	on knowingly and thin its jurisdiction.	villfully to r	nake to any department of	or agency	of the United	
	(Continued on page 2) Roswell Controlled Water Basin					Must be in com Rule 5.9 prior to production	•		
	Approval Subject to General Requirements & Special Stipulations Attached	2	SEE A	ATTACHE DITIONS	D FO OF A	PPROVAL			

•

-

SURFACE PLAN PAGE 5

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

CERTIFICATION

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U. S. C. 1001 for the filing of false statements. Executed this <u>29th</u> day of <u>December, 2015</u>.

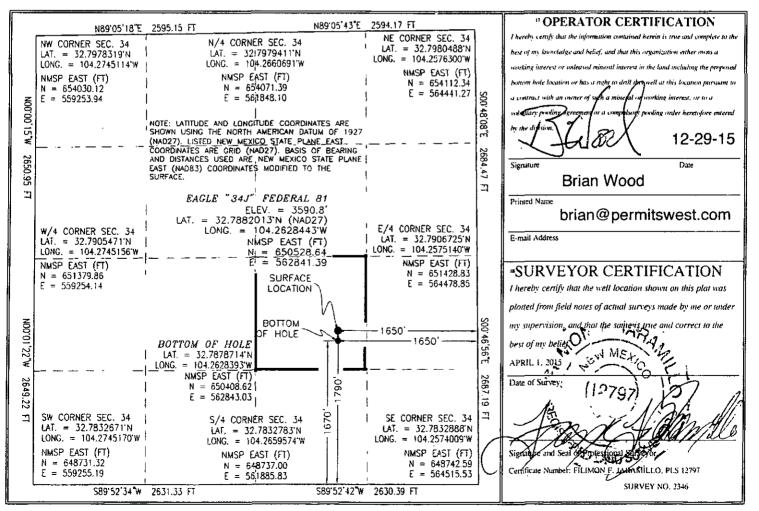
Brian Wood, Consultant Permits West, Inc. 37 Verano Loop, Santa Fe, NM 87508 (505) 466-8120 FAX: (505) 466-9682

Cellular: (505) 699-2276

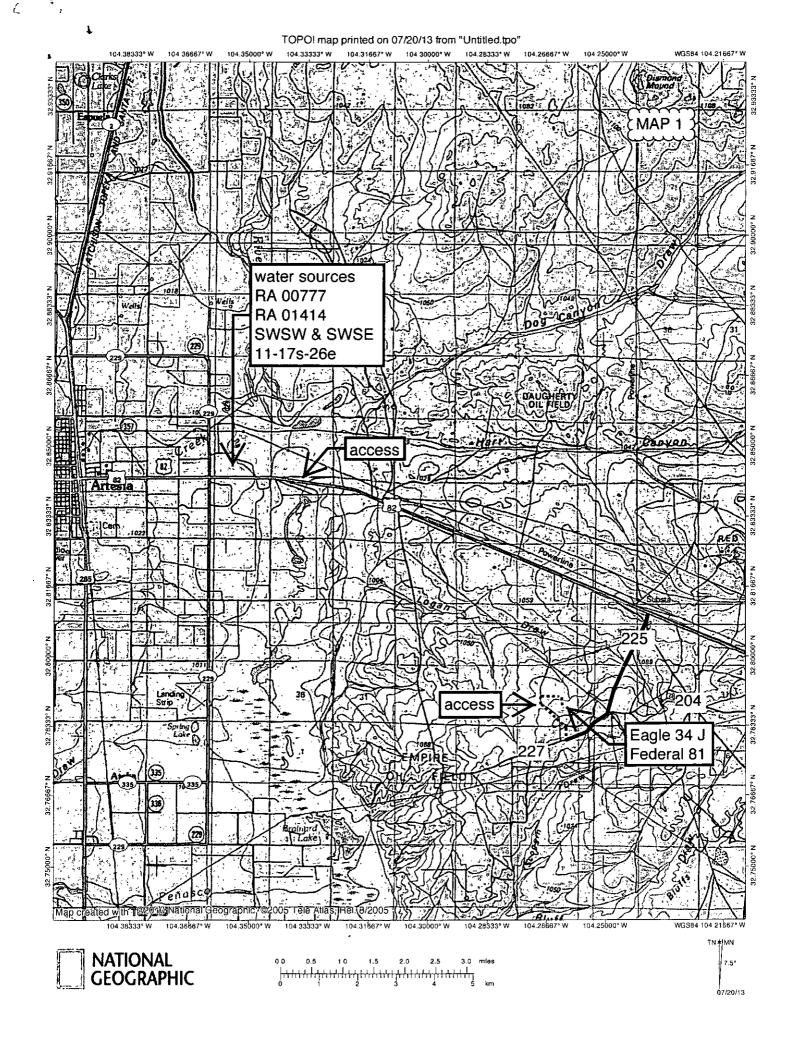
Field representative will be: Spencer Cox, Production Engineer Lime Rock Resources II-A, L.P. 1111 Bagby St., Suite 4600 Houston, TX 77002 Office: (713) 292-9528 Mobile: (432) 254-5140 FAX: (713) 292-9578

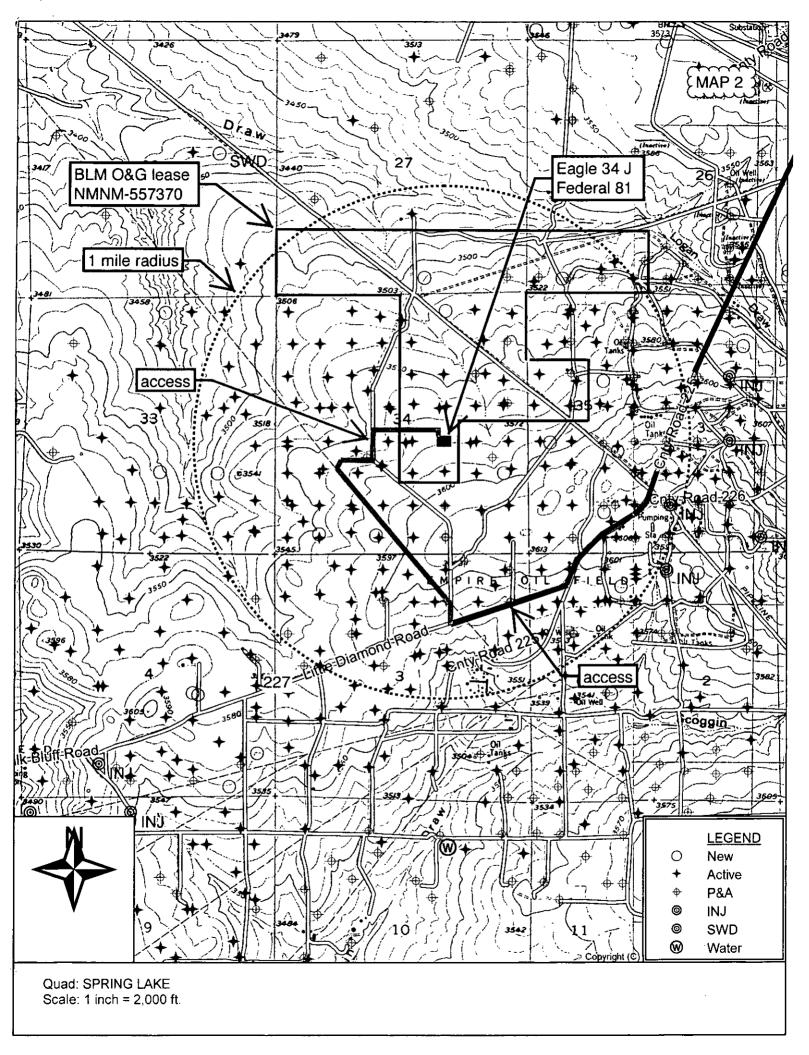
District.1 1625 N. French Dr., Hobbs. NM 38240 Pt.sne: (575) 393-6161 Fax: (575) 393-6720 District II 811 S. First St., Artesia, NM 38210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec. NM 37410 Phone: (505) 334-6173 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

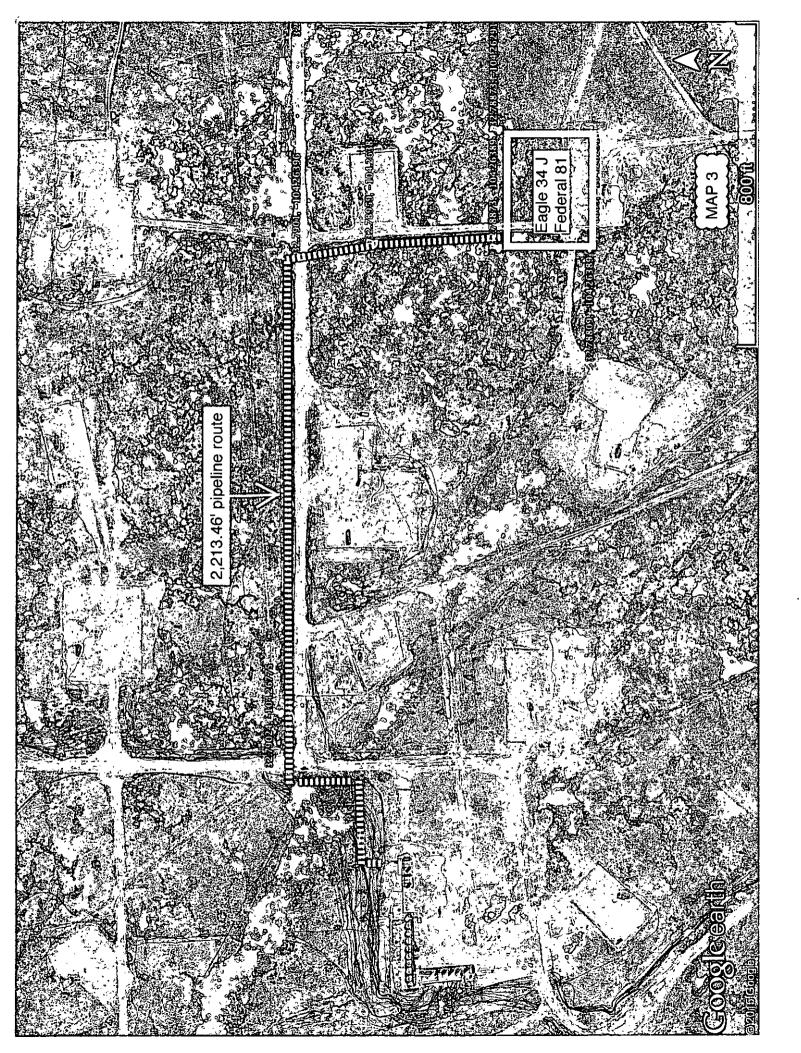
State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

