NMOCD Artesia

FORM APPROVED Form 3160 3 OMB No 1004-0137 Expires October 31, 2014 (March 2012) UNITED STATES Lease Senal No DEPARTMENT OF THE INTERIOR NMNM131583 **BUREAU OF LAND MANAGEMENT** 6 If Indian, Allotee of Tribe Name APPLICATION FOR PERMIT TO DRILL OR REENTER 7 If Unit or CA Agreement, Name and No DRILL REENTER la Type of work & Lease Name and Well No OTTÁWA FEDERAL COM 1H Oil Well Gas Well Other Single Zone Multiple Zone Type of Well 9 API Well No Name of Operator MACK ENERGY CORPORATION 13837 30-005-64 3b Phone No (include area code) 3a Address 10, Field and Pool, or Exploratory 11344 Lovington HWY Artesia NM 88211 (575)748-1288 ROUND TANK / SAN ANDRES 11 Sec T R M or Blk and Survey or Area Location of Well (Report location clearly and in accordance with any State regiarements *) At surface SWSW / 660 FSL / 355 FWL / LAT 32 995992 / LONG -104 0580642 SEC 20 / T15S / R29E / NMP At proposed prod zone SWSW / 5 FSL / 355 FWL / LAT 32 9797558 / LONG -104'0582943-12 County or Parish 13 State 14 Distance in miles and direction from nearest town or post office* **CHAVES** NM Distance from proposed* 17 Spacing Unit dedicated to this well 16 No of acres in leas location to nearest 355 feet property or lease line, ft (Also to nearest drig unit line, if any) 400 18 Distance from proposed location* to nearest well, drilling, completed, 1145 feet applied for, on this lease, ft 20 BLM/BIA Bond No on file 19 Proposed Depth 3235 feet / 8084 feet FED NMB000286 22. Approximate date work will start* 21 Elevations (Show whether DF, KDB, RT, GL, etc.) 23 Estimated duration 07/01/2018/ 3757 feet 20 days Attachments The following, completed in accordance with the requirements of Onshore Oil and Gas Order No 1, must be attached to this form 1 Well plat certified by a registered surveyor Bond to cover the operations unless covered by an existing bond on file (see Item 20 above) 2. A Drilling Plan 3 A Surface Use Plan (if the location is on National Forest System Lands, the Operator certification SUPO must be filed with the appropriate Forest-Service Office) Such other site specific information and/or plans as may be required by the Name (Printed/Typed) 25 Signature Deana Weaver / Ph (575)748-1288 03/19/2018 (Electronic-Submission) Title Production Clerk Approved by (Signature) Name (Printed/Typed) Date Ruben J Sanchez / Ph (575)627-0250 04/12/2018 (Electronic Submissi Office

Application approval does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon Conditions of approval, if any, are attached

ROSWELL

Assistant Field Manager Lands & Minerals

Title 18 USC Section 1001 and Title 43 USC Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction

(Continued on page 2)

*(Instructions on page 2)

Droval Date: 04/12/2018

NM OIL CONSERVATION ARTESIA DISTRICT

APR 18 2018

RW4-19-18 RECEIVED
WSPV

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165 3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165 4). Contact the above listed Bureau of Land Management office for further information.

Geologic Conditions of Approval

Ensure surface casing is set in a competent bed at an approximate depth of 200 feet. If salt is encountered, set casing at least 25 feet above the salt. An H2S contingency plan is required for this specific APD. At this time, there are reports of H2S releases greater than 100 ppm in the immediate area. There is possibility of lost circulation in the Queen and San Andres Formations. The location of the proposed well is within a medium potential for the occurrence of karst type features.

IIM OIL CONSERVATION

ARTESIA DISTRICT

APR 18 2018

PECOS DISTRICT DRILLING OPERATIONS CONDITIONS OF APPROVAL

RECEIVED

OPERATOR'S NAME: | Mack Energy Corporation

LEASE NO.: | NMNM-131583

WELL NAME & NO.: Ottawa Federal Com 1H SURFACE HOLE FOOTAGE 0660' FSL & 0355' FWL

BOTTOM HOLE FOOTAGE | 0005' FSL & 0355' FWL Sec. 29, T. 15 S, R 29 E

LOCATION. | Section 20, T. 15 S., R 29 E., NMPM

COUNTY. | County, New Mexico

The Gamma Ray and Neutron well logs must be run from total depth to surface and e-mailed to Chris Bolen at <a href="maileo-color:col

Communitization Agreement

The operator will submit a Communitization Agreement to the Roswell Field Office, 2909 West 2^{nd} Street Roswell, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request

If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163 1

In addition, the well sign shall include the surface and bottom hole lease numbers When the Communitization Agreement number is known, it shall also be on the sign

I. DRILLING

A DRILLING OPERATIONS REQUIREMENTS

Page 1 of 5

The BLM is to be notified in advance for a representative to witness

- a Spudding well (minimum of 24 hours)
- b Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c BOPE tests (minimum of 4 hours)

☐ Chaves and Roosevelt Counties

Call the Roswell Field Office, 2909 West Second St , Roswell NM 88201 During office hours call (575) 6270272 After office hours call (575) 627-0205

- 1 Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- 2 Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3 Floor controls are required for 3M or Greater systems These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities Rig floor is defined as the area immediately around the rotary table, the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area
- The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#) Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin.

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer

Medium Cave/Karst

Possibility of lost circulation in the Queen and San Andres formations.

- 1 The 9-5/8 inch surface casing shall be set at approximately 200 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface If salt is encountered, set casing at least 25 feet above the salt.
 - a If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job
 - b Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength,

Page 3 of 5

whichever is greater

d If cement falls back, remedial cementing will be done prior to drilling out that string

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

- 2 The minimum required fill of cement behind the $7 \times 5-1/2$ inch production casing is
 - Cement to surface If cement does not circulate, contact the appropriate, BLM office
- If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C PRESSURE CONTROL

- 1 All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No 2 and API 53
- 2 Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi (Installing 3M, testing to 2,000 psi)
- 3 The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests
 - a In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**
 - b The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE

If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- c The results of the test shall be reported to the appropriate BLM office
- d All tests are required to be recorded on a calibrated test chart A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2 III D shall be followed

E WASTE MATERIAL AND FLUIDS

All waste (i e drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations

JAM 040318

Page 5 of 5

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME MACK ENERGY CORPORATION

LEASE NO. NMNM-131583

WELL NAME & NO OTTAWA FEDERAL COM #1H

SURFACE HOLE [660] ' F [S] L [355] ' F [W]

FOOTAGE L

LOCATION Section 20, T 15 S , R 29 E ,

NMPM

COUNTY Chaves County, New Mexico

1 GENERAL PROVISIONS

Approval of the APD does not warrant that any party holds equitable or legal title Any request for a variance shall be submitted to the Authorized Officer on Sundry Notice (Form 3160-5)

For BLM's surface operating standards and guidelines, refer to .

The Gold Book, Fourth Edition - Revised 2007 To obtain a copy free of charge contact the Roswell Field Office (575) 627-0272 or visit BLM on the web at

http //www blm.gov/wo/st/en/prog/energy/oil_and_gas/best_managem
ent practices/gold book html

All construction, operations, and reclamation shall follow the Onshore Oil and Gas Operations as described in the 43 CFR part 3160

The Operator shall submit a Sundry Notice (Form 3160-5) to the Bureau of Land Management, Roswell Field Office (address above) for approval prior to beginning any new surface-disturbing activities or operations that are not specifically addressed and approved by this APD

A site facility diagram and a site security plan shall be filed no later than 60 calendar days following first production (Onshore Order 3, Section III, I and 43 CFR 3162 7-5)

2. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD (Filing of a Sundry Notice is required for this 60 day extension)

3 JUISTICTIONAL WATERS of the U S

The operator shall obtain appropriate permits from the U S Army Corps of Engineers prior to discharge or dredge and fill material into waters of the United States in accordance with Section 404 of the Clean Water Act Contact The U S Army Corps of Engineers regulatory New Mexico Branch Office, 4101 Jefferson Plaza NE, Albuquerque, NM 87109-3435 at (505) 342-3678 or Email CESPA-RD-NM@usace army mil if you have questions

4 ARCHAEOLOGICAL, PALEONTOLOGICAL & HISTORICAL SITES

Any cultural and/or paleontological resource discovered inadvertently by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized 'Officer The operator is fully accountable for the actions of their contractors and subcontractors The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer An evaluation of the discovery shall be made by the Authorized officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions Any unauthorized collection or disturbance of of the discovery cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

5. HUMAN REMAINS AND OBJECTS OF CULTURAL PATRIMONY

The operator shall comply with procedures established in the Native American Graves Protection and Repatriation Act (NAGPRA) to protect such cultural items as human remains, funerary objects, sacred objects, and objects of cultural patrimony that are discovered inadvertently during project implementation. In the event that any of the cultural items listed above are

discovered during the course of project work, the proponent shall immediately halt the disturbance and contact the BLM within 24 hours for instructions. The proponent or initiator of any project shall be held responsible for protecting, evaluating, reporting, excavating, treating, and disposing of these cultural items according to the procedures established by the BLM in consultation with Indian Tribes.

6 NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations (access road and/or well pad) Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

7 CAVE AND KARST

Any Cave or Karst feature discovered by the operator or by any person working on the operator's behalf shall immediately report the feature to the Authorized Officer The operator is fully accountable for the actions of their contractors and subcontractors The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer drilling, previously unknown cave and karst features could be If a void is encountered while drilling and a loss encountered of circulation occurs, lost drilling fluids can directly contaminate groundwater recharge areas, aquifers, and groundwater quality Drilling operations can also lead to sudden collapse of underground voids

To mitigate or lessen the probability of impacts associated with the drilling and production of oil and gas wells in karst areas, the guidelines listed in Appendix 3, Practices for Oil and Gas Drilling and Production in Cave and Karst Areas, as approved in the Roswell Resource Management Plan Amendment of 1997, page AP3-4 through AP 3-7 shall be followed

A more complete discussion of the impacts of oil and gas drilling can be found in the Dark Canyon Environmental Impact

Statement of 1993, published by the U S Department of the Interior, Bureau of Land Management

8 CONSTRUCTION

NOTIFICATION: The BLM shall administer compliance and monitor construction of the access road and well pad Notify Natural Resource Specialist, Ricky Flores at (575) 627-0339 or the Roswell Field Office at (575) 627-0272 at least three (3) working days prior to commencing construction of the access road and/or well pad

A complete copy of the <u>approved</u> APD and the attached Conditions of Approval (COAs) **shall be kept on the well's location** for reference upon inspections.

Construction over and/or immediately adjacent to existing pipelines shall be coordinated, and in accordance with, the relevant pipeline companies' policy

Any trench left open for (8) hours or less is not required to have escape ramps, however, before the trench is backfilled, an agency approved monitor shall walk the entire length of the open trench and remove all trapped fauna. The bottom surface of the trench will be disturbed a minimum of 2 inches in order to arouse any buried fauna. All fauna will be released a minimum of 100 yards from the trench

For trenches left open for (8) hours or more, earthen escape ramps (built at nor more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench Structures will also be authorized within the trench Metal structures will not be authorized Structures used as escape ramps will be placed at no more than a 30 degree slope and spaced no more than 500 feet apart

9 TOPSOIL

When saturated soil conditions exist on access roads or location, construction shall be halted until soil material dries out or is frozen sufficiently for construction to proceed without undue damage and erosion to soils, roads and locations

Topsoil shall be stripped following removal of vegetation during construction of well pads, pipelines, roads, or other surface facilities. This shall include all growth medium - at a minimum,

the upper 2-6 inches of soil - but shall also include stripping of any additional topsoil present at a site, such as indicated by color or texture. Stripping depth may be specified during the onsite inspection. Stripped topsoil shall be stored separately from subsoil or other excavated material and replaced prior to interim seedbed preparation. No topsoil shall be stripped when soils are moisture-saturated or frozen below the stripping depth.

The topsoil will not be used to construct the containment structures or earthen dikes that are on the outside boundaries of the constructed well pad, tanks, and storage facilities

Each construction area is site specific as to topsoil depth. It is the operator's responsibility to ensure that topsoil, caliche, or spoils are not mixed together.

(Pads) topsoil will be stripped and stored in separate piles from the spoils pile. They can be stored on opposite or adjacent sides. If topsoil and spoils must be stored on the same pad side together they shall be no closer than toe to toe, not overlapping. Each pile shall be kept within 30 feet of the pad's side 100% of the topsoil will be used for both interim and final reclamation. 100% of topsoil will be respread over the disturbed areas during reclamation.

(Roads) topsoil shall be stripped in such a way to follow the road's edge outside of the surfacing or drivable area. During final reclamation, after removal of surface material and recontouring, 100% of topsoil will be respread over the disturbed areas during reclamation. Vegetation in the topsoil will help hold re-seeding, moisture content, and reduce erosion.

10 WELL PAD SURFACING

The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational need. Surfacing of the well pad is not required. If the operator elects to surface the well pad, the surfacing material will be required to be removed at the time of reclamation.

Cattleguards

An appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at fence crossing(s) Any existing cattle guard(s) on the access road

shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guard(s) that are in place and are utilized during lease operations. Gates or cattle guards on public lands will not be locked or closed to public use unless closure is specifically determined to be necessary and is authorized in writing by the authorized officer. A gate shall be constructed and fastened securely to H-braces.

Fence Requirement

The operator shall notify the private surface landowner or the grazing allotment operator prior to crossing any fence(s) Where entry is required across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting

11 PRODUCTION

Storage

Fiberglass storage tanks are ${\it not}$ permitted for the storage of production

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim reclamation and re-vegetation of the well location

Containment Structures

All production facilities shall have a lined containment structure large enough to contain 110% of the largest Tank (PLUS) 24 hours of production (43 CFR 3162 5-1) Environmental Obligations, unless more stringent protective requirements are deemed necessary by the Authorized Officer

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>OIL GREEN</u> (Standard Environmental Color Chart June 2008)

Completion Report

In accordance with 43 CFR 3160, Form 3160-4 (Well Completion or Re-completion Report and Log) must be submitted to the Bureau of Land Management, Roswell Field Office within 30 days after completion of the well or producer. Copies of all open hole and cased hole logs, core descriptions, core analyses, well test data, geologic summaries, sample descriptions, formation test reports, stimulation reports, directional survey (if applicable), and all other surveys or data obtained and compiled during the drilling, completion, and/or work over operations, shall be included with Form 3160-4

12 INTERIM RECLAMATION

Reclamation earthwork for interim and/or final reclamation shall be completed within 6 months of well completion or well plugging (weather permitting), and shall consist of 1) backfilling pits, 2) re-contouring and stabilizing the well site, access road, cut/fill slopes, drainage channels, utility and pipeline corridors, and all other disturbed areas, to approximately the original contour, shape, function, and configuration that existed before construction (any compacted backfilling activities shall ensure proper spoils placement, settling, and stabilization, 3) surface ripping, prior to topsoil placement, to a depth of 18-24 inches deep on 18-24 inch centers to reduce compaction, 4) final grading and replacement of all topsoil so that no topsoil's remains in the stockpile, 5) seeding in accordance with reclamation portions of the APD and these COA's

Any subsequent re-disturbance of interim reclamation shall be reclaimed within six (6) months by the same means described above

Prior to conducting interim reclamation, the operator is required to

- Submit a Sundry Notices and Reports on Wells (Notice of Intent), Form 3160-5, prior to conducting interim reclamation
- Contact BLM at least three (3) working days prior to conducting any interim reclamation activities, and prior to seeding

During reclamation, the removal of caliche is important to increasing the success of re-vegetating the site Removed caliche may be used in road repairs, fire walls or for building

other roads and locations In addition, in order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing re-vegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be re-vegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

Use a certified noxious weed-free seed mixture Use seed tested for viability and purity in accordance with State law(s) within nine months prior to purchase Use a commercial seed mixture certified or registered and tagged in accordance with State law(s) Make the seed mixture labels available for BLM inspection

13 SEED MIX
SEE ATTACHED SEED MIX

WELL NAME	ECOSITE (ACCESS ROAD)	ECOSITE (PAD)
OTTAWA FEDERAL COM #1H	SHALLOW SD-3	SHALLOW SD-3

14 FINAL ABANDONMENT

- A. Upon abandonment of the well a Notice of Intent for Plug and Abandonment describing plugging procedures Followed within 30 days you shall file with this office, a Subsequent Report of Abandonment (Form 3160-5) To be included with this report is where the plugs were placed, volumes of cement used and well bore schematic as plugged
- B. On private surface/federal mineral estate land the reclamation procedures on the road and well pad shall be accomplished in accordance with the Private Surface Land Owner agreements and a copy of the release is to be submitted upon abandonment
- C The Operator shall promptly plug and abandoned each newly completed, re-completed or producing well which is not capable of producing in paying quantities. No well may be temporarily abandoned for more than 30 days without prior approval from this office. When justified by the Operator, BLM may authorize additional delays, no one of which may exceed an additional 12 months. Upon removal of drilling or producing equipment form the site of a well which is to be permanently abandoned, the

surface of the lands disturbed shall be reclaimed in accordance with an approved Notice of Intent for final reclamation

Prinal reclamation shall include the removal of all solid waste, trash, surfacing materials, storage facilities and all other related equipment, flow lines, and meter housing, power poles, guy wires, and all other related power materials. All disturbed areas, i.e. cuts and fills, shall be re-contoured to their original surroundings 100% of topsoil shall be used to resurface all disturbed areas including access roads. A label of the seed mix used shall be submitted with the Final Abandonment Notice (FAN) for review once reclamation is complete.

15. PIPELINE PROTECTION REQUIREMENT.

Precautionary measures shall be taken by the operator during construction of the access road to protect existing pipelines that the access road will cross over. An earthen berm, 2 feet high by 3 feet wide and 14 feet across the access road travelway (2' X 3' X 14'), shall be constructed over existing pipelines. The operator shall be held responsible for any damage to existing pipelines. If the pipeline is ruptured and/or damaged the operator shall immediately cease construction operations and repair the pipeline. The operator shall be held liable for any unsafe construction operations that threaten human life and/or cause the destruction of equipment.

16 WILDLIFE PROTECTION MEASURES - Best Management Practices (BMPs)

COA/Stipulation for above ground pipelines

➤ All pipelines laid on the surface will have sloped dirt berms built over them every 100 yards to allow reptiles, amphibians, small mammals, ground-dwelling birds and their broods access over them. Dirt berms should be no less than 12 inches in width and extend over all surface pipelines within the Right of Way Berms should be maintained for the life of the project

Wildlife Mortality - General

The operator will notify the Bureau of Land Management (BLM) authorized officer and nearest Fish and Wildlife Service (FWS) Law Enforcement office within 24 hours, if the operator discovers a dead or injured federally protected species (i e , migratory bird species, bald or golden eagle, or species listed by the FWS as threatened or endangered) in or adjacent to a pit, trench, tank, exhaust stack, or fence (If the

operator is unable to contact the FWS Law Enforcement office, the operator must contact the nearest FWS Ecological Services office)

- 1 Closed top tanks are required for any containment system All tanks are required to have a closed top tank
- Chemical and Fuel Secondary Containment Systems Chemical and Fuel Secondary Containment and Exclosure Screening - The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U S Environmental Protection Agency livestock water standards in accordance with state law, the operator must not drain the fluids to the soil or ground The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances Closed-top tanks are required for any secondary containment systems
- Open-Vent Exhaust Stack Exclosures The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers

17 WASTE, HAZARDOUS AND SOLID

Waste materials produced during all phases of operation will be disposed of promptly in an approved manner so it will not impact the air, soil, water, vegetation or animals "Waste" means all discarded matter including, but not limited to, human waste, trash, garbage, refuse, oil drums, petroleum products, ashes and equipment All liquid waste, completion fluids and drilling products associated with oil and gas operations will be contained and then

removed and deposited in an approved disposal site Portable toilets will remain on site throughout well pad construction, drilling and reclamation

The operator and contractors shall ensure that all use, production, storage, transportation and disposal of hazardous materials, solid wastes and hazardous wastes associated with the drilling, completion and production of this well will be in accordance with all applicable existing or hereafter promulgated federal, state and local government rules, regulations and guidelines. All project related activities involving hazardous materials will be conducted in a manner to minimize potential environmental impacts. A file will be maintained onsite containing current Safety Data Sheets (SDS) for all chemicals, compounds and/or substances which are used in the course of construction, drilling, completion and production operations

18. SURFACE WATER AND GROUNDWATER PROTECTION MEASURES - Best Management Practices (BMPs)\

A containment structure or earthen dike shall be constructed and maintained around the north, and east outside boundary of the well pad. The containment structure or earthen dike shall be constructed two (2) feet high (the containment structure or earthen dike can be constructed higher than the two (2) feet high minimum). The containment structure or earthen dike is required so that if a oilfield waste contaminant or product contaminant were leaked, spilled, and or released upon the well pad the oilfield waste contaminant or product contaminant shall be contained in order to prevent the contaminant from entering into the ephemeral drainage located north and east and downslope of the well pad location

U S Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification Data Report

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein, that I am familiar with the conditions which currently exist, that I have full knowledge of state and Federal laws applicable to this operation, that the statements made in this APD package are, to the best of my knowledge, true and correct, and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME Deana Weaver

Signed on 10/12/2017

Title Production Clerk

Street Address 11344 Lovington HWY

City Artesia

State NM

Zip 88211

Phone (575)748-1288

Email address dweaver@mec com

Field Representative

Representative Name

Street Address

City

State

Zıp

Phone

Email address

US Department of the Interior **BUREAU OF LAND MANAGEMENT**

Application Data Report 04/12/2018

Submission Date 03/19/2018

Operator Name MACK ENERGY CORPORATION

Well Name OTTAWA FEDERAL COM

Well Type OIL WELL

APD ID 10400028377

Well Number 1H

Well Work Type Drill

Show Final Text

Section 1 - General

APD ID

10400028377

BLM Office ROSWELL

Federal/Indian APD FED

Lease number NMNM131583

Surface access agreement in place?

Agreement in place? NO

Agreement number

Agreement name

Keep application confidential? YES

Permitting Agent? NO

Operator letter of designation

Tie to previous NOS? 10400017368

Submission Date 03/19/2018

User Deana Weaver

Title Production Clerk

Is the first lease penetrated for production Federal or Indian? FED

Lease Acres 400

Allotted?

Rešervatior

Federal or Indian agreement

APD Operator MACK ENERGY CORPORATION

Operator Info

Operator Organization Name MACK ENERGY CORPORATION

Operator Address 11344 Lovington HWN

Operator PO Box

Operator City Artesia

State NM

Operator Phone (575)748-1288

Operator Internet Address jerrys@mec.com

Zip 88211

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name

Well in Master SUPO? NO

Master SUPO name

Well in Master Drilling Plan? NO

Master Drilling Plan name

Well Name OTTAWA FEDERAL COM

Well Number 1H

Well API Number

Field/Pool or Exploratory? Field and Pool

Field Name ROUND TANK

Pool Name SAN ANDRES

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Well Name OTTAWA FEDERAL COM

Well Number 1H

Describe other minerals

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO

New surface disturbance?

Type of Well Pad SINGLE WELL

Multiple Well Pad Name

Number`

Well Class HORIZONTAL

Number of Legs 1

Well Work Type Drill

Well Type OIL WELL

Describe Well Type

Well sub-Type DELINEATION

Describe sub-type

Distance to town 30 Miles

Distance to nearest well 1,145 FT.

Distance to lease line 355 FT

Reservoir well spacing assigned acres Measurement \160 Acres

Ottawa_Federal_Com_1H_plats_20180316095517 pdf

Well work start Date 07/01/2018

Duration 20 DAYS

Section 3 - Well Location Table

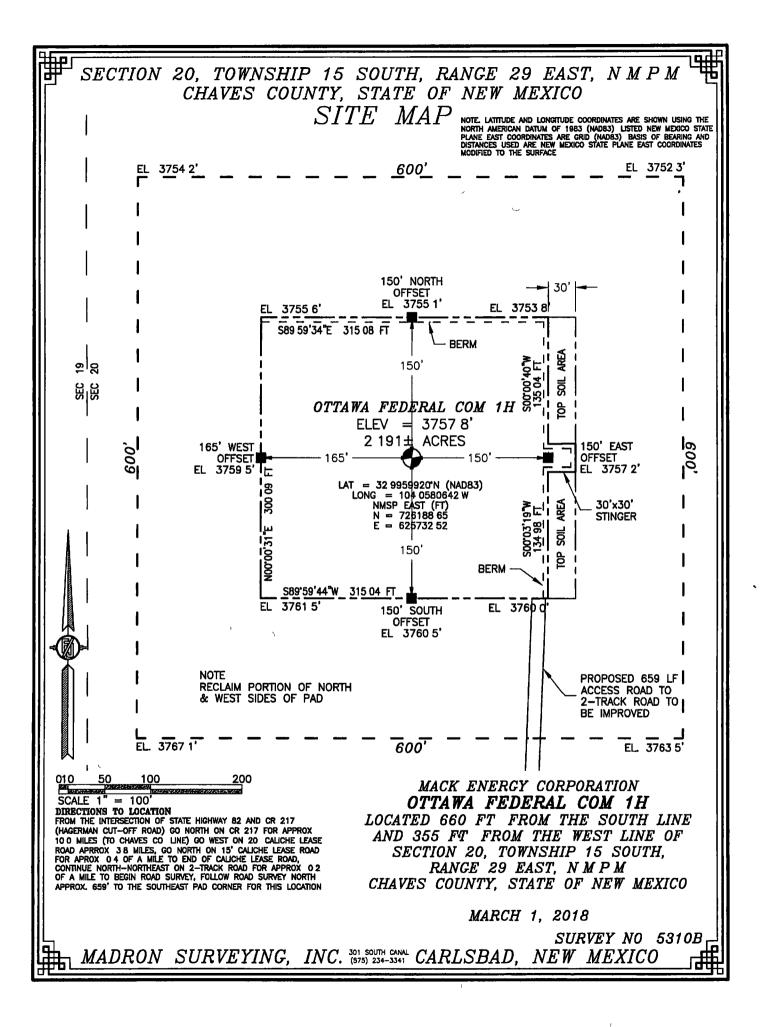
Survey Type RECTANGULAR

Describe Survey Type

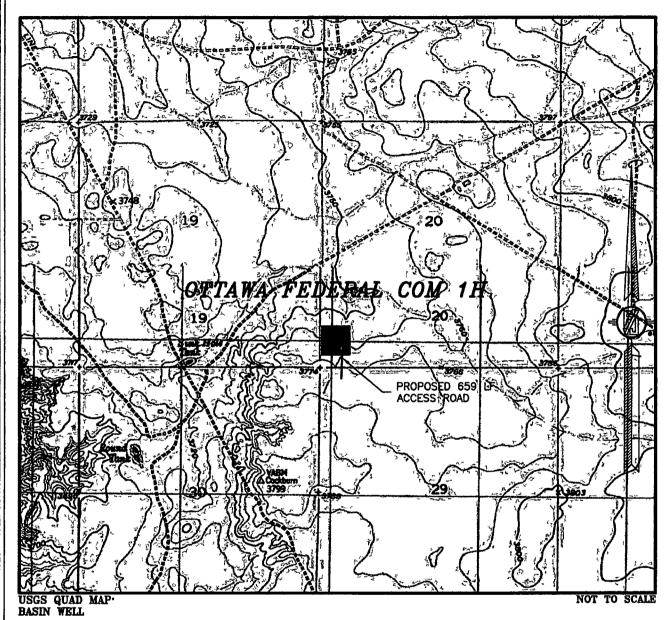
Datum NAD83

Vertical Datum NGVD29

Survey number 5310B


	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp y	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL	660	FSL	355	FWL	15S	29E	20	Aliquot	32 99599 2	- 104 0580	CHA	NEW MEXI	NEW	F	NMNM 131583	375 7	0	0
#1								SWS W	_	642	V.L.O	co	СО		101000	,		
KOP Leg #1	660	FSL	355	FWL	158	29E	20	Aliquot SWS W	32 99599 2	- 104 0580 642	CHA VES		NEW MEXI CO	F		116 3	259 4	259 4
PPP Leg #1	40	FNL	355	FWL	158	29E	29	Aliquot NWN W	32 99406 83	- 104 0580 628	CHA VES		NEW MEXI CO	F	NMNM 131583	790	300 0	296 7

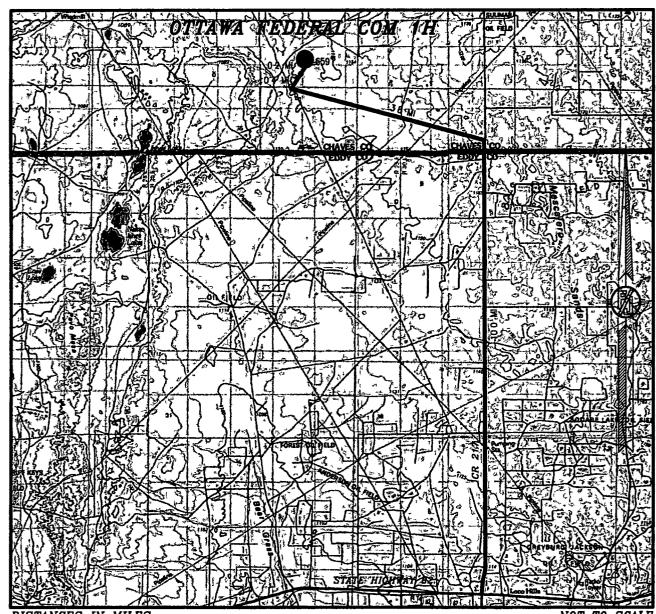
Operator Name MACK ENERGY CORPORATION


Well Name OTTAWA FEDERAL COM

Well Number 1H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	ΔΛΤ
EXIT Leg #1	100	FSL	355	FWL	158	29E	29	Aliquot SWS W	32 98697 56	- 104 0421 225	l	NEW MEXI CO			NMNM 131583	525	790 0	323 2
BHL Leg #1	5	FSL	355	FWL	158	29E	29	Aliquot SWS W	32 97975 58	- 104 0582 943		NEW MEXI CO	1.1-1/	F & E	NMNM 131583	522		323 5

