# Schlumberger

### PS Platform



### Interpretation Results - Final Report

Client:

**Cimarex Energy Company** 

Federal 13 Com #4

Field:

Well:

White City

County:

**Eddy, New Mexico** 

API:

30-015-34199

Log Date: 7-Mar-2017

Analyst:

**Leonid Kolomytsev** 

**Daniel Amyotte** 

**Casey Chadwick** 

Production logging with confidence

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not guarantee the accuracy or correctness of any interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretations made by any of our officers, agents or employees.

These interpretations are also subject to Clause 4 of our General Terms and Conditions as set out in our current Price Schedule.

JM OIL CONSERVATION ARTESIA DISTRICT

JUN 01 2017

RECEIVED

### Schlumberger

| Logging Objective: | Logging | Objective: |
|--------------------|---------|------------|
|--------------------|---------|------------|

Flow contribution from each perforation.

#### Well Bore Information:

Production Tubing: 2-7/8" 6.5# L-80 @ 8597' MD

Production Casing: 5-1/2" 17# P-110 @ 12358' MD

Perforations: 6 Stages / 54 Perforations Clusters

Correlation: by Field Engineer to EOT.

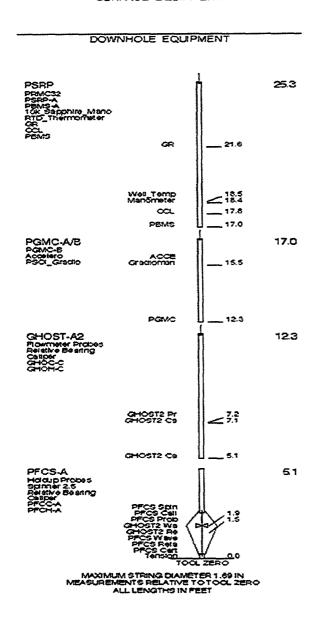
Logging Tool: Standard PSP-DEFT-GHOST w/ 2.25" FBS on Digital Slickline (DSL)

#### General Logging Procedure:

RU & RIH w/ Gauge Ring. Report Tag Depth. ROH.

RU & RIH w/ PSP. Record Main Flowing Passes at variable logging speeds (based on well conditions) from Top Log Interval (TLI) to Bottom Log Interval (BLI).

Record Main Station Stops (at least 2 minutes each) between perforations, stages, major changes in flow regime, or as directed by client or production log analyst.


Record any addition Flowing Passes and/or Station Stops as needed or requested.

ROH. Delivery data to interpreter.

### Schlumberger

#### PL Tool Diagram:

#### SURFACE EQUIPMENT



## Schlumberger

Interpretation Results: Surface Flowrate Results - Stage

| Formation | Stage | Perfor | rations | Gas<br>(mcfpd) | Oil<br>(bpd) | Water<br>(bpd) | Gas<br>(%) | Oil<br>(%) | Water<br>(%) |
|-----------|-------|--------|---------|----------------|--------------|----------------|------------|------------|--------------|
| Wolfcamp  | 6     | 8646   | 8879    | 145            |              | 70             | 8.0%       |            | 9.2%         |
|           | 5     | 9084   | 9266    | 145            |              | 240            | 8.0%       |            | 31.6%        |
|           | 4     | 9371   | 9561    | 85             |              | 80             | 4.7%       | **         | 10.5%        |
|           | 3     | 9619   | 9835    | 880            |              | 370            | 48.5%      |            | 48.7%        |
|           | 2     | 9894   | 10088   | 160            |              | 0              | 8.8%       | <b></b> -  | 0.0%         |
|           | 4     | 10143  | 10351   | 400            |              | 0              | 22.0%      |            | 0.0%         |