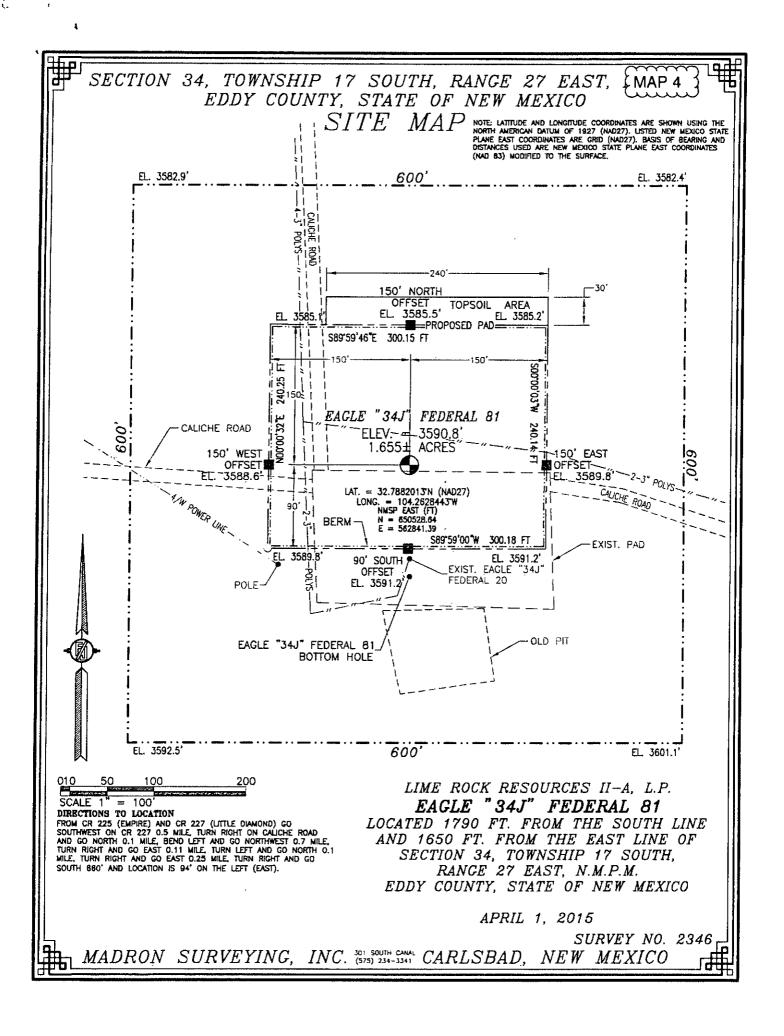

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

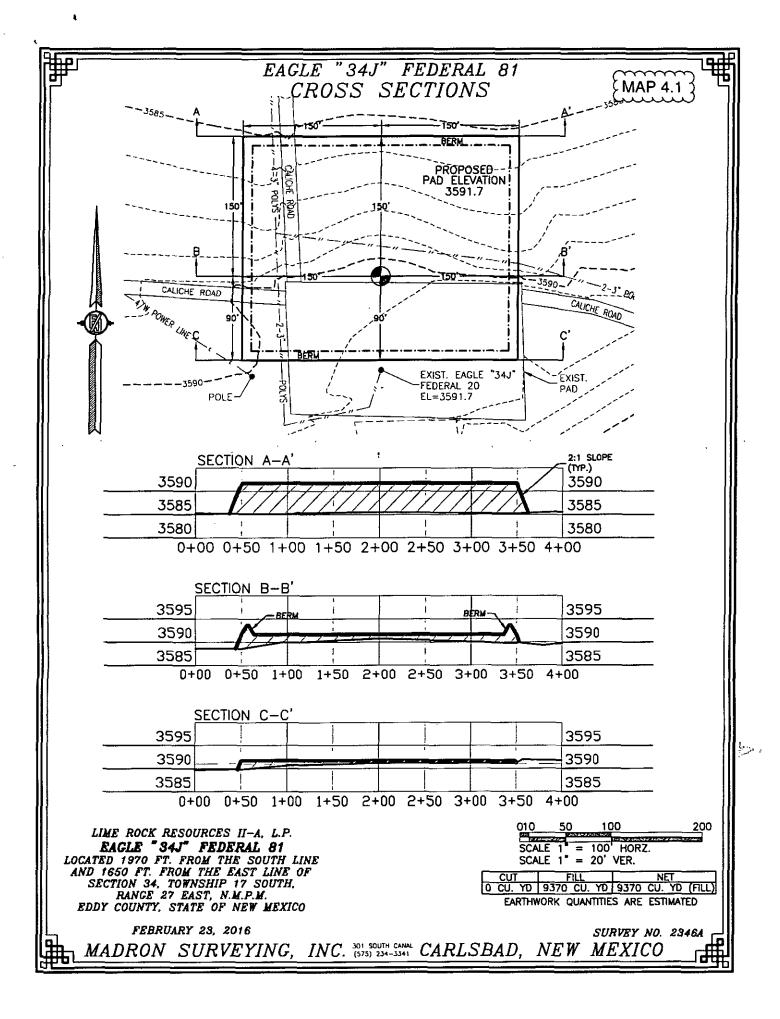
AMENDED REPORT

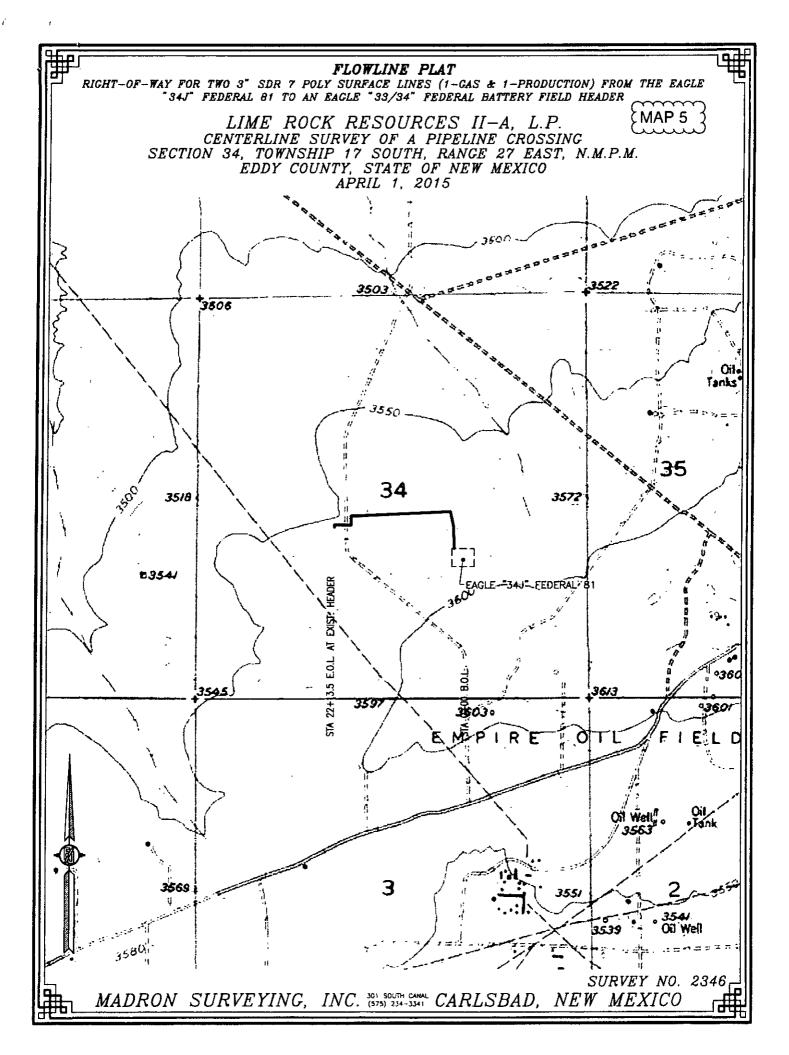

WELL LOCATION AND ACREAGE DEDICATION PLAT

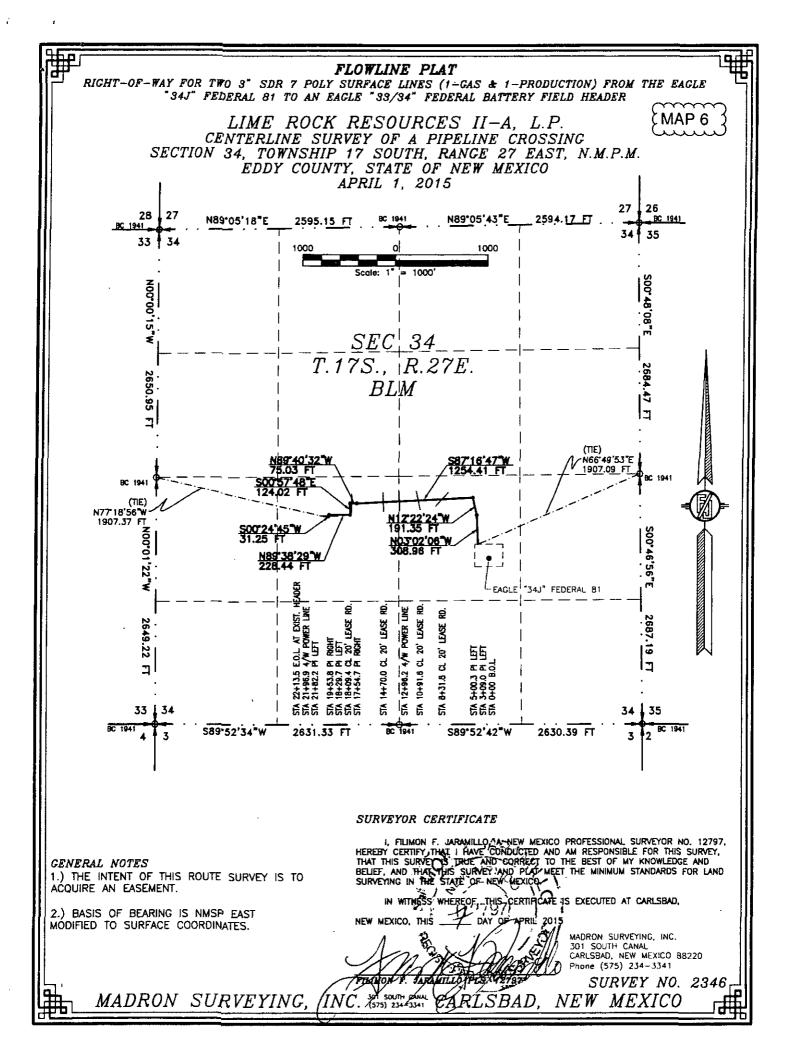

30-015-	API Numbe 4うつ	ำว		⁷ Pool Cod 96836	-	Red Lak	' Poot Na (e; Glorieta-	Yeso Northe	east
⁴ Property (30895					⁵ Property EAGLE 34J F		Well Number 81		
⁷ OGRID 27755				LIME I	^{* Operator} ROCK RESOU	Name JRCES II-A, L.I	P.		* Elevation 3590.8
					" Surface]	Location		<u></u> ,	
UL or lot no. J	Section 34	Township 17 S	Range 27 E	Lot Idn	Feet from the 1790	North/South line SOUTH	Feet from the 1650	East/West line EAST	County EDDY
			п Be	ottom Ho	ole Location	If Different Fr	om Surface		·
UL or lot no. J	Section 34	Township 17 S	Range 27 E	Lot Irin	Feet from the 1670	North/South line SOUTH	Feet from the 1650	East/West line EAST	County EDDY
¹² Dedicated Acre 40	s ¹³ Joint	or Infill 14 (Consolidation	Code			¹⁵ Order No.		1


No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.




P





FLOWLINE PLAT

RIGHT-OF-WAY FOR TWO 3" SDR 7 POLY SURFACE LINES (1-GAS & 1-PRODUCTION) FROM THE EAGLE "34J" FEDERAL 81 TO AN EAGLE "33/34" FEDERAL BATTERY FIELD HEADER

EMAP 7

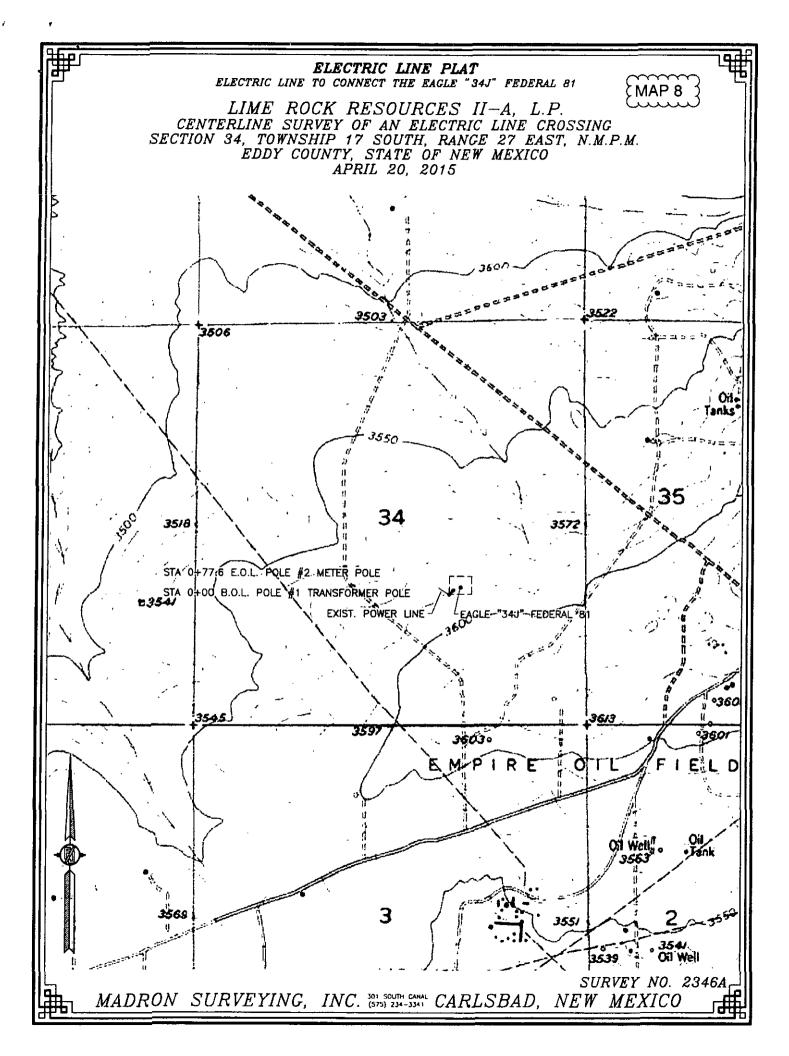
LIME ROCK RESOURCES II-A, L.P. CENTERLINE SURVEY OF A PIPELINE CROSSING SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO APRIL 1, 2015

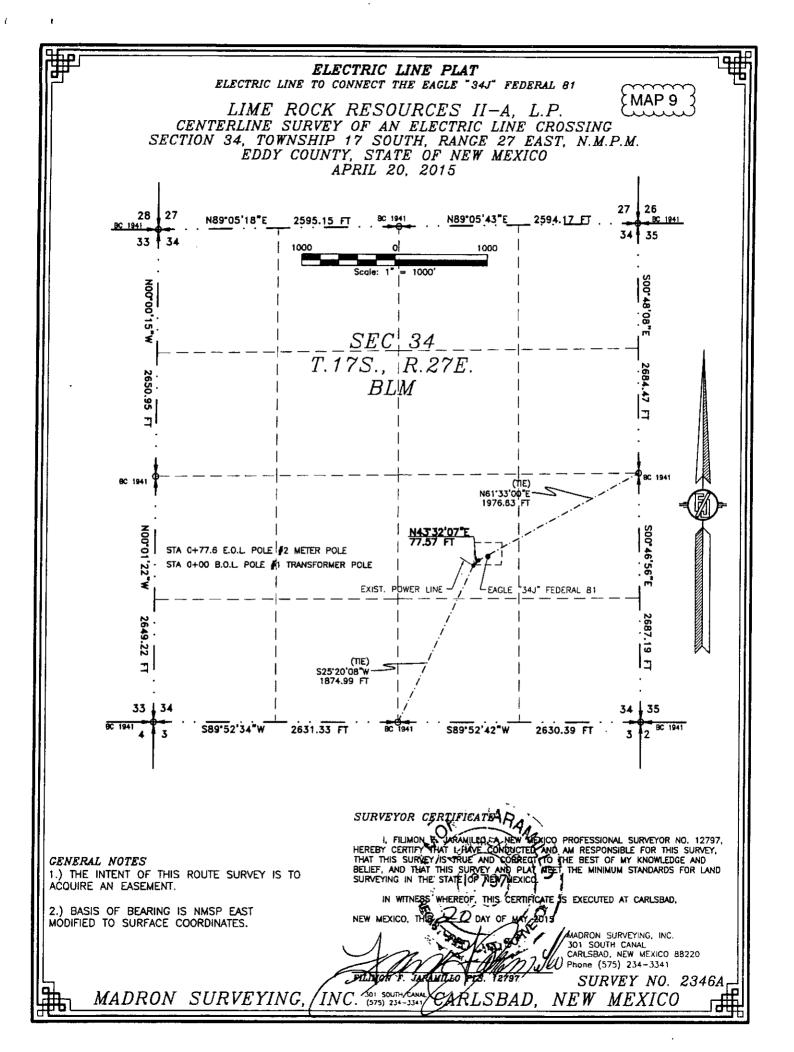
DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M., EDDY COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE NW/4 SE/4 OF SAID SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M., WHENCE THE EAST QUARTER CORNER OF SAID SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M. BEARS N66"49'53"E. A DISTANCE OF 1907.09 FEET;

THENCE N03'02'06'W A DISTANCE OF 308.96 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N12'22'24'W A DISTANCE OF 191.35 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S87'16'47'W A DISTANCE OF 1254.41 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N89'40'32'W A DISTANCE OF 75.03 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S00'57'48'E A DISTANCE OF 124.02 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N89'38'29'W A DISTANCE OF 124.02 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S00'57'48'E A DISTANCE OF 124.02 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S00'24'45'W A DISTANCE OF 228.44 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S00'24'45'W A DISTANCE OF 31.25 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE WEST QUARTER CORNER OF SAID SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M. BEARS N77'18'56'W, A DISTANCE OF 1907.37 FEET;


SAID STRIP OF LAND BEING 2213.46 FEET OR 134.15 RODS IN LENGTH, CONTAINING 1.524 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:


NW/4 SE/4 1301.24 L.F. 78.86 RODS 0.896 ACRES NE/4 SW/4 912.22 L.F. 55.29 RODS 0.628 ACRES

7

1

SURVEYOR CERTIFICATE SURVEYOR CERTIFICATE I, FILIMON F, JARAMILLO, A NEW DEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IN CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND COLAR MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW NEXICO **CENERAL NOTES** 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT. IN WITNESS WHEREOF, THIS CERTIFICATE IS EXECUTED AT CARLSBAD, 2.) BASIS OF BEARING IS NMSP EAST NEW MEXICO, THIS DAY OF APRI 291 MÓDIFIED TO SURFACE COORDINATES. - Bar MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3341 \mathcal{O} EXTNON/0 JAKAM SURVEY NO. 2346 SOT SOUTH CANNE INC. 347 SOUTH CANAL (575) 234-3341 CARL'SBAD, MADRON SURVEYING NEW MEXICO

ELECTRIC LINE PLAT ELECTRIC LINE TO CONNECT THE EAGLE "34.1" FEDERAL 81

LIME ROCK RESOURCES II-A, L.P. CENTERLINE SURVEY OF AN ELECTRIC LINE CROSSING SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO APRIL 20, 2015

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M., EDDY COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE NW/4 SE/4 OF SAID SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M., WHENCE THE SOUTH QUARTER CORNER OF SAID SECTION 34, TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M. BEARS \$25'20'08"W, A DISTANCE OF 1874.99 FEET;

THENCE N43'32'07"E A DISTANCE OF 77.57 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE EAST QUARTER CORNER OF SAID SECTION 34. TOWNSHIP 17 SOUTH, RANGE 27 EAST, N.M.P.M. BEARS N61'33'00"E, A DISTANCE OF 1976.63 FEET;

SAID STRIP OF LAND BEING 77.57 FEET OR 4.70 RODS IN LENGTH, CONTAINING 0.053 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

NW/4 SE/4 77.57 L.F. 4.70 RODS 0.053 ACRES

SURVEYOR CERTIFICATE

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT IN HAVE CONTRUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY STRUE-AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT DIS SURVEY AND FLATHEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATES OF NEW MEXICOP GENERAL NOTES 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT. IN WITNESS WHEREOF, THIS DERTIFICATE IS EXECUTED AT CARLSBAD, D DAY OF MAY 2015 2.) BASIS OF BEARING IS NMSP EAST NEW MEXICO, THIS 6 MODIFIED TO SURFACE COORDINATES. MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3341 FILLION T. JARANTI LO SURVEY NO. 2346A INC. 301 SOUTH CANAL (575) 234-3343 MADRON SURVEYING CARLSBAD. NEW MEXICO

DRILLING PLAN PAGE 1

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

Drilling Program

1. ESTIMATED TOPS

Name	TVD	MD	Content
Tansill	0'	0'	
Yates	125'	125'	fresh water
Seven Rivers*	328'	328'	oil, gas, saltwater
Queen	840'	840'	oil, gas, saltwater
Grayburg	1,338'	1,339'	oil, gas, saltwater
Premier	1,523'	1,524'	
San Andres	1,566'	1,567'	oil, gas
Glorieta	2,952'	2,956'	oil, gas
Yeso	3,052'	3,056'	oil, gas
Tubb	4,512'	4,516'	
Abo**	5,150'	5,154'	
Total Depth	5,250'	5,254'	

*in which surface casing will be set at 350' and contingency string, if needed, will be set at 375' ** Abo will not be perforated. Extra depth needed for logs and pump.

2. NOTABLE ZONES

Water bearing strata were found at 215' in the Harbold 11 (30-015-00606). That well is 2,827' northeast. Closest water well (RA 02996) is a P&A well (30-015-00739) that is 4,349' southeast and found water at a depth of 145'.

3. PRESSURE CONTROL

A 2,000 psi BOP stack and manifold system will be used. A typical 2,000 system is attached behind the directional plan. If the equipment changes, then a

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

Sundry Notice will be filed. System will meet Onshore Orders 2 (BOP) and 6 (H_2S) requirements.

The blowout preventer equipment (BOP) will consist of a 2000 psi rated, "XLT" type, National VARCO double ram preventer that will be tested to a maximum pressure of 2000 psi. The unit will be hydraulically operated and the ram type preventer will be equipped with blind rams on top and drill pipe rams on bottom. The 2M BOP will be installed on the 8-5/8" surface casing and utilized continuously until total depth is reached. All casing strings will be tested as per Onshore Order #2. This also includes a thirty-day (30) test, should the rig still be operating on the same well in thirty days.

Pipe rams will be operated and checked each 24-hour period and each time the drill pipe is out of the hole. These functional tests will be documented on the daily drilling logs.

The BOP equipment will consist of the following:

- Double ram with blind rams (top) and pipe rams (bottom),
- Drilling spool, or blowout preventer with 2 side outlets (choke side and kill side shall be at least 2" diameter),
- Kill line (2" minimum),
- 1 choke line valve (2" minimum),
- 2" diameter choke line,
- 2 kill valves, one of which will be a check valve (2" minimum),
- 1 choke, which will be capable of remote operation,
- Pressure gauge on choke manifold,
- Upper Kelly cock valve with handle available,
- Safety valve and subs to fit all drill string connections in use,
- All BOPE connections subjected to well pressure will be flanged, welded, or clamped,
- A fill-up line above the uppermost preventer.

DRILLING PLAN PAGE 3

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

4. CASING & CEMENT

Туре	Setting Depth	Hole	Casing	#/ft	Grade	Casing Thread	API	Age
Conductor	40'	20"	14"	68.7	В	Weld	No	New
Surface	350'	12.25"	8.625"	24	J-55	ST&C	Yes	New
Production	5254'	7.875"	5.5"	17	J-55	LT&C	Yes	New

All casing designed with a minimum of:

Burst Safety FactorCollapse Safety FactorTension Safety Factor1.181.202.00

. casing	depth set	sacks cement	top	gallons per sack	density (ppg)	yield (cu ft per sack)	total cubic feet	% excess	blend
conductor	40'	N/A	GL	ready mix	ready mix	ready mix	ready mix	ready mix	ready mix
surface	350'	300	GL	6.2	14.8	1.35	405	200	1
production lead	5254'	300	GL	9.8	12.8	1.903	570	80	2
production tail	5254'	620	GL	6.2	14.8	1.33	824	50	3

Surface casing blend (1) will be Class C + $\frac{1}{4}$ pound/sack cello flake + 2% CaCl₂. Centralizers will be installed as required by Onshore Order 2.