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, NMPM CHAVES COUNTY, STATE OF NEW MEXICO LOCATION VERIFICATION MAP



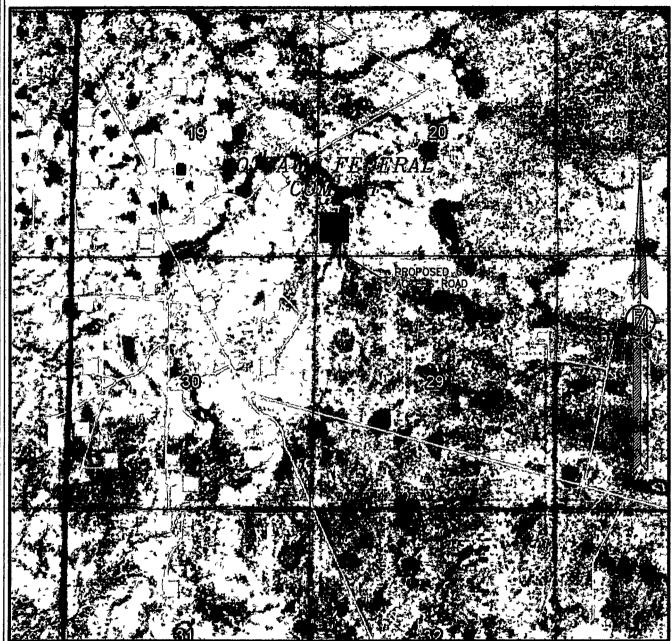
MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H
LOCATED 660 FT FROM THE SOUTH LINE
AND 355 FT FROM THE WEST LINE OF
SECTION 20, TOWNSHIP 15 SOUTH,
RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018

SURVEY NO 5310B VEW MEXICO -

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO VICINITY MAP

DISTANCES IN MILES

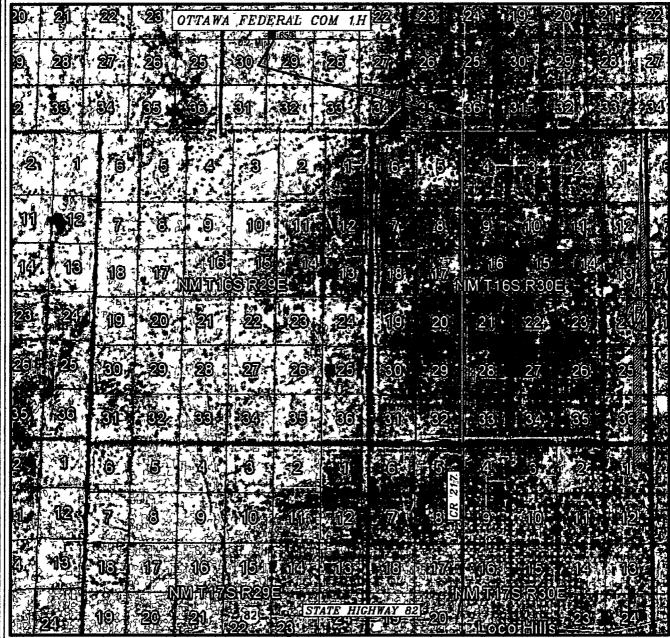

DIRECTIONS TO LOCATION
FROM THE INTERSECTION OF STATE HIGHWAY 82 AND CR 217
(HAGERMAN CUT-OFF ROAD) GO NORTH ON CR 217 FOR APPROX.
10 0 MILES (TO CHAVES CO LINE) GO WEST ON 20' CALICHE LEASE
ROAD APRROX 3 8 MILES, GO NORTH ON 15 CALICHE LEASE ROAD
FOR APROX 0 4 OF A MILE TO END OF CALICHE LEASE ROAD
CONTINUE NORTH-NORTH-EAST ON 2-TRACK ROAD FOR APPROX. 0.2
FA MILE TO BEEN BOAD SUBJECT EN LOW ROAD SUBJECT NORTH OF A MILE TO BEGIN ROAD SURVEY, FOLLOW ROAD SURVEY NORTH APPROX 659' TO THE SOUTHEAST PAD CORNER FOR THIS LOCATION

MACK ENERGY CORPORATION OTTAWA FEDERAL COM 1H LOCATED 660 FT FROM THE SOUTH LINE AND 355 FT FROM THE WEST LINE OF SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, NMPM CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018

SURVEY NO 5310B

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, NMPM CHAVES COUNTY, STATE OF NEW MEXICO AERIAL PHOTO


NOT TO SCALE AERIAL PHOTO GOOGLE EARTH FEBRUARY 2017

MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H
LOCATED 660 FT FROM THE SOUTH LINE
AND 355 FT FROM THE WEST LINE OF
SECTION 20, TOWNSHIP 15 SOUTH,
RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018

SURVEY NO 5310B

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO ACCESS AERIAL ROUTE MAP

NOT TO SCALE AERIAL PHOTO GOOGLE EARTH FEBRUARY 2017

MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H
LOCATED 660 FT FROM THE SOUTH LINE
AND 355 FT FROM THE WEST LINE OF
SECTION 20, TOWNSHIP 15 SOUTH,
RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018

SURVEY NO 5310B

U S Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

Submission Date 03/19/2018

Operator Name MACK ENERGY CORPORATION

Well Name OTTAWA FEDERAL COM

Well Type OIL WELL

APD ID 10400028377

Well Number 1H

Well Work Type Drill

Hope, product softed a the mount recent characters

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Maggurad			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	1 -1
1	QUÁTERNARY	3767	0	0	ALLUVIUM	NONE Y	No
				·	1 11 1		
2	TOP OF SALT	3517	250	250 ₋	SALT	NONE	No
3	BASE OF SALT	3077	690	690	SALT	NONE	No
4	YATES	2932	835	835	ANHYDRITE SILTSTON E	NATURAL GAS OIL	No
5	SEVEN RIVERS	2697	.1070	1070	ANHYDRITE SILTSTON E	NATURAL GAS OIL	No
6	QUEEN	2207	1560	1560	ANHYDRITE SILTSTON E	NATURAL GAS OIL	No
7	GRAYBURG	1812	1955	1955	DOLOMITE ANHYDRIT E SILTSTONE	NATURAL GAS OIL	No
8	SAN ANDRES	1512	2255	2255	DOLOMITE ANHYDRIT E	NATURAL GAS OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI) 3M

Rating Depth 10500

Equipment Rotating Head, Mud-Gas Separator

Requesting Variance? NO

Variance request

Testing Procedure The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done a test plug and 30 minutes without a test plug.

Choke Diagram Attachment

choke_manifold_08-22-2017 pdf

choke_manifold_diagram_08-22-2017 pdf

BOP Diagram Attachment

bop_diagram_08-22-2017 pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	14 7 5	9 625	NEW	API	N	0	230	0	230	3767	3537	230 , ^,	J-55	36 [\]	1 × ×.	1	6 93′ 3 飞	BUOY	55 7 77	BUOY	7 04
_	PRODUCTI ON	8 75	70	NEW	API	N	0	3300	0	3300		2 t ,		HCP -110	26	LTC	4 35 1	3 35 5	BUOY	8 57 7	BUOY	3 34 3
1	PRODUCTI ON	8 75	5 5	NEW	API	N	3300	7916	3300	7916	1	Andrew States	4616 5	HCP -110	17 \	BUTT \	5 13 1	3 64 7	BUOY	8 57 7	BUOY	3 58 8

Casing Attachments

Casing ID 1

String Type SURFACE

Inspection Document

Spec Document

Tapered String Spec

Casing Design Assumptions and Worksheet(s)

Ottawa_Fed_Csg_20180316102202 pdf

Well Name OTTAWA FEDERAL COM

Well Number 1H

Casing Attachments

Casing ID 2

String Type PRODUCTION

Inspection Document

Spec Document

Tapered String Spec

Casing Design Assumptions and Worksheet(s)

Ottawa_Fed_Csg_20180316102215 pdf

Casing ID 3

String Type PRODUCTION

Inspection Document

Spec Document

Tapered String Spec

Casing Design Assumptions and Worksheet(s)

Ottawa Fed Csg 20180316102234 pdf

Section 4 - Cement

String Type	Lejad/Tail	Stage Tool	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lèad *	230	0	230	100	1 61	14 4	157	ر		20bbls Gelled Water, 50sx of 11# Scavenger Cement
SURFACE	Tail		0	230	250	1 34	14 8	0	100	Class C + 1% PF1	20bbls Gelled Water, 50sx of 11# Scavenger Cement
PRODUCTION	Lead	3300	0	3300	430	1 84	13 2	9 91	35	Class "C" 4% PF20+4 pps PF45+125pps PF29	20bbls Gelled water 20bbls Chemical wash, 50 sx of 11# Scavenger cmt

Operator Name MACK ENERGY CORPORATION

Well Name OTTAWA FEDERAL COM

Well Number 1H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yıeld	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead	7916	3300	7916	1300	1 48	13	7 58		(BWOW) PF44	20 bbls gelled water, 20 bbls chemical wash, 50sx of 11# scavenger cement

Section 5 - Circulating Medium

Mud System Type Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2

Diagram of the equipment for the circulating system in accordance with Onshore Order #2

Describe what will be on location to control well or mitigate other conditions BOPE Brine Water

Describe the mud monitoring system utilized Pason RVT with Pit Volume recorder

Circulating Medium Table

		? 1	_ ` .								
Top Depth,	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cuft)	Gel Strength (lbs/100 sqft)	ЬН	Viscosity (CP)	Salınıty (ppm)	Filtration (cc)	Additional Characteristics
230、	7916	LSND/GEL	83	10	74 8		11		160000	10	Gel Strength - 0-1 0 Viscosity - 34-38
0	230	SPUD MUD	83	10	74 8		11		160000	10	Gel Strength- 0-1 Viscosity - 34-38

Operator Name MACK ENERGY CORPORATION

Well Name OTTAWA FEDERAL COM

Well Number 1H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures

None

List of open and cased hole logs run in the well

CALIPER, CNL, DLL, FDC, GR

Coring operation description for the well

Will evaluate after logging to determine the necessity for sidewall coring

Section 7 - Pressure

Anticipated Bottom Hole Pressure 1720

Anticipated Surface Pressure 1008

Anticipated Bottom Hole Temperature(F) 95

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe

Contingency Plans geoharzards description

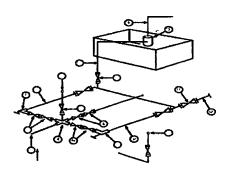
Contingency Plans geohazards attachment

Hydrogen Sulfide drilling operations plan required? NO

Hydrogen sulfide drilling operations plan

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission


Ottawa_Federal_Com__1H_Plan_1_20180315150036 pdf ottawa_drill_plan_20180316144038 pdf

Other proposed operations facets description

Other proposed operations facets attachment

Other Variance attachment

Mack Energy Corporation
Exhibit #11
MIMIMUM CHOKE MANIFOLD 3 000 5,000, and 10,000 PSI Working Pressure 3M will be used 3 MWP - 5 MWP - 10 MWP

Mud Pit

Reserve Pit

* Location of separator optional

Below Substructure

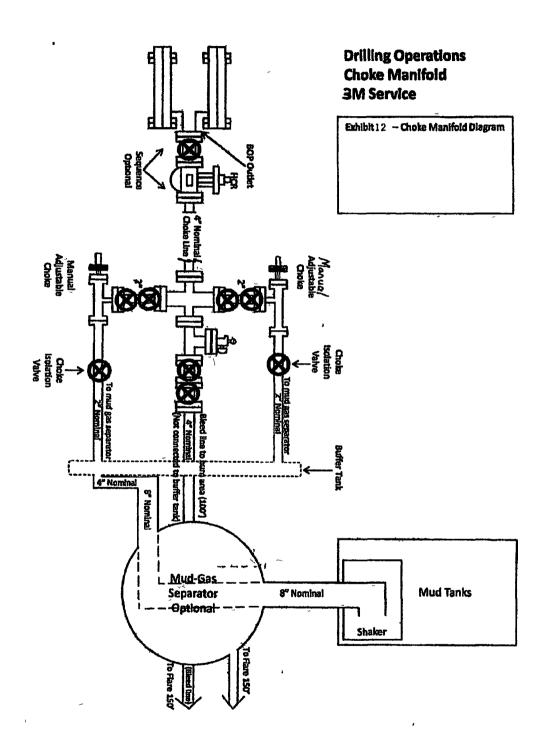
				Mımımun						
		30	00 MWP		5.	,000 MWP		1(0,000 MWP	
No		I D			10			10		
			Nominal	Rating		Nominal	Rating	1	Nominal	Rating
1	Line from drilling Spool		3"	3 000		3"	5 000		3"	10 000
2	Cross 3" x 3" x 3" x 2"			3 000			5 000			```
2	Cross 3" x 3" x 3" x 2'					1				10 000
3	Valve Gate Plug	3 1/8		3 000	3 1/8		5 000	3 1/8		10,000
4	Valve Gate Plug	1 13/16		3 000	1 13/16		5 000	1 13/16		10 000
4a	Valves (1)	2 1/16		3 000	2 1/16		5 000	2 1/16	1	10 000
5	Pressure Gauge	<u> </u>		3 000			5 000			10,000
6	Valve Gate Plug	3 1/8		3 000	3 1/8		5 000	3 1/8		10 000
7	Adjustable Choke (3)	2"		3 000	2"		5 000	2"		10 000
8	Adjustable Choke	1"		3 000	1"		5 000	2"		10 000
9	Line		3"	3,000		3"	5 000		3"	10 000
10	Linc		2"	3,000		2'	5 000		2"	10 000
11	Vaive Gate Plug	3 1/8		3 000	3 1/8		5,000	3 1/8		10 000
12	1 me		3"	1 000		3"	1 000	<u> </u>	3"	2 000
13	I ine		3'	1 000		3"	1 000		3"	2 000
14	Remote reading compound Standpipe pressure quage			3,000			5 000			10 000
15	Gas Separator		2' \5'	1		2 35'			2' x5'	
16	1 ine		4"	1 000		4"	1 000		4"	2 000
17	Valve Gat. Plug	3 1/8		3 000	3 1/8		5 000	3 1/8		10 000

Only one required in Class 3M

Gate valves only shall be used for Class 10 M

Remote operated hydraulic choke required on 5 000 psi and 10,000 psi for drilling

EQUIPMENT SPECIFICATIONS AND INSTALL ATION INSTRUCTION

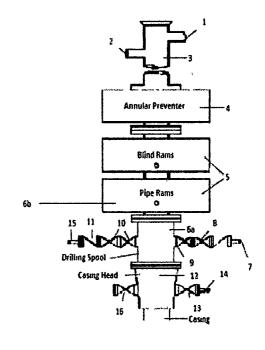

- All connections in choke manifold shall be welded studded flanged or Cameron clamp of comparable rating
- All flanges shall be API 6B or 6B \ and ring gaskets shall be API R\ or B\ Use only B\ for 10 MWP

All lines shall be securely anchored

Chokes shall be equipped with tungsten carbide seats and needles, and replacements shall be available

- alternate with automatic chokes a choke manifold pressure gauge shall be located on the rig floor in conjunction with the standpipe pressure gauge
- Line from drilling spool to choke manifold should bee as straight as possible. I mes downstream from chokes shall make turns by large bends or 90 degree bends using bull plugged tees

Mack Energy Corporation MANIFOLD SCHI MATIC Lahibit #12


Mack Energy Corporation

Minimum Blowout Preventer Requirements

5000 psi Working Pressure 13 5/8 inch- 5 MWP 11 Inch - 5 MWP

Stack Requirements

	Stack Inequireme	uto .	
NO	Items	Min I D	Min Nominal
1	Howline	1	2"
2	Fill up line		2"
3	Drilling nipple		<u> </u>
4	Annular preventer		
5	Two single or one dual hydraulically operated rams		
6a	Drilling spool with 2" min-kill line and 3" min choke line outlets		2" Choke
6b	2" min kill line and 3" min choke line outlets in ram (Alternate to 6n above)		
7	Valve Gate Plug	3 1/8	
8	Gate valve-power operated	3 1/8	
9	I me to choke manifold		3"
10	Valve Gate Plug	2 1/16	
11	Check valve	2 1/16	
12	Casing head		-
13	Valve Gate Plug	1 13/16	,
14	Pressure gauge with needle valve		
15	Kill line to rig mud pump manifold	† 	2"

OPTIONAL

			_
• /	1 61 1111	1 1 1 1 1 1 1 1 1	
16	Flanged Valve	1 1 1 3/16 1	
• 17	,geb valve	1 2 .27 .27 1	

ME

CONTRACTOR'S OPTION TO CONTRACTOR'S OPTION TO FURNISH

- All equipment and connections above bradenhead or casinghead. Working pressure of preventers to be 2000 psi minimum.
- 2 Automatic accumulator (80 gallons minimum) capable of closing BOP in 30 seconds or less and holding them closed against full rated working pressure.
- 3 BOP controls to be located near drillers position
- 4 Kelly equipped with Kelly cock
- 5 Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used
- 6 Kelly saver-sub equipped with rubber casing protector at all times
- 7 Plug type blowout preventer tester
- 8 Lytra set pipe rams to fit drill pipe in use on location at all times
- 9 Type RX ring gaskets in place of Type R

MEC TO LURNISH

- 1 Bradenhead or casing head and side valves
- Wear bushing. It required

GENERAL NOTES

- 1 Deviations from this drawing may be made only with the express permission of MI C's Drilling Manager
- 2 All connections valves
 fittings prining etc subject to
 well or pump pressure must
 be flanged (suitable claim)
 connections acceptable) and
 have minimum working
 pressure equal to rated
 working pressure of
 preventers up through choke
 valves must be full opening
 and suitable for high pressure
 mid service
- 3 Controls to be of standard design and each marked showing opening and closing position
- 4 Chokes will be positioned so as not to hamper or delay changing of choke beans

- Replaceable parts for adjustable choke or bean sizes, retainers and choke wrenches to be conveniently located for immediate use
- 5 All valves to be equipped with hand, wheels or handles ready for immediate use
- 6 Choke lines must be suitably anchored
- 7 Handwheels and extensions to be connected and ready for use
- 8 Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency.
- 9 All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted.
- 10 Casinghead connections shall not be used except in case of emergency
- 11 Does not use kill line for routine fill up operations.

Casing Design	Well Ottawa Fe	deral Com #1H	<u>, , , , , , , , , , , , , , , , , , , </u>	•		
String Size & Function	r \$5/£	in surface	<u> </u>	termediate	111	
Total Depth	≺ 230 ft					
Pressure Gradient for	Calculations		(While drilling)			
Mud weight, collapse	· 9.6	#/gal	Safety Factor Collapse	1 125	<u>.</u>	
Mud weight, <u>burst</u>	B.6	#/gal	Safety Factor Burst	1 (, 1 25	į	
Mud weight for joint s	trength 📜 😅 9.6	#/gal Safety	Factor Joint Strength	1.8	į	
BHP @ TD for	collapse 114 816	psi Burst	114 816 psi jolni	t strength	114.816	psi
		<u> </u>				
Partially evacuated h	_	radient remaining	10 #/gal			
Max Shut in surface p	pressure.	500 psi				
			-			
1st segment O D	230 ft to Weight	0 ft Grade Threads	Make up Torque	ft lbs mx.	Total ft =	230
9.625 inches	36 #/ft	J-55 STAC	3 940 - 2,960	4,930	i	
Collapse Resistance 2,020 ps:	Internal Yield	Joint Strength	Body Yield 564 000 #	Drift 8:765]	
<u> </u>			1	1. 5.,55	1	
• • • • • • • • • • • • • • • • • • • •			}	A 15 -	T-1-16-	
2nd segment O D	0 ft to Weight	0 ft Grade Threads	Make up Torque opt. min	mx.	Total ft =	0
Inches	# # ##################################	100		4		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Doft : 3.7		1
s psi	f · / psi	1: ,,000#	1 1000		1	
		 	•		p	
3rd segment O D	0 ft to Weight	0 ft Grade Threads	Make up Torque		Total ft =	0
mches	vveignt ¦,''∗#/ft	Grade	opt min.	mx.		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift	1	
psı	PSI	3 2 000 #	008#		1	
4th segment	Oft to	O ft	Make up Torque		Total ft =	0
OD	Weight I'' #/R	Grade Threads	opt. min E f	mx.		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift		
11 d psi	1 psi	000#	000#		İ	
5th segment	0 ft to	O ft	Make up Torque	ft-ibs	Total ft =	0
OD OD	Weight	Grade Threads	opt min	mx		
Collapse Resistance	#/ft Internal Yield	Joint Strength	Body Yield	Drift	1	
psı	¹⁻⁴	.5 ¹ 000 #	000#			
6th segment	Oft to	0 ft	Make up Torque	ft-lbs	Total ft =	0
O.D.	Weight	Grade Threads	opt. min.	mx.		
inches Collapse Resistance	#/ft Internal Yield	Joint Strength	Body Yield	Drift		
psi psi	si psi	900 #	000 #	Diat		
					•	
			 		· · · · · · · · · · · · · · · · · · ·	
Select 1st segmen	nt bottom	230		Actual	•	Desire
230 ft to	O ft	1	collapse burst-b	17 59337 6 97328	>= >=	1 125 1 25
	J-55 ST&C		burst-t	7 04		
	Top of segment 1 (ft)	2, 3, 10	l .	Actual		Desire
Select 2nd segme	nt from bottom		collapse burst-b	#DIV/0! 0	>= >=	1 125 1 25
Oft to	0 ft	1	burst-t	0		. 43
0 0			int stragth		>=	18

•

Casing Design	Well	Ottawa Fe	deral Com I	114	1 (4		
String Size & Function	ı	7% 5 1/2°	ın	Production	<u>*</u>	_			
Total Depth.	7916	ft		TVD		315	<u>3</u> R		
Pressure Gradient for	Calculation	ns .			(While di	illing)			
Mud weight collapse		10.2	#/gal		Safety Fac	tor Collapse	' ' 1,125	<u>.</u>	
Mud weight burst		1 10.2	#/gal		Safety Fa	ctor Burst	, <u>1 25</u>	<u>.</u>	
Mud weight for joint s	trength	10.2	#/gal	Safety	Factor Joi	nt Strength	18	<u> </u>	
BHP @ TD for	collapse	1672 351	psì	Burst	1672 35	1 psi joir	t strength	1672.351	psi
Partially evacuated ho	ole?	Pressure gi	radient rem	aining.	¹⁷ : 1	O #/gal			
Max Shut in surface p	oressure:	······································	ı' _t 3000	psı		 		. , ,	
1st segment	7016	ft to	3300		1 1400	rà un Torru	a O lba	Total 8 p	4616
O D	Weig		Grade		opt.	re up Torqui	mx.	Total ft =	4010
5.6 Inches		#/ft		Buttrees	4,620		-		
Collapse Resistance		ai Yield	Joint St		Body	Yield	Drift		
8,580 psi	10,640	psi-ircr	568	000 #	546	000#	4.767		
2nd segment	3300	ft to	2300	ft	l Mai	e up Torque	e ft ibs	Total ft =	1000
O D	Weig		Grade	Threads		min	mx		
7 inches	26 ي	#/ft	HCP-110	Buttress	6,930	5,200	8,660		
Collapse Resistance	Interna	al Yield	Joint St			Yield	Dnft		
7,800 psi	9.950	psi-ircr	853	000 #	830	000#	6 151	1	
3rd segment	2300	ft to	0	ft	l Mai	e up Torque	- fl_lhe	Total ft =	2300
OD	Weig			Threads	opt	min	mx	TOTAL IL	2300
' 7 inches	26		HCP 110		•. ·	5200	8860	1	
Collapse Resistance		i Yield	Joint St	rength	Body	Yield	Drift	1	
7,800 psi	9,950	psi	693	900#	83	000#	6.151		
444		A 40		ft		Ta	. 0 11	T-4-1 0 -	
4th segment O D	Weig	ft to	Grade	Threads	opt.	e up Torque	mx	Total ft =	0
inches	м -	#/ft		[~ 4	1 1 c	min ,	· '''^		
Collapse Resistance		l Yield	Joint St	rength	Body	Yield	Drift		
ii psi	6	psi	#	000#		000 #	1		
								-	
						_	_a		
5th segment	0		0			e up Torque		Total ft =	0
OD inches	Weig		Grade	Threads	opt E d	MU)	mx		
Collapse Resistance	Interna		Jomt St			Yield	Drift		
ੂ psi	ŀ	psi	,	000#		000#	! :		
								•	
						_			
6th segment	0		0			e up Torque		Total ft =	0
OD	Weig		Grade	Threads	opt.	min 1	mx ,		
Collapse Resistance	Interna		Joint Str	ength	Body	Yield	Dnft		
^{j∈1)} psi		psi		000#	} 1	000#	1 ,	i	
Select 1st segmen	t hattam			8084		SF	Actual		Desire
jot dogines				5004	ı	collapse	5 130501	>=	1 125
7916 ft to	3300	n l				burst-b	3 646741	>=	1.25
	HCP 110					burst t	3 58771		-
	Top of segr	أحصون		, 3300		SF	Actual		Desire
Select 2nd segmen	nt from botte	om	•			collapse	4 350634	>=	1 125
		<u></u>				burst-b	3 355048	>0	1.25
3300 ft to	2300					burst-t	3 343324	. _	4.0
7 26	HCP 110	DUITI'UUS8				រុក នហាថ្ងារា	8 576736	>=	18

<u>9</u>	52	īδ		ac	g	55	52			<u>8</u>	ĸ	ňυ		œ	٩	ĸ	'n		~	_
Desire	1 125	1 25		8	Desire	1 125	12		18	Desire	1 125	1 25		18	Desire	1125	1 25		18	18
	Ķ	X		Ā		2	ķ		Ž		Ä	8		8		Ķ	¥		n	, ,
Actual	6 183546	3 343324	3 316667	9 674701	Actual	#DIV/0	0	0	7 85999	Actual	#DIV/0	0	0	0	Actual	#DIV/O	0	0	0	
Ø	collapse	burst-b	burst-t	Int strigth	3.5	collapse	burst-b	burst t	jnt stragth	R	collapse	burst-b	burst-t	int strigth	m.	collapse	burst-b	burst-t	int stragth	Int stringth
2300					0				•						, , , , ,					
Top of segment 2 (ft)	3rd segment from bottom		ft to Off	26 HCP-110 LT&C	Top of segment 3 (ft)	4th segment from bottom		Off to Off	0 0 0	Top of segment 4 (ft)	5th segment from bottom		Off to	0 0 0	Top of segment 5 (ft)	6th segment from bottom		Off to ft	0 0 0	Top of segment 6 (ft)
	Select		2300 ft	7		Select		ľ	0		Select		0	0		Select		ľ	0	

nree gra	diont pressi	Three gradient pressure function	ç						
Depth of	Depth of evaluation	1,200 ft	œ		L	516	S.	12	1 200 ft
ř	Top of salt	2 400 ft	œ	t≯ # 1	516				
æ	Base of salt	3 700	œ	£ ₩	006 6				
TQ of int	TQ of intermediate	4 600	æ	\$ \$	540				
Pressure g	radient to be	s used abo	9	ach top to	Pressure gradient to be used above each top to be used as a function of depth ex psuff	function	of depth	ex ps/	Œ
1#XJ	K #2	£# #3							
0 43	0.75	0.45							

- Calculate neutral point for bucking with temperature affects computed also
 Suiface burst calculations & tuck tolerance in surface pressure for burst
 Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
 Raise joint strength safety factor up to next level on page #2
 Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors Secondary

4 7 1364		795 518	764 706 8.24454
S.F. Collapse bottom of segment S.F. Collapse top of segment	S F Burst bottom of segment S F Burst top of segment	S.F. Joint strength bottom of segment	or your sugger top of segment. SF Body yield strength top of segment. SF Body yield strength top of segment.

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse	0 84394	
calculations for bottom of segment @	3153 ft	
hydrostatic pressure collapse backside	1672 35 psi	
Axial load @ bottom of section	o Sđ	previous segments
Axial load factor	0	load/(pipe body yield strength)
Collapse strength reduction factor:	-	Messrs Westcott, Dunlop Kemler 1940
Adjusted collapse rating of segment.	8580 ps	
Actual safety factor	5 1305	adjusted casing rating / actual pressure

Casing Design	Weli	Ottawa Fe	deral Com	#1H		- 			
String Size & Function	1	9.5/8	in	surface		<u>x</u>	Intermediat	e <u>} </u>	•
Total Depth		<u>è</u> ft							
Pressure Gradient for	Calculation	ns		. <u> </u>	(W	hile drilling)			-
Mud weight, <u>collapse</u>		9.6	#/gal		Safe	ty Factor Collap	ose <u>1 112</u>	<u>5</u>	
Mud welght <u>burst</u>		* '96	#/gal		Safe	ety Factor Burst	1 12	5	
Mud weight for joint s	trength	96	#/gal	Safety	/ Fac	tor Joint Streng	th <u>1.</u>	8	
BHP @ TD for	collapse	114 816	psi	Burst	_1	14 816 psı	joint strength	114.816	psì
Partially evacuated h	ole?	Pressure g	radient ren	maining		; 10 #/gal			
Max Shut in surface p	oressure.		<u> </u>	O psı					
d = 1 = 1		ft to			1	Maka wa Tas	& Pa	Tabal A a	220
1st segment	Wei		Grade	0 ft Threads	opt	Make up Tor	mx.	Total ft =	230
9.625 inches	* . · 36	##R	⊸J-5 5	ST&C		3.940 2,9		d	
Collapse Resistance		al Yjeld	Joint S	Strength	_	Body Yield	Drift]	
2,020 ps:	3,520	psı	39	4 000#	٠	: 564 ¹ 000 #	8.765		
2nd segment	0	ft to		O ft	1	Make up Tor	que ft-ibs	Total ft =	0
QD		ght	Grade	Threads	opt	min	mχ		
Collapse Resistance	Intom	a! Yield		Strength	<u> </u>	Body Yield	Drift	-	
Spsi	inem.			000 #		000 #		1	
	f		<u> </u>					3	
3rd segment		ft to		0 R	<u>L_</u>	Make up Tor		Total ft =	0
O D 1 inches	Wei	ght : ##	Grade	Threads	opt		mx	4	
Collapse Resistance		al Yield		trength	╀╌	Body Yield	Drift	1	
psi	र न	psı		, 000 #	ĹĹ	000#	2 1	1	
4th segment		ft to		D ft	1	Make up Tor	nue fluins	Total ft =	0
OD	Wei	aht		Threads	opt.		mx.	10.07.1	
inches inches		#/ft			Ĺ.,	1 1		1	
Collapse Resistance	intern	al Yield		itrength	Γ	Body Yield]	
psı	<u> </u>	p\$i	11	000#	<u></u>	¢ 000 #	\$ p	Ŀ	
5th segment	0	ft to		O ft	1	Make up Tor	que ft-lbs	Total ft =	0
OD	Wei	ght	Grade	Threads	opt	mın	mx		
¹ Inches		#/ft	بينبي	السيال	L	1-1	- A) 1	4	
Collapse Resistance		al Yield psi	Joint S	itrength 000 #		Body Yield 000 #	Drift	1	
, pai	L	ры		000 #	.,			J	
					_				
6th segment		ft to) ft	<u> </u>	Make up Ton		Total ft =	0
O D Inches	Wei		Grade	Threads	opt	min	mx.	1	
Collapse Resistance		al Yield	Joint S	trength	-	Body Yield	Drift	4	
t it it psi		psł		000#	.	€ 000#	11		
					ŗ				
Select 1st segmen	nt bottom			230		\$.F			Desire
220 8 4-	^	e ·	ı			collapsi			1 125
230 ft to 9 625 0	J-55	ft ST&C				burst-b burst t	6 97328 7 0 4	>=	1 25
		ment 1 (ft)		. 5.0	ĺ	8.F	Actual		Desire
Select 2nd segme	nt from bot				•	collapse	~	>=	1 125
		·	1			burst-b	0	>=	1 25
Oft to	0	ft				burst t			<i>-</i> -

Casing Design	Well Ottawa Fe	ideral Com #1H '				
String Size & Function	7"× 5 1/2'	in Production	1 <u>x</u>			
Total Depth.	1,:7916 ft	TVD	1 3159	ft		
Pressure Gradient for	Calculations		(While drilling)			
Mud weight collapse		t #/gal	Safety Factor Collapse	1,125		
Mud weight, burst	: ' 20.	#/gai	Safety Factor Burst.	,1 125		`
Mud weight for joint s	strength 10.3	 	Factor Joint Strength	1.8		
BHP @ TD for	collapse 1672 35	L psi Burst	1672.351 psi joint	strength	1672.351 p	osi
Partially evacuated he	ole? Pressure g	radient remaining	10 #/gal			
Max Shut in surface p	pressure.	3000 psi				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
1st segment	7916 ft to	3300 ft	Make up Torque		Total ft =	4616
OD 5.5 inches	Weight	Grade Threads HCF-110 Buttrees		mx. 5,780		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift		
8,580 psi	10,640 psi-ircr	568 000#	546 000#	4,767		
2nd segment	3300 ft to	2300 ft	Make up Torque i	t-lbs	Total ft =	1000
OD	Weight	Grade Threads		mx		
7 inches Collapse Resistance	25 #/ft Internal Yield	HCP-119 Buttress Joint Strength	6,930 5,200 . Body Yield	. 8,660 Orift		
7,800 psi	9,950 psi-iror	853 000 #	830 000#	6 181		
				لنسيندين		
3rd segment	2300 ft to	O ft	Make up Torque (a.the F	Total ft =	2300
O D	Weight	Grade Threads		TIX	rotal it =	2300
1 7 Inches	26 s/R	HCP 110 LT&C	6930 6200	8660		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift		
7 800 1 psi	9,950 psi	1 693 000#	# 000 008	6.151		
			_	_		
4th segment	Oft to	O ft	Make up Torque 1		Total ft =	0
O D inches	Weight	Grade Threads	opt. min i	אוד אוד		
Collapse Resistance	Internal Yield	Joint Strength	*	Dnft		
i psi	, psi	000#	Body Yield 000 #	1.		
5th segment	Off to	O ft	Make up Torque f	i-lbs F	Total ft =	0
OD	Weight	Grade Threads	opt min t	nx	,	
inches	Profit State		7, 3	·		
Collapse Resistance	Internal Yield	Joint Strength	Body Yleid	Drift		
	1					
6th segment	Oft to	0 ft Grade Threads	Make up Torque f	_	Total ft =	0
OD inches	Weight	Grade Threads	opt min r	nx.		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift		
r psi	psi	i _r	¹⁴¹ 000 # ¹			
		" I				
Select 1st segmen	nt bottom	8084	8	Actual 6 130501	>=	Desire 1 125
7916 ft to	3300 ft	1	· ·	5 130501 3 646741	>= >=	1 25
	HCP 110 Buttress		burst-t	3 58771		
	Top of segment 1 (ft)	, 3300	•	Actual		Desire
Select 2nd segme	ent from bottom		•	4 350634	>=	1 125
3300 ft to	2300 ft	1		3 355048 3 343324	>=	1.25
	HCP-110 Buttress	<u> </u>		8 576736	>=	1.8

.

