| Form 3160 -3<br>(March 2012)<br>UNITED ST<br>DEPARTMENT OF 7                                                                                                                                                                  | DNSERVATION<br>A DISTRICT<br>2 2 2017<br>R                  | )                                                                                                                 | FORM<br>OMB N<br>Expires (<br>5. Lease Serial No. | APPROVE<br>No. 1004-013<br>Detober 31, 2            | D<br>17<br>1014            |                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------|-----------------------|--|--|
| BUREAU OF LAND<br>APPLICATION FOR PERMIT                                                                                                                                                                                      | MANAGEMEN<br>TO DRILL O                                     |                                                                                                                   |                                                   | 6. If Indian, Allotee or Tribe Name                 |                            |                       |  |  |
| la. Type of work:                                                                                                                                                                                                             | EENTER                                                      |                                                                                                                   |                                                   | 7. If Unit or CA Agre                               | eement, Na                 | me and No.            |  |  |
| lb. Type of Well: Oil Well Gas Well Other                                                                                                                                                                                     |                                                             | Single Zone 🔲 Multi                                                                                               | ple Zone                                          | 8. Lease Name and<br>THUNDER BAY F                  | Well No.<br>EDERAL         | <b>3205</b><br>COM 1H |  |  |
| 2. Name of Operator MACK ENERGY CORPORATIO                                                                                                                                                                                    | N                                                           | 13837                                                                                                             |                                                   | 9. API Well No.<br><b>30 - 00</b> :                 | 5-64                       | 1308                  |  |  |
| 3a. Address<br>11344 Lovington HWY Artesia NM 8821                                                                                                                                                                            | 3b. Phone (575)748                                          | No. (include area code)<br>3-1288                                                                                 |                                                   | 10. Field and Pool, or<br>ROUND TANK / S            | Explorator<br>AN AND       | y<br>RES              |  |  |
| <ol> <li>Location of Well (Report location clearly and in accordance<br/>At surface NENW / 10 FNL / 1650 FWL / LAT 33.0<br/>At proposed prod. zone SESW / 270 FSL / 1675 FW</li> </ol>                                        | with any State requir<br>0086584 / LONG<br>L / LAT 32.99473 | rements.*)<br>i -104.0195748<br>314 / LONG -104.019                                                               | 92879                                             | 11. Sec., T. R. M. or E<br>SEC 22 / T15S / R        | 31k. and Sur<br>29E / NN   | vey or Area<br>1P     |  |  |
| 14. Distance in miles and direction from nearest town or post off<br>30 miles                                                                                                                                                 | ice*                                                        | ······                                                                                                            |                                                   | 12. County or Parish<br>CHAVES                      |                            | 13. State<br>NM       |  |  |
| 15. Distance from proposed*<br>location to nearest 10 feet<br>property or lease line, ft.<br>(Also to nearest drig. unit line, if any)                                                                                        | 16. No. of<br>40                                            | f acres in lease                                                                                                  | 17. Spacir<br>160                                 | g Unit dedicated to this                            | well                       |                       |  |  |
| <ol> <li>Distance from proposed location*<br/>to nearest well, drilling, completed, 1320 feet<br/>applied for, on this lease, ft.</li> </ol>                                                                                  | 19. Propo<br>3357 fee                                       | ised Depth<br>et / 8179 feet                                                                                      | 20. BLM/<br>FED: N                                | f/BIA Bond No. on file<br>NMB000286                 |                            |                       |  |  |
| 21. Elevations (Show whether DF, KDB, RT, GL, etc.)<br>3844 feet                                                                                                                                                              | 22. Appro<br>12/01/2                                        | oximate date work will sta<br>017                                                                                 | irt*                                              | 23. Estimated duration<br>15 days                   |                            |                       |  |  |
|                                                                                                                                                                                                                               | 24. At                                                      | tachments                                                                                                         |                                                   |                                                     |                            |                       |  |  |
| The following, completed in accordance with the requirements o                                                                                                                                                                | f Onshore Oil and G                                         | as Order No.1, must be a                                                                                          | ttached to th                                     | iis form:                                           |                            |                       |  |  |
| <ol> <li>Well plat certified by a registered surveyor.</li> <li>A Drilling Plan.</li> <li>A Surface Use Plan (if the location is on National Forest<br/>SUPO must be filed with the appropriate Forest Service Off</li> </ol> | System Lands, the ice).                                     | <ol> <li>Bond to cover<br/>Item 20 above).</li> <li>Operator certifi</li> <li>Such other site<br/>BLM.</li> </ol> | the operation<br>cation<br>specific inf           | ons unless covered by ar<br>ormation and/or plans a | n existing t<br>s may be r | oond on file (see     |  |  |
| 25. Signature<br>(Electronic Submission)                                                                                                                                                                                      | Nar<br>De                                                   | ne <i>(Printed/Typed)</i><br>ana Weaver / Ph: (57                                                                 | 75)748-12                                         | 88                                                  | Date<br>10/16/             | 2017                  |  |  |
| Title<br>Production Clerk                                                                                                                                                                                                     |                                                             |                                                                                                                   |                                                   |                                                     |                            |                       |  |  |
| Approved by (Signature)<br>(Electronic Submission)                                                                                                                                                                            | Na<br>Rul                                                   | me <i>(Printed/Typed)</i><br>ben J Sanchez / Ph:                                                                  | (575)627-(                                        | 0250                                                | Date<br>12/18/             | 2017                  |  |  |
| Title<br>Assistant Field Manager, Lands & Minerals                                                                                                                                                                            | Off<br>RC                                                   | ice<br>DSWELL                                                                                                     |                                                   |                                                     |                            |                       |  |  |
| Application approval does not warrant or certify that the applic<br>conduct operations thereon.<br>Conditions of approval, if any, are attached.                                                                              | ant holds legal or e                                        | quitable title to those rig                                                                                       | hts in the su                                     | bject lease which would                             | entitle the                | applicant to          |  |  |
| Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, ma<br>States any false, fictitious or fraudulent statements or represent                                                                                       | ke it a crime for an ations as to any matter                | y person knowingly and<br>er within its jurisdiction.                                                             | willfully to                                      | make to any department                              | or agency                  | of the United         |  |  |

| (Continued on pag | e 2) | page |
|-------------------|------|------|
|-------------------|------|------|



\*(Instructions on page 2)

RW 12-26-17



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# **Operator Certification**

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

perator Certification Data Report

12/18/2017

| Title: Production ClerkStreet Address: 11344 Lovington HWYCity: ArtesiaState: NMZip: 88211Phone: (575)748-1288Email address: dweaver@mec.comField RepresentativeField Representative Name:Street Address:City:State:City:State:Phone:Email address: | NAME: Deana Weaver                                                                                  |           | Signed on: 10/12/2017 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|-----------------------|
| Street Address: 11344 Lovington HWYCity: ArtesiaState: NMZip: 88211Phone: (575)748-1288Email address: dweaver@mec.comField RepresentativeField Representative Name:Street Address:Street Address:City:State:City:State:Phone:Email address:         | Title: Production Clerk                                                                             |           |                       |
| City: ArtesiaState: NMZip: 88211Phone: (575)748-1288Email address: dweaver@mec.comField RepresentativeField RepresentativeRepresentative Name:<br>Street Address:Street Address:City:State:State:Phone:<br>Email address:Email address:             | Street Address: 11344 Lovingtor                                                                     | 1 HWY     |                       |
| Phone: (575)748-1288 Email address: dweaver@mec.com  Field Representative  Representative Name: Street Address: City: State: Zip: Phone: Email address:                                                                                             | City: Artesia                                                                                       | State: NM | <b>Zip:</b> 88211     |
| Email address: dweaver@mec.com   Field Representative   Representative Name:   Street Address:   City: State:   Zip:   Phone:   Email address:                                                                                                      | Phone: (575)748-1288                                                                                |           |                       |
| Field Representative   Representative Name:   Street Address:   City: State:   Zip:   Phone:   Email address:                                                                                                                                       | Email address: dweaver@mec.c                                                                        | om        |                       |
|                                                                                                                                                                                                                                                     | Field Representativ<br>Representative Name:<br>Street Address:<br>City:<br>Phone:<br>Email address: | e State:  | Zip:                  |

# AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT



the design of the

## APD ID: 10400020889

Operator Name: MACK ENERGY CORPORATION Well Name: THUNDER BAY FEDERAL COM Well Type: OIL WELL

#### Submission Date: 10/16/2017

Well Number: 1H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

| Section 1 - General                |                          |                   |                             |
|------------------------------------|--------------------------|-------------------|-----------------------------|
| APD ID: 10400020889                | Tie to previous NOS?     | 10400018048       | Submission Date: 10/16/2017 |
| BLM Office: ROSWELL                | User: Deana Weaver       | Titl              | e: Production Clerk         |
| Federal/Indian APD: FED            | Is the first lease penet | rated for product | ion Federal or Indian? FED  |
| Lease number: NMNM59038            | Lease Acres: 40          |                   |                             |
| Surface access agreement in place? | Allotted?                | Reservation:      |                             |
| Agreement in place? NO             | Federal or Indian agre   | ement:            |                             |
| Agreement number:                  |                          |                   |                             |
| Agreement name:                    |                          |                   |                             |
| Keep application confidential? YES |                          |                   |                             |
| Permitting Agent? NO               | APD Operator: MACK       | ENERGY CORPO      | RATION                      |
| Operator letter of designation:    |                          |                   |                             |

| Operator Info                        |             |                            |                       |
|--------------------------------------|-------------|----------------------------|-----------------------|
| Operator Organization Name: MAC      | K ENERGY CO | RPORATION                  |                       |
| Operator Address: 11344 Lovington    | HWY         | <b>7</b> in, 9921          | 1                     |
| Operator PO Box:                     |             | <b>Zip:</b> 0021           | I                     |
| Operator City: Artesia               | State: NM   |                            |                       |
| <b>Operator Phone:</b> (575)748-1288 |             |                            |                       |
| Operator Internet Address: jerrys@   | mec.com     |                            |                       |
| Section 2 - Well In                  | formation   |                            |                       |
| Well in Master Development Plan? I   | ٥V          | Mater Development Plan nam | e:                    |
| Well in Master SUPO? NO              |             | Master SUPO name:          |                       |
| Well in Master Drilling Plan? NO     |             | Master Drilling Plan name: |                       |
| Well Name: THUNDER BAY FEDER         | AL COM      | Well Number: 1H            | Well API Number:      |
| Field/Pool or Exploratory? Field and | l Pool      | Field Name: ROUND TANK     | Pool Name: SAN ANDRES |

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Operator Name: MACK ENERGY CORPORATION Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

| Describe other minerals:               |                |                        |          |                          |  |  |  |  |
|----------------------------------------|----------------|------------------------|----------|--------------------------|--|--|--|--|
| Is the proposed well in a Helium produ | uction area? N | Use Existing Well Pad? | NO       | New surface disturbance? |  |  |  |  |
| Type of Well Pad: SINGLE WELL          |                | Multiple Well Pad Name | <b>:</b> | Number:                  |  |  |  |  |
| Well Class: HORIZONTAL                 |                | Number of Legs: 1      |          |                          |  |  |  |  |
| Well Work Type: Drill                  |                |                        |          |                          |  |  |  |  |
| Well Type: OIL WELL                    |                |                        |          |                          |  |  |  |  |
| Describe Well Type:                    |                |                        |          |                          |  |  |  |  |
| Well sub-Type: DELINEATION             |                |                        |          |                          |  |  |  |  |
| Describe sub-type:                     |                |                        |          |                          |  |  |  |  |
| Distance to town: 30 Miles             | Distance to ne | arest well: 1320 FT    | Distanc  | e to lease line: 10 FT   |  |  |  |  |
| Reservoir well spacing assigned acres  | s Measurement  | : 160 Acres            |          |                          |  |  |  |  |
| Well plat: THUNDER_BAY_FEDER4          | AL_COM_1H_PI   | ats_20171012110753.pdf |          |                          |  |  |  |  |
| Well work start Date: 12/01/2017       |                | Duration: 15 DAYS      |          |                          |  |  |  |  |
|                                        |                |                        |          |                          |  |  |  |  |

# Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 5312

|     | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD  | TVD |
|-----|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------|-----------|--------|-------|----------|------------|--------------|-----------|-----|-----|
| SHL | 10      | FNL          | 165     | FWL          | 15S  | 29E   | 22      | Aliquot           | 33.00865 | -         | СНА    | NEW   | NEW      | F          | NMNM         | 384       | 0   | 0   |
| Leg |         |              | 0       |              |      |       |         | NENW              | 84       | 104.0195  | VES    | MEXI  | MEXI     |            | 59038        | 4         |     |     |
| #1  |         |              |         |              |      |       |         |                   |          | 748       |        | co    | co       |            |              |           |     |     |
| KOP | 10      | FNL          | 165     | FWL          | 15S  | 29W   | 22      | Aliquot           | 33.00865 | -         | СНА    | NEW   | NEW      | F          | NMNM         | 106       | 278 | 278 |
| Leg |         |              | 0       |              |      |       |         | NENW              | 84       | 104.0195  | VES    | MEXI  | MEXI     |            | 59038        | 0         | 4   | 4   |
| #1  |         |              |         |              |      |       | }       |                   |          | 748       |        | co    | co       |            |              |           |     |     |
| PPP | 330     | FNL          | 164     | FWL          | 15S  | 29E   | 22      | Aliguot           | 33.00777 | -         | CHA    | NEW   | NEW      | F          | NMNM         | 556       | 340 | 328 |
| Leg |         |              | 8       |              |      |       |         | NENW              | 93       | 104.0195  | VES    | MEXI  | MEXI     |            | 59038        |           | 0   | 8   |
| #1  |         |              |         |              |      |       |         |                   |          | 567       |        | co    | co       | ( ·        | 1            |           |     |     |

**Operator Name: MACK ENERGY CORPORATION** 

# Well Name: THUNDER BAY FEDERAL COM

## Well Number: 1H

|      | NS-Foot | NS Indicator | EW-Foot | EW Indicator | Twsp | Range | Section | Aliquot/Lot/Tract | Latitude | Longitude | County | State | Meridian | Lease Type | Lease Number | Elevation | MD  | TVD |
|------|---------|--------------|---------|--------------|------|-------|---------|-------------------|----------|-----------|--------|-------|----------|------------|--------------|-----------|-----|-----|
| EXIT | 330     | FSL          | 167     | FWL          | 15S  | 29E   | 22      | Aliquot           | 32.99489 | -         | CHA    | NEW   | NEW      | F          | NMNM         | 487       | 810 | 335 |
| Leg  |         |              | 4       |              |      |       | 1       | SESW              | 63       | 104.0192  | VES    | MEXI  | MEXI     |            | 59038        |           | 0   | 7   |
| #1   |         |              |         |              |      |       |         |                   |          | 913       |        | co    | CO       |            |              |           |     |     |
| BHL  | 270     | FSL          | 167     | FWL          | 15S  | 29E   | 22      | Aliquot           | 32.99473 | -         | CHA    | NEW   | NEW      | F          | NMNM         | 487       | 817 | 335 |
| Leg  |         |              | 5       |              |      |       |         | SESW              | 14       | 104.0192  | VES    | MEXI  | MEXI     |            | 59038        |           | 9   | 7   |
| #1   |         | 5            |         |              |      | ł     |         | 1                 |          | 879       | {      | co    | co       |            |              |           |     |     |









| ₩ <b>₽</b>                                                  | ۲۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | q df |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ET SECTION 22, TOWN                                         | VSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | щ    |
| ACCES                                                       | SS AFRIAL ROUTE MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                                                             | THUNDER BAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| MIT15SIP28E                                                 | NAME TO BE A THE A |      |
| 21 22 28 21 TO                                              | a 1202 1521 - 0222 23 24 19 20 1 21 22 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2   |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 28 127 - 261 125 30                                         | <b>29 28 7</b> 7 26 25 30 29 1 28 276 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52   |
| -381-04-381 - 35 - 333 - 811                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1 6 5 4 6 13                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 7 3 5 10                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 18 18 17 NM THES R                                          | 29E 13 1 13 1 17 NM T16S R30E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| 211 10 - 01 60                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                             | 2 120 24 Alb 20 21 22 A25, 24 AB 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 25 30, 29, 23. 27                                           | 7 26 25 30 29 28 27 26 25 30 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3    |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 317232 397 34                                               | <b>35 35 31 32 33 34 35 136 31</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|                                                             | 9 1 10. 2 10. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 12 \$7. 3 9 10                                              | 0 10 12 7 7 1 3 1 19 1 10 10 10 12 12 7 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2    |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7    |
| 10 20 21 482                                                | STATE HICHWAY 82 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| NOT TO SCALE                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1  |
| AERIAL PHOTO: MA<br>GOOGLE EARTH TIII<br>FEBRUARY 2017 TIII | IACK ENERGY CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| LOCAT                                                       | TED 10 FT. FROM THE NORTH LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| AND 1<br>SE                                                 | 1650 FT. FROM THE WEST LINE OF<br>ECTION 22, TOWNSHIP 15 SOUTH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| CUAIT                                                       | RANGE 29 EAST, N.M.P.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|                                                             | LO COUNTI, STATE OF NEW MEATOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|                                                             | SEPTEMBER 8, 2017<br>SURVEY NO. 5312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₽⊣   |
| MADRON SURVEYI                                              | ING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |

# **WAFMSS**

#### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

12/18/2017

## APD ID: 10400020889

**Operator Name: MACK ENERGY CORPORATION** 

Well Name: THUNDER BAY FEDERAL COM

Submission Date: 10/16/2017

Highlighted data reflects the most recent changes

Show Final Text

Well Type: OIL WELL

Well Work Type: Drill

Well Number: 1H

# Section 1 - Geologic Formations

| Formation<br>ID | Formation Name | Elevation | True Vertical<br>Depth | Measured<br>Depth | Lithologies                      | Mineral Resources | Producing<br>Formation |
|-----------------|----------------|-----------|------------------------|-------------------|----------------------------------|-------------------|------------------------|
| 1               | QUÁTERNARY     | 3774      | 0                      | 0                 | ALLUVIUM                         | NONE              | No                     |
| 2               | TOP OF SALT    | 3494      | 280                    | 280               | SALT                             | NONE              | No                     |
| 3               | BASE OF SALT   | 2889      | 885                    | 885               | SALT                             | NONE              | No                     |
| 4               | YATES          | 2724      | 1050                   | 1050              | ANHYDRITE,SILTSTON<br>E          | NATURAL GAS,OIL   | No                     |
| 5               | SEVEN RIVERS   | 2514      | 1260                   | 1260              | ANHYDRITE,SILTSTON<br>E          | NATURAL GAS,OIL   | No                     |
| 6               | QUEEN          | 2024      | 1750                   | 1750              | ANHYDRITE,SILTSTON<br>E          | NATURAL GAS,OIL   | No                     |
| 7               | GRAYBURG       | 1629      | 2145                   | 2145              | DOLOMITE,ANHYDRIT<br>E,SILTSTONE | NATURAL GAS,OIL   | No                     |
| 8               | SAN ANDRES     | 1329      | 2445                   | 2445              | DOLOMITE,ANHYDRIT<br>E           | NATURAL GAS,OIL   | Yes                    |

# **Section 2 - Blowout Prevention**

## Pressure Rating (PSI): 3M

Rating Depth: 10500

Equipment: Rotating Head, Mud-Gas Separator

## Requesting Variance? NO

## Variance request:

**Testing Procedure:** The BOP/BOPE test shall include a low pressure test from 250 to 300psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug.

## Choke Diagram Attachment:

choke\_manifold\_diagram\_08-25-2017.pdf

choke\_manifold\_08-25-2017.pdf

## **BOP Diagram Attachment:**

bop\_diagram\_08-25-2017.pdf

## **Operator Name: MACK ENERGY CORPORATION**

## Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

# Section 3 - Casing

| Casing ID | String Type    | Hole Size | Csg Size | Condition | Standard | Tapered String | Top Set MD | Bottom Set MD | Top Set TVD | Bottom Set TVD | Top Set MSL | Bottom Set MSL | Calculated casing<br>length MD | Grade       | Weight | Joint Type | Collapse SF | Burst SF  | Joint SF Type | Joint SF   | Body SF Type | Body SF   |
|-----------|----------------|-----------|----------|-----------|----------|----------------|------------|---------------|-------------|----------------|-------------|----------------|--------------------------------|-------------|--------|------------|-------------|-----------|---------------|------------|--------------|-----------|
| 1         | SURFACE        | 14.7<br>5 | 9.625    | NEW       | API      | N              | 0          | 250           | 0           | 250            |             |                | 250                            | J-55        | 36     | STC        | 16.1<br>86  | 6.96<br>8 | BUOY          | 51.3<br>15 | BUOY         | 7.04      |
| 2         | PRODUCTI<br>ON | 8.75      | 7.0      | NEW       | API      | N              | 0          | 3300          | 0           | 3300           |             |                | 3300                           | HCP<br>-110 | 26     | LTC        | 4.34<br>4   | 3.35<br>5 | BUOY          | 8.11<br>4  | BUOY         | 3.31<br>7 |
| 3         | PRODUCTI<br>ON | 8.75      | 5.5      | NEW       | API      | N              | 3300       | 8179          | 3300        | 8179           |             |                | 4879                           | HCP<br>-110 | 17     | BUTT       | 4.81<br>9   | 3.65      | BUOY          | 8.11<br>4  | BUOY         | 3.58<br>8 |

### **Casing Attachments**

Casing ID: 1 String Type: SURFACE

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

## Casing Design Assumptions and Worksheet(s):

thunder\_bay\_fed\_1\_csg\_20170906101424.pdf

**Operator Name: MACK ENERGY CORPORATION** 

Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

#### **Casing Attachments**

Casing ID: 2 String Type: PRODUCTION

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

### Casing Design Assumptions and Worksheet(s):

thunder\_bay\_fed\_1\_csg\_20170906101708.pdf

Casing ID: 3 String Type: PRODUCTION

**Inspection Document:** 

Spec Document:

**Tapered String Spec:** 

Casing Design Assumptions and Worksheet(s):

thunder\_bay\_fed\_1\_csg\_20170906101857.pdf

| String Type | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type                                      | Additives                                                             |
|-------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|--------------------------------------------------|-----------------------------------------------------------------------|
| SURFACE     | Lead      | 250                 | 0      | 250       | 100          | 1.61  | 14.4    | 171   |         | RFC+12%<br>PF53+2%PF 1 +<br>5pps<br>PF42+.125pps | 20bbls Gelled Water<br>50sx of 11# Scavenger<br>cement                |
| SURFACE     | Tail      |                     |        | 250       | 250          | 1.34  | 14.8    | 171   | 100     | Class C + 1% PF<br>1                             | 20bbls Gelled Water<br>50sx of 11# Scavenger<br>cement                |
| PRODUCTION  | Lead      | 4879                | 0      | 4879      | 250          | 1.84  | 13.2    | 210   | 35      | Class C 4% PF20<br>+4pps PF45 +<br>125pps PF29   | 20bbls Gelled Water,<br>20bbls Chemical wash<br>50sx of 11# Scavenger |

# Section 4 - Cement

**Operator Name:** MACK ENERGY CORPORATION **Well Name:** THUNDER BAY FEDERAL COM

Well Number: 1H

| String Type | Lead/Tail | Stage Tool<br>Depth | Top MD | Bottom MD | Quantity(sx) | Yield | Density | Cu Ft | Excess% | Cement type                                                                         | Additives                                                                        |
|-------------|-----------|---------------------|--------|-----------|--------------|-------|---------|-------|---------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| PRODUCTION  | Lead      | 8179                | 1900   | 8179      | 1450         | 1.48  | 13      | 2131  | 35      | PVL + 1.3<br>(BWOW) PF44 +<br>5% PF174 + .5%<br>PF606 +<br>.1%PF153 + .4<br>ppsPF44 | 20bbls Gelled Water,<br>20bbls Chemical Wash,<br>50sx of 11# Scavenger<br>Cement |

# Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: BOPE. Brine water

Describe the mud monitoring system utilized: Pason PVT with Pit Volume recorder

# **Circulating Medium Table**

| Top Depth | Bottom Depth | Mud Type | Min Weight (Ibs/gal) | Max Weight (Ibs/gal) | Density (lbs/cu ft) | Gel Strength (lbs/100 sqft) | Hd | Viscosity (CP) | Salinity (ppm) | Filtration (cc) | Additional Characteristics               |
|-----------|--------------|----------|----------------------|----------------------|---------------------|-----------------------------|----|----------------|----------------|-----------------|------------------------------------------|
| 0         | 500          | SPUD MUD | 8.3                  | 10                   |                     |                             |    |                |                |                 |                                          |
| 3357      | 3357         | LSND/GEL | 8.3                  | 10                   | 74.8                |                             | 11 |                | 160000         | 10              | Gel Strength- 0-1.<br>Viscosity - 334-38 |

.

**Operator Name: MACK ENERGY CORPORATION** 

Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

# Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: None

#### List of open and cased hole logs run in the well:

CALIPER, CNL, DLL, FDC, GR

### Coring operation description for the well:

Will evaluate after logging to determine the necessity for sidewall coring.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 1720

Anticipated Surface Pressure: 981.46

Anticipated Bottom Hole Temperature(F): 95

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

**Contingency Plans geohazards attachment:** 

Hydrogen Sulfide drilling operations plan required? NO

Hydrogen sulfide drilling operations plan:

# Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Thunder\_Bay\_Federal\_\_Com\_\_1H\_Plot\_Plan\_\_1\_20170906103546.pdf Thunder\_Bay\_Federal\_Com\_\_1H\_Plan\_\_1\_20170906103557.pdf thunder\_drill\_plan\_20171012140708.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:

**Other Variance attachment:** 





# Mack Energy Corporation

Exhibit #11 MIMIMUM CHOKE MANIFOLD 3,000, 5.000, and 10,000 PSI Working Pressure 3M will be used 3 MWP - 5 MWP - 10 MWP



3 000 8 833 1

Mud Pit

**Reserve Pit** 

\* Location of separator optional

-----

#### **Below Substructure**

#### Mimimum requirements

|     |                                                     |            |         |        | 3,000 MM F |         |        | 10,000 (11) 1 |         |        |
|-----|-----------------------------------------------------|------------|---------|--------|------------|---------|--------|---------------|---------|--------|
| No. |                                                     | LÐ.        |         |        | LD.        |         |        | 1.D.          |         |        |
|     |                                                     |            | Nominal | Rating |            | Nominal | Rating |               | Nominal | Rating |
| 1   | Line from drilling Spool                            |            | 3"      | 3.000  |            | 3"      | 5.000  |               | 3"      | 10,000 |
| 2   | Cross 3" x 3" x 3" x 2"                             |            |         | 3.000  |            |         | 5,000  |               |         |        |
| 2   | Cross 3" x 3" x 3" x 2"                             |            |         |        |            |         |        |               |         | 10,000 |
| 3   | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8      |         | 5,000  | 3 1/8         |         | 10.000 |
| 4   | Valve Gate<br>Plug                                  | 1<br>13/16 |         | 3,000  | 1 13/16    |         | 5,000  | 1 13/16       |         | 10,000 |
| 4a  | Valves (1)                                          | 2 1/16     |         | 3,000  | 2 1/16     |         | 5,000  | 2 1/16        |         | 10,000 |
| 5   | Pressure Gauge                                      |            |         | 3,000  |            |         | 5.000  |               |         | 10,000 |
| 6   | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8      |         | 5,000  | 3 1/8         |         | 10,000 |
| .7  | Adjustable Choke (3)                                | 2"         |         | 3,000  | 2"         |         | 5,000  | 2"            |         | 10,000 |
| 8   | Adjustable Choke                                    | 1"         |         | 3,000  | 1.         |         | 5,000  | 2"            |         | 10,000 |
| 9   | Line                                                |            | 3"      | 3,000  |            | 3"      | 5,000  |               | 3"      | 10,000 |
| 10  | Line                                                |            | 2"      | 3,000  |            | 2"      | 5.000  |               | 2"      | 10,000 |
| 11  | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8      |         | 5.000  | 3 1/8         |         | 10,000 |
| 12  | Line                                                |            | 3"      | 1.000  |            | 3"      | 1.000  |               | 3"      | 2,000  |
| 13  | Line                                                |            | 3"      | 1.000  |            | 3"      | 1.000  |               | 3"      | 2,000  |
| 14  | Remote reading compound<br>Standpipe pressure quage |            |         | 3,000  |            |         | 5,000  |               |         | 10,000 |
| 15  | Gas Separator                                       |            | 2' x5'  |        |            | 2' x5'  | T      | 1             | 2' x5'  |        |
| 16  | Line                                                |            | 4"      | 1,000  |            | 4"      | 1,000  |               | 4"      | 2.000  |
| 17  | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8      |         | 5,000  | 3 1/8         |         | 10,000 |

(1) Only one required in Class 3M

(2) Gate valves only shall be used for Class 10 M

(3) Remote operated hydraulic choke required on 5,000 psi and 10,000 psi for drilling.