Production casing lead blend (2) will be 35:65 poz Class C + 5% NaCl + 1/4 pound/sack cello flake + 5 pounds per sack LCM-1 + 0.2% R-3 + 6% gel.

Production casing tail blend (3) will be Class C + 0.6% R-3 + $\frac{1}{4}$ pound/sack cello flake.

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

Cement volumes will be adjusted based on caliper log volumes and depths of casing and adjusted proportionately for depth changes of the multi stage tool if applicable.

A 13-3/8", 48#, H-40, ST&C, New, API contingency string will be set at 375' in a reamed 17-½" hole if circulation is lost in cave or karst (cave & karst potential to 350') and not regained. Contingency string will be cemented to the surface with 400 sacks (536 cubic feet) Class C + ¼ pound per sack cello flake + 2% CaCl₂ mixed with 6.2 gallons per sack to yield 1.34 cubic feet per sack and 14.8 pounds per gallon. Excess >100%

Upon the setting of a 13-3/8" contingency casing string, a 13-5/8" x 13-3/8" weld on wellhead will be installed. A 13-3/8" to 11" adapter flange will be installed and the 11" XLT 2000 psi NOV double ram BOP/BOPE (Schematic attached) will be installed. The BOP will be tested against the casing to 70% of the internal yield pressure of the 13-3/8", 48#, H-40, ST&C (1211 psi) casing and held for 30 minutes before drilling out the 13-3/8" casing shoe. The formation will be drilled with a 10-3/4" bit approximately 50 feet past the 13-3/8" casing shoe into a competent formation and 8-5/8" casing will be set at approximately 425' (\geq 50' beyond the previous casing shoe) in the Seven Rivers and cemented with 410 sacks (549 cubic feet) Class C + 1/4 pound per sack cello flake + 2% CaCl₂ mixed with 6.2 gallons per sack to yield 1.34 cubic feet per sack and 14.8 pounds per gallon. Excess >125%

5. MUD PROGRAM

An electronic/mechanical mud monitor will with a minimum pit volume totalizer, stroke counter, and flow sensor will be used. All necessary mud products will be on site to handle any abnormal hole condition that could possibly be encountered during the drilling of this well. Circulation could be lost in the Grayburg and San Andres.

DRILLING PLAN PAGE 5

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

Interval	0′ – 375′ (if contingency string run)	0' - 350'	350' - 5104'	5104' -TD
Туре	fresh water	fresh water	brine	brine w/ gel & starch
weight	8.5 - 9.2	8.5 - 9.2	9.9 - 10.2	9.9 - 10.2
pH	10	10	10 - 11.5	10 - 11.5
WL	NC	NC	NC	15 - 20
viscosity	28 - 34	28 - 34	30 - 32	32 - 35
MC	NC	NC	NC	1
solids	NC	NC	<2%	<3%
pump rate	300 - 350 gpm	300 - 350 gpm	350 - 400 gpm	400 - 450 gpm
other	LCM as needed	LCM as needed	salt gel & MF as needed, pump high viscosity sweeps to control solids	salt gel, acid, & MF as needed; pump high viscosity sweeps to control solids

6. <u>CORES, TESTS, & LOGS</u>

No core or drill stem test is planned. A triple combo with spectral GR - dual lateral log, micro spherical focused log, & spectral density log will be run after tagging total depth. Will log from total depth to surface. A dual spaced neutron log and compensated spectral natural GR log will be run from TD to surface.

7. DOWN HOLE CONDITIONS

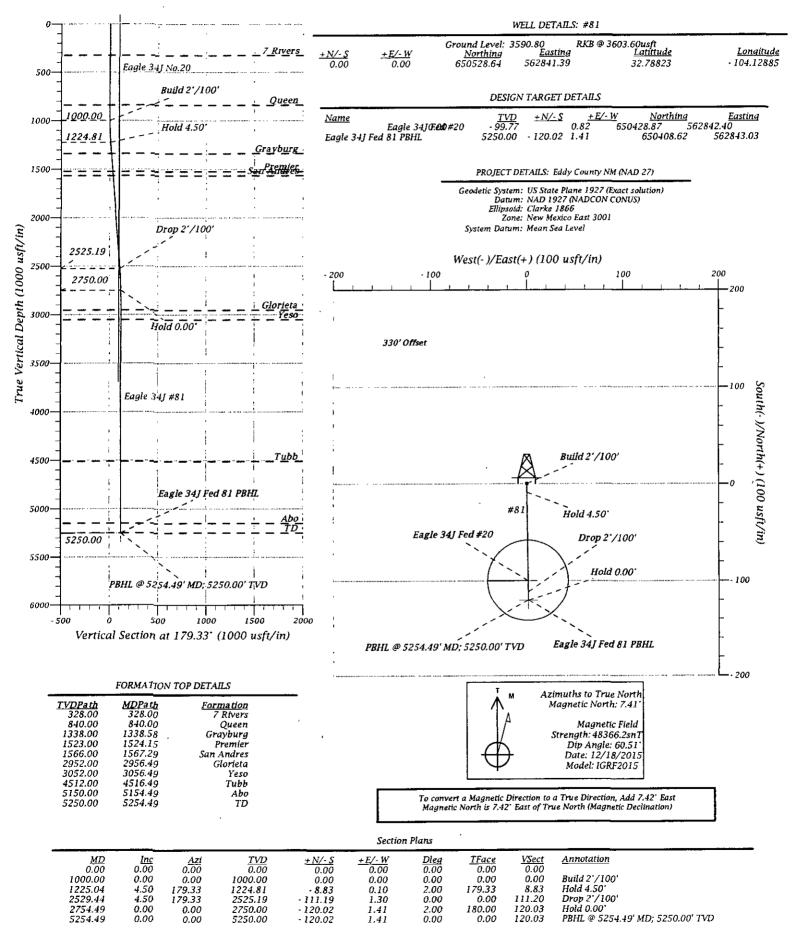
No abnormal pressure or temperature is expected. Maximum expected bottom hole pressure is $\approx 2,273$ psi. No H₂S is expected during the drilling phase. Nevertheless, H₂S monitoring equipment will be on the rig floor and air packs will be available before drilling out of the surface casing. The mud logger will be warned to use a gas trap to detect H₂S. If any H₂S is detected, then the mud weight will be increased and H₂S inhibitors will be added to control the gas. An H₂S drilling operations contingency plan is attached.

DRILLING PLAN PAGE 6

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

The well is located in a potential cave or karst area. Thus, lost circulation is possible down to 350'. See the contingency casing string and cement plan on Page 4.

8. OTHER INFORMATION


The anticipated spud date is upon approval. It is expected it will take ≈ 1 month to drill and complete the well.

Lime Rock Resources Eddy County NM (NAD 27) Eagle 34J #81 Plan #1

DIR.	ILDRESS ECTIONA RILLING				Planning R	eport				LIME ROCK RESOURCES
Database: Company: Project: Site: Well: Wellbore: Design:	Lime Eddy Eagle #81	al Hole	s		TVD Rêfe MD Refer North Ref	ence: ference: alculation Met		Well #81 RKB @ 3603.60u RKB @ 3603.60u True Minimum Curvatu	ısft	
Project	Eddy C	County NM (NA	D 27)							
Map System: Geo Datum: Map Zone:	NAD 192	e Plane 1927 (E 27 (NADCON C xico East 3001			System Da	tum:	Me 	ean Sea Level		
Site	Eagle	34J				·····				
Site Position: From: Position Uncerta	Maj ainty:		Northir Easting Dusft Slot Ra	e J:		,528.64 usft ,841.39 usft 13.200 in	Latitude: Longitude: Grid Converg	ence:		32.78823 -104.12885 0.11 °
Weil	#81)
Well Position	+N/-S +E/-W			thing: ting:	a and an and a second secon	650,528.64 562,841.39	usft Lon	ltude: gitude:	an in a suite de la contra de la contra de la	32.78823 -104.12885 3,590.80 usft
Position Uncerta		al Hole	00 usft We	Ihead Elevati			usît Gro	und Level:		
Magnetics	Mo	del Name	Sample	··	Declina (°)		Dip A (°), • ;		itrength 1T)
		IGRF2015	12	/18/2015		7,42		60.51		48,366
Design	Plan #1	 				· · · · · · · · · · · · · · · · · · ·				
Audit Notes: Version:			Phase	PI	ROTOTYPE	Tie	On Depth:	C	0.00	
Vertical Section:		D	epth From (TVI (usft)	D)	+N/-S (usft)	(u	/-W sft)	Direc ('	') 	
			0.00		0.00	0.	00	179		
Plan Sections Measured Depth (usft)	Inclination (°)	, Azimuth (°)	Vertical Dépth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	тғо (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1,000.00 1,225.04	0.00 4.50	0.00 179.33	1,000.00 1,224.81	0.00 -8.83	0.00 0.10	0.00 2.00	0.00 2.00	0.00 0.00	0.00 179.33	
2,529,44 2,754,49	4.50 0.00	179.33 0.00	2,525.19 2,750.00	-111.19 -120.02	1.30 1.41	0.00	0.00	0.00	0.00	
5,254.49	0.00	0.00	5,250.00	-120.02	1.41	0.00	0.00	0.00	0,00	Eagle 34J Fed 81 PBI

ç

魚小	CHILDRESS DIRECTIONAL DRILLING

Planning Report

Database:	EDM 5000.1 Single User Db	Local Co-ordinate Reference:	Well #81
(Company: /	Lime Rock Resources	TVD Reference:	RKB @ 3603.60usft
Project:	Eddy County NM (NAD 27)	MD Reference:	RKB @ 3603.60usft
Site:	Eagle 34J	North Reference:	True
Well:	#81	Survey Calculation Method:	Minimum Curvature
Wellbore:	Original Hole		
Design:	Plan #1		

Planned Survey

τ.

Measured Depth (usft)			Vertical Depth (usft)	+N/-S	+E/-W	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	(°)	<u>، (°)</u>	(uait)	(usft)	(usft)				
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0,00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
328.00	0.00	0.00	328.00	0.00	0.00	0.00	0.00	0.00	0.00
7 Rivers	0.00	0.00	020.00	0.00	0.00	0.00	0.00	0.00	0.00
400,00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00
		0.00	500.00						0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
840.00	0.00	0.00	840.00	0.00	0.00	0.00	0.00	0,00	0.00
Queen									
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
Build 2°/100'									
1,100.00	2.00	179.33	1,099.98	-1.75	0.02	1.75	2.00	2.00	0.00
1,200.00	4.00	179.33	1,199.84	-6.98	0.08	6.98	2.00	2.00	0.00
1,225.04 Hold 4.50°	4.50	179.33	1,224.81	-8.83	0.10	8.83	2.00	2,00	0.00
1,300.00	4.50	179.33	1,299.54	-14.72	0.17	14.72	0.00	0.00	0.00
1,338.58	4.50	179.33	1,338.00	-17.74	0.21	17.74	0.00	0.00	0.00
Grayburg			,						
1,400.00	4.50	179.33	1,399.23	-22.56	0.26	22.56	0.00	0.00	0.00
1,500.00	4.50	179.33	1,498.92	-30.41	0.36	30.41	0.00	0.00	0.00
1,524.15	4.50	179.33	1,523.00	-32.30	0.38	32.31	0.00	0.00	0.00
Premier 1,567.29	4.50	179.33	1,566.00	-35.69	0.42	35.69	0.00	0.00	0.00
San Andres									
1,600.00	4.50	179.33	1,598.61	-38.26	0.45	38.26	0.00	0.00	0.00
1,700.00	4.50	179.33	1,698.30	-46.10	0.54	46.11	0.00	0.00	0.00
1,800.00	4.50	179.33	1,798.00	-53.95	0.63	53.95	0.00	0,00	0.00
1,900.00	4.50	179.33	1,897.69	-61.80	0.72	61.80	0.00	0.00	0.00
2,000.00	4.50	179.33	1,997.38	-69.64	0.82	69.65	0.00	0.00	0.00
2,100.00	4.50	179.33	2,097.07	-77.49	0.91	77.50	0.00	0.00	0.00
2,200.00	4.50	179.33	2,196.76	-85.34	1.00	85.34	0.00	0.00	0.00
2,300.00	4.50	179.33	2,296.45	-93.18	1.09	93.19	0.00	0.00	0.00
2,400.00	4.50	179.33	2,396.15	-101.03	1.19	101.04	0.00	0.00	0.00
2,500.00	4.50	179.33	2,495.84	-108.88	1.28	108.89	0.00	0.00	0.00
2,529.44	4.50	179.33	2,525.19	-111.19	1.30	111.20	0.00	0.00	0.00
Drop 2°/100'									
2,600.00	3.09	179.33	2,595.59	-115.86	1.36	115.87	2.00	-2.00	0.00
2,700.00	1.09	179.33	2,695.52	-119.50	1.40	119.51	2.00	-2.00	0.00
2,754.49	0.00	0.00	2,750.00	-120.02	1.41	120.03	2.00	-2.00	0.00
Hold 0.00*									
2,800.00	0,00	0.00	2,795.51	-120.02	1.41	120.03	0.00	0,00	0.00
2,900.00	0.00	0.00	2,895.51	-120.02	1.41	120.03	0.00	0.00	0.00
2,956,49	0.00	0.00	2,952.00	-120.02	1.41	120.03	0.00	0.00	0.00
Glorieta	0.00	0.00	2,002.00			.20.00	0.00		2.50
3,000.00	0.00	0.00	2,995.51	-120.02	1.41	120.03	0.00	0.00	0.00
3,056.49	0.00	0.00	3,052.00	-120.02	1.41	120.03	0.00	0,00	0.00
Yeso									

Patabase: company: roject: ite: Vell: Vellbore: Pesign:	EDM 5000.1 Si Lime Rock Res Eddy County N Eagle 34J #81 Original Hole Plan #1	sources		TVD R MD'Re North I	Co-ordinate Re eference: ference: Reference: r Calculation N		Well #81 RKB @ 3603.60usft RKB @ 3603.60usft True Minimum Curvature			
Planned Survey Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
3,200.00	0.00	0.00	3,195.51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,300.00	0.00	0.00	3,295.51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,400.00	0.00	0.00	3,395.51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,500.00	0.00	0.00	3,495,51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,600.00	0.00	0.00	3,595.51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,700.00	0.00	0.00	3,695.51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,800.00	0.00	0.00	3,795.51	-120.02	1.41	120.03	0.00	0.00	0.00	
3,900.00	0.00	0.00	3,895.51	-120.02	1.41	120.03	0.00	0.00	0.00	
4,000.00	0.00	0.00	3.995,51	-120.02	1.41	120.03	0.00	0.00	0.00	
4,100.00	0,00	0.00	4,095.51	-120.02	1.41	120.03	0.00	0.00	0.00	
4,200.00	0.00	0.00	4,195.51	-120.02	1.41	120.03	0.00	. 0.00	0.00	
4,300.00	0.00	0.00	4,295.51	-120.02	1.41	120.03	0.00	0.00	0.00	
4,400.00	0.00	0.00	4,395.51	-120.02	1,41	120.03	0.00	0.00	0.00	
4,500.00	0.00	0.00	4,495.51	-120.02	1.41	120.03	0.00	0.00	0.00	
4,516.49	0.00	0.00	4,512.00	-120.02	1.41	120.03	0.00	0.00	0.00	
Тирр	0.00	0.00	4,012.00	120.02	1.41	120.00	0.00		0.00	
	0.00	0.00	4,595.51	-120.02	1.41	120.03	0.00	0.00	0.00	
4,600.00 4,700.00	0.00	0.00	4,695.51	-120.02	1.41	120.03	0.00	0.00	0.00	
-	0.00	0.00	4,795.51	-120.02 -120.02	1.41	120.03	0.00	0.00	0.00	
4,800.00	0.00	0.00	4,795.51	-120.02	1.41	120.03				
4,900.00	0.00	0.00	4,895.51	-120.02	1.41	120.03	0.00	0.00	0.00	
5,000.00	0.00	0.00	4,995.51	-120.02	1.41	120.03	0.00	0.00	0.00	
5 ,100.00	0.00	0.00	5,095.51	-120.02	1.41	120.03	0.00	0.00	0.00	
5,154.49	0.00	0.00	5,150.00	-120.02	1.41	120.03	0.00	0.00	0.00	
Abo										
5,200.00	0.00	0.00	5,195.51	-120.02	1.41	120.03	0.00	0.00	0.00	
5,254,49	0.00	0.00	5,250.00	-120.02	1.41	120.03	0.00	0.00	0.00	
	4.49' MD; 5250.00	חד - חעד יי								

Design Targets	······································		·····		,	·····		<u></u>	
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Eagle 34J Fed 81 PBHL - plan hits target ce - Point		0.11	5,250.00	-120.02	1.41	650,408.62	562,843.03	32.78790	-104.12885

.

100 B 100 B 10 B

		Planning Report			
Database: Company: Project: Site: Well: Wellbore: Design:	EDM 5000.1 Single User Db Lime Rock Resources Eddy County NM (NAD 27) Eagle 34J #81 Original Hole Plan #1	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Well #81 RKB @ 3603.60usft RKB @ 3603.60usft True Minimum Curvature		
Formations					

Formations

,

٠

.