Select	;	3rd seg	ļn:	Top of seg ent from bott		2 (ft)	2300	S F collapse burst-b	Actual 6 183546 3 343324	>a >a	Desire 1 125 1.25
2300) 1	t to		0	ft	\neg		burst t	3 316667		
	7		2	6 HCP-110	LT&C	:		jnt strngth	9 674701	>=	18
	_			Top of seg	ment :	3 (ft)	0	SF	Actual		Desire
Select	•	4th seg	m	ent from bott	om			collapse	#D!V/01	>=	1 125
								burst-b	0	>=	1 25
() (it to		0	ft			burst t	Q		
()			0 0		0		jnt stragth	7 85999	>=	18
				Top of seg	ment ·	4 (ft)		SF	Actual		Desire
Select	5th segment from bottom			collapse	#D[V/01	>=	1 125				
								burst-b	0	>=	1 25
() 1	t to			ft			burst-t	0		
()			0 0		0		int stragth	0	>=	18
				Top of seg	ment :	5 (ft)	~ 1 · · ·	S.F	Actual		Desire
Select	(5th seg	т	ent from bott	om			collapse	#DIV/01	>=	1 125
								burst-b	0	>=	1 25
) (t to	_		ft	\neg		burst-t	0		
Ċ)			0 0		o		jnt strngth	Ö	>=	18
·	_			Top of seg	ment (6 (ft)	.9.0	ınt stmgth		>=	18

- 1) Calculate neutral point for buckling with temperature affects computed also
- Surface burst calculations & kuck tolerance in surface pressure for burst
 Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
- 4) Raise joint strength safety factor up to next level on page #2
 5) Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors

	Secondary
S F Collapse bottom of segment	_
S F Collapse top of segment	4 71364
S F Burst bottom of segment	
S F Burst top of segment	
S F Joint strength bottom of segment	795 518
S.F. Joint strength top of segment.	
S F Body yield strength bottom of segment:	764 706
S F Body yield strength top of segment	8 24454

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse	0 84394	
calculations for bottom of segment @	3153 ft	
hydrostatic pressure collapse backside	1672 35 psi	
Axial load @ bottom of section	0 lbs	previous segments
Axial load factor	0	load/(pipe body yield strength)
Collapse strength reduction factor	1	Messrs Westcott Dunlop Kemier 1940
Adjusted collapse rating of segment	8580 psi	
Actual safety factor	5 1305	adjusted casing rating / actual pressure

Casing Design	Well Ottawa Fe	deral Com #1H	1, ,			
String Size & Function	95/1	surface	<u> </u>	ıntermediate	1 1 1 2	
Total Depth	~< 230 ft					
Pressure Gradient for	Calculations		(While drilling)			1
Mud weight, <u>collapse</u>	· ~ 9	#/gal	Safety Factor Colla	pse <u>1 125</u>	<u>,</u>	
Mud welght <u>burst</u>	_*	£#/gal	Safety Factor Burs	t <u>, 1 25</u>	<u>:</u>	
Mud weight for joint s	trength 91	#/gal Safet	y Factor Joint Streng	gth 1.8	i	
BHP @ TD for	collapse 114 816	psı Burst	114 816 psi	joint strength	114.816	psı
Partially evacuated ho	ole? Pressure g	radient remaining	: 10,#/gal			
Max Shut in surface p	ressure.	* \$00 psi				
	000 0		J			
1st segment O D	230 ft to Weight	0 ft Grade Threads	Make up To opt min	mx.	Total ft =	230
9.625 inches Collapse Resistance	36 #/ft Internal Yield	J-55 ST&C Joint Strength	3 940 2,1 Body Yield	360 4,930 Drift	į	
2,020 psi	3,620 psi	394 000 #	564 000 #			
2nd segment	Off to	O ft	Make up To	rque ft lbs	Total ft =	(
O D	Weight #/ft	Grade Threads	opt min	mx		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift	İ	
psi	ຸ ເມີ່າ 'psi	000#	000#	, ;	l	
		4	_			
3rd segment	Oft to	O ft	Make up To		Total ft ≃	(
O D inches	Weight #/ft	Grade Threads	opt min	mx		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield	Drift		
) psi	psi	000 #	000#		ļ	
			.			
4th segment O D	0 ft to Weight	0 ft Grade Threads	Make up To	rque ft-lbs mx.	Total ft =	
! 'if inches	#/Ri	1	1,71,71	,,,		
Collapse Resistance	-, Internal Yield	Joint Strength	Body Yield			
' 1 ε 1 ρ 8ι	p\$i	″ 000 ≇	√ 000 #		ļ	
5th segment	Oft to	O ft	Make up To	rough & The	Total ft =	
O D	Weight	Grade Threads	opt min	mx	TORAL R -	
inches	#/ft		1	. 1		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield 000 #	Drift .		
	<u> </u>	**************************************	* 		•	
Sth segment	Off to	O ft	Make up To	mus fl-lhs	Total ft a	C
OD	Weight	Grade Threads	opt. min	mx.		
inches	#//	i i	No. of Maria	111 151		
Collapse Resistance	Internal Yield	Joint Strength	Body Yield 000 #	Onft.		
					•	
Select 1st segmen	t bettern	230	•		_	Desire
230 ft to	O fi	7	collaps burst-b		>a >=	1 125 1.25
	J-55 ST&C	<u> </u>	burst t			· · · · · ·
	Top of segment 1 (ft)	~ 3		. ~		Desire
Select 2nd segme	nt from bottom		collaps burst-b		>= >=	1 125 1 25
Oft to	0 ft	1	burst-t			1 20
		3	let eter	-th 55 77700		4.0

•

			~	
		~		
			•	
-				
	•			
	.			
			_	

Casing Design	Well Uttawaire	derai Com #1H	and the second s	
String Size & Function	7"x 5 3/2"	n Production	<u>'*</u>	
Total Depth	7916 ft	TVD	: 1 3159 R	
Pressure Gradient for	Calculations		(While drilling)	
Mud weight collapse	, 10.2	_#/gal	Safety Factor Collapse 1,12	<u>5</u>
Mud weight burst	: ' : 20.5	#/gat	Safety Factor Burst.	<u> </u>
Mud weight for joint s	trength : 10.2	#/gal Safety	Factor Joint Strength 11	<u> </u>
8HP @ TD for	collapse 1672 351	psi Burst	1672.351 psi joint atrength	1672 351 psi
Partially evacuated h	ole? Pressure g	radient remaining	10 #/gal	
Max Shut in surface p	pressure	. 3000 psi		
		, , , , , , , , , , , , , , , , , , , 		
1st segment	7916 ft to	3300 ft	Make up Torque ft-lbs	Total ft = 4616
OD	Weight	Grade Threads	opt. min mx.	1
5.5 inches	17 #/R	HCP-110 Buttreas	4,620 3,470 5,780	1
Collapse Resistance	Internal Yield	Joint Strength	Body Yield Drift	1
8,580 psi	10,640 psi-ircr	568 000 #	646 000# 4.767	1
0-d	2000 8 1	2000 8	1	4000
2nd segment	3300 ft to	2300 ft	Make up Torque ft-lbs	Total ft = 1000
O D	Weight 28 #/ft	Grade Threads HCP-110 Buttress	opt min mx 1, 6,930 5,200 11 1 8,660]
Collapse Resistance	Internal Yield	Joint Strength	Body Yield Drift	1
, 7,800 psi	9,950 psi-ircr	853 000#	830 000# 6151	1
3rd segment	2300 ft to	O ft	Make up Torque ft-lbs	Total ft = 2300
OD	Weight	Grade Threads	opt min mx	
7 inches	≥ 28 #/ ft	HCP-110 LT&C	6930 5200 8660	
Collapse Resistance	Internal Yield 9,950 psi	Joint Strength 693 000 #	Body Yield Drift 830 000 # 6.151	
F steps has	0,230 psi	053 000 #	dea 000 to 1 to 1001	j
			· '	
4th segment	Oft to	0 ft	Make up Torque ft-lbs	Total ft = 0
inches	Weight ∵ #/ft	Grade Threads	opt. min mx	
Collapse Resistance	Internal Yield	Joint Strength	Body Yield Drift	1
ri psi	psi	° 000#	→ 000 #	
5th segment	0 ft to	O ft	Make up Torque ft-lbs	Total ft = 0
00	Weight 	Grade Threads	opt. min mx [관망기	
inches Collapse Resistance	Internal Yield	Joint Strength	Body Yleid Drift	ł
) ; psi	.¹i ≩ psi	000 #	600 #	
				_
6th segment	0 ft to	0 ft	Make up Torque fl-lbs	Total ft = 0
OD	Weight	Grade Threads	opt min mx.	1000/11 0
inches	#/ft	`. .	1	
Collapse Resistance	Internal Yield	Joint Strength	Body Yield Drift]
r 🖟 psi	psi	2 m 1	000 #]
	A beller	1 2004	05 4441	Paris
Select 1st segmen	" POTONI	8084	S F Actual collapse 5 130501	Desire >= 1 125
7916 ft to	3300 ft	1	burst-b 3 646741	>= 125
	HCP 110 Buttress		burst t 3 58771	
-	Top of segment 1 (ft)	, 3300	S F Actual	Desire
Select 2nd segme	nt from bottom	· 	collapse 4 350634	>= 1 125
3300 ft to	2300 ft	1	burst-b 3 355048 burst-t 3 343324	>= 1.25
	HCP-110 Buttress		int strigth 8 576738	>= 18

_

Desire	1 125	1 25		18	Desire	1 125	1 25		4	Desire	1 125	125		18	Desire	1 125	1 25		-	18
	X	X		¥		Ä	¥		X		Ä	Ā		Ä		¥	X		Ä	Ķ
Actual	6 183546	3 343324	3316667	9 674701	Actual	#DIVIO	0	0	7 85999	Actual	#DIV/0	0	0	0	Actual	i0/AIQ#	0	0	0	
S)	collapse	burst b	burst-t	int strigth	3.5	collapse	burst-b	burst t	Int stmgth	3.5	collapse	burst-b	burst-t	int stragth	3.6	collapse	burst-b	burst t	Int strugth	Int stringth
2300					0															
Top of segment 2 (ft)	3rd segment from bottom	•	स १० ०स	26 HCP-110 LT&C	Top of segment 3 (ft)	4th segment from bottom		f to Off	0 0 0	Top of segment 4 (ft)	5th segment from bottom		म १० म	0 0 0	Top of segment 5 (ft)	6th segment from bottom		ft to ft	0 0 0	Top of segment 6 (ft)
	Select		2300 ft	7		Select		0	0		Select		9 O	0		Select		0	0	

use in cola	ipse carculat	cons across	6	erem pres	use in colapse calculations across different pressured formations	2			
Three grad	Three gradient pressure function	одоилу алп	_						
Depth of	Depth of evaluation	1,200 ft	œ			516	PS (B)	1 200 R	e =
<u>-</u>	Top of salt	2 400 ft	=	¥. ₩	516				
æ	Base of saft	3 700 €	æ	fx #2	006				
TD of mt	TD of mtermediate	4 600 ft	œ	₽	240				
Pressure g	iradient to be	e used abov	9	ach top to	Pressure gradient to be used above each top to be used as a function of depth ex. psl/ft	unction	of depth	ex. psi/ft	
女	fx #2	£# #3							
043	0.75	0,45							
		I		I					

- Calculaire neutral point for buckling with temperature affects computed also
 Surface burst calculations & kuck tolerance in surface pressure for burst
 Do a comparison test to determine which value is lower joint strength or body yield to use in tensile strength calculations
 Raise joint strength safety factor up to next level on page #2
 Sour service what pipe can be used with proper degrading of strength factors and as function of temp

Adjust for best combination of safety factors Secondary

4 71384		795 518	764 706 8.24454
S F. Collapse bottom of segment S F. Collapse top of segment	S F Burst bottom of segment S F Burst top of segment	S F Joint strength bottom of segment	S F Body yield strength bottom of segment. S F Body yield strength bottom of segment. S F Body yield strength top of segment

Collapse calculations for 1st segment - casing evacuated

Buoyancy factor collapse	0 84394	
calculations for bottom of segment @ hydrostatic pressure collarse. backside	3153 ft 1672 35 psi	
Axial load @ bottom of section	\$ <u>4</u>	previous segments
Axial load factor	0	load/(pipe body yield strength)
Collapse strength reduction factor	-	Massrs, Westcott Duniop Kemier 1940
Adjusted collapse rating of segment. Actual safety factor	8580 psi 5 1305	adjusted casing rating / actual pressure

Operator	Mack Energ	ју Согр	· · · · · · · · · · · · · · · · · · ·	Units	feet, %100ft			11 14 Thursday	y, March 15 2018	Page 1 of
-	Round Tani	k	#1H	State	Chaves New Mexico			al Section Azin		-
Plan	1		***************************************	Country	USA			Datat	pase Access	
Location			FWL Sec 20-T1 c 29-T15S R29		BHL 5	Map Zone	UTM	Lat	Long Ref	
Site							1929250 6		ace Long	
Slot Name	_		UWI				11978401 9		rface Lat	on Lovel
Well Numbe Projec	-		API MD/TVD Ref	KB	c	Surface Z Bround Level			bal Z Ref Mean S North Ref Grid	ea Levei
-DIRECTION/	L-WELL PL	AN-								
MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S *	MapE*	MapN*	SysTVD
** TIÊ (ất MD	= 2265 00)	den		ft-	#.	. 9/100ft	ft	ft .	#	
2265 00	0 00	0 0	2265 00	0 00	0 00		0 00	1929250 60	11978401 90	1514 3
2300 00	0 00	0 0	2300 00	0 00	0 00	0 00	0 00	1929250 60	11978401 90	1479 3
2350 00	0 00	0 0	2350 00	0 00	0 00	0 00	0 00	1929250 60	11978401 90	1429 3
** KOP 8 DEG	REE BUILD		2365 00)							
2365 00	0 00	0.0	2365 00	0 00	0 00	0 00	0 00	1929250 60	11978401 90	1414 3
2400 00	2 80	180 6	2399 99	-0 86	-0 01	8 00	0 86	1929250 59	11978401 05	1379 3
2450 00	6 80	180 6	2449 80	-5 04	-0 05	8 00	5 04	1929250 55	11978396 86	1329 5
2500 00	10 80	180 6	2499 20	-12 69	-0 14	8 00	12 69	1929250 46	11978389 21	1280 1
2550 00	14 80	180 6	2547 95	-23 76	-0 26	8 00	23 76	1929250 34	11978378 14	1231 3
2600 00	18 80	180 6	2595 81	-38 21	-0 41	8 00	38 21	1929250 19	11978363 69	1183 4
2650 00	22 80	180 6	2642 54	-55 96	-0 61	8 00	55 96	1929249 99	11978345 94	1136 7
2700 00	26 80	180 6	2687 92	-76 93	-0 83	8 00	76 93	1929249 77	11978324 97	1091 3
2750 00	30 80	180 6	2731 72	-101 01	-1 09	8 00	101 01	1929249 51	11978300 89	1047 5
2800 00	34 80	180 6	2773 74	-128 08	-1 39	8 00	128 09	1929249 21	11978273 82	1005 5
2850 00	38 80	180 6	2813 77	-158 03	-1 71	8 00	158 04	1929248 89	11978243 87	965 5
2900 00	42 80	180 6	2851 61	-190 69	-2 06	8 00	190 70	1929248 54	11978211 21	927 6
2950 00	46 80	180 6	2887 09	-225 91	-2 44	8 00	225 93	1929248 16	11978175 99	892 2
3000 00	50 80	180 6	2920 01	-263 52	-2 85	8 00	263 54	1929247 75	11978138 38	859 2
3050 00	54 80	180 6	2950 24	-303 34	-3 28	8 00	303 36	1929247 32	11978098 56	829 0
** 55 DEGRE				-000 04	-0 20	0 00	000 00	1323247 02	11370030 30	020
3052 50	55 00	180 6	2951 67	-305 39	-3 30	8 00	305 40	1929247 30	11978096 51	827 6
3100 00	55 00	180 6	2978 92	-344 29	-3 73	0 00	344 31	1929246 87	11978057 61	800 3
3150 00	55 00	180 6	3007 60	-385 25	-4 17	0 00	385 27	1929246 43	11978016 65	771 7
3200 00	55 00 55 00	180 6	3036 28	-426 20	-4 17 -4 61	0 00	426 23	1929245 99	11977975 70	743 0
3250 00	55 00 55 00	180 6	3064 96	-420 20 -467 16	-5 06	0 00	467 19	1929245 54	11977934 74	714 3
** 12 DEGRE				-407 10	-5 06	0 00	407 19	1929240 04	1131130414	/ 14 3
3252 50	55 00	180 6	3066 39	-469 21	-5 08	0 00	469 23	1929245 52	11977932 69	712 9
3300 00	60 70	180 6	3091 66	-509 40	-5 51	12 00	509 43	1929245 09	11977892 50	687 6
3350 00	66 70	180 6	3113 80	-554 20	-6 00	12 00	554 24	1929244 60	11977847 70	665 5
3400 00	72 70	180 6	3131 14	-601 08	-6 50	12 00	601 11	1929244 10	11977800 82	648 1
3450 00	72 70 78 70	180 6	3143 48	-649 50	-7 03	12 00	649 54	1929243 57	11977752 40	635 8
	78 70 84 70	180 6								
3500 00			3150 70	-698 95	-7 56	12 00	698 99	1929243 04	11977702 95	628 6
** LANDING F 3548 33	90 50	180 6	33) 3152 72	-747 22	-8 09	12 00	747 26	1929242 51	11977654 68	626 5
3550 00	90 50	180 6	3152 71	-748 89	-8 10	0 00	748 93	1929242 50	11977653 01	626 5
3600 00	90 50	180 6	3152 27	-798 88	-8 65	0 00	798 93	1929241 95	11977603 02	627 (
3650 00	90 50	180 6	3151 83	-848 88	-9 19	0 00	848 93	1929241 41	11977553 02	627 4
3700 00	90 50	180 6	3151 40	-898 87	-9 73	0 00	898 92	1929240 87	11977503 03	627 9

Ottawa Federal Com #1H, Plan 1

Operator Mack Energy Corp

Well Name Ottawa Federal Com #1H

Units feet, %100ft **County Chaves**

11 14 Thursday March 15, 2018 Page 2 of 4

Field Round Tank

State New Mexico

Vertical Section Azimuth 180 62 Survey Calculation Method Minimum Curvature

Plan 1

Country USA

Database Access

Location SL 660 FSL & 355 FWL Sec 20-T15S R29E BHL 5

FSL & 355 FWL Sec 29 T15S-R29E

Lat Long Ref

Site

Surface X 1929250 6

Surface Long

Slot Name

UWI

Surface Y 11978401 9

Surface Lat

Well Number

API

Surface Z 3779 3

Global Z Ref Mean Sea Level

Project

MD/TVD Ref KB

Ground Level 3757 8

Map Zone UTM

Local North Ref Grid

RECIL	ONAL	WE	I. DI	AN

DITION		H-111								
MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S *	MapE*	MapN* S	ysTVD*
3750 00 7	90 50	180 6	3150 96	-948 87	-10 27	0 00	948 92	1929240 33	11977453 03	628 34
3800 00	90 50	180 6	3150 52	-998 86	-10 81	0 00	998 92	1929239 79	11977403 04	628 78
3850 00	90 50	180 6	3150 09	-1048 86	-11 35	0 00	1048 92	1929239 25	11977353 04	629 21
3900 00	90 50	180 6	3149 65	-1098 85	-11 89	0 00	1098 92	1929238 71	11977303 05	629 65
3950 00	90 50	180 6	3149 21	-1148 85	-12 43	0 00	1148 91	1929238 17	11977253 05	630 09
4000 00	90 50	180 6	3148 78	-1198 84	-12 97	0 00	1198 91	1929237 63	11977203 06	630 52
4050 00	90 50	180 6	3148 34	-1248 84	-13 51	0 00	1248 91	1929237 09	11977153 06	630 96
4100 00	90 50	180 6	3147 91	-1298 83	-14 06	0 00	1298 91	1929236 54	11977103 07	631 39
4150 00	90 50	180 6	3147 47	-1348 83	-14 60	0 00	1348 91	1929236 00	11977053 07	631 83
4200 00	90 50	180 6	3147 03	-1398 82	-15 14	0 00	1398 90	1929235 46	11977003 08	632 27
4250 00	90 50	180 6	3146 60	-1448 82	-15 68	0 00	1448 90	1929234 92	11976953 08	632 70
4300 00	90 50	180 6	3146 16	-1498 81	-16 22	0 00	1498 90	1929234 38	11976903 09	633 14
4350 00	90 50	180 6	3145 72	-1548 81	-16 76	0 00	1548 90	1929233 84	11976853 09	633 58
4400 00	90 50	180 6	3145 29	-1598 80	-17 30	0 00	1598 90	1929233 30	11976803 10	634 01
4450 00	90 50	180 6	3144 85	-1648 80	-17 84	0 00	1648 90	1929232 76	11976753 10	634 45
4500 00	90 50	180 6	3144 42	-1698 79	-18 38	0 00	1698 89	1929232 22	11976703 11	634 88
4550 00	90 50	180 6	3143 98	-1748 79	-18 92	0 00	1748 89	1929231 68	11976653 11	635 32
4600 00	90 50	180 6	3143 54	-1798 78	-19 47	0 00	1798 89	1929231 13	11976603 12	635 76
4650 00	90 50	180 6	3143 11	-1848 78	-20 01	0 00	1848 89	1929230 59	11976553 12	636 19
4700 00	90 50	180 6	3142 67	-1898 77	-20 55	0 00	1898 89	1929230 05	11976503 13	636 63
4750 00	90 50	180 6	3142 23	-1948 77	-21 09	0 00	1948 88	1929229 51	11976453 13	637 07
4800 00	90 50	180 6	3141 80	-1998 77	-21 63	0 00	1998 88	1929228 97	11976403 14	637 50
4850 00	90 50	180 6	3141 36	-2048 76	-22 17	0 00	2048 88	1929228 43	11976353 14	637 94
4900 00	90 50	180 6	3140 92	-2098 76	-22 71	0 00	2098 88	1929227 89	11976303 14	638 38
4950 00	90 50	180 6	3140 49	-2148 75	-23 25	0 00	2148 88	1929227 35	11976253 15	638 81
5000 00	90 50	180 6	3140 05	-2198 75	-23 79	0 00	2198 87	1929226 81	11976203 15	639 25
5050 00	90 50	180 6	3139 62	-2248 74	-24 33	0 00	2248 87	1929226 27	11976153 16	639 68
5100 00	90 50	180 6	3139 18	-2298 74	-24 88	0 00	2298 87	1929225 72	11976103 16	640 12
5150 00	90 50	180 6	3138 74	-2348 73	-25 42	0 00	2348 87	1929225 18	11976053 17	640 56
5200 00	90 50	180 6	3138 31	-2398 73	-25 96	0 00	2398 87	1929224 64	11976003 17	640 99
5250 00	90 50	180 6	3137 87	-2448 72	-26 50	0 00	2448 86	1929224 10	11975953 18	641 43
5300 00	90 50	180 6	3137 43	-2498 72	-27 04	0 00	2498 86	1929223 56	11975903 18	641 87
5350 00	90 50	180 6	3137 00	-2548 71	-27 58	0 00	2548 86	1929223 02	11975853 19	642 30
5400 00	90 50	180 6	3136 56	-2598 71	-28 12	0 00	2598 86	1929222 48	11975803 19	642 74
5450 00	90 50	180 6	3136 13	-2648 70	-28 6 6	0 00	2648 86	1929221 94	11975753 20	643 17
5500 00	90 50	180 6	3135 69	-2698 70	-29 20	0 00	2698 86	1929221 40	11975703 20	643 61
5550 00	90 50	180 6	3135 25	-2748 69	-29 74	0 00	2748 85	1929220 86	11975653 21	644 05
<u>එමෙ</u> ද්ල්∐					T EFIC	£11			P. Sh. A.	endalidi-ani

Ottawa Federal Com #1H, Plan 1

Operator Mack Energy Corp

Field Round Tank Well Name Ottawa Federal Com #1H

Units feet, %100ft County Chaves State New Mexico

11 14 Thursday, March 15, 2018 Page 3 of 4 Vertical Section Azimuth 180 62

Survey Calculation Method Minimum Curvature Database Access

Location SL 660 FSL & 355 FWL Sec 20-T15S-R29E BHL 5 FSL & 355 FWL Sec 29 T15S-R29E

UWI

Country USA

Lat Long Ref

Plan 1

Site **Slot Name** Surface X 1929250 6 Surface Y 11978401 9

Map Zone UTM

Surface Long Surface Lat

Well Number Project API MD/TVD Ref KB **Surface Z** 3779 3

Global Z Ref Mean Sea Level

Ground Level 37578

Local North Ref Grid

DIRECTIONAL-WELL-PLAN-

MD*	INC*	AZI*	TVD*	N*	E*	DLS*	V. S.*	MapE*	•	SysTVD*
5600 00	90 50	180 6	3134 82	-2798 69	-30 29	9/100ft 0 00	2798 85	1929220 31	11975603 21	644 48
5650 00	90 50	180 6	3134 38	-2848 68	-30 83	0 00	2848 85	1929219 77	11975553 22	644 92
5700 00	90 50	180 6	3133 94	-2898 68	-31 37	0 00	2898 85	1929219 23	11975503 22	645 36
5750 00	90 50	180 6	3133 51	-2948 67	-31 91	0 00	2948 85	1929218 69	11975453 23	645 79
5800 00	90 50	180 6	3133 07	-2998 67	-32 45	0 00	2998 84	1929218 15	11975403 23	646 23
5850 00	90 50	180 6	3132 63	-3048 66	-32 99	0 00	3048 84	1929217 61	11975353 24	646 67
5900 00	90 50	180 6	3132 20	-3098 66	-33 53	0 00	3098 84	1929217 07	11975303 24	647 10
5950 00	90 50	180 6	3131 76	-3148 65	-34 07	0 00	3148 84	1929216 53	11975253 25	647 54
6000 00	90 50	180 6	3131 33	-3198 65	-34 61	0 00	3198 84	1929215 99	11975203 25	647 97
6050 00	90 50	180 6	3130 89	-3248 64	-35 16	0 00	3248 83	1929215 44	11975153 26	648 41
6100 00	90 50	180 6	3130 45	-3298 64	-35 70	0 00	3298 83	1929214 90	11975103 26	648 85
6150 00	90 50	180 6	3130 02	-3348 63	-36 24	0 00	3348 83	1929214 36	11975053 27	649 28
6200 00	90 50	180 6	3129 58	-3398 63	-36 78	0 00	3398 83	1929213 82	11975003 27	649 72
6250 00	90 50	180 6	3129 14	-3448 62	-37 32	0 00	3448 83	1929213 28	11974953 28	650 16
6300 00	90 50	180 6	3128 71	-3498 62	-37 86	0 00	3498 82	1929212 74	11974903 28	650 59
6350 00	90 50	180 6	3128 27	-3548 62	-38 40	0 00	3548 82	1929212 20	11974853 28	651 03
6400 00	90 50	180 6	3127 83	-3598 61	-38 94	0 00	3598 82	1929211 66	11974803 29	651 47
6450 00	90 50	180 6	3127 40	-3648 61	-39 48	0 00	3648 82	1929211 12	11974753 29	651 90
6500 00	90 50	180 6	3126 96	-3698 60	-40 02	0 00	3698 82	1929210 58	11974703 30	652 34
6550 00	90 50	180 6	3126 53	-3748 60	-40 57	0 00	3748 82	1929210 03	11974653 30	652 77
6600 00	90 50	180 6	3126 09	-3798 59	-41 11	0 00	3798 81	1929209 49	11974603 31	653 21
6650 00	90 50	180 6	3125 65	-3848 59	-41 65	0 00	3848 81	1929208 95	11974553 31	653 65
6700 00	90 50	180 6	3125 22	-3898 58	-42 19	0 00	3898 81	1929208 41	11974503 32	654 08
6750 00	90 50	180 6	3124 78	-3948 58	-42 73	0 00	3948 81	1929207 87	11974453 32	654 52
6800 00	90 50	180 6	3124 34	-3998 57	-43 27	0 00	3998 81	1929207 33	11974403 33	654 96
6850 00	90 50	180 6	3123 91	-4048 57	-43 81	0 00	4048 80	1929206 79	11974353 33	655 39
6900 00	90 50	180 6	3123 47	-4098 56	-44 35	0 00	4098 80	1929206 25	11974303 34	655 83
6950 00	90 50	180 6	3123 04	-4148 56	-44 89	0 00	4148 80	1929205 71	11974253 34	656 26
7000 00	90 50	180 6	3122 60	-4198 55	-45 43	0 00	4198 80	1929205 17	11974203 35	656 70
7050 00	90 50	180 6	3122 16	-4248 55	-45 98	0 00	4248 80	1929204 62	11974153 35	657 14
7100 00	90 50	180 6	3121 73	-4298 54	-46 52	0 00	4298 79	1929204 08	11974103 36	657 57
7150 00	90 50	180 6	3121 29	-4348 54	-47 06	0 00	4348 79	1929203 54	11974053 36	658 01
7200 00	90 50	180 6	3120 85	-4398 53	-47 60	0 00	4398 79	1929203 00	11974003 37	658 45
7250 00	90 50	180 6	3120 42	-4448 53	-48 14	0 00	4448 79	1929202 46	11973953 37	658 88
7300 00	90 50	180 6	3119 98	-4498 52	-48 68	0 00	4498 79	1929201 92	11973903 38	659 32
7350 00	90 50	180 6	3119 54	-4548 52	-49 22	0 00	4548 78	1929201 38	11973853 38	659 76
7400 00	90 50	180 6	3119 11	-4598 51	-49 76	0 00	4598 78	1929200 84	11973803 39	660 19

