		ARESTADISTRI		X		
		MAY 1 9 201				
Form 3160-3 (March 2012)		RECEIVED	-	OMB No	APPROVEI o. 1004-013 ctober 31, 20	7
UNITED STATES DEPARTMENT OF THE II BUREAU OF LAND MANA				5. Lease Serial No. NMNM85893		
APPLICATION FOR PERMIT TO D	ORILL OR	REENTER		6. If Indian, Allotee	or Tribe N	lame
la. Type of work:	R			7. If Unit or CA Agree	ement, Nar	ne and No.
lb. Type of Well: 🔽 Oil Well 🔲 Gas Well 🛄 Other	Sin	ngle Zone 🔽 Multip	le Zone	8. Lease Name and V CEDAR CANYON 2	Vell No. 21 FEDE	315207 RAL C 23H
2. Name of Operator OXY USA INC	6696			9. API Well No. 30-0/3	5-4	4191
	3b. Phone No. (713)366-5	(include area code) 716		10. Field and Pool, or E		/ TA 30
4. Location of Well (Report location clearly and in accordance with any	State requirem	ents.*)		11. Sec., T. R. M. or Bl		
At surface SWNW / 1824 FNL / 141 FWL / LAT 32.20524	4 / LONG -	103.99755		SEC 21 / T24S / R2	29E / NM	IP
At proposed prod. zone SENE / 2200 FNL / 180 FEL / LAT 3	32.204238 /	LONG -103.98145	9			
14. Distance in miles and direction from nearest town or post office*6 miles				12. County or Parish EDDY		13. State NM
 15. Distance from proposed* location to nearest 50 feet property or lease line, ft. (Also to nearest drig. unit line, if any) 	16. No. of a 160	cres in lease	17. Spacii 160	ng Unit dedicated to this v	vell	
 Distance from proposed location* to nearest well, drilling, completed, 30 feet 	19. Proposed	1 Depth	20. BLM	BIA Bond No. on file		
applied for, on this lease, ft.	8710 feet /	/ 13477 feet	FED: E	SB000226		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2931 feet	22. Approxii 05/02/201	mate date work will sta	rt*	23. Estimated duration 25 days	n	
29311661	24. Attac		<u> </u>	25 days		<u></u>
The following, completed in accordance with the requirements of Onshor			ttached to the	nis form:		
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest System I SUPO must be filed with the appropriate Forest Service Office). 	Lands, the	 Bond to cover t Item 20 above). Operator certific Such other site 	he operatio	ons unless covered by an formation and/or plans as		·
25. Signature (Electronic Submission)		BLM. (Printed/Typed) Stewart / Ph: (713	3)366-571	6	Date 10/20/2	2016
Title						
Sr. Regulatory Advisor Approved by (Signature)	Name	(Printed/Typed)			Date	
(Electronic Submission)	1	Layton / Ph: (575)2	234-5959		05/16/	2017
Supervisor Multiple Resources Application approval does not warrant or certify that the applicant holds conduct operations thereon. Conditions of approval, if any, are attached.		LSBAD	ts in the su	bject lease which would e	mtitle the a	ipplicant to
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a cr States any false, fictitious or fraudulent statements or representations as t	ime for any p o any matter w	erson knowingly and vithin its jurisdiction.	willfully to	make to any department of	or agency	of the United
(Continued on page 2)				*(Inst	ructions	s on page 2)
	ED WI	'H CONDIT	ONS			

ı.

Υ.

R18 5-22-17

AFMSS

OCD Artesia

Application for Permit to Drill

APD Package Report

APD ID: 10400006760 APD Received Date: 10/20/2016 01:52 PM Operator: OXY USA INC

APD Package Report Contents

- Form 3160-3

- Operator Certification Report

- Application Report
- Application Attachments
 - -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 1 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 2 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 5 file(s)
 - -- Hydrogen sulfide drilling operations plan: 2 file(s)
 - -- Proposed horizontal/directional/multi-lateral plan submission: 2 file(s)
 - -- Other Facets: 2 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 1 file(s)
 - -- New road access plan attachment: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 1 file(s)
 - -- Water source and transportation map: 2 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Other SUPO Attachment: 4 file(s)
- PWD Report
- PWD Attachments
 - -- None
- Bond Report

Date Printed: 05/17/2017 01:56 PM

Well Status: AAPD Well Name: CEDAR CANYON 21 FEDER Well Number: 23H

> NM OIL CONSERVATION ARTESIA DISTRICT MAY 1 9 2017

RECEIVED

- Bond Attachments

-- None

s •

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

OPERATOR'S NAME:	OXY USA INC
LEASE NO.:	NMNM85893
WELL NAME & NO.:	23H- Cedar Canyon 21 Federal Com
SURFACE HOLE FOOTAGE:	1824'/N & 141'/W
BOTTOM HOLE FOOTAGE	2200'/N & 180'/W
LOCATION:	Section 21 T.24 S., R.29 E., NMPM
COUNTY:	Eddy County, New Mexico

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2. The operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If

available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Medium Cave/Karst

Possibility of water flows in the Castile and Salado. Possibility of lost circulation in the Rustler, Salado, and Delaware.

- 1. The 10-3/4 inch surface casing shall be set at approximately 400 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Formation below the 10-3/4" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Intermediate casing must be kept fluid filled to meet minimum collapse requirement.

2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing, is:

Operator has proposed a contingency DV tool at 3113'. If operator circulates cement on the first stage, operator is approved to inflate the ACP and run the DV tool cancellation plug and cancel the second stage of the proposed cement plan. If cement does not circulate, operator will inflate ACP and proceed with the second stage.

a. First stage to DV tool:

.

- Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

Formation below the 7-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

3. The minimum required fill of cement behind the 4-1/2 inch production liner is:

Cement as proposed. Operator shall provide method of verification

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 4. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

F. SPECIAL REQUIREMENT

Communitization Agreement

- 1. The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- 2. If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- 3. In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

TMAK 05092017

- TAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: David Stewart		Signed on: 10/20/2016
Title: Sr. Regulatory Advisor		
Street Address: 5 Greenway Plaza	a, Suite 110	
City: Houston	State: TX	Zip: 77046
Phone: (713)366-5716		
Email address: David_stewart@o>	ky.com	
Field Representative		
Representative Name: Jim Wils	on	
Street Address: P.O. Box 50250)	
City: Midland	State: ⊤X	Zip: 79710

Phone: (575)631-2442

Email address: jim_wilson@oxy.com

AFMSS

APD ID: 10400006760

Well Type: OIL WELL

.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Submission Date: 10/20/2016

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAŁ COM

COM Well Number: 23H

Well Work Type: Drill

Section 1 - General

APD ID:	10400006760	Tie to previous NOS?		Submission Date: 10/20/2016
BLM Office:	CARLSBAD	User: David Stewart	Title:	Sr. Regulatory Advisor
Federal/India	an APD: FED	Is the first lease penetrate	d for productior	n Federal or Indian? FED
Lease numb	er: NMNM85893	Lease Acres: 160		
Surface acce	ess agreement in place?	Allotted?	Reservation:	
Agreement i	n place? NO	Federal or Indian agreeme	ent:	
Agreement r	umber:			
Agreement r	ame:			
Keep applica	tion confidential? NO			
Permitting A	gent? NO	APD Operator: OXY USA	NC	
Operator let	er of designation:			
Keep applica	ition confidential? NO			

Operator Info

Operator Organization Name	: OXY USA INC	
Operator Address: 5 Greenwa	ay Plaza, Suite 110	7 :
Operator PO Box:		Zip: 77046
Operator City: Houston	State: ⊤X	
Operator Phone: (713)366-57	16	
Operator Internet Address:		

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan name	:
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: CEDAR CANYON 21 FEDERAL COM	Well Number: 23H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: CORRAL DRAW BONE SPRING	Pool Name: 2ND BONE SPRING

Aliquot: SWNW

Describe other m	ninerals:			
Is the proposed	well in a Helium production area	? N Use Exist	ing Well Pad? NO	New surface disturbance?
Type of Well Pad	I: MULTIPLE WELL		Vell Pad Name:	Number: 22H
Well Class: HOR	IZONTAL	CEDAR C COM Number c	ANYON 21 FEDERAL	
Well Work Type:	Drill			
Well Type: OIL W	/ELL			
Describe Well Ty	vpe:			
Well sub-Type: I	NFILL			
Describe sub-typ	De:			
Distance to town	: 6 Miles Distance	to nearest well:	30 FT Distant	ce to lease line: 50 FT
Reservoir well s	pacing assigned acres Measuren	nent: 160 Acres		
Well plat: Ced	darCanyon21FdCom23H_C102_10)-20-2016.pdf		
Well work start D	Date: 05/02/2017	Duration:	25 DAYS	
Section 3	3 - Well Location Table			
Survey Type: RE	CTANGULAR			
Describe Survey	Туре:			
Datum: NAD83		Vertical D	atum: NAVD88	
Survey number:				
	STATE: NEW MEXICO	Meridian: NEW	/ MEXICO PRINCIPAL	County: EDDY
	Latitude: 32.205244	Longitude: -10	3.99755	
SHL	Elevation: 2931	MD : 0		TVD: 0
Leg #: 1	Lease Type: FEDERAL	Lease #: NMN	M85893	
	NS-Foot: 1824	NS Indicator:	FNL	
	EW-Foot : 141	EW Indicator:	FWL	
	Twsp: 24S	Range: 29E		Section: 21

Lot:

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Page 2 of 4

Tract:

Operator Name: OXY USA INC

.

Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

	STATE: NEW MEXICO	Meridian: NEW MEXICO PRINCIPA	County: FDDY
	Latitude: 32.204208	Longitude: -103.997853	
KOP	Elevation: -5116	MD : 8079	TVD: 8047
Leg #: 1	Lease Type: FEDERAL	Lease #: NMNM85893	
-	NS-Foot : 2200	NS Indicator: FNL	
	EW-Foot: 50	EW Indicator: FWL	
	Twsp: 24S	Range: 29E	Section: 21
	Aliquot: SWNW	Lot:	Tract:
	STATE: NEW MEXICO	Meridian: NEW MEXICO PRINCIPA	L County: EDDY
	Latitude: 32.20421	Longitude: -103.996916	
PPP	Elevation: -5689	MD: 8967	TVD : 8620
Leg #: 1	Lease Type: FEDERAL	Lease #: NMNM85893	
	NS-Foot: 2200	NS Indicator: FNL	
	EW-Foot : 340	EW Indicator: FWL	
	Twsp: 24S	Range: 29E	Section: 21
	A Kanada ONA/NINA/	Lot:	Tract:
	Aliquot: SWNW	Lot.	Haci.
	STATE: NEW MEXICO	Meridian: NEW MEXICO PRINCIPA	
EXIT	STATE: NEW MEXICO	Meridian: NEW MEXICO PRINCIPA	
EXIT Leg # : 1	STATE: NEW MEXICO Latitude: 32.204237	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976	AL County: EDDY
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317	AL County: EDDY
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893	AL County: EDDY
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL	AL County: EDDY
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL	AL County: EDDY TVD: 8706
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340 Twsp: 24S	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL Range: 29E	AL County: EDDY TVD: 8706 Section: 21 Tract:
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340 Twsp: 24S Aliquot: SENE	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL Range: 29E Lot:	AL County: EDDY TVD: 8706 Section: 21 Tract:
	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340 Twsp: 24S Aliquot: SENE STATE: NEW MEXICO	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL Range: 29E Lot: Meridian: NEW MEXICO PRINCIPA	AL County: EDDY TVD: 8706 Section: 21 Tract:
Leg # : 1	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340 Twsp: 24S Aliquot: SENE STATE: NEW MEXICO Latitude: 32.204238	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL Range: 29E Lot: Meridian: NEW MEXICO PRINCIPA Longitude: -103.981459	AL County: EDDY TVD: 8706 Section: 21 Tract: AL County: EDDY
Leg # : 1 BHL	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340 Twsp: 24S Aliquot: SENE STATE: NEW MEXICO Latitude: 32.204238 Elevation: -5779	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL Range: 29E Lot: Meridian: NEW MEXICO PRINCIPA Longitude: -103.981459 MD: 13477	AL County: EDDY TVD: 8706 Section: 21 Tract: AL County: EDDY
Leg # : 1 BHL	STATE: NEW MEXICO Latitude: 32.204237 Elevation: -5775 Lease Type: FEDERAL NS-Foot: 2200 EW-Foot: 340 Twsp: 24S Aliquot: SENE STATE: NEW MEXICO Latitude: 32.204238 Elevation: -5779 Lease Type: FEDERAL	Meridian: NEW MEXICO PRINCIPA Longitude: -103.981976 MD: 13317 Lease #: NMNM85893 NS Indicator: FNL EW Indicator: FEL Range: 29E Lot: Meridian: NEW MEXICO PRINCIPA Longitude: -103.981459 MD: 13477 Lease #: NMNM85893	AL County: EDDY TVD: 8706 Section: 21 Tract: AL County: EDDY

	Gerator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM		Well Number: 23H		
ļ	Twsp: 24S	Range:	29E	Section: 21)
	Aliquot: SENE	Lot:		Tract:	

4

.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400006760SuOperator Name: OXY USA INCWell Name: CEDAR CANYON 21 FEDERAL COMWell Type: OIL WELLWell Type: OIL WELL

Submission Date: 10/20/2016

Well Number: 23H Well Work Type: Drill

Section 1 - Geologic Formations

ID: Surface formation	Name: RUSTLER	
Lithology(ies):		
SHALE		
DOLOMITE		
ANHYDRITE		
Elevation: 2931	True Vertical Depth: 254	Measured Depth: 254
Mineral Resource(s):		
USEABLE WATER		
Is this a producing formation? N		
ID: Formation 1	Name: SALADO	
Lithology(ies):		
SHALE		
DOLOMITE		
HALITE		
ANHYDRITE		
Elevation: 2266	True Vertical Depth: 665	Measured Depth: 665
Mineral Resource(s):		
OTHER - SALT		
Is this a producing formation? N		
ID: Formation 2	Name: CASTILE	
Lithology(ies):		
ANHYDRITE		

	<u> </u>	
Elevation: 1291	True Vertical Depth: 1640	Measured Depth: 1640
Mineral Resource(s):		
OTHER - salt		
ls this a producing formation? N		
D: Formation 3	Name: LAMAR	
Lithology(ies):		
LIMESTONE		
SANDSTONE		
SILTSTONE		
Elevation: -132	True Vertical Depth: 3063	Measured Depth: 3063
Mineral Resource(s):		
NATURAL GAS		
OIL		
OTHER - BRINE		
Is this a producing formation? N		
ID: Formation 4	Name: BELL CANYON	
Lithology(ies):		
SANDSTONE		
SILTSTONE		
Elevation: -179	True Vertical Depth: 3110	Measured Depth: 3110
Mineral Resource(s):		
NATURAL GAS		
OIL		
OTHER - BRINE		
ls this a producing formation? N		
D: Formation 5	Name: CHERRY CANYON	
Lithology(ies):		
SANDSTONE		
SILTSTONE		

Well Name: CEDAR CANYON 21 FE	DERAL COM Well Number	r: 23H
Elevation: -883	True Vertical Depth: 3814	Measured Depth: 3814
Mineral Resource(s):		
NATURAL GAS		
OIL		
OTHER - BRINE		
Is this a producing formation?.N		
ID: Formation 6	Name: BRUSHY CANYON	
Lithology(ies):		
LIMESTONE		
SANDSTONE		
SILTSTONE		
Elevation: -2255	True Vertical Depth: 5186	Measured Depth: 5186
Mineral Resource(s):		
NATURAL GAS		
OIL		
OTHER - BRINE		
Is this a producing formation? N		
ID: Formation 7	Name: BONE SPRING	
Lithology(ies):		
LIMESTONE		
SANDSTONE		
SILTSTONE		
Elevation: -3834	True Vertical Depth: 6765	Measured Depth: 6782
Mineral Resource(s):		
NATURAL GAS		
OIL		

Well Name: CEDAR CANYON 2	1 FEDERAL COM Well Number	: 23H
D: Formation 8	Name: BONE SPRING 1ST	, , , , , , , , , , , , , , , , , , ,
Lithology(ies):		
LIMESTONE		
SANDSTONE		
SILTSTONE		
Elevation: -4824	True Vertical Depth: 7755	Measured Depth: 7786
Mineral Resource(s):		
NATURAL GAS		
OIL		
Is this a producing formation?	(
D: Formation 9	Name: BONE SPRING 2ND	
Lithology(ies):		
LIMESTONE		
SANDSTONE		
SILTSTONE		
Elevation: -5107	True Vertical Depth: 8038	Measured Depth: 8069
Mineral Resource(s):		
NATURAL GAS		
OIL		
ls this a producing formation? `	(

Pressure Rating (PSI): 5M

Rating Depth: 8710

Equipment: 13-5/8" 5M Annular, Blind Ram, Double Ram

Requesting Variance? YES

Variance request: Request for the use of a flexible choke line from the BOP to Choke Manifold.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

maximum of 30 days. If any seal subject to test pressure is broken the system will be tested. We will test the flange connection of the wellhead with a test port that is directly in the flange. We are proposing that we will run the wellhead through the rotary prior to cementing surface casing as discussed with the BLM on October 8, 2015.

Choke Diagram Attachment:

CedarCanyon21FdCom23H_ChkManifold-5M_10-13-2016.pdf

BOP Diagram Attachment:

CedarCanyon21FdCom23H_BOP1(5M13-58)_10-13-2016.pdf

CedarCanyon21FdCom23H_FlexHoseCert_10-13-2016.pdf

Section 3 - Casing

String Type: SURFACE	Other String Type	:
Hole Size: 14.75		
Top setting depth MD: 0		Top setting depth TVD: 0
Top setting depth MSL:		
Bottom setting depth MD: 400		Bottom setting depth TVD: 400
Bottom setting depth MSL:		
Calculated casing length MD: 400		
Casing Size: 10.75	Other Size	
Grade: J-55	Other Grade:	
Weight: 40.5		
Joint Type: BUTT	Other Joint Type:	
Condition: NEW		
Inspection Document:		
Standard: API		
Spec Document:		
Tapered String?: N		
Tapered String Spec:		
Safety Factors		
Collapse Design Safety Factor:	7.6	Burst Design Safety Factor: 1.54
Joint Tensile Design Safety Fac	ctor type: BUOYANT	Joint Tensile Design Safety Factor: 3.23
Body Tensile Design Safety Fa	ctor type: BUOYANT	Body Tensile Design Safety Factor: 2.89
Casing Design Assumptions a	nd Worksheet(s):	

CedarCanyon21FdCom23H_CsgCriteria_10-13-2016.pdf

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM Well Number: 23H String Type: PRODUCTION **Other String Type:** Hole Size: 9.875 Top setting depth MD: 0 Top setting depth TVD: 0 Top setting depth MSL: Bottom setting depth MD: 7200 Bottom setting depth TVD: 7177 Bottom setting depth MSL: Calculated casing length MD: 7200 Casing Size: 7.625 Other Size Grade: L-80 Other Grade: Weight: 26.4 Joint Type: BUTT Other Joint Type: DQX Condition: NEW **Inspection Document:** Standard: API Spec Document: Tapered String?: N Tapered String Spec: **Safety Factors** Collapse Design Safety Factor: 1.16 Burst Design Safety Factor: 1.25 Joint Tensile Design Safety Factor type: BUOYANT Joint Tensile Design Safety Factor: 2.03 Body Tensile Design Safety Factor type: BUOYANT Body Tensile Design Safety Factor: 2.03

CedarCanyon21FdCom23H_CsgCriteria_10-13-2016.pdf

Casing Design Assumptions and Worksheet(s):

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM Well Number: 23H String Type: PRODUCTION Other String Type: Hole Size: 9.875 Top setting depth MD: 7200 Top setting depth TVD: 7177 Top setting depth MSL: Bottom setting depth MD: 7979 Bottom setting depth TVD: 7948 Bottom setting depth MSL: Calculated casing length MD: 779 Casing Size: 7.625 **Other Size** Grade: L-80 Other Grade: Weight: 29.7 Joint Type: BUTT **Other Joint Type:** Condition: NEW **Inspection Document:** Standard: API **Spec Document:** Tapered String?: N **Tapered String Spec: Safety Factors** Collapse Design Safety Factor: 1.37 Burst Design Safety Factor: 1.46 Joint Tensile Design Safety Factor type: BUOYANT Joint Tensile Design Safety Factor: 4.7 Body Tensile Design Safety Factor type: BUOYANT Body Tensile Design Safety Factor: 4.62

CedarCanyon21FdCom23H_CsgCriteria_10-13-2016.pdf

Casing Design Assumptions and Worksheet(s):

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM Well Number: 23H String Type: LINER Other String Type: Hole Size: 6.75 Top setting depth MD: 7879 Top setting depth TVD: 7848 Top setting depth MSL: Bottom setting depth MD: 13477 Bottom setting depth TVD: 8710 Bottom setting depth MSL: Calculated casing length MD: 5598 Casing Size: 4.5 **Other Size** Other Grade: Grade: P-110 Weight: 11.6 Joint Type: OTHER Other Joint Type: DQX Condition: NEW **Inspection Document:** Standard: API **Spec Document:** Tapered String?: N **Tapered String Spec:** Safety Factors Collapse Design Safety Factor: 1.64 Burst Design Safety Factor: 1.2 Joint Tensile Design Safety Factor type: BUOYANT Joint Tensile Design Safety Factor: 2.05 Body Tensile Design Safety Factor type: BUOYANT Body Tensile Design Safety Factor: 1.91 Casing Design Assumptions and Worksheet(s):

CedarCanyon21FdCom23H_CsgCriteria_10-13-2016.pdf

CedarCanyon21FdCom23H_4.5-11.6P110DQX_10-13-2016.pdf

Section 4 - Cement

Casing String Type: SURFACE

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

Stage Tool Depth:

<u>Lead</u>		
Top MD of Segment: 0	Bottom MD Segment: 400	Cement Type: Premium Plus
Additives: Accelerator	Quantity (sks): 265	Yield (cu.ff./sk): 1.35
Density: 14.8	Volume (cu.ft.): 358	Percent Excess: 50

Casing String Type: PRODUCTION

Stage Tool Depth: 3113		
<u>Lead</u>		
Top MD of Segment: 0	Bottom MD Segment: 2613	Cement Type: Class C Cement
Additives: Accelerator, Retarder	Quantity (sks): 501	Yield (cu.ff./sk): 1.85
Density: 12.9	Volume (cu.ft.): 927	Percent Excess: 75
<u>Tail</u>		
Top MD of Segment: 2613	Bottom MD Segment: 3113	Cement Type: Class C Cement
Additives:	Quantity (sks): 182	Yield (cu.ff./sk): 1.33
Density: 14.8	Volume (cu.ft.): 242	Percent Excess: 125
Stage Tool Depth: 3113		
<u>Lead</u>		
Top MD of Segment: 0	Bottom MD Segment: 6979	Cement Type: Class C Cement
Additives: Retarder	Quantity (sks): 842	Yield (cu.ff./sk): 3.05
Density: 10.2	Volume (cu.ft.): 2568	Percent Excess: 75
<u>Tail</u>		
Top MD of Segment: 6979	Bottom MD Segment: 7979	Cement Type: Class H Cement
Additives: Retarder, Dispersant, Salt	Quantity (sks): 163	Yield (cu.ff./sk): 1.65
Density: 13.2	Volume (cu.ft.): 269	Percent Excess: 20
Casing String Type: LINER		

Well Number: 23H

Stage Tool Depth:

<u>Lead</u>		
Top MD of Segment: 7879	Bottom MD Segment: 13477	Cement Type: Class H Cement
Additives: Retarder, Dispersant, Salt	Quantity (sks): 547	Yield (cu.ff./sk): 1.63
Density: 13.2	Volume (cu.ft.): 892	Percent Excess: 15

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2.

Describe the mud monitoring system utilized: PVT/MD Totco/Visual Monitoring

Circulating Medium Table

Top Depth: 0	Bottom Depth: 400
Mud Type: OTHER	EnerSeal (MMH)
Min Weight (Ibs./gal.): 8.4	Max Weight (lbs./gal.): 8.6
Density (lbs/cu.ft.):	Gel Strength (lbs/100 sq.ft.):
PH:	Viscosity (CP):
Filtration (cc):	Salinity (ppm):
Additional Characteristics:	

Well Number: 23H

Top Depth: 400	Bottom Depth: 3113
Mud Type: OTHER	Brine
Min Weight (Ibs./gal.): 9.8	Max Weight (Ibs./gal.): 10
Density (lbs/cu.ft.):	Gel Strength (lbs/100 sq.ft.):
PH:	Viscosity (CP):
Filtration (cc):	Salinity (ppm):
Additional Characteristics:	
Top Depth: 3113	Bottom Depth: 7979
Mud Type: OTHER	EnerSeal(MMH)

Min Weight (Ibs./gal.): 8.8 Max Weight (lbs./gal.): 9.6 Density (lbs/cu.ft.): Gel Strength (lbs/100 sq.ft.): PH: Viscosity (CP): Filtration (cc): Salinity (ppm): Additional Characteristics: Top Depth: 7979 Bottom Depth: 13477 Mud Type: OIL-BASED MUD Min Weight (Ibs./gal.): 8.8 Max Weight (lbs./gal.): 9.6 Density (lbs/cu.ft.): Gel Strength (lbs/100 sq.ft.): PH: Viscosity (CP): Filtration (cc): Salinity (ppm): Additional Characteristics:

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: GR from TD to surface (horizontal well – vertical portion of hole). Mud Log from Intermediate Shoe to TD.