Measured Depth (usft)	Vertical Depth (usft)	_	Name	· · ·	- 10 - 2 	Lithology	 Dip (°)	Dip Direction (°)	
 328.00	328.00	7 Rivers							
840.00	840.00	Queen							
1,338.58	1,338.00	Grayburg							
1,524.15	1,523.00	Premier							
1,567.29	1,566.00	San Andres							
2,956.49	2,952.00	Glorieta							
3,056.49	3,052.00	Yeso							1
4,516.49	4,512.00	Tubb	;						
5,154.49	5,150.00	Abo	2						
5,254.49	5,250.00	TD	•						

lan Annot	an Annotations											
-	• Measured	Vertical	Local Coor	dinates «		·						
	Depth	Depth	+N/-S	+E/-W	· · · · · · · · · · · · · · · · · · ·							
	(usft)	(usft)	(usft)	(usft)	Comment							
	1,000.00	1,000.00	0.00	0.00	Build 2°/100'							
	1,225.04	1,224.81	-8.83	0.10	Hold 4.50°							
	2,529.44	2,525.19	-111.19	1.30	Drop 2°/100'							
	2,754.49	2,750.00	-120.02	1.41	Hold 0.00°							
	5,254.49	5,250.00	-120.02	1.41	PBHL @ 5254.49' MD; 5250.00' TVD							

.

Lime Rock Resources

Eddy County NM (NAD 27) Eagle 34J #81

Original Hole Plan #1

Anticollision Report

best

18 December, 2015

魚	DIREC	DRESS TIONA LLING				A	nticollision R	eport						ROCI JRCE
Company	<i>(</i> ; ,	Lime	Rock Res	ources			Local Co-o	rdinate R	eférence.	[v	vell #81			- <u></u>
Project:	•• •.			M (NAD 27)			TVD Refere		n .	1	KB @ 360	3.60ust		
Reference	e Site: ⁷	Eagle					MD Referen	·	,		KB @ 360			
Site Error		0.00					North Refer	2			rue	0.00031		
Reference		#81	USIC				Survey Cal		Nothod:		linimum Cu	in/stura		
Well Error		0.00	ueft				Output erro			1	.00 sigma	avaluie		
· • • •	e Wellbore	· * 1	nal Hole				Database:	wa"ain ai	а Б		-	I Single Us	or Dh	
-	e Design:	Plan					Offset TVD	Referenc			eference D	-		
	e beaign.						onservy			· []				
Reference	e	Pla	an #1											
Filter typ	De:	NC) GLOBAL	FILTER: Us	sing user	defined select	ion & filtering cr	iteria						
Interpola	ation Metho	od: Sta	ations				Erre	or Model	:	ISC	WSA			
Depth Ra	ange:	Un	limited				Sca	n Metho	d:	Clos	sest Approa	ach 3D		
Results I	Limited by	: Ma	aximum ce	nter-center (distance d	of 9,999.98 us	ft Erre	or Surfac	e:	Ellip	tical Conic	:		
Warning	Levels Ev	aluated at:	:	2.00 Sign	ia		Cas	sing Meth	nod:	Not	applied			
Survey To	ool Progra	Im	0)ate 12/18	/2015						-			
Fr	rom	То							•					
(u	usft)	(usf	t) √Su	rvey (Wellb	ore)		Tool	Name		Des	cription			
	0.00		254 49 Pla	an #1 (Origin	al Hole)		MW			M\A	/D v3:stand	dard declina	tion	
Summary	1.	<u> </u>							· .			<u> </u>		
Site Na	ame	(Design			Mea D	asured Meas epth De	fset sured pth sft)			veen Se oses	eparation Factor	Warning	······································
Site Na Offs Eagle 3	ame set Well - V 34J	Nellbore - I		e		Me: D (i	asured Meas epth De usft) (us	sured pth	Di Between Ceritres	stance Betv Ellig	veen Se oses	Factor		· · · · · · · · · · · · · · · · · · ·
Site Na Offs Eagle 3 No.2	ame set Well - V 34J 20 - Origin	ai Hoie - O	riginal Hol		Hole - Or	Me: D (1	asured Meas epth De usft) (us	sured pth sft)	Di Between Centres (usft)	stance Betv Ellig	veen So oses sft)	Factor	Warning	0.00 us
Site Na Offs Eagle 3 No.2	ame set Well - V 34J 20 - Origin 20 - Origin	al Hole - O Eagle 3 8-NS-GYRO-N	riginal Hol 34J - No.2	e 0 - Original	Hole - Or	Me: D (1	asured Meas epth De usft) (us	sured pth sft)	Di Between Centres (usft)	stance Betv Ellig	veen So oses sft)	Factor	Warning CC, ES, SF	
Site Na Offs Eagle 3 No.2 Offset De Survey Prog Refer	ame set Well - V 34J 20 - Origin 20 - Origin esign gram: 3154 rence	al Hole - O Eagle 3 8-NS-GYRO-M Offs	riginal Hol 34J - No.2 AS	0 - Original Seml Major	Axis	Me: D (i ginal Hole	asured Meas epth De usft) (u 2,349.55 2,	sured pth sft) 330.12	Di Between Centres (usft) 15.6	stance Betv Ellig (us	veen Se pses sft) 7.40	Factor 1.901	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De Survey Prog Refer Measured	ame set Well - V 34J 20 - Origin 20 - Origin 20 - Origin 20 - Vertical	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured	riginal Hol 34J - No.2 4S tet Ventica!	0 - Original		Mea D (i ginal Hole Highside	asured Meas epth De usft) (u 2,349.55 2, 0ffset Wellbore Ce	sured pth sft) 330.12	Di Between Centres (usft) 15.6 Dista Between	stance Betv Ellig (us)1 nce Between	veen Soses sett) 7.40 Minimum	Factor 1.901 Separation	Warning CC, ES, SF Offset Site Error:	0.00 us
Site Na Offs Eagle 3 No.2 Offset De	ame set Well - V 34J 20 - Origin 20 - Origin esign gram: 3154 rence	al Hole - O Eagle 3 8-NS-GYRO-M Offs	riginal Hol 34J - No.2 AS	0 - Original Seml Major	Axis	Me: D (i ginal Hole	asured Meas epth De usft) (u 2,349.55 2, 0ffset Wellbore Ce +N/-S +E	sured pth sft) 330.12	Di Between Centres (usft) 15.6	stance Betv Ellig (us	veen Se pses sft) 7.40	Factor 1.901	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De urvey Prog Refen Aeasured Depth	ame set Well - V 34J 20 - Origin 20 - Origin asign gram: 3150 gram: 3150 gram: 3150 pesth Uepth (usft)	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth	riginal Hol 34J - No.2 AS Vertical Depth	0 - Original Seml Major Reference	Axis Offset	Me: D (1 2 iginal Hole Highside Toolface	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E	sured pth sft) 330.12	Di Between Centres (usft) 15.6 Dista Between Centres	stance Betv Ellig (us)1 nce Between Ellipses	veen S ses sft) 7.40 Minimum Separation	Factor 1.901 Separation	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De urvey Prog Refer teasured Depth (ustt)	ame set Well - V 34J 20 - Origin 20 - Origin 20 - Origin 20 - Ventical 20 - Origin 20 - Ventical 20 - Origin 20 -	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft)	riginal Hol 34J - No.2 //S /vertica! Depth (usft)	0 - Original Seml Major Reference (usft)	Axis Offset (usft)	Me: D (1 iginal Hole Highside Toolface (*)	asured Meas epth De usft) (u: 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u	sured pth sft) 330.12 	Di Between Centres (usft) 15.6 Dista Between Centres (usft)	stance Betv Ellig (us)1 nce Between Ellipses	veen S ses sft) 7.40 Minimum Separation	Factor 1.901 Separation	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De urvey Progu Refen deasured Depth (ustr) 0 00 100.00 200 00	ame set Well - V 34J 20 - Origin 20 - Orig	al Hole - O Eagle 3 8-NS-GYRO-N Offs Measured Depth (usft) 0.00 84.40 184.40	riginal Hol 34J - No.2 ts Vertica! Vertica! Vertica! 15.60 100.00 200.00	0 - Original Semi Major Reference (usft) 0 00 0 05 0,16	Axis Offset (usft) 0.00 0.06 0.12	Mea D (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	asured Meas epth De usft) (u: 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77	sured pth sft) 330.12 	Di Between Centres (usft) 15.6 Dista Between Centres (usft) 100.98 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (ust) 99.56 99.20	veen So pses sft) 7.40 Minimum Separation (usft) 0.21 0.57	Factor 1.901 Separation Factor 474 265 175.640	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De urvey Prog Refer Measured Depth (usft) 0.00 100.00 200.00 300.00	ame set Well - V 34J 20 - Origin 20 - Orig	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40	riginal Hol 34J - No.2 AS Vertical Depth (usft) 15.60 100.00 200.00 300.00	0 - Original Seml Major Reference (usft) 0 00 0 05 0.16 0.27	Axis Offset (usft) 0.00 0.06 0.12 0.19	Me: D (i iginal Hole Highside Toolface (*) 179.56 179.57 179.61 179.69	asured Meas epth De usft) (ur 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77	sured pth sft) 330.12 	Di Between Centres (usft) 15.6 Distan Between Centres (usft) 100.98 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (usft) 99.56 99.20 98.84	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93	Factor 1.901 Separation Factor 474 265 175.640 107.777	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De urvey Progra Refer teasured Depth (usrt) 0 00 100.00 200 00 300 00 400.00	ame set Well - V 34J 20 - Origin esign gram: 315 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 400.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40	riginal Hol 34J - No.2 /S vertical Depth (usR) 15.60 100.00 200.00 300.00 400.00	0 - Original Seml Major Reference (usft) 0 00 0 05 0 05 0 05 0 05 0 05 0 39	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.26	Me: D (t) 2 (t) 2 (t) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77	stred pth sft) 330.12 	Di Between Ceritres (usft) 15.6 Dista Between Centres (usft) 100.98 99.77 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (ustr) 99.56 99.20 98.84 98.49	veen Soses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28	Factor 1.901 Separation Factor 474 265 175.640 107.777 77.739	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- jurvey Prog Refer Measured Depth (usft) 100.00 200.00 300.00	ame set Well - V 34J 20 - Origin esign gram: 315 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 400.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40	riginal Hol 34J - No.2 AS Vertical Depth (usft) 15.60 100.00 200.00 300.00	0 - Original Seml Major Reference (usft) 0 00 0 05 0.16 0.27	Axis Offset (usft) 0.00 0.06 0.12 0.19	Me: D (i iginal Hole Highside Toolface (*) 179.56 179.57 179.61 179.69	asured Meas epth De usft) (ur 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77	sured pth sft) 330.12 	Di Between Centres (usft) 15.6 Distan Between Centres (usft) 100.98 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (usft) 99.56 99.20 98.84	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93	Factor 1.901 Separation Factor 474 265 175.640 107.777	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- iurvey Prog. Refer deasured Depth (ust) 0 00 100.00 200 00 300 00 400.00	ame set Well - V 34J 20 - Origin 20 - Origin 20 - Origin 315/ rence Vertical Depth (ust) 0.00 100 00 200 00 300.00 400.00 500.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40	riginal Hol 34J - No.2 /S vertical Depth (usR) 15.60 100.00 200.00 300.00 400.00	0 - Original Seml Major Reference (usft) 0 00 0 05 0 05 0 05 0 05 0 05 0 39	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.26	Me: D (t) 2 (t) 2 (t) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77	stred pth sft) 330.12 	Di Between Ceritres (usft) 15.6 Dista Between Centres (usft) 100.98 99.77 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (ustr) 99.56 99.20 98.84 98.49	veen Soses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28	Factor 1.901 Separation Factor 474 265 175.640 107.777 77.739	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- iurvey Progr Refer deasured Depth (ust) 0 00 100.00 200 00 300 00 400.00 500 00 542 29 600 00	ame set Well - V 34J 20 - Origin asign gram: 3150 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 400.00 500.00 542.29 600.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40 384.40	riginal Hol 34J - No.2 ts Vertica! Depth (usrt) 15.60 100.00 200.00 300.00 400.00 500.00	0 - Original Semi Major Reference (usft) 0 00 0 05 0.16 0.27 0.39 0.50	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.25 0.32	Me: D (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)	asured Meas epth De usft) (u: 2,349.55 2, 0ffset Wellbore Ce +N/-S +E {usft} (u -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77	sured pth sft) 330.12 	Di Between Centres (usft) 15.6 Dista Between Centres (usft) 100.98 99.77 99.77 99.77 99.77 99.77 99.77	stance Betv Ellig (us) 1 Between Ellipses (ush) 99.56 99.20 99.84 98.49 98.13	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28 1.64	1.901 Separation Factor 474 265 175.640 107.777 77.739 6C.795	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- iurvey Progr Refer Measured Depth (ustr) 0 00 100.00 200 00 300 00 300 00 500 00 500 00 500 00 500 00 700.00	ame set Well - V 34J 20 - Origin aram: 315 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 400.00 500.00 542.29 600.00 700.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40 384.40 484.40 526.69 584.40 684.40	riginal Hol 34.J - No.2 /S vertical Depth (usrt) 15.60 100.00 200.00 300.00 400.00 500.00 500.00 542.29 600.00 700.00	0 - Original Semi Major Reference (usft) 0 00 0 05 0.16 0.27 0.39 0.50 0 55 0.61 0.72	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.25 0.32 0.35 0.39 0.45	Me: D (tr 2 iginal Hole Highside Toolfacè (*) 179.56 179.57 179.69 179.79 179.93 180.00 -179.90 -179.70	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77	stred pth sft) 330.12 antre z-W sstt) 0.77 0.75 0.67 0.54 0.36 0.12 0.00 -0.18 -0.53	Di Between Centres (usft) 15.6 Distar Between Centres (usft) 100.98 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77	stance Betv Ellig (us 31 nce Between Ellipses (usft) 99.56 99.20 98.84 98.49 98.13 97.98 97.77 97.41	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28 1.84 1.79 2.00 2.36	Factor 1.901 Separation Factor 474 265 175.640 107.777 77.739 6C.795 55.665 49 916 42.340	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- lurvey Prog Refer deasured Depth (usft) 0 00 100.00 200 00 300 00 300 00 500 00 500 00 500 00 500 00 500 00 500 00 500 00 500 00 700.00 800.00	ame set Well - V 34J 20 - Origin asign gram: 3154 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 300.00 500.00 542.29 600.00 700.00 800.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40 384.40 526.69 584.40 684.40 784.40	riginal Hol 34J - No.2 AS Vertical Depth (usft) 15.60 100.00 200.00 200.00 300.00 400.00 500.00 542.29 600.00 700.00 800.00	0 - Original Semi Major Reference (usft) 0 00 0 05 0.16 0.27 0.39 0.50 0 55 0.61 0.72 0.84	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.25 0.32 0.35 0.39 0.45 0.52	Me: D (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77	sured pth sft) 330.12 antre 2-W sft) 0.77 0.75 0.67 0.54 0.36 0.12 0.00 -0.18 -0.53 -0.93	Di Between Centres (usft) 15.6 Dista Between Centres (usft) 100.98 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (usft) 99.56 99.60 99.84 98.49 98.13 97.98 97.77 97.41 97.06	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28 1.64 1.79 2.00 2.36 2.71	1.901 Separation Factor 474 265 175.640 107.777 77.739 6C.795 55.665 49 916 42.340 36.761	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- iurvey Progr Refer Measured Depth (ustr) 0 00 100.00 200 00 300 00 300 00 500 00 500 00 500 00 500 00 700.00	ame set Well - V 34J 20 - Origin asign gram: 3154 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 300.00 500.00 542.29 600.00 700.00 800.00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40 384.40 484.40 526.69 584.40 684.40	riginal Hol 34.J - No.2 /S vertical Depth (usrt) 15.60 100.00 200.00 300.00 400.00 500.00 500.00 542.29 600.00 700.00	0 - Original Semi Major Reference (usft) 0 00 0 05 0.16 0.27 0.39 0.50 0 55 0.61 0.72	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.25 0.32 0.35 0.39 0.45	Me: D (tr 2 iginal Hole Highside Toolfacè (*) 179.56 179.57 179.69 179.79 179.93 180.00 -179.90 -179.70	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77	stred pth sft) 330.12 antre z-W sstt) 0.77 0.75 0.67 0.54 0.36 0.12 0.00 -0.18 -0.53	Di Between Centres (usft) 15.6 Distar Between Centres (usft) 100.98 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77	stance Betv Ellig (us 31 nce Between Ellipses (usft) 99.56 99.20 98.84 98.49 98.13 97.98 97.77 97.41	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28 1.84 1.79 2.00 2.36	Factor 1.901 Separation Factor 474 265 175.640 107.777 77.739 6C.795 55.665 49 916 42.340	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Offset De- iurvey Prog Refer deasured Depth (usft) 0 00 100.00 200 00 300 00 400.00 500 00 642 29 600 00 700.00 800.00 900.00 1,000 00	ame set Well - V 34J 20 - Origin aram: 315 rence Vertical Depth (usft) 0.00 100 00 200 00 300.00 400.00 500.00 542.29 600.00 700.00 800.00 900 00	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40 384.40 526.69 584.40 684.40 784.40 884.40 984.39	riginal Hol 34J - No.2 AS Vertical Depth (usrt) 15.60 100.00 200.00 300.00 400.00 500.00 542.29 600.00 700.00 899.99 999.99	0 - Original Semi Major Reference (usft) 0 00 0 05 0.16 0.27 0.39 0.50 0 55 0.61 0.72 0.84 0.95 1.06	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.26 0.32 0.35 0.39 0.45 0.52 0.59 0.65	Me: D (t) 2 (t) ((t) ((t) ((t)) ((t)) ((t)) ((t)) ((t)) ((t)) ((t)) ((t)) ((t)) (t)) ((t)) (t)	asured Meas epth De usft) (us 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77	stred pth sft) 330.12 antre z-W sstt) 0.77 0.75 0.67 0.54 0.36 0.12 0.00 -0.18 -0.53 -0.93 -1.39 -1.91	Di Between Centres (usft) 15.6 Distan Between Centres (usft) 100.98 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (ustt) 99.56 99.20 99.84 98.43 98.49 98.13 97.98 97.77 97.41 97.06 96.71 96.36	veen S ses sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28 1.84 1.79 2.00 2.36 2.71 3.07 3.43	Factor 1.901 Separation Factor 474 265 175.640 107.777 77.739 6C.795 55.665 49 916 42.340 36.761 32.483 29 098	Warning CC, ES, SF Offset Site Error: Offset Well Error:	
Site Na Offs Eagle 3 No.2 Diffset De Survey Progr Refer Measured Depth (ust) 0 00 100.00 200 00 300 00 400.00 500 00 500 00000000	ame set Well - V 34J 20 - Origin aram: 3150 mence Vertical Depth (usft) 0.00 100 00 200 00 300.00 400.00 500.00 542.29 600.00 700.00 800.00 900 00 1,009.98	al Hole - O Eagle 3 8-NS-GYRO-M Offs Measured Depth (usft) 0.00 84.40 184.40 284.40 384.40 384.40 526.69 584.40 684.40 784.40 884.40	riginal Hol 34J - No.2 AS Vertical Depth (usrt) 15.60 100.00 200.00 300.00 400.00 500.00 542.29 600.00 700.00 800.00 899.99	0 - Original Semi Major Reference (usft) 0 00 0 05 0.16 0.27 0.39 0.50 0 55 0.61 0.72 0.84 0.95	Axis Offset (usft) 0.00 0.06 0.12 0.19 0.26 0.32 0.35 0.35 0.39 0.45 0.52 0.59	Me: D (t) 2 iginal Hole Highside Toofface (') 179.56 179.57 179.69 179.79 179.93 180.00 -179.90 -179.90 -179.46 -179.20 -178.90 2.14	asured Meas epth De usft) (ur 2,349.55 2, 0ffset Wellbore Ce +N/-S +E (usft) (u -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77 -99.77	stred pth sft) 330.12 antre 	Di Between Centres (usft) 15.6 Distan Between Centres (usft) 100.98 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77 99.77	stance Betv Ellig (us)1 nce Between Ellipses (ush) 99.56 99.20 98.84 98.49 98.13 97.98 97.77 97.41 97.06 96.71	Veen S ()ses (sft) 7.40 Minimum Separation (usft) 0.21 0.57 0.93 1.28 1.64 1.79 2.00 2.36 2.71 3.07	Factor 1.901 Separation Factor 474 265 175.640 107.777 77.739 6C.795 55.665 49 916 42.340 36.761 32.483	Warning CC, ES, SF Offset Site Error: Offset Well Error:	