M. J. T

Fig. 280.FF

Ottawa Federal Com #1H, Plan 1

Operator Mack Energy Corp Field Round Tank Units feet, %100ft County Chaves 11 14 Thursday March 15, 2018 Page 4 of 4
Vertical Section Azimuth 180 62

Well Name Ottawa Federal Com #1H Plan 1

State New Mexico
Country USA

Survey Calculation Method Minimum Curvature

Database Access

Location SL 660 FSL & 355 FWL Sec 20-T15S-R29E BHL 5

Map Zone UTM

Lat Long Ref

Site

FSL & 355 FWL Sec 29-T15S-R29E

Surface X 1929250 6

Surface Long

Slot Name Well Number UWI API **Surface Y** 11978401 9 **Surface Z** 3779 3

Surface Lat
Global Z Ref Mean Sea Level

Project MD/TVD Ref KB

Ground Level 3757 8

Local North Ref Grid

				LAN-

											
MD)*	INC*	AZI*	TVD*	[∿] N*	E*	DLS*	V. S.*	MapE*	MapN* S	ysTVD*
	ft	~ dea ~	ممام .		#	#					
7450 0	00	90 50	180 6	3118 67	-4648 51	-50 30	0 00	4648 78	1929200 30	11973753 39	660 63
7500 0	00	90 50	180 6	3118 24	-4698 50	-50 84	0 00	4698 78	1929199 76	11973703 40	661 06
7550 0	00	90 50	180 6	3117 80	-4748 50	-51 39	0 00	4748 78	1929199 21	11973653 40	661 50
7600 0	00	90 50	180 6	3117 36	-4798 49	-51 93	0 00	4798 78	1929198 67	11973603 41	661 94
7650 0	00	90 50	180 6	3116 93	-4848 49	-52 47	0 00	4848 77	1929198 13	11973553 41	662 37
7700 0	00	90 50	180 6	3116 49	-4898 48	-53 01	0 00	4898 77	1929197 59	11973503 42	662 81
7750 0	00	90 50	180 6	3116 05	-4948 48	-53 55	0 00	4948 77	1929197 05	11973453 42	663 25
7800 0	00	90 50	180 6	3115 62	-4998 48	-54 09	0 00	4998 77	1929196 51	11973403 42	663 68
7850 0	00	90 50	180 6	3115 ,18	-5048 47	-54 63	0 00	5048 77	1929195 97	11973353 43	664 12
7900 0	00	90 50	180 6	3114 75	-5098 47	-55 17	0 00	5098 76	1929195 43	11973303 43	664 55
*** TD (at	MD = 7	7915 33)									
7915 3	33	90 50	180 6	3114 61	-5113 80	-55 34	0 00	5114 10	1929195 26	11973288 10	664 69

1700000

The state of the s

Attached to Form 3160-3
Mack Energy Corporation
Ottawa Federal Com #1H NMNM-131583
SHL 660 FSL & 355 FWL, SWSW, Sec 20 T15S R294
BHL 5 FSL & 355 FWL, SWSW, Sec 29 T15S R294
Chaves County, NM

DRILLING PROGRAM

1. Geologic Name of Surface Formation

Quaternary

2 Estimated Tops of Important Geologic Markers:

Top of Salt	250'
Base of Salt	690'
Yates	835'
Seven Rivers	1070'
Queen	1560'
Grayburg	1955'
San Andres	2255'

3. Estimated Depths of Anticipated Fresh Water, Oil and Gas:

Water Sand	150'	Fresh Water
Yates	835'	Oil/Gas
Seven Rivers	1070'	Oil/Gas
Queen	1560'	Oil/Gas
Grayburg	1955'	Oil/Gas
San Andres	2255'	Oil/Gas

No other formations are expected to give up oil, gas or fresh water in measurable quantities Setting 9 5/8" casing to 230' and circulating cement back to surface will protect the surface fresh water sand Salt section and shallower zones above TD, which contain commercial quantities of oil and/or gas, will have cement circulated across them by cementing 5 ½" production casing, sufficient cement will be pumped to circulate back to surface

4. Casing Program:

Hole Size	Interval	OD Casing	Wt, Grade, Jt, cond, collapse/burst/tension
14 3/4"	0-230°	9 5/8"	36#, J-55, ST&C, New, 17 59337/6 97328/7 04
8 3/4"	0-3300'	7"	26#,HPC-110,LT&C, Buttress, New, 4 350634/3.355048/3 34
8 ¾ '	3300-791	6' 5 ½"	17#, HCP-110 Buttress, New, 5 130501/3 646741/3 58

5. Cement Program:

9 5/8" Surface Casing Lead 100sx, RFC+12%PF53+2%PF1+5ppsPF42+ 125ppsPF29, yld 1 61, wt 14 4 ppg, 7 357gals/sx, excess 100% Tail 250sx, Class C+1% PF1, yld 1 34, wt 14 8 ppg, 6 323 gals/sx, excess 100% 7" & 5 ½" Production Casing, Lead 430sx Class C 4% PF 20+4 pps PF45 +125pps PF29, yld 1 84, wt 13 2 ppg, 9 914gals/sx, excess 35%, Tail 1300sx, PVL + 1-3% (BWOW) PF44

Attached to Form 3160-3
Mack Energy Corporation
Ottawa Federal Com #1H NMNM-131583
SHL · 660 FSL & 355 FWL, SWSW, Sec 20 T15S R29E
BHL · 5 FSL & 355 FWL, SWSW, Sec 29 T15S R29E
Chaves County, NM

+ 5% PF174 + 5% PF606 + 1% PF153 + 4% PF44, yield 1 48, wt 13 0, 7 57gals/sx, 35% excess

6. Minimum Specifications for Pressure Control.

The blowout preventer equipment (BOP) shown in Exhibit #10 will consist of a double ram-type (3000 psi WP) minimum preventer. This unit will be hydraulically operated and the ram type preventer will be equipped with blind rams on top of 4 1/2" drill pipe rams on bottom. The 11" BOP will be nippled up on the 8 5/8" surface casing and tested by a 3rd party to 2000 psi used continuously until TD is reached. All BOP's and accessory equipment will be tested to 2000 psi before drilling out of intermediate casing. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment (Exhibit #10) will include a Kelly cock and floor safety valve and choke lines and choke manifold (Exhibit #11) with a minimum 3000 psi. WP rating.

7 Types and Characteristics of the Proposed Mud System:

The well will be drilled to TD with a combination of fresh and cut brine mud system. The applicable depths and properties of this system are as follows

DEPTH	TYPE	WEIGHT	VISCOSITY	WATERLOSS
0-230'	Fresh Water	8 5	28	NC
230'-TD'	Cut Brine	91	29	NC

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the well site at all times

8. Auxiliary Well Control and Monitoring Equipment:

- A Kelly cock will be kept in the drill string at all times
- B A full opening drill pipe-stabbing valve with proper drill pipe connections will be on the rig floor at all times -

9. Logging, Testing and Coring Program

- A The electric logging program will consist of GR-Dual Laterolog, Spectral Density, Dual Spaced Neutron, CSNG Log from T D to 8 5/8 casing shoe
- B Drill Stem test is not anticipated
- C No conventional coring is anticipated
- D Further testing procedures will be determined at TD

10. Abnormal Conditions, Pressures, Temperatures and Potential Hazards:

No abnormal pressures or temperatures are anticipated. The estimated bottom hole at TD is 120 degrees and estimated maximum bottom hole pressure is 1600 psig. Low levels of Hydrogen sulfide have been monitors in producing wells in the area, so H2S may be present

Attached to Form 3160-3
Mack Energy Corporation
Ottawa Federal Com #1H NMNM-131583
SHL 660 FSL & 355 FWL, SWSW, Sec 20 T15S R29E
BHL 5 FSL & 355 FWL, SWSW, Sec 29 T15S R29E
Chaves County, NM

while drilling of the well, a plan is attached to the Drilling program No major loss of circulation zones has been reported in offsetting wells

11. Anticipated Starting Date and Duration of Operations:

Road and location work will not begin until approval has been received from the BLM. The anticipated spud date is July 1, 2018. Once commenced, the drilling operation should be finished in approximately 20 days. If the well is productive, an additional 30 days will be required for completion and testing before a decision is made to install permanent facilities.

Attachment to Exhibit #10 NOTES REGARDING THE BLOWOUT PREVENTERS Ottawa Federal Com #1H Chaves County, New Mexico


- 1 Drilling nipple to be so constructed that it can be removed without use of a welder through rotary table opening, with minimum I D equal to preventer bore
- 2 Wear ring to be properly installed in head
- 3 Blow out preventer and all fittings must be in good condition, 2000 psi WP minimum
- 4 All fittings to be flanged
- 5 Safety valve must be available on rig floor at all times with proper connections, valve to be full 2000 psi WP minimum
- 6 All choke and fill lines to be securely anchored especially ends of choke lines
- 7 Equipment through which bit must pass shall be at least as large as the diameter of the casing being drilled through
- 8 Kelly cock on Kelly
- 9 Extension wrenches and hands wheels to be properly installed
- 10 Blow out preventer control to be located as close to driller's position as feasible
- 11 Blow out preventer closing equipment to include minimum 40-gallon accumulator, two independent sources of pump power on each closing unit installation all API specifications

Mack Energy Corporation Minimum Blowout Preventer Requirements

3000 psi Working Pressure 13 3/8 inch- 3 MWP 11 Inch - 3 MWP EXHIBIT #10

Stack Requirements

4	
Min	Min
ID	Nominal
	2"
	2"
·	2" Choke
1/8	
1/8	
	3"
1/16	
1/16	
13/16	
	2"
	1/16 1/16 13/16

OPTIONAL

ı	16	Flanged Valve	1 13/16

10

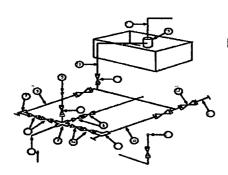
CONTRACTOR'S OPTION TO CONTRACTOR'S OPTION TO FURNISH

- All equipment and connections above bradenhead or casinghead Working pressure of preventers to be 2000 psi minimum
- 2 Automatic accumulator (80 gallons minimum) capable of closing BOP in 30 seconds or less and, holding them closed against full rated working pressure
- 3 BOP controls, to be located near drillers' position
- 4 Kelly equipped with Kelly cock
- 5 Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used
- 6 Kelly saver-sub equipped with rubber casing protector at all times
- 7 Plug type blowout preventer tester
- 8 Lxtra set pipe rams to fit drill pipe in use on location at all times
- 9 Type RX ring gaskets in place of Type R

MEC TO FURNISH

- Bradenhead or casing head and side valves
- 2 Wear bushing If required

ME GENERAL NOTES


- I Deviations from this drawing may be made only with the express permission of MEC's Drilling Manager
- 2 All connections, valves, fittings, piping etc., subject to well or pump pressure must be flanged (suitable clamp connections acceptable) and have minimum working pressure equal to rated working pressure of preventers up through choke valves must be full opening and suitable for high pressure mud service
- 3 Controls to be of standard design and each marked showing opening and closing position
- 4 Chokes will be positioned so as not to hamper or delay changing of choke beans

Replaceable parts for adjustable choke or bean sizes, retainers and choke wrenches to be conveniently located for immediate use

- 5 All valves to be equipped with hand-wheels or handles ready for immediate use
- 6 Choke lines must be suitably anchored
- 7 H\u00e4ndwheels and extensions to be connected and ready for use
- 8 Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency
- 9 All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted
- 10 Casinghead connections shall not be used except in case of emergency
- 11 Does not use kill line for routine fill up operations

Mack Energy Corporation Exhibit #11

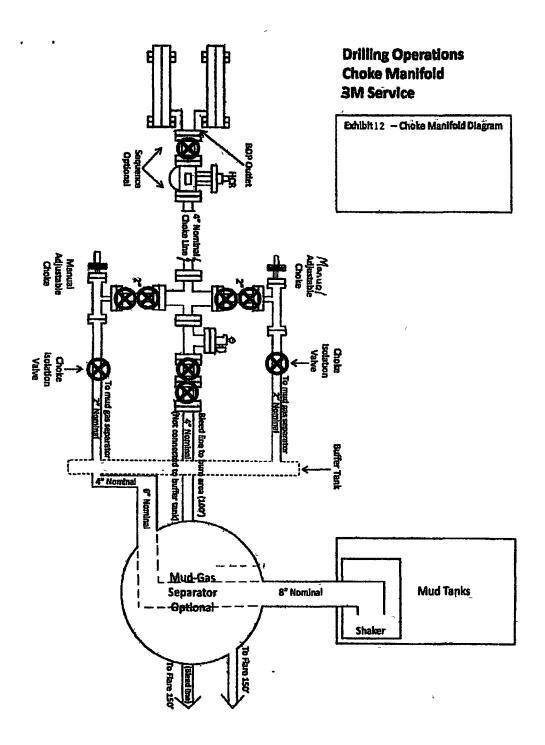
MIMIMUM CHOKE MANIFOLD 3 000 5,000 and 10,000 PSI Working Pressure 3M will be used 3 MWP - 5 MWP - 10 MWP

Mud Pit

Reserve Pit

* Location of separator optional

Below Substructure


				Mımımun	n require	ments				
	3,000 MWP				5,000 MWP			10,000 MWP		
No		I D	Nominal	Rating	10	Nominal	Rating	I.D	Nominal	Rating
1	Line from drilling Spoot		3"	3 000		3"	5 000		3"	10 000
2	Cross 3" x 3" x 3" x 2"			3 000			5 000			
2	Cross 3" x 3" x 3" x 2"									10 000
3	Valve Gate Plug	3 1/8		3 000	3 1/8		5,000	3 1/8		10,000
4	Valve Gate Plug	13/16		3 000	1 13/16		5 000	1 13/16		10,000
'4a	Valves (1)	2 1/16		3,000	2 1/16		5,000	2 1/16		10,000
5	Pressure Gauge			3 000			5 000			10,000
6	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10 000
7	Adjustable Choke (3)	2"		3 000	2"		5 000	2"		10 000
8	Adjustable Choke	l"		3 000	1"		5,000	2"		10 000
9	Line		3"	3 000		3"	5 000		3"	10,000
10	Line		2"	3,000		2"	5,000		2"	10 000
11	Valve Gate Plug	3 1/8		3,000	3 1/8		5 000	3 1/8		10 000
12	Line		3"	1 000		3°	1 000		3"	2,000
13	Line		3"	1 000		3"	1,000		3"	2 000
14	Remote reading compound Standpipe pressure quage			3,000			5 000			10,000
15	Gas Separator		2' x5'			2' λ5			2' x5'	
16	1 ine		4"	1,000		4"	1 000		4"	2,000
17	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000

- Only one required in Class 3M
- Gate valves only shall be used for Class 10 M
- (2) (3) Remote operated hydraulic choke required on 5 000 psi and 10 000 psi for drilling

EQUIPMENT SPECIFICATIONS AND INSTALL ATION INSTRUCTION

- All connections in choke manifold shall be welded studded flanged or Cameron clamp of comparable rating All flanges shall be API 6B or 6BX and ring gaskets shall be API RX or BX. Use only BX for 10 MWP
- All lines shall be securely anchored
- Chokes shall be equipped with tungsten carbide seats and needles, and replacements shall be available
- alternate with automatic chokes a choke manifold pressure gauge shall be located on the rig floor in conjunction with the standpipe pressure gauge
- Line from drilling spool to choke manifold should bee as straight as possible. Lines downstream from chokes shall make turns by large bends or 90 degree bends using bull plugged tees.

Mack Energy Corporation MANIFOLD SCHEMATIC Exhibit #12

U S Department of the Interior BUREAU OF LAND MANAGEMENT SUPO Data Report

Submission Date 03/19/2018

Operator Name MACK ENERGY CORPORATION

Well Name OTTAWA FEDERAL COM

Well Type OIL WELL

APD ID 10400028377

Well Number 1H

Well Work Type Drill

Allegha ad in seel of the perresille water of the see of the reverse of the figure of the

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map

ACCESS TO OTTAWA FEDERAL COM 1H 20170905114455 pdf

Waterloo_5_and_Ottawa_1H_Access_Road_07-27-2017 pdf

Ottawa_Fed___ROW_08-24-2017 pdf

Existing Road Purpose ACCESS,FLUID TRANSPORT

ROW ID(s)

ID NM-132973

Do the existing roads need to be improved? NO

Existing Road Improvement Description

Existing Road Improvement Attachment

Row(s) Exist? YES

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map

Ottawa_Federal\Com_1H_plats\20180316103454 pdf

New road type TWO-TRACK

Length 659

_Fee

Width (ft) 14

Max slope (%) 1

Max grade (%) 2

Army Corp of Engineers (ACOE) permit required? NO

ACOE Permit Number(s)

New road travel width 14

New road access erosion control The maximum width of the running surface will be 14' The road will be crowned and ditched and constructed of 6" rolled and compacted caliche Ditches will be at 3 1 slope and 3' wide Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage and to be consistent with local drainage patterns. The average grade will be less then 1% No turnouts are planned, no culverts, cattleguard, gates, low water crossing or fence cuts are necessary.

Well Name OTTAWA FEDERAL COM

Well Number 1H

New road access plan or profile prepared? NO

New road access plan attachment

Access road engineering design? NO

Access road engineering design attachment

Access surfacing type OTHER

Access topsoil source ONSITE

Access surfacing type description Caliche will be obtained from the nearest BLM approved caliche pit located Sec 19 T15S R29E and Sec 34 T15S R29E

Access onsite topsoil source depth 2

Offsite topsoil source description

Onsite topsoil removal process Blade topsoil into windrow along up-slope edge of road

Access other construction information

Access miscellaneous information

Number of access turnouts

Access turnout map

Drainage Control

New road drainage crossing OTHER

Drainage Control comments The maximum width of the running surface will be 14' The road will be crowned and ditched and constructed of 6" rolled and compacted caliche Ditches will be at 3 1 slope and 3' wide Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage and to be consistent with local drainage patterns. The average grade will be less then 1% No turnouts are planned. No culverts, cattleguard, gates, low water crossing or fence cuts are necessary. Surfacing material will consist of native caliche. Caliche will be obtained from the nearest BLM approved caliche pit located Sec. 19 T15S R29E and Sec. 34 T15S R29E.

Road Drainage Control Structures (DCS) description The maximum width of the running surface will be 14' The road will be crowned and ditched and constructed of 6" rolled and compacted caliche Ditches will be at 3 1 slope and 3' wide Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage and to be consistent with local drainage patterns. The average grade will be less then 1% No turnouts are planned, no culverts, cattleguard, gates, low water crossing or fence cuts are necessary

Road Drainage Control Structures (DCS) attachment

Access Additional Attachments

Additional Attachment(s)

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map

Ottawa_Federal_Com__1H_existing_well_map_20180316144826 pdf

Existing Wells description

Well Name OTTAWA FEDERAL COM

Well Number 1H

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description 1) San Andres Completion Will be sent to the Prince Rupert Federal CTB located at NWSW Sec 20 T15S R29E Proposed flow lines will tren North to the Prince Rupert Federal CTB Flowline will be a 4" poly surface line, 1146 91' in length with a 40 psi working pressure Ottawa Federal #1 - Flowline (a) 4" SDR 11 Poly surface line from Ottawa Federal #1 to the Prince Rupert Federal CTB location (b) Ottawa Federal #1 SWSW Sec 20 T15S R29E and Prince Rupert Federal CTB location NWSW Sec 20 T15S R29E (c) Total distance is 1146 91' in length all on Federal Land Width needed will be 30' No grading needed (d) The duration needed is 30 years (e) Pipeline will be used constantly (f) 3 days to lay line

Production Facilities map

Ottawa_Flowline_Plat_to_TB_20180315095451 pdf Prince_Rupert_CTB_20180315095513 pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type CAMP USE, DUST CONTROL, INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

Water source type GW WELL

Source longitude

CASING

Describe type

Source latitude

Source datum

Water source permit type OTHER

Source land ownership OTHER

Water source transport method TRUCKING

Source transportation land ownership OTHER

Water source volume (barrels) 2000

Source volume (gal) 84000

Describe land ownership

Describe transportation land ownership

Source volume (acre-feet) 0 25778618

Water source and transportation map

Water_Source_08-22-2017 pdf

Water_Source_3_08-22-2017 pdf

Water Source 2 08-22-2017 pdf

Water source comments Please see attachments City/Municipal Water Town of Hagerman S10 T14S R26E, Mor-West S20 T17S R30E Brine Water Salty Dog S5 T19S R26E Wasserhund S36 T16S R24E

New water well? NO

New Water Well Info

Well latitude

Well Longitude

Well datum

Well Name OTTAWA FEDERAL COM

Well Number 1H

Well target aquifer

Est depth to top of aquifer(ft)

Est thickness of aquifer

Aquifer comments

Aquifer documentation

Well depth (ft)

Well casing type

Well casing outside diameter (in)

Well casing inside diameter (in)

New water well casing?

Used casing source

Drilling method

Drill material

Grout material

Grout depth

Casing length (ft)

Casing top depth (ft)

Well Production type

Completion Method

Water well additional information

State appropriation permit

Additional information attachment

Section 6 - Construction Materials

Construction Materials description All caliche required for construction of drill pad and proposed new access road (approximately 2500 cubic yards) will be obtained from approved caliche pit @ Sec 34 T15S R29E and/or Sec 19 T15S R29E

Construction Materials source location attachment

Caliche Pits 08-22-2017 pdf

Section 7 - Methods for Handling Waste

Waste type DRILLING

Waste content description Drill cuttings and fluids will be disposed into the steel tanks and hauled to R-360 disposal facility, permit number NM-01-0006 Located on HWY 62 at MM 66 Drilling fluids will be contained in steel tanks using a closed loop system. No pits will be used during drilling operations

Amount of waste_@380

` `barrels

Waste disposal frequency Weekly

Safe containment description Drill cuttings and fluids will be disposed into the steel tanks and hauled to R-360 disposal facility, permit number NM-01-0006 Located on HWY 62 at MM 66 Drilling fluids will be contained in steel tanks using a closed loop system. No pits will be used during drilling operations.

Safe containmant attachment

Waste disposal type HAUL TO COMMERCIAL Disposal location ownership COMMERCIAL FACILITY

Disposal type description

Disposal location description R-360 disposal facility permit number NM-01-0006 Located on HWY 62 at MM 66

Well Name OTTAWA FEDERAL COM

Well Number 1H

Waste type SEWAGE

Waste content description Sewage and Gray Water will be placed in container and hauled to an approved facility Container and disposal handled by Black Hawk

Amount of waste

Waste disposal frequency Weekly

Safe containment description Sewage and Gray Water will be placed in container and hauled to an approved facility Container and disposal handled by Black Hawk

Safe containment attachment

Waste disposal type HAUL TO COMMERCIAL Disposal location ownership COMMERCIAL FACILITY

Disposal type description

Disposal location description Black Hawk will dispose at an approved location Black Hawk, Keith Willis 1 (575) 637-6378

Waste type GARBAGE

Waste content description Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved landfill. No toxic waste or hazardous chemicals will be produced by this operation

Amount of waste

pounds

Waste disposal frequency Weekly

Safe containment description Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved landfill No toxic waste or hazardous chemicals will be produced by this operation Safe containmant attachment

Waste disposal type HAUL TO COMMERCIAL Disposal location ownership COMMERCIAL FACILITY

Disposal type description

Disposal location description Black Hawk will dispose at an approved location Black Hawk, Keith Willis (575) 631-6378

Waste type PRODUCED WATER

Waste content description Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) and trucked to the Round Tank SWD #1 L-0729, 30-005-64095, Sec. 19 T15S R29E 1980 FSL 1980 FWL, Chaves County, NM, produced oil will be collected in steel tank until sold.

Amount of waste 2080

barrels

Waste disposal frequency . Weekly

Safe containment description Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) and trucked to the Round Tank SWD #1 L-0729, 30-005-64095, Sec. 19 T15S R29E 1980 FSL 1980 FWL, Chaves County, NM, produced oil will be collected in steel tank until sold

Safe containment attachment

Waste disposal type OFF-LEASE INJECTION Disposal location ownership STATE

Disposal type description

Disposal location description Round Tank SWD #1 L-0729, 30-005-64095, Sec 19 T15S R29E 1980 FSL 1980 FWL, Chaves County, NM

Well Name OTTAWA FEDERAL COM

Well Number 1H

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft)

Reserve pit width (ft)

Reserve pit depth (ft)

Reserve pit volume (cu yd)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft)

Cuttings area width (ft)

Cuttings area depth (ft)

Cùttings area volume (cu yd)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities? NO

Ancillary Facilities attachment

Comments

Section 9 - Well Site Layout

Well Site Layout Diagram

ottawa_site_map_20180315100001 pdf

Comments A The well site and elevation plat for the proposed well is shown in Exhibit #14. It was staked by Maddron Surveying, Carlsbad, NM B The drill pad layout, with elevations staked by Maddron Surveying, is shown in attachment Dimensions of the pad are shown. Topsoil, if available, will be stockpiled per BLM specifications. Because the pad is almost

Well Name OTTAWA FEDERAL COM

Well Number 1H

level no major cuts will be required. C. Diagram below shows the proposed orientation of the location. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations

Section 10 - Plans for Surface Reclamation

Type of disturbance New Surface Disturbance

Multiple Well Pad Name

Multiple Well Pad Number

Recontouring attachment

ottawa reclaim 20170905151407 pdf

Drainage/Erosion control construction Edges of location will be bermed to prevent run off or erosion

Drainage/Erosion control reclamation The Maximum width of the running surface will be 14. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche Ditches will be at 3 1 slope and 3 feet wide Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns

Well pad proposed disturbance (acres) 2 191

Road proposed disturbance (acres) 0.45

Powerline proposed disturbance (acres) 0

Pipeline proposed disturbance (acres) 078

Other proposed disturbance (acres) 0

Total proposed disturbance 3 421,

Well pad interim reclamation (acres)

Powerline interim reclamation (acres)

Pipeline interim reclamation (acres) 0.76 🤄

Other interim reclamation (acres) 0

Total interim reclamation 2 43

Well pad long term disturbance (acres) 1/43

Road Interim reclamation (acres) 0.24 Road long term disturbance (acres)

0 24

Powerline long term disturbance (acres) 0

Pipeline long term disturbance

(acres) 0 02

Other long term disturbance (acres) 0

Total long term disturbance 1 69

Reconstruction method 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water 2) Area will be reseeded as per BLM specifications. Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds Topsoil redistribution 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent-erosion and ponding of water 2) Area will be reseeded as per BLM specifications Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds Soil treatment 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water 2) Area will be reseeded as per BLM specifications Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds Existing Vegetation at the well pad The area around the well site is grassland and the topsoil is sandy. The vegetation is native scrub grass with sagebrush

Existing Vegetation at the well pad attachment

Existing Vegetation Community at the road The area around the well site is grassland and the topsoil is sandy. The vegetation is native scrub grass with sagebrush

Existing Vegetation Community at the road attachment

Well Name OTTAWA FEDERAL COM

Well Number 1H

Existing Vegetation Community at the pipeline The area around the well site is grassland and the topsoil is sandy The vegetation is native scrub grass with sagebrush

Existing Vegetation Community at the pipeline attachment

Existing Vegetation Community at other disturbances The area around the well site is grassland and the topsoil is sandy. The vegetation is native scrub grass with sagebrush

Existing Vegetation Community at other disturbances attachment

Non native seed used? NO

Non native seed description

Seedling transplant description

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment

Will seed be harvested for use in site reclamation? YES

Seed harvest description A cultural resources examination has been requested and will be forwarded to your office in the

near future

Seed harvest description attachment

Seed Management

Seed Table

Seed type

Seed name

Source name

Source phone

Seed cultivar

Seed use location

PLS pounds per acre

Seed Source

Source address

Proposed séeding season

Seed Summary

Seed Type

Pounds/Acre

Total pounds/Acre

Seed reclamation attachment

Operator Contact/Responsible Official Contact Info

First Name Jerry

Last Name Sherrell

Well Name OTTAWA FEDERAL COM

Well Number 1H

Phone (575)748-1288

Email jerrys@mec.com

Seedbed prep

Seed BMP

Seed method

Existing invasive species? NO

Existing invasive species treatment description

Existing invasive species treatment attachment

Weed treatment plan description The holder shall seed all disturbed areas with the seed mixture listed by BLM. The seed mixture she be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State Law(s) and the nine (9) months prior to purchase. Commercial see will be either certified or registered seed. The seed container will be tagged in accordance with State Law(s) and available for inspection by the authorized officer.