List of open and cased hole logs run in the well: GR,MUDLOG

Coring operation description for the well:

No coring is planned at this time.

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4258

Anticipated Surface Pressure: 2341.8

Anticipated Bottom Hole Temperature(F): 150

Anticipated abnormal proessures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

CedarCanyon21FdCom23H_H2S2_10-17-2016.pdf CedarCanyon21FdCom23H_H2S1_10-17-2016.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

CedarCanyon21FdCom23H_DirectPlan1_10-20-2016.pdf

CedarCanyon21FdCom23H_DirectPlot1_10-20-2016.pdf

Other proposed operations facets description:

Well will be drilled with a walking/skidding operation. Plan to drill the two well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well.

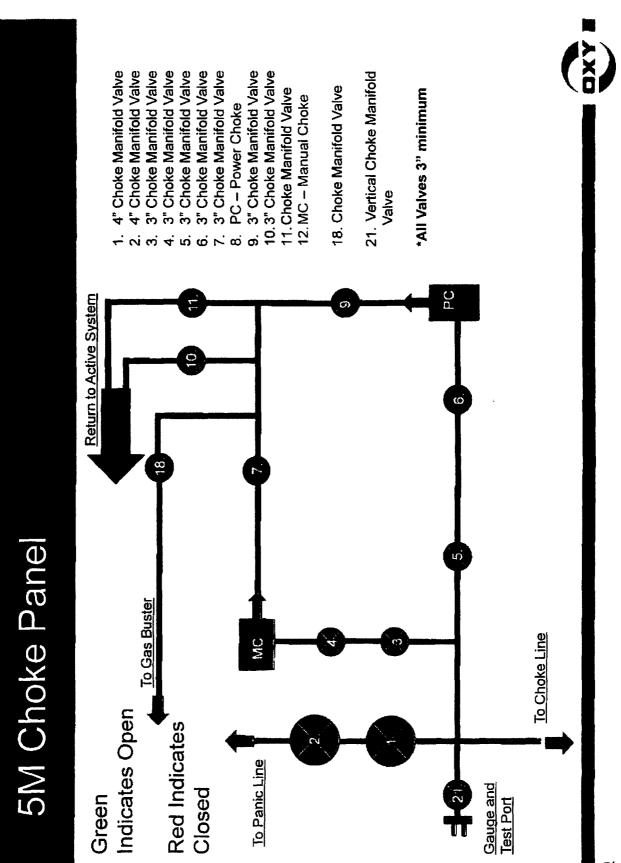
Cement Top and Liner Overlap -

1. Oxy is requesting permission to have minimum fill of cement behind the 4-1/2" production liner to be 100 ft into previous casing string. The reason for this is so that we can come back and develop shallower benches from the same 7.625" mainbore in the future.

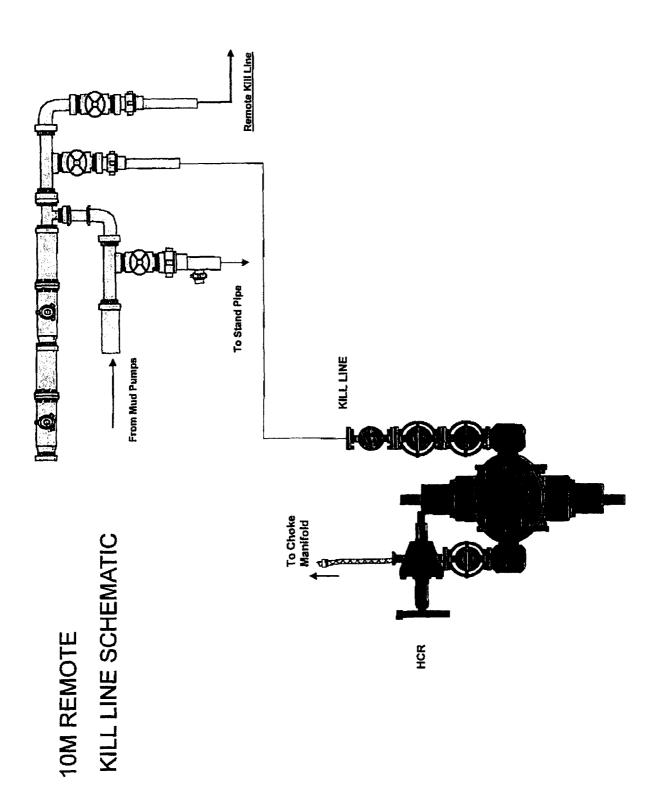
2. Our plan is to use a whipstock for our exit through the mainbore. Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve.

3. Cement will be brought to the top of this liner hanger

4. See attached for additional casing tie-back information.

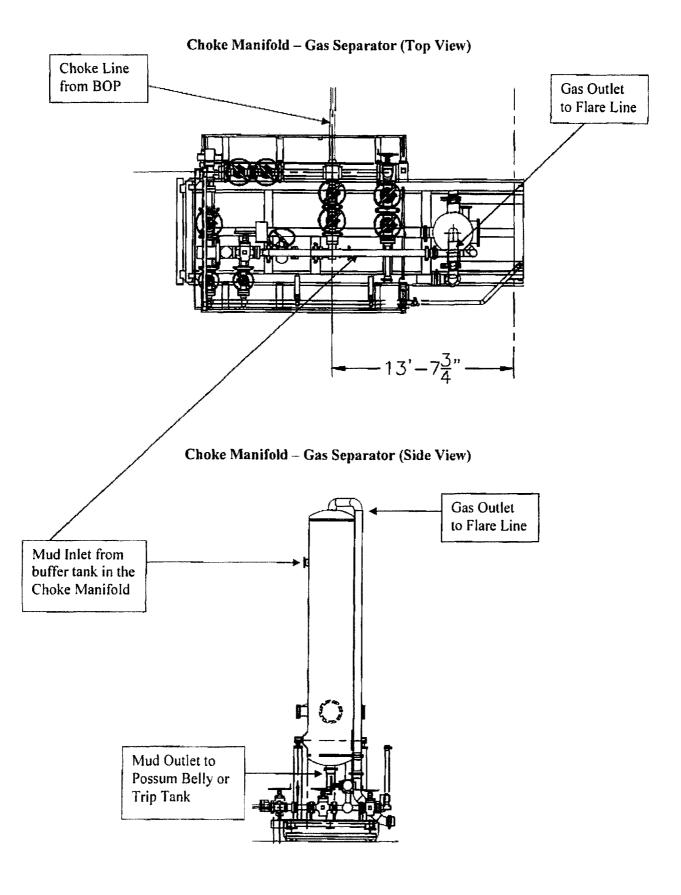

Other proposed operations facets attachment:

CedarCanyon21FdCom23H_DrillPlan_10-20-2016.pdf

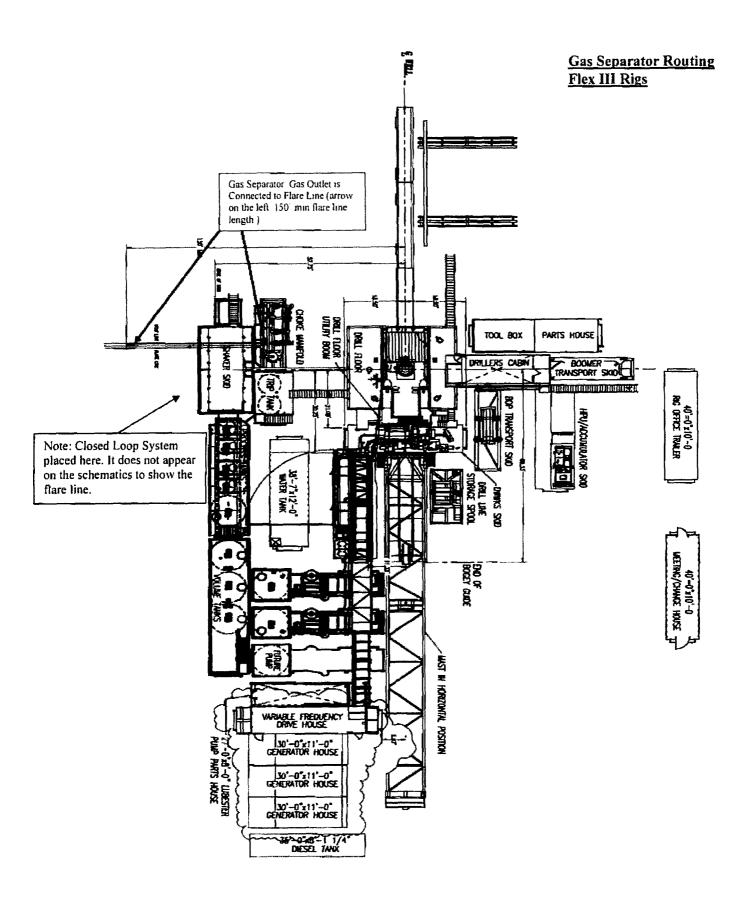

CedarCanyon21FdCom23H_CsgTieBackDetail_01-09-2017.pdf

Other Variance attachment:

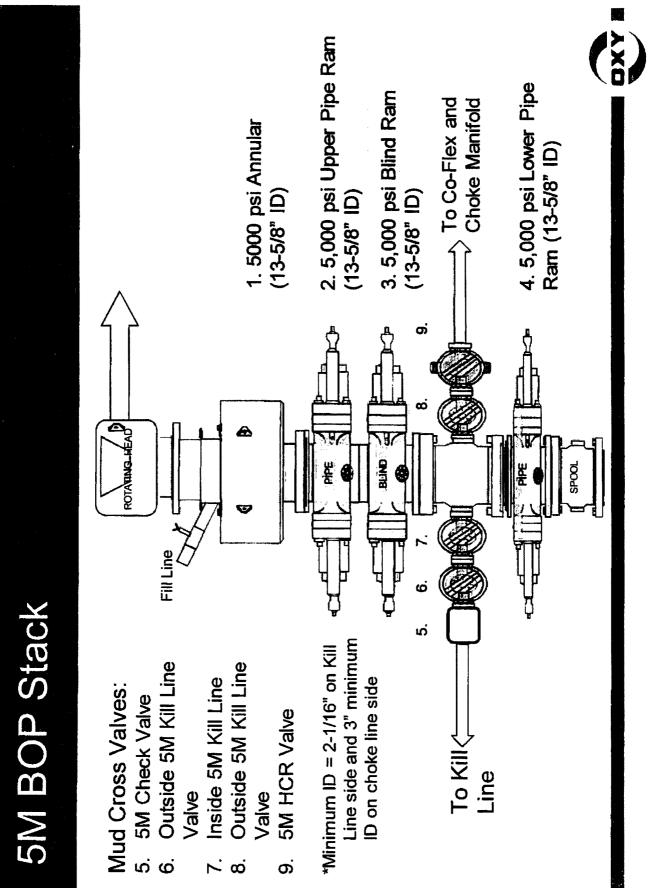
x

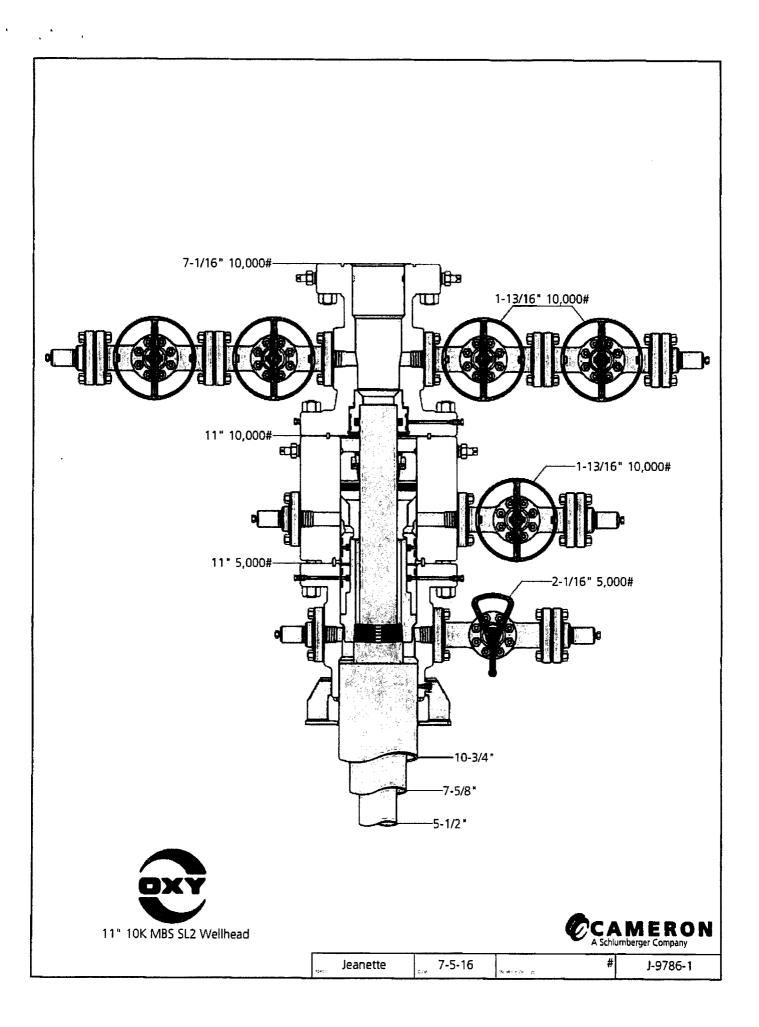


N



, ·


CM-2



ι **ι** ι

, ¹ •

* , * e

Fluid Technology

Quality Document

•	Y CONTROL ID TEST CERTIFIC		CERT. N	0.	746	
PURCHASER: Ph	ioenix Beattle Co.		P,O. Nº:	00.	2491	
CONTITECH ORDER Nº: 412	2638 HOSE TYPE:	3" ID	Cho	oke and Kill	Hose	
HOBE SERIAL Nº: 52	2777 NOMINAL / AC	FUAL LENGTH:		10,67 m		
W.P. 68,96 MPa 1000	00 psi T.P. 103,4	MPa 15000	psi	Duration:	60 ~	min.
[↑] 10 mm = 10 Min. → 10 mm = 25 MPa	See attachment.					-
Туре	COUP! Serial N°		uality			
5 ¥1164	Selie N	1 U	UBHIIV			
					Heat Nº	.
3" coupling with 4 1/16" Flange end	917 913	Alsi	4130 4130		17998A 26984	•••••
3° coupling with 4 1/16° Flange end INFOCHIP INSTALLED VI metal parts are flawless VE CERTIFY THAT THE ABOVE HO	917 913 OSE HAS BEEN MANUFACTUR	AISI	4130 4130	Tem	T7998A 26984 PI Spec 16 C perature rate	:"B"
3" coupling with 4 1/16" Flange end INFOCHIP INSTALLED In metal parts are flawless VE CERTIFY THAT THE ABOVE HO RESSURE TESTED AS ABOVE WIT	917 913 OSE HAS BEEN MANUFACTUR TH SATISFACTORY RESULT.	AISI AISI RED IN ACCORDA	4130 4130	Tem	T7998A 26984 PI Spec 16 C perature rate	:"B"
3" coupling with 4 1/16" Flange end INFOCHIP INSTALLED In metal parts are flawless VE CERTIFY THAT THE ABOVE HO RESSURE TESTED AS ABOVE WIT	917 913 OSE HAS BEEN MANUFACTUR	AISI	4130 4130	Tem	T7998A 26984 PI Spec 16 C perature rate	:"B"

r

.

						•			 ,			,		1 1	1	,																\bigcap
•	d.										ŀ										1	U		1				ł	1	5		
	H H H			ļ	Y III	1	13- H - F																				(Ľ E	ſe	cia Anisher trial Kit. antrol Dept. ED
		Ц	lık Tik	4		ļ			4		ł	ļ	μ	1	.) :		H	+	$\frac{1}{1}$	+	+	Ц		$\frac{1}{1}$	Η			u	ų U	Į	ť	antrol Dept
ì				ĥ																												41) (13)
1	加加					*		;				ľ												Ī								. .
1	花雪え										+-+-+			•																		
	1.0																															
1					20												6													÷	0	
1	B							·			·																					
						į		-																1								
1	Ħ		, .			•			Ŧ														~~~									
	111					•	A STATE OF																									
	18		···																							12·····						
	\mathbb{H}	H	I													1																
	15													~													ĺ					ν., ₆₄ μο σσημη τροτικός βικηλού γκ ^α ιζ ² του σαντ

;:

Form No 100/12

Phoenix Beattie Corp LISSS Brittmoore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0143 E-sail sail@noenisteattie.com www.phoenisbeattie.com

Delivery Note

- PHOENIX Beattie

 $\eta_{\rm He} = \eta_{\rm e}^2$, $\eta_{\rm e}^2$ and $\eta_{\rm e}^2 = \eta_{\rm e}^2$ and and the state $\eta_{\rm e}^2$ is the state $\eta_{\rm e}^2$

•

.

Customer Order Number 370-369-001	Delivery Note Number	003078	Page	1
Customer / Invoice Address HELMERICH & PAYNE INT'L DRILLING CO 1437 SOUTH BOULDER TULSA, OK 74119	Delivery / Address HELMERICH & PAYNE IDC ATTN: JOE STEPHENSON - RI 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	G 370		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beattie Reference	Date
H01	JJL	006330	05/23/2008

item No	Beattle Part Number / Description	Qty Ordered	Qty Sent	Qty To Follow
1	HP10CK3A-35-4F1 3" 10K 16C C&K HOSE x 35ft OAL CW 4.1/15" API SPEC FLANGE E/ End 1: 4.1/16" 10Kps1 API Spec 6A Type 68X Flange End 2: 4.1/16" 10Kps1 API Spec 6A Type 68X Flange c/w BX155 Standard ring groove at each end Suitable for H2S Service Working pressure: 10,000psi Test pressure: 15,000psi Standard: API 16C Full specification Armor Guarding: Included Fire Rating: Not Included Temperature rating: -20 Deg C to +100 Deg C	1	1	0
-	SECK3-HPF3 LIFTING & SAFETY EQUIPMENT TO SUIT HPIOCK3-35-F1 2 x 160mm ID Safety Clamps 2 x 244mm ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4" OD 4 x 7.75t Shackles	1	1	0°
- 1	SC725-200CS SAFETY CLAMP 200MM 7.25T C/S GALVANISED	1	1	0

Continued...

All goods remain the property of Phoenix Beattie until peld for In full, Any damage or shortage on this delivery must be advised within 5 days. Returns may be subject to a handling charge.

🖛 PHOENIX Beattie

Form No 100/12

Phoenix Beattle Corp 11535 Eritmore Park Drive Houston, TX 77041 Tel: (832) 327-0141 Fax: (832) 327-0148 E-mail sail@phoenixbeattle.com www.phcenixbeattle.com

Delivery Note

Customer Order Number 370-369-001	Delivery Note Number	003078	Page	2
Customer / Invoice Address HELMERICH & PAYNE INT'L DRILLING CO 1437 SOUTH BOULDER TULSA, OK 74119	Delivery / Address Helmerich & Payne IDC Attn: JGE Stephenson - RI 13609 INDUSTRIAL ROAD HOUSTON, TX 77015	G 370		

Customer Acc'No	Phoenix Beattie Contract Manager	Phoenix Beattle Reference	Date
H01	JJL	006330	05/23/2008

ltern No	Beattle Part Number / Description	Qty Ordered	Qty Sent	Oty To Follow
4	SC725-132CS SAFETY CLAMP 132MM 7.25T C/S GALVANIZED C/W BOLTS	1	1	0
5	ODCERT-HYDRO HYDROSTATIC PRESSURE TEST CERTIFICATE	1	1	0
б	ODCERT-LOAD LOAD TEST CERTIFICATES	1	1	0
	OOFREIGHT INBOUND / OUTBOUND FREIGHT PRE-PAY & ADD TO FINAL INVOICE NOTE: MATERIAL MUST BE ACCOMPANIED BY PAPERMORK INCLUDING THE PURCHASE ORDER, RIG NUMBER TO ENSURE PROPER PAYMENT			D
	Phoenix Beattle Inspection Signature :	TATALAN	WAILEY	
	Received In Good Condition : Signature		$\overline{1}$	
	Print Name 	e kanada da da da da da da da unitedada da da	N 2. 2010 - 100 - 100 - 100 - 100 - 100 - 100	an a

Date

All goods remain the property of Phoenix Beattle until paid for in full. Any damage or shortage on this delivery must be advised within 6 days. Returns may be subject to a handling charge.

	I	Issue No																						
	Page	Drg No																						
		Bin No	WATER	N/STK	322	R																		
cate		Test Cert No																						
Material Identification Certificate	370-369-001	Batch No	52777 /H88A	002440	14665	6011																		
tificatic	H	WO No			2519	2742																		
al Íden	COent	αtγ	1	1	1	1						 									 			
Materia	& PAYNE INT'L DRILLING COent Ref	Material Spec												~										
ttie	HELMERICH & PAY	Material Desc	11.1		CARBON STEEL	CARBON STER																		
ENIX Be	Client		3' 10K 16C CHK HOSE x 35ft CML	LIFTING & SAFETY EQUIPHENT TO	SAFETY CLAMP 200M 7.25T												-							
	PA No 006330	Part No	HP10CC3A-36-4F1	SECK3-HIPF3	5C725-200CS	SC725-132CS		2 atr	 . 1427	دائم <u>م</u>	79045	 27 mm **	-,402.4	- 10000	81.0	× 11	 *****	 **2.4.	 	(19). L'	 1 196-1	F	dar-b	 14.4 fait fait fait

We hereby certify that these goods have been inspected by our Quality Management System, and to the best of our knowledge are found to conform to relevant industry standards within the requirements of the purchase order as issued to Phoenix Beettie Corporation.

05/23/09.

Coflex Hose Certification

•

ł

.

Coflex Hose Certification

Ontinental

Fluid Technology

Quality Document

CERTIFICATE OF CONFORMITY

Supplier : CONTITECH RUBBER INDUSTRIAL KFT. Equipment : 6 pcs. Choke and Kill Hose with installed couplings Type : 3" x 10,67 m WP: 10000 psi Supplier File Number : 412638 Date of Shipment : April. 2008 Customer : Phoenix Beattle Co. Customer P.o. : 002491 Referenced Standards / Codes / Specifications : API Spec 16 C Serial No.: 52754,52755,52776,52777,52778,52782

STATEMENT OF CONFORMITY

We hereby certify that the above items/equipment supplied by us are in conformity with the terms, conditions and specifications of the above Purchaser Order and that these items/equipment were fabricated inspected and tested in accordance with the referenced standards, codes and specifications and meet the relevant acceptance criteria and design requirements.

COUNTRY OF ORIGIN HUNGARY/EU

Signed :

Position: Q.C. Manager

_ontiTech Rubber Industrial Rft. Quality Control Dept. (1) [

Date: 04. April. 2008

OXY's Minimum Design Criteria

Burst, Collapse, and Tensile SF are calculated using Landmark's Stress Check (Casing Design) software. A sundry will be requested if any lesser grade or different size casing is substituted.

- **1)** Casing Design Assumptions
 - a) Burst Loads

CSG Test (Surface)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Pore pressure in open hole.

CSG Test (Intermediate)

- Internal: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
- External: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

CSG Test (Production)

- o Internal:
 - For Drilling: Displacement fluid + pressure required to comply with regulatory casing test pressures. This will comply with both Onshore Oil and Gas Order No. 2 and 19.15.16 of the OCD Rules.
 - For Production: The design pressure test should be the greater of (1) the planned test pressure prior to stimulation down the casing. (2) the regulatory test pressure, and (3) the expected gas lift system pressure. The design test fluid should be the fluid associated with pressure test having the greatest pressure.
- o External:
 - For Drilling: Mud Weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
 - For Production: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Column (Surface)

- Internal: Assumes a full column of gas in the casing with a Gas/Oil Gradient of 0.1 psi/ft in the absence of better information. It is limited to the controlling pressure based on the fracture pressure at the shoe or the maximum expected pore pressure within the next drilling interval, whichever results in a lower surface pressure.
- External: Fluid gradient below TOC, pore pressure from the TOC to the Intermediate CSG shoe (if applicable), and MW of the drilling mud that was in the hole when the CSG was run from Intermediate CSG shoe to surface.

Bullheading (Surface / Intermediate)

- Internal: The string must be designed to withstand a pressure profile based on the fracture pressure at the casing shoe with a column of water above the shoe plus an additional surface pressure (in psi) of 0.02 X MD of the shoe to account for pumping friction pressure.
- External: Mud weight to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Gas Kick (Intermediate)

, **.**

4

- The string must be designed to at least a gas kick load case unless the rig is unable to detect a kick. For the gas kick load case, the internal pressure profile must be based on a minimum volume of 50 bbl or the minimum kick detection capability of the rig, whichever is greater, and a kick intensity of 2.0 ppg for Class 1, 1.0 ppg of Class 2, and 0.5 ppg for Class 3 and 4 wells.
- Internal: Influx depth of the maximum pore pressure of 0.55 "gas kick gravity" of gas to surface while drilling the next hole section.
- External: Mud weight to the TOC, cement mix water gradient below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Producing (Production)

- o Internal: SITP plus a packer fluid gradient to the shoe or top of packer.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Tubing Leak Near Surface While Stimulating (Production)

- Internal: Surface pressure or pressure-relief system pressure, whichever is lower plus packer fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.

Injection / Stimulation Down Casing (Production)

- Internal: Surface pressure plus injection fluid gradient.
- External: Mud base-fluid density to TOC, cement mix water gradient (8.4 ppg) below TOC, and pore pressure in open hole.
- b) Collapse Loads

Lost Circulation (Surface / Intermediate)

- Internal: Lost circulation at the TD of the next hole section, and the fluid level falls to a depth where the hydrostatic of the mud equals pore pressure at the depth of the lost circulation zone.
- o External: MW of the drilling mud that was in the hole when the casing was run.