-99.77

-99.77

-99.77

-99.77

-99.77

-99.77

-99.77

-99,77

-99.77

-99.77

-99.77

-99.77

-3 27

-3.79

-4 52

-5 31

-6.16

-7.06

-8.01

-9 02

-10 09

-11 20

-12 38

-13 61

91.00

85.15

77.35

69 59

61.87

54 20

46 63

39.20

32.04

25.36

19.68

16.11

86.85

80.76

72.65

64.56

56.50

48.50

40 58

32.81

25 29

18 24

12.15

8.12

4.15

4.38

4 70

5 03

5 36

5.70

6 04

6.39

6.75

7.12

7.53

7.99

21.953

19 431

16.445

13 831

11.532

9 506

7.715

6 134

4 748

3 561

2 6 1 3

2 0 1 7

1,225.04

1,300.00

1,400.00

1,500.00

1,600.00

1,700.00

1,800.00

1,900.00

2,000.00

2,100.00

2,200.00

2,300.00

1,224.61

1,299.54

1,399.23

1,498 92

1,598 61

1,698 30

1.798.00

1,897.69

1,997,38

2,097.07

2,196.76

2,296 45

1,209 20

1,283.92

1,383 61

1,483 29

1,582.97

1,682.66

1,782.34

1,882.02

1,981.70

2,081.38

2,181.05

2,280.73

1,224.79

1,299.51

1,399.19

1,498.87

1,598 55

1,698 23

1,797.91

1,897.59

1,997.26

2,096 93

2,196.60

2,296.27

1.27

1.34

1,44

1.55

1.66

1.77

1.89

2.01

2.13

2.25

2.38

2.50

0.80

0 85

0.92

0.99

1.05

1.12

1.18

1.25

1.32

1.38

1 45

1.52

2.81

3.35

4.23

. 5.36

, 6.82

8.76

11.39

15.11

20 62

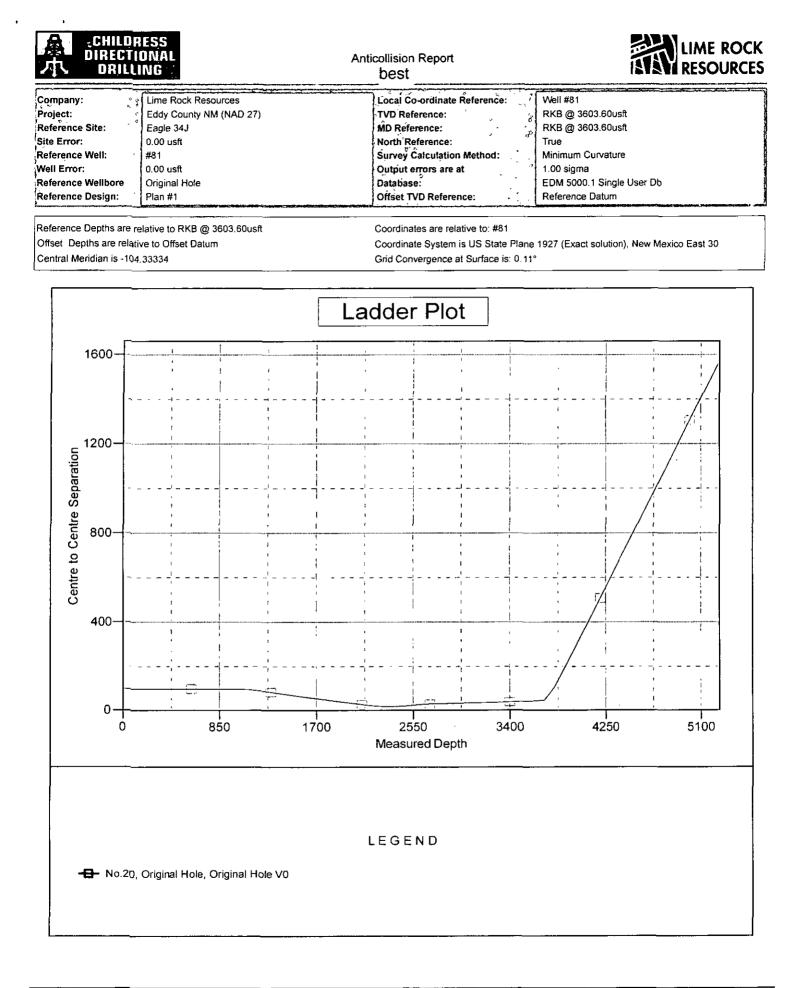
29 27

43.57

66.56

.

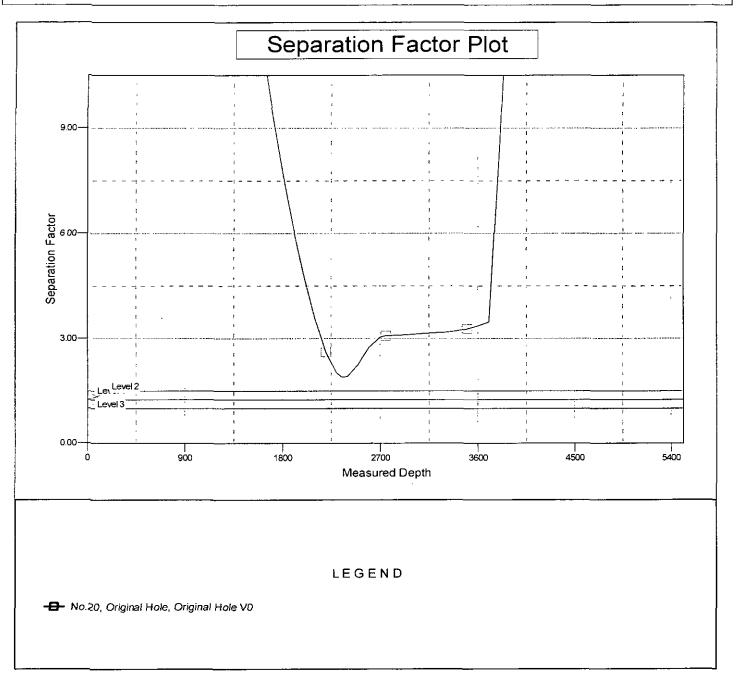
•



Company:	Lime Rock Resources	Local Co-ordinate Reference:	Well #81
Project:	Eddy County NM (NAD 27)	TVD Reference:	RKB @ 3603.60usft
Reference Site:	Eagle 34J	MD Reference:	RKB @ 3603.60usft
Site Error:	0.00 usft	North Reference:	True
Reference Well:	#81	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	1.00 sigma
Reference Wellbore	Original Hole	Database:	EDM 5000.1 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Reference Datum

Offset De	sign	Eagle 3	4J - No.2	0 - Original	Hole - Or	iginal Hole				_]	Offset Site Error:	0.00 usf
Survey Prog		B-NS-GYRO-M					-						Offset Well Error:	0.00 usf
Refer		Offs		Semi Major			·	_	Dista					
Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside	Offset Wellbor		Between Centres	Between Ellipses	Minimum Separation	Separation Factor	. Warning	
(usft)	(usft)	- (usft)	- (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	(usft)	(usft)	(usft)	- 1 - 1		
2,349.55	2,345.85	2,330.12	2,345.65	2.56	1.55	80.70	-99.77	-14.24	15.61	7.40	8 2 1	1,901 (CC, ES, SF	
2,400 00	2,396.15	2,380.40	2,395.93	2.63	1.58	95.09	-99.77	14.89	16.13	7.72	8 4 1	1.918		
2,500.00	2,495.B4	2,480.07	2,495 60	2.75	1.65	118 04	-99.77	-16.23	19.74	11.01	8,73	2 262		
2,529.44	2,525.19	2,509 42	2,524 94	2.79	1.67	123.03	-99.77	-16 63	21.27	12 46	8 81	2.413		
2,600.00	2,595.59	2,579 81	2,595 32	2.88	1.71	130.89	-99.77	-17.62	24 89	15 86	9.03	2.756		
2,700.00	2 695 52	2,679 71	2,695 21	2.99	1.78	134.60	+99.77	-19.08	28 44	19 08	9 37	3.037		
2,754.49	2,750.00	2,734,18	2,74968	3.04	1.82	-46.44	-99.77	-19.89	29.39	19.84	9.55	3.078		
2,800.00	2,795.51	2,779 69	2,795 18	3.09	1.85	-47.36	-99.77	-20.58	29.90	20 20	9.70	3.082		
2,900.00	2,895.51	2,879 66	2,895 14	3.18	1.91	-49.31	-99.77	-22.15	31.07	21 03	10.04	3.095		
3,000.00	2,995,51	2,979 63	2,995 10	3.28	1.98	-51,18	-99.77	-23 77	32.31	21,94	10.38	3.114		,
3,100.00	3,095.51	3,079.61	3,095.06	3 37	2.05	-52.97	-99,77	-25.44	33.63	22.92	10.72	3,139		
3,200.00	3,195.51	3,179.56	3, 194 99	3 47	2.13	-54.68	-99.77	-27.18	35 04	23.95	11.08	3 161		
3,300,00	3,295,51	3,279.44	3,294 86	3.57	2.26	-56.47	-99.77	-29.16	36.67	25.12	11.56	3.174		
3,400.00	3,395,51	3,379 31	3,394 69	3.66	2.39	-58.37	-99.77	31,48	38.63	26 60	12 03	3 2 1 2		
3,500.00	3 495 51	3,479.15	3,494 51	3.76	2.53	-60.32	-99.77	-34,14	40.92	28 42	12.50	3 273		
3,600 00	3,595.51	3,578.98	3,594 29	3 86	2.66	-62.28	-99.77	-37,13	43.55	30.57	12.98	3.356		
3,700 00	3,695.51	3,675 00	3,690 26	3.96	2.79	-64.11	-99.77	-40 32	46 69	33.24	13.44	3 473		
3,800.00	3,795 51	3,675.00	3,690 26	4 07	2.79	-64.11	-99.77	-40 32	115.03	101.38	13 65	8.429		
3,900,00	3,895,51	3,675 00	3,690 26	4,17	2.79	-64.11	-99.77	-40 32	210.44	196.58	13 85	15.191		
4,000.00	3,995,51	3,675.00	3,690 26	4 27	2.79	-64.11	-99.77	-40.32	308.76	294.70	14.06	21.962		
4,100.00	4,095.51	3,675 00	3,690 26	4 37	2.79	-64.11	-99.77	-40.32	407.90	393.64	14 27	28.593		
4,200.00	4,195,51	3.675 00	3,690 26	4 48	2.79	-64,11	-99.77	-40.32	507.38	492,91	14 47	35 055		
4,300.00	4,295 51	3,675.00	3,690 26	4.58	2.79	-64,11	-99.77	-40 32	607.03	592.35	14.58	41.344		
4,400 00	4 395 51	3,675.00	3,690 26	4.68	2.79	-64.11	-99.77	-40.32	706.78	691.89	14.89	47.460		
4,500.00	4 495 51	3,675.00	3,690 26	4,79	2.79	-64.11	-99.77	-40 32	806.59	791 49	15.10	53 409		
4,600.00	4,595.51	3,675.00	3,690.26	4.89	2.79	-64 11	-99.77	-40 32	906.45	891.13	15 31	59.194		
4,700 00	4,695 51	3,675.00	3,690 26	5.00	2.79	-64.11	-99.77	-40 32	1,006.33	990.80	15.52	64 822		
4,800 00	4,795.51	3,675.00	3,690 26	5.10	2.79	-64.11	-99.77	-40 32	1,106.23	1,090.50	15.74	70.297		
4,900 00	4,895,51	3,675.00	3,690.26	5 21	2.79	-64.11	-99 77	-40 32	1,206.15	1,190 20	15 95	75.625		
5,000 00	4,995.51	3,675.00	3,690 26	5 32	2,79	-64.11	-99,77	-40 32	1,306.08	1,289.92	16 16	80.811		
5,100.00	5,095.51	3,675.00	3,690 26	5 42	2.79	-64.11	-99.77	-40 32	1,406.02	1,389.65	16 38	85 860		
5,200.00	5,195,51	3,675.00	3,690.26	5 53	2.79	-64,11	-99.77	-40.32	1,505.97	1,489.38	16.59	90.777		
5,254 49	5,250.00	3,675.00	3,690 25	5 59	2.79	-64.11	-99.77	-40.32	1,560.43	1,543.73	15.71	93.402		

		Anticollision Report best			
Company:	Lime Rock Resources	Local Co-ordinate Reference:	Well #81		
Project:	Eddy County NM (NAD 27)	TVD Reference:	RKB @ 3603.60usft		
Reference Site:	Eagle 34J	MD Reference:	RKB @ 3603.60usft		
Site Error:	0.00 usft	North Reference:	Тлие		
Reference Well:	#81	Survey Calculation Method:	Minimum Curvature		
Well Error:	0.00 usft	Output errors are at	1.00 sigma		
Reference Wellbore	Original Hole	Database:	EDM 5000.1 Single User Db		
Reference Design: 🐳	Plan #1	Offset TVD Reference:	Reference Datum		


Reference Depths are relative to RKB @ 3603.60usft Offset Depths are relative to Offset Datum Central Meridian is -104.33334

0

Coordinates are relative to: #81

Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.11°

Lime Rock Resources

Eddy County NM (NAD 27) Eagle 34J #81

Original Hole Plan #1

Anticollision Report

worse

18 December, 2015

CHILDRESS DIRECTIONAL TORILLING

,

Anticollision Report WOISE

.