Weed treatment plan attachment

Monitoring plan description After all disturbed area have been satisfactorily prepared, these areas need to be revegetated with seed mixture provided by BLM Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may be repeated until revegetation is successful, as determined by the BLM.

Monitoring plan attachment

Success standards The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer Evaluation of growth will not be made before completion of at least one full growing season after seeding Pit closure description NO Pit

Pit closure attachment

Section 11 - Surface Ownership

Disturbance type _WELL PAD

Describe

Surface Owner BUREAU OF LAND MANAGEMENT

Other surface owner description

BIA Local Office

BOR Local Office

COE Local Office

DOD Local Office

NPS Local Office

State Local Office

Military Local Office

USFWS Local Office

Other Local Office

Well Name OTTAWA FEDERAL COM Well Number 1H

USFS Region

USFS Forest/Grassland

USFS Ranger District

Section 12 - Other Information

Right of Way needed? NO ROW Type(s)

ROW Applications

SUPO Additional Information

Use a previously conducted onsite? YES

Previous Onsite information Onsite 3/9/2018

Other SUPO Attachment

H2S_Contingency_Plan_20171002102522 docx ottawa_h2s_plan_20171012143757 pdf ottawa_gas_20180316110123 pdf

ottawa_sup_2018031614562200\(\frac{1}{2}\)20180316145655 pdf\(\frac{1}{2}\)

Use APD as ROW?

ACCESS ROAD PLAT ACCESS ROAD TO THE OTTAWA FEDERAL COM 1H MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 29, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO JUNE 23, 2017 V (NE) V 427 45 FT 19 20 20 N89'53'39"E 2643 73 FT N89°49'39"E 2639,85 FT BC 1940 BC 1946 STA 1+54 1 SECTION LINE 29 28 30 29 EXISTING | 2-TRACK, ROAD STA 0+00 BOR AT EXIST 2-TRACK RD (TIE) N72°30'36"W 490 58 FT E 67 SEC 29 T.15S., R.29E BLM29 | 28 30 1 29 33^{BC 1946} S89'35'43"W 2642 38 FT S89*49'27"W 2639.40 FT 32 32 SEE NEXT SHEET (2-6) FOR DESCRIPTION 1000 1000 SURVEYOR CERTIFICATE 1000 I FILIMON F JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY MOD PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF THEM MEXICO.

IN WITNESS WHEREO. THIS CERTIFICATE IS EXECUTED AT CARLSBAD, GENERAL NOTES 1) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT 2) BASIS OF BEARING AND DISTANCE IS NMSP NEW MEXICO. EAST (NAD83) MODIFIED TO SURFACE MADRON SURVEYING INC 301 SOUTH CANAL CARLSBAD NEW MEXICO 88220 COORDINATES NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVÉY Phone (575) 234-3341 SHEET 1-6 SURVEY NO 5341 INC 501 SOUTH CANA (575) 234-73341 ARTSBAD NEW MEXICO *MADRON SURVEYING*

ACCESS ROAD PLAT ACCESS ROAD TO THE OTTAWA FEDERAL COM 1H

MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 29, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO JUNE 23, 2017

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 29, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M , CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE

BEGINNING AT A POINT WITHIN THE NW/4 NW/4 OF SAID SECTION 29 TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M , WHENCE THE NORTHWEST CORNER OF SAID SECTION 29, TOWNSHIP 15 SOUTH RANGE 29 EAST NMPM BEARS N72'30'36"W, A DISTANCE OF 490 58 FEET.

THENCE N15 12'53"W A DISTANCE OF 154 13 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE NORTHWEST CORNER OF SAID SECTION 29, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M BEARS S89'49 39"W, A DISTANCE OF 427 45 FEET,

AID STRIP OF LAND BEING 154 13 FEET OR 9 34 RODS IN LENGTH, CONTAINING 0 106 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS

NW/4 NW/4 154 13 L.F 9 34 RODS 0 106 ACRES

SURVEYOR CERTIFICATE

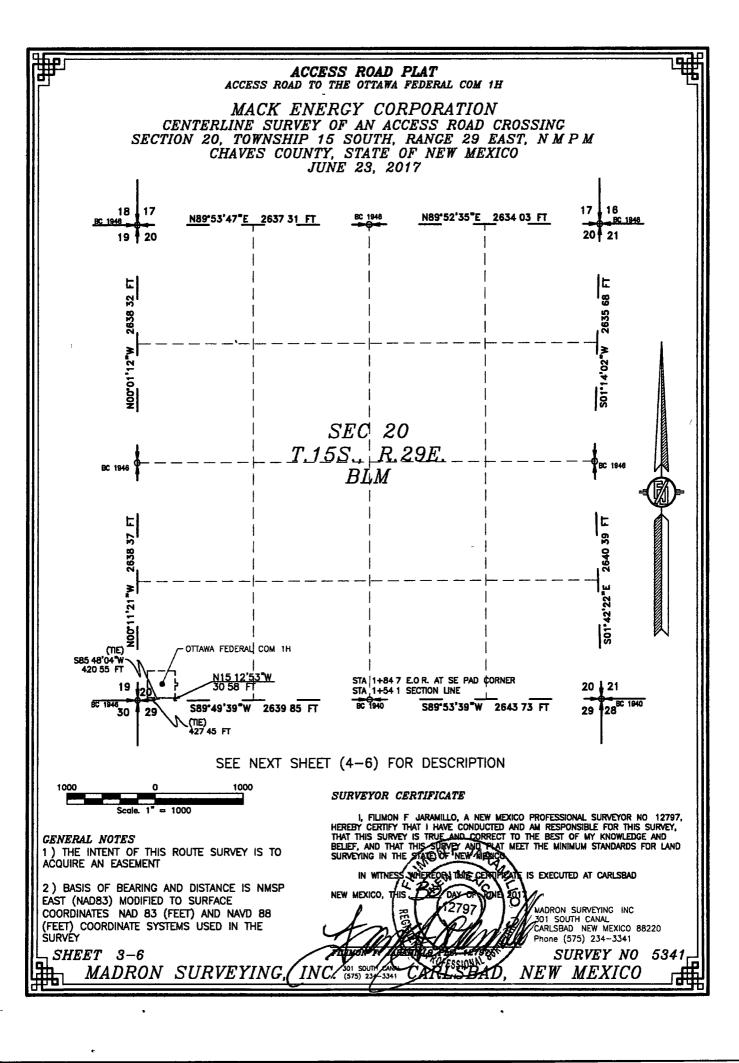
INC: (575) 2017 CANAL (575) 204-3341

GENERAL NOTES

- 1) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT
- 2) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE **SURVÉY**

SHEET 2-6

MADRON SURVEYING


I, FILIMON F JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO 12797
HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY,
THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND
BELIEF, AND THAT THIS SURVEY, AND PLAT MEET THE MINIMUM STANDARDS FOR LAND
SURVEYING IN THE STATE OF NEW ANEXCO

IN WITNESS, WHEREOF MIRIS OF THE CONTROL OF

MADRON SURVEYING INC CARLSBAD NEW MEXICO 88220 Phone (575) 234-3341

SURVEY NO 5341

NEW MEXICO

ACCESS ROAD PLAT ACCESS ROAD TO THE OTTAWA FEDERAL COM 1H

MACK ENERGY CORPORATION CENTERLINE SURVEY OF AN ACCESS ROAD CROSSING SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO JUNE 23, 2017

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 20 TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M , CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE

BEGINNING AT A POINT WITHIN THE SW/4 SW/4 OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 20 TOWNSHIP 15 SOUTH RANGE 29 EAST, N M P M BEARS S89 49'39"W, A DISTANCE OF 427 45 FEET.

THENCE N 15 12'53"W A DISTANCE OF 30 58 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M BEARS S85'48'04"W, A DISTANCE OF 420 55 FEET,

SAID STRIP OF LAND BEING 30 58 FEET OR 1 85 RODS IN LENGTH, CONTAINING 0 021 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS

SW/4 SW/4 30 58 LF 185 RODS 0 021 ACRES

SURVEYOR CERTIFICATE

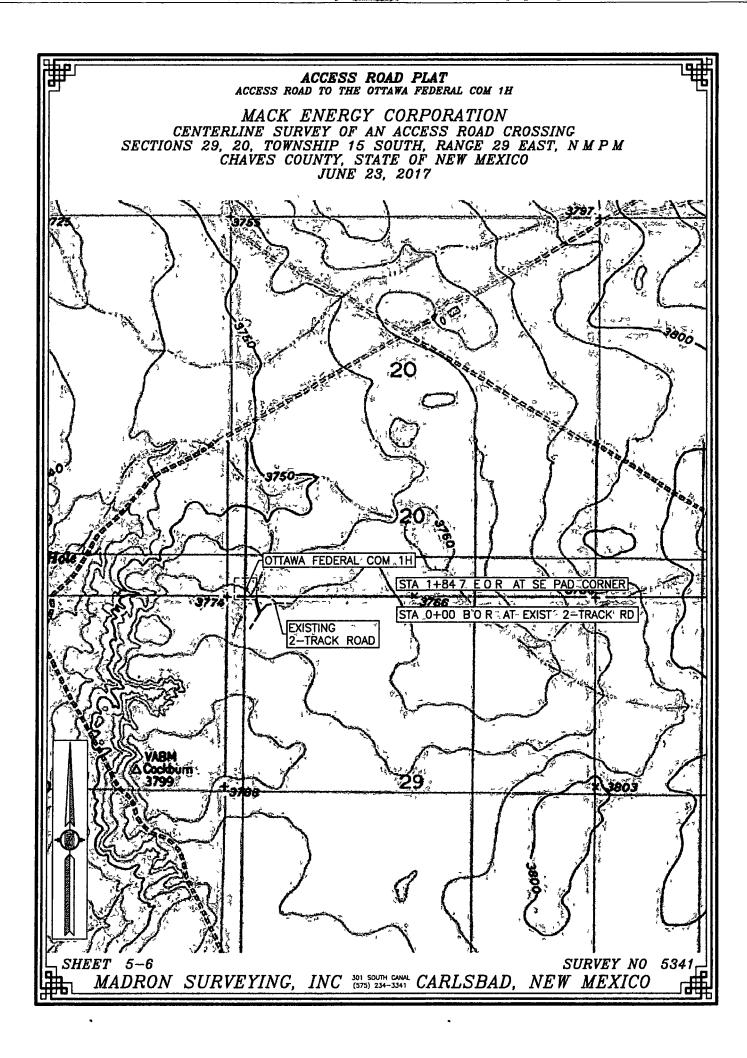
GENERAL NOTES

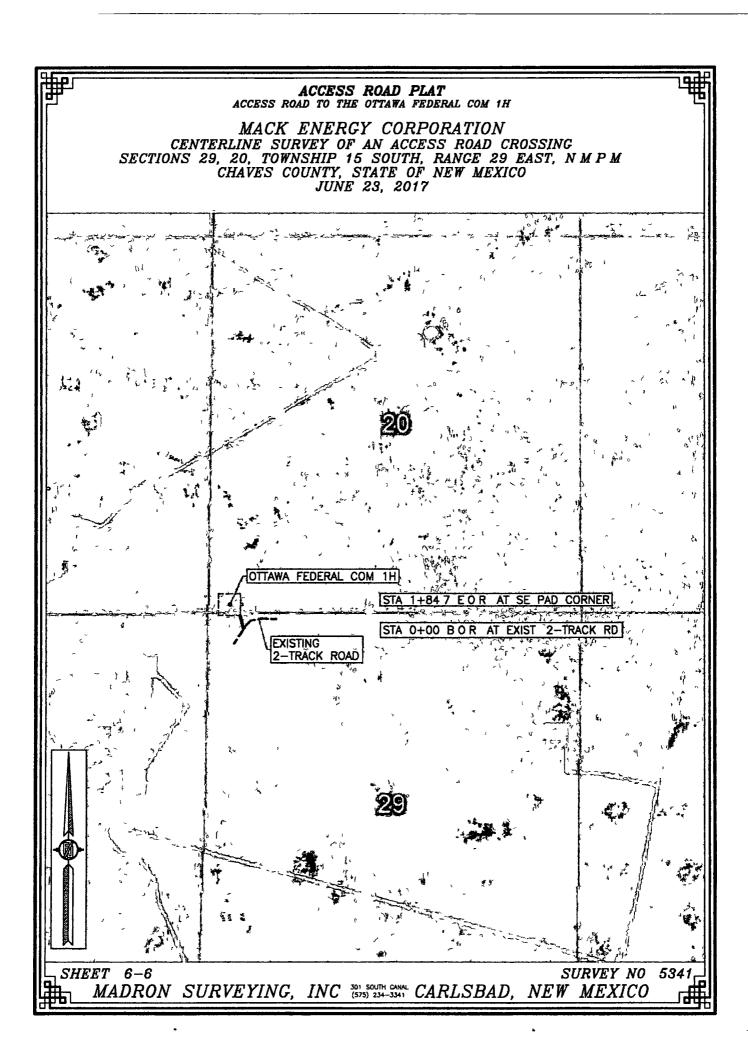
- 1) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT
- 2) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE **SURVÉY**

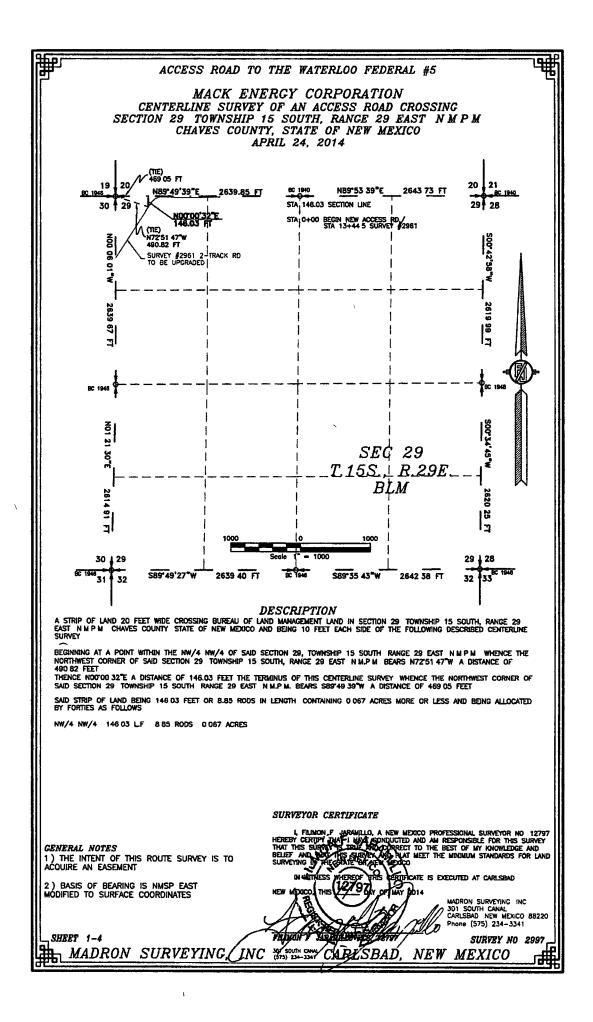
SHEET 4-6

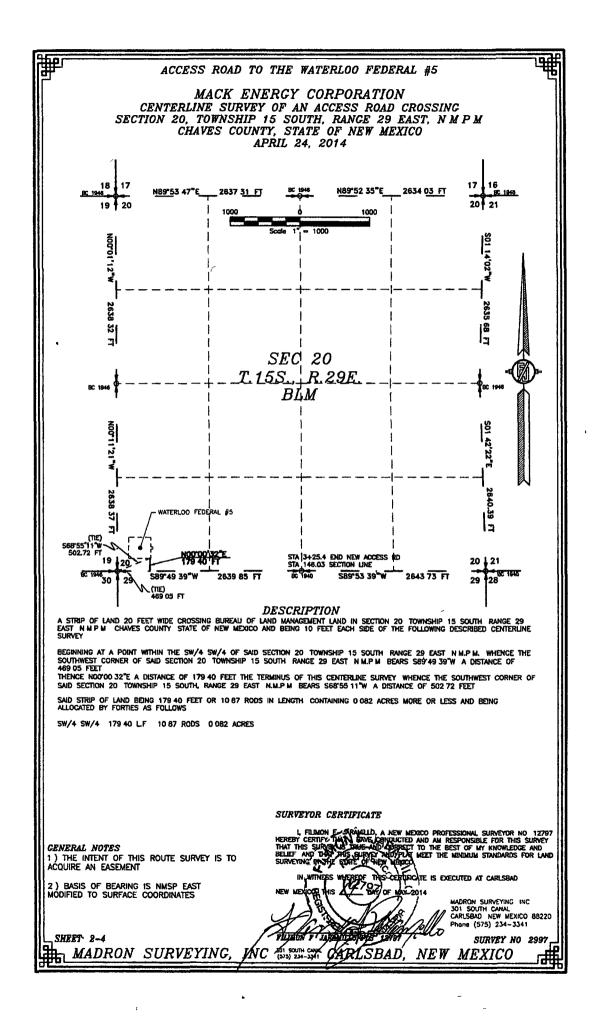
MADRON SURVEYING

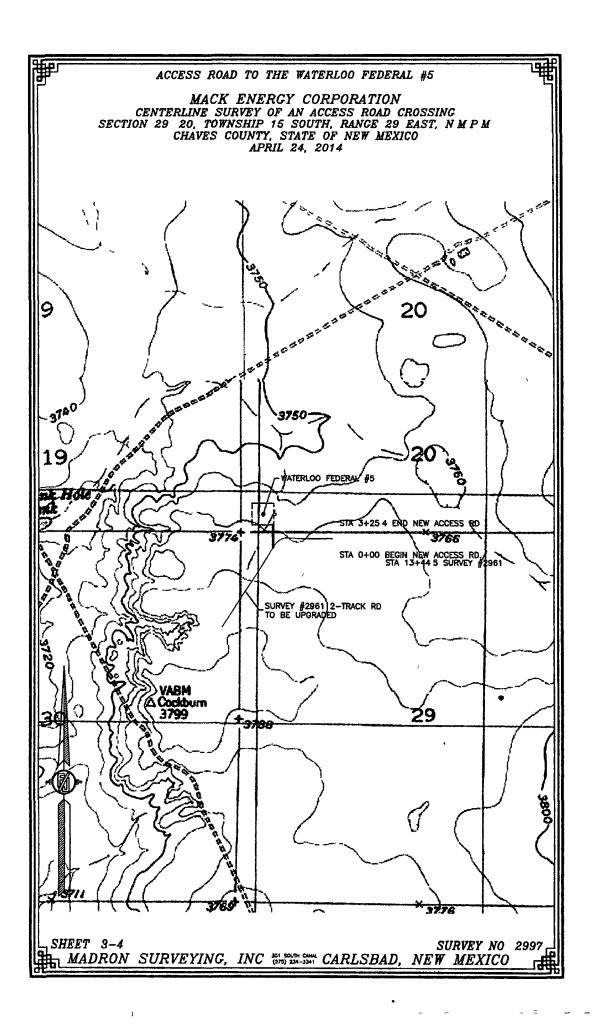
I, FILIMON F JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STAND OF NEW JECTOR

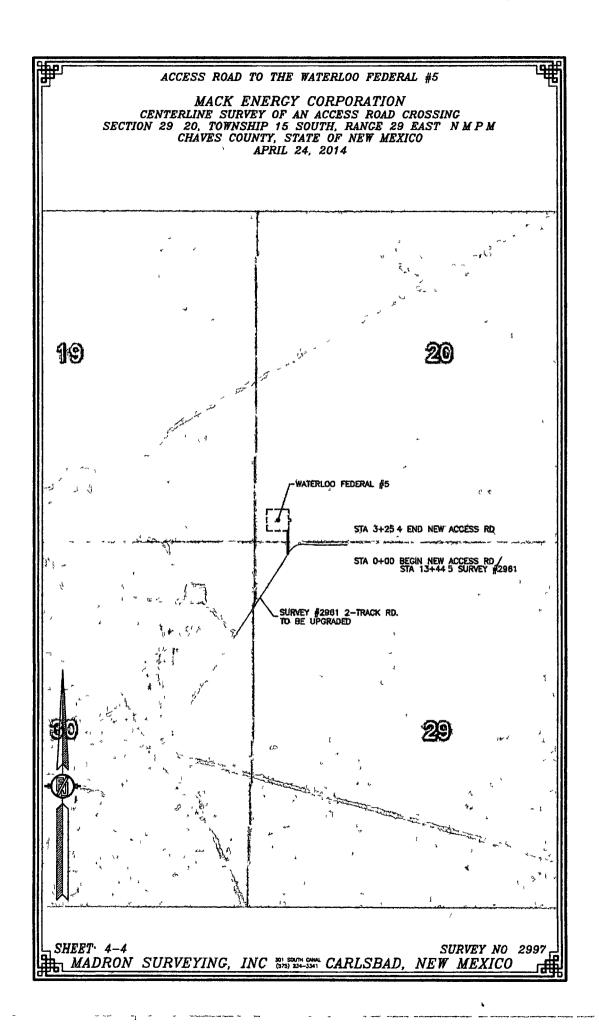

IN WITHERS WHEREON THIS CERTIFICATE IS EXECUTED AT CARLSBAD MEXICO, THIS DAY DE TONET 2017

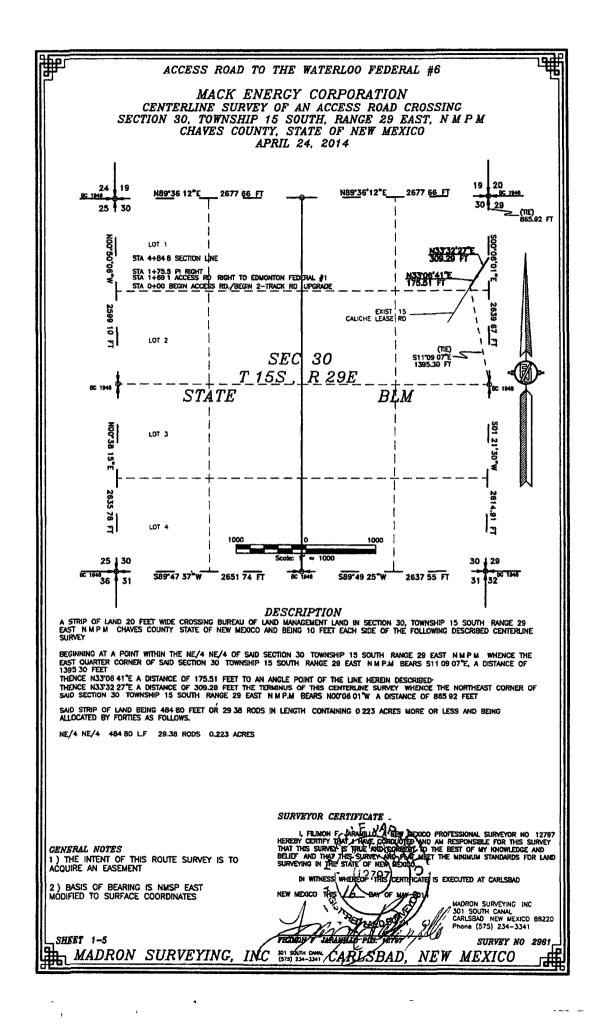

NEW MEXICO

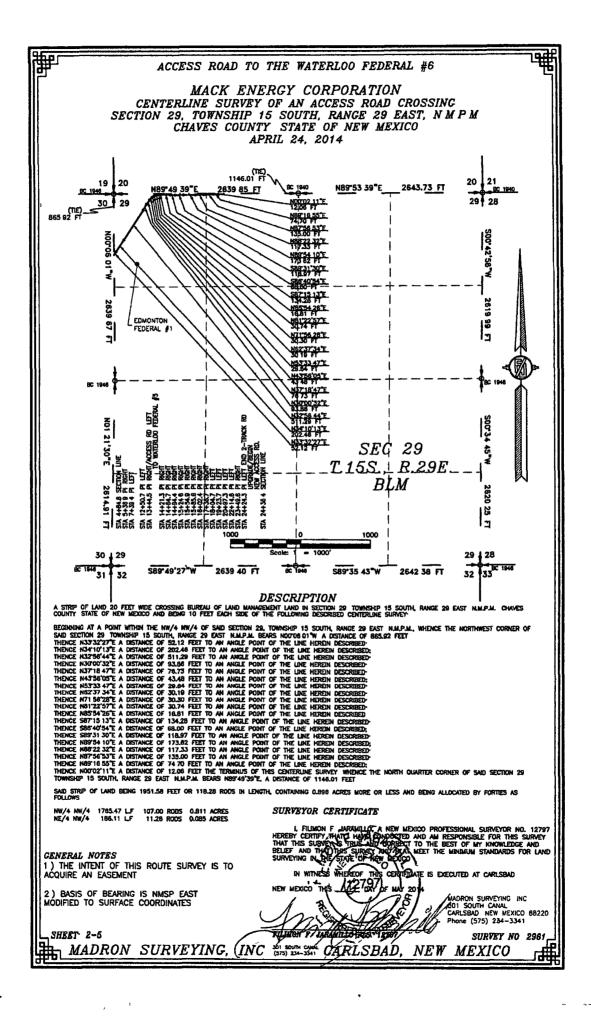

MADRON SURVEYING INC 301 SOUTH CANAL CARLSBAD NEW MEXICO 88220 Phone (575) 234-3341

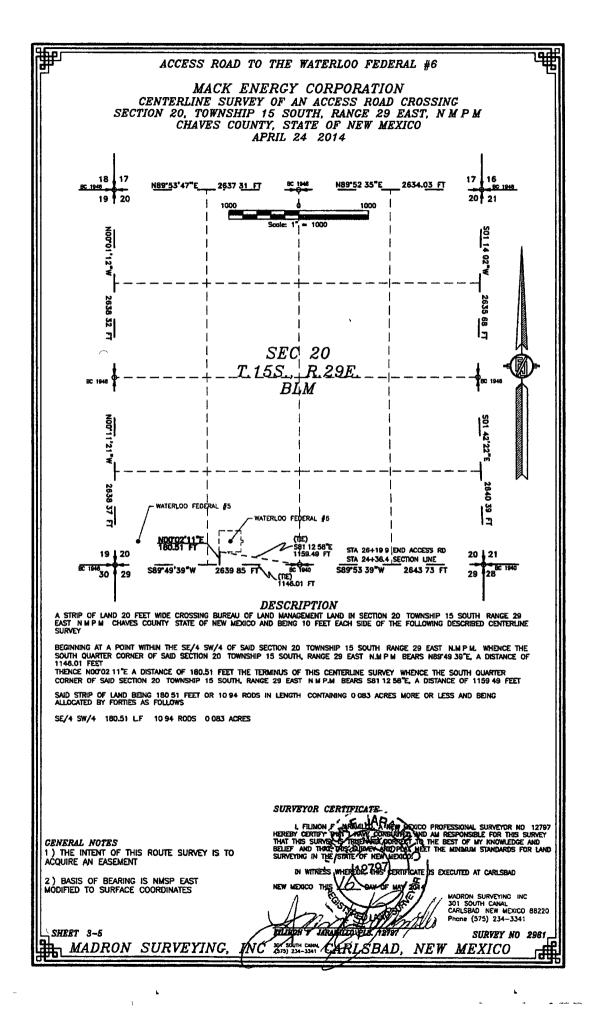

SURVEY NO

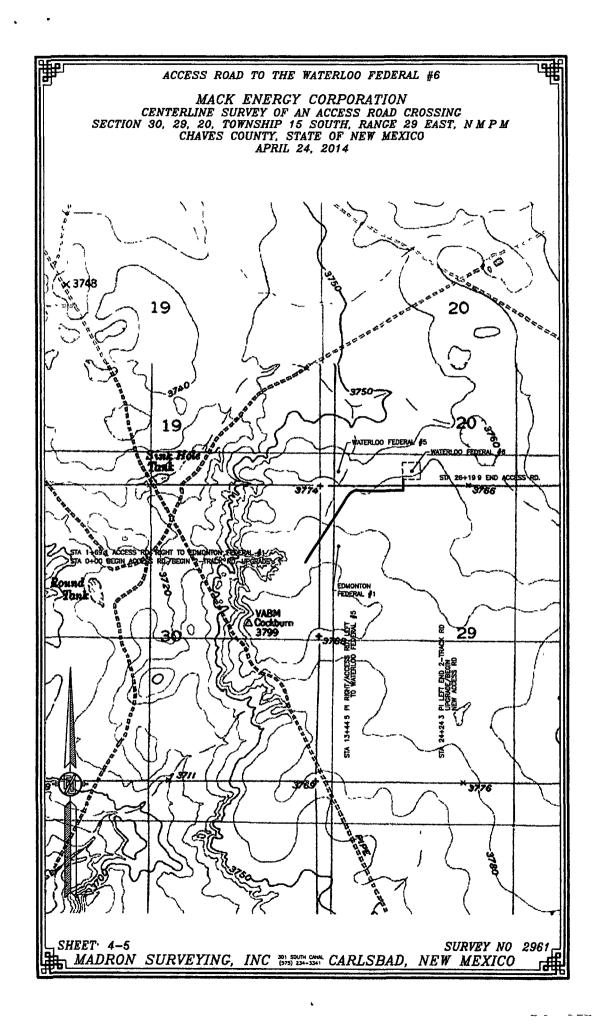

NEW MEXICO

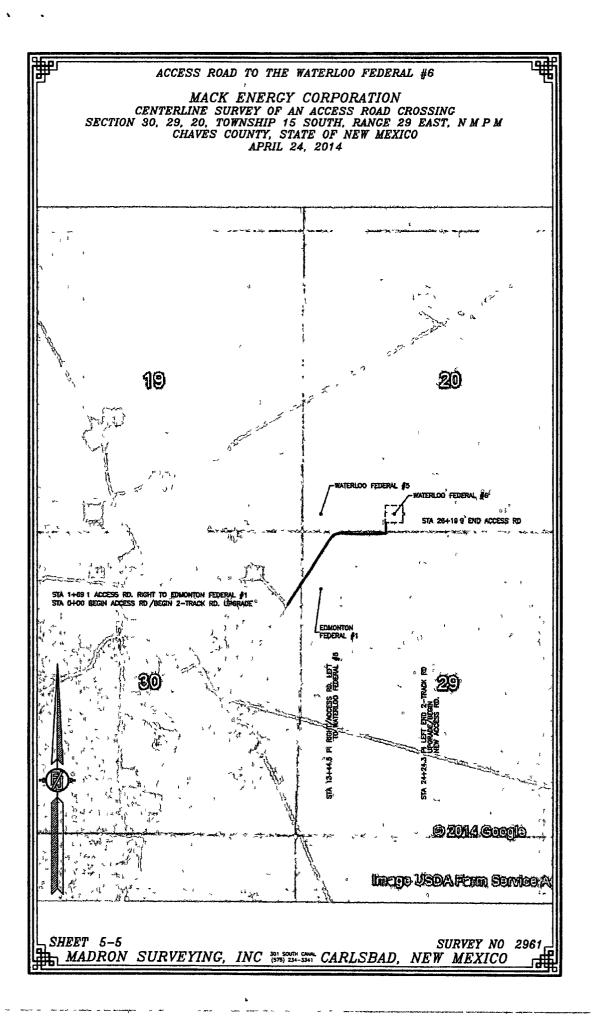












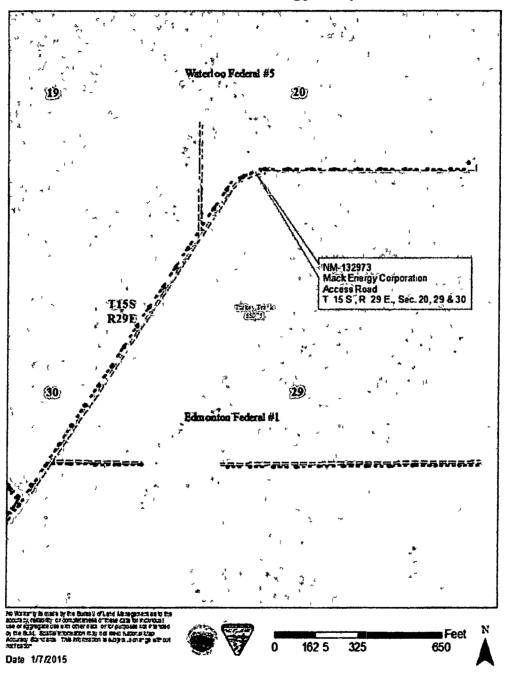


Exhibit B Map for NM-132973

NM-132973 Mack Energy Corporation

NM OIL CONSERVATION

ARTESIA DISTRICT

Form C-102

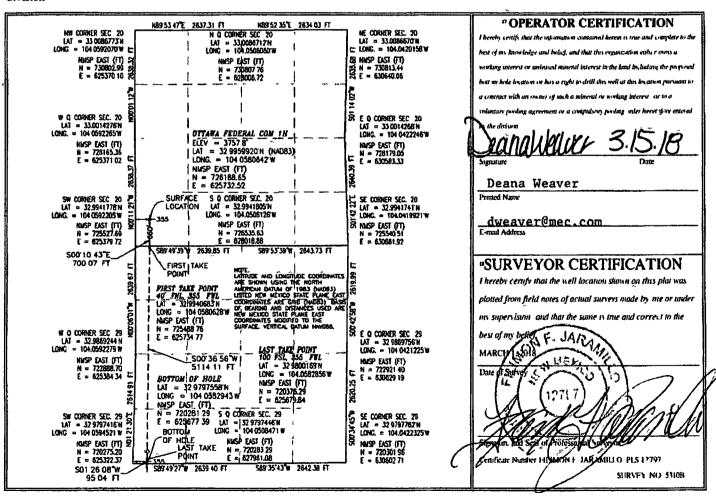
State of New Mexico Energy, Minerals & Natural Resources Department APR 18 20 Revised August 1, 2011