EQUIPMENT SPECIFICATIONS AND INSTALLATION INSTRUCTION

1. All connections in choke manifold shall be welded, studded, flanged or Cameron clamp of comparable rating

2. All flanges shall be API 6B or 6BX and ring gaskets shall be API RX or BX. Use only BX for 10 MWP.

3. All lines shall be securely anchored.

4. Chokes shall be equipped with tungsten carbide seats and needles, and replacements shall be available.

5. alternate with automatic chokes, a choke manifold pressure gauge shall be located on the rig floor in conjunction with the standpipe pressure gauge.

6. Line from drilling spool to choke manifold should bee as straight as possible. Lines downstream from chokes shall make turns by large bends or 90 degree bends using bull plugged tees

### Mack Energy Corporation Minimum Blowout Preventer Requirements 5000 psi Working Pressure 13 5/8 inch- 5 MWP 11 Inch - 5 MWP

| Stack Nequilements |                                             |         |         |  |  |  |  |  |  |  |
|--------------------|---------------------------------------------|---------|---------|--|--|--|--|--|--|--|
| NO.                | Items                                       | Min.    | Min.    |  |  |  |  |  |  |  |
|                    |                                             | 1.D.    | Nominal |  |  |  |  |  |  |  |
| 1                  | Flowline                                    |         | 2"      |  |  |  |  |  |  |  |
| 2                  | Fill up line                                |         | 2"      |  |  |  |  |  |  |  |
| 3                  | Drilling nipple                             |         |         |  |  |  |  |  |  |  |
| -4                 | Annular preventer                           |         |         |  |  |  |  |  |  |  |
| 5                  | Two single or one dual hydraulically        |         |         |  |  |  |  |  |  |  |
|                    | operated rams                               |         |         |  |  |  |  |  |  |  |
| 6a                 | Drilling spool with 2" min kill line and 3" |         | 2"      |  |  |  |  |  |  |  |
|                    | min choke line outlets                      |         | Choke   |  |  |  |  |  |  |  |
| 6b                 | 2" min, kill line and 3" min choke line     |         |         |  |  |  |  |  |  |  |
|                    | outlets in ram (Alternate to 6a above)      |         |         |  |  |  |  |  |  |  |
| 7                  | Valve Gate                                  | 3 1/8   |         |  |  |  |  |  |  |  |
|                    | Plug                                        |         |         |  |  |  |  |  |  |  |
| 8                  | Gate valve-power operated                   | 3 1/8   |         |  |  |  |  |  |  |  |
| 9                  | Line to choke manifold                      |         | 3"      |  |  |  |  |  |  |  |
| 10                 | Valve Gate                                  | 2 1/16  |         |  |  |  |  |  |  |  |
|                    | Plug                                        |         |         |  |  |  |  |  |  |  |
| 11                 | Check valve                                 | 21/16   | ·       |  |  |  |  |  |  |  |
| 12                 | Casing head                                 |         |         |  |  |  |  |  |  |  |
| 13                 | Valve Gate                                  | 1 13/16 |         |  |  |  |  |  |  |  |
|                    | Plug                                        |         |         |  |  |  |  |  |  |  |
| 14                 | Pressure gauge with needle valve            | 1       |         |  |  |  |  |  |  |  |
| 15                 | Kill line to rig mud pump manifold          | 1       | 2"      |  |  |  |  |  |  |  |
|                    |                                             |         |         |  |  |  |  |  |  |  |

Stanl. Demainance



#### **OPTIONAL**

10

#### 16

#### Flanged Valve

1 13/16

## CONTRACTOR'S OPTION TO

- CONTRACTOR'S OPTION TO FURNISH All equipment and connections above MI: bradenhead or casinghead. Working pressure of preventers to be 2000 psi minimum.
- Automatic accumulator (80 gallons, minimum) capable of closing BOP in 30 seconds or less and, holding them closed against full rated working pressure.
- BOP controls, to be located near drillers' position.
- Kelly equipped with Kelly cock.
   Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used.
- Kelly saver-sub equipped with rubber casing protector at all times.
- 7. Plug type blowout preventer tester
- 8 Extra set pipe rams to fit drill pipe in use on location at all times.
- 9. Type RX ring gaskets in place of Type R.

#### MEC TO FURNISH:

I. Bradenhead or easing head and side valves.

2 Wear bushing. If required

#### GENERAL NOTES:

- Deviations from this drawing may be made only with the express permission of MEC's Drilling Manager.
- 2 All connections, valves. fittings, piping. etc., subject to well or pump pressure must be flanged (suitable clamp connections acceptable) and have minimum working pressure equal to rated working pressure of preventers up through choke valves must be full opening and suitable for high pressure mud service.
- 3 Controls to be of standard design and each marked, showing opening and closing position
- 4 Chokes will be positioned so as not to hamper or delay changing of choke beans.

Replaceable parts for adjustable choke, or bean sizes, retainers, and choke wrenches to be conveniently located for immediate use.

- All valves to be equipped with hand-wheels or handles ready for immediate use.
- 6. Choke lines must be suitably anchored
- 7 Handwheels and extensions to be connected and ready for use
- 8 Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency
- All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted
- Casinghead connections shall not be used except in case of emergency.
- 11. Does not use kill line for routine fill up operations.

| Casing Design Well: Thunder Bay Federal Com #1H  |                   |                |                       |                       |                | an dat set an<br>dat set ar |                         |                                                                                                                           |         |
|--------------------------------------------------|-------------------|----------------|-----------------------|-----------------------|----------------|-----------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|
| String Size & Function                           | :                 | 9 5/           | <u>8</u> in           | surface               | <u></u>        |                             | intermediate            | <del>المنظمة المحاطمة الم</del> |         |
| Total Depth:                                     | 250               | <u>)</u> ft    |                       |                       |                |                             |                         |                                                                                                                           |         |
| Pressure Gradient for                            | Calculation       | ns             | <del>.</del>          |                       | (Whil          | e drilling)                 |                         | <u> </u>                                                                                                                  |         |
| Mud weight, collapse:                            |                   | 9.             | 6 #/gal               |                       | Safety         | Factor Collap               | se: 1.125               |                                                                                                                           |         |
| Mud weight, <u>burst</u> :                       |                   | 9,             | 6_#/gəl               |                       | Safet          | y Factor Burst              | : 1.25                  | 5                                                                                                                         |         |
| Mud weight for joint s                           | trength:          | 9.             | 6 #/gal               | Safet                 | y Facto        | r Joint Streng              | th <u>1.8</u>           | <u>1</u>                                                                                                                  |         |
| BHP @ TD for:                                    | collapse:         | 124.           | 8 psi                 | Burst                 | t:             | 124.8 psi. j                | oint strength:          | <u>124.8</u> psi                                                                                                          |         |
| Partially evacuated he<br>Max. Shut in surface ( | ole?              | Pressure       | gradient re           | emaining:<br>00 nsi   | ,<br>,         | <u>10</u> #/gal             |                         |                                                                                                                           | <u></u> |
|                                                  |                   | <u> </u>       | <del>ر</del><br>سر سر |                       |                |                             |                         |                                                                                                                           |         |
| 1st segment                                      | 250               | )ft to         |                       | 0 ft                  | ٦              | Make up Tor                 | que ft-lbs              | Total ft =                                                                                                                | 250     |
| O.D.                                             | We                | ight           | Grade                 | Threads               | opt.           | min.                        | mx.                     |                                                                                                                           |         |
| 9.625 inches                                     | 30                | 5, #/ft        | J-55                  | ST&C                  | 3              | ,940 2,9                    | 60 4,930                | 1                                                                                                                         |         |
| Collapse Resistance                              | Intern            | al Yield       | Joint                 | Strength              |                | Body Yield                  | Drift<br>Satis          |                                                                                                                           |         |
| 2,020 psi                                        | 3,520             |                |                       | <del>34</del> .,000 # |                | <b>364</b> ,000 #           | 8./65                   | ]                                                                                                                         |         |
| • • • • •                                        |                   |                |                       | 0.0                   |                |                             |                         |                                                                                                                           |         |
| 2nd segment                                      |                   | ) ft to        |                       | 0 ft                  |                | Make up Tor                 | que ft-lbs              | Total ft =                                                                                                                | 0       |
| U.D.                                             | vve<br>Letensiste | ignt<br>#/#    | Grade                 | Inreads               | opt            | min.                        | mx.                     |                                                                                                                           |         |
| Collanse Resistance                              | Intern            | al Vield       | loint                 | Strength              |                | Rody Vield                  | Drift                   | -                                                                                                                         |         |
| psi                                              |                   | psi            |                       |                       |                | .000 #                      |                         |                                                                                                                           |         |
|                                                  |                   |                |                       |                       |                |                             |                         | _                                                                                                                         |         |
| 3rd segment                                      |                   | )ft to         |                       | 0 ft                  | ٦              | Make up Tor                 | que ft-lbs              | Total ft =                                                                                                                | 0       |
| O.D.                                             | We                | ight           | Grade                 | Threads               | opt.           | min.                        | mx.                     | †                                                                                                                         |         |
| inches                                           |                   | #/ft           |                       |                       |                |                             |                         | 1                                                                                                                         |         |
| Collapse Resistance                              | Interr            | al Yield       | Joint                 | Strength              |                | Body Yield                  | Drift                   | 7                                                                                                                         |         |
| psi                                              |                   | psi            | 1                     | .000 #                | <u>liter</u>   | .000 #                      |                         |                                                                                                                           |         |
|                                                  |                   |                | •                     | <u> </u>              | -              | Maha                        |                         | T-1-1 G                                                                                                                   |         |
| Ath segment                                      |                   | iaht           | Grada                 | Thrada                |                | wake up 10                  | que it-ibs              |                                                                                                                           | U       |
| inches                                           |                   | igint<br>∷#/ft |                       | 11110005              |                | нын.<br>: Дерект            | n <b>u.</b><br>Na Arvia |                                                                                                                           |         |
| Collapse Resistance                              | Interr            | al Yield       | Joint                 | Strength              |                | Body Yield                  | Drift                   | 1                                                                                                                         |         |
| psi                                              |                   | psi            |                       | # 000                 | - 1924<br>1924 | ,000 #                      |                         | 1                                                                                                                         |         |
|                                                  |                   |                |                       |                       |                |                             |                         |                                                                                                                           |         |
| 5th segment                                      |                   | Oft to         |                       | 0 ft                  | ٦              | Make up Tor                 | que ft-lbs              | Total ft =                                                                                                                | 0       |
| O.D.                                             | We                | ight           | Grade                 | Threads               | opt.           | min.                        | mx.                     | 1                                                                                                                         |         |
| inches                                           |                   | ; #/ft         |                       |                       |                |                             |                         |                                                                                                                           |         |
| Collapse Resistance                              | Interr            | nal Yield      | Joint                 | Strength              |                | Body Yield                  | Drift                   | ]                                                                                                                         |         |
| psi                                              |                   | psi            |                       | ,000 #                |                | ,000 #                      |                         |                                                                                                                           |         |
|                                                  |                   |                |                       |                       |                |                             |                         |                                                                                                                           |         |
| 6th segment                                      |                   | Dft to         |                       | Oft                   | 1              | Make up Tor                 | que ft-lbs              | Total ft =                                                                                                                | 0       |
| O.D.                                             | We                | ight           | Grade                 | Threads               | opt.           | min.                        | mx.                     |                                                                                                                           |         |
| inches                                           |                   | #/ft           | -                     |                       | 4              |                             |                         | 4                                                                                                                         |         |
| Collapse Resistance                              | Interr            | al Yield       | Joint                 | Strength              | 1              | Body Yield                  | Drift                   | 1                                                                                                                         |         |

psi

psi

,000 #

,000 #

| Casing Design                                 | Well:             | Thunder              | Bay Federa  | Com #1H               | <u> </u>   |                      | <u>111</u>      |             |       |
|-----------------------------------------------|-------------------|----------------------|-------------|-----------------------|------------|----------------------|-----------------|-------------|-------|
| String Size & Function                        | <b>1</b> :        | 7"x 5 1/2            | <u>in</u>   | Production            | x          | <br>                 |                 |             |       |
| Total Depth:                                  | 8179              | ft                   |             | TVD:                  |            | 33                   | 157 ft          |             |       |
| Pressure Gradient for                         | Calculation       | 15                   |             |                       | (While d   | rilling)             |                 |             |       |
| Mud weight, collapse                          | :                 | 10                   | 2 #/gal     |                       | Safety Fac | tor Collap:          | se: <u>1.12</u> | 5           |       |
| Mud weight, <u>burst</u> :                    |                   | 10                   | 2 #/gal     |                       | Safety Fa  | ictor Burst          | 1.2             | ÷.          |       |
| Mud weight for joint :                        | strength:         | 10                   | 2 #/gal     | Safety                | Factor Jo  | int Strengt          | h1,             | 3           |       |
| BHP @ TD for:                                 | collapse:         | 1780.55              | 3 psi       | Burst:                | 1780.55    | 53 psi, ji           | oint strength:  | 1780.553 ps | i     |
| Partially evacuated h<br>Max. Shut in surface | ole?<br>pressure: | Pressure             | gradient re | maining:<br>20 psi    |            | 10 #/gal             |                 |             |       |
| 1st segment                                   | 8179              | ft to                | 33          | 00 ft                 | ]Ma        | ike up Toro          | que ft-lbs      | Total ft =  | 4879  |
| O.D.                                          | Wei               | ght                  | Grade       | Threads               | opt.       | min.                 | mx.             | 1           |       |
| 5,5 inches                                    | 17                | #/ft                 | HCP-11      | 0 Buttress            | 4,62       | 0 3,4                | 70 5,780        | 4           |       |
| Collapse Resistance<br>8,580 psi              | Intern:<br>10,640 | al Yield<br>psi-Ircr | Joint<br>56 | Strength<br>8 _,000 # | Boo<br>54  | ly Yield<br>6000 #   | Drift<br>4.767  | :           |       |
| 2nd segment                                   | <b></b>           | ft to                | 33          | 00 ft                 | ] ма       | ake up Tor           | que ft-ibs      | Total ft =  | 3300  |
| 0.D.                                          | Wei               | aht                  | Grade       | Threads               | opt.       | min.                 | mx.             |             | لتشتي |
| 7 inches                                      | 26                | #/ft                 | HCP-11      | 0 LT&C                | 6930       | 5200                 | 8660            | -           |       |
| Collapse Resistance                           | Intern            | al Yield             | Joint       | Strength              | Boo        | ty Yield             | Drift           | 1           |       |
| 7,800 psi                                     | 9,950             | psi                  | 6           | <b>3</b> ,000 #       | 8          | <b>30</b> ,000 #     | 6.151           |             |       |
| 3rd segment                                   | 0                 | ft to                |             | 0 ft                  | Ma         | ske up Tor           | que ft-lbs      | Total ft =  | 0     |
| O.D.                                          | Wei               | ight                 | Grade       | Threads               | opt.       | min.                 | mx.             | 1           |       |
| inches                                        |                   | #/ft                 |             |                       | 1          | - 11.<br>1910 - 11 1 |                 |             |       |
| Collapse Resistance                           | Intern            | al Yield             | Joint       | Strength              | Boo        | dy Yield             | Drift           | 1           |       |
| psi                                           |                   | psi                  |             | ,000 #                |            | ,000 #               |                 |             |       |
| Ath commont                                   |                   |                      |             | 0.#                   | 7 NA.      | ako un Tor           | auo ft lbc      | Total ft -  |       |
|                                               | Wei               | ioht                 | Grade       | Threads               | opt.       | min                  | mx              | 1 9100 11 - |       |

| O.D.                | Weight                   | Grade   | Threads | opt. | mîn.      | mx.   |
|---------------------|--------------------------|---------|---------|------|-----------|-------|
| inches              | ana ana 110 <b>#/f</b> t |         |         |      |           |       |
| Collapse Resistance | Internal Yield           | Joint S | trength | Bo   | ody Yield | Drift |
| psi                 | psi                      |         | ,000 #  |      | ,000 #    |       |

| 5th segment         | Oft to         | 0 ft           | Make up Torq | Total ft = | - |  |
|---------------------|----------------|----------------|--------------|------------|---|--|
| O.D.                | Weight         | Grade Threads  | opt. mín.    | mx.        |   |  |
| inches              | #/ft           |                |              |            | ] |  |
| Collapse Resistance | Internal Yield | Joint Strength | Body Yield   | Drift      | ] |  |
| psi                 | psi            | ,000 #         | ,000 #       | - 관람 나다    |   |  |

| 6th segment         | Oft to                        | 0 ft                                                                                                                                                                                                                             | Make up Torque ft-lbs |
|---------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| O.D.                | Weight                        | Grade Threads                                                                                                                                                                                                                    | opt. min. mx.         |
| inches              | an an an an an an <b>#/ft</b> | a da da angla angla<br>Angla angla ang |                       |
| Collapse Resistance | Internal Yield                | Joint Strength                                                                                                                                                                                                                   | Body Yield Drift      |
| psi                 | psi                           | ,000 #                                                                                                                                                                                                                           | .000 #                |

| Casing Design                 | Well: Thunder B                                                                                                 | ay Federal Com #1H          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| String Size & Function        | : 95/8                                                                                                          | in surface                  | inte                          | rmediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Depth:                  | 250 ft                                                                                                          |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Pressure Gradient for         | Calculations                                                                                                    |                             | (While drilling)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mud weight, collapse:         | 9.6                                                                                                             | 5_#/gal                     | Safety Factor Collapse:       | 1.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Mud weight, <u>burst</u> :    | 9.6                                                                                                             | 5 #/gal                     | Safety Factor Burst:          | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Mud weight for joint s        | trength: 9.6                                                                                                    | 5 #/gal Safety              | y Factor Joint Strength       | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BHP @ TD for:                 | collapse: <u>124.8</u>                                                                                          | <u>8 psi Burst</u>          | . <u>124.8 psi</u> . joint st | irength: <u>124.8</u> psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Partially evacuated ho        | ole? Pressure g                                                                                                 | gradient remaining:         | <u>10</u> #/gal               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Max. Shut in surface p        | pressure:                                                                                                       | 500 psi                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             | ······                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1st seament                   | 250 ft to                                                                                                       | 0 ft                        | Make up Torque ft             | -lbs Total ft = 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O.D.                          | Weight                                                                                                          | Grade Threads               | opt. min. m                   | )X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9.625 inches                  | 36 #/ft                                                                                                         | J-55 ST&C                   | 3,940 2,960                   | 4,930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.020 psi                     | 3,520 psi                                                                                                       | 394,000 #                   | 564,000 #                     | 8.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               |                                                                                                                 |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             | -                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2nd segment                   | Oft to                                                                                                          | 0 ft                        | Make up Torque ft             | -ibs Total ft = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O,D.                          | Weight                                                                                                          | Grade Threads               | opt min m                     | X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Collanse Pesistance           | #/II                                                                                                            | Inint Strength              | Body Vield                    | Diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DSi                           | DSi                                                                                                             | .000 #                      | .000 #                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             | _                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3rd segment                   | Oft to                                                                                                          | 0 ft                        | Make up Torque ft             | -ibs Total ft = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O.D.                          | Weight                                                                                                          | Grade Threads               | opt. min. m                   | 1X.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Colleges Resistence           | #/ft                                                                                                            | loint Strength              | Rody Viold                    | Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| psi                           | DSi                                                                                                             | ,000 #                      | .000 #                        | - CARK<br>- Martin Carlo - Carlo |
|                               |                                                                                                                 | <u></u>                     |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             | _                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4th segment                   | Oft to                                                                                                          | 0 ft                        | Make up Torque ft             | -ibs Total ft = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O.D.                          | Weight                                                                                                          | Grade Threads               | opt. min. m                   | <b>1X.</b><br>Min usha dasi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Inches<br>Collanse Posistance |                                                                                                                 | loint Strength              | Body Vield                    | Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| osi                           | DSI                                                                                                             | .000 #                      | .000 #                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               | all a second and a second s |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5th segment                   | Oft to                                                                                                          | 0 ft                        | Make up Torque ft             | -lbs Total ft = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.D.                          | Weight                                                                                                          | Grade Threads               | opt. min. n                   | <b>nx.</b><br>13 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| inches                        | #/ft                                                                                                            | foint Currenth              | Dodu Viald                    | Defe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I cuilapse resistance         |                                                                                                                 | ount ouengin                | 000 #                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| State Por                     | Bistor (1999) (1997) (1997)                                                                                     | 10.280 - 200 D 12 3 10 00 T | 1                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                 |                             | 7                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6th segment                   | Oft to                                                                                                          | Off                         | Make up Torque f              | t-lbs Total ft = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1 O.D.                        | vveight                                                                                                         | Grade Inreads               | opt. min. n                   | nx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Collanse Resistance           | Internal Yield                                                                                                  | Joint Strength              | Body Yield                    | Drift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| psi psi                       | psi                                                                                                             | ,000 #                      | ,000 #                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Casing Design Well:            | Thunder Bay Federa       | I Com #1H  |                                            |  |
|--------------------------------|--------------------------|------------|--------------------------------------------|--|
| String Size & Function:        | $7^{\mu}x.51/2^{\mu}$ in | Production | 191 <b>4</b> - 1919                        |  |
| Total Depth: 81                | 179 ft                   | TVD:       | <u>3357</u> ft                             |  |
| Pressure Gradient for Calculat | tions                    | (V         | While drilling)                            |  |
| Mud weight, <u>collapse</u> :  | 10.2 #/gal               | Saf        | fety Factor Collapse: 1.125                |  |
| Mud weight, <u>burst</u> :     | 10.2 #/gal               | Sa         | afety Factor Burst: 125                    |  |
| Mud weight for joint strength: | 10.2 #/gal               | Safety Fa  | actor Joint Strength 1.8                   |  |
| BHP @ TD for: collapse         | e: <u>1780.553</u> psi   | Burst: 1   | 1780.553 psi, joint strength: 1780.553 psi |  |
| Partially evacuated hole?      | Pressure gradient re     | emaining:  | :10 #/gal                                  |  |
| Max. Shut in surface pressure  | :30                      | 00 psi     |                                            |  |
|                                |                          |            |                                            |  |

.

| 1st segment         | 8179 ft to      | 3300 ft          | Make up Torque ft-lbs | Total ft = 4879 |
|---------------------|-----------------|------------------|-----------------------|-----------------|
| O.D.                | Weight          | Grade Threads    | opt. min. mx.         |                 |
| 5.5 inches          | 17 #/ft         | HCP-110 Buttress | 4,620 3,470 5,780     |                 |
| Collapse Resistance | Internal Yield  | Joint Strength   | Body Yield Drift      |                 |
| 8,580 psi           | 10,640 psi-Ircr | 568 ,000 #       | 546 ,000 # 4.767      |                 |

| 2nd segment                      | 0 ft to                     | 3300 ft                      | Make up Torque ft-lbs                | Total ft = 3300 |
|----------------------------------|-----------------------------|------------------------------|--------------------------------------|-----------------|
| O.D.<br>7 inches                 | Weight<br>26 #/ft           | Grade Threads                | opt min mx.<br>6930 5200 8660        |                 |
| Collapse Resistance<br>7,800 psi | Internal Yield<br>9,950 psi | Joint Strength<br>693 ,000 # | Body Yield Drift<br>830 ,000 # 6.151 |                 |

| 3rd segment         | Oft to         | 0 ft           | Make up Torque ft-lbs | Total ft = 0 |
|---------------------|----------------|----------------|-----------------------|--------------|
| O.D.                | Weight         | Grade Threads  | opt min. mx.          |              |
| Collapse Resistance | Internal Yield | Joint Strength | Body Yield Drift      | 1            |
| psi                 | psi            | .000 #         | ,000 #                |              |

| 4th segment         | 0 ft to                                | 0 ft           |                | Make up Tori | que ft-lbs | Total ft = | 0 |
|---------------------|----------------------------------------|----------------|----------------|--------------|------------|------------|---|
| O.D.                | Weight                                 | Grade Threa    | ads opt.       | min.         | mx.        |            |   |
| inches              | ###################################### |                |                |              | 調査を発音      |            |   |
| Collapse Resistance | Internal Yield                         | Joint Strength |                | Body Yield   | Drift      | 1          |   |
| psi                 | e gjange <b>psi</b>                    | ,000           | <b>Е Т</b> ана | .000 #       |            | 1          |   |

| 5th segment         | Oft to         | 0 ft           | Make up Torq            | ue ft-lbs | Total ft = |  |
|---------------------|----------------|----------------|-------------------------|-----------|------------|--|
| 0.D.                | Weight         | Grade Threads  | opt. min.               | mx.       |            |  |
| inches              | #/ft           |                |                         |           | J          |  |
| Collapse Resistance | Internal Yield | Joint Strength | Body Yield              | Drift     |            |  |
| psi                 | psi            | .000 #         | # 000, et <b>,000</b> # |           |            |  |

| 6th segment         | Oft to         | 0 ft           | Make up Torq | ue ft-lbs                             | Total ft = | 0 |
|---------------------|----------------|----------------|--------------|---------------------------------------|------------|---|
| O.D.                | Weight         | Grade Threads  | opt. min.    | mx.                                   |            |   |
| inches              | #/ft           |                |              | Hell, Mellines<br>Heffinders Leithele |            |   |
| Collapse Resistance | Internal Yield | Joint Strength | Body Yield   | Drift                                 |            |   |
| psi                 | psi            | ,000 #         | # 000        |                                       |            |   |

