1625 N French Dr. Hobbs, NM 88240 Phone (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St. Artesia, NM 88210 Phone: (\$75) 748-1283 Fax: (\$75) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone; (505) 334-6178 Fax: (505) 334-6170

State of New Mexico

Energy, Minerals & Natural Resources Department

Revised August 1, 2011

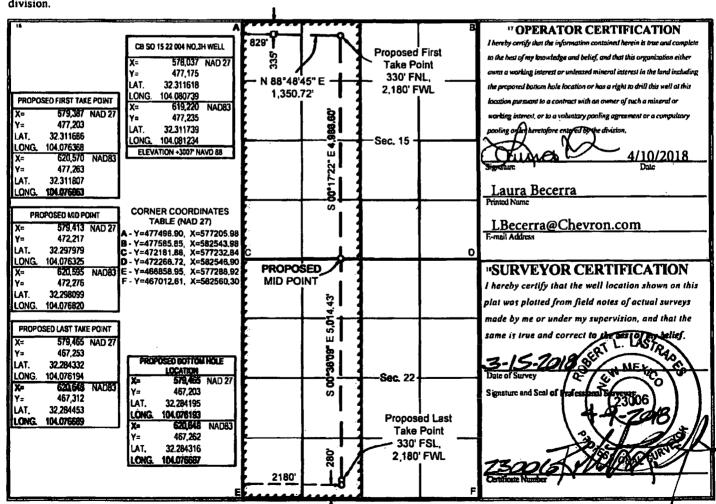
Submit one copy to appropriate

OIL CONSERVATION DIVISION

MM OIL CONSERVATION

1220 South St. Francis Dr. ARTESIA DISTRICT

District Office


Form C-102

Santa Fe. NM 87505

☐ AMENDED REPORT

PLAT PROFINANC GE; WOLFCAMP (G	⁶ Well Number 3H ⁹ Elevation 3007'
Fool Name	⁶ Well Number 3H ⁹ Elevation 3007'
GE; WOLFCAMP (G	⁶ Well Number 3H ⁹ Elevation 3007'
	3H * Elevation 3007'
	⁹ Elevation 3007'
	3007'
from the East/We	est line County
829' WEST	T EDDY
ice	
from the East/We	est line Count
180' WES	T EDDY
	from the East/We

division.

CONFIDENTIAL - TIGHT HOLE DRILLING PLAN PAGE: 1

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	KBTVD	MD
Castille	2276	758	
Lamar	435	2599	-
Bell	398	2636	
Cherry	-430	3464	
Brushy	-1638	4672	
Bone Spring Lime	-3140	6174	
Avalon	-3179	6213	
First Bone Spring	-4113	7147	
Second Bone Spring	-4913	7947	
Third Bone Spring	-6123	9157	
Wolfcamp A	-6413	9447	<u> </u>
Lateral TVD Wolfcamp A	-6537		20,000

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest	Expected Base of Fresh Water	450
Water	Castille	758
Water	Cherry Canyon	3464
Oil/Gas	Brushy Canyon	4672
Oil/Gas	First Bone Spring	7147
Oil/Gas	Second Bone Spring	7947
Oil/Gas	Third Bone Spring	9157
Qil/Gas	Wolfcamp A	9447

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 5000 psi rig stack (see proposed schematic). Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UHS Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

4. CASING PROGRAM

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	450'	17-1/2"	13-3/8"	54.5#	J-55	STC	New
Intermediate	0'	9,050'	12-1/4"	9-5/8"	43.5#	L-80	LTC	New
Production	0'	20.000'	8 1/2"	5 1/2"	20.0#	P-110	TXP	New

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

450' 9,050'

Internediate Casing: Production Casing:

20,000' MD

		·-		
Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.43	6.97	2.77	1.78
Intermediate	1.85	2.32	2.27	2.32
Production	1.11	1.52	2.00	1.21