······································	······································	
Lime Rock Resources	Local Co-ordinate Reference:	Well #81
Eddy County NM (NAD 27)	TVD Reference:	RKB @ 3603.60usft
Eagle 34J	MD Reference:	RKB @ 3603.60usft
0.00 usft	North Reference:	Grid
#81	Survey Calculation Method:	Minimum Curvature
0.00 usft	Output errors are at	1.00 sigma
Original Hole	Database:	EDM 5000.1 Single User Db
Plan #1	Offset TVD Reference:	Reference Datum
	Eddy County NM (NAD 27) Eagle 34J 0.00 usft #81 0.00 usft Original Hole	Eddy County NM (NAD 27) TVD Reference: Eagle 34J MD Reference: 0.00 usft North Reference: #81 Survey Calculation Method: 0.00 usft Output errors are at Original Hole Database:

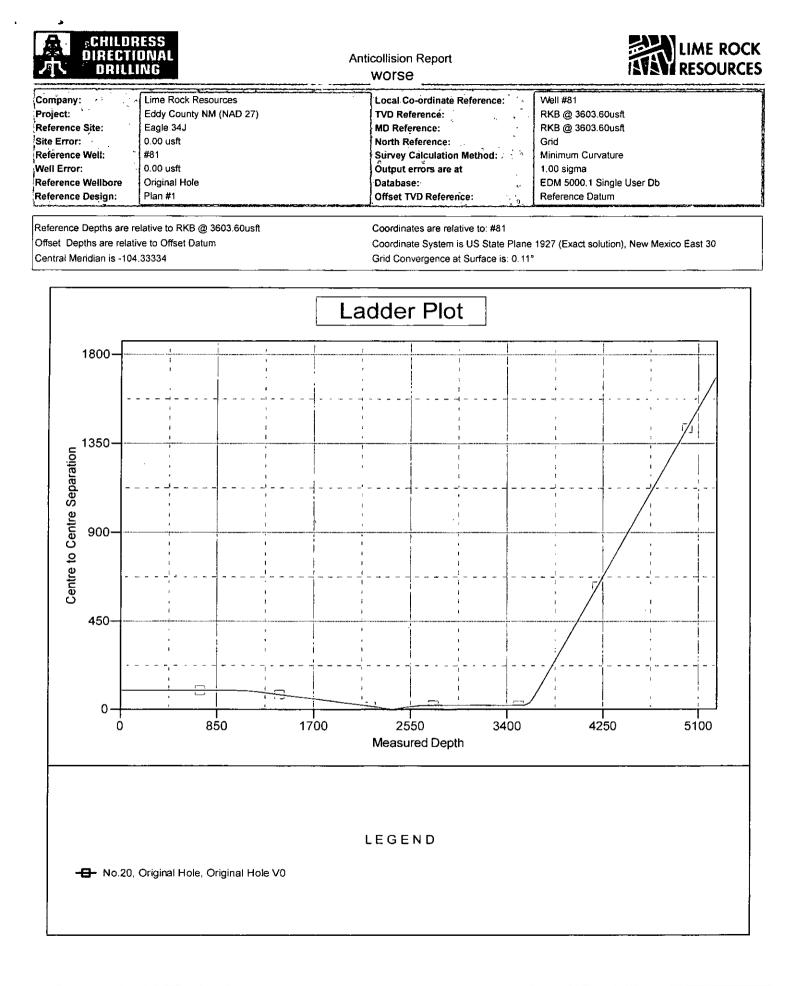
Reference	Plan #1		
Filter type:	NO GLOBAL FILTER: Using user defined selection & f	iltering criteria	
Interpolation Method:	Stations	Error Model:	ISCWSA
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D
Results Limited by:	Maximum center-center distance of 9,999,98 usft	Error Surface:	Elliptical Conic
Warning Levels Evaluate	ed at: 2.00 Sigma	Casing Method:	Not applied

Survey Tool Program		Date	12/18/2015			
From (usft)	To (usft)	Survey	(Wellbore)	Tool Name		
0.00	5,254.49	Plan #1	(Original Hole)	MWD	MWD v3:standard declination	

	Reference	Offset	Distance			a E	
Site Name Offset Well - Wellbore - Design	Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor	Warning	
Eagle 34J No.20 - Original Hole - Original Hole	2.383.85	2.364.44	0.40	-7,46	0.051	Level 1. CC, ES, SF	

Offset De			4J - NO.2	0 - Original	Hole - Or	igina: Hole							Offset Site Error:	0.00 us
Survey Program: 3552-MWD Reference Offset Semi Major Axis Distance										Offset Well Error:	0 00 us			
Reten leasured Depth (usit)	Vertic <u>a</u>) Depth (usft)	Measured Depth	Vertical Depth	Semi Major Reference (usft)	Offset	Highside Tootface	Offset Weilbon +N/-S	+E/-W	Dista Between Centres (usft)	Between Ellipses	Minimum Separation	Separation Factor	Warning	· .
		(usft)	(usit)	·····	(usft)	(*)	(usft)	(usft)		(usit)	(usft)			<u>````</u>
0.00	0.00	0.00	15.60	0.00	0.00	179.45	-99.77	0.96	100.98					
100.00	100.00	84.40	100.00	0 05	0.05	179.45	-99.77	0.96	99.77	99.58	0.19	516.833		
200.00	200.00	184.40	200 00	0.16	0.10	179,45	-99.77	0 96	99.77	99.24	0.53	188.182		
300.00	300.00	284,40	300.00	0.27	0.16	179.45	-99.77	0.96	99.77	98.90	0.87	115.033		
400.00	400 00	384,40	400.00	0 39	0 22	179 45	-99 77	0.96	99 77	98.57	1 20	82.834		
500.00	500 00	484.40	500.00	0.50	0 27	179 45	-99.77	0.96	99.77	98.23	1.54	64.719		
600.00	600.00	584 40	600.00	0.61	0.33	179.45	-99.77	0.96	99.77	97.89	1.88	53.105		
700.00	700.00	684,40	700.00	0.72	0.38	179 45	-99.77	0,96	99.77	97.56	2.22	45 025		
800.00	800 00	784.40	800 008	0 84	0.44	179.45	-99.77	0.96	99.77	97.22	2.55	39 080		
900.00	900 00	884.40	900 00	0 95	0.50	179 45	-99.77	0.96	99.77	96.88	2 89	34.521		
1,000.00	1,000.00	984.40	1,000 00	1.06	0.55	179 45	-99.77	0 96	99.77	96.54	3 23	30.915		
1,100.00	1,099,98	1,084.38	1,099.98	1.16	0.61	0.24	-99 77	0.96	98 03	94 49	3 54	27.714		
1,200 00	1,199.84	1,184.24	1,199 84	1.25	0 67	0.25	-99.77	0.96	92.79	68.97	3 83	24.257		
1,225 04	1,224.81	1,209,21	1,224 81	1.27	0.68	0 26	-99 77	0.96	90.94	87 04	3 90	23.326		
1,300.00	1,299 54	1,283.94	1,299.54	1.34	0.72	0 27	-99.77	0.96	85.06	80 94	4.12	20 645		
1,400.00	1,399 23	1,383.63	1,399.23	1.44	0.78	0.30	-99.77	0 96	77.21	72.79	4 42	17.462		
1.500.00	1,498.92	1,483.32	1,498.92	1.55	0.83	0.33	-99.77	0.96	69,36	64 63	4,73	14.668		
1,600.00	1 598 61	1.583.01	1,598 61	1.66	0.89	0.38	-99.77	0.96	61.51	56 47	5.04	12.204		
1,700.00	1 698,30	1 682 70	1,696.30	1.77	0.95	0.43	-99.77	0.96	53.67	48 31	5.36	10 019		
1,800.00	1,798,00	1,782.40	1,798.00	1,89	1.00	0.51	-99.77	0,96	45.82	40.14	5 68	8.073		
1,900.00	1,897.69	1,882.09	1,897 69	2.01	1,06	0.61	-99.77	0.96	37,97	31.97	6 00	6 33 1		
2,000.00	1,997,38	1,981.78	1,997.38	2.13	1.11	0.77	-99.77	0.96	30.12	23.80	6.32	4.765		
2,100.00	2,097.07	2,081.47	2,097.07	2.15	1.17	1.04	-99,77	0.96	22 28	15.63	6.65	3.351		
2,100.00	2,196,76	2,081.47	2,097.07		1.17		-99.77	0.96	14 43	7.46	698	2.069		
2,200.00				2.38		1.61			6.59	-0.71	7,31	2.069 0.902 Le	1	
2,300.00	2,296,45 2,380.04	2,280 85 2,364.44	2,296.45 2,380 04	2.50 2.61	1.28 1.33	3 52 90.02	-99.77 -99.77	0.96 0.96	0.40	-0.71	7.31		evel 1, CC, ES, SF	

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation



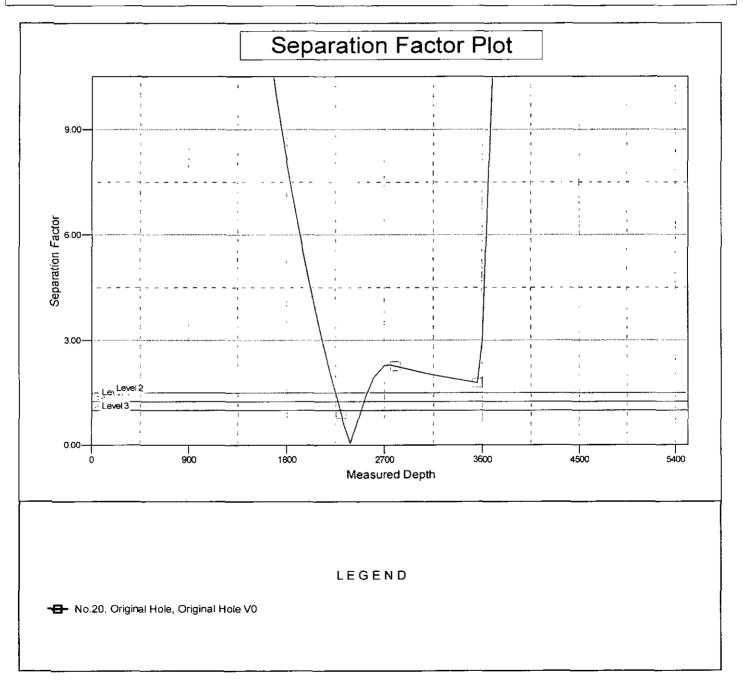
Anticollision Report WORSE

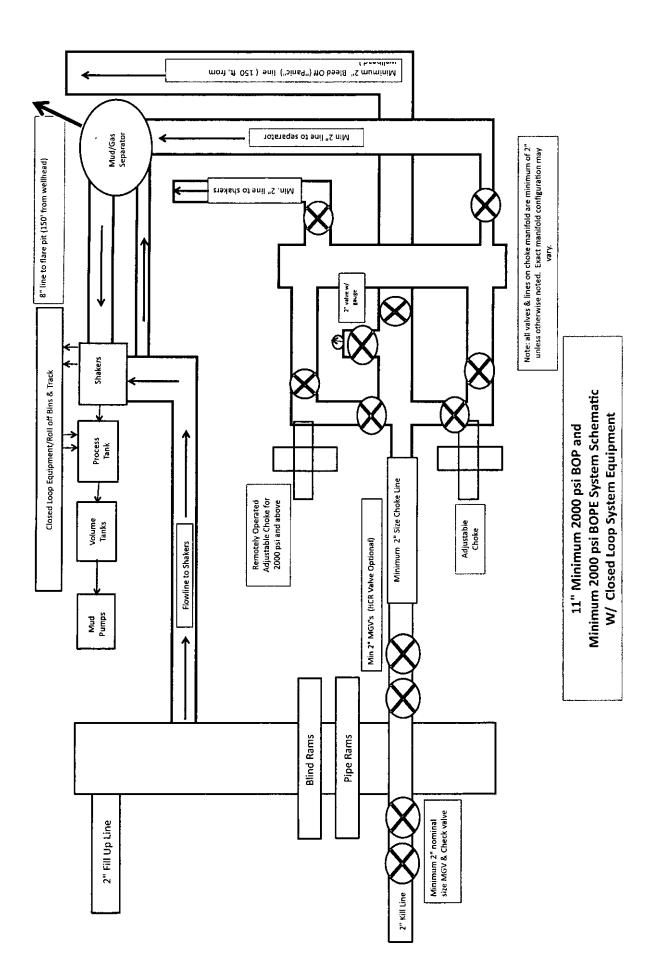
Company:	Lime Rock Resources	Local Co-ordinate Reference:	÷.	Well #81
Project:	Eddy County NM (NAD 27)	TVD Reference:		RKB @ 3603.60usft
Reference Site:	Eagle 34J	MD Reference:	j	RKB @ 3603.60usft
Site Error:	0.00 usft	North Reference:	÷.	Grid
Reference Well:	#81	Survey Calculation Method:	-	Minimum Curvature
Weil Error:	0.00 usft	Output errors are at		1.00 sigma
Reference Wellbore	Original Hole	Database:	\sim	EDM 5000.1 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	- i	Reference Datum

Offset Des			4J - NO.Z	0 - Original	noie - Or	ginal noie						~ <u></u>)	nt Site Error;	0.00 u
Survey Progr		2-MWD	1		•			· · ·					Offse	t Well Error:	0 00 u
Reference Offset			Semi Major Axis			Distance							;		
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbor		Between	Between	Minimum	Separation		Warning	•
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usit)	(usft)	Toolface (*)	+N/-S	+E/-W	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor			
······						<u> </u>	(usft)	(usft)		(0.011)					
2,400.00	2,396.15	2,380 55	2,396.15	2.63	1.34	162.28	-99 77	0.96	1.33	-6 33	7.66		Level 1		
2,500.00	2,495.84	2,480 24	2,495.84	2.75	1.39	177.46	-99.77	0.96	9,12	1.16	7.97		Level 2		
2,529.44	2,525.19	2,509 59	2,525.19	2.79	1.41	177.97	-99.77	0.96	11,43	3.37	8 07		Level 3		
2,600.00	2,595.59	2,579.99	2,595.59	2.88	1.45	178 56	-99 77	0.96	16,10	7.80	8.30	1.939			
2,700.00	2,695.52	2,679.92	2,695.52	2.99	1.51	178 83	-99 77	0.96	19,75	11.11	8.63	2 287			
2,754.49	2,750.00	2,734.40	2,750.00	3 04	1.54	-1.92	-99.77	0.96	20 26	11.46	8 80	2 302			
2,800.00	2,795.51	2,779,91	2,795.51	3.09	1,56	-1.92	-99.77	0.96	20.26	11.32	8.94	2.265			
2,900.00	2,895.51	2,879 91	2,895.51	3.18	1.62	-1.92	-99 77	0.96	20 26	11.01	9,26	2.189			
3,000.00	2,995.51	2,979,91	2,995.51	3 28	1.67	-1.92	-99.77	0.96	20 26	10.69	9 57	2.117			
3,100 0ე	3,095 51	3,079 91	3,095.51	3.37	1.73	-1.92	-99,77	0.96	20 26	10.38	9.89	2.050			
3,200.00	3,195 51	3,179.91	3,195.51	3.47	1.79	-1.92	-99.77	0.96	20 26	10.06	10 20	1.986			
3,300.00	3,295 51	3,279.91	3,295.51	3.57	1.84	-1.92	-99.77	0 96	20 26	9.74	10.52	1.926			
3,400.00	3,395.51	3,379.91	3,395.51	3 66	1.90	-1.92	-99.77	0.96	20.26	9.42	10.84	1.869			
3,500.00	3,495.51	3,479.91	3,495.51	3 76	1.96	-1.92	-99.77	0.96	20 26	9.10	11.16	1.815			
3,552.26	3,547.77	3,532.17	3,547.77	3.82	1.98	-1.92	-99.77	0.96	20 26	8.93	11.33	1.788			
3,600.00	3,595.51	3,552.00	3,567.60	3.86	2.00	-1.92	-99.77	0.96	34 49	23.04	11.45	3 0 1 2			
3,700.00	3,695 51	3,552.00	3,567.60	3.96	2.00	-1.92	-99,77	0 96	129 51	117.85	11,66	11.105			
3,800 00	3 795 51	3,552.00	3,567.60	4.07	2.00	-1.92	-99.77	0.96	228.81	216.94	11.87	19.271			
3,900.00	3,895,51	3,552.00	3,567.60	4.17	2.00	-1.92	-99.77	0.96	328,54	316 46	12 09	27,186			
4,000.00	3,995.51	3,552,00	3,567.60	4.27	2,00	-1.92	-99,77	0,96	428.39	416.10	12.30	34.837			
4,100.00	4,095.51	3,552.00	3,567.60	4.37	2 00	-1.92	-99 77	0.96	528.30	515.79	12.51	42.230			
4,200.00	4,195.51	3,552.00	3,567.60	4.48	2.00	-1.92	-99,77	0.96	628 24	615.52	12,72	49.376			
4,300.00	4,295.51	3,552.00	3,567.60	4.58	2.00	-1.92	-99 77	0.96	728 20	715.26	12.94	56,285			
4,400.00	4 395 51	3,552.00	3,567.60	4.68	2.00	-1.92	-99,77	0.96	828.16	815 01	13.15	62.967			
4,500.00	4,495,51	3,552.00	3,567.50	4,79	2.00	-1.92	-99.77	0.96	928.14	914.77	13 37	69.433		•	
4,600 00	4,595,51	3,552.00	3,567.50	4.89	2.00	+1.92	-99.77	0.96	1,028.11	1,014.53	13 58	75.692			
4,700.00	4,695.51	3,552.00	3,567 60	5.00	2.00	-1.92	-99,77	0.96	1,128.10	1,114 30	13 80	81.754			
4,800.00	4,795.51	3,552,00	3,567 60	5.10	2.00	-1.92	-99.77	0.96	1,228.08	1,214 07	14,02	87.626			
4,900.00	4,895.51	3,552.00	3,567.60	5.21	2.00	+1.92	-99.77	0.96	1,328.07	1,313.84	14,32	93 318			
5,000.00	4,995.51	3,552.00	3,567.60	5.32	2.00	-1.92	-99,77	0.96	1,428.06	1,413.61	14.45	98 837			
5,100 00	5,095.51	3,552.00	3,567 60	5 42	2.00	-1.92	-99.77	0.96	1,528.05	1,513.38	14.43	104.190			
5,200.00	5,195.51	3,552.00	3,567 60	5 53	2 00	-1.92	-99.77	0.96	1,628.04	1,613,16	14.88	109 385			
5,254.49	5,250.00	3,552.00	3,567 60	5 59	2.00	-1.92	-99.77	0.96	1,682.52	1,667.52	15 00	112.151			

٩

Anticollision Report WOrse




· ····································			
Companý:	Lime Rock Resources	Local Co-ordinate Reference:	Well #81
Project:	Eddy County NM (NAD 27)	TVD Reference: e	RKB @ 3603.60usft
Reference Site:	Eagle 34J	MD Reference:	RKB @ 3603.60usft
Site Error:	0.00 usft	North Reference:	Grid
Reference Well:	#81	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 usft	Output errors are at	1.00 sigma
Reference Wellbore	Original Hole	Database:	EDM 5000.1 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Reference Datum

Reference Depths are relative to RKB @ 3603.60usft

Offset Depths are relative to Offset Datum Central Meridian is -104.33334 Coordinates are relative to: #81

Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.11°

.