## Schlumberger

Interpretation Results: Surface Flowrate Results - Detail

|           |       |       |         | Gas     | Oil   | Water                                 | Gas   | Oil        | Water |
|-----------|-------|-------|---------|---------|-------|---------------------------------------|-------|------------|-------|
| Formation | Stage | Perfo | rations | (mcfpd) | (bpd) | (bpd)                                 | (%)   | (%)        | (%)   |
|           | _1    |       |         |         |       |                                       |       |            |       |
|           | T     | 8646  | 8647    | 120     |       | 40                                    | 6.6%  | <b>*</b> - | 5.3%  |
|           | 1     | 8689  | 8690    | 0       |       | 0                                     | 0.0%  | ~-         | 0.0%  |
|           | 1 1   | 8715  | 8717    | 15      | +-    | 0                                     | 0.8%  | **         | 0.0%  |
|           |       | 8742  | 8743    | 0       |       | 0                                     | 0.0%  | **         | 0.0%  |
| 101-17    | 1 . [ | 8760  | 8761    | 0       |       | 0                                     | 0.0%  | **         | 0.0%  |
| Wolfcamp  | 6     | 8783  | 8784    | 10      |       | 10                                    | 0.6%  | **         | 1.3%  |
|           | 1 1   | 8804  | 8806    | 0       |       | 0                                     | 0.0%  | **         | 0.0%  |
|           | 1 5   | 8830  | 8832    | 0       | *-    | 10                                    | 0.0%  | ••         | 1.3%  |
|           | 1 1   | 8849  | 8851    | 0       |       | 0                                     | 0.0%  | **         | 0.0%  |
|           | [     | 8877  | 8879    | 0       |       | 10                                    | 0.0%  |            | 1.3%  |
|           |       |       |         |         |       |                                       |       |            |       |
|           |       | 9084  | 9085    | trace   |       | 0                                     | trace |            | 0.0%  |
|           | 1 [   | 9110  | 9111    | 0       |       | 0                                     | 0.0%  |            | 0.0%  |
|           | 1 1   | 9131  | 9132    | 0_      | **    | 0                                     | 0.0%  |            | 0.0%  |
|           | 1 [   | 9147  | 9148    | 0       | **    | 0                                     | 0.0%  |            | 0.0%  |
| Wolfcamp  | 5     | 9186  | 9187    | 50      |       | 40                                    | 2.8%  |            | 5.3%  |
|           | 1     | 9203  | 9204    | 0       |       | 0                                     | 0.0%  |            | 0.0%  |
|           |       | 9217  | 9219    | 35      |       | 40                                    | 1.9%  | -          | 5.3%  |
|           |       | 9245  | 9247    | 50      |       | 80                                    | 2.8%  |            | 10.5% |
|           |       | 9264  | 9266    | 10      |       | 80                                    | 0.6%  |            | 10.5% |
|           |       |       |         |         |       |                                       |       |            |       |
|           |       | 9371  | 9372    | 35      |       | 30                                    | 1.9%  | **         | 3.9%  |
|           | 1 [   | 9391  | 9392    | 0       |       | 10                                    | 0.0%  | **         | 1.3%  |
|           | 4     | 9416  | 9417    | 10      | **    | 20                                    | 0.6%  | **         | 2.6%  |
|           |       | 9432  | 9433    | 0       | **    | 0                                     | 0.0%  |            | 0.0%  |
| Wolfcamp  |       | 9466  | 9467    | 40      | -     | 20                                    | 2.2%  | **         | 2.6%  |
| woncamp   |       | 9484  | 9485    | 0       |       | 0                                     | 0.0%  | **         | 0.0%  |
|           | (     | 9504  | 9506    | 0       | ***   | 0                                     | 0.0%  | **         | 0.0%  |
|           | 1 1   | 9524  | 9526    | 0       |       | 0                                     | 0.0%  |            | 0.0%  |
|           | ] [   | 9542  | 9544    | 0       | **    | 0                                     | 0.0%  | **         | 0.0%  |
|           |       | 9559  | 9561    | 0       | **    | 0                                     | 0.0%  |            | 0.0%  |
|           |       |       | ·       |         |       | · · · · · · · · · · · · · · · · · · · |       |            | ·     |
|           | [ [   | 9619  | 9620    | 450     |       | 0                                     | 24.8% |            | 0.0%  |
|           |       | 9643  | 9644    | 20      |       | 50                                    | 1.1%  | ••         | 6.6%  |
|           | 1     | 9665  | 9666    | 25      |       | 50                                    | 1.4%  |            | 6.6%  |
| Wolfcamp  | 3     | 9693  | 9694    | 10      |       | 40                                    | 0.6%  |            | 5.3%  |
|           |       | 9712  | 9714    | 35      |       | 80                                    | 1.9%  |            | 10.5% |
|           |       | 9750  | 9752    | 295     |       | 0                                     | 16.3% |            | 0.0%  |
|           |       | 9784  | 9786    | 45      |       | 90                                    | 2.5%  |            | 11.8% |
|           | 1     | 9833  | 9835    | 0       |       | 60                                    | 0.0%  |            | 7.9%  |