| tring Size & Function:                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                             | -                                                                                |                                        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|--------|
| -                                                                                                                                                                                                                                                                                                               | : 95/                                                                                                                                                          | 8 in surface                                                                                                                                                                  | x i                                                                                                                                                         | ntermediate                                                                      |                                        |        |
| otal Depth:                                                                                                                                                                                                                                                                                                     | 250 ft                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                             |                                                                                  |                                        |        |
| ressure Gradient for                                                                                                                                                                                                                                                                                            | Calculations                                                                                                                                                   |                                                                                                                                                                               | (While drilling)                                                                                                                                            |                                                                                  |                                        |        |
| Aud weight, <u>collapse</u> :                                                                                                                                                                                                                                                                                   | 9.                                                                                                                                                             | <u>6</u> #/gal                                                                                                                                                                | Safety Factor Collapse                                                                                                                                      | 1,125                                                                            | •                                      |        |
| vlud weight, <u>burst</u> :                                                                                                                                                                                                                                                                                     | 9                                                                                                                                                              | <u>6</u> #/gal                                                                                                                                                                | Safety Factor Burst:                                                                                                                                        | 1.25                                                                             | -                                      |        |
| vlud weight for joint st                                                                                                                                                                                                                                                                                        | trength: 9                                                                                                                                                     | 6 #/gal Safety                                                                                                                                                                | y Factor Joint Strength                                                                                                                                     | 1.8                                                                              | -                                      |        |
| 3HP @ TD for:                                                                                                                                                                                                                                                                                                   | collapse: <u>124</u> .                                                                                                                                         | <u>8 psi</u> Burst                                                                                                                                                            | :: <u>124.8</u> psi. joir                                                                                                                                   | nt strength:                                                                     | <u>124.8</u> psi                       |        |
| Partially evacuated ho                                                                                                                                                                                                                                                                                          | <b>bie?</b> Pressure                                                                                                                                           | gradient remaining:                                                                                                                                                           | 10 #/gal                                                                                                                                                    |                                                                                  |                                        |        |
| Max. Shut in surface r                                                                                                                                                                                                                                                                                          | pressure:                                                                                                                                                      | 500 psi                                                                                                                                                                       |                                                                                                                                                             |                                                                                  |                                        |        |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                             |                                                                                  |                                        |        |
|                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                                       |                                                                                                                                                                               | <b>-</b>                                                                                                                                                    | <b>6</b> 4                                                                       |                                        |        |
| st segment                                                                                                                                                                                                                                                                                                      | 250 ft to                                                                                                                                                      | 0 11                                                                                                                                                                          | Make up Torqu                                                                                                                                               | e ft-lbs                                                                         | Total ft =                             | 250    |
| O.U.                                                                                                                                                                                                                                                                                                            | Vveight                                                                                                                                                        | Grade Inreads                                                                                                                                                                 | opt. min.                                                                                                                                                   | mx.                                                                              |                                        |        |
| 9.625 inches                                                                                                                                                                                                                                                                                                    | 36 #/ft                                                                                                                                                        | J-55 SI&C                                                                                                                                                                     | 3,940 2,960                                                                                                                                                 | 4,930                                                                            | 4                                      |        |
| anapse Resistance                                                                                                                                                                                                                                                                                               | a E20 oci                                                                                                                                                      | 30m Strength                                                                                                                                                                  | Body field                                                                                                                                                  | Dritt<br>Eli <del>si vicit</del> :-                                              |                                        |        |
| nd segment                                                                                                                                                                                                                                                                                                      | 0 ft to                                                                                                                                                        | 0 ft<br>Grade Threads                                                                                                                                                         | Make up Torqu                                                                                                                                               | e ft-lbs                                                                         | Total ft =                             | (      |
| inches                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                              |                                                                                                                                                                               |                                                                                                                                                             | e (ord) of diddy                                                                 |                                        |        |
| Collapse Resistance                                                                                                                                                                                                                                                                                             | Internal Yield                                                                                                                                                 | Joint Strength                                                                                                                                                                | Body Yield                                                                                                                                                  | Drift                                                                            | 1                                      |        |
| psi                                                                                                                                                                                                                                                                                                             | psi                                                                                                                                                            | ,000 #                                                                                                                                                                        | ,000 #                                                                                                                                                      |                                                                                  |                                        |        |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                             |                                                                                  |                                        |        |
|                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                                               | <b>-</b>                                                                                                                                                    | <b>A</b>                                                                         |                                        |        |
| 3rd segment                                                                                                                                                                                                                                                                                                     | Oft to                                                                                                                                                         | 0 ft                                                                                                                                                                          | Make up Torqu                                                                                                                                               | e ft-lbs                                                                         | Total ft =                             | 0      |
| O.D.                                                                                                                                                                                                                                                                                                            | 0 ft to<br>Weight                                                                                                                                              | 0 ft<br>Grade Threads                                                                                                                                                         | Make up Torqu<br>opt.min.                                                                                                                                   | e ft-lbs<br>mx.                                                                  | Total ft =                             | C      |
| rd segment<br>O.D.<br>inches                                                                                                                                                                                                                                                                                    | 0 ft to<br>Weight<br>#/ft                                                                                                                                      | 0 ft<br>Grade Threads                                                                                                                                                         | Make up Torqu<br>opt. min.                                                                                                                                  | e fl-lbs<br>mx.                                                                  | Total ft =                             |        |
| rd segment<br>O.D.<br>inches<br>ollapse Resistance                                                                                                                                                                                                                                                              | 0 ft to<br>Weight<br>#/ft<br>Internal Yield                                                                                                                    | 0 ft<br>Grade Threads<br>Joint Strength                                                                                                                                       | Make up Torqu<br>opt.min.<br>Body Yield                                                                                                                     | e ft-lbs<br>mx.<br>Drift                                                         | Total ft =                             | (      |
| Ord segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi                                                                                                                                                                                                                                                     | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                                                                             | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #                                                                                                                             | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #                                                                                                           | e ft-lbs<br>mx.<br>Drift                                                         | Total ft =                             |        |
| O.D.<br>O.D.<br>inches<br>Collapse Resistance<br>psi                                                                                                                                                                                                                                                            | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                                                                             | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #                                                                                                                             | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu                                                                                          | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs                                             | Total ft =                             | (      |
| rd segment<br>O.D.<br>inches<br>ollapse Resistance<br>psi<br>th segment<br>O.D.                                                                                                                                                                                                                                 | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight                                                                                        | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #                                                                                                                             | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.                                                                              | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.                                      | Total ft =<br>Total ft =               | (      |
| Ard segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>th segment<br>O.D.<br>inches                                                                                                                                                                                                                     | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft                                                                                | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads                                                                                                    | Make up Torqu<br>opt min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt min.                                                                              | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.                                      | Total ft =<br>Total ft =               | (      |
| ord segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>th segment<br>O.D.<br>inches<br>Collapse Resistance                                                                                                                                                                                              | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield                                                              | 0 ft<br>Grade Threads<br>Joint Strength<br>.000 #<br>0 ft<br>Grade Threads<br>Joint Strength                                                                                  | Make up Torqu<br>opt min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt min.<br>Body Yield                                                                | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift                             | Total ft =<br>Total ft =               | C      |
| O.D.<br>inches<br>Collapse Resistance<br>psi<br>Ith segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi                                                                                                                                                                                                     | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                       | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>Grade Threads<br>Joint Strength<br>,000 #                                                                                | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #                                                      | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift                             | Total ft =<br>Total ft =               | (<br>( |
| O.D.<br>inches<br>Collapse Resistance<br>psi<br>Ith segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi                                                                                                                                                                                                     | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                       | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>O ft<br>Grade Threads<br>Joint Strength<br>,000 #                                                                        | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #                                                      | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift                             | Total ft =<br>Total ft =               | (      |
| Ard segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>Ath segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>Sth segment                                                                                                                                                                       | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                       | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>O ft<br>Grade Threads<br>Joint Strength<br>,000 #                                                                        | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #                                                      | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift<br>e ft-lbs                 | Total ft =<br>Total ft =<br>Total ft = | (      |
| ord segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>ith segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>ith segment<br>O.D.                                                                                                                                                               | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                       | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads                                               | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #                                                      | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.          | Total ft =<br>Total ft =<br>Total ft = | (      |
| O.D.<br>inches<br>Collapse Resistance<br>psi<br>Ith segment<br>O.D.<br>inches<br>Collapse Resistance<br>psi<br>5th segment<br>O.D.<br>inches                                                                                                                                                                    | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi                                                       | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads                                               | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.                         | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.          | Total ft =<br>Total ft =<br>Total ft = | (      |
| Brd segment         O.D.         inches         Collapse Resistance         psi         Ith segment         O.D.         inches         Collapse Resistance         psi         Sth segment         O.D.         inches         Sth segment         O.D.         inches         Collapse Resistance         psi | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield        | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads                                               | Make up Torqu<br>opt min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt min.<br>Body Yield           | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift | Total ft =<br>Total ft =<br>Total ft = | (      |
| rd segment<br>O.D.<br>inches<br>iollapse Resistance<br>psi<br>th segment<br>O.D.<br>inches<br>iollapse Resistance<br>psi<br>th segment<br>O.D.<br>inches<br>iollapse Resistance<br>psi                                                                                                                          | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads<br>Joint Strength<br>,000 #                   | Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt.min.<br>Body Yield<br>.000 # | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift | Total ft =<br>Total ft =               |        |
| rd segment<br>O.D.<br>inches<br>collapse Resistance<br>psi<br>th segment<br>O.D.<br>inches<br>collapse Resistance<br>psi<br>th segment<br>O.D.<br>inches<br>collapse Resistance<br>psi<br>collapse Resistance<br>psi                                                                                            | 0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi<br>0 ft to<br>Weight<br>#/ft<br>Internal Yield<br>psi | 0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>0 ft<br>Grade Threads<br>Joint Strength<br>,000 #<br>C ft<br>Grade Threads<br>Joint Strength<br>Joint Strength<br>,000 # | Make up Torqu<br>opt min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt min.<br>Body Yield<br>.000 #<br>Make up Torqu<br>opt min.<br>Body Yield<br>.000 # | e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift<br>e ft-lbs<br>mx.<br>Drift | Total ft =<br>Total ft =               | (      |

| 6th segment         | Oft to         | 0 ft        |        | М       | ake up Tor | que ft-lbs | Total ft = |
|---------------------|----------------|-------------|--------|---------|------------|------------|------------|
| 0.D.                | Weight         | Grade TI    | nreads | opt.    | mìn.       | mx.        |            |
| inches              | <b>#/ℜ</b>     |             |        |         |            |            |            |
| Collapse Resistance | Internal Yield | Joint Stren | gth    | Bo      | dy Yield   | Drift      |            |
| psi                 | psi            | ,0          | )0 #   | 1. A.M. | ,000 #     |            |            |

| Casing Design                                 | Well: Thur             | der Bay Federa          | Com #1H             |                     |                                                    |                     |      |
|-----------------------------------------------|------------------------|-------------------------|---------------------|---------------------|----------------------------------------------------|---------------------|------|
| String Size & Function                        | n: <u>7"x</u> .5       | 1/2" in                 | Production          | x and               |                                                    |                     |      |
| Total Depth:                                  | <u>8179</u> ft         |                         | TVD:                | :<br>:              | <u>3357</u> ft                                     |                     |      |
| Pressure Gradient for                         | Calculations           |                         |                     | (While drilling)    | ······                                             |                     |      |
| Mud weight, <u>collapse</u> :                 |                        | 10.2 #/gal              | :                   | Safety Factor Colla | pse: 1.12                                          | 5                   |      |
| Mud weight, <u>burst</u> :                    | <u></u>                | 10.2 #/gal              |                     | Safety Factor Bur   | st: 1.2                                            | <u>×</u>            |      |
| Mud weight for joint s                        | strength:              | 10.2 #/gal              | Safety              | Factor Joint Stren  | gth1,                                              | 3                   |      |
| BHP @ TD for:                                 | collapse: 178          | 0.553 psi               | Burst:              | 1780.553 psi.       | joint strength:                                    | <u>1780.553</u> psi |      |
| Partially evacuated h<br>Max. Shut in surface | ole? Pres<br>pressure: | sure gradient re        | emaining:<br>00 psi | <u>10</u> #/gal     |                                                    |                     |      |
| 4-4                                           | 0170.4                 |                         |                     | 1                   | - <b>6</b> to .                                    |                     |      |
| 1st segment                                   | 81/9 m                 | 10 33<br>Crada          | <u>UU π</u>         | Make up 10          | orque ft-lbs                                       | l otal ft =         | 4879 |
| U.U.                                          | vveigni                |                         | Inreads             |                     | MX                                                 |                     |      |
| Collanse Resistance                           | Internal Yie           | d Joint                 | Strength            | Body Yield          | Drift                                              | 4                   |      |
| 8,580 psi                                     | 10,640 psi-li          | cr 56                   | <b>8</b> ,000 #     | 546 ,000 #          | 4.767                                              |                     |      |
| 2nd segment                                   | 0.ft                   | to 33                   | 00 ft               | Make up Tr          | raue fi-line                                       | Total ft =          | 3300 |
| O.D.                                          | Weight                 | Grade                   | Threads             | opt. min.           | mx.                                                | (fotal it           | 0000 |
| 7 inches                                      | 26 #/ft                | HCP-11                  | IO LT&C             | 6930 52             | 8660                                               |                     |      |
| Collapse Resistance                           | Internal Yie           | ld Joint                | Strength            | Body Yield          | Drift                                              | 1                   |      |
| 7,800 psi                                     | 9,950 psi              | 6                       | 93 ,000 #           | <b>830</b> .000 #   | 6.151                                              | 1                   |      |
|                                               |                        |                         |                     | <b>1</b>            |                                                    | r                   |      |
| 3rd segment                                   | <u> </u>               | to                      | 0 ft                | Make up To          | orque ft-lbs                                       | Total ft =          | 0    |
| O.D.                                          | VVeight                | Grade                   | Inreads             | opt. min.           | mx.                                                |                     |      |
| College Basisterra                            | Internat Via           |                         | Chroneth            | Dedu Mield          | <u></u>                                            | 4                   |      |
| psi                                           | niternal he            |                         | .000 #              | ,000 #              | £ :                                                |                     |      |
|                                               |                        | ·····                   |                     | 1                   |                                                    |                     |      |
| 4th segment                                   | <u> </u>               | 10                      | υπ                  | Маке ир 10          | orque n-lbs                                        | l otal n =          | 0    |
| U.D.                                          | VVeight                | Grade                   | Inreads             | opt. min.           | MX.                                                |                     |      |
| Collapse Posistance                           | #/IL                   | ld loi-4                | Strength            | Rody Viald          | <u>میں اور اور اور اور اور اور اور اور اور اور</u> | 4                   |      |
| nei                                           | internal tie           |                         | 000 ±               |                     | um<br>L                                            |                     |      |
| - to the hor                                  | F 1991                 | Linghose and the second |                     |                     | ·                                                  | -1                  |      |
| 5th segment                                   | 0 ft                   | to                      | 0 ft                | Make up To          | orque ft-lbs                                       | Total ft =          | 0    |
| 0,D.                                          | Weight                 | Grade                   | Threads             | opt. min.           | mx.                                                | 1                   |      |
| inches                                        | #/ft                   |                         |                     |                     |                                                    | 2                   |      |
| Collapse Resistance                           | Internal Yie           | ld Joint                | Strength            | Body Yield          | Drift                                              | 1                   |      |
| psi                                           | l psi                  |                         | tion ,000 <b>#</b>  | ,000                | F Black                                            |                     |      |

| 6th segment         | Oft to         | Oft                                                                                                             | Make up Tor | que ft-lbs   | Total ft = |  |
|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|--|
| Ö.D.                | Weight         | Grade Threads                                                                                                   | opt. min.   | mx.          |            |  |
| inches              | #/ft           | and a start of the second s |             |              |            |  |
| Collapse Resistance | Internal Yield | Joint Strength                                                                                                  | Body Yield  | Drift        | ]          |  |
| psi                 | psi            | ,000 #                                                                                                          | .000 #      | Andread at 1 |            |  |

```
Mac
Project: (
Site: Sec
Well: Thunder J
Wellbore
Plan: Plan #1 (Thunder Bay
WELL DETAILS: Thunder
MELL DETAILS: Thunder
SRB Elevation:: 3
RKB Elevation:: 4
```



# **Mack Energy**

Chaves County Sec 22-T15S-R29E Thunder Bay Federal Com #1H

Wellbore #1

Plan: Plan #1

# **Standard Planning Report**

29 August, 2017



| MANC<br>Este                               | TK.<br>generation                  | anatharian ito y kara - Naha                        | <b>in</b>     | itegrity Di     | rectional<br>Planning Re                           | Services,<br>port                           | LLC                           | ్ కి పండించింది. జూడా యొదలు                                  |                             | NTEGRITY<br>Directional Services       |
|--------------------------------------------|------------------------------------|-----------------------------------------------------|---------------|-----------------|----------------------------------------------------|---------------------------------------------|-------------------------------|--------------------------------------------------------------|-----------------------------|----------------------------------------|
| Database:<br>Company:<br>Project:<br>Site: | EDM 5<br>Mack E<br>Chave<br>Sec 22 | 000.1 Multi Us<br>Energy<br>s County<br>2-T15S-R29E | er Db         |                 | Local Co-c<br>TVD Refer<br>MD Refere<br>North Refe | ordinate Referi<br>ence:<br>nce:<br>frence: | ence: V<br>K<br>K             | Vell Thunder Bay<br>(B=17 @ 3862.0<br>(B=17 @ 3862.0<br>Grid | / Federal Com<br>0ft<br>0ft | <b>#1H</b>                             |
| Well:                                      | Thund                              | er Bay Federal                                      | Com #1H       |                 | Survey Ca                                          | iculation Meth                              | iod: N                        | Ainimum Curvatu                                              | ire                         | -                                      |
| Wellbore:                                  | Wellbo                             | re #1                                               |               |                 |                                                    |                                             |                               |                                                              |                             |                                        |
| Design:                                    | Plan #                             | <b>1</b><br>Sector de las se                        |               |                 |                                                    |                                             | · · · · · · · · · · · · · · · |                                                              |                             | area an an an ar                       |
| Project                                    | Chaves                             | County                                              | • • • • • •   |                 |                                                    |                                             |                               | · · · · · · · ·                                              |                             | ······································ |
| Map System:                                | US State                           | Plane 1983                                          |               |                 | System Dat                                         | um:                                         | Ме                            | an Sea Level                                                 |                             |                                        |
| Geo Datum:                                 | North Am                           | erican Datum                                        | 1983          |                 |                                                    |                                             |                               |                                                              |                             |                                        |
| Map Zone:                                  | New Mex                            | (Ico Eastern Zo                                     | ne            |                 |                                                    | <u></u>                                     |                               | ······································                       |                             |                                        |
| Site                                       | Sec 22-                            | -T15S-R29E                                          |               |                 |                                                    | · · ·                                       |                               |                                                              | · · ·                       | · · · · · · · · · · · · · · · · · · ·  |
| Site Position:                             |                                    |                                                     | Northi        | ing:            | 730,83                                             | 0.0700 usft                                 | Latitude:                     |                                                              |                             | 33.008658                              |
| From:                                      | Мар                                | )                                                   | Eastin        | ıg:             | 637,51                                             | 9.3100 usft                                 | Longitude:                    |                                                              |                             | -104.019575                            |
| Position Uncert                            | ainty:                             | 0                                                   | .00 ft Slot R | adius:          |                                                    | 13-3/16 "                                   | Grid Converge                 | ence:                                                        |                             | 0.17 °                                 |
| Well                                       | Thunde                             | r Bay Federal (                                     | Com #1H       |                 |                                                    |                                             |                               |                                                              |                             |                                        |
| Well Position                              | +N/-S                              |                                                     | 0.00 ft No    | orthing:        |                                                    | 730,830.0700                                | usft Lati                     | tude:                                                        |                             | 33.008658                              |
|                                            | +E/-W                              |                                                     | 0.00 ft Ea    | isting:         |                                                    | 637,519.3100                                | usft Lon                      | gitude:                                                      |                             | -104.019575                            |
| Position Uncert                            | tainty                             |                                                     | 0.00 ft W     | ellhead Elevati | on:                                                | 0.0                                         | 00 ft Gro                     | und Level:                                                   |                             | 3,844.90 ft                            |
| Wellbore                                   | Wellbo                             | ore #1                                              |               |                 |                                                    |                                             |                               | -                                                            |                             |                                        |
| Magnetics                                  | Мо                                 | del Name                                            | Sampl         | e Date          | Declina<br>(°)                                     | tion                                        | Dip A                         | ngle<br>)                                                    | Field Str<br>(n1            | rength                                 |
|                                            |                                    | HDGM                                                |               | 8/29/2017       |                                                    | 7.45                                        |                               | 60.75                                                        | •                           | 48,363                                 |
| Design                                     | Plan #1                            | 1                                                   |               |                 |                                                    |                                             |                               |                                                              |                             |                                        |
| Audit Notes:                               | · -                                |                                                     |               |                 |                                                    |                                             |                               |                                                              |                             |                                        |
| Version:                                   |                                    |                                                     | Phas          | e: P            | LAN                                                | Tie                                         | On Depth:                     |                                                              | D.00                        |                                        |
| Vertical Section                           | n:                                 | C                                                   | epth From (T  | VD)             | +N/-S                                              | +E                                          | /-W                           | Dire                                                         | ction                       |                                        |
|                                            | 1                                  |                                                     | (ft)          |                 | (ft)                                               | (1                                          | ft)                           |                                                              | (°)                         |                                        |
| ·                                          |                                    |                                                     | 3,357.00      |                 | 0.00                                               | 0.                                          | .00                           | 17                                                           | 8.83                        |                                        |
| Plan Sections                              |                                    |                                                     | 19 (          |                 |                                                    |                                             |                               |                                                              |                             |                                        |
| Measured                                   |                                    |                                                     | Vertical      |                 |                                                    | Dogleg                                      | Build                         | Turn                                                         |                             |                                        |
| Depth                                      | Inclination                        | Azimuth                                             | Depth         | +N/-S           | +E/-W                                              | Rate                                        | Rate                          | Rate                                                         | TFO                         |                                        |
| (ft)                                       | (*)                                | (°)                                                 | (ft)          | (ft)            | (ft)                                               | (*/100usft)                                 | (*/100usft)                   | (°/100usft)                                                  | (°)                         | Target                                 |
| 0.00                                       | 0.00                               | 0.00                                                | 0.00          | 0.00            | 0.00                                               | 0.00                                        | 0.00                          | 0.00                                                         | 0.00                        |                                        |
| 2,784.04                                   | 0.00                               | 0.00                                                | 2,784.04      | 0.00            | 0.00                                               | 0.00                                        | 0.00                          | 0.00                                                         | 0.00                        |                                        |
| 3,684.04                                   | 90.00                              | 178,83                                              | 3,357.00      | -572.84         | 11.65                                              | 10.00                                       | 10.00                         | 19.87                                                        | 178.83                      |                                        |
| 8,178.90                                   | 90.00                              | 178.83                                              | 3,357.00      | -5,066.77       | 103.08                                             | 0.00                                        | 0.00                          | 0.00                                                         | 0.00 P                      | BHL Thunder Bay Fi                     |



### **Integrity Directional Services, LLC**

**Planning Report** 



Database: EDM 5000.1 Multi User Db Well Thunder Bay Federal Com #1H Local Co-ordinate Reference: TVD Reference: Company: Mack Energy KB=17 @ 3862.00ft Project: **Chaves County** MD Reference: KB=17 @ 3862.00ft Site: Sec 22-T15S-R29E North Reference: Grid Well: Thunder Bay Federal Com #1H Survey Calculation Method: Minimum Curvature Wellbore #1 Wellbore: Plan #1 Design: ана на селати на селати на селати селати на селати се со состо селати на насти са селати на селати на селати н Со 1990 годи со селати на селати селати селати се со со селати на селати на селати на селати селати селати на с

**Planned Survey** 

|    | Measured   |                      |          | Vertical |         |        | Vertical            | Dogleg      | Build       | Turn        |  |
|----|------------|----------------------|----------|----------|---------|--------|---------------------|-------------|-------------|-------------|--|
|    | Denth      | Inclination          | Azimuth  | Denth    | TW/ S   | 1E/.M/ | Section             | Rate        | Rate        | Rato.       |  |
| }  | /ff)       | (1)CIII(AUOI)<br>/9) | A2011001 | (#)      |         |        | (#)                 | (%/180ueft) | (%)100ueff) | (*/100ueft) |  |
|    | . (PA      | 0                    |          | (**)     | (14)    | (m)    | 119                 | ( / lousily | ( mousily   | (/iousig    |  |
| ;  | 0.00       | 0.00                 | 0.00     | 0.00     | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 100.00     | 0.00                 | 0.00     | 100.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 200.00     | 0.00                 | 0.00     | 200.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 300.00     | 0.00                 | 0.00     | 300.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 400.00     | 0.00                 | 0.00     | 400.00   | 0.00    | 0,00   | 0,00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 400.00     | 0.00                 | 0.00     | 400.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 500.00     | 0.00                 | 0.00     | 500.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 600.00     | 0.00                 | 0.00     | 600.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 700.00     | 0.00                 | 0.00     | 700.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 800.00     | 0.00                 | 0.00     | 800.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 900.00     | 0.00                 | 0.00     | 900.00   | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1 000 00   | 0.00                 | 0.00     | 1 000.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1 100 00   | 0.00                 | 0.00     | 1 100 00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1,100.00   | 0.00                 | 0.00     | 1,100.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1,200.00   | 0.00                 | 0.00     | 1,200.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1,300.00   | 0.00                 | 0.00     | 1,300.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1,400.00   | 0.00                 | 0.00     | 1,400.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1,500.00   | 0.00                 | 0.00     | 1,500.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 1,600.00   | 0.00                 | 0.00     | 1,600.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 1,700.00   | 0.00                 | 0.00     | 1,700.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 1,800.00   | 0.00                 | 0.00     | 1,800.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| i. | 1,900.00   | 0.00                 | 0.00     | 1,900.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 2,000.00   | 0.00                 | 0.00     | 2,000.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| i  | 2,100.00   | 0.00                 | 0.00     | 2,100.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| Ì  | 2,200,00   | 0.00                 | 0.00     | 2,200.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 2 300 00   | 0.00                 | 0.00     | 2,300.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 2,000.00   | 0.00                 | 0.00     | 2,000.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 2,400.00   | 0.00                 | 0.00     | 2,400.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 2,500.00   | 0.00                 | 0.00     | 2,500.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | 2,600.00   | 0.00                 | 0.00     | 2,600.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 2,700.00   | 0.00                 | 0.00     | 2,700.00 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
| 1  | 2,784.04   | 0.00                 | 0.00     | 2,784.04 | 0.00    | 0.00   | 0.00                | 0.00        | 0.00        | 0.00        |  |
|    | KOP BLD 10 | D°/100'              |          |          |         |        |                     |             |             |             |  |
|    | 2,800.00   | 1.60                 | 178.83   | 2,800.00 | -0.22   | 0.00   | 0.22                | 10.00       | 10.00       | 0.00        |  |
| 1  | 2 850 00   | 6 60                 | 178 83   | 2 849 85 | -3 79   | 0.08   | 3 79                | 10.00       | 10.00       | 0.00        |  |
|    | 2,000.00   | 11.60                | 178.83   | 2,043.00 | -11 60  | 0.00   | 11 60               | 10.00       | 10.00       | 0.00        |  |
| 1  | 2,900.00   | 16.60                | 170.00   | 2,033.21 | -11.00  | 0.24   | 11.00               | 10.00       | 10.00       | 0.00        |  |
|    | 2,900.00   | 10.00                | 170.03   | 2,947.09 | -23.00  | 0.49   | 23.07               | 10.00       | 10.00       | 0.00        |  |
|    | 3,000.00   | 21.00                | 170.03   | 2,994,92 | -40.21  | 0.02   | 40.22               | 10.00       | 10.00       | 0.00        |  |
| 1  | 3,050.00   | 20.00                | 170.03   | 3,040.55 | -00.01  | 1.23   | 60.63               | 10.00       | 10.00       | 0.00        |  |
|    | 3,100.00   | 31.60                | 178.83   | 3,084.23 | -84.92  | 1.73   | 84.93               | 10.00       | 10.00       | 0.00        |  |
|    | 3,150.00   | 36.60                | 178.83   | 3,125.62 | -112.93 | 2.30   | 112.95              | 10.00       | 10.00       | 0.00        |  |
|    | 3,200.00   | 41.60                | 178.83   | 3,164.41 | -144.44 | 2.94   | 144.47              | 10.00       | 10.00       | 0.00        |  |
|    | 3,250.00   | 46.60                | 178.83   | 3,200.31 | -179.22 | 3.65   | 179.26              | 10.00       | 10.00       | 0.00        |  |
| 1  | 3,300.00   | · 51.60              | 178.83   | 3,233.04 | -216.99 | 4.41   | 217.03              | 10.00       | 10.00       | 0.00        |  |
|    | 3,350.00   | 56.60                | 178.83   | 3,262.35 | -257.47 | 5.24   | 257.52              | 10.00       | 10.00       | 0.00        |  |
|    | 3 400 00   | 61.60                | 178.83   | 3,288,02 | -300 35 | 6 11   | 300 41              | 10.00       | 10.00       | 0.00        |  |
| 1  | 3 450 00   | 66.60                | 178.83   | 3 309 86 | -345 30 | 7.02   | 345 37              | 10.00       | 10.00       | 0.00        |  |
|    | 3 500 00   | 71.60                | 178.83   | 3 327 69 | -391 98 | 7 97   | 392.07              | 10.00       | 10.00       | 0.00        |  |
|    | 3 550 00   | 76.60                | 178.83   | 3 341 39 | -440.05 | 8 95   | 440.14              | 10.00       | 10.00       | 0.00        |  |
| :  | 5,550.00   | 70.00                | 110.00   | 3,341.00 | -440.00 | 0.00   | 440.14              | 10.00       | 10.00       | 0.00        |  |
|    | 3,600.00   | 81.60                | 178.83   | 3,350.85 | -489.12 | 9.95   | 489.22              | 10.00       | 10.00       | 0.00        |  |
| 1  | 3,650.00   | 86.60                | 178.83   | 3,355.99 | -538.83 | 10.96  | 538.94              | 10.00       | 10.00       | 0.00        |  |
| 1  | 3,684.04   | 90.00                | 178.83   | 3,357.00 | -572.84 | 11.65  | 572. <del>9</del> 6 | 10.00       | 10.00       | 0.00        |  |
| 1  | EOB HLD 9  | 0° Inc.              |          |          |         |        |                     |             |             |             |  |
|    | 3,700.00   | 90.00                | 178.83   | 3,357.00 | -588.80 | 11.98  | 588.92              | 0.00        | 0.00        | 0.00        |  |
|    | 3,800.00   | 90.00                | 178.83   | 3,357.00 | -688.77 | 14.01  | 688.92              | 0.00        | 0.00        | 0.00        |  |
|    | 3 000 00   | 00.00                | 179 93   | 3 357 00 | -789 75 | 16.05  | 799 00              | 0.00        | 0.00        | 0.00        |  |
| i. | 3,500.00   | 00,00<br>00,00       | 170.03   | 3,357.00 | -100.10 | 10.00  | 100.82<br>200 00    | 0.00        | 0.00        | 0.00        |  |
|    | 4,000.00   | 90.06                | 110.03   | 3,307,00 | -000.73 | 10.08  | 000.92              | 0.00        | 0.00        | 0.00        |  |