Cementing (Surface / Intermediate / Production)

- Internal: Displacement fluid density.
- External: Mud weight from TOC to surface and cement slurry weight from TOC to casing shoe.

Full Evacuation (Production)

- Internal: Full void pipe.
- External: MW of drilling mud in the hole when the casing was run.
- c) Tension Loads

Running Casing (Surface / Intermediate / Production)

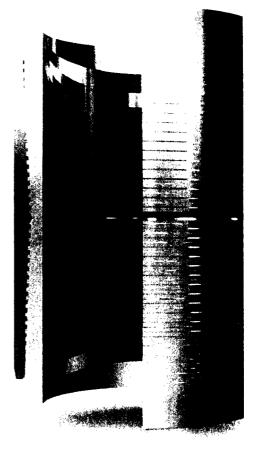
 $\circ\;$ Axial: Buoyant weight of the string plus the lesser of 100,000 lb or the string weight in air.

Green Cement (Surface / Intermediate / Production)

• Axial: Buoyant weight of the string plus cement plug bump pressure load.

PERFORMANCE DATA

TMK UP DQX Technical Data Sheet


· ·

4	.500	in

11.60 lbs/ft P-110

wanted at the second state and the second state of the second stat		- 1911 - 1944 (F. 1914)
Tubular Parameters		
Size	4.500	in
Nominal Weight	11.60	lbs/ft
Grade	P-110	
PE Weight	11 35	lbs/ft
Wall Thickness	0.250	In
Nominal ID	4 000	IP
Drift Diameter	3 875	in
Nom Pipe Body Area	3 338	n°
	x	•
Connection Paramaters	·· · ·	** **
Cutheution OD	5.00	n
Connection ID	4	ir
Make-Up Loss	3772	saamu - w 47
Uritical Section Area	3 338	12
Tension Efficier cy	100.C	
Compression Efficiency	100.0	
Yield Loao In Tensior	367 Ож	its
Mir Internal Yield Pressure	1 79(ps
Collapse Pressur	7 630	isy
Make Up Torques		
Min Make Up T. yue	4.0 10	f!_lhe
up. Make-lip Turqui	5.41	fi
Max N de T	۳ _ا	
Y la Tir Us		£; -

bular Parameters	,	ar ngan sa ngan ar ar n		
e e e e e e e e e e e e e e e e e e e	4.500	in	Minimum Yield	110.000
minal Weight	11.60	lbs/ft	Minimum Tensile	125,000
ade	P-110		Yield Load	367 000
Weight	11 35	lbs/ft	Tensile Load	417,000
all Thickness	0.250	n	Min. Internal Yield Pressure	10,700
minal ID	4 000	In	Collapse Pressure	7.600
				1

r do to sk

No

int Lotte of Rifect battural reeristic general tionalis of proper in gravine performance of print to the performance of printed for printed by the point of the printed by the printed by

\$

مەر. بەر

sco

Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico

Scope

This contingency plan establishes guidelines for the public, all company employees, and contract employees who's work activities may involve exposure to hydrogen sulfide (H2S) gas.

While drilling this well, it is possible to encounter H2S bearing formations. At all times, the first barrier to control H2S emissions will be the drilling fluid, which will have a density high enough to control influx.

Objective

- 1. Provide an immediate and predetermined response plan to any condition when H2S is detected. All H2S detections in excess of 10 parts per million (ppm) concentration are considered an Emergency.
- 2. Prevent any and all accidents, and prevent the uncontrolled release of hydrogen sulfide into the atmosphere.
- 3. Provide proper evacuation procedures to cope with emergencies.
- 4. Provide immediate and adequate medical attention should an injury occur.

Has-4

Discussion

• • •

Implementation:	This plan with all details is to be fully implemented before drilling to <u>commence</u> .
Emergency response Procedure:	This section outlines the conditions and denotes steps to be taken in the event of an emergency.
Emergency equipment Procedure:	This section outlines the safety and emergency equipment that will be required for the drilling of this well.
Training provisions:	This section outlines the training provisions that must be adhered to prior to drilling.
Drilling emergency call lists:	Included are the telephone numbers of all persons to be contacted should an emergency exist.
Briefing:	This section deals with the briefing of all people involved in the drilling operation.
Public safety:	Public safety personnel will be made aware of any potential evacuation and any additional support needed.
Check lists:	Status check lists and procedural check lists have been included to insure adherence to the plan.
General information:	A general information section has been included to supply support information.

Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on the well:

- 1. The hazards and characteristics of H2S.
- 2. Proper use and maintenance of personal protective equipment and life support systems.
- 3. H2S detection.

· ·

- 4. Proper use of H2S detectors, alarms, warning systems, briefing areas, evacuation procedures and prevailing winds.
- 5. Proper techniques for first aid and rescue procedures.
- 6. Physical effects of hydrogen sulfide on the human body.
- 7. Toxicity of hydrogen sulfide and sulfur dioxide.
- 8. Use of SCBA and supplied air equipment.
- 9. First aid and artificial respiration.
- 10. Emergency rescue.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile strength tubular is to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling a well, blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan.

H2S training refresher must have been taken within one year prior to drilling the well. Specifics on the well to be drilled will be discussed during the pre-spud meeting. H2S and well control (choke) drills will be performed while drilling the well, at least on a weekly basis. This plan shall be available in the well site. All personnel will be required to carry the documentation proving that the H2S training has been taken.

Service company and visiting personnel

- A. Each service company that will be on this well will be notified if the zone contains H2S.
- B. Each service company must provide for the training and equipment of their employees before they arrive at the well site.
- C. Each service company will be expected to attend a well site briefing

Emergency Equipment Requirements

1. <u>Well control equipment</u>

· · ·

The well shall have hydraulic BOP equipment for the anticipated pressures. Equipment is to be tested on installation and follow Oxy Well Control standard, as well as BLM Onshore Order #2.

Special control equipment:

- A. Hydraulic BOP equipment with remote control on ground. Remotely operated choke.
- B. Rotating head
- C. Gas buster equipment shall be installed before drilling out of surface pipe.

2. <u>Protective equipment for personnel</u>

- A. Four (4) 30-minute positive pressure air packs (2 at each briefing area) on location.
- B. Adequate fire extinguishers shall be located at strategic locations.
- C. Radio / cell telephone communication will be available at the rig.
 - Rig floor and trailers.
 - Vehicle.
- 3. <u>Hydrogen sulfide sensors and alarms</u>
 - A. H2S sensor with alarms will be located on the rig floor, at the bell nipple, and at the flow line. These monitors will be set to alarm at 10 ppm with strobe light, and audible alarm.
 - B. Hand operated detectors with tubes.
 - C. H2S monitor tester (to be provided by contract Safety Company.)
 - D. There shall be one combustible gas detector on location at all times.

4. <u>Visual Warning Systems</u>

A. One sign located at each location entrance with the following language:

Caution – potential poison gas Hydrogen sulfide No admittance without authorization

Wind sock - wind streamers:

- A. One 36" (in length) wind sock located at protection center, at height visible from rig floor.
- B. One 36" (in length) wind sock located at height visible from pit areas.

Condition flags

* *

A. One each condition flag to be displayed to denote conditions.

green – normal conditions yellow – potential danger red – danger, H2S present

B. Condition flag shall be posted at each location sign entrance.

5. <u>Mud Program</u>

The mud program is designed to minimize the risk of having H2S and other formation fluids at surface. Proper mud weight and safe drilling practices will be applied. H2S scavengers will be used to minimize the hazards while drilling. Below is a summary of the drilling program.

Mud inspection devices:

Garrett gas train or hatch tester for inspection of sulfide concentration in mud system.

6. <u>Metallurgy</u>

- A. Drill string, casing, tubing, wellhead, blowout preventers, drilling spools or adapters, kill lines, choke manifold, lines and valves shall be suitable for the H2S service.
- B. All the elastomers, packing, seals and ring gaskets shall be suitable for H2S service.

7. <u>Well Testing</u>

No drill stem test will be performed on this well.

8. <u>Evacuation plan</u>

Evacuation routes should be established prior to well spud for each well and discussed with all rig personnel.

9. Designated area

· ·

- A. Parking and visitor area: all vehicles are to be parked at a predetermined safe distance from the wellhead.
- B. There will be a designated smoking area.
- C. Two briefing areas on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds perpendicularly, or at a 45-degree angle if wind direction tends to shift in the area.

Emergency procedures

- A. In the event of any evidence of H2S level above 10 ppm, take the following steps:
 - 1. The Driller will pick up off bottom, shut down the pumps, slow down the pipe rotation.
 - 2. Secure and don escape breathing equipment, report to the upwind designated safe briefing / muster area.
 - 3. All personnel on location will be accounted for and emergency search should begin for any missing, the Buddy System will be implemented.
 - 4. Order non-essential personnel to leave the well site, order all essential personnel out of the danger zone and upwind to the nearest designated safe briefing / muster area.
 - 5. Entrance to the location will be secured to a higher level than our usual "Meet and Greet" requirement, and the proper condition flag will be displayed at the entrance to the location.
 - 6. Take steps to determine if the H2S level can be corrected or suppressed and, if so, proceed as required.
- B. If uncontrollable conditions occur:
 - 1. Take steps to protect and/or remove any public in the down-wind area from the rig – partial evacuation and isolation. Notify necessary public safety personnel and appropriate regulatory entities (i.e. BLM) of the situation.

- 2. Remove all personnel to the nearest upwind designated safe briefing / muster area or off location.
- 3. Notify public safety personnel of safe briefing / muster area.
- 4. An assigned crew member will blockade the entrance to the location. No unauthorized personnel will be allowed entry to the location.
- 5. Proceed with best plan (at the time) to regain control of the well. Maintain tight security and safety procedures.
- C. Responsibility:

* 1

- 1. Designated personnel.
 - a. Shall be responsible for the total implementation of this plan.
 - b. Shall be in complete command during any emergency.
 - c. Shall designate a back-up.

All personnel:	1.	On alarm, don escape unit and report to the nearest upwind designated safe briefing / muster area upw
	2.	Check status of personnel (buddy system).
	3.	Secure breathing equipment.
	4.	Await orders from supervisor.
Drill site manager:	1.	Don escape unit if necessary and report to nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparations of individuals to return to point of release with tool pusher and driller (using the buddy system)
	3.	the buddy system). Determine H2S concentrations.
	3. 4.	Assess situation and take control measures.
	т.	Assess situation and take control measures.
Tool pusher:	1.	Don escape unit Report to up nearest upwind designated safe briefing / muster area.
	2.	Coordinate preparation of individuals to return to point of release with tool pusher drill site manager (using the buddy system).
	3.	Determine H2S concentration.
	4.	Assess situation and take control measures.
Driller:	1.	Don escape unit, shut down pumps, continue

	2. 3. 4. 5.	rotating DP. Check monitor for point of release. Report to nearest upwind designated safe briefing / muster area. Check status of personnel (in an attempt to rescue, use the buddy system). Assigns least essential person to notify Drill Site Manager and tool pusher by quickest means in case
	6.	of their absence. Assumes the responsibilities of the Drill Site Manager and tool pusher until they arrive should they be absent.
Derrick man Floor man #1 Floor man #2	1.	Will remain in briefing / muster area until instructed by supervisor.
Mud engineer:	1.	Report to nearest upwind designated safe briefing / muster area.
	2.	When instructed, begin check of mud for ph and H2S level. (Garett gas train.)
Safety personnel:	1.	Mask up and check status of all personnel and secure operations as instructed by drill site manager.

Taking a kick

, t , t

When taking a kick during an H2S emergency, all personnel will follow standard Well control procedures after reporting to briefing area and masking up.

Open-hole logging

All unnecessary personnel off floor. Drill Site Manager and safety personnel should monitor condition, advise status and determine need for use of air equipment.

Running casing or plugging

Following the same "tripping" procedure as above. Drill Site Manager and safety personnel should determine if all personnel have access to protective equipment.

Has-11

Ignition procedures

The decision to ignite the well is the responsibility of the operator (Oxy Drilling Management). The decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope controlling the blowout under the prevailing conditions at the well.

Instructions for igniting the well

· ·

- 1. Two people are required for the actual igniting operation. They must wear self-contained breathing units and have a safety rope attached. One man (tool pusher or safety engineer) will check the atmosphere for explosive gases with the gas monitor. The other man is responsible for igniting the well.
- 2. Primary method to ignite: 25 mm flare gun with range of approximately 500 feet.
- 3. Ignite upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best for protection, and which offers an easy escape route.
- 5. Before firing, check for presence of combustible gas.
- 6. After lighting, continue emergency action and procedure as before.
- 7. All unassigned personnel will remain in briefing area until instructed by supervisor or directed by the Drill Site Manager.

<u>Remember</u>: After well is ignited, burning hydrogen sulfide will convert to sulfur dioxide, which is also highly toxic. **<u>Do not assume the area is safe after the well is ignited.</u>**

Has-12

Status check list

Note: All items on this list must be completed before drilling to production casing point.

1. H2S sign at location entrance.

. . .

- 2. Two (2) wind socks located as required.
- 3. Four (4) 30-minute positive pressure air packs (2 at each Briefing area) on location for all rig personnel and mud loggers.
- 4. Air packs inspected and ready for use.
- 5. Cascade system and hose line hook-up as needed.
- 6. Cascade system for refilling air bottles as needed.
- 7. Condition flag on location and ready for use.
- 8. H2S detection system hooked up and tested.
- 9. H2S alarm system hooked up and tested.
- 10. Hand operated H2S detector with tubes on location.
- 11. 1 100' length of nylon rope on location.
- 12. All rig crew and supervisors trained as required.
- 13. All outside service contractors advised of potential H2S hazard on well.
- 14. No smoking sign posted and a designated smoking area identified.
- 15. Calibration of all H2S equipment shall be noted on the IADC report.

Checked by: Date:

H25-13

Procedural check list during H2S events

Perform each tour:

• • •

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to ensure that it in proper working order.
- 3. Make sure all the H2S detection system is operative.

Perform each week:

- 1. Check each piece of breathing equipment to make sure that demand or forced air regulator is working. This requires that the bottle be opened and the mask assembly be put on tight enough so that when you inhale, you receive air or feel air flow.
- 2. BOP skills (well control drills).
- 3. Check supply pressure on BOP accumulator stand by source.
- 4. Check breathing equipment mask assembly to see that straps are loosened and turned back, ready to put on.
- 5. Check pressure on breathing equipment air bottles to make sure they are charged to full volume. (Air quality checked for proper air grade "D" before bringing to location)
- 6. Confirm pressure on all supply air bottles.
- 7. Perform breathing equipment drills with on-site personnel.
- 8. Check the following supplies for availability.
 - A. Emergency telephone list.
 - B. Hand operated H2S detectors and tubes.

General evacuation plan

- 1. When the company approved supervisor (Drill Site Manager, consultant, rig pusher, or driller) determines the H2S gas cannot be limited to the well location and the public will be involved, he will activate the evacuation plan.
- 2. Drill Site Manager or designee will notify local government agency that a hazardous condition exists and evacuation needs to be implemented.
- 3. Company or contractor safety personnel that have been trained in the use of H2S detection equipment and self-contained breathing equipment will monitor H2S concentrations, wind directions, and area of exposure. They will delineate the outer perimeter of the hazardous gas area. Extension to the evacuation area will be determined from information gathered.
- 4. Law enforcement personnel (state police, police dept., fire dept., and sheriff's dept.) Will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- 5. After the discharge of gas has been controlled, company safety personnel will determine when the area is safe for re-entry.

<u>Important:</u> Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.

HaS-15

Emergency actions

Well blowout - if emergency

а — э к — -

- 1. Evacuate all personnel to "Safe Briefing / Muster Areas" or off location if needed.
- 2. If sour gas evacuate rig personnel.
- 3. If sour gas evacuate public within 3000 ft radius of exposure.
- 4. Don SCBA and shut well in if possible using the buddy system.
- 5. Notify Drilling Superintendent and call 911 for emergency help (fire dept and ambulance) if needed.
- 6. Implement the Blowout Contingency Plan, and Drilling Emergency Action Plan.
- 6. Give first aid as needed.

Person down location/facility

- 1. If immediately possible, contact 911. Give location and wait for confirmation.
- 2. Don SCBA and perform rescue operation using buddy system.

Toxic effects of hydrogen sulfide

Hydrogen sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 ppm, which is .001% by volume. Hydrogen sulfide is heavier than air (specific gravity -1.192) and colorless. It forms an explosive mixture with air between 4.3 and 46.0 percent by volume. Hydrogen sulfide is almost as toxic as hydrogen cyanide and is between five and six times more toxic than carbon monoxide. Toxicity data for hydrogen sulfide and various other gases are compared in table i. Physical effects at various hydrogen sulfide exposure levels are shown in table ii.

Table i	
Toviaity	ofunric

Common name	Chemical formula	Specific gravity (sc 1)	Threshold limit (1)	Hazardous limit (2)	Lethal concentration (3)
Hydrogen Cyanide	Hen	0.94	10 ppm	150 ppm/hr	300 ppm
Hydrogen Sulfide	H2S	1.18	10 ppm	250 ppm/hr	600 ppm
Sulfur Dioxide	So2	2.21	5 ppm	-	1000 ppm
Chlorine	Cl2	2.45	l ppm	4 ppm/hr	1000 ppm
Carbon Monoxide	Co	0.97	50 ppm	400 ppm/hr	1000 ppm
Carbon Dioxide	Co2	1.52	5000 ppm	5%	1 0% o
Methane	Ch4	0.55	90,000 ppm	Combustibl	e above 5% in air

Toxicity of various gases

1) threshold limit - concentration at which it is believed that all workers may be repeatedly exposed day after day without adverse effects.

- 2) hazardous limit - concentration that will cause death with short-term exposure.
- lethal concentration concentration that will cause death with short-term 3) exposure.

Toxic effects of hydrogen sulfide

Table ii Physical effects of hydrogen sulfide

Percent (%)	<u>Ppm</u>	<u>Concentration</u> Grains	Physical effects
0.001	<10	<u>100 std. Ft3*</u> 00.65	Obvious and unpleasant odor.

H25-17

0.002	10	01.30	Safe for 8 hours of exposure.
0.010	100	06.48	Kill smell in 3 15 minutes. May sting eyes and throat.
0.020	200	12.96	Kills smell shortly; stings eyes and throat.
0.050	500	32.96	Dizziness; breathing ceases in a few minutes; needs prompt artificial respiration.
0.070	700	45.36	Unconscious quickly; death will result if not rescued promptly.
0.100	1000	64.30	Unconscious at once; followed by death within minutes.

*at 15.00 psia and 60'f.

· · ·

Use of self-contained breathing equipment (SCBA)

H25-18

- 1. Written procedures shall be prepared covering safe use of SCBA's in dangerous atmosphere, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available SCBA.
- 2 SCBA's shall be inspected frequently at random to insure that they are properly used, cleaned, and maintained.
- 3. Anyone who may use the SCBA's shall be trained in how to insure proper facepiece to face seal. They shall wear SCBA's in normal air and then wear them in a test atmosphere. (note: such items as facial hair {beard or sideburns} and eyeglasses will not allow proper seal.) Anyone that may be reasonably expected to wear SCBA's should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses or contact lenses.
- 4. Maintenance and care of SCBA's:

, **'** .

- a. A program for maintenance and care of SCBA's shall include the following:
 - 1. Inspection for defects, including leak checks.
 - 2. Cleaning and disinfecting.
 - 3. Repair.
 - 4. Storage.
- b. Inspection, self-contained breathing apparatus for emergency use shall be inspected monthly.
 - 1. Fully charged cylinders.
 - 2. Regulator and warning device operation.
 - 3. Condition of face piece and connections.
 - 4. Rubber parts shall be maintained to keep them pliable and prevent deterioration.
- c. Routinely used SCBA's shall be collected, cleaned and disinfected as frequently as necessary to insure proper protection is provided.
- 5. Persons assigned tasks that requires use of self-contained breathing equipment shall be certified physically fit (medically cleared) for breathing equipment usage at least annually.
- 6. SCBA's should be worn when:
 - A. Any employee works near the top or on top of any tank unless test reveals less than 10 ppm of H2S.

- B. When breaking out any line where H2S can reasonably be expected.
- C. When sampling air in areas to determine if toxic concentrations of H2S exists.
- D. When working in areas where over 10 ppm H2S has been detected.
- E. At any time there is a doubt as to the H2S level in the area to be entered.

Rescue First aid for H2S poisoning

Do not panic!

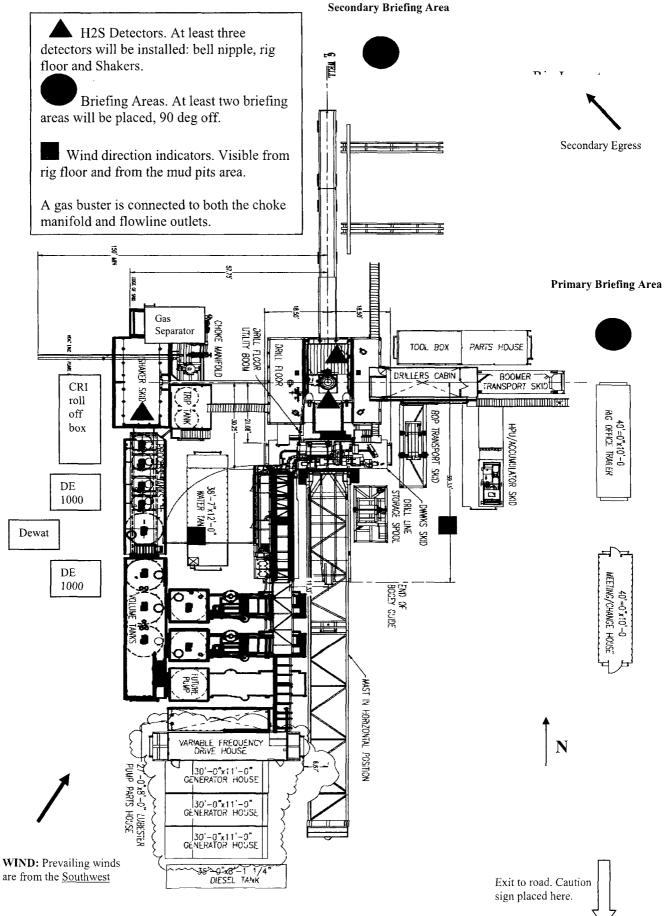
,

Remain calm - think!

- 1. Don SCBA breathing equipment.
- 2. Remove victim(s) utilizing buddy system to fresh air as quickly as possible. (go up-wind from source or at right angle to the wind. Not down wind.)
- 3. Briefly apply chest pressure arm lift method of artificial respiration to clean the victim's lungs and to avoid inhaling any toxic gas directly from the victim's lungs.
- 4. Provide for prompt transportation to the hospital, and continue giving artificial respiration if needed.
- 5. Hospital(s) or medical facilities need to be informed, before-hand, of the possibility of H2S gas poisoning no matter how remote the possibility is.
- 6. Notify emergency room personnel that the victim(s) has been exposed to H2S gas.

Besides basic first aid, everyone on location should have a good working knowledge of artificial respiration.

Revised CM 6/27/2012



Permian Drilling Hydrogen Sulfide Drilling Operations Plan Cedar Canyon 21 Federal Com 23H

Open drill site. No homes or buildings are near the proposed location.

1. Escape

Personnel shall escape upwind of wellbore in the event of an emergency gas release. Escape can take place through the lease road on the Southeast side of the location. Personnel need to move to a safe distance and block the entrance to location. If the primary route is not an option due to the wind direction, then a secondary egress route should be taken.