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Prod
Burst Design	Surr	int	Prod
Pressure Test- Surface, Int, Prod Csg	Х	Х	X
P external: Water			1
P internal: Test psi + next section heaviest mud in csg			
Displace to Gas- Surf Csg	X		
P external: Water			
P internal: Dry Gas from Next Csg Point			
Frac at Shoe, Gas to Surf- Int Csg		Х	
P external: Water			
P internal: Dry Gas, 15 ppg Frac Gradient			
Stimulation (Frac) Pressures- Prod Csg			X
P external: Water			
P internal: Max inj pressure w/ heaviest injected fluid		1	
Tubing leak- Prod Csg (packer at KOP)			X
P external: Water			
P internal: Leak just below surf, 8.7 ppg packer fluid			
Collapse Design			
Full Evacuation	Х	X	X
P external: Water gradient in cement, mud above TOC			
P internal: none			
Cementing- Surf, Int, Prod Csg	X	Х	Х
P external: Wet cement			
P internal: water			
Tension Design			
100k lb overpull	X	X	X

5. CEMENTING PROGRAM

Slurry	Туре	Cemnent Top	Cement Bottom	Weight	Yield	OH %Excess	Sacks	Water
Surface				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0'	450'	14.8	1.336	10	257	6.423
Intermediate								
Stage 2 Lead	Class C	0'	1,640'	11.9	2.57	10	234	14.73
Stage 2 Tail	Class C	1,640'	2,640'	14.8	1.337	10	259	6.42
DV Tool		2,6	40'					
Stage 1 Lead	Class C	2,640'	8,050'	11.9	2.57	10	725	14.73
Stage 1 Tail	Class C	8,050'	9,050'	14.8	1.337	10	272	6.42
Production								
Lead	Class C	0'	8,000'	11.9	2.466	0	822	14.12
Tail	Class C	8,000'	19,000'	14.8	1.341	10	2066	5.40
Acid Soluable Tail	Class H	19,000'	20,000'	15	2.189	10	115	9.57

1. Final cement volumes will be determined by caliper.

2. Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

3. Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

CONFIDENTIAL - TIGHT HOLE
DRILLING PLAN
PAGE: 3

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	450'	Spud Mud	8.3 - 10	32 - 34	NC - NC
450'	9,050'	OBM	8.8 - 10.4	50 -70	5.0 - 10
9.050'	20,000'	ОВМ	9.5 - 13	50 -70	5.0 - 10

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

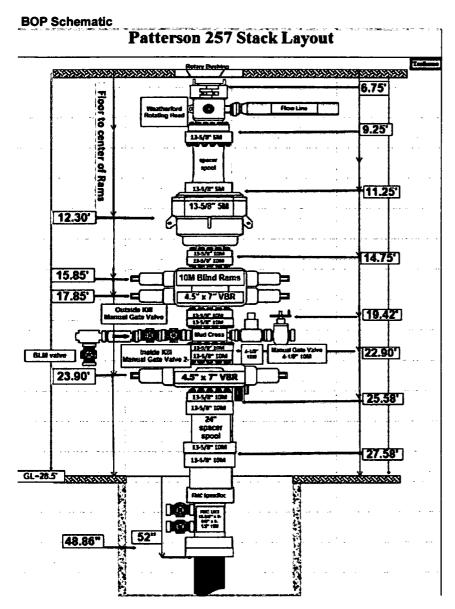
A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

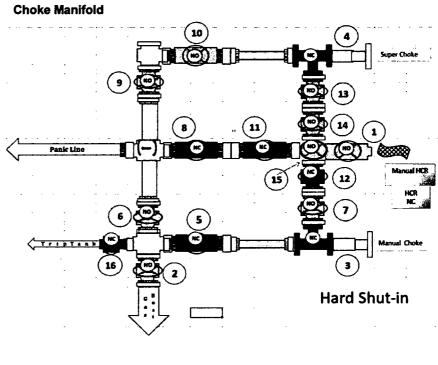
Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated — a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:


- a. Drill stem tests are not planned.
- b. The logging program will be as follows:


TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudlog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int CSG & Prod	While Drilling	TBD