# Integrity Directional Services, LLC

Planning Report



na a anaran

| Database:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EDM 5000.1 Multi User Db                                                     | Local Co-ordinate Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Well Thunder Bay Federal Com #1H         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mack Energy                                                                  | TVD Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | KB=17 @ 3862.00ft                        |
| Project;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chaves County                                                                | MD Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KB=17 @ 3862.00ft                        |
| Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sec 22-T15S-R29E                                                             | North Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grid                                     |
| Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thunder Bay Federal Com #1H                                                  | Survey Calculation Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum Curvature                        |
| Wellbore:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wellbore #1                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
| Design:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plan #1                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |
| ne and standard base was a starte starte of the starte of | <b>na na prima na manina na pan</b> a na mana na mana ana ana ana ana ana an | (a) A second s<br>second second s<br>second second seco<br>second second sec | n an an an an an an an ann an an an an a |

#### Planned Survey

| Depth<br>(ft) | Inclination<br>(°) | Azimuth<br>(°) | Depth<br>(ft) | +N/-S<br>(ft) | +E/-W<br>(ft) | Section<br>(ft) | Rate<br>(°/100usft) | Rate<br>(*/100usft) | Rate<br>(°/100usft) |
|---------------|--------------------|----------------|---------------|---------------|---------------|-----------------|---------------------|---------------------|---------------------|
| 4,100.00      | 90.00              | 178.83         | 3,357.00      | -988.71       | 20.11         | 988.92          | 0.00                | 0.00                | 0.00                |
| 4,200.00      | 90.00              | 178.83         | 3,357.00      | -1,088.69     | 22,15         | 1,088.92        | 0.00                | 0.00                | 0.00                |
| 4,300.00      | 90.00              | 178.83         | 3,357.00      | -1,188.67     | 24.18         | 1,188.92        | 0.00                | 0.00                | 0.00                |
| 4,400.00      | 90.00              | 178.83         | 3,357.00      | -1,288.65     | 26.22         | 1,288.92        | 0.00                | 0.00                | 0.00                |
| 4,500.00      | 90.00              | 178.83         | 3,357.00      | -1,388.63     | 28.25         | 1,388.92        | 0.00                | 0.00                | 0.00                |
| 4,600.00      | 90.00              | 178.83         | 3,357.00      | -1,488.61     | 30.28         | 1,488.92        | 0.00                | 0.00                | 0.0                 |
| 4,700.00      | 90.00              | 178.83         | 3,357.00      | -1,588.59     | 32.32         | 1,588,92        | 0.00                | 0.00                | 0.0                 |
| 4,800.00      | 90.00              | 178.83         | 3,357.00      | -1,688.57     | 34.35         | 1,688.92        | 0.00                | 0.00                | 0.0                 |
| 4,900.00      | 90.00              | 178.83         | 3,357.00      | -1,788.55     | 36.39         | 1,788.92        | 0.00                | 0.00                | 0.00                |
| 5,000.00      | 90.00              | 178.83         | 3,357.00      | -1,888.53     | 38.42         | 1,888.92        | 0.00                | 0.00                | 0.0                 |
| 5,100.00      | 90.00              | 178.83         | 3,357.00      | -1,988.51     | 40.45         | 1,988.92        | 0.00                | 0.00                | 0.0                 |
| 5,200.00      | 90.00              | 178.83         | 3,357.00      | -2,088.49     | 42.49         | 2,088.92        | 0.00                | 0.00                | 0.0                 |
| 5,300.00      | 90.00              | 178.83         | 3,357.00      | -2,188.46     | 44.52         | 2,188.92        | 0.00                | 0.00                | 0.0                 |
| 5,400.00      | 90.00              | 178.83         | 3,357.00      | -2,288.44     | 46.56         | 2,288.92        | 0.00                | 0.00                | 0.0                 |
| 5,500.00      | 90.00              | 178.83         | 3,357.00      | -2,388.42     | 48.59         | 2,388.92        | 0.00                | 0.00                | 0.0                 |
| 5,600.00      | 90.00              | 178.83         | 3,357.00      | -2,488.40     | 50.62         | 2,488.92        | 0.00                | 0.00                | 0.0                 |
| 5,700.00      | 90.00              | 178.83         | 3,357.00      | -2,588.38     | 52.66         | 2,588.92        | 0.00                | 0.00                | 0.0                 |
| 5,800.00      | 90.00              | 178.83         | 3,357.00      | -2,688.36     | 54.69         | 2,688.92        | 0.00                | 0.00                | 0.0                 |
| 5,900.00      | 90.00              | 178.83         | 3,357.00      | -2,788.34     | 56.73         | 2,788.92        | 0.00                | 0.00                | 0.0                 |
| 6,000.00      | 90.00              | 178.83         | 3,357.00      | -2,888.32     | 58.76         | 2,888.92        | 0.00                | 0.00                | 0.0                 |
| 6,100.00      | 90.00              | 178.83         | 3,357.00      | -2,988.30     | 60.80         | 2,988.92        | 0.00                | 0.00                | 0.0                 |
| 6,200.00      | 90.00              | 178.83         | 3,357.00      | -3,088.28     | 62.83         | 3,088.92        | 0.00                | 0.00                | 0.0                 |
| 6,300.00      | 90.00              | 178.83         | 3,357.00      | -3,188.26     | 64.86         | 3,188.92        | 0.00                | 0.00                | 0.0                 |
| 6,400.00      | 90.00              | 178.83         | 3,357.00      | -3,288.24     | 66.90         | 3,288.92        | 0.00                | 0.00                | 0.0                 |
| 6,500.00      | 90.00              | 178.83         | 3,357.00      | -3,388.22     | 68.93         | 3,388.92        | 0.00                | 0.00                | 0,0                 |
| 6,600.00      | 90.00              | 178.83         | 3,357.00      | -3,488.20     | 70.97         | 3,488.92        | 0.00                | 0.00                | 0.0                 |
| 6,700.00      | 90.00              | 178.83         | 3,357.00      | -3,588.17     | 73.00         | 3,588.92        | 0.00                | 0.00                | 0.0                 |
| 6,800.00      | 90.00              | 178.83         | 3,357.00      | -3,688.15     | 75.03         | 3,688.92        | 0.00                | 0.00                | 0.0                 |
| 6,900.00      | 90.00              | 178.83         | 3,357.00      | -3,788.13     | 77.07         | 3,788.92        | 0.00                | 0.00                | 0.0                 |
| 7,000.00      | 90.00              | 178.83         | 3,357.00      | -3,888.11     | 79.10         | 3,888.92        | 0.00                | 0.00                | 0.0                 |
| 7,100.00      | 90.00              | 178.83         | 3,357.00      | -3,988.09     | 81.14         | 3,988.92        | 0.00                | 0.00                | 0.0                 |
| 7,200.00      | 90.00              | 178.83         | 3,357.00      | -4,088.07     | 83.17         | 4,088.92        | 0.00                | 0.00                | 0.0                 |
| 7,300.00      | 90.00              | 178.83         | 3,357.00      | -4,188.05     | 85.20         | 4,188.92        | 0.00                | 0.00                | 0.0                 |
| 7,400.00      | 90.00              | 178.83         | 3,357.00      | -4,288.03     | 87.24         | 4,288.92        | 0.00                | 0.00                | 0.0                 |
| 7,500.00      | 90.00              | 178.83         | 3,357.00      | -4,388.01     | 89.27         | 4,388.92        | 0.00                | 0.00                | 0.0                 |
| 7,600.00      | 90.00              | 178.83         | 3,357.00      | -4,487.99     | 91.31         | 4,488.92        | 0.00                | 0.00                | 0.0                 |
| 7,700.00      | 90.00              | 178.83         | 3,357.00      | -4,587.97     | 93.34         | 4,588.92        | 0.00                | 0.00                | 0.0                 |
| 7,800.00      | 90,00              | 178.83         | 3,357.00      | -4,687.95     | 95.37         | 4,688.92        | 0.00                | 0.00                | 0.0                 |
| 7,900.00      | 90.00              | 178.83         | 3,357.00      | -4,787.93     | 97.41         | 4,788.92        | 0.00                | 0.00                | 0.0                 |
| 8,000.00      | 90.00              | 178.83         | 3,357.00      | -4,887.91     | 99.44         | 4,888.92        | 0.00                | 0.00                | 0.0                 |
| 8,100.00      | 90.00              | 178.83         | 3,357.00      | -4,987.89     | 101.48        | 4,988.92        | 0.00                | 0.00                | 0.0                 |
| 8,178.90      | 90.00              | 178.83         | 3,357.00      | -5,066.77     | 103.08        | 5,067.82        | 0.00                | 0.00                | 0.0                 |
| TD at 8178.9  | 90 - PBHL Thund    | ler Bay Fed Co | n #1H         |               |               |                 |                     |                     |                     |
|               |                    |                |               |               |               |                 |                     |                     |                     |

| Target Name<br>- hit/miss target<br>- Shape               | Dip Angle<br>(°) | Dìp Óir.<br>(°) | TVD<br>(ft) | +N/-S<br>(ft) | +E/-W<br>(ft) | Northing<br>(usfi) | Easting<br>(usft) | Latitude  | Longitude   |  |
|-----------------------------------------------------------|------------------|-----------------|-------------|---------------|---------------|--------------------|-------------------|-----------|-------------|--|
| PBHL Thunder Bay Fed<br>– plan hits target cer<br>– Point | 0.00<br>hter     | 0.00            | 3,357.00    | -5,066.77     | 103.08        | 725,763.3100       | 637,622.3900      | 32.994731 | -104.019288 |  |



3,357.00

8,178.90

-5,066.77

# Integrity Directional Services, LLC

**Planning Report** 



era na asi u we n

| Database:       EDM 5000.1 Multi User Db         Company:       Mack Energy         Project:       Chaves County         Site:       Sec 22-T15S-R29E         Well;       Thunder Bay Federal Com #1H |                      | 00.1 Multi User Db<br>Iergy<br>County<br>Г15S-R29E |                                          | Local C<br>TVD Re<br>MD Refe<br>North R | o-ordinate Reference:<br>ference:<br>erence:<br>eference; | Well Thunder Bay Federal Com #1H<br>KB=17 @ 3862.00ft<br>KB=17 @ 3862.00ft<br>Grid<br>Minimum Curvature |           |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|
|                                                                                                                                                                                                       |                      | m #1H                                              | Survey                                   | Calculation Method:                     |                                                           |                                                                                                         |           |                                   |
| Wellbore:                                                                                                                                                                                             | Wellbo               | re #1                                              |                                          |                                         |                                                           |                                                                                                         |           | ۲.                                |
| Design:                                                                                                                                                                                               | Plan #               | <mark>)</mark><br>San farante da como de la seco   | na an a |                                         |                                                           | n a anna a tha an an an ann ann an an an an an an an                                                    |           | $\mathcal{A}_{\mathcal{A}}^{(i)}$ |
| Plan Annotatio                                                                                                                                                                                        | ons                  |                                                    |                                          |                                         |                                                           | · · · · · ·                                                                                             | · · · · · | 1                                 |
|                                                                                                                                                                                                       | Measured             | Vertical                                           | Local Coor                               | dinates                                 | ч.<br>                                                    |                                                                                                         | •         | ł                                 |
|                                                                                                                                                                                                       | Depth<br>(ft)        | Depth<br>(ft)                                      | +N/-S<br>(ft)                            | +E/-W<br>(ft)                           | Comment                                                   |                                                                                                         |           | :                                 |
| · · · · ·                                                                                                                                                                                             | 2,784.04<br>3,684.04 | 2,784.04<br>3,357.00                               | 0.00<br>-572.84                          | 0.00<br>11.65                           | KOP BLD 10°/100'<br>EOB HLD 90° Inc.                      |                                                                                                         |           |                                   |

11.65 103.08

TD at 8178.90

Attached to Form 3160-3 Mack Energy Corporation Thunder Bay Federal Com #111 NMNM-59038 SHL : 10 FNL & 1650 FWL, NENW, Sec. 22 T155 R29E BHL : 270 FSL & 1675 FWL, SESW, Sec. 22 T155 R29E Chaves County, NM

## DRILLING PROGRAM

#### 1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Important Geologic Markers:

| Top of Salt  | 280`  |
|--------------|-------|
| Base of Salt | 885'  |
| Yates        | 1050' |
| Seven Rivers | 1260` |
| Queen        | 1750' |
| Grayburg     | 2145` |
| San Andres   | 2445` |

#### 3. Estimated Depths of Anticipated Fresh Water, Oil and Gas:

| 150   | Fresh Water                                       |
|-------|---------------------------------------------------|
| 1050` | Oil/Gas                                           |
| 1260` | Oil/Gas                                           |
| 1750' | Oil/Gas                                           |
| 2145` | Oil/Gas                                           |
| 2445' | Oil/Gas                                           |
|       | 150`<br>1050`<br>1260`<br>1750`<br>2145`<br>2445` |

No other formations are expected to give up oil, gas or fresh water in measurable quantities. Setting 9 5/8" casing to 250' and circulating cement back to surface will protect the surface fresh water sand. Salt section and shallower zones above TD, which contain commercial quantities of oil and/or gas, will have cement circulated across them by cementing 5 ½" production casing, sufficient cement will be pumped to circulate back to surface.

#### 4. Casing Program:

| Hole Size | Interval  | OD Casing | Wt, Grade, Jt, cond, collapse/burst/tension         |
|-----------|-----------|-----------|-----------------------------------------------------|
| 14 3/4"   | 0-250`    | 9 5/8"    | 36#, J-55, ST&C, New, 16.1859/6.967538/7.04         |
| 8 3/4"    | 0-3300`   | 7``       | 26#,IIPC-110,LT&C,New, 4.343811/3.355048/3.31       |
| 8 3/4"    | 3300-8179 | ) 5 1/2"  | 17#, HCP-110 Buttress, New, 4.818728/3.650163/3.587 |

#### 5. Cement Program:

9 5/8" Surface Casing: Lead 100sx, RFC+12%PF53+2%PF1+5ppsPF42+.125ppsPF29, yld 1.61, wt 14.4 ppg, 7.357gals/sx, excess 100%. Tail: 250sx, Class C+1% PF1, yld 1.34, wt 14.8 ppg, 6.323 gals/sx, excess 100%

7" & 5 ½" Production Casing: Lead 250sx Class C 4% PF 20+4 pps PF45 +1.25pps PF29, yld 1.84, wt 13.2 ppg, 9.914gals/sx, excess 35%, Tail 1450sx, PVL + 1.3% (BWOW) PF44

Attached to Form 3160-3 Mack Energy Corporation Thunder Bay Federal Com #1H NMNM-59038 SHL : 10 FNL & 1650 FWL, NENW, Sec. 22 T15S R29E BHL : 270 FSL & 1675 FWL, SESW, Sec. 22 T15S R29E Chaves County, NM

+ 5% PF174 + .5% PF606 + .1% PF153 +.4% PF44, yield 1.48, wt 13.0, 7.57gals/sx, 35% excess.

#### 6. Minimum Specifications for Pressure Control:

The blowout preventer equipment (BOP) shown in Exhibit #10 will consist of a double ram-type (3000 psi WP) minimum preventer. This unit will be hydraulically operated and the ram type preventer will be equipped with blind rams on top of 4 1/2" drill pipe rams on bottom. The 11" BOP will be nippled up on the 8 5/8" surface casing and tested by a 3<sup>rd</sup> party to 2000 psi used continuously until TD is reached. All BOP's and accessory equipment will be tested to 2000 psi before drilling out of intermediate casing. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment (Exhibit #10) will include a Kelly cock and floor safety valve and choke lines and choke manifold (Exhibit #11) with a minimum 3000 psi WP rating

#### 7. Types and Characteristics of the Proposed Mud System:

The well will be drilled to TD with a combination of fresh and cut brine mud system. The applicable depths and properties of this system are as follows:

| DEPTH   | ТҮРЕ        | WEIGHT | VISCOSITY | WATERLOSS |
|---------|-------------|--------|-----------|-----------|
| 0-250'  | Fresh Water | 8.5    | 28        | N.C.      |
| 250'-TD | Cut Brine   | 9.1    | 29        | N.C.      |

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the well site at all times.

#### 8. Auxiliary Well Control and Monitoring Equipment:

- A. Kelly cock will be kept in the drill string at all times.
- B. A full opening drill pipe-stabbing valve with proper drill pipe connections will be on the rig floor at all times.

#### 9. Logging, Testing and Coring Program:

- A. The electric logging program will consist of GR-Dual Laterolog, Spectral Density, Dual Spaced Neutron, CSNG Log from T.D. to 8 5/8 casing shoe.
- B. Drill Stem test is not anticipated.
- C. No conventional coring is anticipated.
- D. Further testing procedures will be determined at TD.

#### 10. Abnormal Conditions, Pressures, Temperatures and Potential Hazards:

No abnormal pressures or temperatures are anticipated. The estimated bottom hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1600 psig – Low levels of Hydrogen sulfide have been monitors in producing wells in the area, so H2S may be present

Attached to Form 3160-3 Mack Energy Corporation Thunder Bay Federal Com #1H NMNM-59038 SIII.: 10 FNL & 1650 FWL, NENW, Sec. 22 T15S R29E BHL : 270 FSL & 1675 FWL, SESW, Sec. 22 T15S R29E Chaves County, NM

while drilling of the well; a plan is attached to the Drilling program. No major loss of circulation zones has been reported in offsetting wells.

#### 11. Anticipated Starting Date and Duration of Operations:

Road and location work will not begin until approval has been received from the BLM. The anticipated spud date is December 1, 2017. Once commenced, the drilling operation should be finished in approximately 20 days. If the well is productive, an additional 30 days will be required for completion and testing before a decision is made to install permanent facilities.

#### Attachment to Exhibit #10 NOTES REGARDING THE BLOWOUT PREVENTERS Thunder Bay Federal Com #111 Chaves County, New Mexico

- 1. Drilling nipple to be so constructed that it can be removed without use of a welder through rotary table opening, with minimum I.D. equal to preventer bore.
- 2. Wear ring to be properly installed in head.
- 3. Blow out preventer and all fittings must be in good condition, 2000 psi WP minimum.
- 4. All fittings to be flanged.
- 5. Safety valve must be available on rig floor at all times with proper connections, valve to be full 2000 psi WP minimum.
- 6. All choke and fill lines to be securely anchored especially ends of choke lines.
- 7. Equipment through which bit must pass shall be at least as large as the diameter of the casing being drilled through.
- 8. Kelly cock on Kelly.
- 9. Extension wrenches and hands wheels to be properly installed.
- 10. Blow out preventer control to be located as close to driller's position as feasible.
- 11. Blow out preventer closing equipment to include minimum 40-gallon accumulator, two independent sources of pump power on each closing unit installation all API specifications.

#### Mack Energy Corporation Minimum Blowout Preventer Requirements 3000 psi Working Pressure 13 3/8 inch- 3 MWP 11 Inch - 3 MWP EXHIBIT #10

| Stack Requirements |                                                                                     |         |             |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------|---------|-------------|--|--|--|--|
| NO.                | ltems                                                                               | Min.    | Min.        |  |  |  |  |
|                    |                                                                                     | LD.     | Nominal     |  |  |  |  |
| 1                  | Flowline                                                                            |         | 2"          |  |  |  |  |
| 2                  | Fill up line                                                                        |         | 2"          |  |  |  |  |
| 3                  | Drilling nipple                                                                     |         |             |  |  |  |  |
| 4                  | Annular preventer                                                                   |         |             |  |  |  |  |
| 5                  | Two single or one dual hydraulically operated rams                                  |         |             |  |  |  |  |
| 6a                 | Drilling spool with 2" min. kill line and 3" min choke line outlets                 |         | 2"<br>Choke |  |  |  |  |
| 6h                 | 2" min. kill line and 3" min. choke line<br>outlets in ram. (Alternate to 6a above) |         |             |  |  |  |  |
| 7                  | Valve Gate<br>Plug                                                                  | 3 1/8   |             |  |  |  |  |
| 8                  | Gate valve-power operated                                                           | 3 1/8   |             |  |  |  |  |
| 9                  | Line to choke manifold                                                              |         | 3"          |  |  |  |  |
| 10                 | Valve Gate<br>Plug                                                                  | 2 1/16  |             |  |  |  |  |
| 11                 | Check valve                                                                         | 2 1/16  |             |  |  |  |  |
| 12                 | Casing head                                                                         |         |             |  |  |  |  |
| 13                 | Valve Gate<br>Plug                                                                  | 1 13/16 |             |  |  |  |  |
| 14                 | Pressure gauge with needle valve                                                    |         |             |  |  |  |  |
| 15                 | Kill line to rig mud pump manifold                                                  |         | 2"          |  |  |  |  |
|                    |                                                                                     |         |             |  |  |  |  |

## **Stack Requirements**

#### OPTIONAL

10.

1 13/16

CONTRACTOR'S OPTION TO CONTRACTOR'S OPTION TO FURNISH

Flanged Valve

16

- All equipment and connections above bradenhead or casinghead. Working pressure of preventers to be 2000 psi minimum.
- Automatic accumulator (80 gallons, minimum) capable of closing BOP in 30 seconds or less and, holding them closed against full rated working pressure.
- BOP controls, to be located near drillers' position.
- 4. Kelly equipped with Kelly cock.
- Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used.
- 6. Kelly saver-sub equipped with rubber casing protector at all times.
- Plug type blowout preventer tester.
   Extra set pipe rams to fit drill pipe in
- use on location at all times.9. Type RX ring gaskets in place of
- Type RX ring gaskets in place of Type R.

MEC TO FURNISH: 1. Bradenhead or casing head and side valves.

2. Wear bushing If required

GENERAL NOTES;

- Deviations from this drawing may be made only with the express permission of MEC's Drilling Manager.
- All connections, valves, fittings, piping, etc., subject to well or pump pressure must be flanged (suitable clamp connections acceptable) and have minimum working pressure equal to rated working pressure of preventers up through choke valves must be full opening and suitable for high pressure mud service.
- Controls to be of standard design and each marked, showing opening and closing position
- Chokes will be positioned so as not to hamper or delay changing of choke beans.



Replaceable parts for adjustable choke, or bean sizes, retainers, and choke wrenches to be conveniently located for immediate use.

- All valves to be equipped with hand-wheels or handles ready for immediate use.
- 6. Choke lines must be suitably anchored.
- Handwheels and extensions to be connected and ready for use.
- Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency.
- All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted.
- Casinghead connections shall not be used except in case of emergency.
- Does not use kill line for routine fill up operations.
## Mack Energy Corporation

MIMIMUM CHOKE MANIFOLD 3,000, 5,000, and 10,000 PSI Working Pressure 3M will be used 3 MWP - 5 MWP - 10 MWP



Mud Pit

**Reserve Pit** 

\* Location of separator optional

#### **Below Substructure**

#### **Mimimum requirements**

|     | 3,000 MWP 5,000 MWP 10,000 MWP                      |            |         |        |         |         |        |         |         |        |
|-----|-----------------------------------------------------|------------|---------|--------|---------|---------|--------|---------|---------|--------|
| No. |                                                     | LD.        |         | T      | I.D.    | T       | 1      | I.D.    |         |        |
|     |                                                     |            | Nominal | Rating |         | Nominal | Rating |         | Nominal | Rating |
| . 1 | Line from drilling Spool                            |            | 3"      | 3,000  |         | 3"      | 5,000  |         | 3"      | 10,000 |
| 2   | Cross 3" x 3" x 3" x 2"                             |            |         | 3,000  |         |         | 5,000  |         |         |        |
| 2   | Cross 3" x 3" x 3" x 2"                             |            |         |        |         |         |        |         |         | 10,000 |
| 3   | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8   |         | 5,000  | 3 1/8   |         | 10,000 |
| 4   | Valve Gate<br>Plug                                  | 1<br>13/16 |         | 3,000  | 1 13/16 |         | 5,000  | 1 13/16 |         | 10.000 |
| 4a  | Valves (1)                                          | 2 1/16     |         | 3,000  | 2 1/16  |         | 5,000  | 2 1/16  | 1       | 10,000 |
| 5   | Pressure Gauge                                      |            |         | 3,000  |         |         | 5.000  |         |         | 10,000 |
| 6   | Valve Gate<br>Plug                                  | 3 1/8      |         | 3.000  | 3 1/8   |         | 5,000  | 3 1/8   |         | 10,000 |
| 7   | Adjustable Choke (3)                                | 2"         |         | 3,000  | 2"      |         | 5,000  | 2"      |         | 10,000 |
| 8   | Adjustable Choke                                    | 1"         |         | 3,000  | 1"      |         | 5,000  | 2"      |         | 10,000 |
| 9   | Line                                                |            | 3"      | 3,000  |         | 3"      | 5.000  | I       | 3"      | 10,000 |
| 10  | Line                                                | [          | 2"      | 3,000  |         | 2"      | 5.000  |         | 2"      | 10,000 |
| 11  | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8   |         | 5,000  | 3 1/8   |         | 10,000 |
| 12  | Line                                                |            | 3"      | 1,000  |         | 3"      | 1,000  | 1       | 3"      | 2,000  |
| 13  | Line                                                |            | 3"      | 1,000  |         | 3"      | 1,000  |         | 3"      | 2,000  |
| 14  | Remote reading compound<br>Standpipe pressure quage |            |         | 3,000  |         |         | 5.000  |         |         | 10,000 |
| 15  | Gas Separator                                       |            | 2' x5'  |        |         | 2' x5'  |        |         | 2' x5'  |        |
| 16  | Line                                                |            | 4"      | 1,000  |         | 4"      | 1.000  |         | 4"      | 2,000  |
| 17  | Valve Gate<br>Plug                                  | 3 1/8      |         | 3,000  | 3 1/8   |         | 5,000  | 3 1/8   |         | 10,000 |

(1) Only one required in Class 3M

1.