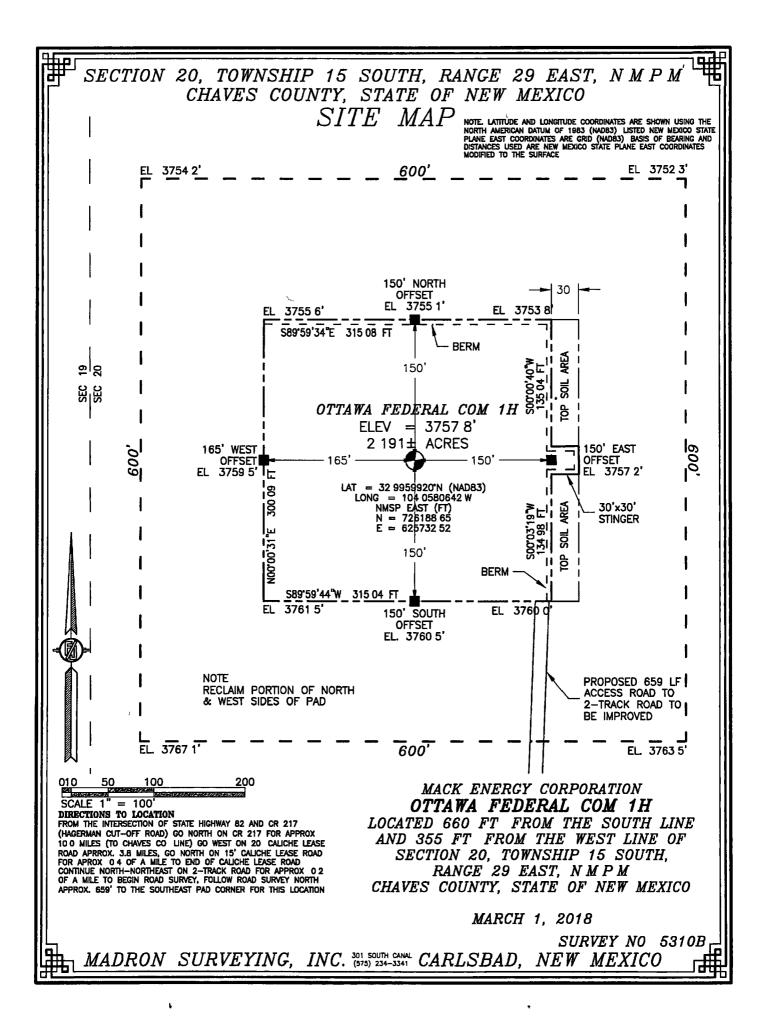
Submit one copy to appropriate

OIL CONSERVATION DIVISION 1220 South St Francis Dr Santa Fe. NM 87505

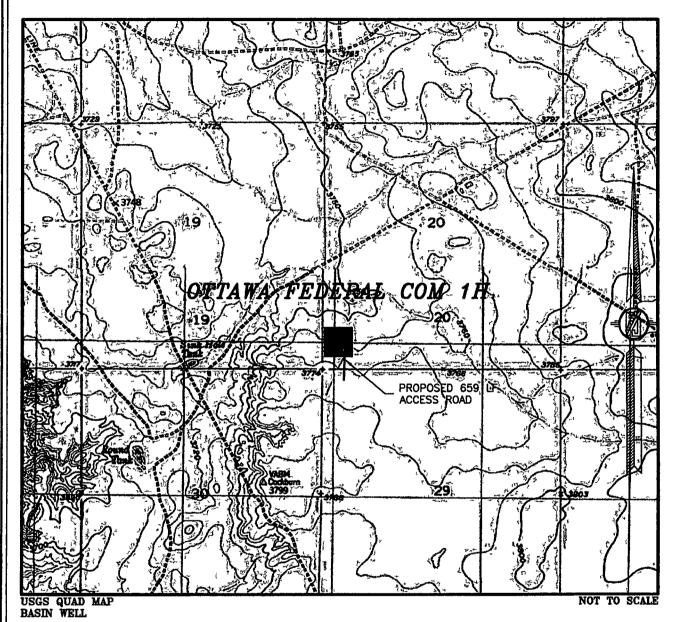
District Office RECEIVED

☐ AMENDED REPORT


District 1 1635 N. French Dr., Hobbs, NM 88240 Ph. ne (575) 393-0161 Fax (575) 193 0720 District II 811 S First St. Artesta, NAI 83210 Phone (575) 748-1283 Fax (575) 745 9720 District Hit 1000 Rto Brazos Road, Aztec NM 87410 Phone (505) 334-6178 Fax (505) 334-61"0 District IV 1220 S. St. Francis Dr. Santa Fe, NM 87505 Phone (505) 476 3460 Fax (505) 476-346...

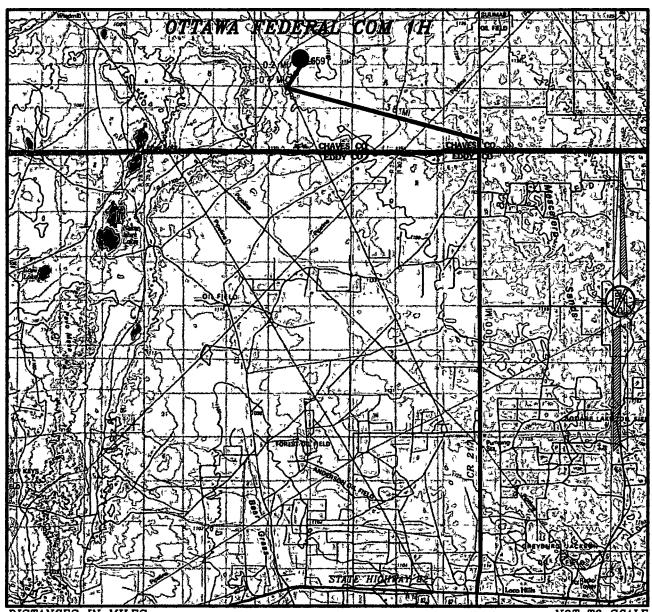

WELL LOCATION AND ACREAGE DEDICATION PLAT

	API Numbe	r	527	Pool Code		Round Tank; San Andres					
⁴ Property	Code	'Property Name OTTAWA FEDERAL COM							Well Number 1H		
⁷ OGRID №. 13837		Operator Name MACK ENERGY CORPORATION							*Elevation 3757.8		
" Surface Location											
UL or lot no M	Section 20	Township 15 S	Range 29 E	Lot Idn	Feet from the 660	North/South line SOUTH	Feet from the 355	East/West line WEST	CHAVES		


UL or lot no M	Section 20	Township 15 S	Range 29 E	Lot Idn	Feet from the	North/South line SOUTH	Feet from the 355	East/West line WEST	CHAVES
			" B	ottom Ho	ole Location	If Different Fr	om Surface		
UL or lot no M	Section 29	Township 15 S	Range 29 E	Lot Idn	Feet from the 5	North/South line SOUTH	Feet from the 355	East/ West line WEST	County CHAVES
¹¹ Dedicated Acres	s ^u Joint e	r Infill ^{is} C	onsolidation	Code ".Or	der No				

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, NMPM CHAVES COUNTY, STATE OF NEW MEXICO LOCATION VERIFICATION MAP



MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H
LOCATED 660 FT FROM THE SOUTH LINE
AND 355 FT FROM THE WEST LINE OF
SECTION 20, TOWNSHIP 15 SOUTH,
RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018

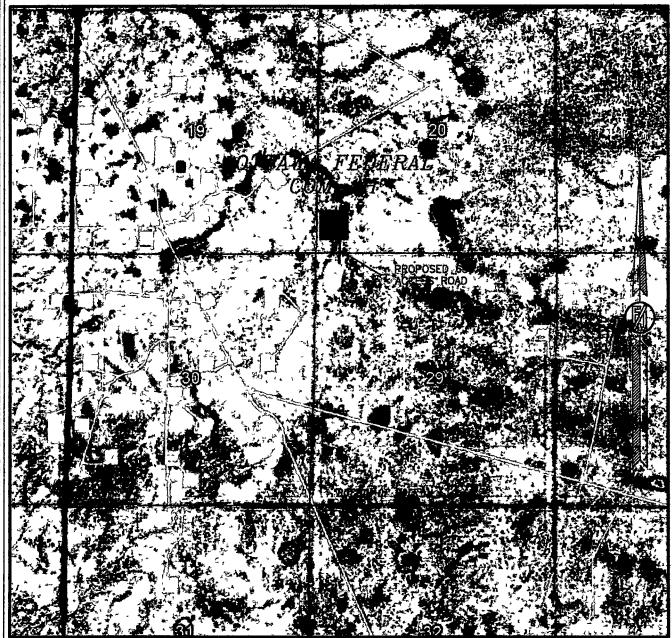
SURVEY NO 5310B
MADRON SURVEYING, INC 501 SOUTH CANAL CARLSBAD, NEW MEXICO

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO VICINITY MAP

DISTANCES IN MILES

NOT TO SCALE

DIRECTIONS TO LOCATION
FROM THE INTERSECTION OF STATE HIGHWAY 82 AND CR 217
(HAGERMAN CUT-OFF ROAD) GO NORTH ON CR 217 FOR APPROX.
10 0 MILES (TO CHAVES CO LINE) GO WEST ON 20' CALICHE LEASE
ROAD APRROX 3 8 MILES, GO NORTH ON 15' CALICHE LEASE ROAD
FOR APROX. 0 4 OF A MILE TO END OF CALICHE LEASE ROAD
CONTINUE NORTH-NORTHEAST ON 2-TRACK ROAD FOR APPROX. 0.2
OF A MILE TO BEGIN ROAD SURVEY, FOLLOW ROAD SURVEY NORTH
APPROX 859' TO THE SOUTHEAST PAD CORNER FOR THIS LOCATION

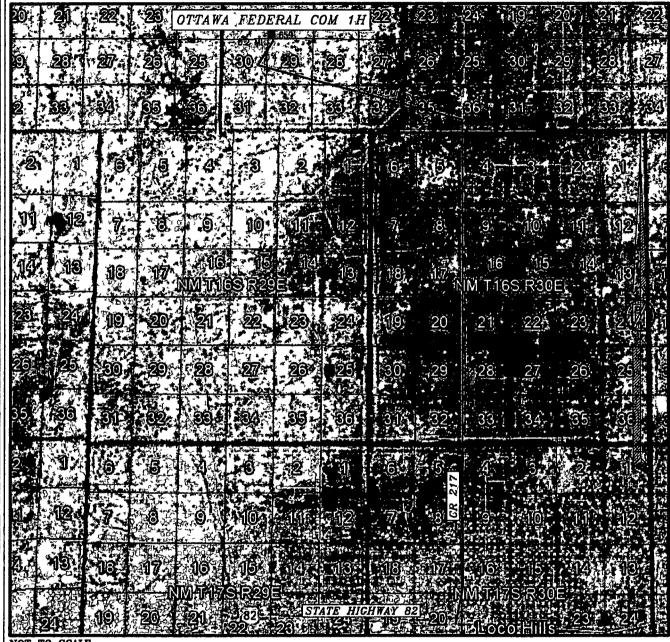

MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H
LOCATED 660 FT FROM THE SOUTH LINE
AND 355 FT FROM THE WEST LINE OF
SECTION 20, TOWNSHIP 15 SOUTH,
RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018

SURVEY NO 5310B

MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO AERIAL PHOTO


NOT TO SCALE AERIAL PHOTO GOOGLE EARTH FEBRUARY 2017

MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H
LOCATED 660 FT FROM THE SOUTH LINE
AND 355 FT FROM THE WEST LINE OF
SECTION 20, TOWNSHIP 15 SOUTH,
RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO

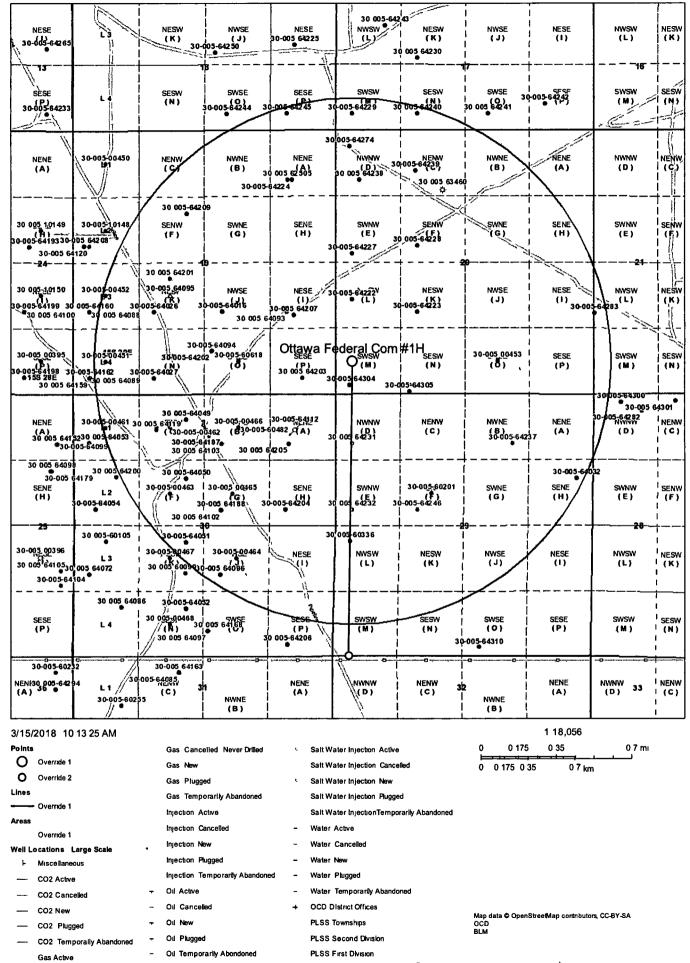
MARCH 1, 2018

SURVEY NO 5310B
MADRON SURVEYING, INC. 301 SOUTH CANAL CARLSBAD, NEW MEXICO

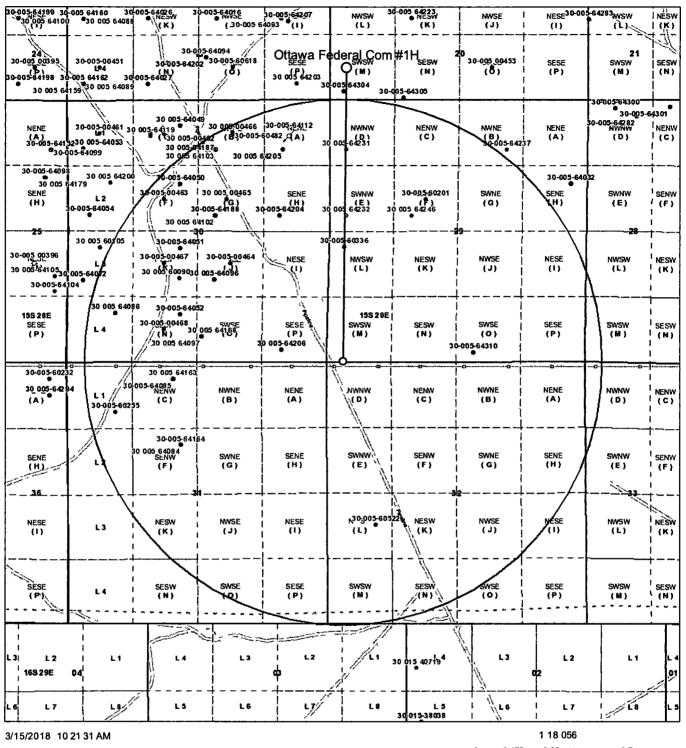
SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO ACCESS AERIAL ROUTE MAP

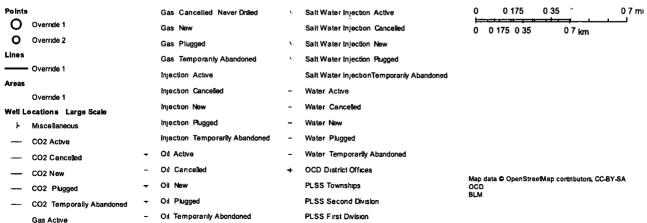
NOT TO SCALE AERIAL PHOTO-GOOGLE EARTH FEBRUARY 2017

MACK ENERGY CORPORATION
OTTAWA FEDERAL COM 1H


LOCATED 660 FT FROM THE SOUTH LINE AND 355 FT FROM THE WEST LINE OF SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO

MARCH 1, 2018


SURVEY NO 5310B


MADRON SURVEYING, INC 301 SOUTH CANAL CARLSBAD, NEW MEXICO

Ottawa Federal Com #1H

Ottawa Federal Com #1H BHL

FLOWLINE PLAT RE-ROUTE TWO 4" POLY SURFACE LINES FROM THE OTTAWA FEDERAL COM 1H TO THE PRINCE RUPERT FEDERAL 1 CTB MACK ENERGY CORPORATION CENTERLINE SURVEY OF A PIPELINE CROSSING SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M CHAVES COUNTY, STATE OF NEW MEXICO FEBRUARY 28, 2018 18 N89'52'35"E 2634 03 FT N89*53'47"E 2637 31 FT 20 21 19 32 18 SEC 20 T.15S., R.29E. BC 1948 BC 1946 BLM(TIE) N14 24 55 W PRINCE RUPERT FEDERAL 1 CTB 883 36 FT lg 3 STA 11+46 9 E.O.L. STA 11+19 9 PI RIGHT STA 10+13 4 DCP BPL 2638 N09 45'42"W 964 86 FT ₹ STA 1+55 0 PI LEFT STA 28+73 6 TIE-IN WINDSOR FEDERAL 1H N00'01'01[®]W 155 04 FT STA 0+00 B 0 L (TIE) S28'05'29'W OTTAWA FEDERAL COM 1H 749 42 FT 19 | 20 1 21 20 28^{8C 1940} BC 1948 30 BC 1940 S89'53'39"W 2643 73 FT S89'49'39"W 2639 85 FT SEE NEXT SHEET (2-4) FOR DESCRIPTION 1000 SURVEYOR CERTIFICATE = 1000 I, FILMON F JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO 12797, HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT HER SURVEY AND THAT HER SURVEY AND THAT HER SURVEY AND THAT HE STATE OF NEW MEDICO.

IN WITNESS WHEREOF, THIS GENTIFICATE IS EXECUTED AT CARLSBAD, GENERAL NOTES 1) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT 2) BASIS OF BEARING AND DISTANCE IS NMSP NEW MEXICO EAST (NAD83) MODIFIED TO SURFACE MADRON SURVEYING INC. COORDINATES NAD 83 (FEET) AND NAVD 88 301 SOUTH CANAL (FEET) COORDINATE SYSTEMS USED IN THE CARLSBAD NEW MEXICO 88220 **SURVÉY** Phone (575) 234-3341 SHEET 1-4 SURVEY NO 5589B ARLSBAD. *MADRON SURVEYING*. NEW MEXICO

FLOWLINE PLAT

RE-ROUTE TWO 4" POLY SURFACE LINES FROM THE OTTAWA FEDERAL COM 1H TO THE PRINCE RUPERT FEDERAL 1 CTB

MACK ENERGY CORPORATION

CENTERLINE SURVEY OF A PIPELINE CROSSING

SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M

CHAVES COUNTY, STATE OF NEW MEXICO

FEBRUARY 28, 2018

DESCRIPTION

A STRIP OF LAND 30 FEET WIDE CROSSING BUREAU OF LAND MANAGEMENT LAND IN SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M , CHAVES COUNTY, STATE OF NEW MEXICO AND BEING 15 FEET EACH SIDE OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY

BEGINNING AT A POINT WITHIN THE SW/4 SW/4 OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M, WHENCE THE SOUTHWEST CORNER OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M BEARS S28'05 29"W, A DISTANCE OF 749 42 FEET.

THENCE NOO'01'01"W A DISTANCE OF 155 04 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED,
THENCE NOO'45'42"W A DISTANCE OF 964 86 FEET TO AN ANGLE POINT OF THE LINE HEREIN DESCRIBED,
THENCE N54 22'39"E A DISTANCE OF 27 01 FEET THE TERMINUS OF THIS CENTERLINE SURVEY, WHENCE THE WEST QUARTER CORNER
OF SAID SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M BEARS N14 24'55"W, A DISTANCE OF 883 36 FEET,

SAID STRIP OF LAND BEING 1146 91 FEET OR 69 51 RODS IN LENGTH, CONTAINING 0 790 ACRES MORE OR LESS AND BEING ALLOCATED BY FORTIES AS FOLLOWS

SW/4 SW/4 666 12 L F 40 37 RODS 0 459 ACRES NW/4 SW/4 480 79 L.F 29 14 RODS 0 331 ACRES

SURVEYOR CERTIFICATE

GENERAL NOTES

- 1) THE INTENT OF THIS ROUTE SURVEY IS TO ACQUIRE AN EASEMENT
- 2) BASIS OF BEARING AND DISTANCE IS NMSP EAST (NAD83) MODIFIED TO SURFACE COORDINATES NAD 83 (FEET) AND NAVD 88 (FEET) COORDINATE SYSTEMS USED IN THE SURVEY

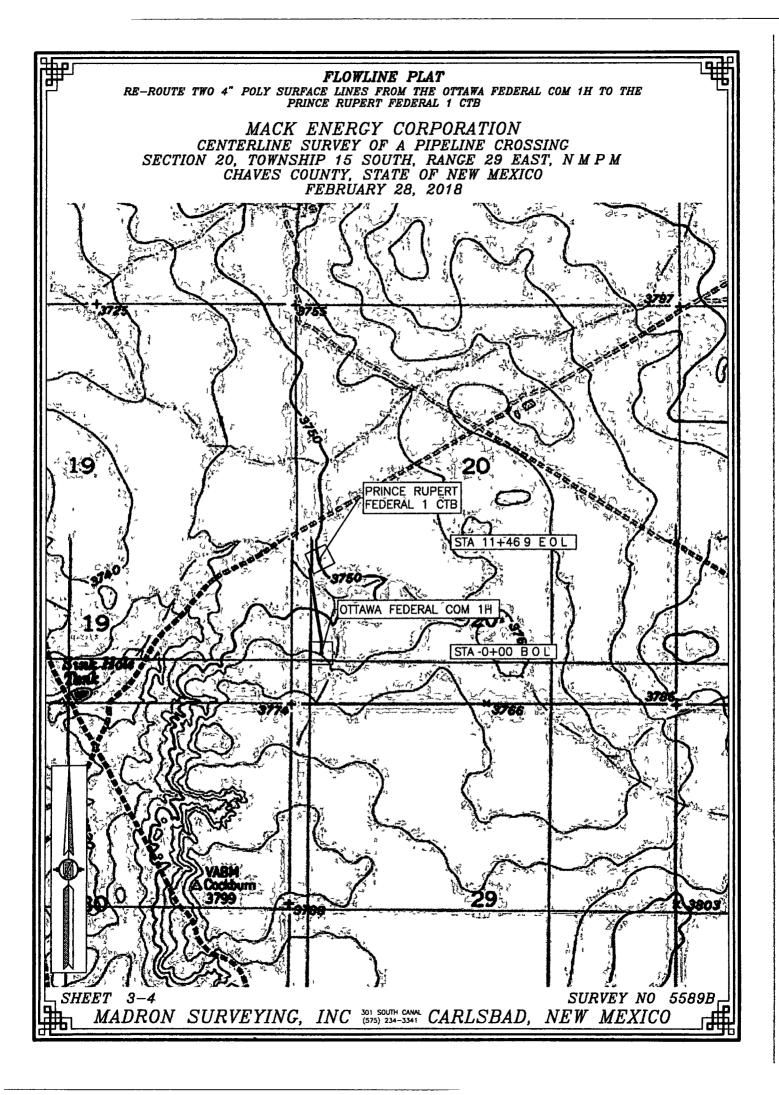
SHEET 2-4

MADRON SURVEYING,

I, FILIMON F JARAMILLO, A NEW MEXICO PROFESSIONAL SURVEYOR NO 12797 HEREBY CERTIFY THAT I HAVE CONDUCTED AND AM RESPONSIBLE FOR THIS SURVEY, THAT THIS SURVEY IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF, AND THAT THIS SURVEY AND PLAT MEET THE MINIMUM STANDARDS FOR LAND SURVEYING IN THE STATE OF NEW MEXICO

WILLIAMS WHEN THIS CERTIFICATE IS EXECUTED AT CARLSBAD,

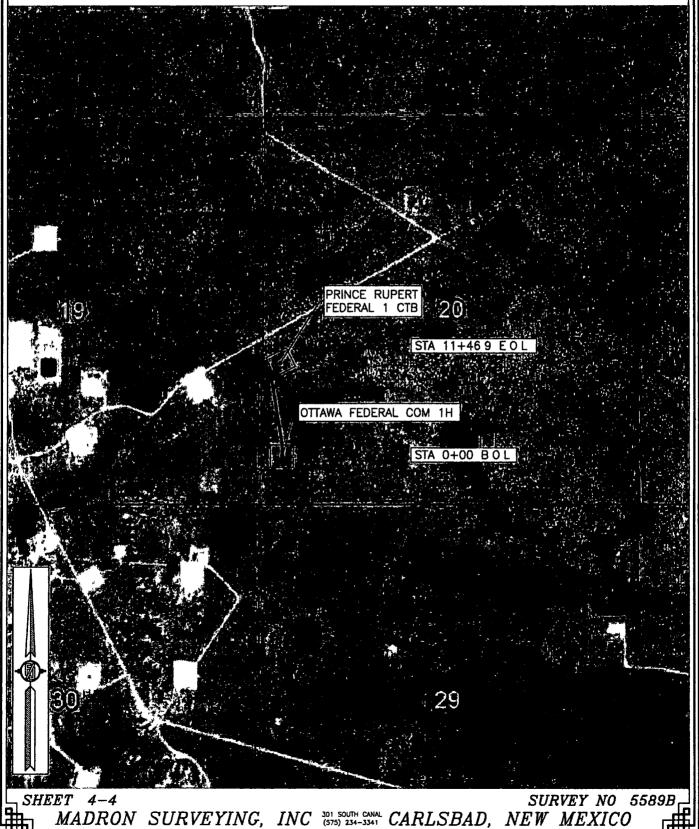
NEW MEXICOL THIS TOAN OF TARCH 2018

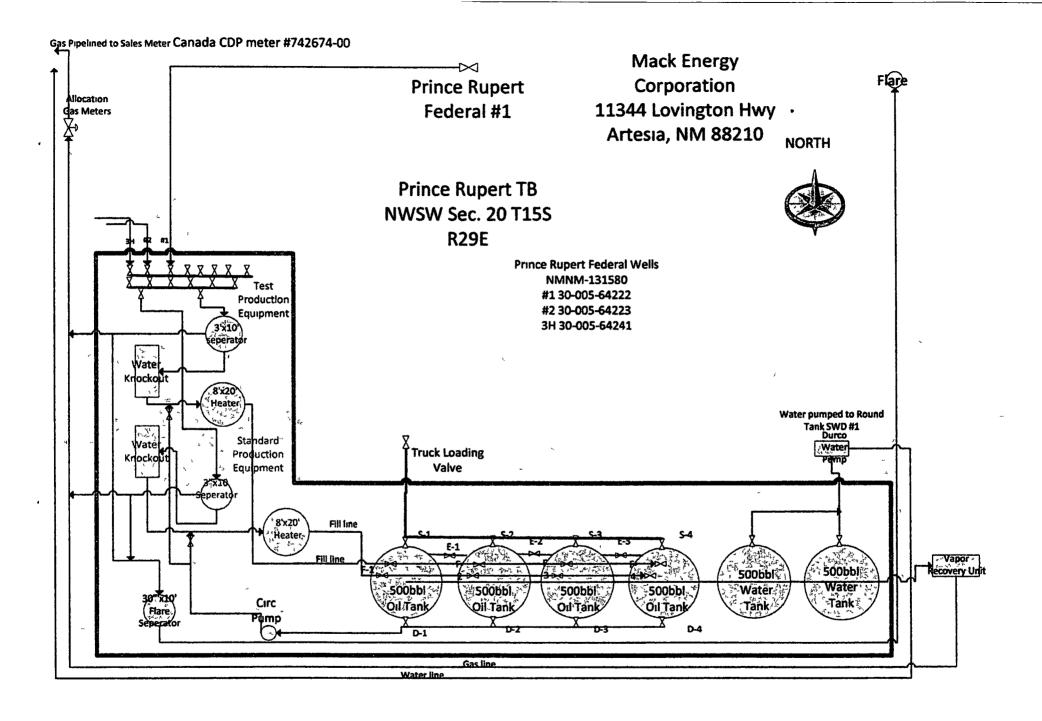

MADRON SURVEYING INC 301 SOUTH CANAL CARLSBAD NEW MEXICO 88220 Phone (575) 234-3341

SURVEY NO 5589B

The second secon

ABLSBAD, NEW MEXICO


(575) 234-334



FLOWLINE PLAT

RE-ROUTE TWO 4" POLY SURFACE LINES FROM THE OTTAWA FEDERAL COM 1H TO THE PRINCE RUPERT FEDERAL 1 CTB

MACK ENERGY CORPORATION
CENTERLINE SURVEY OF A PIPELINE CROSSING
SECTION 20, TOWNSHIP 15 SOUTH, RANGE 29 EAST, N M P M
CHAVES COUNTY, STATE OF NEW MEXICO
FEBRUARY 28, 2018