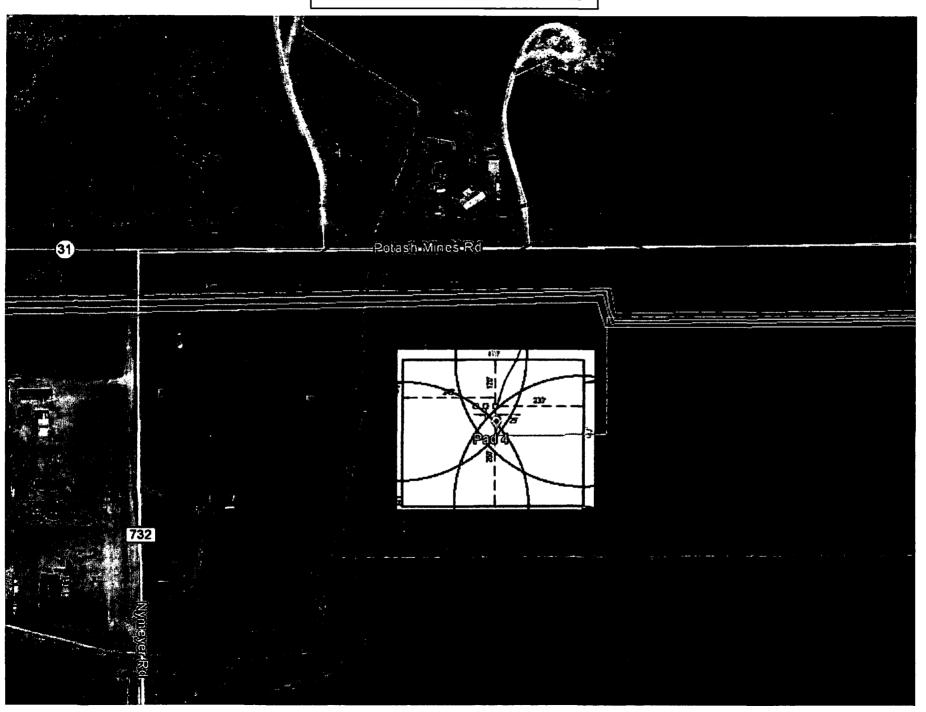
- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

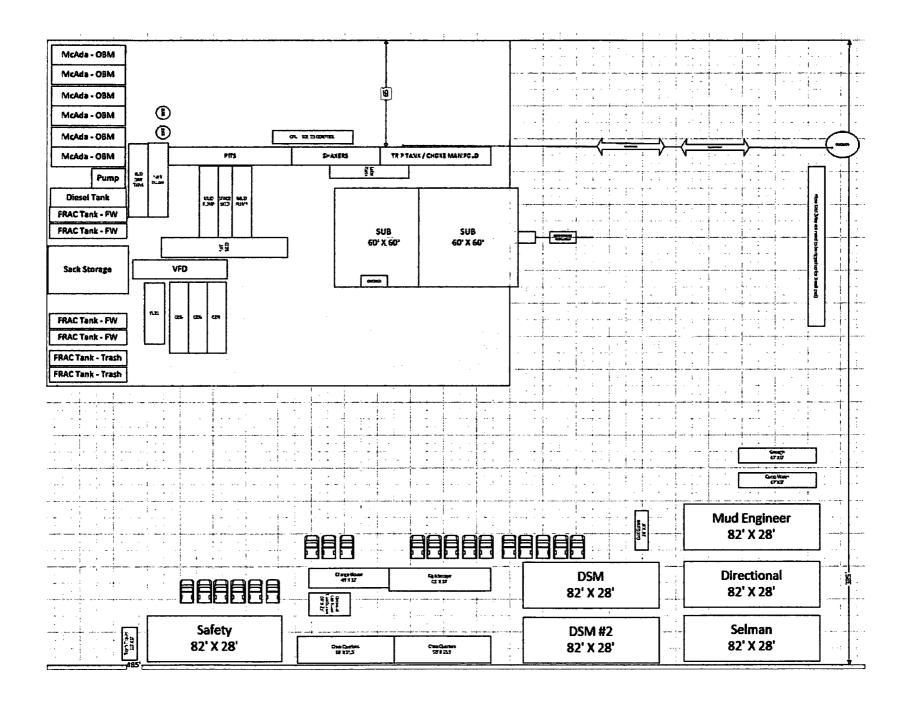
8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