continued on next page

# Schlumberger

Interpretation Results: Surface Flowrate Results - Detail (Continued)

|            |   | 9894                                  | 9895  | 45    |     | 0 | 2.5%  | 4-  | 0.0% |
|------------|---|---------------------------------------|-------|-------|-----|---|-------|-----|------|
| Wolfcamp 2 |   | 9923                                  | 9924  | 0     | **  | 0 | 0.0%  | **  | 0.0% |
|            |   | 9941                                  | 9942  | 45    |     | 0 | 2.5%  |     | 0.0% |
|            |   | 9961                                  | 9962  | 35    |     | 0 | 1.9%  |     | 0.0% |
|            | 2 | 9985                                  | 9986  | trace |     | 0 | trace | **  | 0.0% |
|            |   | 10035                                 | 10036 | 35    |     | 0 | 1.9%  |     | 0.0% |
|            |   | 10050                                 | 10051 | trace |     | 0 | trace |     | 0.0% |
|            |   | 10068                                 | 10070 | trace |     | 0 | trace | ••• | 0.0% |
|            | _ | 10086                                 | 10088 | 0     |     | 0 | 0.0%  |     | 0.0% |
|            |   |                                       |       |       |     |   |       |     |      |
|            |   | 10143                                 | 10144 | 115   |     | 0 | 6.3%  | *-  | 0.0% |
|            | 1 | 10157                                 | 10158 | trace |     | 0 | trace |     | 0.0% |
|            |   | 10208                                 | 10209 | trace |     | 0 | trace | 44  | 0.0% |
| Walfaama   |   | 10229                                 | 10230 | 285   |     | 0 | 15.7% |     | 0.0% |
| Wolfcamp   |   | 10244                                 | 10246 | 0     | ~-  | 0 | 0.0%  |     | 0.0% |
|            |   | 10263                                 | 10265 | 0     |     | 0 | 0.0%  |     | 0.0% |
|            |   | 10306                                 | 10308 | 0     | *** | 0 | 0.0%  |     | 0.0% |
| ł          |   | 10349                                 | 10351 | 0     |     | 0 | 0.0%  |     | 0.0% |
|            |   | · · · · · · · · · · · · · · · · · · · |       |       |     |   |       |     |      |
|            |   |                                       |       |       |     |   |       |     |      |

### Schlumberger

#### Interpretation Remarks

This interpretation is based on PSP Production Log data recorded on 07-Mar-2017 in memory on slickline. The Field Engineer (FE) is Blake Melcher. Five down and four up main logging passes were recorded over the main logging interval under flowing conditions. Color coding is as follows: D1/U1-Red, D2/U2-Dk Blue, D3/U3-Green, D4/U4-Lt Blue, D5-Violet. Down pass curves have solid coding. Up pass have dashed coding. Station stops are presented as circles at their respective depths.