(2)Gate valves only shall be used for Class 10 M

Remote operated hydraulic choke required on 5,000 psi and 10,000 psi for drilling. (3)

EQUIPMENT SPECIFICATIONS AND INSTALLATION INSTRUCTION

All connections in choke manifold shall be welded, studded, flanged or Cameron clamp of comparable rating.

All flanges shall be API 6B or 6BX and ring gaskets shall be API RX or BX. Use only BX for 10 MWP. 2.

3. All lines shall be securely anchored.

4. Chokes shall be equipped with tungsten carbide seats and needles, and replacements shall be available.

5. alternate with automatic chokes, a choke manifold pressure gauge shall be located on the rig floor in conjunction with the standpipe pressure gauge

6. Line from drilling spool to choke manifold should bee as straight as possible. Lines downstream from chokes shall make turns by large bends or 90 degree bends using bull plugged tees



## AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

## SUPO Data Report

12/18/2017

### APD ID: 10400020889

**Operator Name: MACK ENERGY CORPORATION** 

Well Name: THUNDER BAY FEDERAL COM

Well Type: OIL WELL

#### Submission Date: 10/16/2017

Well Number: 1H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

## **Section 1 - Existing Roads**

Will existing roads be used? YES

Existing Road Map:

THUNDER\_BAY\_FEDERAL\_COM\_1H\_Plats\_20170914090147.pdf ACCESS\_ROAD\_Hamilton\_to\_Thunder\_Bay\_20170914090310.pdf **Existing Road Purpose:** ACCESS,FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

**Existing Road Improvement Attachment:** 

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

ACCESS\_ROAD\_FROM\_THE\_HAMILTON\_FEDERAL\_COM\_1H\_TO\_THE\_THUNDER\_BAY\_FEDERAL\_COM\_1H\_20170 829095036.pdf

New road type: TWO-TRACK

Length: 880

Width (ft.): 14

Max slope (%): 2

Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 14

**New road access erosion control:** The Maximum width of the running surface will be 14'. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 3 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

New road access plan or profile prepared? NO

Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

New road access plan attachment:

Access road engineering design? NO

Access road engineering design attachment:

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche, caliche will be obtained from the nearest BLM approved caliche pit located Sec. 19 T15S R29E and/or Sec. 34 T15S R29E.

Access onsite topsoil source depth: 2

Offsite topsoil source description:

Onsite topsoil removal process: Blade topsoil into windrow along up-slope edge of road

Access other construction information: Caliche will be obtained from the nearest BLM approved caliche pit locationed Sec. 19 T15S T29E and Sec. 34 T15S R29E Access miscellaneous information:

Number of access turnouts:

Access turnout map:

**Drainage Control** 

New road drainage crossing: OTHER

**Drainage Control comments:** The Maximum width of the running surface will be 14'. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 3 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

**Road Drainage Control Structures (DCS) description:** The Maximum width of the running surface will be 14'. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 3 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

Road Drainage Control Structures (DCS) attachment:

## Access Additional Attachments

Additional Attachment(s):

## Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Thunder\_Bay\_Federal\_Com\_\_1H\_BHL\_existing\_well\_map\_20170906103721.pdf Thunder\_Bay\_Federal\_Com\_\_1H\_existing\_well\_map\_20170906103735.pdf Existing Wells description: Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

## Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

**Production Facilities description:** San Andres Completion: Will be sent to the White Rock Federal CTB located at the #1 well NWNW Sec 28 T15S R29E Proposed flow lines will tren Southwest to the White Rock CTB. Flowline will be a 4" poly surface line, 11,404.01' in length with a 40 psi working pressure Thunder Bay Federal #1 - Flowline (a) 4" SDR 11 Poly surface line from Thunder Bay Federal #1 to the White Rock Federal CTB location. (b) Thunder Bay Federal #1 NENW Sec. 22 T15S R29E and White Rock Federal CTB location NWNW Sec. 28 T15S R29E. (c) Total distance is 11,404.01' in length all on Federal Land. Width needed will be 30'. No grading needed. (d) The duration needed is 30 years. (e) Pipeline will be used constantly. (f) 3 days to lay line.

#### Production Facilities map:

WHITE\_ROCK\_FEDERAL\_CTB\_20170829102307.pdf Thunder\_Bay\_Flowline\_to\_TB\_20171012112148.pdf

### Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: CAMP USE, DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE CASING Describe type:

Water source type: GW WELL

Source latitude:

Source datum:

Water source permit type: OTHER

Source land ownership: OTHER

Water source transport method: TRUCKING

Source transportation land ownership: OTHER

Water source volume (barrels): 2000

Source volume (gal): 84000

#### Water source and transportation map:

Water Source 08-25-2017.pdf

Water\_Source\_3\_08-25-2017.pdf

Water\_Source\_2\_08-25-2017.pdf

Water source comments: Please see attachments, City/Municipal Water: Town of Hagerman S10 T14S R26E Mor-West S20 T17S R30E Brine Water: Salty Dog S5 T19S R36E Wasserhund S36 T16S R34S New water well? NO

New Water Well Info

Well latitude

Well I ongitude

Well datum:

Describe transportation land ownership:

Source volume (acre-feet): 0.25778618

URFACE Source longitude:

**Describe land ownership:** 

Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

| Well target aquifer:                |                                    |
|-------------------------------------|------------------------------------|
| Est. depth to top of aquifer(ft):   | Est thickness of aquifer:          |
| Aquifer comments:                   |                                    |
| Aquifer documentation:              |                                    |
| Well depth (ft):                    | Well casing type:                  |
| Well casing outside diameter (in.): | Well casing inside diameter (in.): |
| New water well casing?              | Used casing source:                |
| Drilling method:                    | Drill material:                    |
| Grout material:                     | Grout depth:                       |
| Casing length (ft.):                | Casing top depth (ft.):            |
| Well Production type:               | Completion Method:                 |
| Water well additional information:  |                                    |
| State appropriation permit:         |                                    |

Additional information attachment:

## **Section 6 - Construction Materials**

**Construction Materials description:** All caliche required for construction of drill pad and proposed new access road (approximately 2500 cubic yards) will be obtained from approved caliche pit @ Sec. 34 T15S R29E and/or Sec. 19 T15S R29E.

**Construction Materials source location attachment:** 

Caliche\_Pits\_08-25-2017.pdf

## Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cutting and fluids will be disposed into the steel tanks and hauled to R-360 disposal facility, permit number NM-01-0006. Location on HWY 62 at MM 66. Drilling fluids will be contained in steel tanks using a closed loop system. No pits will be using during drilling operations.

Amount of waste: 380 barrels

#### Waste disposal frequency : Weekly

**Safe containment description:** Drill cutting and fluids will be disposed into the steel tanks and hauled to R-360 disposal facility, permit number NM-01-0006. Location on HWY 62 at MM 66. Drilling fluids will be contained in steel tanks using a closed loop system. No pits will be using during drilling operations. **Safe containmant attachment:** 

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: R-360 disposal facility, permit number NM-01-0006, Located on HWY 62 at MM 66.

Well Name: THUNDER BAY FEDERAL COM

#### Well Number: 1H

#### Waste type: GARBAGE

Waste content description: Garbage and Trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved local landfill. No toxic water or hazardous chemicals will be produced by this operation. Amount of waste: pounds

Waste disposal frequency : Weekly

**Safe containment description:** Garbage and Trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved local landfill. No toxic water or hazardous chemicals will be produced by this operation. **Safe containmant attachment:** 

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY Disposal type description:

Disposal location description: Black Hawk will dispose at an approved location. Black Hawk, Keith Willis (575) 631-6378

#### Waste type: SEWAGE

Waste content description: Sewage and Gray Water will be placed in container and hauled to an approved facility. Container and disposal handled by Black Hawk.

Amount of waste:

Waste disposal frequency : Weekly

**Safe containment description:** Sewage and Gray Water will be placed in container and hauled to an approved facility. Container and disposal handled by Black Hawk. **Safe containmant attachment:** 

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Black Hawk will dispose at an approved location. Black Hawk, Keith Willis (575) 637-6378.

#### Waste type: PRODUCED WATER

**Waste content description:** Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) and trucked to the Round Tank SWD #1 L-0729, 30-005-64095, Sec. 19 T15S R29E 1980 FSL 1980 FWL, Chaves County, NM; produced oil will be collected in steel tanks until sold.

Amount of waste: 2080 barrels

Waste disposal frequency : Weekly

Safe containment description: Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) and trucked to the Round Tank SWD #1 L-0729, 30-005-64095, Sec. 19 T15S R29E 1980 FSL 1980 FWL, Chaves County, NM; produced oil will be collected in steel tanks until sold.

Safe containmant attachment:

Waste disposal type: OFF-LEASE INJECTION Disposal location ownership: STATE

#### **Disposal type description:**

**Disposal location description:** Round Tank SWD #1 L-0729 30-005-64095 Sec 19 T15S R29E 1980 FSL 1980 FWL, Chaves County, NM

Well Number: 1H

### Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

**Reserve pit liner** 

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

**Description of cuttings location** 

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.) Cuttings area volume (cu. yd.)

Suttings area depth (it.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

**Section 8 - Ancillary Facilities** 

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

**Comments:** 

Section 9 - Well Site Layout

Well Site Layout Diagram:

thunder\_bay\_site\_map\_20170906110923.pdf

**Comments:** A. The well site and elevation plat for the proposed well is shown in attachment. It was staked by Maddron Surveying, Carlsbad, NM. B. The drill pad layout, with elevations staked by Maddron Surveying, is shown in attachment.

Well Name: THUNDER BAY FEDERAL COM

#### Well Number: 1H

level no major cuts will be required. C. Diagram below shows the proposed orientation of the location. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations

## Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name:

Multiple Well Pad Number:

#### **Recontouring attachment:**

thunder\_bay\_reclaim\_20170906110947.pdf

Drainage/Erosion control construction: Edges of location will be bermed to prevent run off or erosion.

**Drainage/Erosion control reclamation:** The Maximum width of the running surface will be 14'. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 3 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

| Wellpad long term disturbance (acres): 1.6      | Wellpad short term disturbance (acres): 2.149    |
|-------------------------------------------------|--------------------------------------------------|
| Access road long term disturbance (acres): 0.02 | Access road short term disturbance (acres): 0.02 |
| Pipeline long term disturbance (acres): 0       | Pipeline short term disturbance (acres): 0       |
| Other long term disturbance (acres): 0          | Other short term disturbance (acres): 0          |
| Total long term disturbance: 1.62               | Total short term disturbance: 2.169              |

Reconstruction method: 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water. 2) Area will be reseeded as per BLM specifications. Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds. **Topsoil redistribution:** 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water. 2) Area will be reseeded as per BLM specifications. Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds. **Soil treatment:** 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water. 2) Area will be used to prevent noxious weeds. **Soil treatment:** 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water. 2) Area will be used to prevent noxious weeds. **Soil treatment:** 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water. 2) Area will be used to prevent noxious weeds. **Soil treatment:** 1) Caliche will be done and necessary measures taken to eliminate noxious weeds. Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds. **Existing Vegetation at the well pad**: The

Existing Vegetation at the well pad attachment:

**Existing Vegetation Community at the road:** The area around the well site is grassland and topsoil is sandy. The vegetation is native scrub grass with sagebrush.

**Existing Vegetation Community at the road attachment:** 

**Existing Vegetation Community at the pipeline:** The area around the well site is grassland and topsoil is sandy. The vegetation is native scrub grass with sagebrush.

Existing Vegetation Community at the pipeline attachment:

Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

**Existing Vegetation Community at other disturbances:** The area around the well site is grassland and topsoil is sandy. The vegetation is native scrub grass with sagebrush.

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

#### Will seed be harvested for use in site reclamation? YES

Seed harvest description: A cultural resources examination has been requested and will be forwarded to your office in the near future.

Seed harvest description attachment:

## Seed Management

| Seed Table         |                 |
|--------------------|-----------------|
| Seed type:         | Seed source:    |
| Seed name:         |                 |
| Source name:       | Source address: |
| Source phone:      |                 |
| Seed cultivar:     |                 |
| Seed use location: |                 |

Seed Summary

PLS pounds per acre:

Proposed seeding season:

Total pounds/Acre:

| Seed | reclamation | attachment: |  |
|------|-------------|-------------|--|

Seed Type

## **Operator Contact/Responsible Official Contact Info**

**Pounds/Acre** 

First Name: Jerry

Phone: (575)748-1288

Last Name: Sherrell Email: jerrys@mec.com

Well Name: THUNDER BAY FEDERAL COM

Well Number: 1H

#### Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

#### Existing invasive species treatment attachment:

Weed treatment plan description: The holder shall seed all disturbed areas with the seed mixture listed by BLM. The seed mixture she be planted in the amounts specified in pounds of pure live seed (PLS)\* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State Law(s) and the nine (9) months prior to purchase. Commercial see will be either certified or registered seed. The seed container will be tagged in accordance with State Law(s) and available for inspection by the authorized officer.

#### Weed treatment plan attachment:

**Monitoring plan description:** After all disturbed area have been satisfactorily prepared, these areas need to be revegetated with seed mixture provided by BLM. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may be repeated until revegetation is successful, as determined by the BLM.

#### Monitoring plan attachment:

**Success standards:** The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding. **Pit closure description:** No Pit

Pit closure attachment:

## Section 11 - Surface Ownership

Disturbance type: WELL PAD

**Describe:** 

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

**BIA Local Office:** 

**BOR Local Office:** 

**COE Local Office:** 

**DOD Local Office:** 

NPS Local Office:

State Local Office:

Military Local Office:

**USFWS Local Office:** 

**Other Local Office:** 

**USFS Region:** 

IISES Forest/Grassland

Well Number: 1H

## Section 12 - Other Information

Right of Way needed? NO ROW Type(s):

**ROW Applications** 

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: Onsite 8/14/2017

## **Other SUPO Attachment**

thunder\_gad\_20171002092553.pdf H2S\_Contingency\_Plan\_20171002094342.docx thunder\_surface\_plan\_20171012140634.pdf thunder\_h2s\_plan\_\_20171012140647.pdf

#### Use APD as ROW?

District J 1622 N. French Dr., Holstes, NM 88243 Phone (575) 344 6164 (Lax 3578) 344.6725 District B 811 S. First St., Arresia, NM 88240 Phone (775) 7484(288 Fax 4573) 748-9726 District B 1600 Rob Brazos Brad, Aztee, NM 87416 Phone (205) MLEO TS Fax (508) 344.6176 District B (220 S.St. Francis, Dr., Santa Fe, NM 87505 Phone (505) 176-3460 Fax (535) 436-3465

| State of New Mexico                       | Form C-102             |
|-------------------------------------------|------------------------|
| Energy, Minerals & Natural Resources Dian | Revised August 1, 2011 |
| OIL CONSERVATION DIVISION                 | ARTESIA DISTRICT       |
| 1220 South St. Francis Dr.                | DEC 27 2017            |
| Santa Fe, NM 87505                        | AMENDED REPORT         |

RECEIVED WELL LOCATION AND ACREAGE DEDICATION PLAT

| 30.00                                                                                                           | API Numbe<br><b>5 -</b> 6 | 4 <i>3</i> 08             | 527           | * Pool Codi<br>'70                                          | •                     | Round Tank; San Andres                                      |                                        |                         |                  |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------|-------------------------------------------------------------|-----------------------|-------------------------------------------------------------|----------------------------------------|-------------------------|------------------|--|
| Property (<br>32052                                                                                             | Code<br>O                 |                           |               | * Property Name * Well Number<br>THUNDER BAY FEDERAL COM 1H |                       |                                                             |                                        |                         |                  |  |
| <sup>1</sup> OGRID No. <sup>1</sup> Operator Name <sup>4</sup> Elevati<br>13837 MACK ENERGY CORPORATION 3844.   |                           |                           |               |                                                             | * Elevation<br>3844.9 |                                                             |                                        |                         |                  |  |
|                                                                                                                 |                           |                           |               |                                                             | * Surface             | Location                                                    |                                        |                         |                  |  |
| UL or lat na.<br>C                                                                                              | Section<br>22             | Township<br>15 S          | Range<br>29 E | Lot Idn                                                     | Feet from the<br>10   | the North/South line Feet from the East/We<br>NORTH 1650 WE |                                        |                         | County<br>CHAVES |  |
| Na a a guinea ann an |                           |                           | " B           | ottom Ho                                                    | ole Location          | If Different Fr                                             | om Surface                             |                         |                  |  |
| UL or lot no.<br>N                                                                                              | Section<br>22             | Township<br>15 S          | Range<br>29 E | Lot Idn                                                     | Feet from the 270     | North/South line<br>SOUTH                                   | Feet from the<br>1675                  | East/ West line<br>WEST | County<br>CHAVES |  |
| <sup>12</sup> Dedicated Acre                                                                                    | S Conto                   | r Infill <sup>14</sup> Co | onsolidution  | Cøde <sup>(*</sup> Or                                       | der No,               | <u> </u>                                                    | •••••••••••••••••••••••••••••••••••••• |                         |                  |  |

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

|      | 880'16'53"E 76'36 06 FT               | N89°16'05"E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2626.21 FT                               | 1                | "OPERATOR CERTIFICATION                                                                 |
|------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-----------------------------------------------------------------------------------------|
| F    | 1650 -++-                             | N Q CORNER SEC 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NE CORNER SEC. 22                        | 1                | hereby comparison the information contained herein is true and complete to the          |
|      | NW CORNER SEC. 22                     | LAT. = 33.0087116'N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAI = 33.0087818N                        | ~                | est of my knowledge and holief, and that they erganization either events is             |
|      | IAI. = 33.0086425N                    | UNG. # 164.0163901W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUCP FACT /FT                            | ъ.;              | whing interest of intersed mineral interest in the fault including the propriori        |
|      | NMSP EAST (FT)                        | N = 730852.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N = 730885.92                            | Ň                | othere hole sociation or has a region to deall this will as this bouttoer procession to |
|      | N = 73081943                          | F = 638495.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E = 641120.85                            | <del>г.</del> н  | continues with an environ of such a momental or working diservation to a                |
| E S  | F # 635869.46                         | SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                        | Q                | abuntary pooling approximant or a computions pooling order herein-porc interved         |
| 87.4 | POINT                                 | LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | 2 6              | r the design                                                                            |
| 26   | FIRST TAKE POINT                      | THUNDER BAY FEDERAL COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H                                        |                  | North Million IN 1917                                                                   |
| 7    | 330 FNL 1648 FWL E.                   | * ELEV. # 3844.9*<br>  IAT = 330086584*N (NADB3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | 8 -              | Determinance concert                                                                    |
| 0,19 | LONG. = 104.0195567'W                 | LONG. = 104.0195748'W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                  | ignature Date                                                                           |
| 013  | NMSP EAST (FT)                        | NMSP EAST (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | R   1            | Deana Weaver                                                                            |
| 2    | t = 637525.81 ₩                       | E = 637519.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | P                | runed Name                                                                              |
|      | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                  | 1                                                                                       |
|      | W O CORNER SEC. 22                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E Q COMMER SEC 22<br>147 - 13:00:15079/N | -                | dweaver@mec.com                                                                         |
|      | LAT = 33.0012599'N                    | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LONG. # 194.0077509"W                    | - E.             | maii Adaryss                                                                            |
|      | AURO = 104.074 (02.3 M                | ATTUDE AND LONGITUDE COORDINATES ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NMSP EAST (FT)                           |                  |                                                                                         |
|      | N = 728133.59                         | SHOWN USING THE NORTH AMERICAN DATUM (<br>1983 (NADRS) LISTED NEW MEXICO STATE PLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )£ N ≈ 728239.54<br>INF E ≈ 641151.97    | 14               | SURVEYOR CERTIFICATION                                                                  |
|      | E = 635940.04                         | EAST COORDINATES ARE GRID (NATION). BASIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DF (                                     | 1                | hereby cernfy that the well location shown on this plat was                             |
|      | :                                     | BLAHING AND DISTANCES USED ARE NEW MEN<br>I STATE PLANE EAST COORDINATES MODIFIED TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE                                      | p                | lotted from field notes of astual surveys made by me or under                           |
|      | LAST TAKE POINT                       | I SUPFACE VERTICAL DATUM NAVOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | с I.             | the comparation of the the stand of any state of the                                    |
| 1    | LAT. = 32 9948963'N                   | BOTTOM OF HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | ş / "            | ar militer contain their tale tale and a train on the state of the state of the state   |
| *    | LONG = 104 0192915W                   | T LAL * 32.9947.314 N<br>HAST TAKE 1000 ± 104.0192879W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 83. 6            | est of my helief.                                                                       |
| X    | N = 725823.29                         | POINT NMSP EAST (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | <u> s</u>        | LPTEMBER 8, 2017                                                                        |
| ,*   | E = 637621.16                         | N = 725763.31<br>F = 633620 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 1<br>1<br>1<br>1 | ble of Sirvey                                                                           |
|      | SW CORNER SEC. 2?                     | BOTTOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 8                | . •                                                                                     |
| 5    | LAT = 32.9939935'N                    | CF HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er coovers erc po                        | 8                |                                                                                         |
| GN   | ALLES THE SUBJECT OF THE              | S Q CORNER SEC. 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LAT = 32.9942030"N                       |                  | An inthe ch                                                                             |
|      | N = 725489.88                         | (3) $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ | LONG. = 104.0076851'W                    |                  | - TAKA A MAINSIA                                                                        |
|      | L + 635948 72                         | NKSP EAST (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NMSP EAST (FT)                           | 15               | service and Service Professional Surveyor                                               |
|      |                                       | •■ N # 725495.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E = 641180.37/                           | ́ е              | THE ALL NEEDED FOR MANY LANDARD PLANT                                                   |
|      | C2752'22'4- 267                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7626.35 FT                               | 2                | SURVEY NO SH2B                                                                          |
|      | 203 (), 13 W 2014                     | 3.00 il                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • • • · · · ·                            |                  |                                                                                         |









| <b>F</b> SECTION 22           | , TOWNS                                                              | HIP 15 S             | SOUTH, R.        | ANGE 29    | EAST, N      | <i>Т.М.Р.М.</i> Ц    |  |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------|----------------------|------------------|------------|--------------|----------------------|--|--|--|--|--|
|                               | HAVES C                                                              | OUNTY, S             | STATE OF         | NEW ME     | EXICO        |                      |  |  |  |  |  |
| $\  A$                        | CCESS                                                                | S A E' R I           | IAL RO           | OUTE' I    | MAP          |                      |  |  |  |  |  |
| 16,16, 15                     | 18 2 3 18                                                            | THUND                | ER BAY           | 13 118     | 17 16        | 15 MA                |  |  |  |  |  |
| VMT15S R28E                   |                                                                      |                      | R29E             |            | NM THISS     | R30E                 |  |  |  |  |  |
| 21 22 28                      | 24 19                                                                | 20 4 21              | 22, 23           | 24 19      | 20 21        | 22 23 23 22          |  |  |  |  |  |
|                               |                                                                      |                      |                  |            |              |                      |  |  |  |  |  |
| 23 27                         | 25 30                                                                | 29 23 2              | 27, 26           | 25 30      | 29 . 28      | 27.2.26 2            |  |  |  |  |  |
| TY TO A STATE                 |                                                                      |                      |                  |            |              |                      |  |  |  |  |  |
| 665 64 55                     | 50. 51                                                               | 522 .559             |                  | 367, 31    | 32 1 33      | 34% (* 35) (* 1)<br> |  |  |  |  |  |
|                               |                                                                      | 1.12                 |                  |            |              |                      |  |  |  |  |  |
| 1 3 48 9                      | 4                                                                    | 2                    | 6.5              | 41-1-311   | 1.2          | 6                    |  |  |  |  |  |
|                               | 42.0                                                                 |                      |                  |            |              |                      |  |  |  |  |  |
| 12 7 3                        | .9 10                                                                | 101 - 12             | 7. 8             | 9* ::10    | ·11) 12      | 5 4                  |  |  |  |  |  |
|                               |                                                                      |                      |                  |            |              |                      |  |  |  |  |  |
| 18 18 17                      | MTRIGS RAC                                                           | a 19                 | 18 207           | MT16S R30  | i= 14, 13    |                      |  |  |  |  |  |
|                               |                                                                      |                      | 22.21            |            |              |                      |  |  |  |  |  |
| 1151 240                      | . 201 . 222                                                          | 245) 244)            | 119 20           | 21 • 22    | 17,23 24     |                      |  |  |  |  |  |
| 25 1617-00                    | -<br>-<br>-                                                          | ଜୁନ୍ତି -<br>ଜୁନ୍ତି - | 120 · 20 ·       |            | 200          |                      |  |  |  |  |  |
|                               |                                                                      |                      | 830, 29<br>Maria |            | 20 1. 20     |                      |  |  |  |  |  |
| 100 311 12 392                | 881 84                                                               | <b>3</b> 3 83        | 815-15-82"       | 33 34      | -<br>85 - 36 | LENG                 |  |  |  |  |  |
|                               |                                                                      |                      |                  |            | 1            |                      |  |  |  |  |  |
| 1. 6. 3                       | 4:3                                                                  | 2 1                  | 6 5              | 4 3.       | 2 4 41       | 6 5.                 |  |  |  |  |  |
|                               |                                                                      |                      |                  |            |              |                      |  |  |  |  |  |
| 12 \$7, 3                     | 9 10                                                                 | 111 12               | 7515-18          | 1977 07102 |              | 8.                   |  |  |  |  |  |
| Ser Contraction               |                                                                      |                      |                  |            |              |                      |  |  |  |  |  |
| 13 113 17                     | 16   18                                                              | 14 13                | 10 17.           | -WO THIB   | 14 18        | 184-17               |  |  |  |  |  |
|                               | A TRIPS R22                                                          | STATE HI             | HWAY 82          | MANAS RE   |              |                      |  |  |  |  |  |
| 20 19 20                      | 21 997                                                               | 24                   | 19 20-1          | I A A A    | 28 24        | 19 20                |  |  |  |  |  |
| NOT TO SCALE<br>AERIAL PHOTO: | MΔ                                                                   | CK ENERG             | Y CORPOR         | RATION     |              |                      |  |  |  |  |  |
| GOOGLE EARTH<br>FEBRUARY 2017 | THUN                                                                 | DER BAY              | FEDERAL          | COM 1H     |              |                      |  |  |  |  |  |
|                               | LOCATED 10 FT. FROM THE NORTH LINE                                   |                      |                  |            |              |                      |  |  |  |  |  |
|                               | AND 1650 FT. FROM THE WEST LINE OF<br>SECTION 22. TOWNSHIP 15 SOUTH. |                      |                  |            |              |                      |  |  |  |  |  |
|                               | RANGE 29 EAST, N.M.P.M.                                              |                      |                  |            |              |                      |  |  |  |  |  |
|                               | UNAVES                                                               | CUUNTI, A            | SIAIE OF A       | en Mexico  | U            |                      |  |  |  |  |  |
|                               |                                                                      | SEPTEM.              | BER 8, 201       | 7          | SIIRVEV      | NO 5312B             |  |  |  |  |  |
| MADRON S                      | URVEYIN                                                              | G, INC. (5)          | SOUTH CANAL CAR  | RLSBAD,    | NEW ME       | XICO                 |  |  |  |  |  |



| 46                             |                                                                                                                                                                                                                                                                                                                                                                                                                             | 70 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| ľ₩.                            | ACCESS ROAD PLAT<br>ACCESS ROAD FROM THE HAMILTON FEDERAL COM 1H TO THE THUNDER BAY FEDERAL COM 1H                                                                                                                                                                                                                                                                                                                          | む  |
|                                | MACK ENERGY CORPORATION<br>CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING<br>SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M.<br>CHAVES COUNTY, STATE OF NEW MEXICO<br>AUGUST 16, 2017                                                                                                                                                                                                                                  |    |
| A S                            | DESCRIPTION<br>STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29<br>ST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE                                                                                                                                                                          |    |
| BEC                            | GINNING AT A POINT WITHIN THE SW/4 SW/4 OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE<br>UTHWEST CORNER OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS 554'44'37"W, A DISTANCE OF                                                                                                                                                                                        |    |
| 911<br>THI<br>OF               | 9.25 FEET:<br>ENCE S69'40'30"E A DISTANCE OF 880.15 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTH QUARTER CORNER<br>SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S79'38'49"E, A DISTANCE OF 1068.15 FEET;                                                                                                                                                                              |    |
| SAI<br>ALL                     | ID STRIP OF LAND BEING 880.15 FEET OR 53.35 RODS IN LENGTH, CONTAINING 0.606 ACRES MORE OR LESS AND BEING LOCATED BY FORTIES AS FOLLOWS:                                                                                                                                                                                                                                                                                    |    |
| SW<br>SE,                      | //4 SW/4 601.51 L.F. 36.46 RODS 0.414 ACRES<br>/4 SW/4 278.64 L.F. 16.89 RODS 0.192 ACRES                                                                                                                                                                                                                                                                                                                                   |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|                                | SURVEYOR CERTIFICATE                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| <i>GENE</i><br>1.) TH<br>ACOUI | I, FILMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797,<br>HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY,<br>HAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND<br>BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND<br>BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND<br>SURVEYING IN THE STATE OF NEW MEXICO. |    |
| 2.) B/                         | ASIS OF BEARING AND DISTANCE IS NMSP<br>(NADR3) MODIFIED TO SUPPORT IN MEXICOLUTING TO SUPPORT AUGUST 2017                                                                                                                                                                                                                                                                                                                  |    |
| COORI                          | DINATES. NAD 83 (FEET) AND NAVD 88<br>COORDINATE SYSTEMS USED IN THE                                                                                                                                                                                                                                                                                                                                                        |    |
|                                | EY.<br>IEET: 2-4<br>Phone (575) 234-3341<br>SURVEY NO. 5407A                                                                                                                                                                                                                                                                                                                                                                |    |
|                                | MADRON SURVEYING INC. 301 SOUTH CAME SHAD, NEW MEXICO                                                                                                                                                                                                                                                                                                                                                                       | Ŧ  |