٠ ،

Database: Company: Project: Site: Well: Wellbore: Design:	Ceda Ceda WB06	RECTIONAL r Canyon 21 r Canyon 21 Fi	·	1983)	TVD Refe MD Refer North Ref	Local Co-ordinate Reference:Well Cedar Canyon 2TVD Reference:RKB @ 2957 50ftMD Reference:RKB @ 2957.50ftNorth Reference:GridSurvey Calculation Method:Minimum Curvature)ft)ft	om 23H
Project	NM DI	RECTIONAL F	PLANS (NAD 1	1983)						
Map System: Geo Datum:		ie Plane 1983 merican Datum	1083		System Da	tum:	M	ean Sea Level		
Map Zone:		exico Eastern Z					U	sing geodetic sc	ale factor	
Site	Cedar	Canyon 21								
Site Position:			North	ing:		0.00 usft	Latitude:			30° 59' 18.403714 N
From:	Ma	ρ	Eastir	•		0.00 us ft	Longitude:			106° 3' 38.987298 W
Position Unce	rtainty:	0	.00 ft Slot R	ladius:		13.200 in	Grid Convei	rgence:		-0 89
Well	Cedar	Canyon 21 Fee	d Com 23H							
Well Position	+N/-S	438 45	7.53 ft No	orthing:		438,564 00	usft La	titude:		32° 12' 18 876927 N
	+E/-W			sting:		645,194 10		ngitude:	1	03° 59' 51,179410 W
Position Unce				ellhead Elev	ation:	2 931		ound Level:		2,931.00 ft
Wellbore	WBOO)								
Magnetics	Мо	odel Name	Sample	e Date	Declina (*)	tion	•	Angle *)		itrength 1T)
		HDGM	!	9/26/2016		7 26		60.03		48,216
Design	Permi	ited Plan								
Audit Notes:										
Version:			Phas	e: f	PROTOTYPE	т	e On Depth:		0.00	
Vertical Section	ол:	D	epth From (T) (ft)	VD)	+N/-S (ft)	-	E/-W (ft)		action (*)	
			0.00		0.00		00		4 02	
Plan Sections										
Measured Depth (ft)	Inclination (*)	Azimuth (*)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Dogleg Rate (*/100ft)	Build Rate (*/100ft)	Turn Rate (*/100ft)	TF0 (*)	Target
0.00	0.00	0.00	0.00	0.00	0 00	0.00	0.00	000	0.00	
5,344.00		0.00	5,344 00	0.00	0 00	0.00			0 00	
5,844.02		193 80	5,841.49	-42.27	-10 38	2.00			193 80	
7,578.40		193 80	7,549 51	-334.76	-82 22	0 00			0.00	
8,078.42		89.69	8,047.00	-377.03	-92 61	2.00			180 00	CC_21_23H_KOP
8,966.92		89.69	8,619.84	-374.02	468 84	10.00			89.69	
	88 86	89.69	8,710.00	-349.83	4,978.60	0 00				CC_21_23H_BHL

• • • ·

Planned Survey

• • •

leasured Depth (ft)	Inclination (°)	Azimuth (*)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (*/100it)	Bulid Rate (*/100ft)	Turn Rate (*/100ft)
0 00	0 00	0.00	0 00	0 00	0.00	0 00	0.00	0 00	0.6
254 00	0 00	0.00	254.00	0 00	0.00	0 00	0.00	0 00	0.1
Rustler 665.00	0 00	0.00	665 00	0 00	0 00	0 00	0 00	0 00	0.6
Salado	000	0.00	000.00	0 00	0.00	0.00	0.00	0.00	U.I
1,640.00	0 00	0.00	1,640,00	0 00	0 00	0 00	0 00	0 00	0 (
Castile (An 3.063 00	ihydrite) 0 00	0.00	3,063 00	0 00	0 00	0 00	0.00	0 00	0
Lamar/Dela		0.00	3,003 00	0.00	0.00	0.00	0 00	0.00	Ų
3,110.00	0.00	0.00	3,110 00	0 00	0 00	0 00	0 00	0 00	0
Bell Canyo				- •••		•••		••••	-
3,814 00	0.00	0 00	3.814 00	0 00	0 00	0.00	0 00	0.00	0
Cherry Car 5,186 00	1 yon 0.00	0 00	5,186 00	0 00	0.00	0.00	0.00	0.00	~
Brushy Ca		0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0
5,344 00	0.00	0 00	5 344 00	0 00	0.00	0.00	0.00	0 00	0
Build @ 2.(400.00							_
5,400 00	1 12	193 80	5 400.00	-0 53	-0 13	-0 09	2.00	2 00	0
5.500.00	3 12	193 80	5 499.92	-4 12	-1 01	-0 72	2.00	2 00	0
5,600.00	5 12	193 80	5,599.66	-11.10	-2 73	-1 94	2.00	2.00	0.
5 700.00	7.12	193.80	5,699.08	-21.45	-5.27	-3.75	2.00	2.00	0
5 800.00	9.12	193.80	5,798.08	-35 17	-8 64	-6.15	2.00	2 00	0
5,843.97 Hold Tange	10.00 ent@10°	193.80	5,841.44	-42.26	-10 38	-7.39	2.00	2 00	0
5,844.02	10.00	193.80	5,841,49	-42.27	-10.38	-7 39	2.00	2 00	o
5,900.00	10.00	193.80	5,896.61	-51 71	-12.70	-9 05	0.00	0 00	Ő
6,000.00	10.00	193.80	5,995,10	-68.57	-16.84	-12.00	0.00	0 00	ő
6,100 00	10.00	193.80	6,093.58	-85.44	-20.99	-14.95	0.00	0 00	õ
6,200 00	10.00	193.80	6, 192.06	-102.30	-25 13	-17 90	0.00	0 00	ŏ
6,300 00	10.00	193.80	6,290.54	-119.17	-29.27	-20.85	0 00	0 00	0
6,400 00	10.00	193 80	6,389.02	-136.03	-33 41	-23 80	0 00	0 00	0
6,500 00	10 00	193.80	6,487.50	-152.90	-37 55	-26 75	0 00	0 00	0
6,600 00	10 00	193.60	6,585.98	-169 76	-41 70	-29.70	0 00	0.00	0
6,700 00	10 00	193.80	6,684.46	-186 62	-45 84	-32 65	0 00	0.00	0
6,781 78	10.00	193 80	6,765 00	-200 42	-49 23	-35 06	0 00	0.00	0
Bone Sprin 6,800 00	-	193 80	6 700 04	202.40	-49 98	25.00		0.00	•
6,900.00	10 00 10 00	193 80	6,782 94 6,881,42	-203 49 -220 35	-49 98 -54 12	-35 60 -38 55	0 00 0 00	0.00 0.00	0 0
7,000.00	10.00	193 80	6,979,90	-220 35 -237 22	-54 12 -58 27	-41.50	0 00	0.00	U 0
7,100.00	10.00	193.80	7,078 38	-254 08	-562 41	-44 45	0 00	0.00	0
7,200 00	10.00	193.80	7 176 86	-270 95	-66.55	-47.40	0.00	0.00	0
7,300.00	10.00	193.80	7.275 34	-287.81	-70 69	-50 35	0.00	0.00	õ
7,400 00	10.00	193.80	7 373 82	-304 67	-74 84	-53 30	0.00	0.00	Ó
7,500 00	10.00	193.80	7 472.31	-321 54	-78 98	-56 25	0.00	0.00	0
7,578.40	10 00	193.80	7 549.51	-334 76	-82 22	-58 56	0.00	0.00	Ō
7,578.44	10.00	193.80	7.549.56	-334 77	-82 23	-58 56	0.00	0.00	0
Crop @ 2.0									
7,600.00	9 57	193.80	7 570.80	-338 33	-83 10	-59.18	2.00	-2.00	0
7,700.00	7 57	193.80	7.669.68	-352 79	-86 65	-61.72	2.00	-2.00	0
7,800.00	5.57	193.80	7,769.02	-363 90	-89.38	-63.66	2.00	-2.00	0
7,900.00	3 57	193.80	7,868.69	-371.64	-91 28	-65.01	2.00	-2.00	0
8,000.00	1.57	193.80	7,968.59	-375 99	-92 35	-65.77	2.00	-2.00	0
8,078.42	0 00	193.80	8.046.99	-377 03	-92 61	-65.96	2.00	+2.00	0

COMPASS 5000.1 Build 74

Database:	HOPSPP	Local Co-ordinate Reference:	Well Cedar Canyon 21 Fed Com 23H
Company:	OXY	TVD Reference:	RKB @ 2957.50ft
Project:	NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB @ 2957.50ft
Site:	Cedar Canyon 21	North Reference:	Grid
Well: Wellbore: Design:	Cedar Canyon 21 Fed Com 23H WB00 Permitted Plan	Survey Calculation Method:	Minimum Curvature

Planned Survey

• •

Build Curve @ 10.00 DLS 8.047 00 -377 03 -92 61 -65 95 2.00 -2.00 0.00 C2_21_23H, K0P - - -377 03 -92 20 -65 55 10.00 10.00 0.00 8,000.00 21 15 99 69 8,068 57 -377 63 -53 14 10.00 10.00 0.00 8,000.00 22 16 89 66 8,263 10 -376 69 -79 75 -53 14 10.00 10.00 0.00 8,000.00 22 16 89 66 8,431 56 -376 24 55 62 81 15 10.00 10.00 0.00 8,000.00 72 16 89 66 8,522 40 -374 49 340 79 330 32 10.00 10.00 0.00 8,000.00 72 16 89 66 8,622 41 -374 40 468 44 433 90 10.00 10.00 0.00 8,000.00 72 16 89 66 8,622 51 -373 44 50 19 326 88 0.00 0.00 0.00 0.00 0.00 0.00 0	Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (*/100ft)	Build Rate (*/100ft)	Turn Rate (*/100ft)
	Build Cum	- (C) 40 00 DI 6								
CC 21 231 CC 21 237 03 992 0 4555 1000 1000 000 8,200.00 12:16 89.69 8,467 7:376 6:514 1000 1000 000 8,200.00 22:16 89.69 8,263:10 -37764 1:50:29 -23.76 1000 1000 000 8,400.00 22:16 89.69 8,431:56 -37754 1:28:4 154:47 1:000 1000 000		-	89 69	B 047 00	-377 03	-97.61	-65.96	2.00	-2.00	0.00
			05.03	0,047 00	-977.00	- 22 01	-03 50	2.00	-2.00	0.00
8,200.00 12.16 85.69 8,177.77 -376.96 -79.76 -63.14 10.00 10.00 0.00 8,300.00 32.16 85.69 8,283.10 -376.80 -50.29 -23.76 10.00 10.00 0.00 8,500.00 42.18 856.8 8,431.55 -375.24 55.62 18.45 10.00 10.00 0.00 8,500.00 52.16 85.68 8,533.63 -375.94 12.84 154.47 10.00 10.00 0.00 8,500.00 72.16 85.69 8,619.44 -374.49 30.479 330.21 10.00 10.00 0.00 8,500.00 72.16 85.69 8,619.44 -374.02 468.84 493.90 10.00 10.00 0.00 8,562.28 88.85 85.69 8,621.51 -373.41 601.99 526.88 0.00 0.00 0.00 9,000.00 88.85 88.69 8,622.51 -373.31 601.99 526.51 0.00 0.00 0.00 <td></td> <td></td> <td>89.69</td> <td>8 068 57</td> <td>-377 03</td> <td>-92.20</td> <td>-65 55</td> <td>10.00</td> <td>10.00</td> <td>0.00</td>			89.69	8 068 57	-377 03	-92.20	-65 55	10.00	10.00	0.00
B 300.00 22.16 BB 65 5.251.00 .767.65 .471 21.65 10.00 10.00 0.00 8,400.00 22.16 BB 65 8,351.95 .777.65 .471 21.69 10.00 10.00 0.00 8,500.00 42.16 BB 65 8,499.47 .757.59 21.275 22.84 10.00 10.00 0.00 8,500.00 62.16 BB 65 8,692.40 .737.94 21.275 22.84 10.00 10.00 0.00 8,500.00 62.16 BB 65 8,619.84 .737.34 304.79 330.32 10.00 10.00 0.00 8,566.52 BB 65 8,619.84 .737.34 .607.19 1.726.26 0.00 0.00 0.00 9,000.00 BB 85 B 65.9 8,622.51 .373.31 601.89 625.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-79 76</td> <td></td> <td></td> <td></td> <td></td>						-79 76				
i i	·									
1 5.00 00 42.16 86.69 6.431.66 -376.24 C5 E2 81.85 10.00 10.00 0.00 8,600.00 52.16 88.69 8,533.63 -375.39 212.75 238.54 10.00 10.00 10.00 0.00 8,600.00 62.16 88.69 8,532.40 -374.38 402.17 427.42 10.00 10.00 0.00 8,960.00 82.16 88.68 8,514.62 -376.24 468.84 493.90 10.00 10.00 0.00 8,966.82 88.85 86.69 8,622.51 -373.24 50.91 52.68 0.00 0.00 0.00 9,000.00 88.85 86.69 8,622.51 -373.34 50.19 52.66 0.00 0.00 0.00 9,000.00 88.85 86.69 8,622.51 -373.24 50.19 52.66 0.00 0.00 0.00 9,000.00 88.85 86.69 8,622.51 -377.10 10.179 1.122.05										
8,600 00 52.16 89.69 8,493.47 -375.34 128.44 154.47 1000 1000 0.00 8,700.00 62.16 89.69 8,553.63 -375.39 212.75 238.54 1000 1000 0.00 8,900.00 82.15 89.69 8,614.46 -374.38 402.17 427.42 10.00 10.00 0.00 8,965.22 88.85 89.69 8,519.84 -374.38 402.17 427.42 10.00 10.00 0.00 8,965.22 88.85 89.69 8,519.84 -374.92 468.84 493.90 10.00 10.00 0.00 9,000.00 88.85 89.69 8,522.51 -373.31 601.85 252.57 0.00				- 7						
8,800.00 72.16 89.69 8,592.40 -374.90 3047.9 330.32 10.00 10.00 0.00 8,500.00 82.16 89.69 8,519.84 -374.03 402.17 427.42 10.00 10.00 0.00 8,565.82 88.85 89.69 8,519.84 -374.03 402.17 427.42 10.00 10.00 0.00 8,665.82 88.85 89.69 8,520.51 -373.84 501.91 526.88 0.00 0.00 0.00 9,000.00 88.85 89.69 8,622.51 -373.31 601.85 825.57 0.00 0.00 0.00 9,000.00 88.85 89.69 8,628.53 -377.23 601.85 825.56 0.00 0.00 0.00 9,500.00 88.85 89.69 8,628.53 -377.16 1,017.81 1,225.65 0.00 0.00 0.00 9,600.00 88.85 89.69 8,632.55 -306.95 1,017.76 1,224.76 0.00 0.00 0.				8,499.47			154 87	10 00		
8,900.00 82:16 83:69 8,614:60 -374:38 402:17 427.42 10:00 10:00 00:00 Landing Point 8 965:32 88:85 89:69 8,619:84 -374:02 468:84 433:90 10:00 000 000 9,000.00 88:85 89:69 8,622:51 -373:31 60:18:9 62:58 000 000 000 9,000.00 88:85 89:69 8,622:51 -373:31 60:18:9 62:56 000 000 000 9,000.00 88:85 89:69 8,624:53 -372:23 80:16:8 25:57 000 000 000 9,000.00 88:85 89:69 8,634:54 -37:16 1,001:81 102:53 000 0.00 0.00 9,000.00 88:85 89:69 8,634:55 -36:94 1,201:70 1,224:75 000 0.00 0.00 9,000.00 88:85 89:69 8,644:55 -36:94 1,601:61 1,623:83 0.00	8,700.00	62.16	89 69	8,553 63	-375 39	212.75	238 54	10 00	10 00	0.00
8,900.00 82:16 83:69 8,614:60 -374:38 402:17 427.42 10:00 10:00 00:00 Landing Point 8 965:32 88:85 89:69 8,619:84 -374:02 468:84 433:90 10:00 000 000 9,000.00 88:85 89:69 8,622:51 -373:31 60:18:9 62:58 000 000 000 9,000.00 88:85 89:69 8,622:51 -373:31 60:18:9 62:56 000 000 000 9,000.00 88:85 89:69 8,624:53 -372:23 80:16:8 25:57 000 000 000 9,000.00 88:85 89:69 8,634:54 -37:16 1,001:81 102:53 000 0.00 0.00 9,000.00 88:85 89:69 8,634:55 -36:94 1,201:70 1,224:75 000 0.00 0.00 9,000.00 88:85 89:69 8,644:55 -36:94 1,601:61 1,623:83 0.00	8,800.00	72.16	89.69	8,592 40	-374 90	304 79	330 32	10 00	10 00	0.00
Landing Point Landing Point 8,966.52 88.85 88.65 8.519.84 -374.02 458.84 433.90 10.00 0.00 0.00 9,100.00 88.85 88.66 8.622.51 -373.31 601.89 625.88 0.00 0.00 0.00 9,200.00 88.85 89.69 8.624.52 -372.77 701.67 728.27 0.00 0.00 0.00 9,400.00 88.85 89.69 8.626.53 -372.23 801.85 82.59 0.00 0.00 0.00 9,600.00 88.85 89.69 8.632.54 -371.17 901.83 925.66 0.00 0.00 0.00 9,600.00 88.85 89.69 8.632.54 -370.02 1.001.76 1.224.75 0.00 0.00 0.00 9,600.00 88.85 89.69 8.634.55 -369.94 1.601.71 1.424.14 0.00 0.00 0.00 9,000.00 88.85 89.69 8.642.55 -366.94 1.601.68	8,900.00	82.16		8,614 60	-374 38	402 17	427.42	10 00	10.00	
8.966 92 88.85 89.69 8.619.84 -374 02 488.84 493.90 10.00 10.00 000 9.000.00 88.85 89.69 8.622.51 -373.31 601.89 625.88 0.00 0.00 0.00 9.200.00 88.85 89.69 8.624.52 -372.77 701.87 725.27 0.00 0.00 0.00 9.200.00 88.85 89.69 8.628.53 -377.23 601.85 82.66 0.00 0.00 0.00 9.300.00 88.85 89.69 8.628.53 -377.16 1.01.81 1.025.36 0.00 0.00 0.00 9.500.00 88.85 89.69 8.634.55 -309.51 1.301.76 1.224.75 0.00 0.00 0.00 9.00.00 88.85 89.69 8.634.55 -309.01 1.401.72 1.424.14 0.00 0.00 0.00 9.00.00 88.85 89.69 8.642.56 -367.41 1.501.70 1.523.83 0.00 0.00 <td>8,966.92</td> <td>88.85</td> <td>89.69</td> <td>8,619 84</td> <td>-374 02</td> <td>468 84</td> <td>493 90</td> <td>10 00</td> <td>10.00</td> <td>0 00</td>	8,966.92	88.85	89.69	8,619 84	-374 02	468 84	493 90	10 00	10.00	0 00
9,000.00 88.85 89.69 8,620.51 -373.84 501 91 526.88 0.00 0.00 0.00 9,100.00 88.85 89.69 8,622.51 -373.31 601 89 625.88 0.00 0.00 0.00 9,200.00 88.85 89.69 8,626.53 -377.77 701 85 825.97 0.00 0.00 0.00 9,400.00 88.85 89.69 8,626.53 -377.170 901 83 925.66 0.00 0.00 0.00 9,600.00 88.85 89.69 8,632.54 -370.62 1.101 79 1.125.05 0.00 0.00 0.00 9,600.00 88.85 89.69 8,636.55 -369.55 1.301 74 1.324.44 0.00 0.00 0.00 9,000.00 88.85 89.69 8,640.56 -366.47 1.601 68 1.623.83 0.00 0.00 0.00 0,000.00 88.85 89.69 8,642.56 -367.94 1.601 68 1.622.82 0.00 0.00 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
9 200.00 88.85 89.68 8;24.52 .372.77 701.87 726.27 0.00 0.00 0.00 0.00 9,200.00 88.85 89.69 8;258.53 .371.70 901.83 925.66 0.00 0.00 0.00 0.00 9,500.00 88.85 89.69 8;524 .370.62 1,101.81 1,125.36 0.00 0.00 0.00 9,600.00 88.85 89.69 8;534.55 .370.09 1,201.76 1,224.75 0.00 0.00 0.00 9,600.00 88.85 89.69 8;535 .369.95 1,301.74 1,324.44 0.00 0.00 0.00 0,000.00 88.85 89.69 8;646.55 -367.94 1,601.68 1,623.53 0.00 0.00 0.00 10,000.00 88.85 89.69 8;644.56 -367.94 1,601.61 1,622.52 0.00 0.00 0.00 10,200.00 88.85 89.69 8;644.56 -367.44 1,601.61 1,622.	-			•						
9:200 00 88.85 89 69 8:26 53 .372 23 801 85 825 57 0.00 0.00 0.00 9:400.00 88.85 89 69 8:263 53 .371 70 901 83 925 66 0.00 0.00 0.00 9:500.00 88.85 89.69 8:502 54 .370 162 1.101 79 1.125 55 0.00 0.00 0.00 9:600.00 88.85 89.69 8:53 65 .369.55 1.301 74 1.324 44 0.00 0.00 0.00 9:900.00 88.85 89.69 8:645 55 .369 01 1.401 72 1.424 14 0.00 0.00 0.00 10:0000 88.85 89.69 8:644 56 .366 71 1601 63 1.623 53 0.00 0.00 0.00 10:200.00 88.85 89.69 8:644 56 .366 31 1901 61 1922 61 0.00 0.00 0.00 10:300 00 88.85 89.69 8:652 57 .365 26 2:01 57 2:122 00 0.00 0.00										
9 9 000 88.85 89.69 8,630.54 -371.16 1,001.81 1,025.36 0.00 0.00 0.00 9,600.00 88.85 89.69 8,632.54 -370.62 1,101.79 1,125.05 0.00	•									
9,500.00 88.85 89.69 8,630.54 -371.16 1,001.81 1,025.36 0.00 0.00 0.00 9,600.00 88.85 89.69 8,632.54 -370.62 1,101.79 1,125.05 0.00 0.00 0.00 9,600.00 88.85 89.69 8,636.55 -369.55 1,301.74 1,324.44 0.00 0.00 0.00 9,600.00 88.85 89.69 8,640.55 -368.01 1,401.72 1,242.41 0.00 0.00 0.00 10,000.00 88.85 89.69 8,640.55 -367.94 1,601.68 1,623.53 0.00 0.00 0.00 10,100.00 88.85 89.69 8,644.56 -367.41 1,701.66 1,623.53 0.00 0.00 0.00 10,200.00 88.85 89.69 8,645.57 -366.33 1,601.63 1,822.92 0.00 0.00 0.00 10,500.00 88.85 89.69 8,652.57 -365.26 2,101.57 2,122.00 0.00 0.										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
\$\vec{1}{3}0000 88.85 89.69 8.635.55 130174 132444 000 0.00 0.00 9,0000 88.85 89.69 8.638.55 -369.90 1,40172 1.42414 0.00 0.00 0.00 10,000.00 88.85 89.69 8.642.56 -367.94 1.60168 1.623.53 0.00 0.00 0.00 10,000.00 88.85 89.69 8.644.56 -367.41 1,70166 1.723.22 0.00 0.00 0.00 10,300.00 88.85 89.69 8.645.57 -366.33 1,90161 1.922.92 0.00 0.00 0.00 10,500.00 88.85 89.69 8.645.57 -365.80 2,00159 2.022.31 0.00 0.00 0.00 10,600.00 88.85 89.69 8.654.57 -365.26 2,10157 2.122.00 0.00 0.00 0.00 10,600.00 88.85 89.69 8.656.57 -364.19 2,30153 2,321.39 0.00 0.00 0.00										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-,									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000.00	88 85	89.69	8,640.56	-368 48	1,501 70	1,523 83	0 00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,100 00	88 85	89,69	8,642,56	-367 94	1.601 68	1,623 53	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								0.00		
10,500.00 88.85 89.69 8,650.57 -365.80 2,001 59 2 022 31 0.00 0 00 0 00 10,600.00 88.85 89.69 8,652.57 -365.26 2,101 57 2 122.00 0.00 0.00 0.00 0.00 10,700.00 88.85 89.69 8,655.57 -364.72 2,201.55 2,221 70 0.00 0.00 0.00 10,800.00 88.85 89.69 8,655.57 -363.12 2,301.53 2,321 39 0.00 0.00 0.00 10,900.00 88.85 89.69 8,655.7 -363.12 2,501.48 2,520 78 0.00 0.00 0.00 11,000.00 88.85 89.69 8,662.57 -362.58 2,601 46 2,620 48 0.00 0.00 0.00 11,000.00 88.85 89.69 8,665.57 -361.51 2,601 42 2.819 87 0.00 0.00 0.00 11,400.00 88.86 89.69 8,672.56 -360.97 2,901 40 2.919 56 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,500.00	88.85	89.69	8,650.57		2,001 59	2 022 31	0.00	0.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•					•				
10,900.00 88.85 89.69 8,658 57 -363.65 2,401 51 2,421 09 0.00 0.00 0.00 11,000.00 88.85 89.69 8,660.57 -363.12 2,501.48 2,520.78 0.00 0.00 0.00 0.00 11,000.00 88.85 89.69 8,662.57 -362.58 2,601.46 2,620.48 0.00 0.00 0.00 11,200.00 88.85 89.69 8,664.57 -362.04 2,701.44 2,720.17 0.00 0.00 0.00 11,300.00 88.85 89.69 8,666.57 -360.97 2,801.42 2.819.87 0.00 0.00 0.00 11,400.00 68.86 89.69 8,670.56 -360.43 3,001.38 3.019.26 0.00 0.00 0.00 0.00 11,600.00 88.86 89.69 8,672.56 -359.90 3,101.36 3.118.95 0.00 0.00 0.00 11,600.00 88.86 89.69 8,674.55 -359.36 3,201.33 3.										
11,000.00 88 85 89.69 8 660.57 -363.12 2,501.48 2,520.78 0.00 0.00 0.00 11,100.00 88 85 89.69 8,662.57 -362.58 2,601.46 2,620.48 0.00 0.00 0.00 11,200.00 88 85 89.69 8,664.57 -362.04 2,701.44 2,720.17 0.00 0.00 0.00 11,300.00 88 85 89.69 8,665.57 -361.51 2,801.42 2.819.87 0.00 0.00 0.00 11,400.00 88.86 89.69 8,668.57 -360.97 2,901.40 2.919.56 0.00 0.00 0.00 11,500.00 88.86 89.69 8,672.56 -369.90 3,101.38 3.019.26 0.00 0.00 0.00 11,600.00 88.86 89.69 8,672.56 -359.36 3,201.33 3.218.65 0.00 0.00 0.00 11,600.00 88.86 89.69 8,672.56 -358.83 3,301.31 3.318.34 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
11,200 00 88 85 89,69 8,664.57 -362.04 2,701 44 2,720 17 0 00 0.00 0.00 11,300 00 88 85 89,69 8,665.57 -361.51 2,801 42 2,819 87 0.00 0.00 0.00 11,400.00 88 86 89 69 8,668.57 -360 97 2,901 40 2,919 56 0.00 0.00 0.00 11,500.00 88.86 89,69 8,670.56 -360.43 3,001 38 3 019.26 0.00 0.00 0.00 11,600.00 88.86 89 69 8,672.56 -359.36 3,201 33 3 218.65 0.00 0.00 0.00 11,700.00 88.86 89 69 8,672.56 -359.36 3,201 33 3 218.65 0.00 0.00 0.00 11,800.00 88.86 89 69 8,672.55 -358.83 3,301 31 3 318.34 0.00 0.00 0.00 11,900.00 88.86 89.69 8,680.55 -357.75 3,501 27 3 517.73 0.00 0.00 0.00 12,000.00 88.86 89.69 8,682.54										
11,300 00 88 85 89,69 8,665.57 -361.51 2,801 42 2.819 87 0.00 0.00 0.00 11,400.00 68 86 89 69 8,668.57 -360 97 2,901 40 2,919 56 0.00 0.00 0.00 11,500.00 88.86 89.69 8,670.56 -360.43 3,001 38 3 019.26 0.00 0.00 0.00 11,600.00 88.86 89 69 8,672.56 -359.90 3,101 36 3 118.95 0.00 0.00 0.00 11,700.00 88.86 89 69 8,674 55 -359.36 3,201 33 3 218.65 0.00 0.00 0.00 11,800.00 88.86 89 69 8,674 55 -358.83 3,301 31 3 318.34 0.00 0.00 0.00 11,800.00 88.86 89.69 8,678 55 -358.29 3,401 29 3 418 04 0.00 0.00 0.00 12,000.00 88.86 89.69 8,682 54 -357.22 3,601 25 3,617 43 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
11,400.00 88 86 89 69 8,668.57 -360 97 2,901 40 2,919 56 0.00 0.00 0.00 11,500.00 88.86 89.69 8,670.56 -360.43 3,001 38 3 019.26 0.00 0.00 0.00 11,600.00 88.86 89 69 8,672.56 -359.90 3,101 36 3.118.95 0.00 0.00 0.00 11,700.00 88.86 89 69 8,674.55 -359.36 3,201 33 3.218.65 0.00 0.00 0.00 11,800.00 88.86 89 69 8,674.55 -358.83 3,301 3 3.18.34 0.00 0.00 0.00 11,900.00 88.86 89.69 8,678.55 -357.75 3,501 27 3.517.73 0.00 0.00 0.00 12,000.00 88.86 89.69 8,682.54 -357.22 3,601.25 3,617.43 0.00 0.00 0.00 <td></td>										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
11,700.00 88.86 89.69 8,674.55 .359.36 3,201.33 3.218.65 0.00 0.00 0.00 11,800.00 88.86 89.69 8,676.56 .358.83 3,301.31 3.318.34 0.00 0.00 0.00 11,900.00 88.86 89.69 8,678.55 .358.29 3,401.29 3.418.04 0.00 0.00 0.00 12,000.00 88.86 89.69 8,678.55 .357.75 3,501.27 3.517.73 0.00 0.00 0.00 12,100.00 88.86 89.69 8,682.54 .357.22 3,601.25 3,617.43 0.00 0.00 0.00 12,200.00 88.86 89.69 8,682.54 .356.68 3,701.23 3,717.12 0.00 0.00 0.00 12,200.00 88.86 89.69 8,686.53 .356.68 3,701.23 3,717.12 0.00 0.00 0.00 12,300.00 88.86 89.69 8,686.53 .355.61 3,901.19 3,916.52 0.00 <t< td=""><td>11,500.00</td><td>88.86</td><td>89.69</td><td>8,670.56</td><td>-360.43</td><td>3,001 38</td><td>3.019.26</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>	11,500.00	88.86	89.69	8,670.56	-360.43	3,001 38	3.019.26	0.00	0.00	0.00
11,700.00 88.86 89.69 8,674.55 .359.36 3,201.33 3.218.65 0.00 0.00 0.00 11,800.00 88.86 89.69 8,676.56 .358.83 3,301.31 3.318.34 0.00 0.00 0.00 11,900.00 88.86 89.69 8,678.55 .358.29 3,401.29 3.418.04 0.00 0.00 0.00 12,000.00 88.86 89.69 8,678.55 .357.75 3,501.27 3.517.73 0.00 0.00 0.00 12,100.00 88.86 89.69 8,682.54 .357.22 3,601.25 3,617.43 0.00 0.00 0.00 12,200.00 88.86 89.69 8,682.54 .356.68 3,701.23 3,717.12 0.00 0.00 0.00 12,200.00 88.86 89.69 8,686.53 .356.68 3,701.23 3,717.12 0.00 0.00 0.00 12,300.00 88.86 89.69 8,686.53 .355.61 3,901.19 3,916.52 0.00 <t< td=""><td>11,600.00</td><td>88.86</td><td>89 69</td><td>8,672.56</td><td>-359.90</td><td>3,101 36</td><td>3.118.95</td><td>0 00</td><td>0.00</td><td>0 00</td></t<>	11,600.00	88.86	89 69	8,672.56	-359.90	3,101 36	3.118.95	0 00	0.00	0 00
11,900.00 88.86 89.69 8,678.55 -358.29 3,401.29 3,418.04 0.00 0.00 0.00 0.00 12,000.00 88.86 89.69 8,680.55 -357.75 3,501.27 3,517.73 0.00 0.										
12,000.00 88.86 89.69 8,680.55 -357.75 3,501.27 3,517.73 0.00 0.00 0.00 12,100.00 88.86 89.69 8,682.54 -357.22 3,601.25 3,617.43 0.00 0.00 0.00 12,200.00 88.86 89.69 8,682.54 -357.22 3,601.25 3,617.43 0.00 0.00 0.00 12,200.00 88.86 89.69 8,684.54 -356.68 3,701.23 3,717.12 0.00 0.00 0.00 12,300.00 88.86 89.69 8,686.53 -356.14 3,801.21 3,816.82 0.00 0.00 0.00 12,400.00 88.86 89.69 8,688.53 -355.61 3,901.19 3.916.52 0.00 0.00 0.00 12,500.00 88.86 89.69 8,689.52 -355.07 4,001.16 4,016.21 0.00 0.00 0.00 12,600.00 88.86 89.69 8,692.52 -354.53 4,101.14 4,115.91 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
12,100 00 88 86 89 69 8,682 54 -357.22 3,601 25 3,617 43 0.00 0 00 0.00 12,200.00 88 86 89,69 8,684.54 -356 68 3,701 23 3,717 12 0.00 0 00 0.00 12,300 00 88 86 89,69 8,686.53 -356 14 3,801 21 3,816 82 0 00 0.00 0.00 12,400 00 88 86 89 69 8,688.53 -355 61 3,901 19 3,916 52 0 00 0.00 0.00 12,500 00 88 86 89 69 8,680.52 -355 07 4,001 16 4,016 21 0 00 0.00 0.00 12,600 00 88 86 89 69 8,692.52 -355 07 4,011 14 4,115 91 0 00 0.00 0.00										
12,200.00 88 86 89.69 8,684.54 -356.68 3,701.23 3,717 12 0.00 0.00 0.00 12,300 00 88 86 89.69 8,686.53 -356 14 3,801 21 3,816 82 0.00 0.00 0.00 0.00 12,400 00 88 86 89.69 8,688.53 -355 61 3,901 19 3.916 52 0.00 <td< td=""><td>12,000.00</td><td>88.86</td><td>89.69</td><td>8,680 55</td><td></td><td>3,501 27</td><td>3,517.73</td><td>0.00</td><td>0.00</td><td>0.00</td></td<>	12,000.00	88.86	89.69	8,680 55		3,501 27	3,517.73	0.00	0.00	0.00
12,300 00 88 86 89.69 8,686.53 -356 14 3,801 21 3,816 82 0 00 0.00 0.00 12,400 00 88 86 89 69 8,688.53 -355 61 3,901 19 3.916 52 0 00 0.00 0.00 12,500 00 88 86 89 69 8,690.52 -355 07 4,001 16 4,016 21 0 00 0.00 0.00 12,600 00 88 86 89 69 8,692.52 -354 53 4,101 14 4,115 91 0 00 0.00 0.00					-357.22					
12,400 00 88 86 89 69 8,688 53 -355 61 3,901 19 3,916 52 0 00 0.00 0.00 12,500 00 88 86 89 69 8,690.52 -355 07 4,001 16 4,016 21 0 00 0.00 0.00 12,600 00 88 86 89 69 8,692.52 -355 37 4,101 14 4,115 91 0 00 0.00 0.00										
12,500 00 88 86 89 69 8,690.52 -355 07 4,001 16 4,016 21 0 00 0.00 0.00 12,600 00 88 86 89 69 8,692.52 -354 53 4,101 14 4,115 91 0 00 0.00 0.00										
12,600 00 88 86 89 69 8,692.52 -354 53 4,101 14 4,115 91 0 00 0.00 0.00	•									
12,700 00 00 03 03 03 03 03 03 03 03 03 00 00										
	12.700.00	00 DQ	09.03	0,094.01	+3:34 00	4,201.12	4,210 00	000	0.00	0.00