Lime Rock Resources II-A, L.P.

Eagle 34 J Federal 81

Section 34, T. 17 S., R. 27 E., Eddy County, NM

Design: Closed Loop System with roll-off steel bins (pits)

CRI/HOBBS will supply (2) bins (100 bbl) volume, rails and transportation relating to the Close Loop System. Specification of the Closed Loop System is attached.

Contacts: Gary Wallace (432) 638-4076 Cell (575) 393-1079 Office

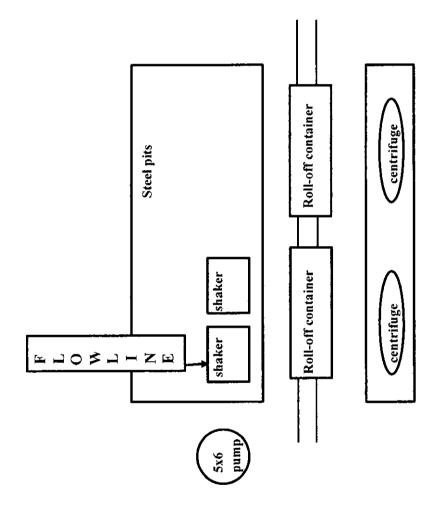
Scomi Oil Tool: Supervisor – Armando Soto (432) 553-7979 Hobbs, NM

Monitoring 24 Hour service Equipment:

Ł

Centrifuges – Derrick Brand Rig Shakers – Brandt Brand D-watering Unit Air pumps on location for immediate remediation process Layout of Close Loop System with bins, centrifuges and shakers attached.

Cuttings and associated liquids will be hauled to a State regulated third party disposal site (CRI or Controlled Recovery, Inc.). The disposal site permit is DFP = #R9166.

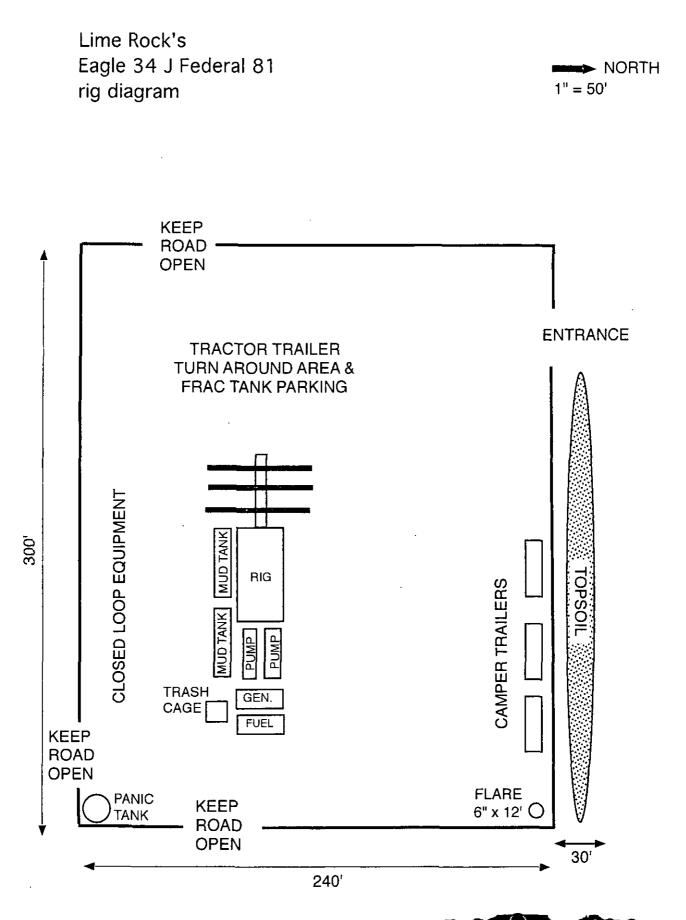

2- (250 bbl) tanks to hold fluid
2-CRI bins with track system
1-500 bbl frac tanks with fresh water
1-500 bbl frac tanks for brine water

Operations:

Closed Loop System equipment will be inspected daily by each tour and any necessary maintenance performed. Any leak in system will be repaired and/or contained immediately. OCD will be notified within 48 hours of any spill. Remediation process will start immediately.

Closure:

During drilling operations all liquids, drilling fluids and cuttings will be hauled off via CRI equipment to Disposal Facility Permit NM-01-0006.


.

4

٠

•

This will be maintained by 24 hour solids control personnel that stay on location.

١

PERMITS WEST, INC.

- A. All personnel will receive proper H2S training in accordance with Onshore Order 6 III.C.3.a.
- B. Briefing Area: two perpendicular areas will be designated by signs and readily accessible.
- C. Required Emergency Equipment:

4

- Well control equipment
 - a. Flare line 150' from wellhead to be ignited by flare gun.
 - b. Choke manifold with a remotely operated choke.
 - c. Mud/gas separator
- Protective equipment for essential personnel.

Breathing apparatus:

- a. Rescue Packs (SCBA) 1 unit will be placed at each breathing area, 2 will be stored in the safety trailer.
- b. Work/Escape packs 4 packs will be stored on the rig floor and contain sufficiently long air hoses as to not to restrict work activity.
- c. Emergency Escape Packs 4 packs will be stored in the doghouse for emergency evacuation.

Auxiliary Rescue Equipment:

- a. Stretcher
- b. Two OSHA full body harness
- c. 100 ft 5/8 inch OSHA approved rope
- d. 1-20# class ABC fire extinguisher
- H2S detection and monitoring equipment:

The stationary detector with three sensors will be placed in the upper dog house if equipped, set to visually alarm @ 10 ppm and audible @ 14 ppm. Calibrate a minimum of every 30 days or as needed. The sensors will be placed in the following places: Rig floor / Bell nipple / End of flow line or where well bore fluid is being discharged. (Gas sample tubes will be stored in the safety trailer)

- Visual warning systems.
 - a. One color code condition sign will be placed at the entrance to the site reflecting the possible conditions at the site.
 - b. A colored condition flag will be on display, reflecting the current condition at the site at the time.
 - c. Two wind socks will be placed in strategic locations, visible from all angles.
- Mud program:

The mud program has been designed to minimize the volume of H2S circulated to surface. The operator will have the necessary mud products to minimize hazards while drilling in H2S bearing zones.

Metallurgy:

.

٠

- a. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- b. All elastomers used for packing and seals shall be H2S trim.

Communication:

Communication will be via two-way radio in emergency and company vehicles. Cell phones and land lines where available.

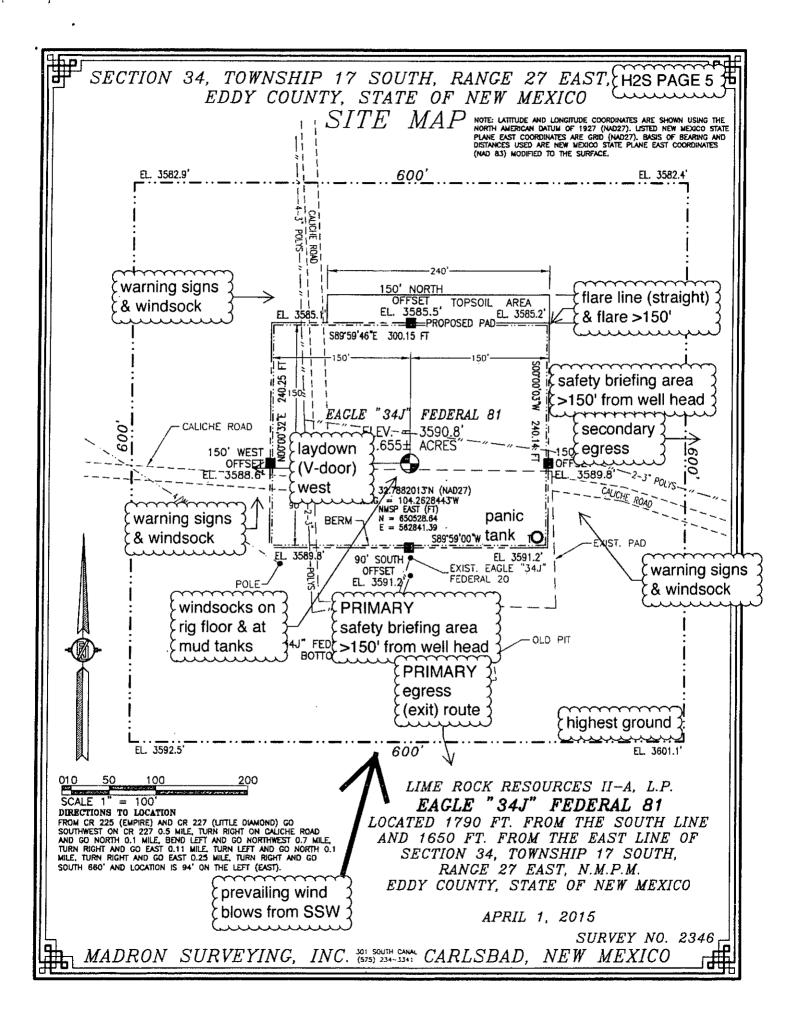
H2S CONTINGENCY DRILLING PLAN EMERGENCY CONTACTS

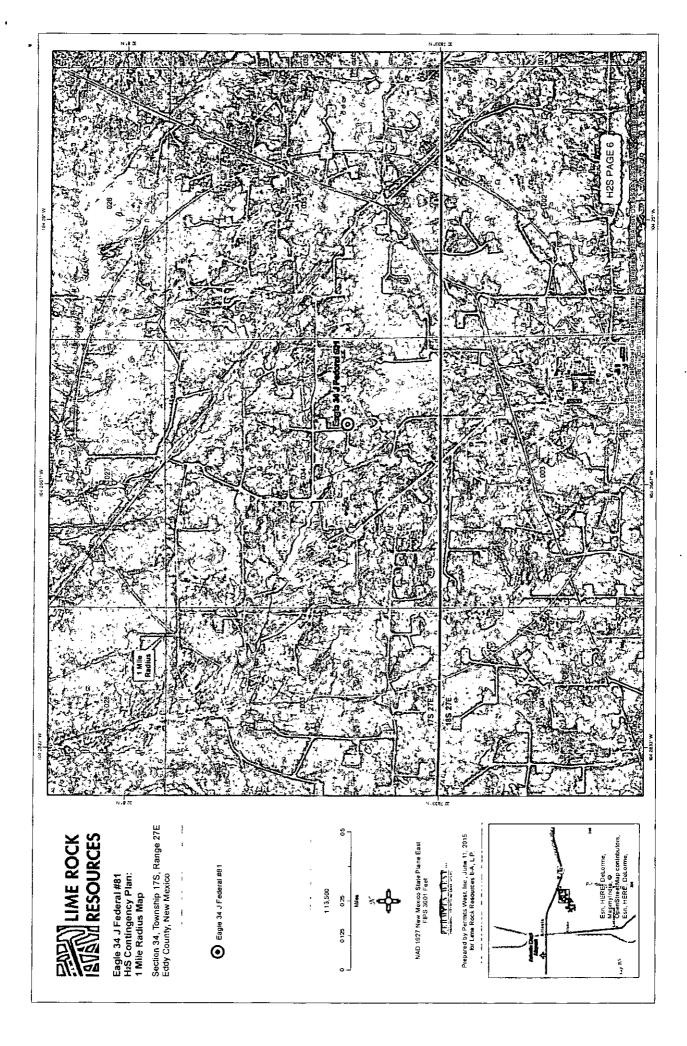
Company Offices -	Lime Rock Houston Office	713-292-9510
	Answering Service (After Hours)	713-292-9555
	Artesia, NM Office	575-748-9724
	Roswell, NM	575-623-8424

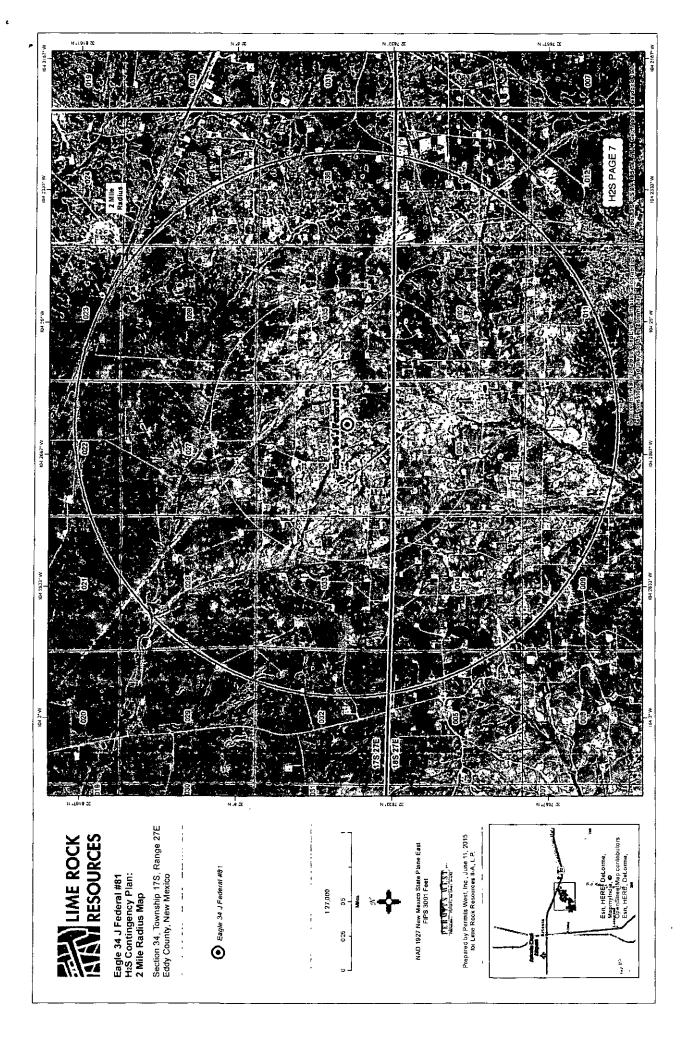
KEY PERSONNEL					
Name	Title	Location	Office #	Cell #	Home #
MIKE LOUDERMILK	OPERATIONS MANAGER	HOUSTON	713-292-9526	832-331-7367	SAME AS CELL
SPENCER COX	PRODUCTION ENGINEER	HOUSTON	713-292-9528	432-254-5140	SAME AS CELL
ERIC MCCLUSKY	PRODUCTION ENGINEER	HOUSTON	713-360-5714	405-821-0534	832-491-3079
JERRY SMITH	ASSISTANT PRODUCTION SUPERVISOR	ARTESIA	575-748-9724	505-918-0556	575-746-2478
MICHAEL BARRETT	PRODUCTION SUPERVISOR	ROSWELL	575-623-8424	505-353-2644	575-623-4707
GARY MCCELLAND	WELL SITE SUPERVISOR	ROTATES ON SITE	NA	903-503-8997	NA
DAVE WILLIAMSON	WELL SITE SUPERVISOR	ROTATES ON SITE	NA	575-308-9980	NA

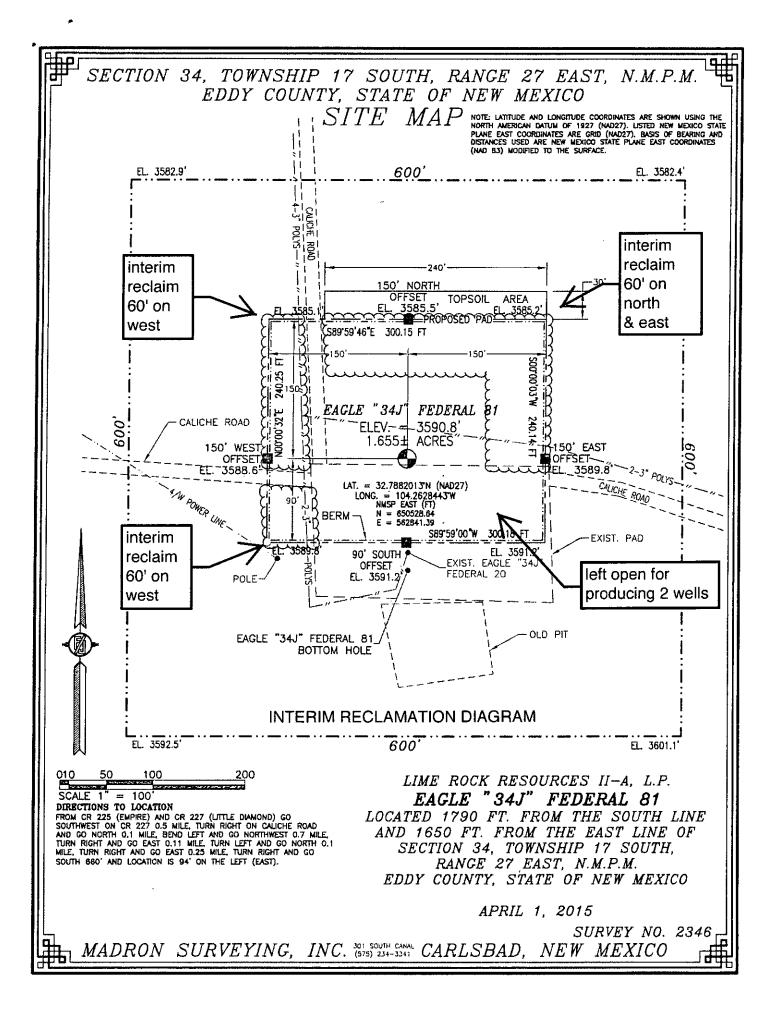
	Agency Call List	
City	Agency or Office	Phone
Artesia	Ambulance	911
Artesia	State Police	575-746-2703
Artesia	Sheriff's Office	575-746-9888
Artesia	City Police	575-746-2703
Artesia	Fire Department	575-746-2701
Artesia	Local Emergency Planning Committee	575-746-2122
Artesia	New Mexico OCD District II	575-748-1283
Carlsbad	Ambulance	911
Carlsbad	State Police	575-885-3137
Carlsbad	Sheriff's Office	575-887-7551
Carlsbad	City Police	575-885-2111
Carlsbad	Fire Department	575-885-2111
Carlsbad	Local Emergency Planning Committee	575-887-3798
Carlsbad	US DOI Bureau of Land Management	575-887-6544
State Wide	New Mexico Emergency Response Commission ("NMERC")	505-476-9600
State Wide	NMERC 24 hour Number	505-827-9126
State Wide	New Mexico State Emergency Operations Center	505-476-9635
National	National Emergency Response Center (Washington, D.C.)	800-424-8802