Main logging passes are correlated by Field Engineer. Top Log Interval (TLI) is observed @ 8400' MD. Bottom Log Interval (BLI) is observed @ 10462' MD.

EOT is observed on the averaged X-Y caliper measurement (C1C2) @ 8603" MD. The average X-Y caliper measurement (C1C2) is consistent and agrees with nominal ID. A nominal ID of 4.892" is used in the interpretation calculations.

Downhole pressure (WPRE) is stable during the main passes. Down and Up passes are used in the interpretation calculations.

Downhole temperature (WTEP) trends are repeatable. Down pass temperatures are used preferentially in the interpretation calculations.

All DEFT (electrical) probes are functioning properly and the basis of the water holdup (Yw) image. DEFT (electrical) probe measurements are most consistent on down passes which are used preferentially in the interpretation calculations. DEFT (electrical) probes provide a confident measurement of water holdup, independent of PVT information, by counting the hydrocarbon bubbles during a dominate water flow regime or water droplets during a dominate gas or oil flow regime.

GHOST (optical) probes measurements were not consistent between individual probes and passes, and are not used in the interpretation calculations.

The gradiomanometer density measurement (WFDE) is confident and used in the interpretation calculations.

Spinner response is consistent and provides a confident slope and liquid threshold for downhole in-situ spinner calibrations. All spinner passes are used in the spinner calibrations and apparent velocity calculations.

Total downhole rates (QZT) are calculated using the apparent spinner velocity, a nominal casing ID, averaged water holdup (Yw), fluid density (WFDE) and an established water-hydrocarbons flow model. Rates are calculated downhole and presented in downhole barrels on the log snapshots. Calculated downhole rates are then converted to surface rates at standard conditions and presented in the above table.

PVT Information: Oil gravity of 52 API, Gas gravity of 0.7178 s.g. Water salinity 63000 ppm was provided by Cimarex .

A report of "trace" gas production is based on temperature, water holdup and density but does not appear to be of sufficient volume to observed on the spinner. Therefore, "trace" gas suggests minimal or negligible gas production, if any, into the wellbore.

Overall, data quality is high (except for the GHOST optical probes) and the downhole environment is stable resulting in a high level of confidence in gas/water interpretation calculations and results.

Leonid Kolomytsev, Production Engineer Schlumberger, Houston, TX, USA

Casey Chadwick, Production Logging Domain Champion, North America Wireline, Houston, TX, USA

PSP Production Log - Interpretation Results Cimarex\_Federal 13 Com4 Interp\_new Schlumberger Company: Cimarex Energy Company Test: PSP Production Log Field: White City Date: 07-Mar-2017 Well: Federal 13 Com #4 Survey: Flowing WPRE WTEP CCLD Depth QZT QZI GR C1C2 Yw Image 9 (ft) 190 0 B/D 4000 0 B/D 600 2000 2600 150 0 GAP150 -9 2 in6. 0 r psia 8500 d 9000 100 9500 10000 10500

PSP Production Log - Pressure & Temperature Cimarex\_Federal 13 Com4 Interp\_ne.. Schlumberger Company: Cimarex Energy Company Test: PSP Production Log Field: White City Date: 07-Mar-2017 Well: Federal 13 Com #4 Survey: Flowing CCLD Depth C1C2 Yw Image WTEP GR WPRE 0 GAP150 -9 9 (ft) 2 in6. 0 r 2000 2600 150 °F 190 psia 8500 9000 9500 10000 10500

Cimarex Federal 13 Com4 Interp\_ne.. PSP Production Log - Spinner & Cable Velocity Schlumberger Test: PSP Production Log Company: Cimarex Energy Company Date: 07-Mar-2017 Field: White City Survey: Flowing Well: Federal 13 Com #4 CCLD Depth SCVL SPIN C1C2 Yw Image GR (ft) -40 20 -400 ft/min 200 9 2 in 6. rps 0 GAP150 -9 0 8500 3-1. ? 11, 115 11(, Hy 223 741  $\Pi_1$ 9000 31 <u>ز ز ۶</u> ۲ 11. 11 2.5 IJ, <del>}\$\$</del>\$ 14 11, 65 <u>₹</u> 111 111 9500 111 3 (i 11 Θ 4 4 10000 孟 15 < ; > 1 ,1, 10500