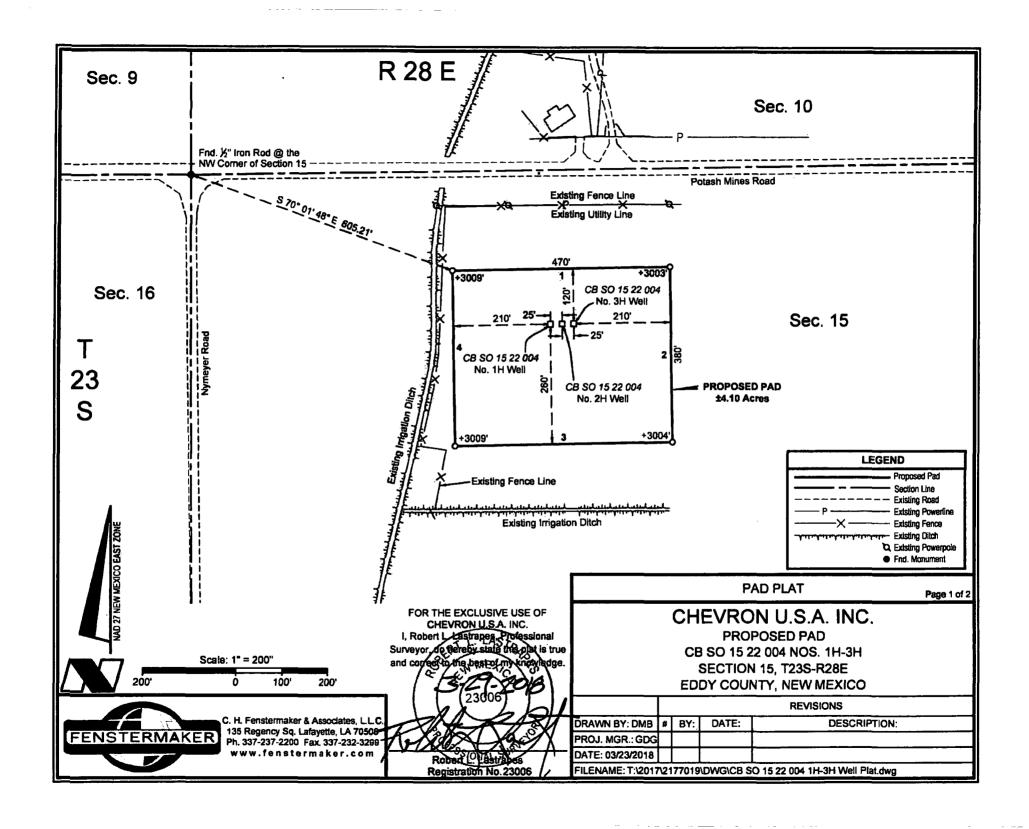
No abnormal Pressures anticipated. Reference Attached H2S Contingency Plan.

CONTITECH RUBBER No:QC-DB- 231/ 2014 Industrial Kft.

14/119 Page:


Ontinental ⅓


ContiTech


Hose Data Sheet

CRI Order No.	538332
Customer	ContiTech Oil & Marine Corp.
Customer Order No	4500412631 CBC544771, CBC544769, CBC544767, CBC544763, CBC544768, CBC544745, CBC544744, CBC544746
Item No.	1
Hose Type	Flexible Hose
Standard	API SPEC 16 C
Inside dia in inches	3
Length	45 ft
Type of coupling one end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOURC/W BX155 ST/ST INLAID R.GR.
Type of coupling other end	FLANGE 4.1/16" 10KPSI API SPEC 17D SV SWIVEL FLANGE SOUR C/W BX155 ST/ST INLAID R.GR.
H2S service NACE MR0175	Yes
Working Pressure	10 000 psi
Design Pressure	10 000 psi
Test Pressure	15 000 psi
Safety Factor	2,25
Marking	USUAL PHOENIX
Cover	NOT FIRE RESISTANT
Outside protection	St.steel outer wrap
Internal stripwound tube	No
Lining	OIL + GAS RESISTANT SOUR
Safety clamp	Yes
Lifting collar	Yes
Element C	Yes
Safety chain	Yes
Safety wire rope	No
Max.design temperature [°C]	100
Min.design temperature [°C]	-20
Min. Bend Radius operating [m]	0,90
Min. Bend Radius storage [m]	0,90
Electrical continuity	The Hose is electrically continuous
Type of packing	WOODEN CRATE ISPM-15