ACCESS ROAD PLAT ACCESS ROAD FROM THE HAMILTON FEDERAL COM 1H TO THE THUNDER BAY FEDERAL COM 1H MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO AUGUST 16. 2017 DESCRIPTION A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY: BEGINNING AT A POINT WITHIN THE SW/4 SW/4 OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE SOUTHWEST CORNER OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS 554'44'37"W, A DISTANCE OF 919.25 FEET; THENCE S69'40'30"E A DISTANCE OF 880.15 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTH QUARTER CORNER OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S79'38'49"E, A DISTANCE OF 1068.15 FEET; SAID STRIP OF LAND BEING 880.15 FEET OR 53.35 RODS IN LENGTH, CONTAINING 0.606 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS: SW/4 SW/4 601.51 L.F. 36.46 RODS 0.414 ACRES SE/4 SW/4 278.64 L.F. 16.89 RODS 0.192 ACRES SURVEYOR CERTIFICATE I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, I, FILMON F. JANAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO. IN WITNESS WHEREOF, THIS CERTIFICATE IS EXECUTED AT CARLSBAD, **GENERAL NOTES** 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT. 2.) BASIS OF BEARING AND DISTANCE IS NMSP AUCUST 2017 NEW MEXICO EAST (NAD83) MODIFIED TO SURFACE ADRON SURVEYING, INC. O

3oi scu

(575)

INC

301 SOUTH CANAL

Phone (575) 234-3341

NEW MEXICO

BAD

CARLSBAD, NEW MEXICO 88220

SURVEY NO. 5407

COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY. SHEET: 2-4

MADRON SURVEYING





# Thunder Bay Federal Com #1H BH

| NWSW<br>(L)               | NESW 30-0(<br>(K)          | 5-60344y <sub>SE</sub><br>(J)                             | NESE<br>(1)                           | NWSW 30-0(<br>(L)                        | р5-00449 <sub>2SW</sub><br>  (К)     | NWSE<br>(J)                   | NESE<br>(1)                           |
|---------------------------|----------------------------|-----------------------------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------|-------------------------------|---------------------------------------|
| SWSW<br>(M)               | <u>∈30-0</u> 05-603<br>(N) | 16<br> 71 <sup>30-005-60332</sup><br> 70 }<br> 70 }<br>30 | SESE<br>(₽) 30<br>● T                 | swsw<br>-005-61227<br>hunder Bay         | 1<br>SESW<br>(N)<br>Federal Co       | 5<br>SWSE<br>(0)<br>om #1H    | SESE<br>(P)                           |
| NWNW<br>(D)               | 30-005-619<br>NENW<br>(C)  | 02<br>NWNE<br>(B)                                         | 30-005-603<br>NENE<br>(A)<br>30       | 61<br>NWNW<br>(D)<br>-005-60352          | NENW<br>(C)                          | 30-00 <u>5-00</u> 454<br>(B)  | NENE<br>(A)                           |
| SWNW<br>(E)               | SENW<br>(F)                | SWNE<br>(G)                                               | 30-005-60244<br>SEME<br>(H)           | 30-0 <u>05-60</u> 350<br>(E) 3           | SENW<br>0-005-60213                  | SWNE<br>(G)                   | SENE<br>(H)                           |
| NWSW<br>(L)               | 30-005-602<br>NEW<br>(K)   | 24<br>95<br>  NWSE<br>  (J)<br>                           | 3(<br>NESE<br>(1)<br>(1)              | -005-60207<br>NWSW 3<br>(L)              | 0-005-60 <u>3</u> <i>37</i> ,<br>(К) | NWSE<br>(J)                   | NESE<br>(I)                           |
| SWSW<br>(m)               | 30-005-00455<br>(N)        | SWSE<br>(O)                                               | 3(<br>  SESE<br>  (P)<br>  30-005-626 | 9-005-60375<br>SWSW<br>(M)               | 005-64381<br>SESW<br>(N)<br>O5S 29E  | SWSE<br>(0)                   | SESE<br>(P)                           |
| 30-005-642<br>NWNW<br>(D) | 82<br>NENW<br>(C)          | NWNE<br>  (B)<br>                                         | 30-005 <u>-0</u> 0459<br>(Å)          | 0-005-60382 3<br>NWNW<br>(D)             | 0-005-60122<br>NENW<br>(C)           | <br>  NWNE<br>  (B)           | NENE<br>(A)                           |
| SWNW<br>(E)               | SENA<br>(F)                | SWNE<br>(G)                                               | SENE 3                                | 0-005-60303<br>∽ <sup>SWNW</sup><br>∕(E) | SENW<br>(F)<br>30-005-60             | <br>  SWNE<br> <br> <br> <br> | SENE<br>(H)                           |
| NWSW<br>(L)               | NESW<br>(K)                | NWSE<br>U)                                                | <br>  NESE<br>  (1)<br>               | NWSW<br>(L)                              | NESW<br>(K)                          | NWSE<br>(J)                   | NESE<br>(1)                           |
| SWSW<br>(M)               | SESW<br>(N)                | SWSE<br>(0)                                               | SEDE<br>(P)                           | SWSW<br>(M)                              | 30-0 <u>05-0</u> 0458<br>(N)         | SWSE<br>(0)                   | 30-805-6(<br>SESE<br>(P)<br>30-005-6( |

# Thunder Bay Federal Com #1H

| NWSW<br>(L) | NESW<br>(K)                             | 30-005400446<br>(9)                              | 30-00258280830<br>(1)           | -005-62793,<br>(L)                      | NESW<br>(K)                          | NWSE<br>(J)                                                                                 | NESE                 |
|-------------|-----------------------------------------|--------------------------------------------------|---------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|----------------------|
| SWSW<br>(M) | 1<br> <br>  SESW<br>  (N)<br> <br>      | 09 <u>38)2 k</u><br>SWSE<br>(0)                  | SESE<br>(P)                     | SWSW<br>(M)<br>30-005-62786<br>¢        | SESW<br>(N)                          | 1<br>10<br>1 SWSE<br>1 (O)<br>1                                                             | I<br>SESE<br>I (P)   |
| NWNW<br>(D) | NENW<br>(C)                             | NWNE<br>(B)                                      | (A)                             | 30- <u>005-10</u> 18530<br>( <b>Ď</b> ) | -005-62 <u>55</u> 8/<br><b>(C)</b> 3 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 30-0 <u>05-0</u> 044 |
| SWNW<br>(E) | SENW<br>(F)                             | SWNE<br>(G)                                      | SENE<br>(H)                     | 30-005-62656<br>SWNW<br>(E)             | SENW<br>(F)                          | 1<br>1<br>1 SWNE<br>1 (G)                                                                   | SENE                 |
| NWSW<br>(L) | NEGW<br>(K)                             | 16<br>30-005÷60344<br>(ኽ)                        | NESE<br>(1)                     | NWSW<br>(L)                             | 30-0 <u>05-00</u> 449<br>(K)         | 15<br> <br>  NWSE<br>  (J)<br>                                                              | NESE<br>(1)          |
| SWSW<br>(M) | <br> <br>  <u>∈30</u> ;005-603<br>  (N) | 371 <sup>30-005-60332</sup><br>SWSE<br>∳℃}<br>30 | SESE<br>(₽) 30<br>● T           | swsw<br>-ឈ5-61227<br>hufnder Bay        | sesw<br>(N)<br>Federal Co            | swse<br>(0)<br>om #1H                                                                       | SESE<br>(P)          |
| NWNW<br>(D) | 30-005-619<br>  NENW<br>  (C)<br>       | 02<br>NWNE<br>(B)                                | 30-005-603<br>NENE<br>(A)<br>30 | 61<br>NWNW<br>(D)<br>-005-60352         | NENW<br>(C)                          | 30-0,0 <u>5,00</u> 454<br>(B)                                                               | NENE<br>(A)          |
| SWNW<br>(E) | sanw<br>()                              | <br>  SWNE<br>  (G)<br>                          | 30-005-60244<br>SEME<br>(H)     | 30-005-60350<br>(Ē) 30                  | SENW<br>0-005-60213                  | SWNE<br>(G)                                                                                 | SENE<br>(H)          |
| NWSW<br>(L) | 30-035-602<br>NESW<br>(К)               | 21<br>95<br>NWSE<br>(J)                          | 3<br>NESE<br>(1)                | 0-005-60207<br>,5<br>NWSW 3<br>(L)      | 0-005-60 <u>3</u> 77/<br>(K)         | 22 – – – – – – – – – – – – – – – – – –                                                      | NESE<br>(1)          |
| SWSW<br>(M) | 30-0 <u>05</u> -0.0455<br>(N)           | SWSE<br>(0)                                      | 3<br>SESE<br>(P)<br>30 905-62   | 0-005-60375 30-0<br>SWSW<br>(M)         | 005-61381<br>SESW<br>(N)             | SWSE<br>(0)                                                                                 | SESE<br>(P)          |
| h           | 1                                       | 1<br>1                                           | 1                               |                                         |                                      |                                                                                             | +                    |









FLOWLINE PLAT SURFACE POLY FLOWLINE FROM THE THUNDER BAY FEDERAL COM 1H TO THE WHITE ROCK FEDERAL CTB MACK ENERGY CORPORATION CENTERLINE SURVEY OF A PIPELINE CROSSING SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO SEPTEMBER 28, 2017 DESCRIPTION A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY: FROM B.O.L. TO SECTION 15 BEGINNING AT A POINT WITHIN THE NE/4 NW/4 OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE NORTH QUARTER CORNER OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS N88'41'29"E, A DISTANCE OF 976.72 FEET: THENCE N22'28'05"E A DISTANCE OF 10.94 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE NORTH QUARTER CORNER OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS N89'16'53"E, A DISTANCE OF 972.37 FEET; SAID STRIP OF LAND BEING 10.94 FEET OR 0.66 RODS IN LENGTH, CONTAINING 0.008 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS: NE/4 NW/4 10.94 L.F. 0.66 RODS 0.008 ACRES FROM SECTION 15 TO SECTION 21 BEGINNING AT A POINT WITHIN THE NW/4 NW/4 OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE NORTHWEST CORNER OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S89'16'53"W, A DISTANCE OF 113.93 FEET; THENCE S00'02'07"W A DISTANCE OF 829.04 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S42'33'52"E A DISTANCE OF 482.90 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S11'17'06"E A DISTANCE OF 862.99 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S30'07'47"W A DISTANCE OF 1070.72 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE WEST QUARTER CORNER OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS NOD'11'17"W, A DISTANCE OF 269.11 FEET; SAID STRIP OF LAND BEING 3245.65 FEET OR 196.71 RODS IN LENGTH, CONTAINING 2.236 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS: NW/4 NW/4 1467.77 L.F. 88.96 RODS 1.011 ACRES SW/4 NW/4 1463.00 L.F. 88.67 RODS 1.008 ACRES NW/4 WW/4 314.88 L.F. 19.08 RODS 0.217 ACRES FROM SECTION 21 TO SECTION 21 BEGINNING AT A POINT WITHIN THE NW/4 SW/4 OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE WEST QUARTER CORNER OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS NOO'11'17"W, A DISTANCE OF 291.13 FEET; THENCE \$73'33'56"E A DISTANCE OF 137.39 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$28'16'34"W A DISTANCE OF 276.22 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 22, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS SOO'11'17"E, A DISTANCE OF 2071.15 FEET; SAID STRIP OF LAND BEING 413.61 FEET OR 25.07 RODS IN LENGTH, CONTAINING 0.285 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS: NW/4 SW/4 413.61 L.F. 25.07 RODS 0.285 ACRES SURVEYOR CERTIFICATE 1, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND GENERAL NOTES BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND 1.) THE INTENT OF THIS ROUTE SURVEY IS TO SURVEYING IN THE STATE OF NEW MEXICO. IN WITNESS WHEREOF, THIS CERTIFICATE IS EXECUTED AT CARLSBAD, ACQUIRE AN EASEMENT. 2.) BASIS OF BEARING AND DISTANCE IS NMSP NEW MEXICG OF OCTOBER 2017 EAST (NAD83) MODIFIED TO SURFACE MADRON SURVEYING, INC. COORDINATES. NAD 83 (FEET) AND NAVD 88 301 SOUTH CANAL (FEET) COORDINATE SYSTEMS USED IN THE CARLSBAD, NEW MEXICO 88220 SURVEY. Phone (575) 234-3341 SHEET: 2-10 SURVEY NO. 5593 INC/ 301 SOUTH CANAL ARL&BAD. MADRON SURVEYING NEW MEXICO (575) 234-3341



#### FLOWLINE PLAT

4" SURFACE POLY FLOWLINE FROM THE THUNDER BAY FEDERAL COM 1H TO THE WHITE ROCK FEDERAL CTB

MACK ENERGY CORPORATION CENTERLINE SURVEY OF A PIPELINE CROSSING SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO SEPTEMBER 28, 2017

#### DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE SE/4 SW/4 OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE SOUTH QUARTER CORNER OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS N89'16'53"E, A DISTANCE OF 972.37 FEET;

THENCE N22'28'05"E A DISTANCE OF 159.14 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N61'48'36"W A DISTANCE OF 149.95 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N67'57'45"W A DISTANCE OF 898.03 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE N89'59'52"W A DISTANCE OF 350.15 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S39'40'40"W A DISTANCE OF 448.70 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S00'02'07"W A DISTANCE OF 228.85 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 15, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S89'16'53"W, A DISTANCE OF 113.93 FEET;

SAID STRIP OF LAND BEING 2234.82 FEET OR 135.45 RODS IN LENGTH, CONTAINING 1.539 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

| SE/4 | SW/4 | 598.54  | L.F. | 36.28 | RODS | 0.412 | ACRES |
|------|------|---------|------|-------|------|-------|-------|
| SW/4 | SW/4 | 1636.28 | L.F. | 99.17 | RODS | 1.127 | ACRES |

#### SURVEYOR CERTIFICATE

| CENERAL NOTES     |      |       |        |       |  |  |  |  |  |  |  |
|-------------------|------|-------|--------|-------|--|--|--|--|--|--|--|
| 1.) THE INTENT OF | THIS | ROUTE | SURVEY | IS TO |  |  |  |  |  |  |  |
| ACQUIRE AN EASEM  |      |       |        |       |  |  |  |  |  |  |  |

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

MADRON SURVEYING

SHEET: 4-10

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORREST TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO.

OF THIS CERTIFICATE IS EXECUTED AT CARLSBAD, IN WITNESS NEW MEXICO, THIS DBER 2017 MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3341 SURVEY NO. 5593 301 SOUTH CANAL CARLSBAD, (575) 234-5341 CARLSBAD, NEW MEXICO


FLOWLINE PLAT 4" SURFACE POLY FLOWLINE FROM THE THUNDER BAY FEDERAL COM 1H TO THE WHITE ROCK FEDERAL CTB MACK ENERGY CORPORATION CENTERLINE SURVEY OF A PIPELINE CROSSING SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO SEPTEMBER 28, 2017 DESCRIPTION A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY: FROM SECTION 22 TO SECTION 22 BEGINNING AT A POINT WITHIN THE NE/4 SE/4 OF SAID SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE EAST QUARTER CORNER OF SAID SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS NOO'11'17"W, A DISTANCE OF 269.11 FEET; THENCE S30'07'47"W A DISTANCE OF 21.72 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE \$73"33'56"E A DISTANCE OF 11.44 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE EAST QUARTER CORNER OF SAID SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS NOO'11'17"W, A DISTANCE OF 291.13 FEET; SAID STRIP OF LAND BEING 33.16 FEET OR 2.01 RODS IN LENGTH, CONTAINING 0.023 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS: NE/4 SE/4 33.16 L.F. 2.01 RODS 0.023 ACRES FROM SECTION 22 TO SECTION 28 BEGINNING AT A POINT WITHIN THE NE/4 SE/4 OF SAID SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE SOUTHEAST CORNER OF SAID SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS SOU'11'17"E, A DISTANCE OF 2071.15 FEET; THENCE S28'16'34"W A DISTANCE OF 2248.33 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE 589'38'17"W A DISTANCE OF 3202.71 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S00'00'20"W A DISTANCE OF 14.79 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 21, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S89'41'35"W, A DISTANCE OF 1013.66 FEET; SAID STRIP OF LAND BEING 5465.83 FEET OR 331.27 RODS IN LENGTH, CONTAINING 3.765 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS: 846.28 L.F. 51.29 RODS 0.583 ACRES NE/4 SE/4 SE/4 SE/4 1655.62 L.F. 100.34 RODS 1.140 ACRES SW/4 SE/4 1324.26 L.F. 80.26 RODS 0.912 ACRES SE/4 SW/4 1319.30 L.F. 79.96 RODS 0.909 ACRES SW/4 SW/4 320.37 L.F. 19.42 RODS 0.221 ACRES

#### SURVEYOR CERTIFICATE

NEW MEXICO. THIS

GENERAL NOTES 1.) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT.

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

SHEET: 6-10 MADRON SURVEYING, INC. 130 SOUTH CARLSBAD,

AMADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO 88220 Phone (575) 234-3341

NEW MEXICO

SURVEY NO. 5593

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797,

HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE SURVEY, THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS THE FAND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND THAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO,

OCTOBER 201

IN WITNESS WHEREOF THIS CERTIFICATE IS EXECUTED AT CARLSBAD,

DAY OF



FLOWLINE PLAT

4" SURFACE POLY FLOWLINE FROM THE THUNDER BAY FEDERAL COM 1H TO THE WHITE ROCK FEDERAL CTB

MACK ENERGY CORPORATION CENTERLINE SURVEY OF A PIPELINE CROSSING SECTION 28, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. CHAVES COUNTY, STATE OF NEW MEXICO SEPTEMBER 28, 2017

#### DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 28, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT WITHIN THE NW/4 NW/4 OF SAID SECTION 28, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M., WHENCE THE NORTHWEST CORNER OF SAID SECTION 28, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS S89'41'35'W, A DISTANCE OF 1013.66 FEET:

THENCE S00'00'20"W A DISTANCE OF 110.38 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE S89'40'54"W A DISTANCE OF 25.02 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED; THENCE NOO'10'38"W A DISTANCE OF 10.03 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE NORTHWEST CORNER OF SAID SECTION 28, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N.M.P.M. BEARS N84'30'27"W, A DISTANCE OF 993.14 FEET;

SAID STRIP OF LAND BEING 145.43 FEET OR 8.81 RODS IN LENGTH, CONTAINING 0.100 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS:

NW/4 NW/4 145.43 L.F. 8.81 RODS 0.100 ACRES

#### SURVEYOR CERTIFICATE

| CENERAL NOTES        |        |    |      |       |        |    |    |
|----------------------|--------|----|------|-------|--------|----|----|
| 1.) THE              | INTENT | 0F | THIS | ROUTE | SURVEY | IS | TO |
| ACQUIRE AN EASEMENT. |        |    |      |       |        |    |    |

2.) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES. NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY.

MADRON SURVEYING,

IN

SHEET: 8-10

I, FILIMON F. JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO. 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELLEF, AND THAT THIS SURVEY IAND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MERICO.

| WHEREOF THIS CERTIFICAT | E IS EXECUTED AT CARLSBAD,                                               |                                                                                                                                                                                                                |
|-------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY OF OCTOBER          | 2013                                                                     |                                                                                                                                                                                                                |
| KZ                      | ADRON SURVEYING, INC.                                                    |                                                                                                                                                                                                                |
| SAM/NA                  | CARLSBAD, NEW MEXICO 88<br>Phone (575) 234-3341                          | 3220                                                                                                                                                                                                           |
| Also Also satist        | SURVEY NO.                                                               | 5593                                                                                                                                                                                                           |
| CARLSBAD,               | NEW MEXICO                                                               |                                                                                                                                                                                                                |
|                         | WHEREOF, HIIS: CERTIFICA<br>DAY OF OCTOBER<br>DAY OF OCTOBER<br>ARLSBAD, | HEREOF, THIS CERTIFICATE IS EXECUTED AT CARLSBAD,<br>DAY OF OCTOBER 2017<br>MODRON SURVEYING, INC.<br>SOI SOUTH CANAL<br>CARLSBAD, NEW MEXICO BE<br>Phone (575) 234-3341<br>SURVEY NO.<br>CARLSBAD, NEW MEXICO |







32°49'05.3"N 103°59'03.7"W

and the second second



| STANDARD                        |                                                                   |                                         |                         |                              |
|---------------------------------|-------------------------------------------------------------------|-----------------------------------------|-------------------------|------------------------------|
|                                 |                                                                   |                                         |                         |                              |
| Home Mission Frac Tan           | k Hot Oil Truck Pump Tr                                           | uck Vacuum Truck Well                   | Service Disposals       | Fresh Water                  |
| Disposal Sites & Brine Stations | & Freshwater Well Servicing                                       | Rigs HS&E Standard E                    | nergy Locations Assoc   | iations                      |
| News and Events Testimoni       | als Employment Opportuniti                                        | es Equipment For Sale S                 | Store                   |                              |
|                                 |                                                                   |                                         |                         |                              |
|                                 |                                                                   |                                         |                         |                              |
| ्व)<br>Map Satesing             | 1 <u>2</u> 11 (1 <u>1</u> 1                                       | 2 <u>9</u>                              |                         |                              |
| Asijamor<br>Sil                 | Salty Dog Brine Station                                           | Knawles                                 |                         | ig.<br><u>⊒1</u> 4           |
| د<br>بور کرد<br>د               | Saity Dog Road, Hobbs, MM 88240,<br>Hobbs: NM Arec. 12.5 miles We | USA<br>Sation Hong Tab<br>Na            |                         |                              |
|                                 |                                                                   | . · · · · · · · · · · · · · · · · · · · | - 8 <u>9</u>            | Senuad                       |
|                                 | 1 eg                                                              |                                         |                         | <sup>r</sup> er <sup>3</sup> |
| (<br>(*)                        |                                                                   | Table, intern Frage Se                  |                         |                              |
|                                 |                                                                   | 10.4                                    |                         |                              |
|                                 | • *r.                                                             | Un Center                               |                         |                              |
|                                 |                                                                   | Eunice jig                              | $\tilde{v}_{\tilde{T}}$ |                              |
|                                 |                                                                   |                                         |                         | 2 <b>1</b><br>               |
|                                 |                                                                   | ş.                                      |                         | +                            |

~



Web AppBuilder for Actions Burnay INDOT (BLM) OCD) Source Esri DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Artuin DS, USDA USGS, AeroGriD, IGN, and the GIS User Community (Esr. MERE, DeLorne, MapmyIndia, & OpenStreeMap contributors, and the GIS user community (



Areas



ArcGIS Web Map





Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

## GAS CAPTURE PLAN

Date: 9/26/2017

Ø Original

Operator & OGRID No.: Mack Energy Corporation - 013837

Amended - Reason for Amendment:

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: From C. 129 must be submitted and opproved rates for according 60 darwallowed by Rob. (Subscripts, Cid. 19-15-18-12-8344C).

#### Well(s)/Production Facility - Name of facility

The well(s) that will be located at the production facility are shown in the table below

| Well Name                    | API | Well Location<br>(ULSTR) | Footages             | Expected<br>MCF/D | Flared or<br>Vented | Comments |
|------------------------------|-----|--------------------------|----------------------|-------------------|---------------------|----------|
| Flunder Bay Federal Com #111 |     | Sec. 22 T158 R29E        | 10 FNL &<br>1650 FWL | 50                |                     |          |
|                              |     |                          |                      |                   |                     |          |

#### **Gathering System and Pipeline Notification**

Well(s) will be connected to a production facility after flowback operations are complete, if gas transporter system is in place. The gas produced from production facility is dedicated to DCP Midstream and will be connected to DCP Midstream low/high pressure gathering system located in <u>Chaves</u> County, New Mexico. It will require<u>(texisting)</u> of pipeline to connect the facility to low/high pressure gathering system. Mack Energy Corporation provides (periodically) to DCP Midstream a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, Mack Energy Corporaton and DCP Midstream have periodic conference calls to discuss changes to drilling and completion schedules. Gas from these wells will be processed at DCP Midstream Linam Ranch Processing Plant located in Sec.<u>6</u>, Twn.<u>19S</u>, Rng. <u>37E</u> Lea County, New Mexico. The actual flow of the gas will be based on compression operating parameters and gathering system pressures.

#### Flowback Strategy

After the fracture treatment/completion operations, well(s) will be produced to temporary production tanks and gas will be flared or vented. During flowback, the fluids and sand content will be monitored. When the produced fluids contain minimal sand, the wells will be turned to production facilities. Gas sales should start as soon as the wells start flowing through the production facilities, unless there are operational issues on DCP Midstream system at that time. Based on current information, it is Mack Energy Corporation belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the Use Of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

#### Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

• Power Generation - On lease

Only a portion of gas is consumed operating the generator, remainder of gas will be flared

Compressed Natural Gas - On lease

Gas flared would be minimal, but might be uneconomical to operate when gas volume declines NGL Removal - On lease

Plants are expensive, residue gas is still flared, and uneconomical to operate when gas volume declines

# Mack Energy Corporation

Legal Description: Mack Energy-San Andres MDP Area Chaves Co. New Mexico Various Sections T-15-S, R-28-E and R-29-E

# H2S "Contingency Plan"

1

I. H<sub>2</sub>S Contingency Plan

a. Scope

b. Objective

- c. Discussion of Plan
- II. Emergency Procedures
  - a. Emergency Procedures
  - b. Emergency Reaction Steps
  - c. Simulated Blowout Control Drills
- III. Ignition Procedures
  - a. Responsibility
  - b. Instructions
  - IV. Training Requirements
- V. Emergency Equipment
- VI. Check Lists
  - a. Status Check List
  - b. Procedural Check List

#### VII. Evacuation Plan

a. General Plan b. Emergency Phone Lists

#### VIII.General information

- a. Drilling/Re-entry Permits
- b. H2S Permissible Limits
- c. Toxicity Table
- d. Physical Properties
- e. Respirator Use
- f. Emergency Rescue

#### H2S CONTINGENCY PLAN SECTION

#### Scope:

1

T,

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas ( $H_2S$ ).