Database:	HOPSPP	Local Co-ordinate Reference:	Well Cedar Canyon 21 Fed Com 23H
Company:	OXY	TVD Reference:	RKB @ 2957 50ft
Project:	NM DIRECTIONAL PLANS (NAD 1983)	MD Reference:	RKB @ 2957 50ft
Site:	Cedar Canyon 21	North Reference:	Grid
Well: Wellbore: Design:	Cedar Canyon 21 Fed Com 23H WB00 Permitted Plan	Survey Calculation Method:	Minimum Curvature

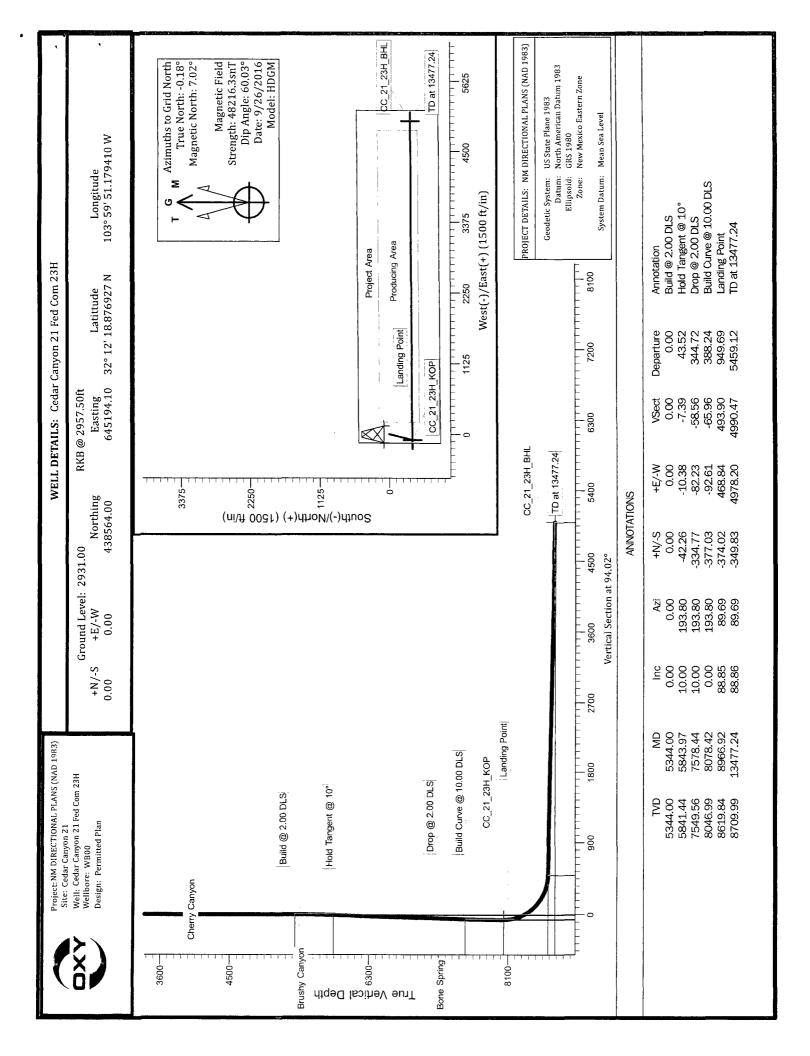
Planned Survey

• •

Measured Depth (ft)	inclination (*)	Azimuth (")	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100ft)	Build Rate (*/100ft)	Turn Rate (*/100ft)
12,800 00	88.86	89 69	8,696 50	-353.46	4,301.10	4 315.30	0 00	0 00	0 00
12,900,00	88 86	89 6 9	8,698 50	-352.93	4 401 08	4,414 99	0 00	0.00	0.00
13.000.00	88 86	89 69	8,700 49	-352.39	4 501 06	4,514 69	0 00	0 00	0 00
13,100.00	88 86	89 69	8,702.48	-351.85	4,601.04	4,614 38	0 00	0 00	0.00
13 200 00	88 86	89 69	8 704 47	-351 32	4,701.01	4,714.08	0 00	0 00	0.00
13 300 00	88 86	89.69	8 706 46	-350 78	4,800.99	4,813.77	0 00	0.00	0.00
13 400 00	88 86	89 69	8 708.45	-350 24	4,900.97	4,913 47	0.00	0.00	0 00
13 477 24	88 86	89.69	8 709 99	-349 83	4,978,20	4,990 47	0 00	0.00	0 00
TD at 13477	7.24								
13,477.65 CC_21_23H	88 86 BHL	89.69	8 710.00	-349 83	4,978 60	4,990 88	0.04	0 04	0 00

Design Targets

Target Name


- hit/miss target - Shape	Dip Angle (")	Dip Dir. (*)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
									alleet	
CC_21_23H_KOP - plan hits target cer - Point	0.00 hter	0 00	8 047.00	-377.03	-52 61	438 187.00	645,101 50	32° 12' 15 149025 N	103° 59' 52.270889	
CC_21_23H_BHL - plan hits target cer - Point	0.00 hter	0.00	8 710 00	-349 83	4.978 60	438 214 20	650.172.30	32° 12 15 257779 N	103° 58' 53.250771	

Formations

Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (*)	Dip Direction (*)
254 00	253 80	Rustier			
665 00		Salado			
1.640 00	1,639 80	Castile (Anhydrite)			
3 063 00	3,062 80	Lamar/Delaware			
3 110 00	3,109 80	Bell Canyon			
3 814 00	3,813 80	Cherry Canyon			
5 186 00	5,185 80	Brushy Canyon			
6 781 78	6,764 80	• •			

Plan Annotations

Measured	Vertical	Local Coor	dinates		
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment	
5.344 00	5,344.00	0 00	0.00	Build @ 2 00 DLS	
5.843 97	5,841.44	-42 26	-10.38	Hold Tangent @ 10"	
7.578 44	7,549.56	-334 77	-82.23	Drop @ 2 00 DLS	
8 078 42	8,046.99	-377 03	92.61	Build Curve @ 10 00 DLS	
8,966 92	8,619.84	-374 02	468.84	Landing Point	
13 477 24	8,709.99	-349 83	4.978.20	TD at 13477 24	

1. Geologic Formations

TVD of target	8710'	Pilot Hole Depth	N/A
MD at TD:	13477'	Deepest Expected fresh water:	254'

Delaware Basin

•

.

Formation	TVD - RKB	Expected Fluids
Rustler	254	
Salado	665	
Catile (Anhydrite)	1640	
Lamar/Delaware	3063	Oil/Gas
Bell Canyon*	3110	Water/Oil/Gas
Cherry Canyon*	3814	Oil/Gas
Brushy Canyon*	5186	Oil/Gas
1st Bone Spring	6765	Oil/Gas
2nd Bone Spring	8038	Oil/Gas

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

									Buoyant	Buoyant
	Casing In	terval	Csg. Size	Weight	Grade	Conn.	SF	SF Burst	Body SF	Joint SF
Hole Size (in)	From (ft)	To (ft)	(in)	(lbs)	(lbs) Grade		Collapse	or Burst	Tension	Tension
14.75	0	400	10.75	40.5	J55	BTC	7.6	1.54	2.89	3.23
9.875	0	7200	7.625	26.4	L80	BTC	1.16	1.25	2.03	2.03
9.875	7200	7979	7.625	29.7	L80	BTC	1.37	1.46	4.62	4.7
6.75	7879	13477	4.5	11.6	P-110	DQX	1.64	1.2	1.91	2.05

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h *Oxy requests the option to set casing shallower yet still below the salts if losses or hole conditions require this. Cement volumes may be adjusted if casing is set shallower and a DV tool will be run in case a contingency second stage is required for cement to reach surface. If cement circulated to surface during first stage we will drop a cancelation cone and not pump the second stage.

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	Y
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	

OXY USA Inc. - Cedar Canyon 21 Federal Com #23H

Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surface	265	14.8	1.35	6.53	6:50	Class C Cement, Accelerator
Production	842	10.2	3.05	15.63	15:07	Class C Cement, Retarder
Casing	163	13.2	1.65	8.45	12:57	Class H Cement, Retarder, Dispersant, Salt
DV/ECP 7	Tool @ 3113' (W	e request the op	tion to cancel t	he second stage i	f cement is circula	ted to surface during the first stage of cement operations)
2.1.8	501	12.9	1.85	9.86	12:44	Class C Cement, Accelerator, Retarder
2nd Stage	182	14.8	1.33	6.34	6:31	Class C cement
Production Liner	547	13.2	1.631	8.37	15:15	Class H Cement, Retarder, Dispersant, Salt

Casing String	Top of Lead (ft)	Bottom of Lead (ft)	Top of Tail (ft)	Bottom of Tail (ft)	% Excess Lead	% Excess Tail
Surface	N/A	N/A	0	400		50%
Production Casing	0	6979	6979	7979	75%	20%
2nd Stage Prodution Casing	0	2613	2613	3113	75%	125%
Production Liner	N/A	N/A	7879	13477		15%

• Cement Top and Liner Overlap

- Oxy is requesting permission to have minimum fill of cement behind the 4-1/2" production liner to be 100 ft into previous casing string
 - The reason for this is so that we can come back and develop shallower benches from the same 7.625" mainbore in the future
- Our plan is to use a whipstock for our exit through the mainbore
 - Based on our lateral target, we are planning a whipstock cased/hole exit so that kick-off point will allow for roughly 10deg/100' doglegs needed for the curve
- Cement will be brought to the top of this liner hanger

4. Pressure Control Equipment

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Туре		✓	Tested to:										
			Annula	ar	1	70% of working pressure										
0.075" Internet linte	13-5/8" 5M		Blind R	am	1											
9.875" Intermediate		15-5/8	5111	5111	5101	5101	5111	5101	JIVI	51111	5101	Pipe Ra	ım		- 250/5000psi	
			Double F	Ram	1	230/3000psi										
			Other*													

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

On Ex greate	tion integrity test will be performed per Onshore Order #2. ploratory wells or on that portion of any well approved for a 5M BOPE system or r, a pressure integrity test of each casing shoe shall be performed. Will be tested in lance with Onshore Oil and Gas Order #2 III.B.1.i.
	ance is requested for the use of a flexible choke line from the BOP to Choke old. See attached for specs and hydrostatic test chart.
Y	Are anchors required by manufacturer?
install 30 day test the are pro	tibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after ation on the surface casing which will cover testing requirements for a maximum of rs. If any seal subject to test pressure is broken the system must be tested. We will e flange connection of the wellhead with a test port that is directly in the flange. We possing that we will run the wellhead through the rotary prior to cementing surface as discussed with the BLM on October 8, 2015.
See att	ached schematic.

5. Mud Program

, , ,

Depth		Trees	Weight (nmg)	Vincesity	Water Long
From (ft)	To (ft)	Туре	Weight (ppg)	Viscosity	Water Loss
0	400	EnerSeal (MMH)	8.4-8.6	40-60	N/C
400	3113	Brine	9.8-10.0	35-45	N/C
3113	7979	EnerSeal (MMH)	8.8-9.6	38-50	N/C
7979	13477	Oil-Based Mud	8.8-9.6	35-50	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times. The following is a general list of products: Barite, Bentonite, Gypsum, Lime, Soda Ash, Caustic Soda, Nut Plug, Cedar Fiber, Cotton Seed Hulls, Drilling Paper, Salt Water Clay, CACL2. Oxy will use a closed mud system.

Oxy proposes to drill out the 10.75" surface casing shoe with a saturated brine system from 400' - 3113', which is the base of the salt system. At this point we will swap fluid systems to a high viscosity mixed metal hydroxide system. We will drill with this system to the intermediate TD @ 7979'.

What will be used to monitor the loss or gain	PVT/MD Totco/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testi	ng		
Yes	Will run GR from TD	to surface (horizontal well – vertical portion of hole). Stated logs		
	run will be in the Con	pletion Report and submitted to the BLM.		
No	Logs are planned base	ed on well control or offset log information.		
No	Drill stem test? If yes	s, explain		
No	Coring? If yes, explain			
Addi	tional logs planned	Interval		
No	Resistivity			
No	Density			
No	CBL			
Yes	Mud log	Intermediate Shoe - TD		
No	PEX			

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	4258 psi
Abnormal Temperature	No
BH Temperature at deepest TVD	150°F

Pump high viscosity sweeps as needed for hole cleaning. The mud system will be monitored visually/manually as well as with an electronic PVT. The necessary mud products for additional weight and fluid loss control will be on location at all times. Appropriately weighted mud will be used to isolate potential gas, oil, and water zones until such time as casing can be cemented into place for zonal isolation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

N H2S is present

Y H2S Plan attached

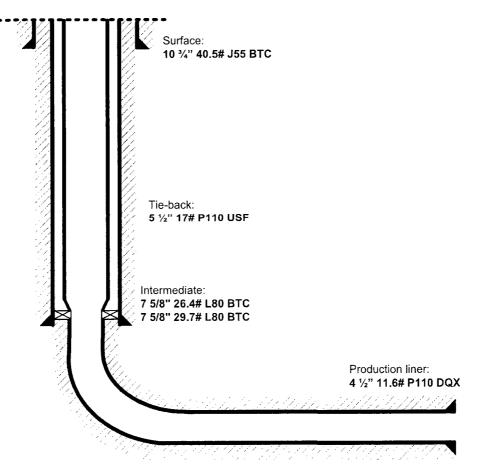
8. Other facets of operation

	Yes/No
 Will the well be drilled with a walking/skidding operation? If yes, describe. We plan to drill the two well pad in batch by section: all surface sections, intermediate sections and production sections. The wellhead will be secured with a night cap whenever the rig is not over the well. 	Yes
Will more than one drilling rig be used for drilling operations? If yes, describe.	No

Total estimated cuttings volume: 1045.9 bbls.

9. Company Personnel

Name	<u>Title</u>	Office Phone	Mobile Phone
Ludwing Franco	Drilling Engineer	713-366-5174	832-523-6392
Tim Barnard	Drilling Engineer Team Lead	713-366-5706	281-740-3084
Amrut Athavale	Drilling Engineer Supervisor	713-350-4747	281-740-4448
Simon Benavides	Drilling Superintendent	713-522-8652	281-684-6897
Angie Contreras	Drilling & Completions Manager	713-497-2012	832-605-4882
Daniel Holderman	Drilling Manager	713-497-2006	832-525-9029


OXY USA Inc. Cedar Canyon 21 Federal Com #23H APD ID - 10400006760

Below is a summary that describes the general operational steps to drill and complete well Cedar Canyon 21 Federal Com #23H:

- Drill 14-3/4" hole x 10-3/4" casing for surface section. Cement to surface.
- Drill 9-7/8" hole x 7-5/8" casing for intermediate section. Cement to surface.
- Drill 6-3/4" hole x 4-1/2" liner for production section. Cement to top of liner, 100' inside 7-5/8" shoe.
- Release drilling rig from location.
- Move in workover rig and run a 5-1/2" 17# P110 USF tie-back frack string and seal assembly (see connection specs below). Tie into liner hanger Polished Bore Receptacle (PBR) with seal assembly.
- Pump hydraulic fracture job.
- Flowback and produce well.


When a decision is made to develop a secondary bench from this wellbore, a workover rig will be moved to location. The workover rig will then retrieve the tie-back frack string and seal assembly before temporarily abandoning the initial lateral.

General well schematic:

5 ½" 17# P110 USF Tie-back string specifications:

•

PERFORMANCE DATA

9 _ _ . E ^{_ 1} : -÷

TAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400006760

Operator Name: OXY USA INC

Well Name: CEDAR CANYON 21 FEDERAL COM

Well Type: OIL WELL

Submission Date: 10/20/2016

Well Number: 23H Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CedarCanyon21FdCom23H_ExistRoad_10-20-2016.pdf Existing Road Purpose: ACCESS,FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be need	ed? YES			
New Road Map:				
CedarCanyon21FdCom2	3H_NewRoad_10-2	0-2016.pdf		
New road type: LOCAL				
Length: 3271.8	Feet	Width (ft.): 25		
Max slope (%): 0		Max grade (%): 0		
Army Corp of Engineers	s (ACOE) permit re	quired? NO		
ACOE Permit Number(s):				
New road travel width: 14				
New road access erosion control: Watershed Diversion every 200' if needed.				
New road access plan or profile prepared? YES				
New road access plan attachment:				
CedarCanyon21FdCom23H_NewRoad_10-20-2016.pdf				
Access road engineering design? NO				

Well Number: 23H

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 0

Offsite topsoil source description:

Onsite topsoil removal process: If available

Access other construction information: None

Access miscellaneous information: Proposed road will begin at an existing caliche road and go approximately 435' southwest, 2249' west and then 588' north through pasture to the southeast corner of pad. Number of access turnouts: Access turnout map:

Drainage Control

New road drainage crossing: CULVERT

Drainage Control comments: Watershed Diversion every 200' if needed.

Road Drainage Control Structures (DCS) description: Watershed Diversion every 200' if needed.