Cimarex\_Federal 13 Com4 Interp\_ne. PSP Production Log - DEFT Water Holdup & Density Schlumberger Test: PSP Production Log Company: Cimarex Energy Company Date: 07-Mar-2017 Field: White City Well: Federal 13 Com #4 Survey: Flowing DFH2 DFHM WFDE CCLD Depth DFH1 DFH3 DFH4 GR C1C2 Yw Image 9 (ft) 2 in 6. | 0 [ -0.1 -0.1g/cc 1.1 -0.1 -0.1 -0.1 1.1 -0.1 1.1 0 GAP150 -9 1.1 1.1 1.1 8500 7 9000 3 9500 The Street 10000 m 10500

### **PSP & FSI Interpretation Mnemonics**

CALI\_FSI Flow Scanner Caliper
CCLC/CCLD Casing Collar Locator
CVEL/SCVL Cable Velocity

D1RB DEFT Relative Bearing Probe 1

DFBFx\_FSI (0-5) FSI Vertical DEFT Bubble Count Array (0-Bot, 5-Top)

DFBM PSP Mean DEFT Bubble Count

DFBx (1-4) PSP Individual Probe DEFT Bubble Count

DFHFx\_FSI (0-5) FSI Vertical DEFT Water Holdup Array (0-Bot, 5-Top)

DFHM PSP Mean DEFT Water Holdup

DFHx (1-4) PSP Individual Probe DEFT Water Holdup

GHBFx\_FSI (0-5) FSI Vertical GHOST Bubble Count Array (0-Bot, 5-Top)

GHBM2 PSP Mean GHOST Bubble Count

GHBx (5-8) PSP Individual Probe GHOST Bubble Count

GHHFx\_FSI (0-5) FSI Vertical GHOST Gas Holdup Array (0-Bot,5-Top)

GHHM2 PSP Mean GHOST Gas Holdup

GHHx (5-8) PSP Individual Probe GHOST Gas Holdup

GR Gamma Ray

HTEN Head Tension/Compression
MWFD Pressure Derived Density

PFC1 PSP Caliper 1 (X)
PFC2 PSP Caliper 2 (Y)
RB\_FSI FSI Relative Bearing

SPIN/SPI1 Full Bore Spinner / Inline Spinner

SPIFx\_FSI (0-4) FSI Vertical Micro-Spinner Array (0-Bot, 4-Top)

WFDE Gradio Well Fluid Density

WPRE Well Pressure
WTEP Well Temperature

Color Coding is typically the same for all the curves that belong to the same pass RED – Pass One / Dk Blue – Pass Two / Green – Pass Three / Lt Blue – Pass Four

VAFV/VAPP Apparent fluid velocity (gas, water & oil)

QGI, QOI, QWI Interval Gas, Oil, Water Rates (down hole unless stated otherwise)
QGT, QOT, QWT Cumulative Gas, Oil, Water Rates (down hole unless stated otherwise)

### **Tool Mnemonics List**

DEFT Digital Fluid Entry Tool (Resistivity Probes)
GHOST Gas Holdup Optical Sensor Tool (Optical Probes)

FSI Flow Scanner Imager
PSP Production Services Platform

PBMS Production Basic Measurement Sonde (Temperature, Pressure, CCL, GR)

PCMS Production Compression Measurement Sonde PGMC Production GradioManometer Carrier (Density)

PFCS Production Flowmeter Caliper Sonde (Holdup, Caliper, Full Bore Spinner)

PILS Production In-Line Spinner