#### **Objective:**

Prevent any and all accidents, and prevent the uncontrolled release of H2S into the atmosphere.

Provide proper evacuation procedures to cope with emergencies.

Provide immediate and adequate medical attention should an injury occur.

#### **Discussion of Plan:**

#### Suspected Problem Zones:

*Implementation:* This plan, with all details, is to be fully implemented 1000' before drilling into the first sour zone.

*Emergency Response Procedure:* This section outlines the conditions and denotes steps to be taken in the event of an emergency.

*Emergency Equipment and Procedure:* This section outlines the safety and emergency equipment that will be required for the drilling of this well.

*Training Provisions:* This section outlines the training provisions that must be adhered to 1000' before drilling into the first sour zone.

*Emergency call list:* Included are the telephone numbers of all persons that would need to be contacted, should an H2S emergency occur.

Briefing: This section deals with the briefing of all persons involved with the drilling of this well.

Public Safety: Public Safety Personnel will be made aware of the drilling of this well.

*Check Lists:* Status check lists and procedural check lists have been included to ensure adherence to the plan.

Genera/Information: A general information section has been included to supply support information.

#### EMERGENCY PROCEDURES SECTION

f.I. In the event of any evidence of H2S level above l0ppm, take the following steps immediately:

- f.I.a. Secure breathing apparatus.
- f.l.b. Order non-essential personnel out of the danger zone.
- f.I.c. Take steps to determine if the H2S level can be corrected or suppressed, and if so, proceed with normal operations.

f.II. If uncontrollable conditions occur, proceed with the following:

- f.II.a. Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify public safety personnel and the New Mexico Oil Conservation Division or Bureau of Land Management, whichever is appropriate, of the situation.
- f.II.b. Remove all personnel to the Safe Briefing Area.
- f.II.c. Notify public safety personnel for help with maintaining roadblocks and implementing evacuation.
- f.II.d. Determine and proceed with the best possible plan to regain control of the well. Maintain tight security and safety measures.

#### III. Responsibility:

£

a. The Company Approved Supervisor shall be responsible for the total implementation of the plan.

b. The Company Approved Supervisor shall be in complete command during any emergency.

c. The Company Approved Supervisor shall designate a back-up Supervisor in the event that he/she is not available.

# **EMERGENCY PROCEDURE IMPLEMENTATION**

#### I. Drilling or Tripping

a. <u>All Personnel</u>

**a.i.** When alarm sounds, don escape unit and report to upwind Safe Briefing Area.

a.ii. Check status of other personnel (buddy system).

a.iii. Secure breathing apparatus.

a.iv. Wait for orders from supervisor.

#### **b.** Drilling Foreman

**b.i.** Report to the upwind Safe Briefing Area.

**ii.** Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system).

- iii. Determine the concentration of  $H_2S$ .
- iv. Assess the situation and take appropriate control measures.
- c. <u>Tool Pusher</u>
  - i. Report to the upwind Safe Briefing Area.
  - **ii.** Don Breathing Apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system).
  - iii. Determine the concentration of  $H_2S$ .
  - iv. Assess the situation and take appropriate control measures.
- d. Driller

**i.** Check the status of other personnel (in a rescue attempt, always use the buddy system).

- **ii.** Assign the least essential person to notify the Drilling Foreman and Tool Pusher, in the event of their absence.
- **iii.** Assume the responsibility of the Drilling Foreman and the Tool Pusher until they arrive, in the event *of* their absence.

- e. Derrick Man and Floor Hands
  - **i.** Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor.
- f. <u>Mud Engineer</u>
  - i. Report to the upwind Safe Briefing Area.
  - ii. When instructed, begin check of mud for pH level and H<sub>2</sub>S level.

#### g. <u>Safety Personnel</u>

- i. Don Breathing Apparatus.
- ii. Check status of personnel.
- iii. Wait for instructions from Drilling Foreman or Tool Pusher.

#### II. Taking a Kick

- a. All Personnel report to the upwind Safe Briefing Area.
- **b.** Follow standard BOP procedures.

#### III. Open Hole Logging

- **a.** All unnecessary personnel should leave the rig floor.
- **b.** Drilling Foreman and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations.

#### IV. Running Casing or Plugging

- **a.** Follow "Drilling or Tripping" procedures.
- **b.** Assure that all personnel have access to protective equipment.

#### SIMULATED BLOWOUT CONTROL DRILLS

All drills will be initiated by activating alarm devices (air horn). One long blast, on the air horn, for ACTUAL and SIMULATED Blowout Control Drills. This operation will be performed by the Drilling Foreman or Tool Pusher at least one time per week for each of the following conditions, with each crew:

Drill #1 Bottom Drilling

Drill #2 Tripping Drill Pipe

In each of these drills, the initial reaction time to shutting in the well shall be timed as well as the total time for the crew to complete its entire pit drill assignment. The times must be recorded on the IADC Driller's Log as "Blowout Control Drill".

Drill No.:

Reaction Time to Shut-In:minutes,seconds.Total Time to Complete Assignment:minutes,seconds.

#### I. Drill Overviews

- a. Drill No. 1- Bottom Drilling
  - a.i. Sound the alarm immediately.

a.ii. Stop the rotary and hoist Kelly joint above the rotary table.

a.iii. Stop the circulatory pump.

a.iv. Close the drill pipe rams.

a.v. Record casing and drill pipe shut-in pressures and pit volume increases.

b. Drill No. 2- Tripping Drill Pipe

b.i.Sound the alarm immediately.

b.ii. Position the upper tool joint just above the rotary table and set the slips.

b.iii. Install a full opening valve or inside blowout preventer tool in order to close the drill pipe.

b.iv. Close the drill pipe rams.

b.v. Record the shut-in annular pressure.

#### II. Crew Assignments

#### a. Drill No. 1- Bottom Drilling

- i. Driller
  - 1. Stop the rotary and hoist Kelly joint above the rotary table.
  - 2. Stop the circulatory pump.
  - 3. Check Flow.
  - 4. If flowing, sound the alarm immediately
  - 5. Record the shit-in drill pipe pressure
  - 6. Determine the mud weight increase needed or other courses of action.
  - b.v.ii. Derrick man

b.v.ii.1. Open choke line valve at BOP.

- 2. Signal Floor Man #1 at accumulator that choke line is open.
- 3. Close choke and upstream valve after pipe tam have been closed.
- 4. Read the shut-in annular pressure and report readings to Driller.
- b.v.iii. Floor Man #1

b.v.iii.1. Close the pipe rams after receiving the signal from the Derrickman.

- 2. Report to Driller for further instructions.
- b.v.iv. Floor Man #2
  - b.v.iv.1. Notify the Tool Pusher and Operator representative of the H<sub>2</sub>S alarms.
    - 2. Check for open fires and, if safe to do so, extinguish them.
  - 3. Stop all welding operations.
    - 4. Turn-off all non-explosions proof lights and instruments.
  - 5. Report to Driller for further instructions.
- b.v.v. Tool Pusher
  - b.v.v.1. Report to the rig floor.
    - 2. Have a meeting with all crews.

- 3. Compile and summarize all information.
  - 4. Calculate the proper kill weight.
- 5. Ensure that proper well procedures are put into action.
- b.v.vi. Operator Representative

b.v.vi.1. Notify the Drilling Superintendent.

- 2. Determine if an emergency exists and if so, activate the contingency plan.
- b. Drill No. 2- Tripping Pipe
  - b.i. Driller
    - b.i.1. Sound the alarm immediately when mud volume increase has been detected.
    - 2. Position the upper tool joint just above the rotary table and set slips.
    - 3. Install a full opening valve or inside blowout preventer tool to close the drill pipe.
    - 4. Check flow.
    - 5. Record all data reported by the crew.
    - 6. Determine the course of action.
  - b.ii. Derrick man
    - b.ii.1. Come down out of derrick.
      - 2. Notify Tool Pusher and Operator Representative.
    - 3. Check for open fires and, if safe to do so, extinguish them.
    - 4. Stop all welding operations.
    - 5. Report to Driller for further instructions.

#### b.iii. Floor Man #1

b.iii.1. Pick up full opening valve or inside blowout preventer tool and stab into tool joint above rotary table (with Floor Man #2).

2. Tighten valve with back-up tongs.

- 3. Close pipe rams after signal from Floor Man #2.
- 4. Read accumulator pressure and check for possible high pressure fluid leaks in valves or piping.
- 5. Report to Driller for further instructions.

#### b.iv. Floor Man #2

- b.iv.1. Pick-up full opening valve or inside blowout preventer tool and stab into tool joint above rotary table (with Floor Man #1).
  - 2. Position back-up tongs on drill pipe.
- 3. Open choke line valve at BOP.
  - 4. Signal Floor Man #1 at accumulator that choke line is open.
- 5. Close choke and upstream valve after pipe rams have been closed.
- 6. Check for leaks on BOP stack and choke manifold.
- 7. Read annular pressure.
- 8. Report readings to the Driller.

#### b.v.Tool Pusher

- b.v.1. Report to the rig floor.
  - 2. Have a meeting with all of the crews.
- 3. Compile and summarize all information.
- 4. See that proper well kill procedures are put into action.

#### b.vi. Operator Representative

. •

- b.vi.1. Notify Drilling Superintendent
- 2. Determine if an emergency exists, and if so, activate the contingency plan.

.

#### **IGNITION PROCEDURES**

#### **Responsibility:**

The decision to ignite the well is the responsibility of the DRILLING FOREMAN in concurrence with the emergency response officials. In the event the Drilling Foreman is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that:

- 1. Human life and property are endangered.
- 2. There is no hope of controlling the blowout under the prevailing conditions.

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan.

Instructions for Igniting the Well:

- Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Foreman is responsible for igniting the well.
- 2. The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet.
- 3. Ignite from upwind and do not approach any closer than is warranted.
- 4. Select the ignition site best suited for protection and which offers an easy escape route.
- 5. Before igniting, check for the presence of combustible gases.
- 6. After igniting, continue emergency actions and procedures as before.
- 7. All unassigned personnel will limit their actions to those directed by the Drilling Foreman.

Note: After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide, which is also highly toxic. Do not assume the area is safe after the well is ignited.

# TRAINING PROGRAM

When working in an area where Hydrogen Sulfide ( $H_2$ S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel, at the well site, have had adequate training in the following consistent with the requirements in ANSI/ASSE Z390.1-2006 (R2010) Accepted Practices for Hydrogen Sulfide (H2S) Training Programs:

- 1. Physical and Chemical Properties of Hydrogen Sulfide.
  - 2. Sources of Hydrogen Sulfide.
- 3. Human Physiology and Medical Evaluation.
- 4. Work Procedures.
- 5. Personal Protective Equipment.
  - 6. Use of Contingency Plans and Emergency Response.
  - 7. Burning, Flaring and Venting of Hydrogen Sulfide.
- 8. State and Federal Regulatory Requirements.
- 9. Hydrogen Sulfide Release Dispersion Models
- 10. Rescue Techniques, First Aid and Post-Exposure Evaluation
- 11. Methods of Detection and Monitoring
- 12. Engineering Controls
- 13. Transportation of Hydrogen Sulfide Cargoes
- 14. Emerging Technology

Service company personnel and visiting personnel must be notified if the zone contains  $H_2S$ , and each service company must provide proof of adequate training and equipment for their employees before they arrive at the well site.

# **EMERGENCY EQUIPMENT REQUIREMENTS**

#### Lease Entrance Sign:

Should be located at the lease entrance with the following information:

### CAUTION- POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

#### **Respiratory Equipment:**

- Fresh air breathing equipment should be placed at the safe briefing areas and should include the following:
- Two SCBA's at each briefing area.
- Enough airline units to operate safely, anytime the H<sub>2</sub>S concentration reaches the IDLH level (100 ppm).
- Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrick man and the other operation areas.

#### Windsocks or Wind Streamers:

- A minimum of two 10" windsocks located at strategic locations so that they may be seen from any point on location.
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times. (Corners of location).

#### Hydrogen Sulfide Detector and Alarms:

- 1- Four channel H<sub>2</sub>S monitor with alarms.
- Four (4) sensors located as follows: #1- Rig Floor, #2- Bell Nipple, #3- Shale Shaker, #4- Mud Pits.
- Gastec or Draeger pump with tubes.
- Sensor test gas.

#### Well Condition Sign and Flags:

The Well Condition Sign w/flags should be placed a minimum of 150' before you enter the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions:

GREEN- Normal Operating Conditions YELLOW- Potential Danger RED- Danger, H<sub>2</sub>S Gas Present

#### Auxiliary Rescue Equipment:

- Stretcher
- 2- 100' Rescue lines.
  - First Aid Kit properly stocked.

#### **Mud Inspection Equipment:**

Garret Gas Train or Hach Tester for inspection of Hydrogen Sulfide in the drilling mud system.

#### **Fire Extinguishers:**

Adequate fire extinguishers shall be located at strategic locations.

#### **Blowout Preventer:**

- The well shall have hydraulic BOP equipment for the anticipated BHP.
- The BOP should be tested upon installation.
  - BOP, Choke Line and Kill Line will be tested as specified by Operator.

#### **Confined Space Monitor:**

There should be a portable multi-gas monitor with at least 3 sensors ( $0_{2'}$  LEL  $H_2S$ ). This instrument should be used to test the atmosphere of any confined space before entering. It should also be used for atmospheric testing for LEL gas before beginning any type of Hot Work. Proper calibration documentation will need to be provided.

#### **Communication Equipment:**

- Proper communication equipment such as cell phones or 2-way radios should be available at the rig.
- Radio communication shall be available for communication between the company man's trailer, rig floor and the tool pusher's trailer.

• Communication equipment shall be available on the vehicles.

#### **Special Control Equipment:**

- Hydraulic BOP equipment with remote control on the ground.
- Rotating head at the surface casing point.

#### **Evacuation Plan:**

- Evacuation routes should be established prior to spudding the well.
  - Should be discussed with all rig personnel.

#### **Designated Areas:**

#### Parking and Visitor area:

- All vehicles are to be parked at a pre-determined safe distance from the wellhead.
- Designated smoking area.

#### Safe Briefing Areas:

- Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area.
- Personal protective equipment should be stored at both briefing areas or if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

#### Note:

- Additional equipment will be available at the Alliance Safety office.
- Additional personal H<sub>2</sub>S monitors are available for all employees on location.
- Automatic Flare Igniters are recommended for installation on the rig.

#### CHECK LISTS

#### Status Check List

Note: Date each item as they are implemented.

- 1. Sign at location entrance.
  - 2. Two (2) wind socks (in required locations).
- 3. Wind Streamers (if required).
- 4. SCBA's on location for all rig personnel and mud loggers.
- 5. Air packs, inspected and ready for use.
- 6. Spare bottles for each air pack (if required).
- 7. Cascade system for refilling air bottles.
- 8. Cascade system and hose line hook up.
- 9. Choke manifold hooked-up and tested. (before drilling out surface casing.)
- 10. Remote Hydraulic BOP control (hooked-up and tested before drilling out surface casing).
- 11. BOP tested (before drilling out surface casing).
- 12. Mud engineer on location with equipment to test mud for H<sub>2</sub>S.
- 13. Safe Briefing Areas set-up
- 14. Well Condition sign and flags on location and ready.
  - 15. Hydrogen Sulfide detection system hooked -up & tested.
  - 16. Hydrogen Sulfide alarm system hooked-up & tested.
- 17. Stretcher on location at Safe Briefing Area.
  - 18. 2 -100' Life Lines on location.
- 19. 1-20# Fire Extinguisher in safety trailer.
  - 20. Confined Space Monitor on location and tested.
  - 21. All rig crews and supervisor trained (as required).

- 22. Access restricted for unauthorized personnel.
- 23. Drills on  $\rm H_{2}S$  and well control procedures.
- 24. All outside service contractors advised of potential  $H_2S$  on the well.
- 25. NO SMOKNG sign posted.
- 26.  $H_2$ S Detector Pump w/tubes on location.
- 27. 25mm Flare Gun on location w/flares.
  - 28. Automatic Flare Igniter installed on rig.

Perform the following on each tour:

- 1. Check fire extinguishers to see that they have the proper charge.
- 2. Check breathing equipment to insure that they have not been tampered with.
  - 3. Check pressure on the supply air bottles to make sure they are capable of recharging.
- 4. Make sure all of the Hydrogen Sulfide detection systems are operative.

Perform the following each week:

- 1. Check each piece of breathing equipment to make sure that they are fully charged and operational. This requires that the air cylinder be opened and the mask assembly be put on and tested to make sure that the regulators and masks are properly working. Negative and Positive pressure should be conducted on all masks.
- 2. BOP skills.
- 3. Check supply pressure on BOP accumulator stand-by source.
- 4. Check all breathing air mask assemblies to see that straps are loosened and turned back, ready for use.
  - 5. Check pressure on cascade air cylinders to make sure they are fully charged and ready to use for refill purposes if necessary.
- 6. Check all cascade system regulators to make sure they work properly.
- 7. Perform breathing drills with on-site personnel.
- 8. Check the following supplies for availability:
  - Stretcher
  - Safety Belts and Ropes
  - Spare air Bottles
  - Spare Oxygen Bottles (if resuscitator required)
    - Gas Detector Pump and Tubes
  - Emergency telephone lists
- 9. Test the Confined Space Monitor to verify the batteries are good

# **EVACUATION PLAN**

#### General Plan

The direct lines of action prepared by Mack Energy Corporation to protect the public from hazardous gas situations are as follows:

1. When the company approved supervisor (Drilling Foreman, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan. Escape routes are noted on the area map.

2. Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented.

- 3. Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized.
- 4. Law enforcement personnel (State Police, Local Police Department, Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary.
- NOTE: Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.
  - 5. After the discharge of gas has been controlled, "Company" safety personnel will determine when the area is safe for re-entry.

See Specific Site Safety Plan or Job Safety Analysis to be completed during drilling

# Emergency Assistance Telephone List

| PUBLIC SAFETY:                                                            | 911 or         |
|---------------------------------------------------------------------------|----------------|
| Pecos Valley Communication<br>Center (Chaves County Police, Fire,<br>EMS) | (575) 624-7590 |
| Central Dispatch                                                          |                |
| (Eddy County Police, Fire, EMS)                                           | (575) 616-7155 |
| Hospitals:                                                                |                |
| Roswell                                                                   | (575) 622-8170 |
| Artesia                                                                   | (575) 748-3333 |
| Dept. of Public Safety/SE New Mexico                                      | (575) 622-7200 |
| Highway Department                                                        | (575) 637-7200 |
| New Mexico Oil Conservation                                               | (575) 748-1283 |
| Bureau of Land Management                                                 | (575) 622-5335 |
| Mack Energy Corporation                                                   |                |
| Company Drilling Supervisor                                               |                |
| Jim Krogman                                                               | (575) 703-7385 |
| Drilling Foreman                                                          |                |
| Emilio Martinez                                                           | (575) 703-5231 |
| Silver Oak Drilling                                                       |                |
| Silver Oak Drilling                                                       | (575) 746-4405 |
| Tool Pusher:                                                              |                |
| Darren Mc Bride                                                           | (575) 703-6070 |
| Osiel Sanchez                                                             | (575) 703-4109 |
| Safety                                                                    |                |
| Lee Hassell (Alliance Safety)                                             |                |
| (806) 217-2950                                                            |                |
| Scott Ford (Mack Energy)                                                  |                |
| Robbie Houghtaling (Silver Oak)                                           |                |
| (575) 703-2122                                                            |                |
|                                                                           |                |
Intentionally Blank –Space provided for Specific Site Safety Plan or Job Safety Analysis

.

# Affected Notification List

(within a 65' radius of exposure @ IOOppm)

The geologic zones that will be encountered during drilling are known to contain hazardous quantities of  $H_2S$ . The accompanying map illustrates the affected areas of the community. The residents within this radius will be notified via a hand delivered written notice describing the activities, potential hazards, conditions of evacuation, evacuation drill siren alarms and other precautionary measures.

**Evacuee Description:** 

Residents: THERE ARE NO RESIDENTS WITHIN 3000' ROE.

Notification Process:

A continuous siren audible to all residence will be activated, signaling evacuation of previously notified and informed residents.

Evacuation Plan: All evacuees will migrate lateral to the wind direction.

The Oil Company will identify all home bound or highly susceptible individuals and make special evacuation preparations, interfacing with the local and emergency medical service as necessary.

# Toxic Effects of H<sub>2</sub>S Poisoning

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM, which is .001% by volume. Hydrogen Sulfide is heavier than air (specific gravity -1.192) and is colorless and transparent. Hydrogen Sulfide is almost as toxic as Hydrogen Cyanide and is 5-6 times more toxic than Carbon Monoxide. Occupational exposure limits for Hydrogen Sulfide and other gases are compared below in Table 1. Toxicity table for  $H_2S$  and physical effects are shown in Table 2.

|             | Ta       | ble 1  |    |         |       |
|-------------|----------|--------|----|---------|-------|
| Permissible | Exposure | Limits | of | Various | Gases |

| Common Name      | Symbol | Sp. Gravity | TLV      | STEL       | IDLH    |
|------------------|--------|-------------|----------|------------|---------|
| Hydrogen Cyanide | HCN    | .94         | 4.7 ppm  | с          |         |
| Hydrogen Sulfide | H2S    | 1.192       | 10 ppm   | 15 ppm     | 100 ppm |
| Sulfide Dioxide  | so2    | 2.21        | 2 ppm    | 5 ppm      |         |
| Chlorine         | CL     | 2.45        | .5 ppm   | 1ppm       |         |
| Carbon Monoxide  | со     | .97         | 25 ppm   | 200 ppm    |         |
| Carbon Dioxide   | C02    | 1.52        | 5000 ppm | 30,000 ppm |         |
| Methane          | CH4    | .55         | 4.7% LEL | 14% UEL    |         |

## Definitions

- A. TLV- Threshold Limit Value is the concentration employees may be exposed based on a TWA {time weighted average) for eight {8} hours in one day for 40 hours in one {1} week. This is set by ACGIH {American Conference of Governmental Hygienists} and regulated by OSHA.
- B. STEL- Short Term Exposure Limit is the 15 minute average concentration an employee may be exposed to providing that the highest exposure never exceeds the OEL {Occupational Exposure Limit). The OEL for H<sub>2</sub>S is 19 PPM.
- C. IDLH -Immediately Dangerous to Life and Health is the concentration that has been determined by the ACGIH to cause serious health problems or death if exposed to this level. The IDLH for H<sub>2</sub>S

is 100 PPM.

D. TWA- Time Weighted Average is the average concentration of any chemical or gas for an eight
(8) hour period. This is the concentration that any employee may be exposed based on an TWA.

## PHYSICAL PROPERTIES OF H2S

The properties of all gases are usually described in the context of seven major categories:

COLOR ODOR VAPOR DENSITY EXPLOSIVE LIMITS FLAMMABILITY SOLUBILITY {IN WATER) BOILING POINT

ىي 💀 🖌

Hydrogen Sulfide is no exception. Information from these categories should be considered in order to provide a fairly complete picture of the properties of the gas.

### COLOR- TRANSPARENT

Hydrogen Sulfide is colorless so it is invisible. This fact simply means that you can't rely on your eyes to detect its presence. In fact that makes this gas extremely dangerous to be around.

### **ODOR- ROTTEN EGGS**

Hydrogen Sulfide has a distinctive offensive smell, similar to "rotten eggs". For this reason it earned its common name "sour gas". However,  $H_2S$ , even in low concentrations, is so toxic that it attacks and quickly impairs a victim's sense of smell, so it could be fatal to rely on your nose as a detection device.

### VAPOR DENSITY- SPECIFIC GRAVITY OF 1.192

Hydrogen Sulfide is heavier than air so it tends to settle in low-lying areas like pits, cellars or tanks. If you find yourself in a location where  $H_2S$  is known to exist, protect yourself. Whenever possible, work in an area upwind and keep to higher ground.

### EXPLOSIVE LIMITS- 4.3% TO 46%

Mixed with the right proportion of air or oxygen,  $H_2S$  will ignite and burn or explode, producing another alarming element of danger besides poisoning.

## FLAMMABILITY

Hydrogen Sulfide will burn readily with a distinctive clear blue flame, producing Sulfur Dioxide  $(S0_2)$ , another hazardous gas that irritates the eyes and lungs.

## SOLUBILITY- 4 TO 1 RATIO WITH WATER

Hydrogen Sulfide can be dissolved in liquids, which means that it can be present in any container or vessel used to carry or hold well fluids including oil, water, emulsion and sludge. The solubility of  $H_2S$  is dependent on temperature and pressure, but if conditions are right, simply agitating a fluid containing  $H_2S$  may release the gas into the air.

# BOILING POINT- {-76 degrees Fahrenheit)

Liquefied Hydrogen Sulfide boils at a very low temperature, so it is usually found as a gas.

#### **RESPIRATOR USE**

The Occupational Safety and Health Administration (OSHA) regulate the use of respiratory protection to protect the health of employees. OSHA's requirements are written in the Code of Federal Regulations, Title 29, Part 1910, Section 134, Respiratory Protection. This regulation requires that all employees who might be required to wear respirators, shall complete a OSHA mandated medical evaluation questionnaire. The employee then should be fit tested prior to wearing any respirator while being exposed to hazardous gases.

Written procedures shall be prepared covering safe use of respirators in dangerous atmospheric situations, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available respirators.

Respirators shall be inspected prior to and after each use to make sure that the respirator has been properly cleaned, disinfected and that the respirator works properly. The unit should be fully charged prior to being used.

Anyone who may use respirators shall be properly trained in how to properly seal the face piece. They shall wear respirators in normal air and then in a test atmosphere. (Note: Such items as facial hair (beard or sideburns) and eyeglass temple pieces will not allow a proper seal.) Anyone that may be expected to wear respirators should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses. Contact lenses should not be allowed.

Respirators shall be worn during the following conditions:

1 60 7

- A. Any employee who works near the top or on the top of any tank unless tests reveal less than 20 ppm of H2S.
- B. When breaking out any line where  $H_2S$  can reasonably be expected.
  - C. When sampling air in areas where  $H_2S$  may be present.
- D. When working in areas where the concentration of  $H_2S$  exceeds the Threshold Limit Value for H2S {10 ppm).
- E. At any time where there is a doubt as to the  $H_2S$  level in the area to be entered.

## **EMERGENCY RESCUE PROCEDURES**

### DO NOT PANIC!!!

#### **Remain Calm - Think**

1. Before attempting any rescue you must first get out of the hazardous area yourself. Go to a safe briefing area.

2. Sound alarm and activate the 911 system.

3. Put on breathing apparatus. At least two persons should do this, when available use the buddy system.

4. Rescue the victim and return them to a safe briefing area.

5. Perform an initial assessment and begin proper First Aid/CPR procedures.

- 6. Keep victim lying down with a blanket or coat, etc.., under the shoulders to keep airway open. Conserve body heat and do not leave unattended.
- 7. If the eyes are affected by  $H_2S$ , wash them thoroughly with potable water. For slight irritation, cold compresses are helpful.

8. In case a person has only minor exposure and does not lose consciousness totally, it's best if he doesn't return to work until the following day.

9. Any personnel overcome by  $H_2S$  should always be examined by medical personnel. They should always be transported to a hospital or doctor.