Sales Phase

Tank 1 F-1 Closed F-2 Closed F-3 Open F-4 Closed E-1 Closed E-2 Open D-1 Closed D-2 Closed D-3 Open D-4 Closed S-1 Open S-2 Closed S-3 Closed S-3 Closed S-4 Closed	Tank 2 F-1 Closed F-2 Closed F-3 Closed F-4 Open E-1 Closed E-2 Open D-1 Closed D-2 Closed D-3 Closed D-4 Open S-1 Closed S-2 Open S-3 Closed S-4 Closed	Tank 3 F-1 Open F-2 Closed F-3 Closed F-4 Closed E-1 Open E-2 Closed D-1 Open D-2 Closed D-3 Closed D-4 Closed S-1 Closed S-2 Closed S-3 Open S-4 Closed	F-1 Closed F-2 Open F-3 Closed F-4 Closed E-1 Open E-2 Closed D-1 Closed D-2 Open D-3 Closed D-4 Closed S-1 Closed S-2 Closed S-3 Closed S-4 Open
---	--	--	---

Production Phase

Tank 1 F-1 Open F-2 Closed F-4 Closed E-1 Open E-2 Closed D-1 Open D-2 Closed D-3 Closed D-4 Closed S-1 Closed S-2 Closed S-3 Closed S-3 Closed S-4 Closed	Tank 2 F-1 Closed F-2 Open F-3 Closed F-4 Closed E-1 Open E-2 Closed D-1 Closed D-2 Open D-3 Closed D-4 Closed S-1 Closed S-2 Closed S-3 Closed S-4 Closed	Tank 3 F-1 Closed F-2 Closed F-3 Open F-4 Closed E-1 Closed E-2 Open D-1 Closed D-2 Closed D-3 Open D-4 Closed S-1 Closed S-2 Closed S-3 Closed S-3 Closed S-4 Closed	Tank 4 F-1 Closed F-2 Closed F-3 Closed F-4 Open E-1 Closed E-2 Open D-1 Closed D-2 Closed D-3 Closed D-4 Open S-1 Closed S-2 Closed S-2 Closed S-3 Closed S-4 Closed
--	--	---	---

32°49'05.3"N 103°59'03.7"W Mor-West Coxp. — Loco Hills FW

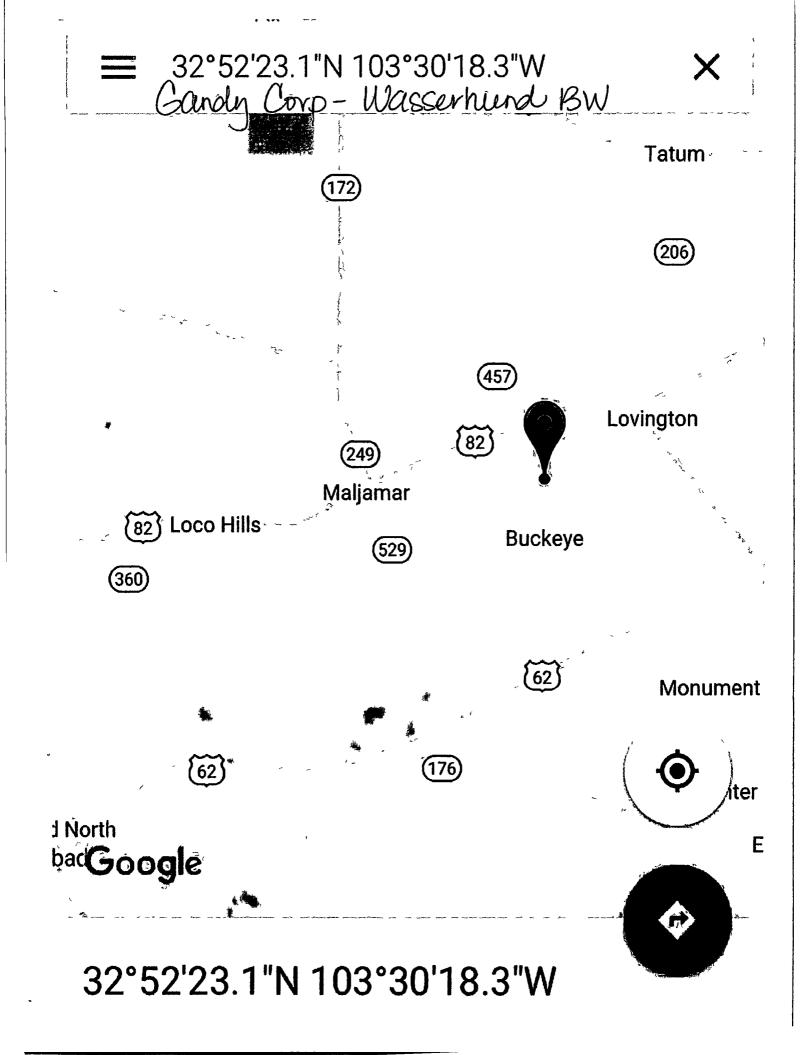
Hagerman Cutoff Rd

Goat Ropers Rd

Goat Ropers Rd

L'oyington Hwy.

Hagerman Cutoff Rd


Loco Hills Post Office 🖸

Loco Hills

Google

32°49'05.3"N 103°59'03.7"W

Home Mission

ssion Frac

Frac Tank Hot Oil Truck

Pump Truck

Vacuum Truck

Well Service

Disposals

Fresh Water

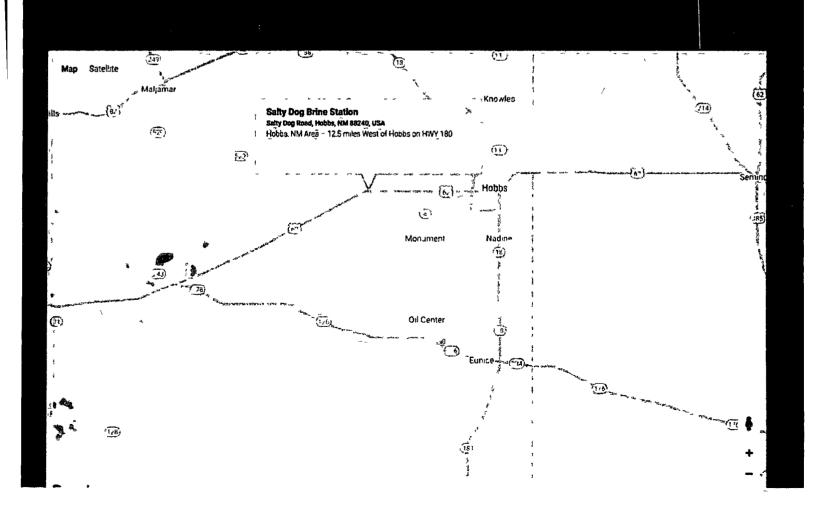
Disposal Sites & Brine Stations & Freshwater

Well Servicing Rigs

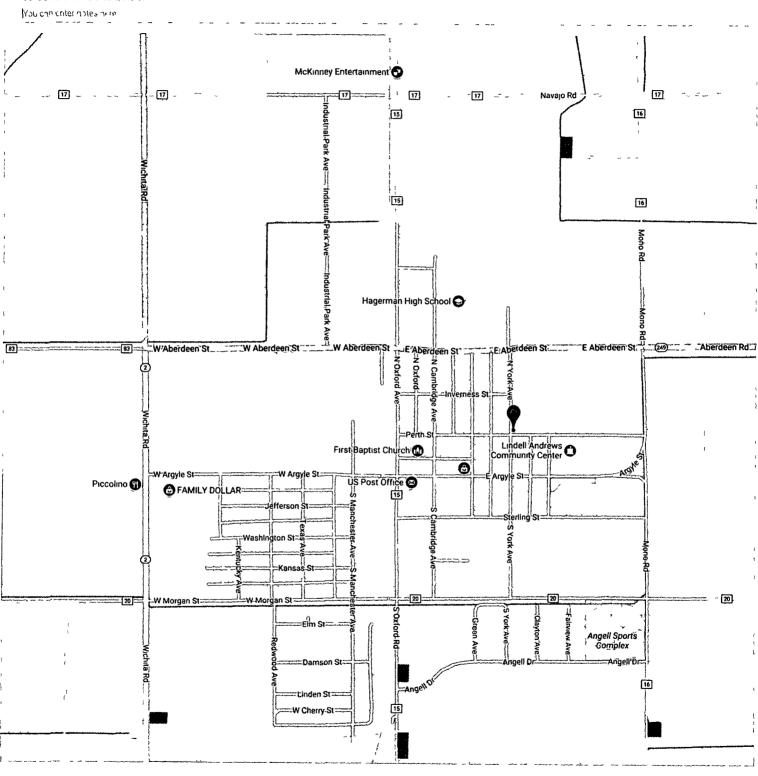
HS&E

Standard Energy Locations

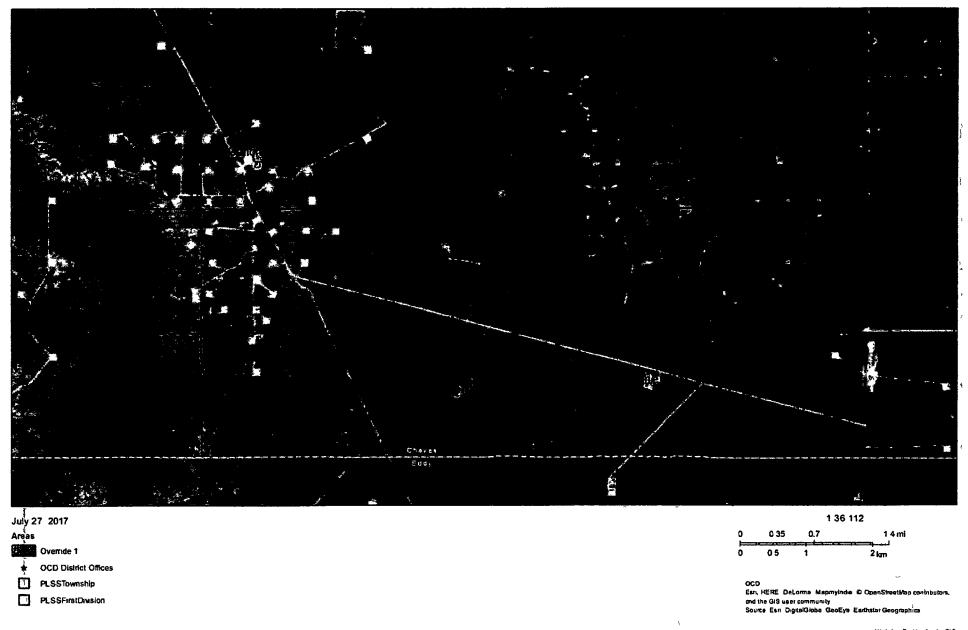
Associations


News and Events

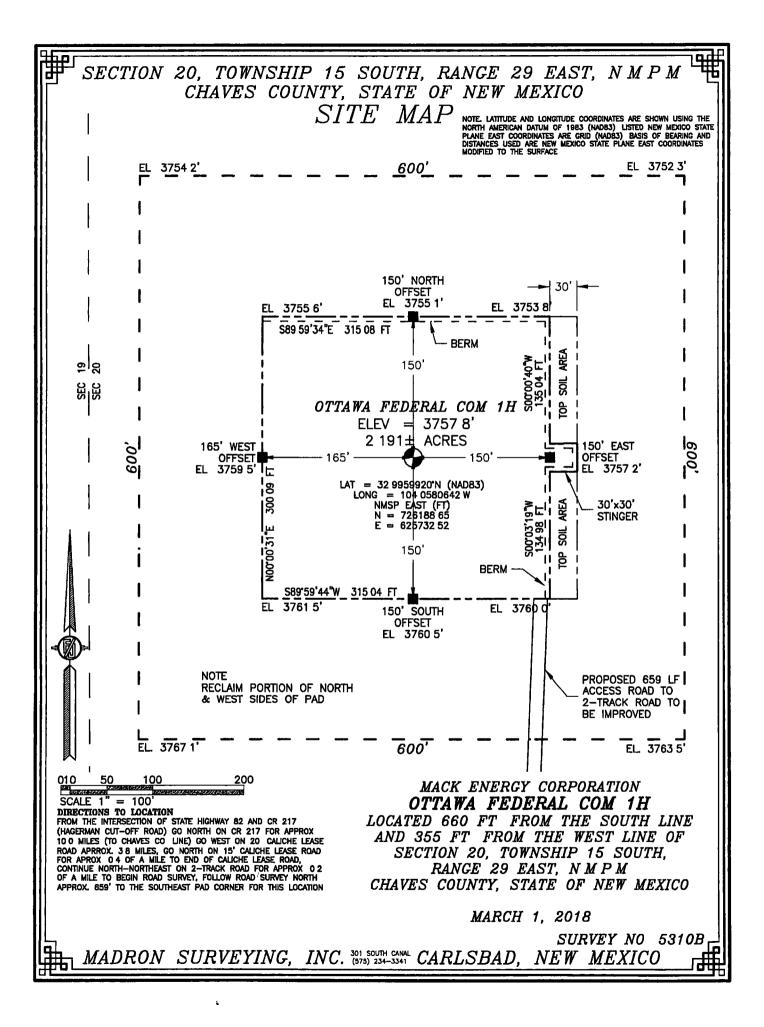
Testimonials

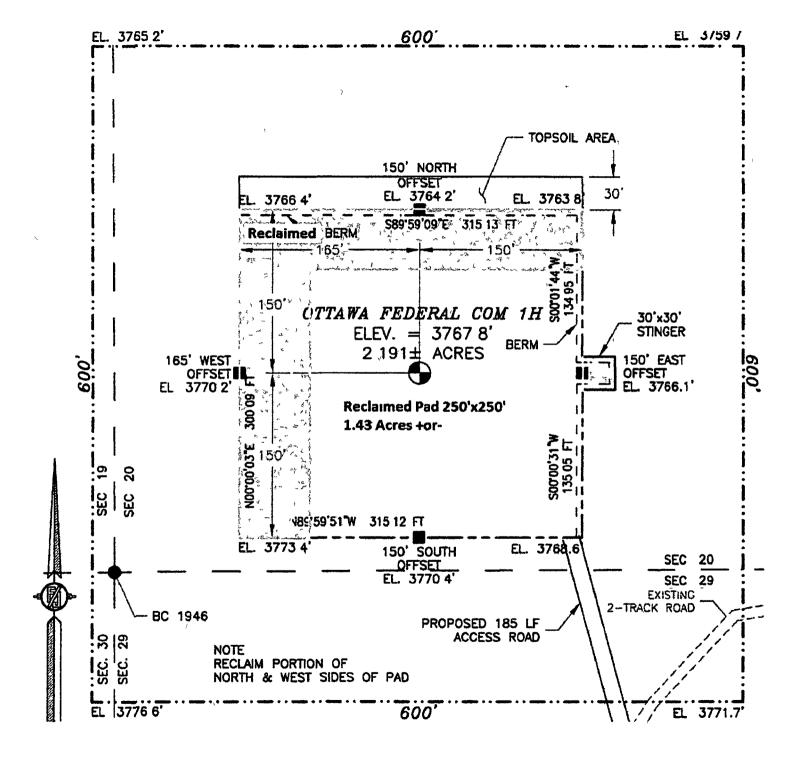

Employment Opportunities

Equipment For Sale


Store

33°06 55 3 N 104°19 24 4"W




ArcGIS Web Map

Web App8 user for ArcGIS

NM OSE | U.S. BLM | U.S. Census Bureau NMDOT | BLM | QCD | Source Exit DigitalGlobs, GeoEye Earthstar Geographics, CNES/Arbus D3 USDA USGS, AeroGRID IGN and the GIS User Community | Esh MERE DeLorme MapmyIndia COpenStreetMap contributors and the GIS user community |

Mack Energy Corporation

Legal Description

Mack Energy-San Andres MDP Area
Chaves Co
New Mexico
Various
Sections
T-15-S R-28-E and R-29-E

H2S "Contingency Plan"

Table of Contents

I H₂S Contingency Plan

- a Scope
- b Objective
- c Discussion of Plan

II Emergency Procedures

- a Emergency Procedures
- b Emergency Reaction Steps
- c Simulated Blowout Control Drills

Ill Ignition Procedures

- a Responsibility
- **b** Instructions
- IV Training Requirements

V Emergency Equipment

VI Check Lists

- a Status Check List
- b Procedural Check List

VII Evacuation Plan

- a General Plan
 - b Emergency Phone Lists

VIII General information

- a Drilling/Re-entry Permits
- b H2S Permissible Limits
- c Toxicity Table
- d Physical Properties
- e Respirator Use
- f Emergency Rescue

H2S CONTINGENCY PLAN SECTION

Scope

This contingency plan provides an organized plan of action for alerting and protecting the public within an area of exposure prior to an intentional release, or following the accidental release of a potentially hazardous volume of hydrogen sulfide. The plan establishes guidelines for all personnel whose work activity may involve exposure to Hydrogen Sulfide Gas (H_aS)

Objective

Prevent any and all accidents, and prevent the uncontrolled release of H2S into the atmosphere

Provide proper evacuation procedures to cope with emergencies

Provide immediate and adequate medical attention should an injury occur

Discussion of Plan

Suspected Problem Zones

Implementation This plan, with all details, is to be fully implemented 1000' before drilling into the first sour zone

Emergency Response Procedure This section outlines the conditions and denotes steps to be taken in the event of an emergency

Emergency Equipment and Procedure This section outlines the safety and emergency equipment that will be required for the drilling of this well

Training Provisions This section outlines the training provisions that must be adhered to 1000' before drilling into the first sour zone

Emergency call list Included are the telephone numbers of all persons that would need to be contacted, should an H2S emergency occur

Briefing This section deals with the briefing of all persons involved with the drilling of this well

Public Safety Public Safety Personnel will be made aware of the drilling of this well

Check Lists Status check lists and procedural check lists have been included to ensure adherence to the plan

GeneralInformation A general information section has been included to supply support information

EMERGENCY PROCEDURES SECTION

- f I In the event of any evidence of H2S level above I0ppm, take the following steps immediately
 - f I a Secure breathing apparatus
 - order non-essential personnel out of the danger zone
 - f I c Take steps to determine if the H2S level can be corrected or suppressed, and if so, proceed with normal operations
- f II If uncontrollable conditions occur, proceed with the following
 - f II a Take steps to protect and/or remove any public downwind of the rig, including partial evacuation or isolation. Notify public safety personnel and the New Mexico Oil Conservation Division or Bureau of Land Management, whichever is appropriate, of the situation.
 - f II b Remove all personnel to the Safe Briefing Area
 - f II c Notify public safety personnel for help with maintaining roadblocks and implementing evacuation
 - f II d Determine and proceed with the best possible plan to regain control of the well Maintain tight security and safety measures

III Responsibility

- a The Company Approved Supervisor shall be responsible for the total implementation of the plan
- b The Company Approved Supervisor shall be in complete command during any emergency
- c The Company Approved Supervisor shall designate a back-up Supervisor in the event that he/she is not available

EMERGENCY PROCEDURE IMPLEMENTATION

I Drilling or Tripping

a. All Personnel

- **a** I When alarm sounds, don escape unit and report to upwind Safe Briefing Area
- a II Check status of other personnel (buddy system)
- a III Secure breathing apparatus
- a IV Wait for orders from supervisor

b <u>Drilling Foreman</u>

- b I Report to the upwind Safe Briefing Area
 - II Don Breathing Apparatus and return to the point of release with the Tool Pusher or Driller (buddy system)
- III Determine the concentration of H₂S
- Assess the situation and take appropriate control measures

c Tool Pusher

- Report to the upwind Safe Briefing Area
- Don Breathing Apparatus and return to the point of release with the Drilling Foreman or the Driller (buddy system)
- III Determine the concentration of H₂S
- Assess the situation and take appropriate control measures

d Driller

- I Check the status of other personnel (in a rescue attempt, always use the buddy system)
- Assign the least essential person to notify the Drilling Foreman and Tool Pusher, in the event of their absence
- Assume the responsibility of the Drilling Foreman and the Tool Pusher until they arrive, in the event *of* their absence

- e <u>Derrick Man and Floor Hands</u>
 - Remain in the upwind Safe Briefing Area until otherwise instructed by a supervisor

f <u>Mud Engineer</u>

- Report to the upwind Safe Briefing Area
- II When instructed, begin check of mud for pH level and H₂S level

g Safety Personnel

- Don Breathing Apparatus
- II Check status of personnel
- III Wait for instructions from Drilling Foreman or Tool Pusher

II Taking a Kick

- a All Personnel report to the upwind Safe Briefing Area
- **b** Follow standard BOP procedures

III Open Hole Logging

- a All unnecessary personnel should leave the rig floor
- **b** Drilling Foreman and Safety Personnel should monitor the conditions and make necessary safety equipment recommendations

IV Running Casing or Plugging

- a Follow "Drilling or Tripping" procedures
- **b** Assure that all personnel have access to protective equipment

SIMULATED BLOWOUT CONTROL DRILLS

All drills will be initiated by activating alarm devices (air horn) One long blast, on the air horn, for ACTUAL and SIMULATED Blowout Control Drills This operation will be performed by the Drilling Foreman or Tool Pusher at least one time per week for each of the following conditions, with each crew

Drill #1 Bottom Drilling

Drill #2 Tripping Drill Pipe

In each of these drills, the initial reaction time to shutting in the well shall be timed as well as the total time for the crew to complete its entire pit drill assignment. The times must be recorded on the IADC Driller's Log as "Blowout Control Drill"

Drill No

Reaction Time to Shut-In minutes,

Total Time to Complete Assignment

seconds

minutes,

seconds

I Drill Overviews

- a Drill No 1- Bottom Drilling
 - a I Sound the alarm immediately
 - a II Stop the rotary and hoist Kelly joint above the rotary table
 - a III Stop the circulatory pump
 - a IV Close the drill pipe rams
 - a v Record casing and drill pipe shut-in pressures and pit volume increases
- b Drill No 2- Tripping Drill Pipe
 - b I Sound the alarm immediately
 - b II Position the upper tool joint just above the rotary table and set the slips
 - b III Install a full opening valve or inside blowout preventer tool in order to close the drill pipe
 - b iv Close the drill pipe rams
 - b v Record the shut-in annular pressure

II Crew Assignments

a <u>Drill No. 1- Bottom Drilling</u>

ı Driller

- 1 Stop the rotary and hoist Kelly joint above the rotary table
- 2 Stop the circulatory pump
- 3 Check Flow
- 4 If flowing, sound the alarm immediately
- 5 Record the shit-in drill pipe pressure
- 6 Determine the mud weight increase needed or other courses of action

b v II Derrick man

b v II 1 Open choke line valve at BOP

- 2 Signal Floor Man #1 at accumulator that choke line is open
- 3 Close choke and upstream valve after pipe tam have been closed
- 4 Read the shut-in annular pressure and report readings to Driller

b v III Floor Man #1

(

b v ${\it III}$ 1 Close the pipe rams after receiving the signal from the Derrickman

2 Report to Driller for further instructions

b v IV Floor Man #2

- b v iv 1 Notify the Tool Pusher and Operator representative of the H₂S alarms
 - 2 Check for open fires and, if safe to do so, extinguish them
- 3 Stop all welding operations
 - 4 Turn-off all non-explosions proof lights and instruments
- 5 Report to Driller for further instructions

b v v Tool Pusher

- b v v 1 Report to the rig floor
 - 2 Have a meeting with all crews

- 3 Compile and summarize all information
 - 4 Calculate the proper kill weight
- 5 Ensure that proper well procedures are put into action

b v vi Operator Representative

b v vi 1 Notify the Drilling Superintendent

- 2 Determine if an emergency exists and if so, activate the contingency plan
- b Drill No 2- Tripping Pipe
 - bı Driller
 - b i 1 Sound the alarm immediately when mud volume increase has been detected
 - 2 Position the upper tool joint just above the rotary table and set slips
 - 3 Install a full opening valve or inside blowout preventer tool to close the drill pipe
 - 4 Check flow
 - 5 Record all data reported by the crew
 - 6 Determine the course of action

b II Derrick man

- b II 1 Come down out of derrick
 - 2 Notify Tool Pusher and Operator Representative
- 3 Check for open fires and, if safe to do so, extinguish them
- 4 Stop all welding operations
- 5 Report to Driller for further instructions

b III Floor Man #1

- b III 1 Pick up full opening valve or inside blowout preventer tool and stab into tool joint above rotary table (with Floor Man #2)
- 2 Tighten valve with back-up tongs

- 3 Close pipe rams after signal from Floor Man #2
- 4 Read accumulator pressure and check for possible high pressure fluid leaks in valves or piping
- 5 Report to Driller for further instructions

b IV Floor Man #2

- b iv 1 Pick-up full opening valve or inside blowout preventer tool and stab into tool joint above rotary table (with Floor Man #1)
 - 2 Position back-up tongs on drill pipe
- 3 Open choke line valve at BOP
 - 4 Signal Floor Man #1 at accumulator that choke line is open
- 5 Close choke and upstream valve after pipe rams have been closed
- 6 Check for leaks on BOP stack and choke manifold
- 7 Read annular pressure
- 8 Report readings to the Driller

b v Tool Pusher

- b v 1 Report to the rig floor
 - 2 Have a meeting with all of the crews
- 3 Compile and summarize all information
- 4 See that proper well kill procedures are put into action

b vi Operator Representative

- b vi 1 Notify Drilling Superintendent
- 2 Determine if an emergency exists, and if so, activate the contingency plan

IGNITION PROCEDURES

Responsibility

The decision to ignite the well is the responsibility of the DRILLING FOREMAN in concurrence with the emergency response officials. In the event the Drilling Foreman is incapacitated, it becomes the responsibility of the RIG TOOL PUSHER. This decision should be made only as a last resort and in a situation where it is clear that

- 1 Human life and property are endangered
- 2 There is no hope of controlling the blowout under the prevailing conditions

If time permits, notify the main office, but do not delay if human life is in danger. Initiate the first phase of the evacuation plan

Instructions for Igniting the Well

- 1 Two people are required for the actual igniting operation. Both men must wear self-contained breathing apparatus and must use a full body harness and attach a retrievable safety line to the D-Ring in the back. One man must monitor the atmosphere for explosive gases with the LEL monitor, while the Drilling Foreman is responsible for igniting the well.
- 2 The primary method to ignite is a 25mm flare gun with a range of approximately 500 feet
- 3 Ignite from upwind and do not approach any closer than is warranted
- 4 Select the ignition site best suited for protection and which offers an easy escape route
- 5 Before igniting, check for the presence of combustible gases
- 6 After igniting, continue emergency actions and procedures as before
- 7 All unassigned personnel will limit their actions to those directed by the Drilling Foreman

Note After the well is ignited, burning Hydrogen Sulfide will convert to Sulfur Dioxide, which is also highly toxic. Do not assume the area is safe after the well is ignited

TRAINING PROGRAM

When working in an area where Hydrogen Sulfide (H₂S) might be encountered, definite training requirements must be carried out. The Company Supervisor will ensure that all personnel, at the well site, have had adequate training in the following consistent with the requirements in ANSI/ASSE Z390 1-2006 (R2010) Accepted Practices for Hydrogen Sulfide (H2S) Training Programs

- 1 Physical and Chemical Properties of Hydrogen Sulfide
 - 2 Sources of Hydrogen Sulfide
- 3 Human Physiology and Medical Evaluation
- 4 Work Procedures
- 5 Personal Protective Equipment
 - 6 Use of Contingency Plans and Emergency Response
 - 7 Burning, Flaring and Venting of Hydrogen Sulfide
- 8 State and Federal Regulatory Requirements
- 9 Hydrogen Sulfide Release Dispersion Models
- 10 Rescue Techniques, First Aid and Post-Exposure Evaluation
- 11 Methods of Detection and Monitoring
- 12 Engineering Controls
- 13 Transportation of Hydrogen Sulfide Cargoes
- 14 Emerging Technology

Service company personnel and visiting personnel must be notified if the zone contains H₂S, and each service company must provide proof of adequate training and equipment for their employees before they arrive at the well site

EMERGENCY EQUIPMENT REQUIREMENTS

Lease Entrance Sign

Should be located at the lease entrance with the following information

CAUTION- POTENTIAL POISON GAS HYDROGEN SULFIDE NO ADMITTANCE WITHOUT AUTHORIZATION

Respiratory Equipment

- Fresh air breathing equipment should be placed at the safe briefing areas and should include the following
- · Two SCBA's at each briefing area
- Enough airline units to operate safely, anytime the H₂S concentration reaches the IDLH level (100 ppm)
- Cascade system with enough breathing air hose and manifolds to reach the rig floor, the derrick man and the other operation areas

Windsocks or Wind Streamers

- A minimum of two 10" windsocks located at strategic locations so that they may be seen from any point on location
- Wind streamers (if preferred) should be placed at various locations on the well site to ensure wind consciousness at all times (Corners of location)

Hydrogen Sulfide Detector and Alarms

- 1- Four channel H₂S monitor with alarms
- Four (4) sensors located as follows #1- Rig Floor, #2- Bell Nipple, #3- Shale Shaker, #4- Mud Pits
- Gastec or Draeger pump with tubes
- Sensor test gas

Well Condition Sign and Flags

The Well Condition Sign w/flags should be placed a minimum of 150' before you enter the location. It should have three (3) color coded flags (green, yellow and red) that will be used to denote the following location conditions.