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CedarCanyon21FdCom23H ExistWells 10-20-2016.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Estimated Production Facilities description:

Production Facilities description: A. In the event the well is found productive, the Cedar Canyon 22 Central Tank Battery Satellite would be utilized and the necessary production equipment will be installed at the well site. See proposed facilities layout diagram. B. All flow lines will adhere to API standards. They will consist of 2 – 4" composite flowlines operating 75% MAWP, surface and 2 – 4" steel gas lift supply line operating 1500 psig, buried, lines to follow surveyed route. Survey of a strip of land 30' wide and 3788.9' in length crossing USA Land in Section 21 T24S R29E, NMPM, Eddy County, NM and 6853.0' in length crossing Fee Land in Sections 21 & 22 T24S R29E, NMPM, Eddy County, NM and being 15' left and 15' right of the centerline survey, see attached. C. Electric line will follow a route approved by the BLM. Survey of a strip of land

30' wide and 1473.5' in length crossing USA Land in Section 21 T24S R29E NMPM, Eddy County, NM and 2237.5' in length crossing Fee Land in Section 21 T24S R29E, NMPM, Eddy County, NM and being 15' left and 15' right of the centerline survey, see attached.

Production Facilities map:

CedarCanyon21FdCom23H_Facility-PL-EL_10-20-2016.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: INTERMEDIATE/PRODUCTION CASING, OTHER, SURFACE CASING Describe type:	Water source type: GW WELL
Source latitude:	Source longitude:
Source datum:	
Water source permit type: WATER WELL	
Source land ownership: COMMERCIAL	
Water source transport method: PIPELINE, TRUCKING	
Source transportation land ownership: COMMERCIAL	
Water source volume (barrels): 2000	Source volume (acre-feet): 0.25778618
Source volume (gal): 84000	

Water source and transportation map:

CedarCanyon21FdCom23H_GRRWaterSources_10-17-2016.pdf

CedarCanyon21FdCom23H_MesquiteWtrSrc_10-17-2016.pdf

Water source comments: This well will be drilled using a combination of water mud systems. It will be obtained from commercial water stations (Gregory Rockhouse, Mesquite) in the area and will be hauled to location by transport truck using existing and proposed roads. New water well? NO

wew water weil? NO

New Water Well Info

Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thickness of	aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well casing type:	
Well casing outside diameter (in.):	Well casing inside	diameter (in.):
New water well casing?	Used casing source	e:
Drilling method:	Drill material:	

Operator Name: OXY USA INC

Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

Grout material:	Grout depth:	
Casing length (ft.):	Casing top depth (ft.):	
Well Production type:	Completion Method:	
Water well additional information:		
State appropriation permit:		

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Primary - All caliche utilized for the drilling pad and proposed access road will be obtained from an existing BLM/State/Fee approved pit or from prevailing deposits found on the location. Will use BLM recommended extra caliche from other locations close by for roads, if available. Secondary - The secondary way of obtaining caliche to build locations and roads will be by "turning over" the location. This means, caliche will be obtained from the actual well site. A caliche permit will be obtained from BLM prior to pushing up any caliche. 2400 cubic yards is max amount of caliche needed for pad and roads. Amount will vary for each pad. The procedure below has been approved by BLM personnel: a. The top 6" of topsoil is pushed off and stockpiled along the side of the location. b. An approximate 120' X 120' area is used within the proposed well site to remove caliche. c. Subsoil is removed and piled alongside the 120' X 120' within the pad site. d. When caliche is found, material will be stockpiled within the pad site to build the location and road. e. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road. f. Once the well is drilled the stockpiled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced. Neither caliche nor subsoil will be stockpiled outside of the well pad. Topsoil will be stockpiled along the edge of the pad. Caliche will be provided from one of the following three pits located in Sections 6, 20, 22 T24S R29E. **Construction Materials source location attachment:**

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Water-Based Cuttings, Water-Based Mud, Oil-Based Cuttings, Oil-Based Mud, Produced Water

Amount of waste: 1045.9 barrels

Waste disposal frequency : Daily

Safe containment description: Haul-Off Bins

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: An approved facility that can process drill cuttings, drill fluids, flowback water, produced water, contaminated soils, and other non-hazardous wastes.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Operator Name: OXY USA INC

Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

 Description of cuttings location A closed loop system will be utilized consisting of above ground steel tanks and haul-off bins. Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility.

 Cuttings area length (ft.)
 Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CedarCanyon21FdCom23H_WellSite-CL_10-20-2016.pdf

Comments: V-Door-North - CL Tanks-West - 380' X 470' - 3 Well Pad

Section 10 - Plans for Surface Reclamation

Type of disturbance: NEW Recontouring attachment:

Drainage/Erosion control construction: Reclamation to be wind rowed as needed to control erosion

Drainage/Erosion control reclamation: Reclamation to be wind rowed as needed to control erosion

Wellpad long term disturbance (acres): 2.73

Wellpad short term disturbance (acres): 4.1

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM	Well Number: 23H
Access road long term disturbance (acres): 1.05	Access road short term disturbance (acres): 1.88
Pipeline long term disturbance (acres): 2.4430442	Pipeline short term disturbance (acres): 7.329132
Other long term disturbance (acres): 0	Other short term disturbance (acres): 2.56
Total long term disturbance: 6.223044	Total short term disturbance: 15.869132

Reconstruction method: If the well is deemed commercially productive, caliche from the areas of the pad site not required for operations will be reclaimed. The original topsoil will be returned to the area of the drill pad not necessary to operate the well. These unused areas of the drill pad will be contoured, as close as possible, to match the original topography, and the area will be seeded with an approved BLM mixture to re-establish vegetation. After concluding the drilling and/or completion operations, if the well is found non-commercial, the caliche will be reclaimed as directed by the BLM. The original topsoil will again be returned to the pad and contoured, as close as possible, to the original topsoil will an approved BLM mixture to re-establish, to the original topography, and the area will be seeded with an approved BLM mixture to re-establish.

Topsoil redistribution: The original topsoil will be returned to the area of the drill pad not necessary to operate the well.

Soil treatment: To be determined by the BLM.

Existing Vegetation at the well pad: To be determined by the BLM at Onsite.

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: To be determined by the BLM at Onsite.

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: To be determined by the BLM at Onsite.

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: To be determined by the BLM at Onsite.

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table	
Seed type:	Seed source:
Seed name:	
Source name:	Source address:
Source phone:	

Operator Name: OXY USA IN Well Name: CEDAR CANYON		Well Number: 23H	
Seed cultivar:			
Seed use location:			
PLS pounds per acre:		Proposed seeding season:	
Seed Su	Immary	Total pounds/Acre:	
Seed Type	Pounds/Acre		
Seed reclamation attachment	::		
Operator Contact/R	Responsible Offic	ial Contact Info	
First Name: JIM		Last Name: WILSON	
Phone: (575)631-2442		Email: jim_wilson@oxy.com	
Seedbed prep:			
Seed BMP:			
Seed method:			
Existing invasive species? N	0		
Existing invasive species trea	atment description:		
Existing invasive species trea	atment attachment:		
Weed treatment plan descript	tion: To be determined	by the BLM.	
Weed treatment plan attachm	ent:		
Monitoring plan description:	To be determined by the	e BLM.	
Monitoring plan attachment:			
Success standards: To be det	termined by the BLM.		
Pit closure description: NA			
Pit closure attachment:			
Section 11 - Surface	Ownership		
Disturbance type: WELL PAD			
Describe:			
Surface Owner: BUREAU OF	LAND MANAGEMENT		
Other surface owner descript	ion:		
BIA Local Office:			
BOR Local Office:			
COE Local Office:			
DOD Local Office:			
			Page 7 of 10

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: PIPELINE

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT, OTHER

Other surface owner description: Fee - Private Surface Use Agreement will be provided upon request. Fee-6853' - BLM-3788.9' BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: OTHER

Describe: Electric Line

Surface Owner: BUREAU OF LAND MANAGEMENT, OTHER

Other surface owner description: Fee - Private Surface Use Agreement will be provided upon request. Fee-2237.5' - BLM-1473.5'

Operator Name: OXY USA INC Well Name: CEDAR CANYON 21 FEDERAL COM

Well Number: 23H

BIA Local Office:

BOR Local Office: COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe: Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office: Military Local Office: USFWS Local Office: USFS Region: USFS Forest/Grassland:

USFS Ranger District:

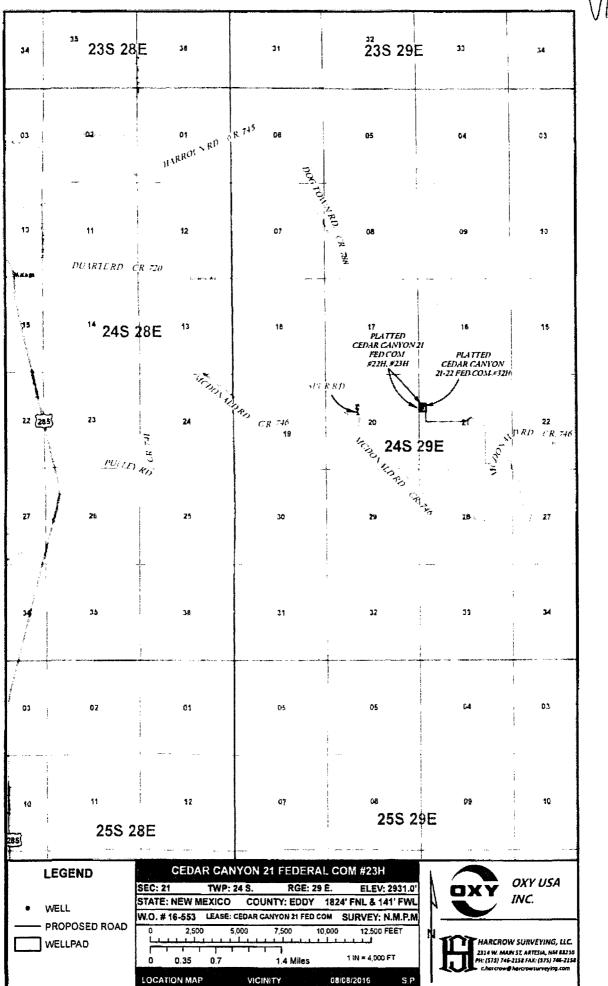
Well Number: 23H

Section 12 - Other Information

Right of Way needed? YES

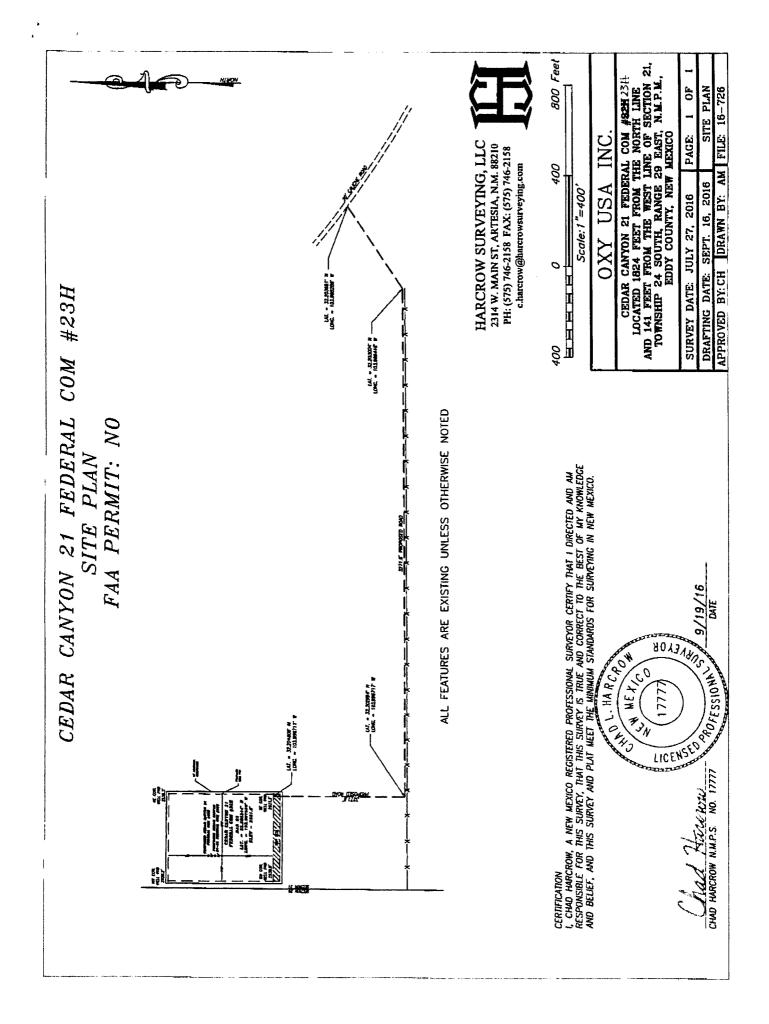
Use APD as ROW? YES

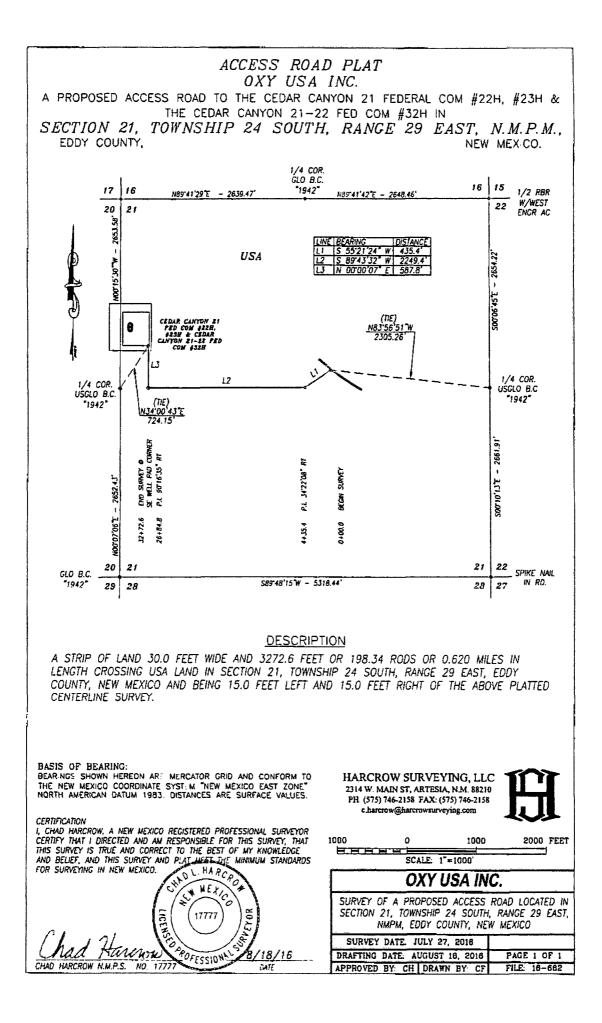
ROW Type(s): 281001 ROW - ROADS,285003 ROW - POWER TRANS,288100 ROW - O&G Pipeline,289001 ROW- O&G Well Pad


ROW Applications

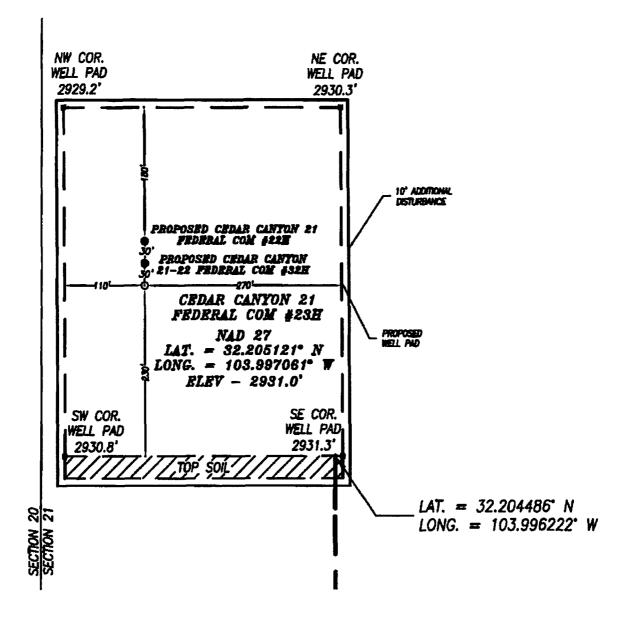
SUPO Additional Information: Permian Basin MOA - see attached SUPO and to be determined by BLM. GIS Shapefiles furnished upon requested **Use a previously conducted onsite?** NO

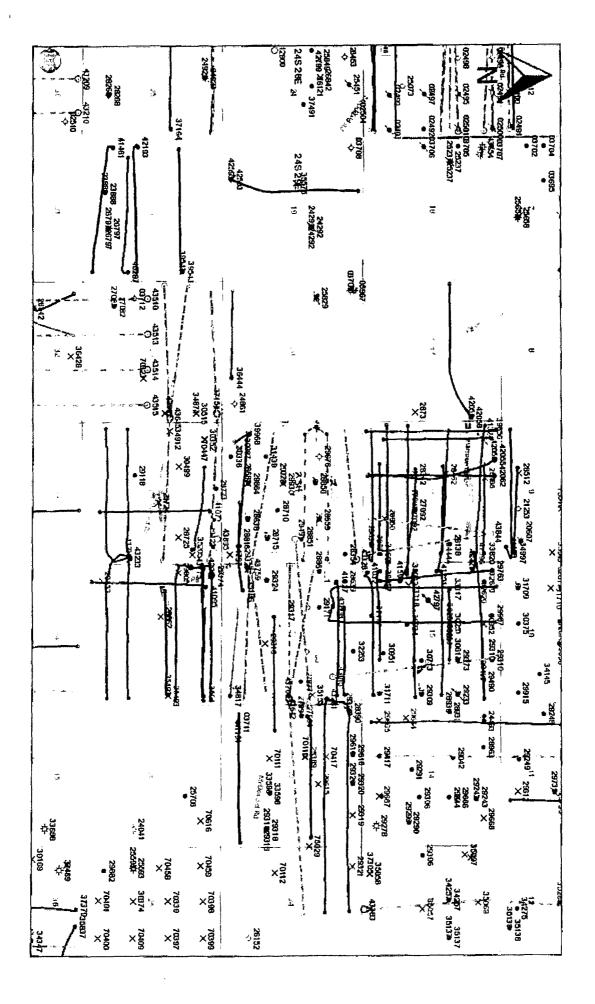
Previous Onsite information:


Other SUPO Attachment

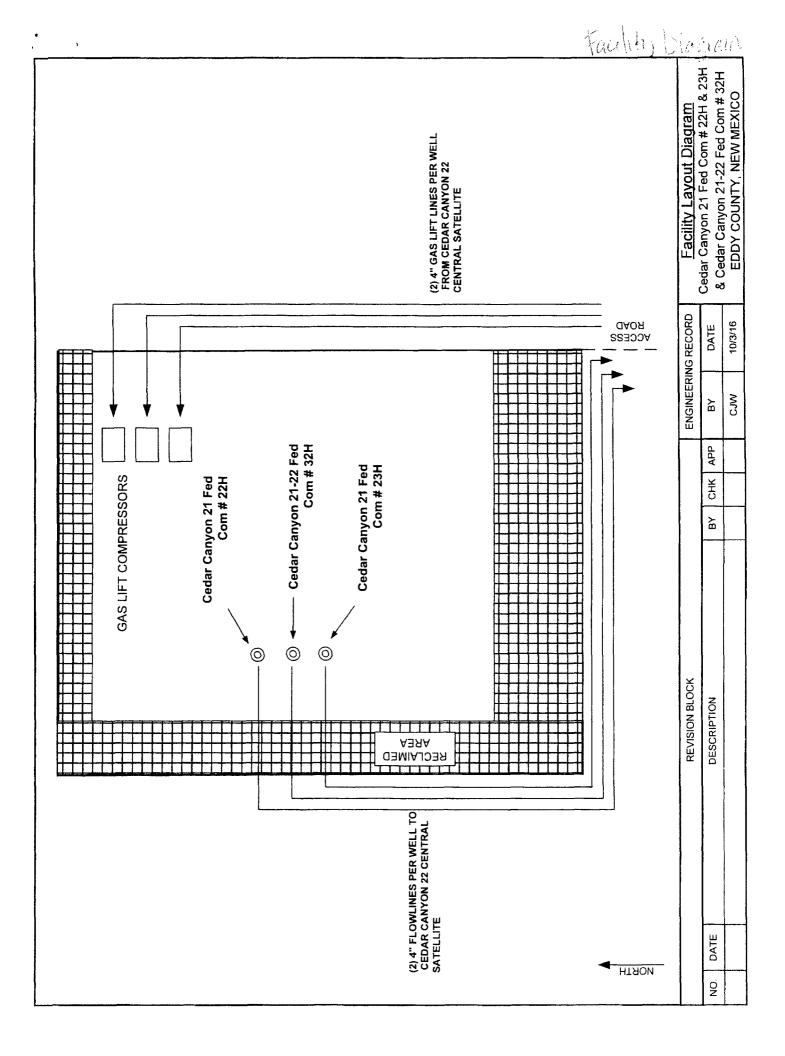

CedarCanyon21FdCom23H_StakingForm_10-17-2016.pdf CedarCanyon21FdCom23H_MiscSvyPlat_10-17-2016.pdf CedarCanyon21FdCom23H_GasCap_10-20-2016.pdf CedarCanyon21FdCom23H_SUPO_10-20-2016.pdf

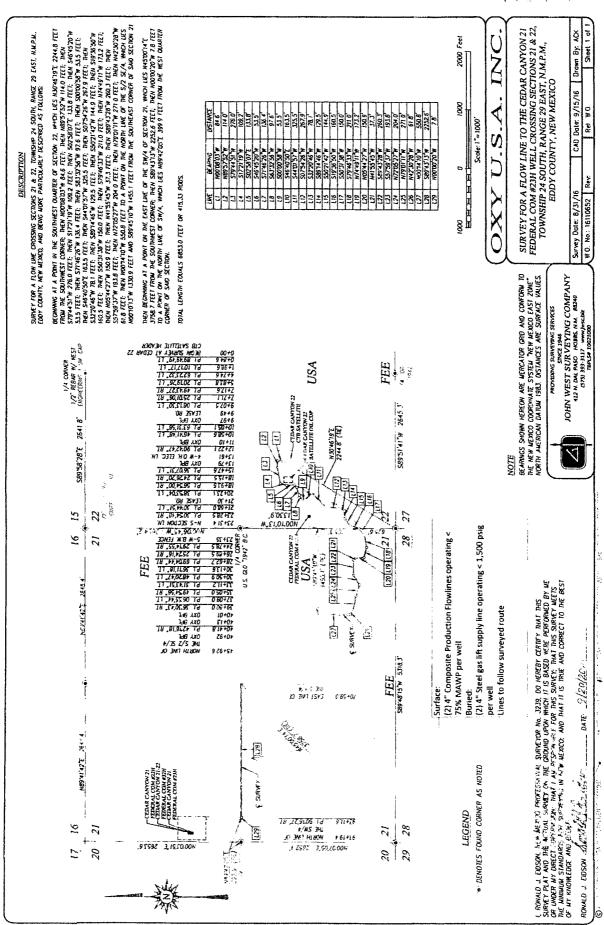
ı


, VM

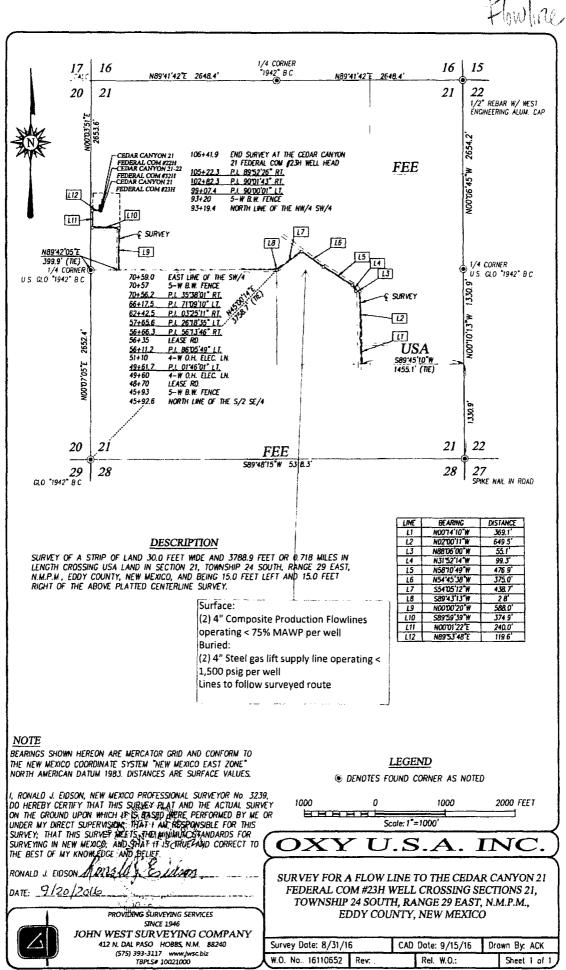


.