# SURFACE USE AND OPERATING PLAN

# 1. Existing Access Roads

A. All roads to the location are shown in Exhibit #6. The existing lease roads are illustrated and are adequate for travel during drilling and production operations. Upgrading existing roads prior to drilling well, will be done where necessary.

B. Directions to Location: From the intersection of Highway 82 and CR 217, go North on CR 217 for approx. 10.0 miles, continue West on 20° caliche lease rd. for approx. 2.1 miles, continue Northwest on 12° caliche lease rd for approx. 2.4 miles to South Lucky Queen 1F pad and the West side of Hamilton Federal Com 1H pad, then from Northeast pad corner go Southeast approx... 880° to North corner of pad for this location.

C. Routine grading and maintenance of existing roads will be conducted as necessary to maintain their condition as long as any operations continue on this lease.



# 1. Proposed Access Road:

Vicinity Map shows this location with existing road and 880° of new road exiting on the Northeast edge of the pad. Proposed upgrade of existing road will be done along staked centerline survey. Necessary maintenance will be done to insure traffic stays within EXISTING ROW NM-132973. The road has been constructed as follows:

- A. The Maximum width of the running surface will be 14'. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 3 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.
- B. The average grade will be less than 1%.
- C. No turnouts are planned.
- D. No culverts, cattleguard, gates, low water crossings or fence cuts are necessary.
- E. Surfacing material will consist of native caliche. Caliche will be obtained from the nearest BLM approved caliche pit located Sec. 19 T15S R29E and Sec. 34 T15S R29E.
- F. The access road as shown in Exhibit #6 is existing.

# 2. Location of Existing Wells:

Exhibit #16 shows all existing wells within a one-mile radius of this well.



## 3. Location of Existing and/or Proposed Facilities:

- A. Mack Energy Corporation will produce this well at the White Rock Federal CTB
- B. If the well is productive, contemplated facilities will be as follows:
  - 1) San Andres Completion: Will be sent to the White Rock Federal CTB located at the #1 well NWNW Sec 28 T15S R29E. The Facility is shown in Exhibit #13.
  - 2) The tank battery and facilities including all flow lines and piping will be installed according to API specifications.
  - 3) Any additional caliche will be obtained from a BLM approved caliche pit. Any additional construction materials will be purchased from contractors.
  - 4) It will be necessary to run electric power if this well is productive. Power will be run by CVE and they will send in a separate plan for power.
- C. Proposed flow lines will tren Southwest to the White Rock C1B. Howline will be a 4" poly surface line, 11,404.01" in length with a 40 psi working pressure.





## 4. Location and Type of Water Supply:

The well will be drilled with combination brine and fresh water mud system as outlined in the drilling program. The water will be obtained from commercial water stations in the area and hauled to location by transport truck over the existing and proposed access roads shown in Exhibit #6. If a commercial fresh water source is nearby, fashine may be laid along existing road ROW's and fresh water pumped to the well. No water well will be drilled on the location.

## 5. Source of Construction Materials:

All caliche required for construction of the drill pad and proposed new access road (approximately 2500 cubic yards) will be obtained from BLM approved pit located at Sec. 19 T15S R29E and Sec. 34 T15S R29E.

### 6. Methods of Handling Waste:

- A. Drill cuttings and fluids will be disposed into the steel tanks and hauled to R-360 disposal facility, permit number NM-01-0006 Located on Hwy 62 at MM 66.
- B. Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) and trucked to our Round Tank SWD #1; produced oil will be collected in steel tanks until sold.
- C. Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved local landfill. No toxic waste or hazardous chemicals will be produced by this operation.
- D. After the rig is moved out and the well is either completed or abandoned, all waste materials will be cleaned up within 30 days. In the event of a dry hole only a dry hole marker will remain.
- E. Sewage and Gray Water will be placed in container and hauled to a approved facility. Container and disposal handled by Black Hawk
- F. Drilling fluids will be contained in steel tanks using a closed loop system Exhibit #12. No pits will be used during drilling operations

# 7. Ancillary Facilities:

No airstrip, campsite or other facilities will be built as a result of the operation on this well.

## 8. Well Site Layout:

- A. The well site and elevation plat for the proposed well is shown in Exhibit #14. It was staked by Maddron Surveying, Carlsbad, NM.
- B. The drill pad layout, with elevations staked by Maddron Surveying, is shown in Exhibit #14. Dimensions of the pad are shown. Topsoil, if available, will be stockpiled per BLM specifications. Because the pad is almost level no major cuts will be required.
- C. Diagram below shows the proposed orientation of the location. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations.





### 9. Plans for Restoration of the Surface:

- A. Upon completion of the proposed operations, if the well is completed, any additional caliche required for facilities will be obtained from a BLM approved caliche pit.
- B. Plans for interim and or final remediation:
  - 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water.
  - 2) Area will be reseeded as per BLM specifications. Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds.
  - C. Exhibit #15 below shows the proposed downsized well site after Interim Reclamation. Dimensions are estimates on present conditions and are subject to change.





## 10. Surface Ownership:

The well site and lease is located entirely on Federal surface. We have notified the surface lessee of the impending operations. Bogel Limited Company, PO Box 460 Dexter, NM 88230 (575) 365-2996.

# 11. Other Information:

- A. The area around the well site is grassland and the topsoil is sandy. The vegetation is native scrub grass with sagebrush.
- B. There is no permanent or live water in the immediate area.
- C. A Cultural Resources Examination has been requested and will be forwarded to your office in the near futur

#### 12. Lessee's and Operator's Representative:

The Mack Energy Corporation representative responsible for assuring compliance with the surface use plan is as follows:

Jerry W. Sherrell Mack Energy Corporation P.O. Box 960 Artesia, NM 88211-0960 Phone (575) 748-1288 (office) jerrys@mec.com

### APD CERTIFICATION

I hereby certify that I, or person under my direct supervision, have inspected the proposed drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and the work associated with the operations proposed herein will be performed in conformity with this APD package and terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Date: 10/12/2017

Jerry W. Sherrell Signed:

Attached to Form 3160-3 Mack Energy Corporation Thunder Bay Federal Com #111 NMNM-59038 SHL : 10 FNL & 1650 FWL, NENW, Sec. 22 T15S R29E BHL : 270 FSL & 1675 FWL, SESW, Sec. 22 T15S R29E Chaves County, NM

# Mack Energy Corporation Onshore Order #6 Hydrogen Sulfide Drilling Operation Plan

# I. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards an characteristics of hydrogen sulfide (H2S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H2S detectors alarms warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile tubular are to be used, personnel well be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. The concentrations of H2S of wells in this area from surface to TD are low enough that a contingency plan is not required.

# II. H2S SAFETY EQUIPMENT AND SYSTEMS

Note: All H2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonable expected to contain H2S.

## 1. Well Control Equipment:

- A. Flare line.
- B. Choke manifold.
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
- D. Auxiliary equipment may include if applicable: annular preventer & rotating head.

Attached to Form 3160-3 Mack Energy Corporation Thunder Bay Federal Com #111 NMNM-59038 SHU : 10 FNL & 1650 FWL, NENW, Sec. 22 T15S R29E BHL : 270 FSL & 1675 FWL, SESW, Sec. 22 T15S R29E Chaves County, NM

### 2. Protective equipment for essential personnel:

A. Mark II Survive air 30-minute units located in the doghouse and at briefing areas, as indicated on well site diagram.

#### 3. H2S detection and monitoring equipment:

A. 1 portable H2S monitors positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 PPM are reached.

#### 4. Visual warning systems:

- A. Wind direction indicators as shown on well site diagram (Exhibit #8).
- B. Caution/Danger signs (Exhibit #7) shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

#### 5. Mud program:

A. The mud program has been designed to minimize the volume of H2S circulated to surface. Proper mud weight, safe drilling practices and the use of H2S scavengers will minimize hazards when penetrating H2S bearing zones.

#### 6. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- B. All clastomers used for packing and seals shall be H2S trim.

#### 7. Communication:

- A. Radio communications in company vehicles including cellular telephone and 2way radio.
- B. Land line (telephone) communication at Office.

### 8. Well testing:

A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safely and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H2S environment will use the closed chamber method of testing.

Attached to Form 3160-3 Mack Energy Corporation Thunder Bay Federal Com #111 NMNMI-59038 SHL : 10 FNL & 1650 FWL, NENW, Sec. 22 T155 R29E BHL : 270 FSL & 1675 FWL, SESW, Sec. 22 T155 R29E Chaves County, NM



There will be no drill stem testing.

· · ·



# Mack Energy Corporation Call List, Chaves County

| Artesia (575)   | Cellular     | Office   |  |
|-----------------|--------------|----------|--|
| Jim Krogman     |              | 748-1288 |  |
| Emilio Martinez | 432-934-7586 | 748-1288 |  |

# Agency Call List (575)

# Roswell

| State Police                             | 622-7200 |
|------------------------------------------|----------|
| City Police                              | 624-6770 |
| Sheriff's Office                         | 624-7590 |
| Ambulance                                | 624-7590 |
| Fire Department                          | 624-7590 |
| LEPC (Local Emergency Planning Committee | 624-6770 |
| NMOCD                                    | 748-1283 |
| Burcau of Land Management                | 627-0272 |

# **Emergency Services**

| Boots & Coots IWC     | 1-800-256-9688 or (281)931-8884 |
|-----------------------|---------------------------------|
| Cudd pressure Control | (915)699-0139 or (915)563-3356  |
| Halliburton           |                                 |
| Par Five              |                                 |
|                       |                                 |

| Flight For Life-Lubbock, TX            | (806)743-9911 |
|----------------------------------------|---------------|
| Aerocare-Lubbock, TX                   | (806)747-8923 |
| Med Flight Air Amb-Albuquerque, NM     | (505)842-4433 |
| Lifeguard Air Med Svc. Albuquerque, NM | (505)272-3115 |



U.S. Department of the Interior BUREAU OF LAND MANAGEMENT



Section 1 - General

Would you like to address long-term produced water disposal? NO

# Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

**PWD** disturbance (acres):

# **Section 3 - Unlined Pits**

# Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

**Unlined pit Monitor attachment:** 

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

**Unlined Produced Water Pit Estimated percolation:** 

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

# **Section 4 - Injection**

Would you like to utilize Injection PWD options? NO

**Produced Water Disposal (PWD) Location:** 

**PWD** surface owner:

PWD disturbance (acres):

PWD disturbance (acres):

Intention DM/D discharge volume (bbl/dav)

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

**Underground Injection Control (UIC) Permit?** 

**UIC Permit attachment:** 

# Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

# Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

## Injection well name:

# Injection well API number:

PWD disturbance (acres):

PWD disturbance (acres):

# AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# **Bond Information**

Federal/Indian APD: FED

BLM Bond number: NMB000286

**BIA Bond number:** 

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

12/18/2017

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

**Reclamation bond number:** 

**Reclamation bond amount:** 

**Reclamation bond rider amount:** 

Additional reclamation bond information attachment:

# PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

| <b>OPERATOR'S NAME:</b>    | Mack Energy Corporation             |
|----------------------------|-------------------------------------|
| LEASE NO.:                 | NMNM-59038                          |
| WELL NAME & NO.:           | Thunder Bay Federal Com 1H          |
| SURFACE HOLE FOOTAGE:      | 0010' FNL & 1650' FWL               |
| <b>BOTTOM HOLE FOOTAGE</b> | 0270' FSL & 1675' FWL               |
| LOCATION:                  | Section 22, T. 15 S., R 29 E., NMPM |
| COUNTY:                    | County, New Mexico                  |

# **Communitization Agreement**

The operator will submit a Communitization Agreement to the Roswell Field Office, 2909 West 2<sup>nd</sup> Street Roswell, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

• In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> <u>on the sign.</u>

### Provide NMOCD Gas Capture Plan (GCP) Form:

Well(s)/Facility information:

- 1. Name of facility
- 2. Wells that will be located (new and future) at this facility
  - a. Well name and number
  - b. Well API number
  - c. Well location, Sect, T, R, Footages, county, state
  - d. Expected IP gas rate, Mcfpd of each well
  - e. First planned production date for well(s) that are developed from this facility

Page 1 of 6

# I. DRILLING

# A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

### ☐ Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201. During office hours call (575) 6270272. After office hours call (575) 627-0205.

- 1. A Hydrogen Sulfide (H2S) Drilling Plan shall be activated prior to drilling out the surface shoe. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

# B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

### Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

### Medium Cave/Karst

Possibility of lost circulation in the Queen and San Andres formations.

- 1. The **9-5/8** inch surface casing shall be set at approximately **200** feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
  - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
  - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

# Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

2. The minimum required fill of cement behind the  $7 \times 5-1/2$  inch production casing is:

Cement to surface. If cement does not circulate, contact the appropriate BLM office.

3. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

# C. **PRESSURE CONTROL**

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
  - a. For surface casing only: If the BOP/BOPE is to be tested against casing, the wait on cement (WOC) time for that casing is to be met (see WOC statement at start of casing section). Independent service company required.
- 3. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
  - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- a. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

# D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

# E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

# JAM 102717

Page 6 of 6

X

# Approval Date: 12/18/2017

•

# PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME: Mack Energy Corporation LEASE NO.: NMNM-0-557563 and NMNM-059038 Hamilton Fed. Com #1H and Thunder Bay Fed. Com #1H Section 15, T. 15 S., R. 29 SURFACE HOLE E., NMPM LOCATION: Section 22, T. 15 S., R. 29 E., NMPM COUNTY: Chaves County, New Mexico

### 1. GENERAL PROVISIONS

Approval of the APD does not warrant that any party holds equitable or legal title. Any request for a variance shall be submitted to the Authorized Officer on Sundry Notice (Form 3160-5).

For BLM's surface operating standards and guidelines, refer to: <u>The Gold Book</u>, Fourth Edition - Revised 2007. To obtain a copy free of charge contact the Roswell Field Office (575) 627-0272 or visit BLM on the web. All construction, operations, and reclamation shall follow the Onshore Oil and Gas Operations as described in the 43 CFR part 3160.

The Operator shall submit a Sundry Notice (Form 3160-5) to the Bureau of Land Management, Roswell Field Office (address above) for approval prior to beginning any new surface-disturbing activities or operations that are not specifically addressed and approved by this APD.

A site facility diagram and a site security plan shall be filed no later than 60 calendar days following first production (Onshore Order 3, Section III, I. and 43 CFR 3162.7-5).

#### 2. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD (Filing of a Sundry Notice is required for this 60 day extension).

### 3. JUISTICTIONAL WATERS of the U.S.

The operator shall obtain appropriate permits from the U.S. Army Corps of Engineers prior to discharge or dredge and fill material into waters of the United States in accordance with Section 404 of the Clean Water Act. Contact The U.S. Army Corps of Engineers regulatory New Mexico Branch Office, 4101 Jefferson Plaza NE, Albuquerque, NM 87109-3435 at (505) 342-3678 or Email: <u>CESPA-RD-NM@usace.army.mil</u> if you have questions.

### 4. ARCHAEOLOGICAL, PALEONTOLOGICAL & HISTORICAL SITES

Any cultural and/or paleontological resource discovered inadvertently by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

### 5. HUMAN REMAINS AND OBJECTS OF CULTURAL PATRIMONY

The operator shall comply with procedures established in the Native American Graves Protection and Repatriation Act (NAGPRA) to protect such cultural items as human remains, funerary objects, sacred objects, and objects of cultural patrimony that are discovered inadvertently during project implementation. In the event that any of the cultural items listed above are discovered during the course of project work, the proponent shall immediately halt the disturbance and contact the BLM

within 24 hours for instructions. The proponent or initiator of any project shall be held responsible for protecting, evaluating, reporting, excavating, treating, and disposing of these cultural items according to the procedures established by the BLM in consultation with Indian Tribes.

#### 6. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations (access road and/or well pad). Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

### 7. CAVE AND KARST

Any Cave or Karst feature discovered by the operator or by any person working on the operator's behalf shall immediately report the feature to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. During drilling, previously unknown cave and karst features could be encountered. If a void is encountered while drilling and a loss of circulation occurs, lost drilling fluids can directly contaminate groundwater recharge areas, aquifers, and groundwater quality. Drilling operations can also lead to sudden collapse of underground voids.

To mitigate or lessen the probability of impacts associated with the drilling and production of oil and gas wells in karst areas, the guidelines listed in Appendix 3, Practices for Oil and Gas Drilling and Production in Cave and Karst Areas, as approved in the Roswell Resource Management Plan Amendment of 1997, page AP3-4 through AP 3-7 shall be followed.

A more complete discussion of the impacts of oil and gas drilling can be found in the *Dark Canyon Environmental Impact Statement of 1993*, published by the U.S. Department of the Interior, Bureau of Land Management.

#### 8. CONSTRUCTION

NOTIFICATION: The BLM shall administer compliance and monitor construction of the access road and well pad. Notify Natural Resource Specialist, Forrest Mayer at (575) 627-0210 or the Roswell Field Office at (575) 627-0272 <u>at least three (3)</u> working days prior to commencing construction of the access road and/or well pad.

A complete copy of the <u>approved</u> APD and the attached Conditions of Approval (COAs) **shall be kept on the well's location** for reference upon inspections.

Construction over and/or immediately adjacent to existing pipelines shall be coordinated, and in accordance with, the relevant pipeline companies' policy.

Any trench left open for (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, an agency approved monitor shall walk the entire length of the open trench and remove all trapped fauna. The bottom surface of the trench will be disturbed a minimum of 2 inches in order to arouse any buried fauna. All fauna will be released a minimum of 100 yards from the trench.

For trenches left open for (8) hours or more, earthen escape ramps (built at nor more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench. Structures will also be authorized within the trench. Metal structures will not be authorized. Structures used as escape ramps will be placed at no more than a 30 degree slope and spaced no more than 500 feet apart.

#### 9. TOPSOIL

When saturated soil conditions exist on access roads or location, construction shall be halted until soil material dries out or is frozen sufficiently for construction to proceed without undue damage and erosion to soils, roads and locations.

Topsoil shall be stripped following removal of vegetation during construction of well pads, pipelines, roads, or other surface facilities. This shall include all growth medium - at a minimum, the upper 2-6 inches of soil - but shall also include stripping of any additional topsoil present at a site, such as indicated by color or texture. Stripping depth may be specified during the
onsite inspection. Stripped topsoil shall be stored separately from subsoil or other excavated material and replaced prior to interim seedbed preparation. No topsoil shall be stripped when soils are moisture-saturated or frozen below the stripping depth.

The topsoil will not be used to construct the containment structures or earthen dikes that are on the outside boundaries of the constructed well pad, tanks, and storage facilities.

Each construction area is site specific as to topsoil depth. It is the operator's responsibility to ensure that topsoil, caliche, or spoils are not mixed together.

(Pads): topsoil will be stripped and stored in separate piles from the spoils pile. They can be stored on opposite or adjacent sides. If topsoil and spoils must be stored on the same pad side together they shall be no closer than toe to toe, not overlapping. Each pile shall be kept within 30 feet of the pad's side. 100% of the topsoil will be used for both interim and final reclamation. 100% of topsoil will be respread over the disturbed areas during reclamation.

(Roads): topsoil shall be stripped in such a way to follow the road's edge outside of the surfacing or drivable area. During final reclamation, after removal of surface material and recontouring, 100% of topsoil will be respread over the disturbed areas during reclamation. Vegetation in the topsoil will help hold re-seeding, moisture content, and reduce erosion.

## 10. WELL PAD SURFACING

The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational need. Surfacing of the well pad is not required. If the operator elects to surface the well pad, the surfacing material will be required to be removed at the time of reclamation.

### Cattleguards

An appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at fence crossing(s). Any existing cattle guard(s) on the access road shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guard(s)

that are in place and are utilized during lease operations. Gates or cattle guards on public lands will not be locked or closed to public use unless closure is specifically determined to be necessary and is authorized in writing by the authorized officer. A gate shall be constructed and fastened securely to H-braces.

## Fence Requirement

The operator shall notify the private surface landowner or the grazing allotment operator prior to crossing any fence(s). Where entry is required across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting.

#### 11. PRODUCTION

#### Storage

Fiberglass storage tanks are **not** permitted for the storage of production.

# Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim reclamation and re-vegetation of the well location.

#### **Containment Structures**

All production facilities shall have a lined containment structure large enough to contain <u>110% of the largest Tank</u> (PLUS) 24 hours of production (43 CFR 3162.5-1) Environmental Obligations, unless more stringent protective requirements are deemed necessary by the Authorized Officer.

#### Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat nonreflective paint color, <u>OIL GREEN</u> (Standard Environmental Color Chart June 2008).

## Completion Report

In accordance with 43 CFR 3160, Form 3160-4 (Well Completion or Re-completion Report and Log) must be submitted to the Bureau of Land Management, Roswell Field Office within 30 days after completion of the well or producer. Copies of all open hole and

cased hole logs, core descriptions, core analyses, well test data, geologic summaries, sample descriptions, formation test reports, stimulation reports, directional survey (if applicable), and all other surveys or data obtained and compiled during the drilling, completion, and/or work over operations, shall be included with Form 3160-4.

#### 12. INTERIM RECLAMATION

Reclamation earthwork for interim and/or final reclamation shall be completed within 6 months of well completion or well plugging (weather permitting), and shall consist of: 1) backfilling pits, 2) re-contouring and stabilizing the well site, access road, cut/fill slopes, drainage channels, utility and pipeline corridors, and all other disturbed areas, to approximately the original contour, shape, function, and configuration that existed before construction (any compacted backfilling activities shall ensure proper spoils placement, settling, and stabilization, 3) surface ripping, prior to topsoil placement, to a depth of 18-24 inches deep on 18-24 inch centers to reduce compaction, 4) final grading and replacement of all topsoil so that no topsoil's remains in the stockpile, 5) seeding in accordance with reclamation portions of the APD and these COA's.

Any subsequent re-disturbance of interim reclamation shall be reclaimed within six (6) months by the same means described above.

# Prior to conducting interim reclamation, <u>the operator is</u> required to:

- Submit a Sundry Notices and Reports on Wells (Notice of Intent), Form 3160-5, prior to conducting interim reclamation.
- Contact BLM at least three (3) working days prior to conducting any interim reclamation activities, and prior to seeding.

During reclamation, the removal of caliche is important to increasing the success of re-vegetating the site. Removed caliche may be used in road repairs, fire walls or for building other roads and locations. In addition, in order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing re-vegetated areas for

production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be re-vegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

Use a certified noxious weed-free seed mixture. Use seed tested for viability and purity in accordance with State law(s) within nine months prior to purchase. Use a commercial seed mixture certified or registered and tagged in accordance with State law(s). Make the seed mixture labels available for BLM inspection.

# 13. SEED MIX:

SEE ATTACHED SEED MIX.

| WELL NAME            | ECOSITE (ACCESS | ECOSITE (PAD) |
|----------------------|-----------------|---------------|
|                      | ROAD)           |               |
| HAMIOTON FEDERAL COM | SHALLOW SD-3    | SHALLOW SD-3  |
| #1H,                 |                 |               |
| THUNDER BAY FEDERAL  |                 |               |
| COM #1H              |                 |               |

#### 14. FINAL ABANDONMENT

A. Upon abandonment of the well a Notice of Intent for Plug and Abandonment describing plugging procedures. Followed within 30 days you shall file with this office, a Subsequent Report of Abandonment (Form 3160-5). To be included with this report is where the plugs were placed; volumes of cement used and well bore schematic as plugged.

**B.** On private surface/federal mineral estate land the reclamation procedures on the road and well pad shall be accomplished in accordance with the Private Surface Land Owner agreements and a copy of the release is to be submitted upon abandonment.

C. The Operator shall promptly plug and abandoned each newly completed, re-completed or producing well which is not capable of producing in paying quantities. No well may be temporarily abandoned for more than 30 days without prior approval from this office. When justified by the Operator, BLM may authorize additional delays, no one of which may exceed an additional 12 months. Upon removal of drilling or producing equipment form the site of a well which is to be permanently abandoned, the surface of the lands disturbed shall be reclaimed in accordance with an approved Notice of Intent for final reclamation.

**D.** Final reclamation shall include: the removal of all solid waste, trash, surfacing materials, storage facilities and all other related equipment, flow lines, and meter housing, power poles, guy wires, and all other related power materials. All disturbed areas, i.e. cuts and fills, shall be re-contoured to their original surroundings. 100% of topsoil shall be used to resurface all disturbed areas including access roads. A label of the seed mix used shall be submitted with the Final Abandonment Notice (FAN) for review once reclamation is complete.

# **15.** PIPELINE PROTECTION REQUIREMENT

Precautionary measures shall be taken by the operator during construction of the access road to protect existing pipelines that the access road will cross over. An earthen berm; 2 feet high by 3 feet wide and 14 feet across the access road travelway (2' X 3' X 14'), shall be constructed over existing pipelines. The operator shall be held responsible for any damage to existing pipelines. If the pipeline is ruptured and/or damaged the operator shall immediately cease construction operations and repair the pipeline. The operator shall be held liable for any unsafe construction operations that threaten human life and/or cause the destruction of equipment.

# 16. WILDLIFE PROTECTION MEASURES - Best Management Practices (BMPs)

## Wildlife Mortality - General

The operator will notify the Bureau of Land Management (BLM) authorized officer and nearest Fish and Wildlife Service (FWS) Law Enforcement office within 24 hours, if the operator discovers a dead or injured federally protected species (i.e., migratory bird species, bald or golden eagle, or species listed by the FWS as threatened or endangered) in or adjacent to a pit, trench, tank, exhaust stack, or fence. (If the operator is unable to contact the FWS Law Enforcement office, the operator must contact the nearest FWS Ecological Services office.)

1. Closed top tanks are required for any containment system. All tanks are required to have a closed top tank.

2. Chemical and Fuel Secondary Containment Systems Chemical and Fuel Secondary Containment and Exclosure Screening - The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an

impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. Closed-top tanks are required for any secondary containment systems.

## 3. Open-Vent Exhaust Stacks

Open-Vent Exhaust Stack Exclosures - The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

#### 17. Wastes, Hazardous and Solid

Waste materials produced during all phases of operation will be disposed of promptly in an approved manner so it will not impact the air, soil, water, vegetation or animals. "Waste" means all discarded matter including, but not limited to, human waste, trash, garbage, refuse, oil drums, petroleum products, ashes and equipment. All liquid waste, completion fluids and drilling products associated with oil and gas operations will be contained and then removed and deposited in an approved disposal facility. Portable toilets will remain on site throughout well pad construction, drilling and reclamation.

The operator and contractors shall ensure that all use, production, storage, transportation and disposal of hazardous materials, solid wastes and hazardous wastes associated with the drilling, completion and production of this well will be in accordance with all applicable existing or hereafter promulgated federal, state and local government rules, regulations and guidelines. All project related activities involving hazardous materials will be conducted in a manner to minimize potential environmental impacts. A file will be maintained onsite containing current Safety Data Sheets (SDS) for all chemicals, compounds and/or substances which are used in the course of construction, drilling, completion and production operations.

# 18. SURFACE WATER PROTECTION MEASURES - Best Management Practices (BMPs)

A containment structure or earthen dike shall be constructed and maintained on south, east, and west outside boundary of the well pad in order to protect the nearby ephemeral drainage. The containment structure or earthen dike is required so that if oilfield waste contaminant or product contaminant were leaked, spilled, and or released upon the well pad the oilfield waste contaminant or product contaminant shall be contained on the well pad. The containment structure or earthen dike shall be constructed two (2) feet high (the containment structure or earthen dike can be constructed higher than the two (2) feet high minimum). The containment structure or earthen dike shall be constructed and maintained during the drilling phase, the production phase and for the life of the well. During interim reclamation, if the surface area of the constructed well pad is reduced then the original constructed containment structure or earthen dike and a portion of the constructed well pad will be excavated and removed. During interim reclamation, the containment structure or earthen dike will then be reconstructed on the outside boundaries of the reduced in size constructed well pad. Topsoil will not be used to construct the containment structure. Any water erosion that may damage the well pad, containment structure or earthen dike during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.