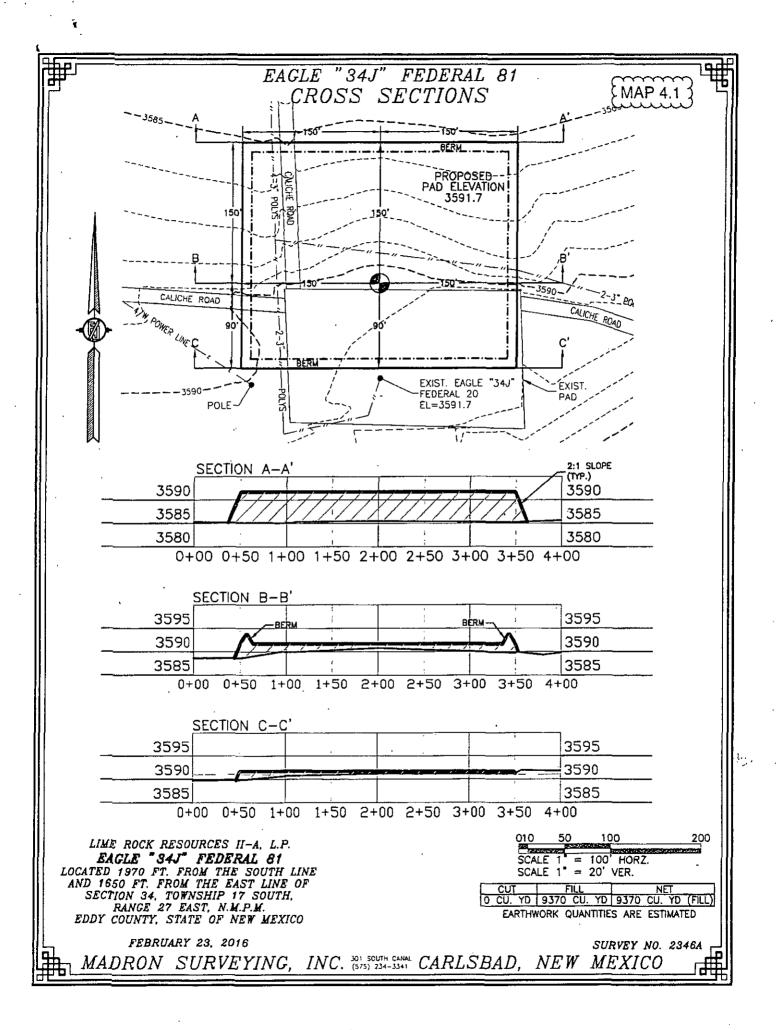
H2S CONTINGENCY DRILLING PLAN EMERGENCY CONTACTS


· •


٠


•


	Emerg	ency Services		
Name	Service	Location	Phone	Alternate
Boots & Coots International Well Control	Well Control	Houston / Odessa	1-800-256-9688	281-931-8884
Cudd Pressure Control	Well Control & Pumping	Odessa	915-699-0139	915-563-3356
Baker Hughes Inc.	Pumping Service	Artesia, Hobbs and Odessa	575-746-2757	SAME
Total Safety	Safety Equipment and Personnel	Artesia	575-746-2847	SAME
Cutter Oilfield Services	Drilling Systems Equipment	Midland	432-488-6707	SAME
Assurance Fire & Safety	Safety Equipment and Personnel	Artesia	575-396-9702	575-441-2224
Flight for Life	Emergency Helicopter Evacuation	Lubbock	806-743-9911	SAME
Aerocare	Emergency Helicopter Evacuation	Lubbock	806-747-8923	SAME
Med Flight Air Ambulance	Emergency Helicopter Evacuation	Albuquerque	505-842-4433	SAME
Artesia General Hospital	Emergency Medical Care	Artesia	575-748-3333	702 North 13 Street


.

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

Surface Use Plan

ŧ

1. <u>ROAD DIRECTIONS & DESCRIPTIONS</u> (See MAPS 1 - 4)

From the center of Artesia...

Go East 9.3 miles on US 82 to the equivalent of Mile Post 116.8 Then turn right and go South 1/4 mile on paved County Road 204 Then turn right and go Southwest 2.1 miles on paved County Road 225 Then bear right and go Southwest 1/2 mile on County Road 227 Then turn right and go North 0.1 mile on a caliche road Then bear left and go Northwest 0.7 mile on a caliche road Then bear right and go East 0.1 mile on a caliche road south of a battery Then turn left and go North 0.1 mile on a caliche road Then turn right and go East 1/4 mile on a caliche road Then turn right and go South 0.1 mile on a caliche road Then turn right and go South 0.1 mile on a caliche road

Non-county roads will be maintained as needed to Gold Book standards. This includes pulling ditches, preserving the crown, and cleaning culverts. This will occur at least once a year, and more often as needed. Caliche will be hauled from Lime Rock's approved (HA-0258-0000) caliche pit on State land in NESE 36-17s-27e. Access to the lease will be via existing NMNM-096616.

2. <u>ROAD TO BE BUILT OR UPGRADED</u> (See MAPS 3 & 4)

No new road is needed. (The proposed 81 pad overlaps the producing 20 pad.) No upgrade is needed.

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

3. EXISTING WELLS (See MAP 2)

Existing oil, gas, injection, and P & A wells are within a mile. No disposal or water wells are within a mile radius.

4. PROPOSED PRODUCTION FACILITIES (See MAPS 3 - 10)

The only production equipment on the pad will be the pump jack. Two 3" O. D. poly surface pipelines (one gas and one production) will be laid 2,213.46' west to Lime Rock's existing battery header. Pipelines will operate at \approx 50 psi.

A 77.6' long overhead raptor safe power line will be built northeast to the pad.

5. WATER SUPPLY (See MAPS 1 - 4)

Water will be trucked from existing wells on private land between Artesia and Riverside.

6. CONSTRUCTION MATERIALS & METHODS

NM One Call (811) will be notified before construction starts. Topsoil and brush will be stockpiled north of the pad. V door will be to the west. A closed loop drilling system will be used. Eagle 34 J Federal 15 reserve pit will not be excavated. Caliche will be bought and hauled from Lime Rock's approved (HA-0258-0000) caliche pit on State land in NESE 36-17s-27e.

An on pad berm (MAP 4) will surround the pad to prevent off site migration of soil. A geotextile fabric fence will be at the toe of the fill to prevent further migration. The fence bottom will be buried to prevent gaps.

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

7. WASTE DISPOSAL

All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to CRI's state approved (NM-01-0006) disposal site. Human waste will be disposed of in chemical toilets and hauled to the Artesia wastewater treatment plant.

8. ANCILLARY FACILITIES

There will be no airstrip or camp. Camper trailers will be on location for the company man, tool pusher, or mud logger.

9. WELL SITE LAYOUT

See Rig Diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

10. RECLAMATION

Interim reclamation will consist of shrinking the pad \approx 55% by removing caliche and reclaiming 60' wide swaths on the east, north, and west sides of the pad, leaving a \approx 180' x \approx 180' area around the pump jack. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas. Seeded areas will be ripped or harrowed. A BLM approved seed mix will be sown in a BLM approved manner. Enough stockpiled topsoil will be retained to cover the remainder of the pad when the well is plugged. Once the well is plugged, then the remainder of the pad will be similarly reclaimed. Noxious weeds will be controlled.

Lime Rock Resources II-A, L.P. Eagle 34 J Federal 81 SHL: 1790' FSL & 1650' FEL BHL: 1670' FSL & 1650' FEL Sec. 34, T. 17 S., R. 27 E., Eddy County, NM

11. SURFACE OWNER

1

All construction will be on BLM.

12. OTHER INFORMATION

On site inspection was held with Paul Murphy (BLM) on March 27, 2015.

Boone conducted a records search with Hila Nelson June 18, 2015. Due to multiple previous archaeology surveys, it was determined that no further survey was needed.

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Lime Rock Resources II A LP
LEASE NO.:	NM0557370
WELL NAME & NO.:	81-Eagle 34 J Federal
SURFACE HOLE FOOTAGE:	1790'/S & 1650'/E
BOTTOM HOLE FOOTAGE	1670'/S & 1650'/E
LOCATION:	Section 34, T. 17 S., R. 27 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions

Permit Expiration

Archaeology, Paleontology, and Historical Sites

Noxious Weeds

Special Requirements

Lesser Prairie-Chicken Timing Stipulations Below Ground-level Abandoned Well Marker

Construction

Notification

Topsoil

Closed Loop System

Federal Mineral Material Pits

Well Pads

Roads

Road Section Diagram

🛛 Drilling

Cement Requirements H2S Requirements High Cave/Karst Logging Requirements Waste Material and Fluids

Production (Post Drilling)

Well Structures & Facilities Pipelines

Electric Lines

Interim Reclamation

Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

2

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all power line structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. The holder without liability or expense shall make such modifications and/or additions to the United States.

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production.

Construction:

In the advent that any underground voids are opened up during construction activities, construction activities will be halted and the BLM will be notified immediately.

No Blasting:

No blasting will be utilized for pad construction. The pad will be constructed and leveled by adding the necessary fill and caliche.

Pad Berming:

The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.

- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g. caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised. (Any access road crossing the berm cannot be lower than the berm height.)

Tank Battery Liners and Berms:

Tank battery locations and all facilities will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain $1\frac{1}{2}$ times the content of the largest tank.

Leak Detection System:

A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing electronic sensors to alarm when a leak is present. Leak detection plan will be submitted to BLM for approval.

Automatic Shut-off Systems:

Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and ground water concerns:

Rotary Drilling with Fresh Water:

Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

Kick off for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

ALL lost circulation zones from the surface to the base of the cave occurrence zone will be logged and reported in the drilling report.

Regardless of the type of drilling machinery used, if a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cavebearing zone, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

Upon well abandonment in high cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

Annual pressure monitoring will be performed by the operator on all casing annuli and reported in a sundry notice. If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Powerlines:

Smaller powerlines will be routed around sinkholes and other karst features to avoid or lessen the possibility of encountering near surface voids and to minimize changes to runoff or possible leaks and spills from entering karst systems. Larger powerlines will adjust their pole spacing to avoid cave and karst features. The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave passages, or voids are penetrated during construction and no further construction will be done until clearance has been issued by the Authorized Officer. Special restoration stipulations or realignment may be required.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

. .

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

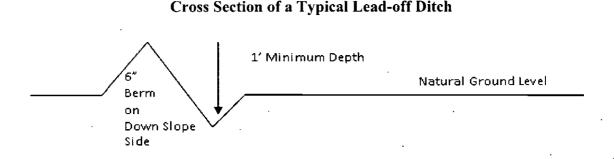
The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.


Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

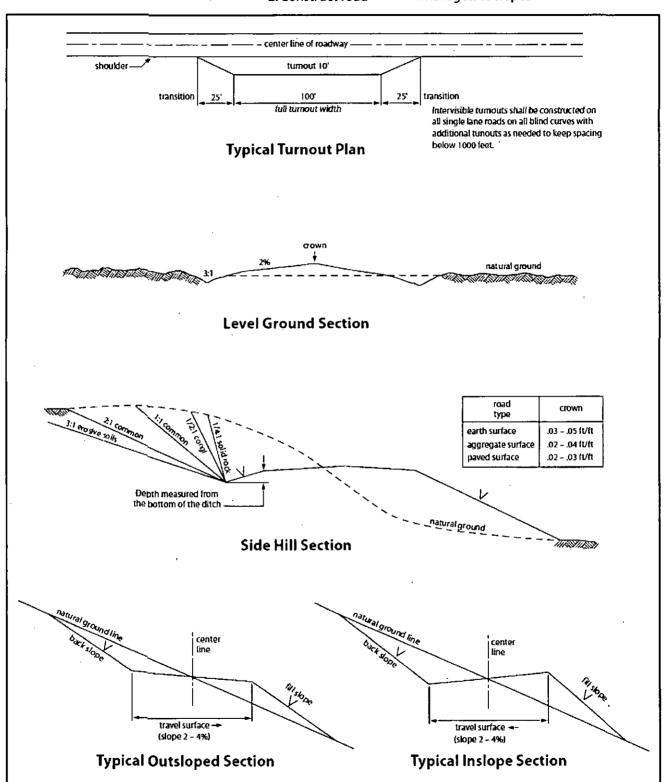
Formula for Spacing Interval of Lead-off Ditches

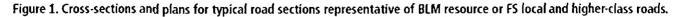
Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattleguards

An appropriately sized cattleguard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattleguards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguards that are in place and are utilized during lease operations.


Fence Requirement


Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps1. Salvage topsoil3. Redistribute topsoil2. Construct road4. Revegetate slopes

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the Queen formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

HIGH CAVE/KARST – OPERATOR HAS PROPOSED A CONTINGENCY CASING IF LOST CIRCULATION OCCURS WHILE DRILLING THE SURFACE HOLE. IF LOST CIRCULATION OCCURS WHILE DRILLING THE 7-7/8" HOLE, THE CEMENT PROGRAM FOR THE 5-1/2" CASING WILL NEED TO BE MODIFIED AND <u>THE BLM IS TO BE CONTACTED PRIOR TO RUNNING THE CASING.</u> A MINIMUM OF TWO CASING STRINGS CEMENTED TO SURFACE IS REQUIRED IN HIGH CAVE/KARST AREAS. THE CEMENT MUST BE IN A SOLID SHEATH THEREFORE, ONE INCH OPERATIONS WILL NOT BE PERMITTED. A DV TOOL WILL BE REQUIRED

Possibility of water flows in the San Andres and Artesia Group. Possibility of lost circulation in the Rustler, San Andres, Glorieta and Delaware.

Contingency Surface Casing Plan:

2

- 1. The 13-3/8 inch <u>contingency surface casing</u> shall be set at approximately 375 feet and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after

completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Casing Plan without Contingency:

- 2. The 8-5/8 inch intermediate casing shall be set at approximately 350 feet and cemented to the surface. (If contingency casing is used set 8-5/8" casing 50 feet below 13-3/8" shoe.)
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:

Cement to surface. If cement does not circulate, contact the appropriate BLM office.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Contingency Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 13-3/8 inch surface casing shoe shall be 2000 (2M) psi. Operator is approved to test against the casing for the contingency plan.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 8-5/8 inch surface casing shoe shall be 2000 (2M) psi.
- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

CLN 121615

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the

largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

٨

STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the Grant and attachments, including stipulations, survey plat(s) and/or map(s), shall be on location during construction. BLM personnel may request to review a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, Holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC § 2601 *et seq.* (1982) with regard to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant (*see* 40 CFR, Part 702-799 and in particular, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193). Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the Authorized Officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. Holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. § 9601, *et seq.* or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, *et seq.*) on the Right-of-Way (unless the release or threatened release is wholly unrelated to activity of the Right-of-Way Holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way Holder on the Right-of-Way. This provision applies without regard to whether a release is caused by Holder, its agent, or unrelated third parties.

4. Holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. Holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

a. Activities of Holder including, but not limited to: construction, operation, maintenance, and termination of the facility;

- b. Activities of other parties including, but not limited to:
 - (1) Land clearing
 - (2) Earth-disturbing and earth-moving work
 - (3) Blasting
 - (4) Vandalism and sabotage;
- c. Acts of God.

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of Holder, regardless of fault. Upon failure of Holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he/she deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of Holder. Such action by the Authorized Officer shall not relieve Holder of any responsibility as provided herein.

6. All construction and maintenance activity shall be confined to the authorized right-of-way width of <u>20</u> feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline shall be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline shall be installed immediately adjacent to the outer surface pipeline. All construction and maintenance activity shall be confined to existing roads or right-of-ways.

7. No blading or clearing of any vegetation shall be allowed unless approved in writing by the Authorized Officer.

8. Holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline shall be "snaked" around hummocks and dunes rather than suspended across these features.

9. The pipeline shall be buried with a minimum of <u>24</u> inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will

be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder.

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines shall be less than or equal to 4 inches and a working pressure below 125 psi.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq</u>. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to

the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land

shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

IX. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

X. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory

revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

NMOCD CONDITION OF APPROVAL

The *Newl* Gas Capture Plan (GCP) notice is posted on the NMOCD website under Announcements. The Plan became effective May 1, 2016. A copy of the GCP form is included with the NOTICE and is also in our FORMS section under Unnumbered Forms. Please review filing dates for all applicable activities currently approved or pending and submit accordingly. Failure to file a GCP may jeopardize the operator's ability to obtain C-129 approval to flare gas after the initial 60-day completion period.