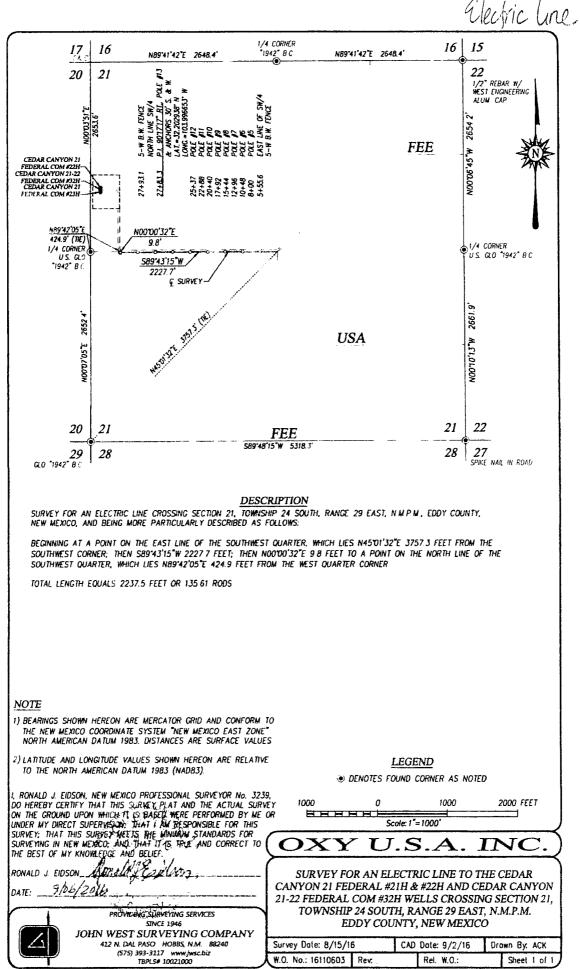

(



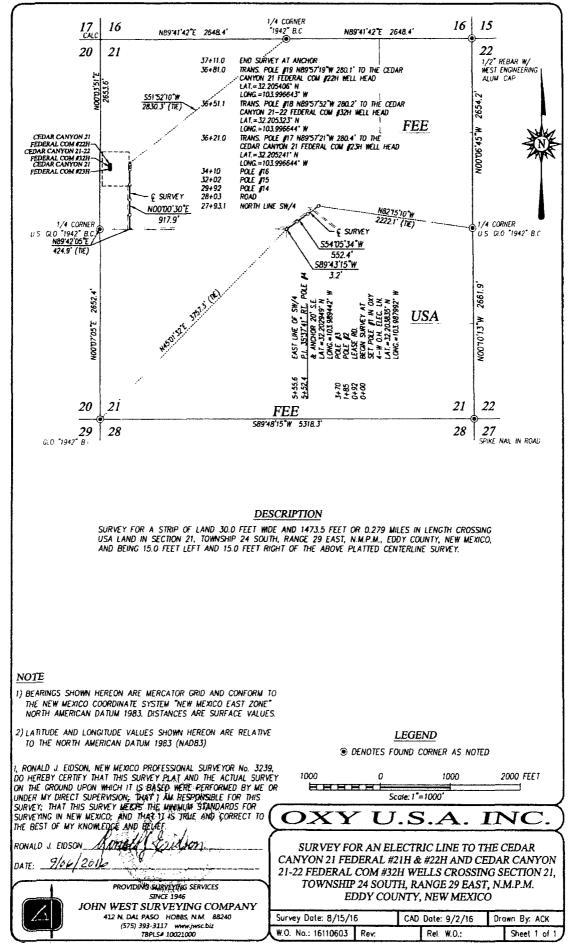
• •



Cedar Can on 21 Federal Com - 1 Mile AOR



•



@ Anjelica/2016/0XY USA INC/EASEMENTS/16110652 Flow Line to the CC 71 Fed Com 122H & 123H & CC 21-72 FED COM 132H in Secs 21 & 22, 1245, R29E

C Anger a/2016/0XY USA UHC/EASCHENTS/16110603 Electin to the CC 21 Fed 121H & 122H & CC 21-22 Fed Com 132H in Sec21. 1245, R758

Rice inter Contes

.

C Anjelico/2016/0XY USA HIC/EASCHENTS/16110603 Electri to the CC 21 Fed 121H & 122H & CC 21-22 Fed Com 132H in Sec21, 1245, R29E

٠

Pond Name	Water Source1	Water Source2	Water Source3	Water Source4
Cedar Canyon	<u>Mine Industrial</u>	<u>C-3478</u>	<u>C-2772</u>	<u>C-1360</u>
Corral Fly	<u>C-1360</u>	<u>C-1361</u>	<u>C-3358</u>	<u>C-3836</u>
Cypress	Mine_Industrial	<u>C-3478</u>	<u>C-2772</u>	<u>C-1361</u>
Mesa Verde	<u>C-2571</u>	<u>C-2574</u>	<u>J-27</u>	<u>J-5</u>
Peaches	<u>C-906</u>	<u>C-3200</u>	<u>SP-55 & SP-1279</u> <u>A</u>	<u>C-100</u>

GRR Inc.			
NMOSE WELL NUMBER	WELL COMMON NAME	LAND OWNERSHIP	GPS LOCATION
C-100	Tres Rios - Next to well shack	PRIVATE	32.201921° -104.254317°
C-100-A	Tres Rios - Center of turnaround	PRIVATE	32.201856° -104.254443°
C-272-B	Tres Rios - Northwest	PRIVATE	32.202315° -104.254812°
C-906	Whites City Commercial	PRIVATE	32.176949°-104.374371°
C-1246-AC & C-1246-AC-S	Lackey	PRIVATE	32.266978°-104.271212°
C-1886	1886 Tank	BLM	32.229316° -104.312930°
C-1083	Petska	PRIVATE	32.30904° -104.16979°
C-1142	Winston West	BLM	32.507845-104.177410
C-1360	ENG#1	PRIVATE	32.064922° -103.908818°
C-1361	ENG#2	PRIVATE	32.064908° -103.906266°
C-1573	Cooksey	PRIVATE	32.113463° -104.108092°
C-1575	ROCKHOUSE Ranch Well - Wildcat	BLM	32.493190° -104.444163°
C-2270	CW#1 (Oliver Kiehne)	PRIVATE	32.021440° -103.559208°
C-2242	Walterscheid	PRIVATE	32.39199° -104.17694°
C-2492POD2	Stacy Mills	PRIVATE	32.324203° -103.812472°
C-2569	Paduca well #2	BLM	32.160588 -103.742051
C-2569POD2	Paduca well replacement	BLM	32.160588 -103.742051
C-2570	Paduca (tank) well #4	BLM	32.15668 -103.74114
C-2571	Paduca (road) well	BLM	32.163993° -103.745457
C-2572	Paduca well #6	BLM	32.163985 -103.7412
C-2573	Paduca (in the bush) well	BLM	32.16229 -103.74363
C-2574	Paduca well (on grid power)	BLM	32.165777° -103.747590°
C-2701	401 Water Station	BLM	32.458767° -104.528097°
C-2772	Mobley Alternate	BLM	32.305220° -103.852360°
C-3011	ROCKY ARROYO - MIDDLE	BLM	32.409046° -104.452045°
C-3060	Max Vasquez	PRIVATE	32.31291° -104.17033°
C-3095	ROCKHOUSE Ranch Well - North of Rockcrusher	PRIVATE	32.486794° -104.426227°
C-3200	Beard East	PRIVATE	32.168720 -104.276600
C-3260	Hayhurst	PRIVATE	32.227110° -104.150925°
C-3350	Winston Barn	PRIVATE	32.511871° -104.139094°
C-3358	Branson	PRIVATE	32.19214° -104.06201°
C-3363	Watts#2	PRIVATE	32.444637° -103.931313°
C-3453	ROCKY ARROYO - FIELD	PRIVATE	32.458657° -104.460804°
C-3478	Mobley Private	PRIVATE	32.294937° -103.888656°
C-3483pod1	ENG#3	BLM	32.065556° -103.894722'
C-3483pod3	ENG#5	BLM	32.06614° -103.89231°
C-3483POD4	CW#4 (Oliver Kiehne)	PRIVATE	32.021803° -103.559030°
C-3483POD5	CW#5 (Oliver Kiehne)	PRIVATE	32.021692° -103.560158°
C-3554	Jesse Baker #1 well	PRIVATE	32.071937° -103.723030°
C-3577	CW#3 (Oliver Kiehne)	PRIVATE	32.021773° -103.559738°
C-3581	ENG#4	BLM	32.066083° -103.895024°
C-3595	Oliver Kiehne house well #2	PRIVATE	32.025484° -103.682529°
C-3596	CW#2 (Oliver Kiehne)	PRIVATE	32.021793° -103.559018°

GRR Inc.			
NMOSE WELL NUMBER	WELL COMMON NAME	LAND OWNERSHIP	GPS LOCATION
C-3614	Dale Hood #2 well	PRIVATE	32.449290° -104.214500°
C-3639	Jesse Baker #2 well	PRIVATE	32.0 73692° - 103.727121°
C-3679	McCloy-Batty	PRIVATE	32.215790° -103.537690°
C-3689	Winston Barn_South	PRIVATE	32.511504° -104.139073°
C-3731	Ballard Construction	PRIVATE	32.458551° -104.144219°
C-3764	Watts#4	PRIVATE	32.443360° -103.942890°
C-3795	Beckham#6	BLM	32.023434°-103.321968°
C-3821	Three River Trucking	PRIVATE	32.34636° -104.21355
C-3824	Collins	PRIVATE	32.224053° -104.090129°
2-3829	Jesse Baker #3 well	PRIVATE	32.072545°-103.722258°
-3830	Paduca	BLM	32.156400° -103.742060°
-3836	Granger	PRIVATE	32.10073° -104.10284°
2-384	ROCKHOUSE Ranch Well - Rockcrusher	PRIVATE	32.481275° -104.420706°
C-459	Walker	PRIVATE	32.3379° -104.1498°
C-496pod2	Munoz #3 Trash Pit Well	PRIVATE	32.34224° -104.15365°
C-496pod3&4	Munoz #2 Corner of Porter & Derrick	PRIVATE	32.34182° -104.15272°
0-552	Dale Hood #1 well	PRIVATE	32.448720° -104.214330°
C-764	Mike Vasquez	PRIVATE	32.230553° -104.083518°
C-766(old)	Grandi	PRIVATE	32.32352° -104.16941°
2-93-S	Don Kidd well	PRIVATE	32.344876 -104.151793
-987	ROCKY ARROYO - HOUSE	PRIVATE	32.457049° -104.461506°
C-98-A	Bindel well	PRIVATE	32.335125° -104.187255°
CP-1170POD1	Beckham#1	PRIVATE	32.065889° -103.312583°
CP-1201	Winston Ballard	BLM	32.580380° -104.115980°
CP-1202	Winston Ballard	BLM	32.538178° -104.046024°
CP-1231	Winston Ballard	PRIVATE	32.618968° -104.122690°
P-1263POD5	Beckham#5	PRIVATE	32.065670° -103.307530°
P-1414	Crawford #1	PRIVATE	32.238380° -103.260890°
CP-1414 POD 1	RRR	PRIVATE	32.23911° -103.25988°
CP-1414 POD 2	RRR	PRIVATE	32.23914° -103.25981°
CP-519	Bond_Private	PRIVATE	32.485546 -104.117583
CP-556	Jimmy Mills (Stacy)	STATE	32.317170° -103.495080°
CP-626	OI Loco (W)	STATE	32.692660° -104.068064°
CP-626-S	Beach Exploration/ OI Loco (E)	STATE	32.694229° -104.064759°
CP-73	Laguna #1	BLM	32.615015°-103.747615°
CP-74	Laguna #2	BLM	32.615255°-103.747688°
CP-741	Jimmy Richardson	BLM	32.61913° -104.06101°
P-742	Jimmy Richardson	BLM	32.6140 61° -1 04.01 721 1°
CP-742	Hidden Well	BLM	32.614061 -104.017211
CP-745	Leaning Tower of Pisa	BLM	32.584619° -104.037179°
CP-75	Laguna #3	BLM	32.615499°-103.747715°
CP-924	Winston Ballard	BLM	32.545888° -104.110114°
CP-926	Winchester well (Winston)	BLM	32.601125° -104.128358°

•

NMOSE WELL NUMBER	WELL COMMON NAME	GRR Inc. LAND OWNERSHIP	GPS LOCATION
J-27	Beckham	PRIVATE	32.020403° -103.299333°
J-5	EPNG Jal Well	PRIVATE	32.050232° -103.313117°
J-33	Beckham	PRIVATE	32.016443° -103.297714°
J-34	Beckham	PRIVATE	32.016443° -103.297714°
J-35	Beckham	PRIVATE	32.016443° -103.297714°
L-10167	Angell Ranch well	PRIVATE	32.785847° -103.644705°

L-10167	Angell Ranch well	PRIVATE	32.785847° -103.644705°			
L-10613	Northcutt3 (2nd House well) PRIVATE		32.687922°-103.472452°			
L-11281	Northcutt4	PRIVATE	32.687675°-103.471512°			
L-12459	Northcutt1 (House well)	PRIVATE	32.689498°-103.472697°			
L-12462	Northcutt8 Private Well	PRIVATE	32.686238°-103.435409°			
L-13049	EPNG Maljamar well	PRIVATE	32.81274° -103.67730°			
L-13129	Pearce State	STATE	32.726305°-103.553172°			
L-13179	Pearce Trust	STATE	32.731304°-103.548461°			
L-13384	Northcutt7 (State) CAZA	STATE	32.694651°-103.434997°			
L-1880S-2	HB Intrepid well #7	PRIVATE	32.842212° -103.621299°			
L-1880S-3	HB Intrepid well #8	PRIVATE	32.852415° -103.620405°			
L-1881	HB Intrepid well #1	PRIVATE	32.829124° -103.624139°			
L-1883	HB Intrepid well #4	PRIVATE	32.828041° -103.607654°			
L-3887	Northcutt2 (Tower or Pond well)	PRIVATE	32.689036°-103.472437°			
L-5434	Northcutt5 (State)	STATE	32.694074°-103.405111°			
L-5434-S	Northcutt6 (State)	STATE	32.693355°-103.407004°			
RA-14	Horner Can	PRIVATE	32.89348° -104.37208°			
RA-1474	Irvin Smith	PRIVATE	32.705773° -104.393043°			
RA-1474-B	NLake WS / Jack Clayton	PRIVATE	32.561221°-104.293095°			
RA-9193	Angell Ranch North Hummingbird	PRIVATE	32.885162° -103.676376°			
SP-55 & SP-1279-A	Blue Springs Surface POD	PRIVATE	32.181358° -104.294009°			
SP-55 & SP-1279 (Bounds)	Bounds Surface POD	PRIVATE	32.203875° -104.247076°			
SP-55 & SP-1279 (Wilson)	Wilson Surface POD	PRIVATE	32.243010° -104.052197°			
City Treated Effluent	City of Carlsbad Waste Treatment	PRIVATE	32.411122° -104.177030°			
B Mar a facilitation b	Plant					
Mine Industrial	Mosaic Industrial Water	PRIVATE	32.370286° -103.947839°			
Mobley State Well (NO OSE)	Mobley Ranch	STATE	32.308859° -103.891806°			
EPNG Industrial	Monument Water Well Pipeline (Oil Center, Eunice)	PRIVATE	32.512943° -103.290300°			
MCOX Commercial	Matt Cox Commercial	PRIVATE	32.529431° -104.188017°			
AMAX Mine Industrial	Mosaic Industrial Water	N/A	VARIOUS TAPS			
WAG Mine Industrial	Mosaic Industrial Water	N/A	VARIOUS TAPS			
HB Mine Industrial	Intrepid Industrial Water	N/A	VARIOUS TAPS			

Mesquite

Cedar Canyon

Major Source: C464 (McDonald) Sec. 13 T24S R28E Secondary Source: C-00738 (McDonald/Faulk) Sec. 12 T24S R28E

Corral Fly – South of Cedar Canyon

Major Source: C464 (McDonald) Sec. 13 T24S R28E Secondary Source: C-00738 (McDonald/Faulk) Sec. 12 T24S R28E

Cypress - North of Cedar Canyon

Major Source: Caviness B: C-501-AS2 Sec 23 T28S R15E Secondary Source: George Arnis; C-1303

Sand Dunes - new frac pond

Major Source: 128 Fresh Water Pond (Mesquite/Mosaic) – located at MM 4 on 128; 240,000 bbl pond

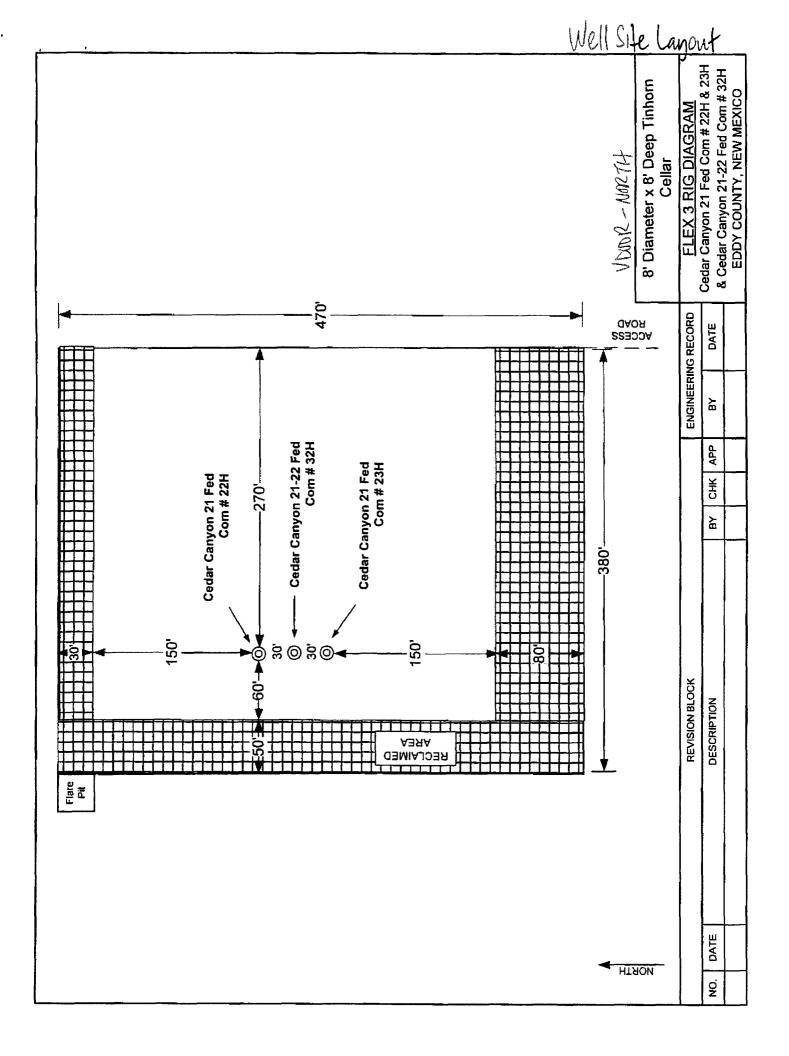
Secondary Source: George Arnis; C-1303

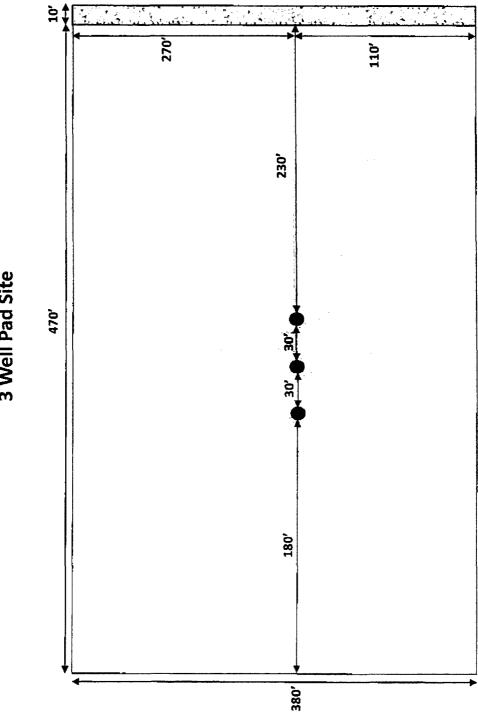
Mesa Verde – east of Sand Dunes

Major Source: 128 Fresh Water Pond (Mesquite/Mosaic) – located at MM 4 on 128; 240,000 bbl pond

Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Smokey Bits/Ivore/Misty – had posiden tanks before

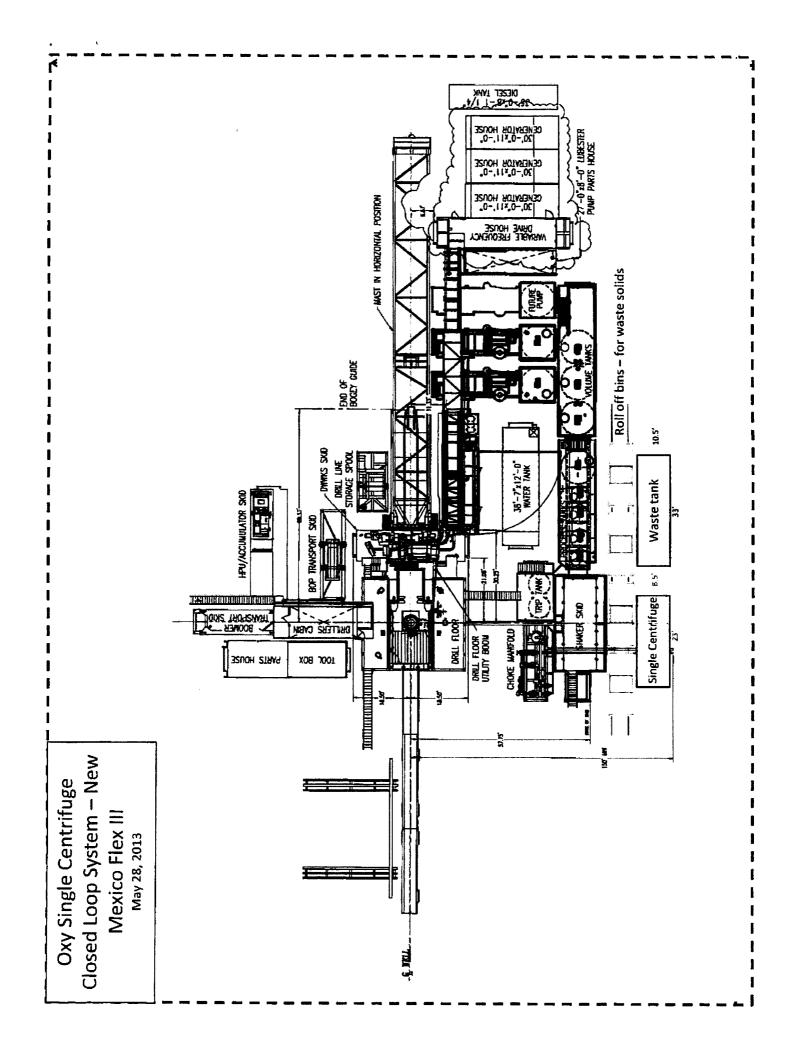

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

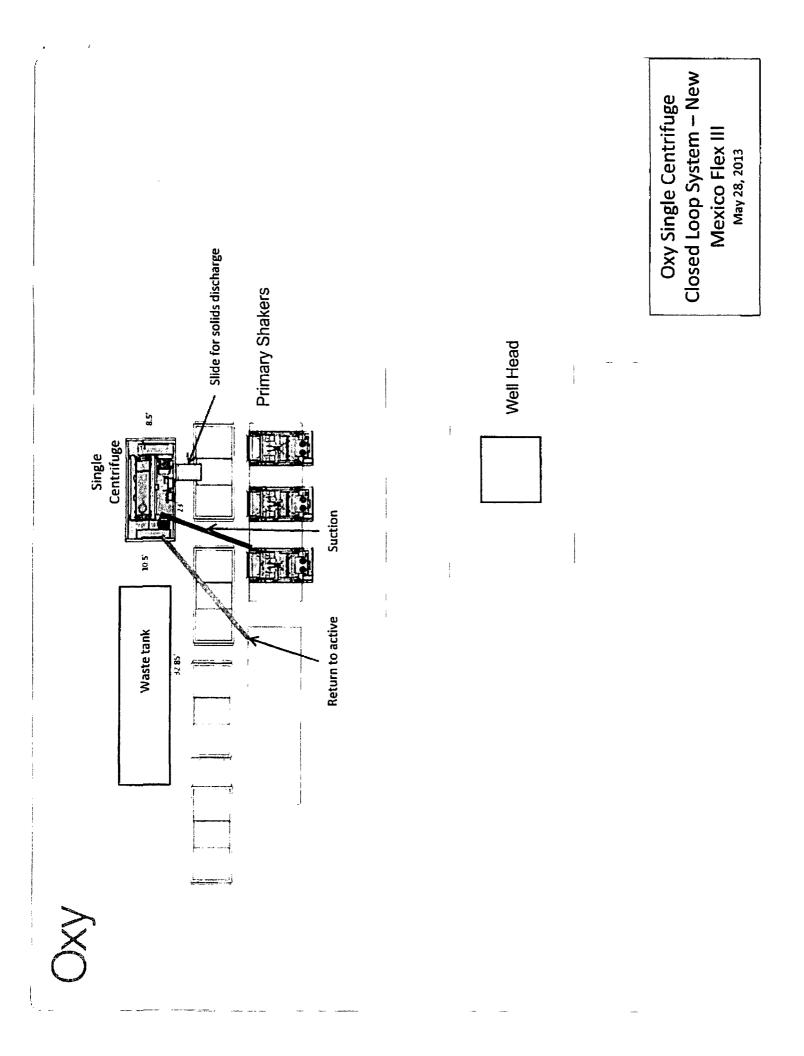

Red Tank/Lost Tank

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

Peaches

Major Source: Unknown at this time; need coordinates to determine major source Secondary Source: Unknown at this time; needs coordinates to determine secondary source