GREEN- Normal Operating Conditions YELLOW- Potential Danger RED- Danger H₂S Gas Present

Auxiliary Rescue Equipment

- Stretcher
- 2- 100' Rescue lines
 - First Aid Kit properly stocked

Mud Inspection Equipment

Garret Gas Train or Hach Tester for inspection of Hydrogen Sulfide in the drilling mud system

Fire Extinguishers

Adequate fire extinguishers shall be located at strategic locations

Blowout Preventer

- o The well shall have hydraulic BOP equipment for the anticipated BHP
- The BOP should be tested upon installation
 - BOP, Choke Line and Kill Line will be tested as specified by Operator

Confined Space Monitor

There should be a portable multi-gas monitor with at least 3 sensors (0_2 LEL H $_2$ S). This instrument should be used to test the atmosphere of any confined space before entering. It should also be used for atmospheric testing for LEL gas before beginning any type of Hot Work. Proper calibration documentation will need to be provided

Communication Equipment

- Proper communication equipment such as cell phones or 2-way radios should be available at the rig
- Radio communication shall be available for communication between the company man's trailer,
 rig floor and the tool pusher's trailer

Communication equipment shall be available on the vehicles

Special Control Equipment

- o, Hydraulic BOP equipment with remote control on the ground
- Rotating head at the surface casing point

Evacuation Plan

- · Evacuation routes should be established prior to spudding the well
 - Should be discussed with all rig personnel

Designated Areas

Parking and Visitor area

- All v\u00e9hicles are to be parked at a pre-determined safe distance from the wellhead
- · Designated smoking area

Safe Briefing Areas

- Two Safe Briefing Areas shall be designated on either side of the location at the maximum allowable distance from the well bore so they offset prevailing winds or they are at a 180 degree angle if wind directions tend to shift in the area
- Personal protective equipment should be stored at both briefing areas or if a moveable cascade trailer is used, it should be kept upwind of existing winds. When wind is from the prevailing direction, both briefing areas should be accessible.

Note

- Additional equipment will be available at the Alliance Safety office
- Additional personal H₂S monitors are available for all employees on location
- · Automatic Flare Igniters are recommended for installation on the rig

CHECK LISTS

Status Check List

Note Date each item as they are implemented

- 1 Sign at location entrance
 - 2 Two (2) wind socks (in required locations)
- 3 Wind Streamers (if required)
- 4 SCBA's on location for all rig personnel and mud loggers
- 5 Air packs, inspected and ready for use
- 6 Spare bottles for each air pack (if required)
- 7 Cascade system for refilling air bottles
- 8 Cascade system and hose line hook up
- 9 Choke manifold hooked-up and tested (before drilling out surface casing)
- 10 Remote Hydraulic BOP control (hooked-up and tested before drilling out surface casing)
- 11 BOP tested (before drilling out surface casing)
- 12 Mud engineer on location with equipment to test mud for H₂S
- 13 Safe Briefing Areas set-up
- 14 Well Condition sign and flags on location and ready
 - 15 Hydrogen Sulfide detection system hooked -up & tested
 - 16 Hydrogen Sulfide alarm system hooked-up & tested
- 17 Stretcher on location at Safe Briefing Area
 - 18 2 -100' Life Lines on location
- 19 1-20# Fire Extinguisher in safety trailer
 - 20 Confined Space Monitor on location and tested
 - 21 All rig crews and supervisor trained (as required)

- 22 Access restricted for unauthorized personnel
- 23 Drills on $\rm H_2S$ and well control procedures
- 24 All outside service contractors advised of potential $\rm H_2S$ on the well
- 25 NO SMOKNG sign posted
- 26 H_2 S Detector Pump w/tubes on location
- 27 25mm Flare Gun on location w/flares
 - 28 Automatic Flare Igniter installed on rig

Procedural Check List

Perform the following on each tour

- 1 Check fire extinguishers to see that they have the proper charge
- 2 Check breathing equipment to insure that they have not been tampered with
 - 3 Check pressure on the supply air bottles to make sure they are capable of recharging
- 4 Make sure all of the Hydrogen Sulfide detection systems are operative

Perform the following each week

- 1 Check each piece of breathing equipment to make sure that they are fully charged and operational. This requires that the air cylinder be opened and the mask assembly be put on and tested to make sure that the regulators and masks are properly working. Negative and Positive pressure should be conducted on all masks.
- 2 BOP skills
- 3 Check supply pressure on BOP accumulator stand-by source
- 4 Check all breathing air mask assemblies to see that straps are loosened and turned back, ready for use
 - 5 Check pressure on cascade air cylinders to make sure they are fully charged and ready to use for refill purposes if necessary
- 6 Check all cascade system regulators to make sure they work properly
- 7 Perform breathing drills with on-site personnel
- 8 Check the following supplies for availability
 - Stretcher
 - Safety Belts and Ropes
 - Spare air Bottles
 - Spare Oxygen Bottles (if resuscitator required)
 - · Gas Detector Pump and Tubes
 - · Emergency telephone lists
- 9 Test the Confined Space Monitor to verify the batteries are good

EVACUATION PLAN

General Plan

The direct lines of action prepared by Mack Energy Corporation to protect the public from hazardous gas situations are as follows

- 1 When the company approved supervisor (Drilling Foreman, Tool Pusher or Driller) determine that Hydrogen Sulfide gas cannot be limited to the well location, and the public will be involved, he will activate the evacuation plan Escape routes are noted on the area map
 - 2 Company safety personnel or designee will notify the appropriate local government agency that a hazardous condition exists and evacuation needs to be implemented
 - 3 Company approved safety personnel that have been trained in the use of the proper emergency equipment will be utilized
- 4 Law enforcement personnel (State Police, Local Police Department Fire Department, and the Sheriff's Department) will be called to aid in setting up and maintaining road blocks. Also, they will aid in evacuation of the public if necessary
- NOTE Law enforcement personnel will not be asked to come into a contaminated area. Their assistance will be limited to uncontaminated areas. Constant radio contact will be maintained with them.
 - 5 After the discharge of gas has been controlled, "Company" safety personnel will determine when the area is safe for re-entry

See Specific Site Safety Plan or Job Safety Analysis to be completed during drilling

Emergency Assistance Telephone List

PUBLIC SAFETY.	911 or
Pecos Valley Communication Center (Chaves County Police, Fire,	(575) 624-7590
EMS)	
Central Dispatch (Eddy County Police, Fire, EMS)	(575) 616-7155
(Eddy County Folice, Fire, EMS)	(3/3) 010 / 133
Hospitals	
Roswell	(575) 622-8170
Artesia	(575) 748-3333
Dept of Public Safety/SE New Mexico	(575) 622-7200
Highway Department	(575) 637-7200
New Mexico Oil Conservation	(575) 748-1283
Bureau of Land Management	(575) 622-5335
Mack Energy Corporation	
Company Drilling Supervisor	
Jım Krogman	(575) 703-7385
Drilling Foreman	
Emilio Martinez	(575) 703-5231
Silver Oak Drilling	
Silver Oak Drilling	(575) 746-4405
Tool Pusher	
Darren Mc Bride	(575) 703-6070
Osiel Sanchez	(575) 703-4109
Safety	•
Lee Hassell (Alliance Safety)	
(806) 217-2950	}
Scott Ford (Mack Energy)	,
(505) 692-4976	
Robbie Houghtaling (Silver Oak) (575) 703-2122	
(212) (03-2122	

Intentionally Blank –Space provided for Specific Site Safety Plan or Job Safety Analysis

Affected Notification List

(within a 65' radius of exposure @ IOOppm)

The geologic zones that will be encountered during drilling are known to contain hazardous quantities of H_2S . The accompanying map illustrates the affected areas of the community. The residents within this radius will be notified via a hand delivered written notice describing the activities, potential hazards, conditions of evacuation, evacuation drill siren alarms and other precautionary measures

Evacuee Description

Residents THERE ARE NO RESIDENTS WITHIN 3000' ROE

Notification Process

A continuous siren audible to all residence will be activated, signaling evacuation of previously notified and informed residents

Evacuation Plan

All evacuees will migrate lateral to the wind direction

The Oil Company will identify all home bound or highly susceptible individuals and make special evacuation preparations, interfacing with the local and emergency medical service as necessary

Toxic Effects of H₂S Poisoning

Hydrogen Sulfide is extremely toxic. The acceptable ceiling concentration for eight-hour exposure is 10 PPM which is 001% by volume. Hydrogen Sulfide is heavier than air (specific gravity -1 192) and is colorless and transparent. Hydrogen Sulfide is almost as toxic as Hydrogen Cyanide and is 5-6 times more toxic than Carbon Monoxide. Occupational exposure limits for Hydrogen Sulfide and other gases are compared below in Table 1. Toxicity table for H $_2$ S and physical effects are shown in Table 2.

Table 1
Permissible Exposure Limits of Various Gases

Common Name	Symbol	Sp Gravity	TLV	STEL	IDLH
Hydrogen Cyanide	HCN	94	4 7 ppm	С	
Hydrogen Sulfide	H2S	1 192	10 ppm	15 ppm	100 ppm
Sulfide Dioxide	so2	2 21	2 ppm	5 ppm	
Chlorine	CL	2 45	5 ppm	1ppm	
Carbon Monoxide	со	97	25 ppm	200 ppm	
Carbon Dioxide	C02	1 52	5000 ppm	30,000 ppm	
Methane	CH4	55	4 7% LEL	14% UEL "	

Definitions

- A TLV-Threshold Limit Value is the concentration employees may be exposed based on a TWA (time weighted average) for eight (8) hours in one day for 40 hours in one (1) week. This is set by ACGIH (American Conference of Governmental Hygienists) and regulated by OSHA
- B STEL- Short Term Exposure Limit is the 15 minute average concentration an employee may be exposed to providing that the highest exposure never exceeds the OEL {Occupational Exposure Limit} The OEL for H₂S is 19 PPM
- C IDLH -Immediately Dangerous to Life and Health is the concentration that has been determined by the ACGIH to cause serious health problems or death if exposed to this level. The IDLH for H₂S is 100 PPM
- D TWA-Time Weighted Average is the average concentration of any chemical or gas for an eight {8} hour period. This is the concentration that any employee may be exposed based on an TWA.

PHYSICAL PROPERTIES OF H2S

The properties of all gases are usually described in the context of seven major categories

COLOR

ODOR

VAPOR DENSITY

EXPLOSIVE LIMITS

FLAMMABILITY

SOLUBILITY (IN

WATER) BOILING

POINT

Hydrogen Sulfide is no exception Information from these categories should be considered in order to provide a fairly complete picture of the properties of the gas

COLOR- TRANSPARENT(

Hydrogen Sulfide is colorless so it is invisible. This fact simply means that you can't rely on your eyes to detect its presence. In fact that makes this gas extremely dangerous to be around

ODOR- ROTTEN EGGS

Hydrogen Sulfide has a distinctive offensive smell, similar to "rotten eggs". For this reason it earned its common name "sour gas". However, H₂S, even in low concentrations, is so toxic that it attacks and quickly impairs a victim's sense of smell, so it could be fatal to rely on your nose as a detection device

VAPOR DENSITY- SPECIFIC GRAVITY OF 1 192

Hydrogen Sulfide is heavier than air so it tends to settle in low-lying areas like pits, cellars or tanks. If you find yourself in a location where H_2S is known to exist, protect yourself. Whenever possible, work in an area upwind and keep to higher ground.

EXPLOSIVE LIMITS- 43% TO 46%

Mixed with the right proportion of air or oxygen, H₂S will ignite and burn or explode, producing another alarming element of danger besides poisoning

FLAMMABILITY

Hydrogen Sulfide will burn readily with a distinctive clear blue flame producing Sulfur Dioxide $(S0_2)$ another hazardous gas that irritates the eyes and lungs

SOLUBILITY- 4 TO 1 RATIO WITH WATER

Hydrogen Sulfide can be dissolved in liquids, which means that it can be present in any container or vessel used to carry or hold well fluids including oil, water, emulsion and sludge. The solubility of H₂S is dependent on temperature and pressure, but if conditions are right, simply agitating a fluid containing H₂S may release the gas into the air

BOILING POINT- (-76 degrees Fahrenheit)

Liquefied Hydrogen Sulfide boils at a very low temperature, so it is usually found as a gas

RESPIRATOR USE

The Occupational Safety and Health Administration (OSHA) regulate the use of respiratory protection to protect the health of employees OSHA's requirements are written in the Code of Federal Regulations, Title 29, Part 1910, Section 134 Respiratory Protection This regulation requires that all employees who might be required to wear respirators, shall complete a OSHA mandated medical evaluation questionnaire. The employee then should be fit tested prior to wearing any respirator while being exposed to hazardous gases.

Written procedures shall be prepared covering safe use of respirators in dangerous atmospheric situations, which might be encountered in normal operations or in emergencies. Personnel shall be familiar with these procedures and the available respirators.

Respirators shall be inspected prior to and after each use to make sure that the respirator has been properly cleaned disinfected and that the respirator works properly. The unit should be fully charged prior to being used

Anyone who may use respirators shall be properly trained in how to properly seal the face piece. They shall wear respirators in normal air and then in a test atmosphere. (Note: Such items as facial hair (beard or sideburns) and eyeglass temple pieces will not allow a proper seal.) Anyone that may be expected to wear respirators should have these items removed before entering a toxic atmosphere. A special mask must be obtained for anyone who must wear eyeglasses. Contact lenses should not be allowed.

Respirators shall be worn during the following conditions

- A Any employee who works near the top or on the top of any tank unless tests reveal less than 20 ppm of H2S
- B When breaking out any line where H₂S can reasonably be expected
 - C When sampling air in areas where H₂S may be present
- D When working in areas where the concentration of H₂S exceeds the Threshold Limit Value for H2S {10 ppm)
- E At any time where there is a doubt as to the H₂S level in the area to be entered

EMERGENCY RESCUE PROCEDURES

DO NOT PANIC'''

Remain Calm -Think

- 1 Before attempting any rescue you must first get out of the hazardous area yourself Go to a safe briefing area
- 2 Sound alarm and activate the 911 system
- 3 Put on breathing apparatus At least two persons should do this, when available use the buddy system
- 4 Rescue the victim and return them to a safe briefing area
- 5 Perform an initial assessment and begin proper First Aid/CPR procedures
- 6 Keep victim lying down with a blanket or coat, etc., under the shoulders to keep airway open.

 Conserve body heat and do not leave unattended.
- 7 If the eyes are affected by H₂S, wash them thoroughly with potable water For slight irritation, cold compresses are helpful
 - 8 In case a person has only minor exposure and does not lose consciousness totally, it's best if he doesn't return to work until the following day
 - 9 Any personnel overcome by H₂S should always be examined by medical personnel They should always be transported to a hospital or doctor

Attached to Form 3160-3
Mack Energy Corporation
Ottawa Federal Com #1H NMNM-131583
SHL 180 FSL & 280 FWL, SWSW, Sec 20 T15S R29E
BHL 270 FSL & 355 FWL, SWSW, Sec 29 T15S R29E
Chaves County, NM

Mack Energy Corporation Onshore Order #6 Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well

- 1 The hazards an characteristics of hydrogen sulfide (H2S)
- 2 The proper use and maintenance of personal protective equipment and life support systems
- 3 The proper use of H2S detectors alarms warning systems, briefing areas, evacuation procedures, and prevailing winds
- 4 The proper techniques for first aid and rescue procedures

In addition, supervisory personnel will be trained in the following areas

- 1 The effects of H2S on metal components If high tensile tubular are to be used, personnel well be trained in their special maintenance requirements
- 2 Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures
- 3 The contents and requirements of the H2S Drilling Operations Plan and Public Protection Plan

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. The concentrations of H2S of wells in this area from surface to TD are low enough that a contingency plan is not required.

II. H2S SAFETY EQUIPMENT AND SYSTEMS

Note All H2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonable expected to contain H2S

1. Well Control Equipment:

- A Flare line
- B Choke manifold
- © Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D Auxiliary equipment may include if applicable annular preventer & rotating head

Attached to Form 3160-3
Mack Energy Corporation
Ottawa Federal Com #1H NMNM-131583
SHL 180 FSL & 280 FWL, SWSW, Sec 20 T15S R29E
BHL 270 FSL & 355 FWL, SWSW, Sec 29 T15S R29E
Chaves County, NM

2. Protective equipment for essential personnel

A Mark II Survive air 30-minute units located in the doghouse and at briefing areas, as indicated on well site diagram

3. H2S detection and monitoring equipment:

A 1 portable H2S monitors positioned on location for best coverage and response These units have warning lights and audible sirens when H2S levels of 20 PPM are reached

4. Visual warning systems:

- A Wind direction indicators as shown on well site diagram (Exhibit #8)
- B Caution/Danger signs (Exhibit #7) shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

5. Mud program.

A The mud program has been designed to minimize the volume of H2S circulated to surface Proper mud weight, safe drilling practices and the use of H2S scavengers will minimize hazards when penetrating H2S bearing zones

6. Metallurgy:

- A All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service
- B All elastomers used for packing and seals shall be H2S trim

7. Communication.

- A Radio communications in company vehicles including čellular telephone and 2way radio
- B Land line (telephone) communication at Office

8. Well testing:

A Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safely and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H2S environment will use the closed chamber method of testing

Attached to Form 3160-3
Mack Energy Corporation
Ottawa Federal Com #1H NMNM-131583
SHL 180 FSL & 280 FWL, SWSW, Sec 20 T15S R29E
BHL 270 FSL & 355 FWL, SWSW, Sec 29 T15S R29F
Chaves County, NM

EXHIBIT #7

WARNING

YOU ARE ENTERING AN H2S

AUTHORIZED PERSONNEL ONLY

- 1 BEARDS OR CONTACT LENSES NOT ALLOWED
- 2 HARD HATS REQUIRED
- 3 SMOKING IN DESIGNATED AREAS ONLY
- 4 BE WIND CONSCIOUS AT ALL TIMES
- 5 CHECK WITH MACK ENERGY FOREMAN AT OFFICE

MACK ENERGY CORPORATION

1-575-748-1288

Warning sign @ access road entrance **Prevailing Wind Direction** Flare Line Summer - Southeast Winter Northeast Closed Loop equipment Substructure ablaMud 0 Cat Walk 8 Pump and Doghouse Company Trailer A Primary Briefing Area Access-Road

☐ Wind Objection Indicators

Safe Briefing areas with caution signs and breathing equipment min 150 feet from wellhead

H2S Monitors with alarms at the bell nipple

There will be no drill stem testing

 ∇

В

DRILLING LOCATION H2S SAFTY EQUIPMENT Exhibit # 8

175 from helt of location to hole
50 from hele to back of location (without closed loop)
150 from hole to back of location (with closed loop) 150 from front of location to hale Location size with Closed Loop System 300 Deep X 325"Wide

Location Layout

Silver Oak Drilling ~ 10 Bilco Road, Artesia, NM 85210 ~ 575,746,4408 infe@silveroakdrilling.com ~ www.silveroakdrilling.com

Mack Energy Corporation Call List, Chaves County

Artesia (575)	Cellular	Office	
Jım Krogman	432-934-1596 .	748-1288	
Emilio Martinez	432-934-7586 .	748-1288	

Agency Call List (575)

Roswell

State Police	622-7200
City Police	624-6770
Sheriff's Office .	624-7590
Ambulance	624-7590
Fire Department	624-7590
LEPC (Local Emergency Planning Committee	624-6770
NMOCD	748-1283
Bureau of Land Management	627-0272

Emergency Services

rgency Services	
Boots & Coots IWC	1-800-256-9688 or (281)931-8884
Cudd pressure Control	(915)699-0139 or (915)563-3356
Hallıburton	. 746-2757
Par Five	. 748-9539
Flight For Life-Lubbock, TX .	(806)743-9911
Aerocare-Lubbock, TX	. (806)747-8923
Med Flight Air Amb-Albuquerque,	3 *
Lifeguard Air Med Svc Albuquerg	• • •

Drilling Program Page 11

SURFACE USE AND OPERATING PLAN

1. Existing Access Roads

- A All roads to the location are shown in Exhibit #6 The existing lease roads are illustrated and are adequate for travel during drilling and production operations. Upgrading existing roads prior to drilling well, will be done where necessary
- B Directions to Location From the intersection of HWY 82 and CR 217, go North on CR 217 for approx 10, miles, go West on 20 caliche lease rd approx, 3.8 miles go North on 15 caliche lease rd for approx 0.4 miles to end of caliche lease road. Cont, North-Northeast on 2 track rd for approx. 0.2 miles to begin road survey follow road survey North approx. 659 to the Southeast pad corner for this location.

C Routine grading and maintenance of existing roads will be conducted as necessary to maintain their condition as long as any operations continue on this lease

Exhibit #6

1. Proposed Access Road:

Vicinity Map shows this location with existing road and 659 of new road exiting the Southeast corner of the pad Proposed upgrade of existing road will be done along staked centerline survey. Necessary maintenance will be done to insure traffic stays within EXISTING ROW NM-132973. The road has been constructed as follows.

- A The Maximum width of the running surface will be 14' The road will be crowned and ditched and constructed of 6" rolled and compacted caliche Ditches will be at 3 1 slope and 3 feet wide Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns
- B The average grade will be less than 1%
- C No turnouts are planned
- D No culverts, cattleguard, gates, low water crossings or fence cuts are necessary
- E Surfacing material will consist of native caliche Caliche will be obtained from the nearest BLM approved caliche pit located Sec 19 T15S R29E and Sec 34 T15S R29E
- F The access road as shown in Exhibit #6 is existing

2. Location of Existing Wells:

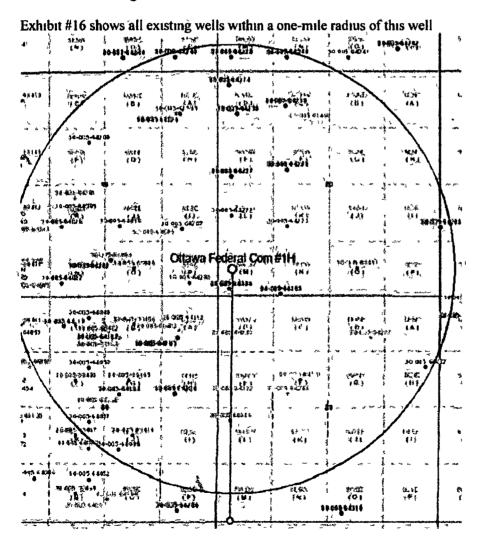


Exhibit #16

3 Location of Existing and/or Proposed Facilities:

- A Mack Energy Corporation will produce this well at the Prince Rupert Federal CTB
- B If the well is productive, contemplated facilities will be as follows
 - 1) San Andres Completion Will be sent to the Prince Rupert Federal &TB Jocated at the #1 well NWSW Sec. 20 T158 R29D. The Facility is shown in Exhibit #13
 - 2) The tank battery and facilities including all flow lines and piping will be installed according to API specifications
 - 3) Any additional caliche will be obtained from a BLM approved caliche pit. Any additional construction materials will be purchased from contractors
 - 4) It will be necessary to run electric power if this well is productive Power will be run by CVE and they will send in a separate plan for power
- Proposed flow lines will tren North to the Prince Rupert CTB Plowline will be a 4" poly stirlace line 1146 91' in length with a 40 psi working pressure

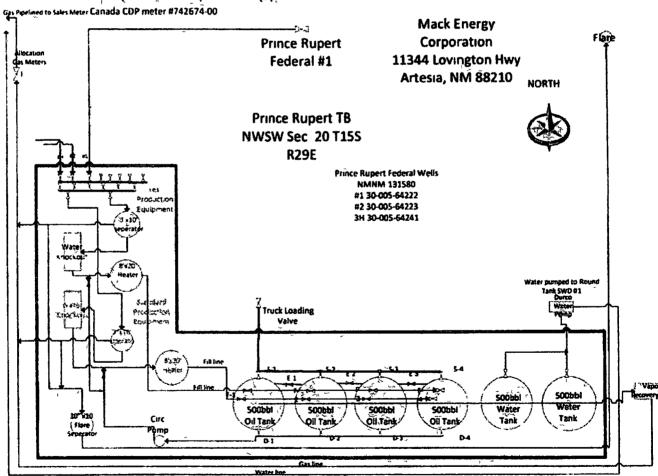


Exhibit #13

4. Location and Type of Water Supply:

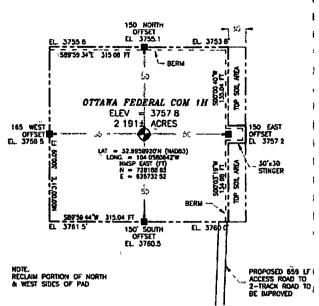
The well will be drilled with combination brine and fresh water mud system as outlined in the drilling program. The water will be obtained from commercial water stations in the area and hauled to location by transport truck over the

existing and proposed access roads shown in Exhibit #6 If a commercial fresh water source is nearby, fasline may be laid along existing road ROW's and fresh water pumped to the well. No water well will be drilled on the location

5. Source of Construction Materials

All caliche required for construction of the drill pad and proposed new access road (approximately 2500 cubic yards) will be obtained from BLM approved pit located at Sec. 19 T15S R29E and Sec. 34 T15S R29E

6. Methods of Handling Waste:


- A Drill cuttings and fluids will be disposed into the steel tanks and hauled to R-360 disposal facility permit number NM-01-0006 Located on Hwy 62 at MM 66
- B Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) and trucked to our Round Tank SWD #1 produced oil will be collected in steel tanks until sold
- C Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved local landfill. No toxic waste or hazardous chemicals will be produced by this operation
- D After the rig is moved out and the well is either completed or abandoned, all waste materials will be cleaned up within 30 days. In the event of a dry hole only a dry hole marker will remain
- E Sewage and Gray Water will be placed in container and hauled to a approved facility Container and disposal Bandled by Black Hawk
- F Drilling fluids will be contained in steel tanks using a closed loop system Exhibit #12 No pits will be used during drilling operations

7. Ancillary Facilities:

No airstrip, campsite or other facilities will be built as a result of the operation on this well

8. Well Site Layout:

- A The well site and elevation plat for the proposed well is shown in Exhibit #14. It was staked by Maddron Surveying, Carlsbad, NM
- B The drill pad layout, with elevations staked by Maddron Surveying, is shown in Exhibit #14 Dimensions of the pad are shown Topsoil, if available, will be stockpiled per BLM specifications Because the pad is almost level no major cuts will be required
- C. Diagram below shows the proposed orientation of the location. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations.

Exhibit# 14

9. Plans for Restoration of the Surface

- A Upon completion of the proposed operations, if the well is completed, any additional caliche required for facilities will be obtained from a BLM approved caliche pit
- B. Plans for interim and or final remediation
 - 1) Caliche will be removed, ground ripped and stockpiled topsoil used to recontoured as close as possible to the original natural level to prevent erosion and ponding of water
 - 2) Area will be reseeded as per BLM specifications. Seeding will be done when moisture is available and weather permitting. Pure live seed will be used to prevent noxious weeds. Annual inspection of growth will be done and necessary measures taken to eliminate noxious weeds.
 - C Exhibit #15 below shows the proposed downsized well site after Interim Reclamation Dimensions are estimates on present conditions and are subject to change

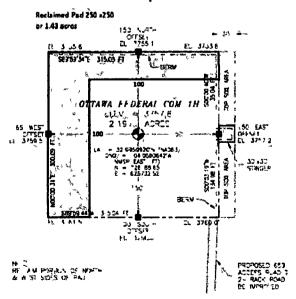


Exhibit #15

10. Surface Ownership:

The well site and lease is located entirely on I cderal surface. We have notified the surface lessee of the impending operations. Bogel Limited Company, PO Box 460 Dexter, NM 88230 (575) 365-2996

11. Other Information:

- A The area around the well site is grassland and the topsoil is sandy. The vegetation is native scrub grass with sagebrush.
- B There is no permanent or live water in the immediate area
- C A Cultural Resources Examination has been requested and will be forwarded to your office in the near future

12. Lessee's and Operator's Representative:

The Mack Energy Corporation representative responsible for assuring compliance with the surface use plan is as follows

Deana Weaver
Mack Energy Corporation
P O Box 960
Artesia, NM 88211-0960
Phone (575) 748-1288 (office)
dweaver@mec com

APD CERTIFICATION

I hereby certify that I, or person under my direct supervision, have inspected the proposed drill site and access route proposed herein, that I am familiar with the conditions which currently exist, that I have full knowledge of State and Federal laws applicable to this operation, that the statements made in this APD package are, to the best of my knowledge, true and correct, and the work associated with the operations proposed herein will be performed in conformity with this APD package and terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U S C 1001 for the filing of false statements.

Date 3.16 (B

Signed

Deana Weaver

a Welwer

U S Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location

PWD surface owner

Lined pit PWD on or off channel

Lined pit PWD discharge volume (bbl/day)

Lined pit specifications

Pit liner description

Pit liner manufacturers information

Precipitated solids disposal

Decribe precipitated solids disposal

Precipitated solids disposal permit

Lined pit precipitated solids disposal schedule

Lined pit precipitated solids disposal schedule attachment

Lined pit reclamation description

Lined pit reclamation attachment

Leak detection system description

Leak detection system attachment

Lined pit Monitor description

Lined pit Monitor attachment

Lined pit do you have a reclamation bond for the pit?

is the reclamation bond a rider under the BLM bond?

Lined pit bond number

Lined pit bond amount

Additional bond information attachment

PWD disturbance (acres)

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location

PWD surface owner

one considerable and other entire the estimate of the factorial and the state of th

PWD disturbance (acres)

Unlined pit PWD on or off channel

Unlined pit PWD discharge volume (bbl/day)

Unlined pit specifications

Precipitated solids disposal

Decribe precipitated solids disposal

Precipitated solids disposal permit

Unlined pit precipitated solids disposal schedule

Unlined pit precipitated solids disposal schedule attachment

Unlined pit reclamation description

Unlined pit reclamation attachment

Unlined pit Monitor description

Unlined pit Monitor attachment

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation

Estimated depth of the shallowest aquifer (feet)

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results

Geologic and hydrologic evidence

State authorization

Unlined Produced Water Pit Estimated percolation

Unlined pit do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number

Unlined pit bond amount

Additional bond information attachment

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location

PWD surface owner

PWD disturbance (acres)

Injection PWD discharge volume (bbl/day)

Injection well mineral owner

Injection well type

Injection well number

Assigned injection well API number?

Injection well new surface disturbance (acres)

Minerals protection information

Mineral protection attachment

Underground Injection Control (UIC) Permit?

UIC Permit attachment

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location

PWD surface owner

PWD disturbance (acres)

Injection well name

Injection well API number

Surface discharge PWD discharge volume (bbl/day)

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment

Surface Discharge site facilities information

Surface discharge site facilities map

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location

PWD surface owner

PWD disturbance (acres)

Other PWD discharge volume (bbl/day)

Other PWD type description

Other PWD type attachment

Have other regulatory requirements been met?

Other regulatory requirements attachment

U S Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD FED

BLM Bond number NMB000286

BIA Bond number

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number

Forest Service reclamation bond number

Forest Service reclamation bond attachment

Reclamation bond number

Reclamation bond amount

Reclamation bond rider amount

Additional reclamation bond information attachment