Printed: TIRETECH2\BacsaL - 2014.03.27 16:50:38

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

NOTE

Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

NOTE:

Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance, New Mexico One Call www.nmonecali.org

COURSE	BEARING	DISTANCE
1	N 88" 54' 02" E	470.00'
2	S 01° 05' 58" E	380.00'
3	S 88° 54' 02" W	470.00'
4	N 01° 05' 58" W	380.00'

NW PAD CORNER			N	E PAD CORN	ER
X=	577,775	NAD 27	X=	578,245	NAD 27
Y=	477,290		Y=	477,299	i
LAT.	32.311936		LAT.	32.311958	
LONG.	104.081587			104.080066	
X=	618,957	NAD83	X=	619,427	NAD83
Y=	477,350		Y≂	477,359	
LAT.	32.312057		LAT.	32.312078	ı
LONG.	104.082083		LONG.	104.080561	
ELEVA	TION +3009' N	ELEVA	TION +3003' N	AVD 88	
S	V PAD CORN	ER	SE PAD CORNER		
X=	577,782	NAD 27	X=	578,252	NAD 27
Y=	476,910		Y≂	476,919	
LAT.	32.310892		LAT.	32.310913	
LONG.	104.081566		LONG.	104.080045	
X=	618,965	NAD83	X=	619,435	NAD83
Y=	476,970		Y=	476,979	
LAT.	32.311012		LAT.	32.311034	
LONG.	104.082062		LONG.	104.080541	
ELEVA	TION +3009' N	88 GVA	ELEVA	TION +3004' N	88 DVA

CB SO 15 22 004			CB SO 15 22 004			CB SO 15 22 004		
No. 1H Well			No. 2H Well			No. 3H Well		
X=	577,987	NAD 27	X=	578,012	NAD 27	X=	578,037	NAD 27
Y=	477,174		Y=	477,175		Y=	477,175	
LAT.	32.311616		LAT.	32.311617		LAT.	32.311618	
LONG.	104.080901		LONG.	104.080820		LONG.	104,080739	
X=	619,170	NAD83	X=	619,195	NAD83	X=	619,220	NAD83
Y≖	477,234		Y=	477,234		Y=	477,235	
LAT.	32.311737		LAT.	32.311738		LAT.	32.311739	
LONG.	104.081396		LONG.	104,081315		LONG.	104.081234	
ELEVATION +3006' NAVD 88			ELEVATION +3006 NAVD 88			ELEVATION +3007' NAVD 68		

FOR THE EXCLUSIVE USE OF CHEVRON U.S.AANC

Surveyor, do hereby state this past is and correct to the Mast of The Knewled

-23.006 2-2010 2-2010

Robert L. Lastrapes
Registration No. 23006

PAD PLAT

Page 2 of 2

CHEVRON U.S.A. INC.

PROPOSED PAD CB SO 15 22 004 NOS. 1H-3H SECTION 15, T23S-R28E EDDY COUNTY, NEW MEXICO

	REVISIONS						
DRAWN BY: DMB	#	BY:	DATE:	DESCRIPTION:			
PROJ. MGR.: GDG							
DATE: 03/23/2018	ť						
EII ENAME: T:\2017	121	77010	IDWGICE SC	15 22 004 1H-3H Well Plat dwg			

C. H. Fenstermaker & Associates, L.L.C. 135 Regency Sq. Lafayette, LA 70508 Ph. 337-237-2200 Fax. 337-232-3299 www.fenstermaker.com