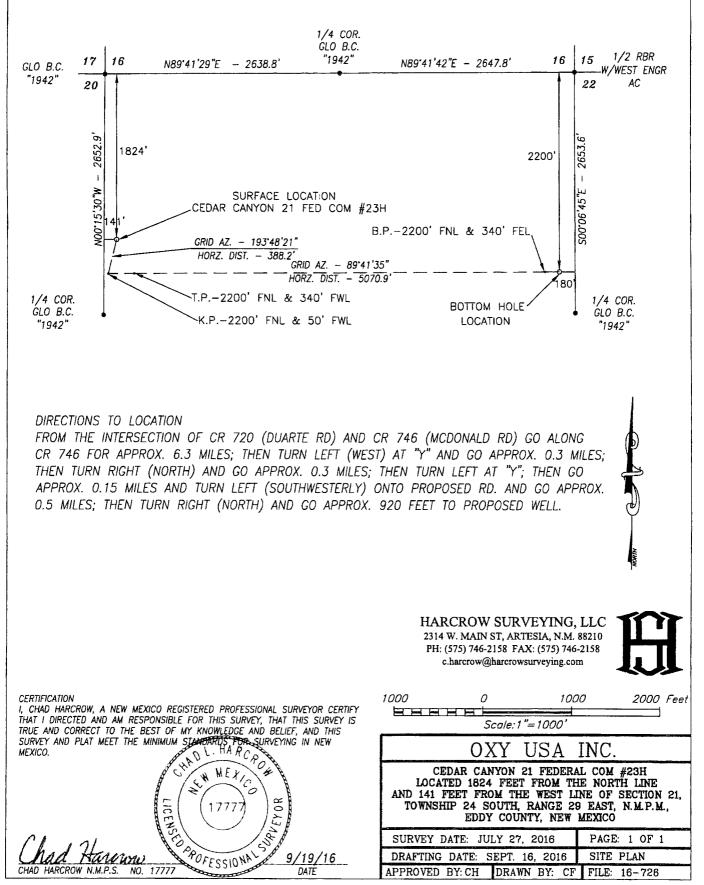




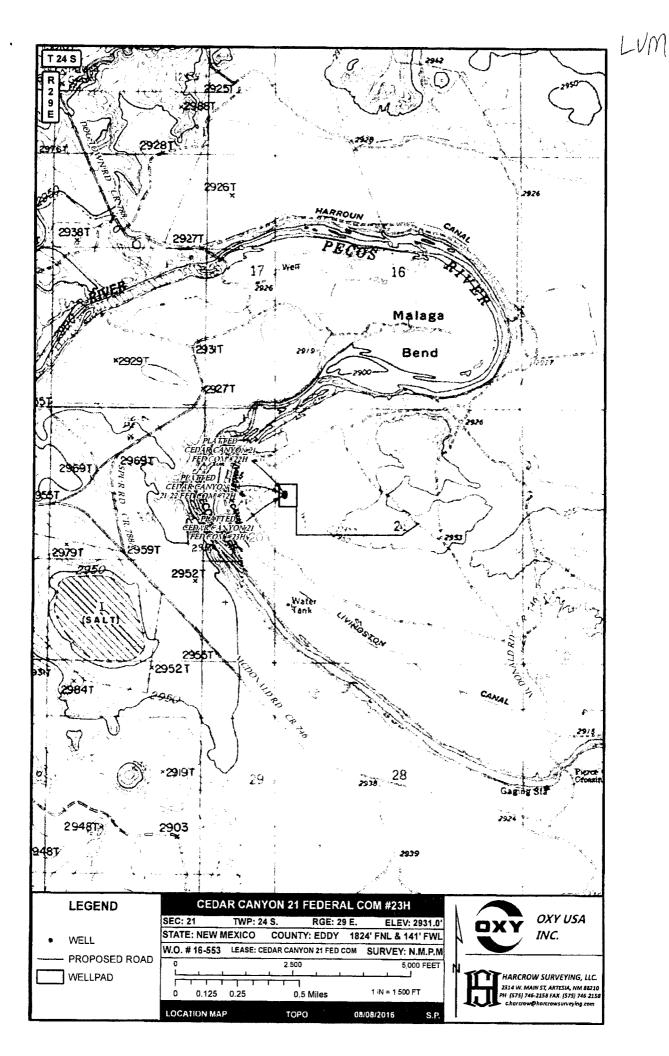
Pad Site Overall Rig Layout 3 Well Pad Site

,

×



•	Oxy U.S.A.Inc.
Micred !!	New Mexico Staking Form ResTAKell 7-19-16
Date Stated:	7-19-16
Lease/Weil Name:	Cedar CANYON 21 Fed Com #23H
Legal Description:	1824 FNL 141' FUL Sec 21 TA45 R295
Latitude:	32º 12' 18.88" MAD 83
Longiturie:	-103° 59' 51.18"
Nove Information:	0
Sourity:	Eddy
Surface Gumer/Tenent	BCM
Rearest Residence:	2 milts
Nearest Water Well:	
∀ -980 5	NorTH
Road Description :	Recad linico SE corner from SOUTR
New Road:	
Upgrade Existing Road	
Interim Reclamation:	50° WEST 80'SOUTH
Source of Caliche.	¢
Top Sol:	SOUTH
Onsite Date Performe	Brooke Wilson - BLM Jim Wilson - DX4
Onsite Attendees:	SWCH HARCROW Survey
Spocial Notes:	


SECTION 21, TOWNSHIP 24 SOUTH, RANGE 29 EAST, N.M.P.M., EDDY COUNTY NEW MEXICO

.

Loc

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN

Date: 10-19-2016

 \boxtimes Original

Operator & OGRID No.: OXY USA INC. - 16696

□ Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: Form C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule (Subsection A of 19.15.18.12 NMAC).

Well(s)/Production Facility - Name of facility

The well(s) that will be located at the production facility are shown in the table below.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
Cedar Canyon 21 Federal Com #22H	Pending	Unit E Sec 21, T24S, R29E	1764FNL 141FWL	2,741	0	
Cedar Canyon 21 Federal Com #23H	Pending	Unit E Sec 21, T24S, R29E	1824FNL 141FWL	2,741	0	

Gathering System and Pipeline Notification

Well(s) will be connected to a production facility after flowback operations are complete, where a gas transporter system is in place. The gas produced from production facility is dedicated to <u>Enterprise Field Services, LLC ("Enterprise"</u>) and is connected to <u>Enterprise</u> low/high pressure gathering system located in Eddy County, New Mexico. <u>OXY USA INC. ("OXY"</u>) provides (periodically) to <u>Enterprise</u> a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, <u>OXY</u> and <u>Enterprise</u> have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at OXY USA WTP LP Processing Plant located in Sec. 23, Twn. 21S, Rng. 23E, Eddy County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on <u>Enterprise</u> system at that time. Based on current information, it is <u>OXY's</u> belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On lease
 - Only a portion of gas is consumed operating the generator, remainder of gas will be flared
- Compressed Natural Gas On lease
 - Gas flared would be minimal, but might be uneconomical to operate when gas volume declines
- NGL Removal On lease
 - o Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

Surface Use Plan of Operations

Operator Name/Number:	<u>OXY USA Inc. – 16696</u>	
Lease Name/Number:	Cedar Canyon 21 Federal Com #23H	
Pool Name/Number:	Corral Draw Bone Spring	96238
Surface Location:	1824 FNL 141 FWL SWNW (E) Sec 21	T24S R29E - NMNM85893
Bottom Hole Location:	2200 FNL 180 FEL SENE (H) Sec 21 T	24S R29E - NMNM85893

1. Existing Roads

- a. A copy of the USGS "Pierce Canyon, NM" quadrangle map is attached showing the proposed location. The well location is spotted on the map, which shows the existing road system.
- b. The well was staked by Chad L. Harcrow, Certificate No. 17777 on 7/27/16, certified 9/19/16.
- c. Directions to Location: From the intersection of CR 720 (Duarte Rd) and CR 746 (McDonald Rd) go along CR 746 for 6.3 miles then turn left at Y and go west 0.3 miles. Turn right and go north 0.3 miles then turn left at Y. Go 0.15 miles and turn left onto proposed road and go 435' southwest, 2249' west, then 588' north to proposed well.

2. New or Reconstructed Access Roads:

- a. A new access road will be built. The access road will run approximately 435' southwest, 2249' west and then 588' north through pasture to the southeast corner of the pad.
- b. The maximum width of the road will be 14'. It will be crowned and made up of 6" of rolled and compacted caliche. Water will be deflected, as necessary, to avoid accumulation and prevent surface erosion.
- c. Surface material will be native caliche. This material will be obtained from a BLM approved pit nearest in proximity to the location. The average grade will be approximately 1%.
- d. No cattle guards, grates or fence cuts will be required. No turnouts are planned.
- e. Blade, water and repair existing caliche roads as needed.
- f. Water Bars will be incorporated every 200' during the construction of the road.

3. Location of Existing Wells:

Existing wells within a one mile radius of the proposed well are shown on attached plat.

4. Location of Existing and/or Proposed Facilities:

- a. In the event the well is found productive, the Cedar Canyon 22 Central Tank Battery Satellite would be utilized and the necessary production equipment will be installed at the well site. See proposed facilities layout diagram.
- b. All flow lines will adhere to API standards. They will consist of 2 4" composite flowlines operating < 75% MAWP, surface and 2 4" steel gas lift supply line operating <1500 psig, buried, lines to follow surveyed route. Survey of a strip of land 30' wide and 3788.9' in length crossing USA Land in Section 21 T24S R29E, NMPM, Eddy County, NM and 6853.0' in length crossing Fee Land in Sections 21 & 22 T24S R29E, NMPM, Eddy County, NM and being 15' left and 15' right of the centerline survey, see attached.</p>
- c. Electric line will follow a route approved by the BLM. Survey of a strip of land 30' wide and 1473.5' in length crossing USA Land in Section 21 T24S R29E NMPM, Eddy County, NM and 2237.5' in length crossing Fee Land in Section 21 T24S R29E, NMPM, Eddy County, NM and being 15' left and 15' right of the centerline survey, see attached.

5. Location and types of Water Supply

This well will be drilled using a combination of water mud systems. It will be obtained from commercial water stations in the area and will be hauled to location by transport truck using existing and proposed roads.

6. Construction Materials:

Primary

All caliche utilized for the drilling pad and proposed access road will be obtained from an existing BLM/State/Fee approved pit or from prevailing deposits found on the location. Will use BLM recommended extra caliche from other locations close by for roads, if available.

Secondary

The secondary way of obtaining caliche to build locations and roads will be by "turning over" the location. This means, caliche will be obtained from the actual well site. A caliche permit will be obtained from BLM prior to pushing up any caliche. 2400 cubic yards is max amount of caliche needed for pad and roads. Amount will vary for each pad. The procedure below has been approved by BLM personnel:

- a. The top 6" of topsoil is pushed off and stockpiled along the side of the location.
- b. An approximate 120' X 120' area is used within the proposed well site to remove caliche.
- c. Subsoil is removed and piled alongside the 120' X 120' within the pad site.
- d. When caliche is found, material will be stockpiled within the pad site to build the location and road.
- e. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road.
- f. Once the well is drilled the stockpiled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced. Neither caliche nor subsoil will be stockpiled outside of the well pad. Topsoil will be stockpiled along the edge of the pad as depicted in the attached plat.

7. Methods of Handling Waste Material:

- a. A closed loop system will be utilized consisting of above ground steel tanks and haul-off bins. Disposal of liquids, drilling fluids and cuttings will be disposed of at an approved facility. Solids-CRI, Liquids-Laguna
- b. All trash, junk and other waste material will be contained in trash cages or bins to prevent scattering. When the job is completed, all contents will be removed and disposed of in an approved sanitary landfill.
- c. The supplier, including broken sacks, will pickup slats remaining after completion of well.
- d. A Porto-john will be provided for the rig crews. This equipment will be properly maintained during the drilling and completion operations and will be removed when all operations are complete.
- e. Disposal of fluids to be transported will be by the following companies. TFH Ltd, Laguna SWD Facility

8. Ancillary Facilities: None needed.

9, Well Site Layout:

The proposed well site layout with dimensions of the pad layout and equipment location.

V-Door – <u>North</u> CL Tanks – <u>West</u> Pad – <u>380' X 470' – 3 Well Pad</u>

10. Plans for Surface Reclamation:

a. After concluding the drilling and/or completion operations, if the well is found non-commercial, the caliche will be removed from the pad and transported to the original caliche pit or used for other drilling locations. The road will be reclaimed as directed by the BLM. The original topsoil will again be returned to the pad and contoured, as close as possible, to the original topography, and the area will be seeded with an approved BLM mixture to re-establish vegetation.

 b. If the well is deemed commercially productive, caliche from the areas of the pad site not required for operations will be reclaimed. The original topsoil will be returned to the area of the drill pad not necessary to operate the well. These unused areas of the drill pad will be contoured, as close as possible, to match the original topography, and the area will be seeded with an approved BLM mixture to re-establish vegetation.

11. Surface Ownership:

.

•

The surface is owned by the U.S. Government and is administered by the BLM. The surface is multiple use with the primary uses of the region for the grazing of livestock and the production of oil and gas. The surface is leased to: Pierce Canyon, Allotment #77036, Henry McDonald and John D. Brantley, P.O. Box 597, Loving, NM 88256. They will be notified of our intention to drill prior to any activity.

12. Other Information:

- a. The vegetation cover is generally sparse consisting of mesquite, yucca, shinnery oak, sandsage and perennial native range grass. The topsoil is sandy in nature. Wildlife in the area is also sparse consisting of deer, coyotes, rabbits, rodents, reptiles, dove and quail.
- b. There is no permanent or live water in the general proximity of the location.
- c. There are no dwellings within one mile of the proposed well site.
- d. Cultural Resources Examination–This well is located in the Permian Basin PA. Payment to be determined by BLM. This well shares the same pad as the Cedar Canyon 23 Federal Com #22H.

Pad + ¼ mile road	<u>\$1518.00</u>	\$.21/ft over ¼ mile	<u>\$ 409.92</u>	<u>\$1927.92</u>
Pipeline-up to 1 mile	<u>\$1402.00</u>	\$.26/ft over 1 mile	<u>\$1394.12</u>	<u>\$2796.12</u>
Electric Line-up to 1 mile	\$702.00	\$.23/ft over 1 mile	<u>\$ 0.00</u>	<u>\$_702.00</u>
Total	<u>\$3622.00</u>		<u>\$1804.04</u>	<u>\$5426.04</u>

e. Copy of this application has been mailed to SWCA Environmental Consultants, 5647 Jefferson St. NE, Albuquerque, NM 87109. No Potash leases within one mile of surface location.

13. Bond Coverage:

Bond coverage is Individual-NMB000862, Nationwide-ESB00226.

14. Operators Representatives:

The OXY Permian representatives responsible for ensuring compliance of the surface use plan are listed below:

Victor Guadian Production Coordinator 1502 West Commerce Dr. Carlsbad, NM 88220	Charles Wagner Manager Field Operations 1502 West Commerce Dr. Carlsbad, NM 88220
Office – 575-628-4006	Office - 575-628-4151
Cellular – 575-291-9905	Cellular – 575-725-8306
Jim Wilson Operation Specialist P.O. Box 50250 Midland, TX 79710 Cellular – 575-631-2442	Omar Lisigurski RMT Leader P.O. Box 4294 Houston, TX 77210 Office – 713-215-7506 Cellular – 281-222-7248

ı

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

.

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:**

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: **PWD** surface owner: Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map: Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

Injection well name: Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: ESB000226

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

NM OIL CONSERVATION

MAY 19 2017

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

RECEIVED

OPERATOR'S NAME:	OXY USA INC
LEASE NO.:	NMNM85893
WELL NAME & NO.:	23H- Cedar Canyon 21 Federal Com
SURFACE HOLE FOOTAGE:	1824'/N & 141'/W
BOTTOM HOLE FOOTAGE	2200'/N & 180'/W
LOCATION:	Section 21 T.24 S., R.29 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Cave/Karst
VRM
Watershed
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Pipelines
Electric Lines
Interim Reclamation
Final Abandonment & Reclamation

.

.

.

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production.

Construction:

. • ·

In the advent that any underground voids are opened up during construction activities, construction activities will be halted and the BLM will be notified immediately.

No Blasting:

No blasting will be utilized for pad construction. The pad will be constructed and leveled by adding the necessary fill and caliche.

Pad Berming:

The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.

- 1. The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g. caliche).
- 2. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- 3. The topsoil stockpile shall be located outside the bermed well pad.
- 4. Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- 5. No storm drains, tubing or openings shall be placed in the berm.
- 6. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- 7. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- 8. Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised. (Any access road crossing the berm cannot be lower than the berm height.)

Tank Battery Liners and Berms:

Tank battery locations and all facilities will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain $1\frac{1}{2}$ times the content of the largest tank.

Leak Detection System:

A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating valves and lines so they can be visually inspected, or installing electronic sensors to alarm when a leak is present. Leak detection plan will be submitted to BLM for approval.

Automatic Shut-off Systems:

7

Automatic shut off, check valves, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Visual Resources:

1. All facilities will be painted a flat non-reflective shale green.

Watershed:

, ***** ,

- The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

Tank Battery COAs Only:

- Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.
- Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

Surface Pipeline COAs Only:

• A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

VI. CONSTRUCTION

. • .

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Exclosure Fencing

· · ·

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

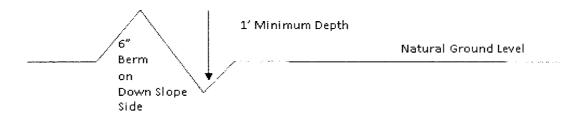
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

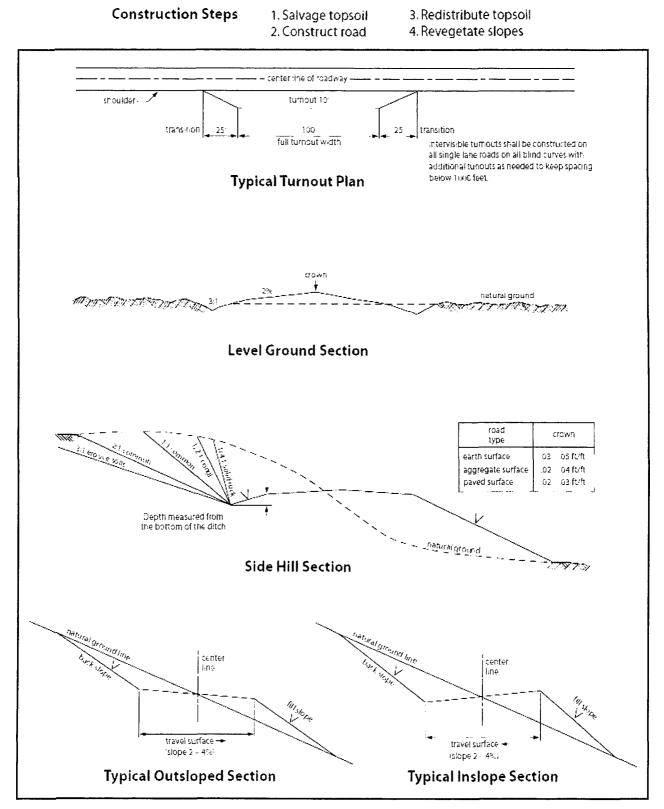
All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

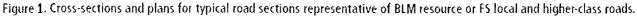
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\underline{400'} + 100' = 200'$ lead-off ditch interval $\underline{4\%}$

Cattle guards


An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

. * .

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VRM Facility Requirement

Low-profile tanks not greater than eight-feet-high shall be used.

B. PIPELINES

STANDARD STIPULATIONS FOR SURFACE INSTALLED PIPELINES

A copy of the Grant and attachments, including stipulations, survey plat(s) and/or map(s), shall be on location during construction. BLM personnel may request to review a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, Holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC § 2601 *et seq.* (1982) with regard to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant (*see* 40 CFR, Part 702-799 and in particular, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193). Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the Authorized Officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. Holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. § 9601, *et seq.* or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, *et seq.*) on the Right-of-Way (unless the release or threatened release is wholly unrelated

to activity of the Right-of-Way Holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way Holder on the Right-of-Way. This provision applies without regard to whether a release is caused by Holder, its agent, or unrelated third parties.

4. Holder shall be liable for damage or injury to the United States to the extent provided by 43 CFR Sec. 2883.1-4. Holder shall be held to a standard of strict liability for damage or injury to the United States resulting from pipe rupture, fire, or spills caused or substantially aggravated by any of the following within the right-of-way or permit area:

- a. Activities of Holder including, but not limited to: construction, operation, maintenance, and termination of the facility;
- b. Activities of other parties including, but not limited to:
 - (1) Land clearing
 - (2) Earth-disturbing and earth-moving work
 - (3) Blasting
 - (4) Vandalism and sabotage;
- c. Acts of God.

*

The maximum limitation for such strict liability damages shall not exceed one million dollars (\$1,000,000) for any one event, and any liability in excess of such amount shall be determined by the ordinary rules of negligence of the jurisdiction in which the damage or injury occurred.

This section shall not impose strict liability for damage or injury resulting primarily from an act of war or from the negligent acts or omissions of the United States.

5. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil, salt water, or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil, salt water, or other pollutant, wherever found, shall be the responsibility of Holder, regardless of fault. Upon failure of Holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he/she deems necessary to control and clean up the discharge and restore the area, including, where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of Holder. Such action by the Authorized Officer shall not relieve Holder of any responsibility as provided herein.

6. All construction and maintenance activity shall be confined to the authorized right-of-way width of 20 feet. If the pipeline route follows an existing road or buried pipeline right-of-way, the surface pipeline shall be installed no farther than 10 feet from the edge of the road or buried pipeline right-of-way. If existing surface pipelines prevent this distance, the proposed surface pipeline shall be installed immediately adjacent to the

outer surface pipeline. All construction and maintenance activity shall be confined to existing roads or right-of-ways.

. • .

7. No blading or clearing of any vegetation shall be allowed unless approved in writing by the Authorized Officer.

8. Holder shall install the pipeline on the surface in such a manner that will minimize suspension of the pipeline across low areas in the terrain. In hummocky of duney areas, the pipeline shall be "snaked" around hummocks and dunes rather than suspended across these features.

9. The pipeline shall be buried with a minimum of 24 inches under all roads, "two-tracks," and trails. Burial of the pipe will continue for 20 feet on each side of each crossing. The condition of the road, upon completion of construction, shall be returned to at least its former state with no bumps or dips remaining in the road surface.

10. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. Excluding the pipe, all above-ground structures not subject to safety requirement shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be a color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2; designated by the Rocky Mountain Five State Interagency Committee.

13. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. Signs will be maintained in a legible condition for the life of the pipeline.

14. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway.

15. Any cultural and/or paleontological resource (historic or prehistoric site or object)

discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the authorized officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the authorized officer. An evaluation of the discovery will be made by the authorized officer to determine appropriate cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the authorized officer after consulting with the holder.

. •

16. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, powerline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

17. Surface pipelines shall be less than or equal to 4 inches and a working pressure below 125 psi.

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq.</u> (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C.6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

, * •

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

5. All construction and maintenance activity will be confined to the authorized right-ofway.

6. The pipeline will be buried with a minimum cover of 36 inches between the top of the pipe and ground level.

7. The maximum allowable disturbance for construction in this right-of-way will be $\underline{30}$ feet:

- Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed <u>20</u> feet. The trench is included in this area. (*Blading is defined as the complete removal of brush and ground vegetation.*)
- Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed <u>30</u> feet. The trench and bladed area are included in this area. (*Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.*)

• The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (*Compressing can be caused by vehicle tires, placement of equipment, etc.*)

. '

8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately <u>6</u> inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.

9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.

11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

12. The holder will reseed all disturbed areas. Seeding will be done according to the attached seeding requirements, using the following seed mix.

(X) seed mixture 1	() seed mixture 3
() seed mixture 2	() seed mixture 4
() seed mixture 2/LPC	() Aplomado Falcon Mixture

13. All above-ground structures not subject to safety requirements shall be painted by the holder to blend with the natural color of the landscape. The paint used shall be color which simulates "Standard Environmental Colors" – **Shale Green**, Munsell Soil Color No. 5Y 4/2.

14. The pipeline will be identified by signs at the point of origin and completion of the right-of-way and at all road crossings. At a minimum, signs will state the holder's name, BLM serial number, and the product being transported. All signs and information thereon will be posted in a permanent, conspicuous manner, and will be maintained in a legible condition for the life of the pipeline.

• •

15. The holder shall not use the pipeline route as a road for purposes other than routine maintenance as determined necessary by the Authorized Officer in consultation with the holder before maintenance begins. The holder will take whatever steps are necessary to ensure that the pipeline route is not used as a roadway. As determined necessary during the life of the pipeline, the Authorized Officer may ask the holder to construct temporary deterrence structures.

16. Any cultural and/or paleontological resources (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

17. The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes associated roads, pipeline corridor and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

18. <u>Escape Ramps</u> - The operator will construct and maintain pipeline/utility trenches [that are not otherwise fenced, screened, or netted] to prevent livestock, wildlife, and humans from becoming entrapped. At a minimum, the operator will construct and maintain escape ramps, ladders, or other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.

b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

C. ELECTRIC LINES

. •

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.

2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 <u>et seq.</u> (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.

3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, <u>et seq</u>. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, <u>et seq</u>.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.

5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006"

Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.

8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.

9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.

10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

. • •

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

VIII. INTERIM RECLAMATION

, ***** ,

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

• , • •

Seed Mixture 1 for Loamy Sites

. . .

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. <u>When broadcasting the seed</u>, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed