RECEIV								
Form 3160-3 (June 2015)	risba Or	d Field		OMB N	APPROVED 0. 1004-0137	10		
DISTRICT II-APURSIA OCTATE DEPARTMENT OF THE I		Artesi		Expires: Ja	anuary 31, 201			
BUREAU OF LAND MAN	AGEMENT		1	NMNM114354				
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee	or Tribe Nam	ic		
	EENTER			7. If Unit or CA Ag	reement, Nam	e and No.		
	Nher ingle Zone	Multiple Zone		8. Lease Name and	Well No.			
		Manple Zone		CRAZY HORSE 0 3H	304 FED CC	M		
2. Name of Operator				9. API Well No.	3a	3437		
CL&F RESOURCES LP	1	37095/			015-4			
3a. Address 16945 Northchase Drive #500 Houston TX 77060	3b. Phone N (281)873-30	o. (include area code D13	e)	10. Field and Pool, PARKWAY / BON		CATUNA CAMADA		
4. Location of Well (Report location clearly and in accordance w	•	•		11. Sec., T. R. M. of SEC 5 / T20S / R3		vey or Area		
At surface NWNE / 400 FNL / 2135 FEL / LAT 32.608 At proposed prod. zone NENE / 500 FNL / 330 FEL / LA			317			76600		
14. Distance in miles and direction from nearest town or post off				12. County or Paris	h 13.	State		
15. Distance from proposed* 400 feet	16. No of ac	res in lease	17. Spaci	ng Unit dedicated to t	this well			
location to nearest 400 leef property or lease line, ft. (Also to nearest drig, unit line, if any)	599.68		319					
 Distance from proposed location* to nearest well, drilling, completed, applied for on this lease ft 214 feet 	19. Propose	d Depth	20. BLM	/BIA Bond No. in file				
applied for, on this lease, ft.	8466 feet /	19137 feet	FED: NN	/B001314				
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3248 feet	22. Approxi 03/01/2018	mate date work will	start*	23. Estimated durat90 days	ion			
	24. Attac	hments						
The following, completed in accordance with the requirements o (as applicable)	f Onshore Oil	and Gas Order No. 1	, and the ł	lydraulic Fracturing r	rule per 43 CF	R 3162.3-3		
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover th Item 20 above).	e operatior	as unless covered by a	n existing bon	d on file (see		
 A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office 		 Operator certific Such other site space BLM. 		rmation and/or plans as	s may be reque	sted by the		
25. Signature		(Printed/Typed)	C 9120	Date 02/02/2018				
(Electronic Submission)	Bhan	Wood / Ph: (505)46			02/02/2018			
President					15			
Approved by (Signature) (Electronic Submission)		<i>(Printed/Typed)</i> Layton / Ph: (575)2	234-5959		Date 08/23/2018	ł		
Title Assistant Field Manager Lands & Minerals	Office CARL				•			
Application approval does not warrant or certify that the applicar applicant to conduct operations thereon. Conditions of approval, if any, are attached.			ose rights	in the subject lease w	'hich would er	ntitle the		
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n	nake it a crime	for any person know	vingly and	willfully to make to a	anv departmer	nt or agency		
of the United States any false. fictitious or fraudulent statements								
		III CONDIT	INNS					
	IN WI	ITA CONDIT	IVIN					
InDRA	AED MI	111		ء ب ب				
(Continued on page 2)	Wal Data				structions of	on page 2)		
ppro	vai Date	: 08/23/2018	Rıt	9-14-	18.			
			•					

- 20

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

SHL: NWNE / 400 FNL / 2135 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.608552 / LONG: -103.992511 (TVD: 0 feet, MD: 0 feet)
 PPP: NENE / 496 FNL / 1320 FEL / TWSP: 20S / RANGE: 30E / SECTION: 3 / LAT: 32.608225 / LONG: -103.955588 (TVD: 8466 feet, MD: 19137 feet)
 PPP: NWNW / 489 FNL / 0 FWL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.608237 / LONG: -103.968485 (TVD: 8436 feet, MD: 14156 feet)
 PPP: NWNE / 400 FNL / 2135 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.608552 / LONG: -103.968485 (TVD: 8436 feet, MD: 14156 feet)
 PPP: NWNE / 400 FNL / 2135 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.608552 / LONG: -103.992511 (TVD: 0 feet, MD: 0 feet)
 PPP: NWNW / 471 FNL / 0 FWL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.608302 / LONG: -103.985686 (TVD: 8360 feet, MD: 8853 feet)
 BHL: NENE / 500 FNL / 330 FEL / TWSP: 20S / RANGE: 30E / SECTION: 3 / LAT: 32.608213 / LONG: -103.952317 (TVD: 8466 feet, MD: 19137 feet)

BLM Point of Contact

Name: Katrina Ponder Title: Geologist Phone: 5752345969 Email: kponder@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CL&F Operating LLC
LEASE NO.:	NMNM-114354
WELL NAME & NO.:	Crazy Horse 0304 Fed Com 3H
SURFACE HOLE FOOTAGE:	0400' FNL & 2135' FEL
BOTTOM HOLE FOOTAGE	0500' FNL & 0330' FEL Sec. 03, T. 20 S., R 30 E.
LOCATION:	Section 05, T. 20 S., R 30 E., NMPM
COUNTY:	County, New Mexico

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

• If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign</u>

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

□ Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Page 1 of 7

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval – an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Potash Areas:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

R-111- P Potash High Cave/Karst Capitan Reef Possibility of water flows in the Artesia Group and Salado. Possibility of lost circulation in the Artesia Group, Rustler, Capitan Reef, and Delaware.

A MINIMUM OF TWO CASING STRINGS CEMENTED TO SURFACE IS REQUIRED IN HIGH CAVE/KARST AREAS. THE CEMENT MUST BE IN A SOLID SHEATH. THEREFORE, ONE INCH OPERATIONS ARE NOT SUFFICIENT TO PROTECT CAVE KARST RESOURCES. A CASING DESIGN THAT HAS A ONE INCH JOB PERFORMED DOES NOT COUNT AS A SOLID SHEATH.

- 1. The 20 inch surface casing shall be set at approximately 350 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

- 2. The minimum required fill of cement behind the 13-3/8 inch intermediate casing is:
 - □ Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Potash.
- 3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool:____
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- □ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Potash and Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

4. The minimum required fill of cement behind the 5-1/2 inch production casing is:

□ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Excess calculates to 11% - Additional cement may be required.

5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

6. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

C. **PRESSURE CONTROL**

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. A variance is granted for the use of a diverter on the 20" surface casing.
- 4. In the case where the only BOP installed is an annular preventer, it shall be tested to a minimum of 2000 psi (which may require upgrading to 3M or 5M annular).
- 5. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 2nd intermediate casing shoe shall be psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 7. Operator has option to utilize a multi-bowl wellhead assembly. This assembly will only be tested when installed. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the 2nd intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 8. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 082318

Page 7 of 7

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CL&F Resources LP
LEASE NO.:	NMNM114354
WELL NAME & NO.:	Crazy Horse 0304 Fed Com 3H
SURFACE HOLE FOOTAGE:	400'/N & 2135'/E
BOTTOM HOLE FOOTAGE	500'/N & 330'/E
LOCATION:	Section 5, T.20 S., R.30 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Cave/Karst
Hydrology
Rangeland
Potash
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 13

V. SPECIAL REQUIREMENT(S)

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production:

Construction:

In the advent that any underground voids are opened up during construction activities, construction activities will be halted and the BLM will be notified immediately.

No Blasting:

No blasting will be utilized for pad construction. The pad will be constructed and leveled by adding the necessary fill and caliche.

Pad Berming:

- The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.
- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g., caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised. (Any access road crossing the berm cannot be lower than the berm height.)
- Following a rain event, all fluids will vacuumed off of the pad and hauled off-site and disposed at a proper disposal facility.

Tank Battery Liners and Berms:

Tank battery locations and all facilities will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing, or equivalent, to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.

Leak Detection System:

A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing

Page 3 of 13

electronic sensors to alarm when a leak is present. Leak detection plan will be submitted to BLM for approval.

Automatic Shut-off Systems:

Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and ground water concerns:

Rotary Drilling with Fresh Water:

Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

Kick off for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

ALL lost circulation zones from the surface to the base of the cave occurrence zone will be logged and reported in the drilling report.

Regardless of the type of drilling machinery used, if a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cavebearing zone, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

Upon well abandonment in cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

Annual pressure monitoring will be performed by the operator on all casing annuli and reported in a sundry notice. If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Hydrology Mitigation:

The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

Page 4 of 13

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Rangeland Management Mitigation:

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Any damage to fences, cattle guards, and pipelines or structures that provide water to livestock during construction, throughout the life of the project, and caused by its operation, must be immediately corrected by CL&F. CL&F must notify the grazing allottee or the private surface landowner and the BLM-CFO (575-234-5972) if any damage occurs to pipelines or structures that provide water to livestock.

Potash Resource Mitigation:

Lessees must comply with the 2012 Secretarial Potash Order. The Order is designed to manage the efficient development of oil, gas, and potash resources. Section 6 of the Order provides general provisions which must be followed to minimize conflict between the industries and ensure the safety of operations.

To minimize impacts to potash resources, the proposed well is confined within the boundaries of the established Solution Shallow Drill Island (See Potash Memo and Map in attached file for Drill Island description).

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 6 of 13

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

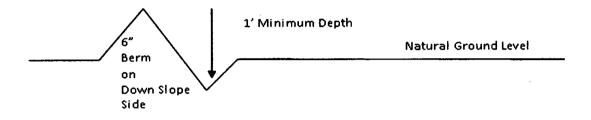
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 7 of 13

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 8 of 13

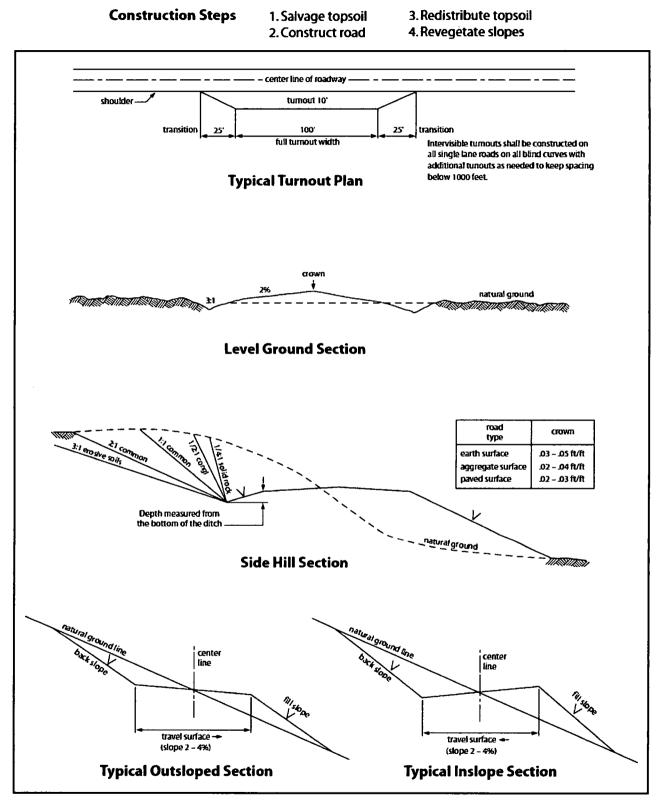


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 10 of 13

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

VRM Facility Requirement Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 11 of 13

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

.

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Brian Wood		Signed on: 02/02/2018
Title: President		
Street Address: 37 Verar	ю Loop	
City: Santa Fe	State: NM	Zip : 87508
Phone: (505)466-8120		
Email address: afmss@p	ermitswest.com	
Field Represe	ntative	
Representative Name:		
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data Report

08/24/2018

APD ID: 10400026547

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Section 1 - General

Well Type: OIL WELL

Submission Date: 02/02/2018

Zip: 77060

Highlighted data reflects the most recent changes

Show Final Text

Well Work Type: Drill	

Well Number: 3H

APD ID: 10400026547	Tie to previous NOS?	Submission Date: 02/02/2018						
BLM Office: CARLSBAD	User: Brian Wood	Title: President						
Federal/Indian APD: FED	Is the first lease penetrated for production Federal or Indian? FED							
Lease number: NMNM114354	Lease Acres: 599.68							
Surface access agreement in place?	Allotted?	Reservation:						
Agreement in place? NO	Federal or Indian agreement:							
Agreement number:								
Agreement name:								
Keep application confidential? NO								
Permitting Agent? YES	APD Operator: CL&F RES	OURCES LP						

Operator letter of designation:

Operator Info

Operator Organization Name: CL&F RESOURCES LP

Operator Address: 16945 Northchase Drive #500

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (281)873-3013

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan na	Mater Development Plan name:							
Well in Master SUPO? NO	Master SUPO name:	Master SUPO name:							
Well in Master Drilling Plan? NO	Master Drilling Plan name:								
Well Name: CRAZY HORSE 0304 FED COM	Well Number: 3H	Well API Number:							
Field/Pool or Exploratory? Field and Pool	Field Name: PARKWAY	Pool Name: BONE SPRING							
Is the proposed well in an area containing other	mineral resources? POTASH								

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Use Existing Well Pad? NO	New surface disturbance?						
Multiple Well Pad Name:	Number: 3H						
CRAZY HORSE Number of Legs: 1							
arest well: 214 FT Distan	ce to lease line: 400 FT						
319 Acres							
Duration: 90 DAYS							
Vertical Datum: NAVD88							
	Multiple Well Pad Name: CRAZY HORSE Number of Legs: 1 arest well: 214 FT Distan 319 Acres Duration: 90 DAYS						

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD
SHL Leg #1	400	FNL	213 5	FEL	20S	30E	5	Aliquot NWNE	32.60855 2	- 103.9925 11	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 114354	324 8	0	0
KOP Leg #1	400	FNL	213 5	FEL	20S	30E	5	Aliquot NWNE	32.60855 2	- 103.9925 11	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 114354	- 478 9	844 0	803 7
PPP Leg #1	400	FNL	213 5	FEL	20S	30E	5		32.60855 2	- 103.9925 11	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 114354	324 8	0	0

Operator Name: CL&F RESOURULU LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	471	FNL	0	FWL	20S	30E	4	Aliquot NWN W	32.60830 2	- 103.9856 86	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 055423 3	- 511 2	885 3	836 0
PPP Leg #1	496	FNL	132 0	FEL	20S	30E	3	Aliquot NENE	32.60822 5	- 103.9555 88	EDD Y	NEW MEXI CO	NEW MEXI CO	F	FEE	- 521 8	191 37	846 6
PPP Leg #1	489	FNL	0	FWL	20S	30E	4	Aliquot NWN W	32.60823 7	- 103.9684 85	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 135240	- 518 8	141 56	843 6
EXIT Leg #1	500	FNL	330	FEL	20S	30E	3	Aliquot NENE	32.60821 3	- 103.9523 17	EDD Y	NEW MEXI CO	NEW MEXI CO	F	FEE	- 521 8	191 37	846 6
BHL Leg #1	500	FNL	330	FEL	20S	30E	3	Aliquot NENE	32.60821 3	- 103.9523 17	EDD Y	NEW MEXI CO	NEW MEXI CO	F	FEE	- 521 8	191 37	846 6

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400026547

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Section 1 - Geologic Formations

Well Number: 3H Well Work Type: Drill

Submission Date: 02/02/2018

Highlighted data reflects the most recent changes,

08/24/2018

rilling Plan Data Report

Show Final Text

Well Type: OIL WELL

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formation
1,		3248	0	0	OTHER : Quaternary caliche	USEABLE WATER	No
2	RUSTLER ANHYDRITE	3048	200	200		NONE	No
3	TOP SALT	2788	460	460	<u> </u>	NONE	No
4	TANSILL	1688	1560	1560	SANDSTONE	NONE	No
5	YATES	1471	1777	1777	SANDSTONE	NONE	No
6	SEVEN RIVERS	1172	2076	2076	GYPSUM	NONE	No
7	CAPITAN REEF	1079	2169	2169	LIMESTONE	USEABLE WATER	No
8	DELAWARE	-284	3532	3532	SANDSTONE	NATURAL GAS,CO2,OIL	Ňo
9	BONE SPRING	-3022	6270	6450	OTHER : Carbonate	NATURAL GAS,CO2,OIL	No
10	BONE SPRING 1ST	-4239	7487	7820	SANDSTONE	NATURAL GAS,CO2,OIL	No
11	BONE SPRING 2ND	-4895	8143	8569	SANDSTONE	NATURAL GAS,CO2,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 10000

Equipment: A 10,000' 2,000 psi and 5,000 psi BOPE system will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams. **Requesting Variance?** YES

Variance request: A variance is requested from the BLM for the use of a diverter on the 26" section. A Variance is requested from the BLM for the use of a 20" 3M Annular on the 17 1/2" and 12 1/4" sections. A variance is requested from BLM for the use of a flexible choke line from the BOP to the choke manifold. See attached specifications and hydrostatic test chart. Testing Procedure: Independent service company will test BOP / BOPE to 250 psi low and the high pressure as listed above. For detailed information see attached General Drill Plan.

Choke Diagram Attachment:

Well Number: 3H

CH_3H_Choke_20180124141743.pdf

BOP Diagram Attachment:

CH_3H_BOP_20180124141753.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
	CONDUCT OR	36	othe R	NEW	API	N	0	80	0	80	3248		80	OTH ER		OTHER - Weld						
2	SURFACE	26	20.0	NEW	API	N	0	350	0	350	3248		350	J-55		OTHER - BTC	3.46	11.1 4	DRY	46.4	DRY	49
3	INTERMED IATE	17.5	13.375	NEW	API	N	0	1680	0	1680	3248		1680	J-55	L	OTHER - BTC	1.29	2.75	DRY	9.9	DRY	9.3
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3480	0	3480	3248		3480	J-55	40	LTC	1.6	1.93	DRY	3.73	DRY	4.52
5	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3480	0	3480	3248		3480	J-55	40	LTC	1.6	1.93	DRY	3.73	DRY	4.52
6	PRODUCTI ON	8.75	5.5	NEW	API	N	0	19137	0	8466	3248		19137	P- 110	-	OTHER - Atlas BK	3	1.2	DRY	2.2	DRY	2.1

Casing Attachments

Casing ID: 1 String Type: CONDUCTOR

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Casing ID: 2 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_3H_Casing_Design_Assumptions_20180124142340.pdf

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_3H_Casing_Design_Assumptions_20180124142528.pdf

Casing ID: 4 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_3H_Casing_Design_Assumptions_20180124142643.pdf

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Casing Attachments	•
Casing ID: 5 String Type: INTERMEDIATE	
Inspection Document:	
Spec Document:	
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s): CH_4H_Casing_Design_Assumptions_20180202122810.pdf	
Casing ID: 6 String Type: PRODUCTION	
Inspection Document:	
Spec Document:	
Tapered String Spec:	

Casing Design Assumptions and Worksheet(s):

CH_3H_Casing_Design_Assumptions_20180124142857.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	cu Ft	Excess%	Cement type	Additives
CONDUCTOR	Lead		0	80	0	0	0	0		Redi Mix	None

SURFACE	Lead	0	321	800	1.34	14.8	1072	100	Class C	2% PF01 (CACl2)

INTERMEDIATE	Lead	0	1680	1200	1.75	13.5	2100	100	Class C	4% PF120 (Gel) & 1%
										PF01 (CACl2) & 3#

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

							-				
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
	•			<u></u> .					-		PF42 (Koalseal) & 1/8# PF29 (Cellophane)
INTERMEDIATE	Tail		0	1680	200	1.33	14.8	266	100	Class C	1% PF01 (CACl2)
INTERMEDIATE	Lead		0	3480	220	2.05	12.6	451	50	Class C 35/65 Poz	5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
INTERMEDIATE	Tail		0	3480	200	1.32	14.8	264	50	Class C	.2% PF13 (Retarder)
INTERMEDIATE	Lead		0	3480	350	2.05	12.6	717	50	Class C 35/65 Poz	6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
INTERMEDIATE	Tail		0	3480	200	1.32	14.8	264	50	Class C	.2% PF13 (Retarder)
PRODUCTION	Lead		0	1913 7	880	2.47	11.9	2173		Class H 50/50 Poz	5% PF44 (Salt) & 10% PF20 (Gel) & .2% PF153 (Anti-settle) & .4# PF45 (Defoam) & 3# PF42 (Koalseal) & 1/8# PF29 (Cellophane)

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation (e. g., cedar bark) and weight increase (e. g., barite, bentonite) requirements will be on site at all times.

Describe the mud monitoring system utilized: A Pason, or similar, system will be used to monitor fluid loss or gain.

Circulating Medium Table

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	На	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
3480	1913 7	OTHER : Cut brine	8.4	9.5							
0	321	OTHER : Fresh water	8.4	9							
321	1680	OTHER : Brine water	10	10.1							
1680	3480	OTHER : Fresh water	8.4	8.7							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Mud logging program will be used from 3300' to TD. No open hole log is planned at this time. A gyro may be used from surface to first intermediate casing shoe if warranted. GR/MWD will be used from 80' to TD. Completion CBL may be run in vertical to free fall depth of curve 40+.

List of open and cased hole logs run in the well:

GR,MWD

Coring operation description for the well:

No core or drill stem test is planned.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4182

Anticipated Surface Pressure: 2319.48

Anticipated Bottom Hole Temperature(F): 140

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

CH_3H_H2S_Plan_20180124144853.pdf

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

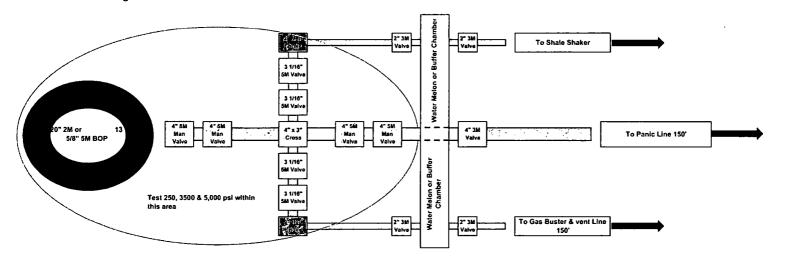
Well Number: 3H

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

CH_3H_Horizontal_Drill_Plan_20180124144951.pdf

Other proposed operations facets description:

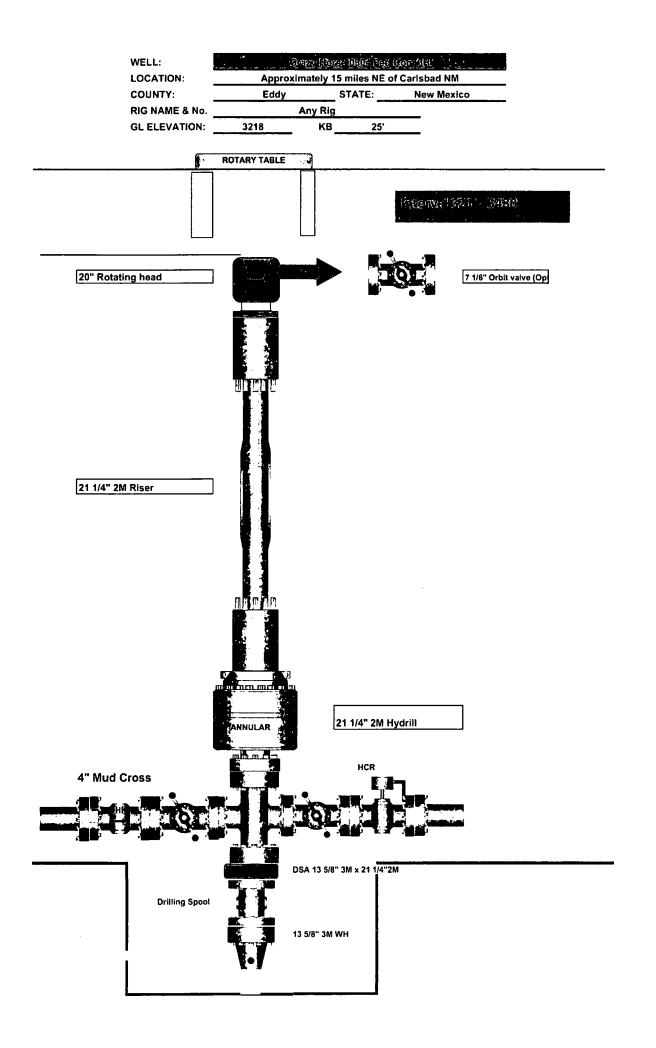

Other proposed operations facets attachment:

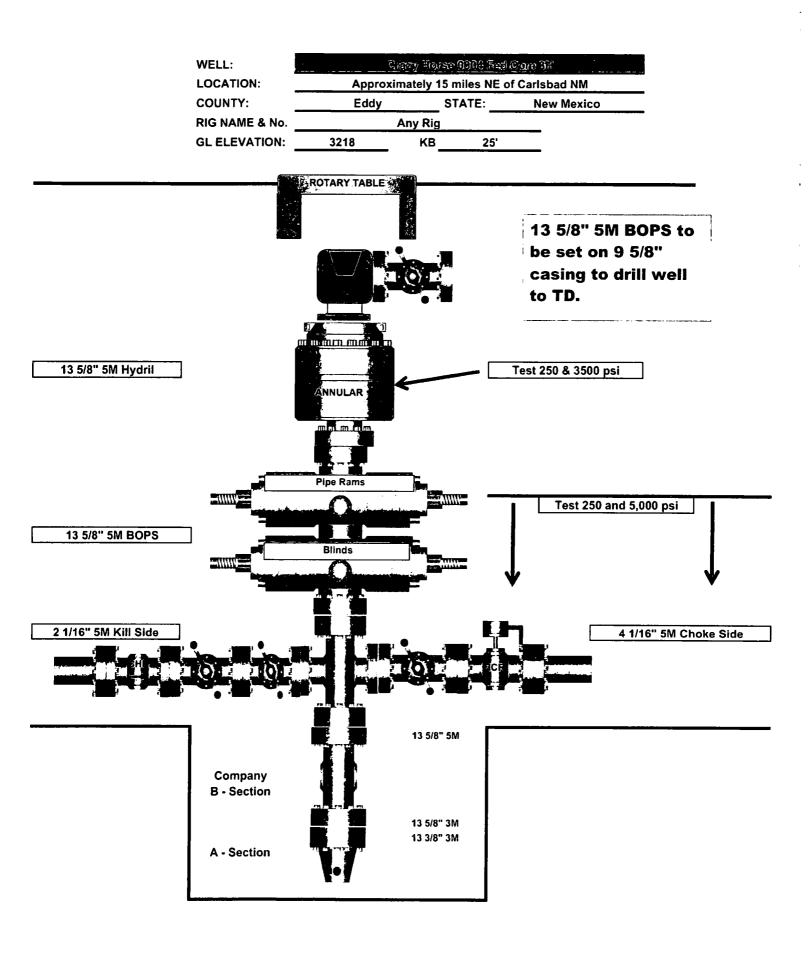
CH_3H_General_Drill_Plan_20180124145007.pdf

CH_3H_Speedhead_Specs_20180124145020.pdf

Other Variance attachment:

Choke Manifold



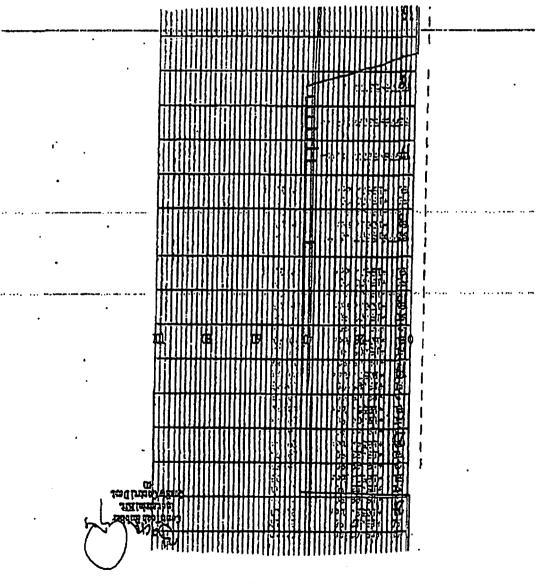

-- - -

-

. . . .

Minimum Configuration of Choke Side

Coffex Hose Certification


Ontinental S CONTITECH

Ruld Technology

Ouality Document

ł

QUAL INSPECTION	ITY CONT		CATE	CEAT.	N:	743	
PURCHUSER:	Phonab Bos	tto Co.		P.O. N		002491	
Continethiorder H?:	412838	KOSE TYPE:	3" ID	Ch	oke and M	(I) Hose	
HOBE GERML M:	52777	HOUSHAL /AC	TUAL LENGT	H:	10,67 m]	
W.P. 68,98 MPo 1	6000 GOCOI	T.P. 103,4	иро <u>15</u> (100 sei	Queodoa:	60 ~	IT
anisen ampensino 1 10 cm = 10 sig		altachment	. (1 page)				-
-> 10 mm = 25 MP	-						
			ukos 				
Туре		Santzi M'		Qualby		Hadily	
Charlengers C	917	913	A	51 (130		TTOOSA	
4 1/15" Flago and							
		•	•	61 4120		26984	
	ED .			69 4120		26084 API Spoc 11 mperature r	
INFOCHIP INSTALL Intel ^{el} perts fre rewrees Il centry that the adow Recsure tested as above	Those has de	EN MANJFACTU TORY REBULT.			Te	API Spoc 1 mperature r	ete:"E
IT ME IFT DE ITS FOR NEW RES IE CENTRY THAT THE ADOM	Those has de	en ganufactu Tory Rebult.		EDANCE WT	Te	API Spoc 10 mperature r His of The OR	ete:"E

Collex Hose Certification

Coflex Hose Certification

Form Ho 100/12

1

1

÷

4

:

•

🛥 Phoenix Beattie

Phoenix Beattle Corp USS Artonom Jet Grin Resor, 17 1761 Table (CD) 27 450 Fen (CD) 27

Delivery Note

Customer Order Number 378-359-001	Dolivery Note Humber	003078	Page] 1
Customor / Invoice Addreas HELMORICH & PATHE INI'L ORTLLIGI CO 1437 SOUTH RULLOR TUESA, CK 74119	Delivery / Address HUMERIOI & PANSE ICC ATTN: JCE STEMENSON - RI 13609 INCUSTRIAL ROAD HOUSTON, NX 77015	G 378		

Customer Acc No	Phoenix Beattie Contract Manager	Phoenix Beetile Reference	Date
¥0)	່ມເ	006330	05/23/2008

itern No	Beattle Part Number / Description	Qty Orderød	Ory Sont	City To Follow
	H910CT3A-35-6F1 3' 10K 16C C&K HOSE x 35ft 0AL CM 4.1/15' AP1 SPEC FLANGE E/ End 1: 4.1/16' 10Kps1 AP1 Spec 6A Type 60X Flange End 2: 4.1/16' 10Kps1 AP1 Spec 6A Type 60X Flange C/W BX155 Standard ring grooze at each end Suitable for H2S Service Horking pressure: 10.000215 Test pressure: 15.000ps1 Standard: AP1 16C Full specification Arear Guarding: Included Fire Rating: Hot lectuded Tesperature rating: -20 Dog C to +100 Dtg C	1	1	0
-	SECK3-HOF3 LIFTING & SAFETY OQUIPHENT TO SULT HP10CK3-35-F1 2 x 16000 ID Safety Clarps 2 x 24000 ID Lifting Collars & clowent C's 2 x 7ft Stainless Steel wire rope 3/4° 00 4 x 7.75t Shackles	····1		
3	SC725-201CS SAFETY CUMP 200H 7.251 C/S GALVANISED	1	1	D

SH Safey Factor Com SH Safey Factor Gody SH Safety Factor Body	% (~ ,~,~,~,	SH Safety Factor Collapse SH Safety Factor Burst SH Safety Factor Body SH Safety Factor Body	Int 2 Csg Size Depth 95/8" : 3480	SH Safety Factor Collapse SH Safety Factor Burst SH Safety Factor Conn SH Safety Factor Body	Int 1 Cig Size Depth 13 3/8 1680	SH Safety Factor Collapse SH Safety Factor Burst SH Safety Factor Conn SH Safety Factor Body	Surface Set Csg Size Depth 7VD 20" 350	Casing Designs Crazy Horse 03 - 04 Fed Com
	Set MD 1.20 1.30	120 120 130 2.00	Set Depth 3480	1.20 1.30 2.00	Set Depth MD	1.20 1.30 1.80 2.00	Set Depth MD 350)4 Fed
Top Joint Top Joint	Grade P110 Mud	Mud Cement Mud Top Joint Top Joint	Grade . J55	Mud Cement Mud Top Joint Top Joint	Grade JS5	Mud Cement Mud Top Joint Top Joint	Grade JSS	Com
t Conn Yd / MD * Wt Body Yd / MD * Wt	Weight 20 Collapse / TVD • MG Collapse / TVD • GG • MG Collapse / TVD • FG • GG	Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * FG - GG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt	Weight	Collapse / TVD * MG Collapse / TVD * G - MG Burst / TVD * FG - GG U Conn Yd / MD * Wt Body Yd / MD * Wt	Weight \$4.5	Collapse / TVD * MG Collapse / TVD * CG · MG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt	Weight	: #3H
	Conn Atlas BK 7.20 2.57	1.58 3.02 3.74 4.53	Conn	1.29 3.08 9.93 9.32	Conn	3.17 4.93 10.22 42.61 44.98	Conn	• •
	Conn Collapse Buist 2,557 Actual 2,557 Actual 2,557 Actual 2,559 Actual 2,559 Actual 2,559 Actual	Actual Safety factor	Collapse	Actual Safety factor	Collapse 7 1, 130	Actual Safety factor	Collapse : 520	
Conn Yd @ CurveTVD Body Yd @ Curve TVD	12,640		Burst				e Burst 2,110	
rveTVD			Conn Yield 520,000		Cann Yield 909,000		Conn Yleid 1,402,000	
4.00 3.84	Conn Body MD Air TVD Air Yreld Yield Weight Weight 667.000 641.000 392.7401 166.940 Barst Colitapre Joint 1.125 Per 6LM 1.125 1.600 1.125		Body MD Air TVD Air Yield Weight Weight 530,000 139,200 139,200	Per BLM	Burst Conn Body MD Air TVD Air Drig Mud 2,730 909,000 853,000 91,560 91,560 -10 ddr ²	Per BLM	Body Yield 1,480,00	
Actua Fac	MD Air Weight 382,740 1.125	Burst	MD Air Weight 139,200	1.000 1000	MD Air Weight 91,560		MD Air Weight 0 32,900	
Actual Safety Factors	TVD Air Weight 1 166,940 1 1.600 1.800	Collapse 1.125	TVD Air Weight 139,200	Collapse 1.125	TVD Air Weight 91,560	Collaps 1.125	TVD Air Weight 32,900	
	Drig Mud Weight (Dry) (Bouyed)	2 Joint 1.600	Drig Mud Weight 9.00	e 1.600 1.800	r Drig Mud t Weight 	Burst Callapse Joint 1.000 1.125 1.600 1.800	Body MD Air TVD Air Orig Mud Yield Weight Weight Weight 1,480,000 32,900 32,900 -9,00*	
Max Operati Vield Torque			d Mud Gradient	(Dry) (Bouyed)	d Mud Gradient	(Dry) (Bouyed)	d Mud Gradient	
Optimum MU Forque Max Operating Torque Yield Torque	Mud Cmt C Gradient Weight Gra 0.49 13.05 0 Minimum MU Torque Minimum MU Torque Optimum MU Torque		Cmt Weight		Crnt Keight		Cmt Weight 14.80	
orque	Cmt Gradient 0.68		Cmt Gradient) 0.71	1	Cmt V Gradient	1	Cmt Gradient	
8,300 23,000			Frac Gradient		Frac Prac Gradient		nt Gradient	
					p Gra			
fitbs fitbs	Gas Gas Iradient 0.11 0.11 filbs filbs		Gas Gradient 0.11		Gas Gradient 0.11		Gas Gradient	

÷.

	Surface																
Image State State <th< th=""><th></th><th></th><th></th><th>Weight</th><th></th><th>Collapse</th><th></th><th>Conn Yield</th><th>Body Yield</th><th>MD Air Weight</th><th>TVD Air Weight</th><th>Ortg Mud Weight</th><th>Mud Gradient</th><th>Cmt Weight</th><th>Cmt Gradient</th><th>Frac Gradient</th><th>50</th></th<>				Weight		Collapse		Conn Yield	Body Yield	MD Air Weight	TVD Air Weight	Ortg Mud Weight	Mud Gradient	Cmt Weight	Cmt Gradient	Frac Gradient	50
Name Name Control (Normal) State Normal State	20"	H		-94	втс	520.	2,110	1,402,000	1,480,000	32.900	32,900		0.47	14.80	0.77	0.70	
100 100 <td>H Safety Factor Co</td> <td>-</td> <td>Mud</td> <td>Collapse / TVD • MG</td> <td></td> <td>tγ</td> <td>_</td> <td>_</td> <td></td> <td>1</td> <td></td> <td></td> <td> ·</td> <td>•</td> <td></td> <td></td> <td></td>	H Safety Factor Co	-	Mud	Collapse / TVD • MG		tγ	_	_		1			·	•			
Image: Instant Image:	4 Safety Fartor Bu		Cement	Collapse / TVD * CG - MG					21 B C		Collapse		į				
1.00 100 <td>H Saftey Factor Co</td> <td>\square</td> <td>Top Join</td> <td>Conn Vd / MD * Wt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.000</td> <td>2777</td> <td></td> <td>(Ury) (Bouyed)</td> <td></td> <td></td> <td></td> <td></td>	H Saftey Factor Co	\square	Top Join	Conn Vd / MD * Wt						1.000	2777		(Ury) (Bouyed)				
International biological biologi	H Safety Factor Bo		Top Join	Body Yd / MD * Wt		4								ľ			1
bill Barly Grand Com Collage Data	Int 1																
a Hold LSS ETC LLSD ETC LSD </td <td></td> <td></td> <td></td> <td>Weight</td> <td></td> <td>Collapse</td> <td></td> <td>- Yield</td> <td>Body Yield</td> <td>MD Air Weight</td> <td>TVD Air Weight</td> <td>Drlg Mud Weight</td> <td>Mud</td> <td>Cmt</td> <td>Gradient</td> <td>Frac</td> <td>60</td>				Weight		Collapse		- Yield	Body Yield	MD Air Weight	TVD Air Weight	Drlg Mud Weight	Mud	Cmt	Gradient	Frac	60
E 1.30 Mudi Gallager / 1/10 Mudi Lize Mudi Lize Mudi Cont Cont Fit 1.30 Guerra Gallager / 1/10 Mudi Guerra Gallager Guerra Guerra Gallager Mudi Guerra Gallager Guerra Gallager Guerra Guerra Gallager Guerra Gallager Guerra Gallager		<u></u>	Π	. 54.5	BTC	1,130	2.730	909,000	853,000	91,560	91,560	10.00	0.52	14.20	0.74	0.70	0
120 Cameral Collapse Invo. CG. MG 130 France	H Safety Factor Co	Н	H	Collapse / TVD * MG	1.29	iy		_									
L30 Rend Conn of JAN View Size			Cement	Collapse / TVD * CG - MG						Burst	Collapse	hiot					
1.200 Irage Joinel Bedy Vd / M0 * Wt 9.27 2 1.200 Irage Joinel Bedy Vd / M0 * Wt 9.27 2 1.200 Irage Joinel Bedy Vd / M0 * Wt 9.27 2 1.200 Irage Joinel Bedy Vd / M0 * Wt 9.27 2 1.200 Irage Joinel Bedy Vd / M0 * Wt 1.57 Conn Bedy Vd / M0 * Wt 1.67 1.200 Irage Joinel Bedy Vd / M0 * Wt 1.57 Conn Conn Bedy Vd / M0 * Wt 1.57 1.200 Irage Joinel Bedy Vd / M0 * Wt 1.57 Conn Conn Bedy Vd / M0 * Wt 1.57 Conn State No Arit No Arit No Arit No Arit No Arit State Irage Joinel Gradient Wreight Gradient	H Saftey Factor Co		Top Join	Conn Yd / MD * Wt					Per BUM	1.000	1.125	1.600	(Dry)				
Set 1.30 Cond Mud Cond Light Cond Light Body Mice Moto Air Vield Moto Air Weight Cond Gradient Frac Gradient 1.30 Mud Cond Light Cond Gradient Cond Light Cond Gradient Set Light	SH Safety Factor Bo		Top Jain	Body Yd / MD * Wt		۸				П				.			
Set b Oracle bulk Grade Weight 130 Gran Conv Lig Conv Lig </td <td>nt 2</td> <td></td>	nt 2																
0 Mod In 120 Mud Mud Internet Collapse / 100 · Mid Internet Ling Internet Construct Internet Ling Internet Construct Internet Ling Internet Construct Internet Ling Internet Construct Internet Ling Internet Ling Internet Construct Internet Ling Internet Ling Inter				Weight		Collapse		Conn	Body	MD Air	TVD Air	Drig Mud	рим	Cmt			6
L10 Mud Collapse / N0 · Mci L33 Mud L34 Mud L35 L30 Mud Collapse / N0 · Mci L33 130 Mud Grane Collapse / N0 · Mci L33 Actual Safety Fraction Set Set <td></td> <td></td> <td></td> <td>40</td> <td>110</td> <td>2.570</td> <td>3.950</td> <td>520.000</td> <td>630.000</td> <td>139.200</td> <td>139.200</td> <td></td> <td>0.47</td> <td>13.70</td> <td></td> <td></td> <td></td>				40	110	2.570	3.950	520.000	630.000	139.200	139.200		0.47	13.70			
L30 Cement Nucl 100 Callaget (N0 * CG · MG 133 L30 L30 <thl30< th=""> <thl30< th=""> L30 L30<td>H Safety Factor Co</td><td>_</td><td>Mud</td><td>Collapse / TVD * MG</td><td></td><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl30<></thl30<>	H Safety Factor Co	_	Mud	Collapse / TVD * MG		/											
L10 Mud L00/ V01 / V01 · V01 1.7 L10 L00 L112 L100 L100 L112 L100 L000 L000 L000 L000 Mud Mud Mud Crm Crm Fac 1 1100 Mud Control Mud L100 1100 L100 L100 L000 L000 <td></td> <td></td> <td>Cement</td> <td>Collapse / TVD * CG - MG</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Burg</td> <td>Collapse</td> <td>bin</td> <td></td> <td></td> <td></td> <td></td> <td></td>			Cement	Collapse / TVD * CG - MG						Burg	Collapse	bin					
Set In Set In Set In Body Yd/ M0 * W 4.53 4 1 Set In Set M0 Grade Weight Com Collapse Burst Com Body Weight Weight Body Mud Mud Com Con Con So J Weight Body Weight Weight Body Weight Grademi Grademi <t< td=""><td>H Safery Factor Bu H Saftev Factor Co</td><td></td><td>Top Join</td><td>Conn Vd / MD * Wt</td><td></td><td></td><td></td><td></td><td>Per BLM</td><td>1.000</td><td>1.125</td><td>1.68</td><td>(Dry)</td><td></td><td></td><td></td><td></td></t<>	H Safery Factor Bu H Saftev Factor Co		Top Join	Conn Vd / MD * Wt					Per BLM	1.000	1.125	1.68	(Dry)				
Set In Depth Grade Weight Com Collapse Burst Com Body MD Air Drig Aud Mud Cmt Cmt Fraction 7 9137 P110 20 Alibs BK 11,000 12,640 667,000 152,770 166,340 93,00 0.49 13,05 0.48 0.70 1 20 Mud Collapse / TVD * MG 2.63 32 2.63 13,00 12,640 667,000 13,05 0.69,400 Mud Cmt Cmt Fraction 1 1.20 Mud Collapse / TVD * 10 1.260 12,640 667,000 13,05 0.69 13,05 0.49 13,05 0.68 0.70 1 Burst Trial Trial Com Yd & MO * With 1.74 Com Yd & Curve TVD 3.00 Actual Stery Maintrum MU Torque 3.00 1 1.00 1.02 0.00 3.00 Actual Stery Mac Operating Torque 13.00 1 0.00 1.01 3.00 Actual Stery Med Torque 13.00 1.90 Fators Y	1 Safety Factor Bo		Tap Jain	Body Yd / MD * Wt		Ac								-			1
Set b Grade Weight Com Collapse Burst Com Body Wried Wright Drig Mud Mud Cmt Cmt Fraction 7 9137 P110 20 Alibs BK 11,100 12,640 667,000 150,100 932,740 166,340 93,50 0.49 13,05 0.68 0.70 1 20 Mud Collapse/TVD * MG 2.65 32 2.63 130 Mud Com Yd 1.32 1.600 (may regist) 1.305 0.68 0.70 1.30 Mud Gon Yd 1.74 Com Yd 2.37 4.34 42 5.00 1.350 (may regist) 1.305 0.68 0.70 1.30 Mud Gon Yd 1.74 Com Yd 2.30 Mud Lator Mud Mud Mud Cone 1.32 Mud Mud Mud Gradeent 17.29 1.30 Top Joini Body Yd /MO* With 1.57 Gon Yd @ Curve TVD 3.34 Artual Sterv Max Operating Toque 3.300 19.500 19.500	roduction																
In Deputs Grade Weight Conn Collapse Gund Yield Yield Weight Gund Gunder								,	2								
7 19137 P110 20 Alike eX 11,000 12,640 667,0000 352,740 166,940 '9,500 0.49 '13,05 0.66 0.70 1 20 Mud Collapse / TVD * MG 2.65 31 2 1.120 Mud Collapse / TVD * MG 2.65 31 2 1.120 Mud Collapse / TVD * G 32 4 34 2 1.125 1.600 (0ny) Mainnum MU Torque 6,000 1.135 1.600 0				Weight	Conn	Collapse	Burst	Vield	800y Yield	MU Air Weight	Weight		Gradient	Weight		Gradient	6 a
Instruction Collapse Collapse <thcollapse< th=""> Collapse <</thcollapse<>			7 P110	20	Aīlās BK	11,100		667,000,	641,000	382,740	166,940			13,05	0.68		0
e 1.20 Mud Cellapser/TV0 * MG 2.69 a b 1.20 Cennert Cellapser/TV0 * G Mud J							_		Burst	Coliapse	Joint						
1.30 Cennert Cellippe 170 · C6 · MG 2.00 Lag Lag Lag Mud Burst / T00 · FG CG 2.57 2.43 Lag 1.30 Inpust / T00 · FG G 2.57 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.44 2.43 2.44 <t< td=""><td>Cafety Earthr Col</td><td>_</td><td>5</td><td>Collanse / TVD + MG</td><td>260</td><td></td><td></td><td>_</td><td>1.000</td><td>1.125</td><td>1600</td><td>(DTY)</td><td></td><td></td><td></td><td>8</td><td></td></t<>	Cafety Earthr Col	_	5	Collanse / TVD + MG	260			_	1.000	1.125	1600	(DTY)				8	
1.30 Mud Bust/ TVD • FG. G. 2.57 C 4 · · · · · 1.80 top joint Com Yd / M0 • Wt 1.74 CurveTVD 4.00 Actual Safety 2.00 lop jointi Bedy Yd / M0 • Wt 1.67 Bedy Yd @ Curve TVD 3.84 Factors	Servery Factor Co		Cement	Collapse / TVD * CG + MG	7.20	afety	_				1.800	(navnon)	Maximum	MU Tor	đre dre	17,250	₹a
1.90 Top Joint Conn Yd/ M0 * Wi 1.74 Conn Yd/@ Curve TVD 4.00 Atrual Stetry Maz Operating Torque 19.50 2.00 Top Joint Body Yd / M0 * Wi 1.67 Body Yd @ Curve TVD 3.84 Factors Vield Torque 23.000	Safety Factor Bui	H	Mud	Burst / TVD * FG - GG	2.57	Ai Sa fai						-	Optimum	MU Torc	ļ	8,300	Ξ
	Saftey Factor Cor Safety Factor Box		Top Join	Conn Yd / MD * Wt		Conn	u la la cur		4.00	Actual	Safety		Max Oper	ating To	que	19,550	i I
	Safety Factor Box	1		Body Yd / MD * Wt	1.67	Body V	d @ Cun	e TVD	3.84	Fac	tors	ſ	Yield Torc	iue		23,000	≣
	 - -																
	1	, ;									4			;		-	

i

	H 2 H
	ч
	į
	Crazy Horse 03 - 04 Eed Com
	8
g Designs	rco 03
	rasv Ho
S	Ľ

		•	l
•	•	,	ſ
	•		l
	•		l
	E n t		
	•		
Lass Of OA Call Care	TOPSE US - UN FED LOT		
	282		

Surface																	
	Į	Set					F	F									
Csg Size	Depth	•	Grade	Weight	Conn	Collapse	Burst	Conn Yield	Body Yield	MD Air Weight	TVD Air Weight	MD Air TVD Air Drtg Mud Weight Weight Weight	Mud Gradlent	Cmt Weight	Cmt Gradlent	Mud Cmt Cmt Frac Gas Gradlent Weight Gradient Gradient	Gadient
20"	350	350	155	F6	BTC	520	2,110	2,110 1,402,000 1,480,000 32,900 32,900	480,000	32,900	32,900	9,00	0.47	14.80	0.77	0.70	0.11
SH Safety Eartor Collanse	of lance	2	Mind	Collacte / TVD • MG	112								,				
ייי שאיבוע ישנוטי	Section			+		Aşa		Ļ	ſ				ſ	_			
SH Safety Factor Bure	1	1.20	Cement	Collapse / TVD - CG - MG	4.93	ote2 101:			Der Ri M		Collapse	mlol my t	100				
CH Safray Eactor Con		2	17	⊥	17 61			-		+	1		19-0-01				
A manage of a second		2	mor doi		10.75	ъA		-	1		1	1.000	Inakanak				
SHI SAFERY FACTOR BOOK	Å	3.7	THIOF doil no.7	1M _ MW / D1 ADDG	44.70												
Int 1																	
		[ľ			ľ	ľ						
Csg Size	Depth To be	Depth	Grade	Weight	Cann	Collapse	Burst	Conn . Yield	Body Yield	MD Air Weight	TVD Air Weight	Drig Mud Weight	Mud Gradi e nt	Cmt Weight	Cmt Gradient	Cmit Cmt Frac Gas Weight Gradient Gradient	Gas Gradient
13 3/8	1680	1680	551	54.5 *	BTC'	1, 130	2,730	000'606	853,000	91,560	91,560	-00 OT	0.52	14.20	0.74	0.70	0.11
						-											
SH Safety Factor Collapse	ollapse		Μuđ	Collapse / TVD • MG	1.29	A1											
		1.20	Cement	Collapse / TVD • CG - MG	3.08					Burst	Collapse	Joint					
SH Safety Factor Burst	urst	1.30	Mud	Burst / TVD * FG - GG	2.75	5 le		-	Per BLM	1.000	1.125	1600	(Dry)				
SH Saftey Factor Conn	uuo	1.80	Top Joint		9.93							1.800	(Bouyed)				
SH Safety Factor Body	Apo	2.00	Top Joint	Body Yd / MD • Wt	9.32	A											
Int 2																	
Cen Cine	Set	ž	6000	Mainte	, and		i	Conn	Body	MD Air	TVD Air	MD Air TVD Air Drig Mud	Mud	Ĕ	Cmt	Frac	Gas
	2			119:24				Vield	vield	Weight	Weight	Weight Weight Weight	Gradient	Weight	Gradient	Gradient Weight Gradient Gradient	Gradient
9 5/8"	3480	3480 3480	⁻ 155	40	LTC .	2,570	3,950	3,950 520,000 630,000 139,200 139,200	630,000	139,200	139.200	906	0.47	13:70	0.71	0.70	0.11
SH Safety Factor Collapse	oltapse	_	Mud	Collapse / TVD • MG	1.58	41		l		ĺ							
		รื	-	4	3.02	9166 01				Burst	Burst Collapse	hid					
SH Safety Factor Burst	Į	ñ		-	1.92	2 lisi 176		_	Per BLM	8	1.125	8	Ê				
SH Saftey Factor Conn	Ę	1-80 1-	Top Joint		3.74							1,800	(Bouyed)				
SH Safety Factor Body	Ą	2:00	2.00 Top Joint	Body Yd / MD • Wt	4.53	~											
Production		1					1			ĺ	ĺ						
	ž	ž					F		-	100	1.000	The si- and side		į	į]	ł
Csg Size	Depth	Depth	Grade	Weight	Cann	Collapse	Burst	Vield	Yield	Weight Weight		Weight	Gradient	Weight	Gradient	nt	Gradient
5 1/2"	8347	19137	P110	20	Atlas BK	11,100	12,640	667,000	641,000 382,740 166,940	332,740		9.50	0.49	(13.05	0.68	0.70	0.11
								Per BLM	Enst Burst	1.125 1.600	1.600	(Àd	-				
SH Safety Factor Collapse	ollapse	1.20	Mud	Collapse / TVD • MG	2.69	A1		1.		-		(Bouyed) Minimum MU Torque	Minimum	MU Torq	i e l	6,000	fribs
		1.20	Cement	2	7.20	letu letei otoe	I						Maximum MU Torque	MU Tore	ant	17,250	filbs
SH Safety Factor Burst	urst	R.I	Mud		2.57	1 5 7		Ŀ					Optimum MU Torque	MU Torq	e e	8,300	fibs
SH Saftey Factor Conn	цю.	1.80	Top Joint	Conn Yd / MD * Wt	1.74	Conn Y	Conn Yd @ CurveTVD	-	4.00	Actual Safety	Safety		Max Operating Torque	ating Tori	ane	19,550	ftbs

Actual Safety Factors

4.00 3.84

Conn Yd @ CurveTVD Body Yd @ Curve TVD

SH Safery F SH Safery F SH Safery F

1

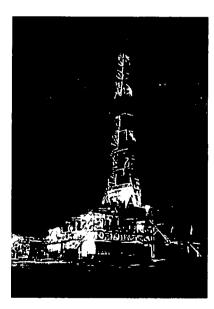
1

				-				2		;	:			·
20" : 350	50 MD 50 350	h Grade	Weight 94	Conn BTC	Collapse 520	Burst 2,110 J	Yield 1,402,000	Yield 1,480,000	Weight 32,900	Weight 32.900	9,00	Gradient D.47	Weight 14.80	Gradient 0.77
SH Safety Factor Collapse) Mud Cement	Collapse / TVD * MG Collapse / TVD * CG - MG				_		Burst	Collapose] '	-	
SH Safety Factor Burst SH Saftey Factor Conn SH Safety Factor Body			Burst / TVD * FG - GG t Conn Yd / MD * Wt t Body Yd / MD * Wt	10.22 42.61 44.98	Actual Si facto			Per 8LM	1.000	1.125	1.600 1.800	(Dry) (Bouyed)		
Int 1														
Csg Size Depth TVD	et Set pih Depth	hGrade	Weight	Conn	Coltapse	Burst	. Yield	Body Yield	MD Air Weight	TVD Air Weight	Drtg Mud Weight	Mud Gradient	. Cml Weight	Cmt Gradient
13 3/8" 16		155	54.5	BIL	1,130	2,730	909,000	101	91,560		10.00		14.20.	0.74
SH Safety Factor Collapse		Mud	Collapse / TVD * MG	1 1	₽ty		_		ľ				•	
SH Safety Factor Burst SH Saftey Factor Conn SH Safety Factor Body	2 1 1 30	Top Join	t Conn Yd / MD * Wt	9.93 9.93	Actual Saf factor			Per BUM	1.000	1.125	1.600	(Dry) (Bouved)		
Int 2														
Csg Size Depth TVD	nth Depth	h Grade	Weight	Conn	Collapse	Burst	Conn Yield	Body Vield	MD Air Weight	TVD Air Weight	Drig Mud Weight	Mud Gradient	Cmt Weight	Cmt Gradient
9 5/8 . 3480) - 155.	-01	LTC	2,570	3,950	520,000	3,950 520,000 630,000 139,200 139,200	139,200	139,200	9.00	0.47	13.70	0.71
SH Safety Factor Collapse SH Safety Factor Burst	-1 *	Cement	Collapse / TVD * MG Collapse / TVD * CG • MG Burst / TVD * FG - GG	1.58 3.02 1.92	l Safety ctor			Per BLM	1.000	L 125	Collapse Joint	1714	_	
SH Saftey Factor Conn SH Safety Factor Body	1.80 2.00	Top Join	Conn Yd / MD * Wt Body Yd / MD * Wt	3.74 4.53								(Bouyed)		
Production														
Csg Size Depth TVD	st Set	h Grade	Weight	Cann	Collapse	Burst	Conn Yield	Body Yield	MD Air Weight	TVD Air Weight	Drig Mud Weight	Mud Gradient	Cmt Weight	Cmt Gradient
5 1/2" 8347	47 1913	7 P110	20	Atlas BK	11,100	12,640	667,000	. 191	382,740 Collapse	40 166,940	9.50	0.49	. 13.05	0.68
SH Safety Factor Collapse	: :	Mud	Coliapse / TVD • MG	2.69	ety	<u> </u>	Per BLM	1.000	1.125	1.600	(Dry) (Bouyed)	Minimum	MU Torq	5
SH Safety Factor Burst		Cement	Collapse / TVD * CG - MG Burst / TVD * FG - GG	2.57	Actu Safe facto						_	Maximum MU Torque Optimum MU Torque	MU Torq	ue Ue
SH Saftey Factor Conn SH Safety Factor Body		Top Joint Top Joint) Top Joint Conn Yd / MD * Wt) Top Joint Body Yd / MD * Wt	1.74	Conn Yd @ (d @ Curv	CurveTVD	3.84 84	×	alety		Max Oper	ating Tor	que
SH Safety Fattor booy			Body Yo / MU - Wi		Body T	1 @ Curv	eTVD	3.84	Factors	ä		Yield Torque	, Fe	
•	•								;	•				1
	•								;	,		,	,	4

1 .

Casing Designs Crazy Horse 03 - 04 Fed Com

4H


						_											
Surface																	Γ
Csg Sue	Depth Depth	Depth Se	Grade	Weight	Conn	Collapse	Burst	Yield	Body Yield	MD Air Weight Weight	TVD Air Weight	Drig Mud Weicht	Mud Gradient	Cmt Weight	Cmt Gradient	Frac	Gas Gradient
50.	S S	-	155	8	8TC -	520	2,110	1,402,000	f.480.000	32,900	32.900	.00.6	0.47		0.77	0.70	0.11
SH Satety Factor Collapse	Collapse			Collapse / TVD * MG	\rightarrow	A 31		4		ľ	ĺ						
SH Safety Foctor Burst	Burs		Cement	Collapse / TVD * CG - MG Burst / TVD * EG. GG	4.93	ate2 103:			1	E a	Collapse	Hiol .	1				
SH Salter Factor Conn	uno O		1	L	47.61					_							
SH Safety Factor Body	Body	2.00			44.98	υv		-			1		(pa/noo)				
											ĺ						
Int 1																ŀ	ſ
Cee Size	Set Denth	Set	Grade	Waiahr	500	Cofficience		Con		MD Air.		Drtg Mud	Mud	Cmt	Ĕ	Frac	Gas
	27			T. Q]	2 departs		Yield.	Yield	Weight Weight			Gradient	Weight	Gradlent	Gradient	Gradient
-8/E E1	1680	1680	155	242	BIC	021.1	2,730	000'606	853,000	91,560	095'16	10.01	0.52	14.20	0.74	0.70	0.11
SH Sefety Factor Collapse	Collapse	1.20	Mud	Collapse / TVD • MG	1.29	[
			1	Collapse / TVD • CG • MG	89.E	ر رودا		-		Burst	Collance	mia	Γ				
SH Safety Factor Burst	Burst	1.30	pnw	Burst / TVD • FG • GG	2.75	013 19 10			Per BLM		1125	150	(aug				
SH Saftey Factor Conn	Com				6.93				-			T.—	(Bourved)				
SH Safety Factor Body	Ъ.	2:00	Top Joint	Body Vd / MD + Wt	5.92	.~	ļ	'									
- tu																	ſ
Csg Size	Depth TVD	Depth MD	Grade	Weight	Conn	Collapse	Burst	Conn Yield	Pody	MD Air TVD Air Weight Weight		Drlg Mud Weight	Mud Cmt Cmt Gradient Weight Gradient	Cmt Weight	Cmt Gradient	Frac Gradient	Gas Gradient
9 S/8"	3480	3480	155	40	ы Б	2,570	3,950	- 520,000	630,000 139,200 139,200	139,200		86	0.47	13.70	1/0	0.70	0.11
A Calary Factor Collanse	Collanse	1 201	Mud	Collance / D/D - MG	1 55	ſ											
		_	1	Collanse / TVD + CG - MG		¢٤٨		L		1	-		ſ				
SH Safety Factor Burst	Burst	8		Burst / TVD - FG - GG	1.92	1221 11013			Per BLM	1,000 1,125	1.125		120				
SH Saftey Factor Conn	con Cons	1.80	Top Joint	Conn Yd / MD • Wt	3.74				-	+-		-	(Barrend)				
SH Safety Factor Body	ŧ	200			4.53)A		וי	1		1	1					
Production																	
Csg Size	Set Depth TVD	Septh Mo	Grade	Weight	Conn	Collapse	Burst	Conn Yield	Body Yield	MD Air T Weight	TVD Air D Weight	Drig Mud Weight	Mud Gradient	Cmt Weight G	Cmt Gradlent	Frac Gradient	Gas Gradlent
5 1/2*	8594	19296	P110 ·	20	Atlas BK	11.100	12,640 (667,000	641,000 3	385.920 171,880	71,880	3.5	0.49	13.05	0.68	0.70	11.0
								Per BLM	Burns	Collapse Joint 1.175 1.600	\mathbf{H}	176					
SH Safety Foctor Collapse		1.20	pny	Collapse / TVD • MG	2.61	4	_	- I	-	-	+	12	Minimum MU Torque	MU forgu		6.000	ftibs
	Ţ			Coltapse / TVD • CG • MG	7.00	1174 1976 1976	I						Maximum MU Torque	MU Torqu	e	17,250	fibs
SH Safety Factor Burst SH Safew Factor Cono	ung le	R 9	Mud Top loot	Burst / TVD • FG - GG	549			-			[-1	Optimum MU Torque	AU Torqu	<u> </u>	8,300	tibs
SH Safety Factor Body	100	18	Top Joint	Body Yd / MD • Wt	1991	Body Vd	Body Yd & Curve TVD		171	Actual Sal	lety	-1>	Max Operating Torque	ting Torq	╈	19.550	ft bs
							5								1	AUN 67	5012

.

Crazy Horse 03-04 fed Com #3H SURFACE LOCATION 400' FNL & 2135' FEL SECTION 5 T20S R30E EDDY COUNTY, NEW MEXICO Latitude: N 32.608552 Longitude: W -103.992511

«CONTINGENCY PLAN»

422 West Main street suite 6 Artesia, New Mexico (575)746/1096 (432)363/0198 fax

Well Control Emergency Response Plan

CL&F OPERATING LLC

CUSTOMER COPY

Permit Number:	Date issue:	District- NM
API #:	Form W-1 Rec-	County-EDDY
Type: New Drill	ACRES-	I

<u>Operator</u>		
CL&F Operating LLC		

Lease Name: Crazy Horse 03-04 Fed Com

Well Number: 3H

Location: Total Depth: TVD 8466' MDTD 19137'

Section: SECTION 5 T20S R30E Abstr

Abstract:

Surface Location: 400' NORTH 2135' EAST Dist to Nearest Lease Line 400'

Dist to Nearest Well:

Directions: Approximately 15 miles NE of Carlsbad, NM.

THIS PERMIT IS GRANTED PURSUANT TO BUREAU OF LAND MANAGEMENT 43 CFR 3160 ONSHORE OIL AND GAS ORDER NO. 6 HYDROGEN SULFIDE OPERATIONS Permit Plat: CL&F Operating LLC Crazy Horse 03-04 Fed Com #3H Location in Survey: 400' FNL & 2135' FEL in SECTION 5 T20S R30E EDDY COUNTY, NEW MEXICO

This is a Hydrogen Sulfide field and shall be drilled in accordance with BLM ONSHORE ORDER NO. 6

ţ,

***Information in this section was provided to American Safety Services Inc. by

Sierra-Hamilton.***

CL&F OPERATING LLC Emergency Contact List

Russ Ginanni	432.425.7450		
	432.423.7430	432.218.6473	432.425.7450
TBD			
TBD			
TBD			
Mark Stover	281.873.9378		281.352.0391
Mark Parrott	281.873.3033		713.560.7707
Allison Gill	281.873.3013		337.302.7188
			·
	TBD TBD Mark Stover Mark Parrott	TBDTBDMark Stover281.873.9378Mark Parrott281.873.3033	TBDTBDMark Stover281.873.9378Mark Parrott281.873.3033

Public Safety	Facility	Contact	Direct	Cellular
EDDY COUNTY:				
Sheriff Department	Artesia, NM		575-746-9888	
Fire Department	Artesia, NM		575-746-2701	
Ambulance	Artesia, NM	+	911	
State Police	Artesia, NM		575-746-2703	
City Police	Artesia, NM		575-746-2703	
Sheriff Department	Carlsbad, NM		575-887-7551	
Fire Department	Carlsbad, NM		575-885-2111	
Ambulance	Carlsbad, NM		911	
State Police	Carlsbad, NM	+	575-885-3137	
City Police	Carlsbad, NM		575-885-2111	
Hospital	Carlsbad, NM		575-887-4121	
Flight for Life	CARLSBAD,NM		800.242.6199	
AEROCARE	ARTESIA, NM		800.800.0900	
Latituda	N 32.608552			
Latitude				
Longitude	W -103.992511			
Safety Contractor	Name	Office	Residence	Cellular
American Safety		575.746.1096		
Safety Supervisor NM	Tell Montoya	575.746.1096	575.749.0009	432.653.3866
Safety Manager NM	Andres Holguin	575.746.1096	575.202.2720	575.513.5033
Owner	Kevin Hokett	575.746.1096	432.363.3911	432.208.4372

DIRECTIONS: FROM CARLSBAD NM TAKE HWY 62/180 EAST FOR 16 MILES TO HWY 360 TURN NORTH FOR 8 MILES TO CR 235 (CURRY COMB RD.) TURN LEFT (WEST) FOR 1.5 MILES TO LEASE ROAD ON LEFT FOLLOW LEASE RD TO LOCATION.

•

}

TABLE OF CONTENTS

i

4

ł

RESPONSE LEVELS6LEVEL 1 WELL CONTROL INCIDENTS7LEVEL 2 WELL CONTROL INCIDENT9LEVEL 3 WELL CONTROL INCIDENTS12DUTIES AND RESPONSIBILITIES, RIG SUPERVISOR17EXAMPLE OF WORK ZONES22APPENDIX23	EXECUTIVE SUMMARY	5
LEVEL 2 WELL CONTROL INCIDENT	RESPONSE LEVELS	6
LEVEL 3 WELL CONTROL INCIDENTS	LEVEL 1 WELL CONTROL INCIDENTS	7
DUTIES AND RESPONSIBILITIES, RIG SUPERVISOR	LEVEL 2 WELL CONTROL INCIDENT	9
EXAMPLE OF WORK ZONES	LEVEL 3 WELL CONTROL INCIDENTS	12
·	DUTIES AND RESPONSIBILITIES, RIG SUPERVISOR	17
APPENDIX	EXAMPLE OF WORK ZONES	. 22
	APPENDIX	23

Additional H2s information is included at the end of the plan.....

Prepared by:

American Safety Services Inc

422 west main street suite 6

Artesia, New Mexico 88210

This publication is confidential and proprietary. Any part thereof may not be reproduced or transmitted in any form or by any other means, electronic or mechanical, including photocopying, recording, storage in an information retrieval system, or otherwise, without the prior written permission of American Safety Services Inc.

Executive Summary

This plan is intended to document **CL&F Operating LLC** procedures for dealing with well control emergency situations. American Safety Services Inc encourages taking all preventative measures required to reduce the probability of a well control incident from occurring. If it does occur, however, this pre-developed strategic action plan can be implemented quickly and decisively in response to the emergency. It is intended to supplement the **CL&F Operating LLC** Emergency Procedure and other similar plans.

This Well Control Emergency Response Plan (WCERP) was formulated during low-stress, nonemergency conditions. It is our experience that those response actions hastily grasped during the event suffer from the panic, confusion and indecisiveness of persons not normally involved with high-stress situations.

In any emergency response plan the health and safety of people is the prime concern. Generally, persons not familiar with highly specialized oil well firefighting, capping and dealing with the high pressures and flow rates associated with blow-outs should not attempt to handle one of these events. Guidelines for early response procedures are included to mitigate risks, losses and damages, however.

There are three incident levels for which an emergency well control response is required. These levels are based on the severity and potential impacts of the incident. They are simply labeled Level 1, Level 2 and Level 3, with Level 1 being the least serious and Level 3 the worst. Level 3 denotes a complete loss of well control with no opportunity for regaining it using equipment and procedures available on-site. These correspond roughly to the Emergency Categories listed in the General Emergency Procedure.

In dealing with a well control emergency response, each person has duties and responsibilities. All critical tasks must be delegated to one person with minimal overlap. Thus, each responsibility is handled effectively without undue duplication.

The on-site organization is supervised and controlled by the Team Leader for the rig involved in the blow-out. The overall situation is controlled by the Manager over the area in which the blowout occurs who will serve as the Incident Commander. For most operations this will be the Manager (Drilling Operations) or the Manager (Exploration). These are individuals with long experience who are familiar with

CL&F Operating LLC's drilling and workover operations, corporate internal structure, corporate culture, personnel, various support services, and the capabilities of all emergency response groups including American Safety Services Inc. Each commander is assisted by several deputies, each of whom deals with responsibilities in their areas of expertise. This provides the most efficient and effective method of dealing with the emergency, protecting human lives and health, mitigating damages, and protecting the environment.

Response Levels

This plan involves three types of incidents classified as Level 1, Level 2 and Level 3 depending on the seriousness of the incident. A **Level 1** incident involves an uncomplicated kick that requires only normal operating procedures by the

CL&F Operating LLC Rig Supervisor (Company Man) and the drilling crew with notification to the Team Leader (TL) having supervisory authority over that rig. A **Level 2** incident involves a complication of some type that requires extraordinary measures to be taken by the Company Man, drilling contractor personnel, the TL, Sr. Drilling Engineer and, in some instances, American Safety Services Inc to successfully deal with the situation. A **Level 3** incident involves the complete loss of well control. Response to this type incident requires declaration of a Major Incident, activation of the Well Control Organization within **CL&F Operating LLC** and all the personnel listed below to provide On-Scene Command at the site, Headquarters Control, Support Services and Operations Engineering Support.

1

÷

1

Level 1 Well Control Incidents

Characteristics

Definition	A Level 1 incident is defined as a well control problem that occurs during drilling or workover operations for which formal or informal standard operating procedures (SOPs) exist to control the event. There are no injuries or fires associated with this type incident and the situation can be brought under control using only the resources available on-site.
Action Requirement	These SOPs are executed by the rig crewmembers under the supervision of the toolpusher and CL&F Operating LLC Drilling Supervisor. The appropriate Team Leader is notified about the incident and the actions taken to control it. Support is rarely required from Drilling Services or from the well control services contractor unless the event escalates to a more serious level.

Examples

Drilling- related	•	An uncomplicated kick
incidents	•	Complete loss of circulation (e.g., >500 bph) with hydrocarbon zone open

• Leak in casing with a permeable hydrocarbon zone open

Completion- or	Unable to kill a well to start a workover
Workover- related incidents	• Tripping with high loss rate (e.g., >250 bph)
	• A kick taken after the well is killed
	 Hole in surface/intermediate/production casing due to corrosion or damage
	 Swabbing the well in during pipe tripping
Production- related incidents	Pressure on production casing that cannot be bled down
related incidents	 Small leak on master value, swab value of wing value on tree
	• Erosion and failure of the vent line to the pit, tank or test unit
	Master valve frozen or stem broken with valve in closed position
Simultaneous	Moving in rig or workover unit with wellhead damage due to collision
operations incidents	 Wellhead damage during heavy lift operations while installing BOPs, wireline lubricator, coiled tubing, etc.
	 Close approach/near miss drilling past existing well(s) from same drilling pad while drilling new well
Additional incidents	 Chemical stocks for mixing kill weight mud fall below pre-determined adequate levels
	• Kick tolerance falls below pre-determined level (e.g., 2 ppg or 24 bbls)
	Casing wear exceeds acceptable amount
	• Failure of critical equipment (e.g., main power system on rig)
	Severe lost circulation and continued mud losses to the loss zone
	Impending severe weather
	 Flow after cementing intermediate casing, production casing, or production liner
Response Acti	<u>ons</u>

ł

: . . .

1

i.

ResponsibleRig Supervisorparty

1

Process overview The following table provides an overview of the actions required during a Level 1 well control incident:

i

i

Step	Action
1	Evaluate the situation
	Determine that the incident is Level 1
2	Notify all personnel on location
3	Immediately execute initial response action based on standard operating procedures
4	Notify Team Leader
5	Continue using standard operating procedures until situation is resolved

Level 2 Well Control Incident

Characteristics

Definition	A Level 2 emergency can be defined as an abnormal well control event
	involving some sort of complication in which:

- Well control has not been lost at the surface
- Resources beyond the normal capabilities of the rig crew or production operations staff may be required such as unfamiliar or complex well control procedures
- Outside well control consultation, materials, special equipment or personnel may be required

There are no injuries or fires associated with this incident level since control has not been lost. The situation is not sufficiently threatening to declare a Major Emergency or to activate an Incident Command System to deal with the situation.

- Action Required Trained drilling staff should be able to handle a Level 2 emergency in the normal course of drilling or working over a well by:
 - Removing the complication, thereby reducing the incident severity to Level 1 status, then using SOPs to circulate out the kick and resolve the problem

ł

 Prepare a specialized procedure to control the incident with the complication remaining throughout the procedure

It is important that action be taken quickly to resolve the situation. Level 2 incidents are more serious than Level 1 incidents and they can escalate quickly to a complete loss of well control (i.e., a Level 3 incident). Even if control is not lost at the surface, an underground blowout or other similar event can occur if measures are not taken quickly.

Examples

- Kick with no pipe in the hole
- Kick with the bit off the bottom
- Drill collars or other BHA components across the pipe rams, well shut in on the annular preventer

Drilling-related incidents

- Kick while fishing, pipe off bottom, fish in hole
- Kick with the bit off bottom, pipe stuck
- Kick with very high intensity or large volume taken (high shut-in pressure)
- Kick with simultaneous losses (above or below the bit)
- Kick with bit or drill string plugged
- Kick with critical equipment failure (e.g., pumps, electrical system, etc.)
- Kick with hole in drill string
- Kick without sufficient chemicals to weight up mud
- Kick with wireline in the hole
- Shallow gas kick with diversion
- Low volume flow after cementing surface casing

Level 1 incidents escalating to a Level 2 while circulating out a kick	 Exceeding maximum allowable surface pressure while circulating kick out of the open hole section (before kick reaches the casing shoe) Suspected underground cross-flow requiring further diagnosis Small leak in BOP or wellhead
	 Leak in stab-in safety valve through ball seat and/or operating system seal
	Gas hydrate (ice) plug in circulation system
	Choke plugged or cut out
	Washout in drill string or in surface equipment
	Dropped drill string
	Sheared drillpipe
	Loss of BOP control function
Completion-or workover- related	 Fishing operation performed under pressure Potential underground crossflow
incidents	Leak in wireline BOP, lubricator and/or tree valves
	 Fishing or milling operation performed under pressure with coiled tubing or snubbing unit where loss of well control is imminent
Production- related incidents	 Production casing leak with tubing leak Leak in master valve with failure of ESD valve control Leak in tubing with casing valve leak
	 Tree component eroded to critical limit by sand
	Surface safety valves do not effectively shut-off flow
Simultaneous operations incidents	 Drilling into existing well casing from new well Casing leak develops during workover operations Damage to tree, wellhead or casing near surface due to heavy dropped object Motor vehicle collision resulting in severe damage to tree or wellhead Inability to access casing annulus due to inoperative (stuck) side outlet valve on wellhead

:

,

÷

,

Response Actions

ResponsibleRig Supervisorparty

Process overview The following table provides an overview of the actions required during a Level 2 well control incident:

:

1

÷

.

i

1

. .

•

'

ŧ

İ

ţ

Step	Action
1	Evaluate the situation; determine that the situation constitutes a Level 2 Incident classification and advise the Team Leader
2	Down man rig; remove all non-essential personnel and equipment from the site
3	Execute initial response actions to protect personnel, the rig, the well and the reservoir
4	Develop a procedure to remove the complication and deal with the situation using SOPs
5	If complication cannot be removed, prepare a non-standard procedure to deal with the incident
6	Consult with the appropriate Team Leader, Drilling Engineer and well control specialists, if needed
7	Obtain approval for execution of either action plan from the Team Leader
8	Execute approved procedure to resolve situation (may require the participation of well control specialists to assist)
9	Review outcome of procedure with the Team Leader

Level 3 Well Control Incidents

Characteristics

- DefinitionA Level 3 emergency denotes a total loss of well control with no opportunity to
restore it using all the resources available on-site.
- Action Required Level 3 Incidents require the declaration of a Major Emergency and the activation of a fully-functional Incident Command System to effectively deal with the situation.

Discussion A Level 3 Incident is, quite simply, a blowout. These incidents are equivalent to Category 2 or Category 3 Emergencies, depending on the severity and circumstances involved in the blowout. The Well Control Organization must be activated upon determining that the well is out of control and measures must immediately be taken to protect people, the environment and material assets in that order.

> These emergencies, although serious at the outset, have the potential to escalate further during control procedures. Such escalation may cause serious structural damage or total loss of the rig, BOP stack and wellhead due to explosion, fire, or cratering. Other nearby wells may also be damaged due to underground crossflow and erosion caused by the blow-out. This could result in multiple, simultaneous well control problems on several wells. Clearly, prompt decisive action is needed to avoid this situation.

ł

ł

.

ł

ł

ł

The response to a Level 3 Incident can be divided into stages for clarity. Different activities, personnel, equipment and safety issues exist at each stage. These are discussed more fully below:

- Phase 1: InitialPhase 1 is the initial reaction to the well control emergency. It commences at
the outset of the Level 3 Incident when it is clear that control is lost and cannot
be regained. Actions such as evacuation, exclusion zone establishment and site
isolation occur during this stage. Preliminary work to provide water for fire
fighting and setting on-scene command facilities at the site are included. It ends
when well control intervention operations site begin including fire
extinguishment operations.
- Phase 2: WellPhase 2 is the on-site operations phase of the well control emergency. Thiscontrolphase begins when actual well control actions are initiated at the site usingoperationssurface intervention techniques. It ends when the well has been brought under
control by any means. This phase is concluded when the Incident Commander
officially declares the emergency resolved, and well salvage and recovery
operations begin.

Phase 3: Relief	Phase 3 is the relief well planning and drilling phase of the well control
well planning	emergency. It begins when the Incident Commander approves a relief well as
and drilling	part of the well control project. It ends when the blow-out well is intersected
-	and killed by pumping through the relief well or when the well is brought under
	control using surface intervention techniques and the Incident Commander
	declares the emergency resolved. Note that Phase 2 and Phase 3 operations
	can occur simultaneously depending on the circumstances of the blowout
	event.

Phase 4: WellPhase 4 is the recovery phase of operations on the now dead blow-out well.recoveryThis phase begins when the well or blow-out is brought under control. It endsoperationswhen normal drilling, workover or production operations resume or when wellis plugged and abandoned.

Phase 5: Post-Phase 5 involves evaluation of the incident following resolution of theincidentemergency situation. This phase begins at or near the conclusion of wellevaluationrecovery operations. It ends with the submission of the final incident report toCL&F Operating LLC management.

ł

Examples

Drilling-related Incidents	 Underground flow with BOP stack closed and gas, oil or water broaches to the surface
	 Uncontrolled flow to surface through drillpipe with no means of shutting off the flow
	 Gas or oil comes to surface through the drillpipe x casing annulus and the BOP cannot control the flow
	 Uncontrolled flow from BOP stack with drill string out of the hole and unable to close blind rams
	Drilling rig on fire due to blowout
	 Surface failure of choke line, kill line or choke manifold and well cannot be shut-in

Workover-related Incidents	Loss of BOP function
	 Uncontrolled flow to surface through tubing with no means of shutting off flow
	 Gas or oil comes to surface through casing x tubing annulus and stack does not shut off flow
	 Uncontrolled flow from BOP stack with no tubing in the hole and unable to close blind rams
	Completion rig on fire due to blowout
	 Failure of existing wellhead component with no way to stop the flow Collision, irreparable damage to wellhead and leak during rig move in or move out
Production-	Collision between vehicle and wellhead resulting in major leak
related Incidents	Wellhead/tree on fire with no way to shut off flow
	 Mechanical failure of master valve, wing valve or flowline with no means to stop the flow
Simultaneous operations	 Falling object from rig damages wellhead or flowline resulting in catastrophic leak
Incidents	 Gas cloud from major leak prevents access to wellhead or tree to shut-in well

į

4

ł

i

•

i

;

Response Actions

Responsible Rig Supervisor party

Process overview The following table provides an overview of the actions required by the Rig Supervisor or Sr. CL&F Operating LLC employee during a Level 3 well control incident:

Step	Action
1	Evaluate situation and determine that well control is lost with no
	means to restore control

	
2	Order all personnel at the site to a designated Safe Area
3	Account for all personnel on the site. If all personnel cannot be accounted for, organize a Search and Rescue Party and attempt to locate all personnel if it is safe for them to do so
4	Determine injuries, if any, and provide first aid. Assess the need for air ambulance evacuation of injured persons. Assign personnel to mark the landing site for helicopter in the Safe Area
5	Notify the Team Leader about the situation and request declaration of a Major Emergency
6	Establish Exclusion Zone around site and mark zone boundary using available supplies and materials
7	Post a watch to secure the rig and prevent unauthorized persons from entering the Exclusion Zone
8	Notify and evacuate nearby rigs, homes, businesses or other facilities if they are affected by the blow-out plume
9	Down man the rig and move non-essential personnel away from the area. Note: Do not release the rig crew until they are interviewed regarding events leading up to the blowout incident.
10	Request that the local Fire Station provide equipment and personnel to contain the fire and protect nearby assets with water spray, if it is safe to do so.
	Note: Do not attempt to extinguish fire at rig; wait for well control specialists to enter the Exclusion Zone.
11	Complete Initial Status Report and fax to American Safety Services Inc. 432-363-0198
12	Remain on the site and coordinate support services needed for initial well control efforts; await the arrival of the Team Leader (On- Scene Commander)
13	Contain pollution/oil spill, if possible and if safe to do so
14	Monitor well conditions, keep a log recording all observations and report any changes to Team Leader (if not yet on-site) by radio and to CWC via fax or phone
15	Brief American Safety Services Inc First Responder upon arrival at the site; assist First Responder in determining if boundaries of Exclusion Zone should be moved
16	Remain on-site to assist with well control operations
L	· · · · · · · · · · · · · · · · · · ·

ł

i

1

ł

ł

1

. . .

•

ļ

Duties and Responsibilities, Rig Supervisor

Reports to:	On-Scene Commander
-------------	--------------------

Team Authority	Job Title
Team Member	Rig Supervisor (Company Man)

1

ł

1

P	re-S	เทม	Ч
г	16-3	pu	u

Daily duties on location include:

- Conducts safety meetings
- Designates two Safe Areas (Muster Areas) for emergencies
- Maintains census of all personnel on site
- Reviews his duties and the Initial Response Checklist

Maintains supply of Communications Record at the wellsite

Maintains a current copy of **CL&F Operating LLC** General Emergency Procedure at the site and in toolpusher's quarters

Responsibility

Provides training to rig personnel on required response steps in each type of incident including mustering at designated Safe Areas and evacuation, if required. Periodically runs Search and Rescue exercises to ensure team readiness.

Level 1	Responsibility
Well control incident	Determines that the incident is a Level 1 incident; responds quickly to the situation before it can escalate to a more serious level:
	Obtains data necessary for response
	Prepares a procedure for dealing with the incident
	Follows standard operating procedures to deal with the situation
	Notifies the Team Leader about the incident and steps taken to resolve it
	F
Level 2	Responsibility
Well control incident	Determines that the situation is a Level 2 incident and defines the complication involved; responds to the situation to keep it from escalating to a more serious incident level:
	• Determines the best way to remove the complication, thus lowering the incident to Level 1

• Contacts the Team Leader, Sr. Drilling Engineer and possibly American Safety Services Inc for consultation about the problem

÷

ţ

÷

.

ł

ŧ

- Prepares a procedure to remove the complication, lower the severity level and deal with the incident using SOPs; alternatively, jointly prepares a procedure to deal with the situation without removing the complication
- Reviews procedure with Team Leader and obtains approval to proceed
- Advises Team Leader of the outcome

Level 3	Responsibility
Well control incident	Determines that the situation constitutes a complete loss of well control that cannot be regained using assets on-site
Level 3	Responsibility
Phase 1: Initial Response	Executes steps outlined in the <i>Initial Response Checklist</i> to deal quickly and decisively with the situation at the wellsite; maintains records of all contacts and communications using the <i>Communications Record</i> , if possible
	With the assistance of the Toolpusher:
	Musters all personnel on the rig to one of the designated Safe Areas
	 Accounts for all personnel at each Safe Area by comparing personnel at the muster point to the current on-site personnel census
	 Determines the extent of any injuries, provides emergency first aid treatment and assesses the need for air evacuation of injured persons on an emergency basis
	 Locates a safe landing zone for emergency aircraft to evacuate injured personnel, if required, and marks it for med-evac helicopter
	 Notifies Team Leader about situation and recommends classification of event as Level 3 Incident; provides initial report on event and current activities
	 Notifies nearby rigs, facilities, residences, businesses and other persons that could be at risk from the blow-out
	 Once site is evacuated, establishes Exclusion Zone around the well/rig, marks with on-hand materials and posts a watch to keep everyone out of the Exclusion Zone
	<u>NOTE</u> : Do not re-enter the Exclusion Zone for any reason until well control specialists arrive to assist.
	 Meets with local security personnel and requests they secure and restrict access to the blow-out site
	 Requests assistance to evacuate nearby rigs, facilities, residences and businesses that may be affected by the blow-out

Level 3 Phase 2: Well control	 If site evacuation is not required, contains the fire and protect assets by eliminating possible ignition sources and using a protective water spray by local fire department, if available Note: Do not attempt to extinguish the fire. Completes <i>Initial Status Report</i> and faxes to:
	the American Safety Services Inc Team Leader
Level 3	Responsibility
Level 3 Phase 3 Relief well	
Phase 3	Responsibility Assists in well control planning, as needed, from his/her knowledge of the local
Phase 3	Responsibility Assists in well control planning, as needed, from his/her knowledge of the local area Visually surveys prospective relief well sites and roads for obstructions such as high lines, pipelines, unsatisfactory topography and other problems; provides
Phase 3	Responsibility Assists in well control planning, as needed, from his/her knowledge of the local area Visually surveys prospective relief well sites and roads for obstructions such as high lines, pipelines, unsatisfactory topography and other problems; provides details on each site to the Relief Well Design Team Provides information to the Rig Supervisor on the relief well rig and others supporting relief well drilling operations regarding local drilling conditions and any
Phase 3	ResponsibilityAssists in well control planning, as needed, from his/her knowledge of the local areaVisually surveys prospective relief well sites and roads for obstructions such as high lines, pipelines, unsatisfactory topography and other problems; provides details on each site to the Relief Well Design TeamProvides information to the Rig Supervisor on the relief well rig and others supporting relief well drilling operations regarding local drilling conditions and any expected problems while drilling relief well and making intercept
Phase 3 Relief well	Responsibility Assists in well control planning, as needed, from his/her knowledge of the local area Visually surveys prospective relief well sites and roads for obstructions such as high lines, pipelines, unsatisfactory topography and other problems; provides details on each site to the Relief Well Design Team Provides information to the Rig Supervisor on the relief well rig and others supporting relief well drilling operations regarding local drilling conditions and any expected problems while drilling relief well and making intercept Assists On-Scene Commander to co-ordinate activities during relief well drilling

1 . . .

|

i i

.

.

Supervises well recovery work on the blow-out well if feasible, or abandonment if not

Level 3	Responsibility
Phase 5:	Assists On-Scene Commander in preparing post-incident report and evaluation
Post-incident	from field standpoint; includes his summary of events leading up to the incident
evaluation	and review of initial response efforts

Initial Risk Assessment

The Rig Supervisor will be the first to assess risks and determine the boundaries of the Exclusion Zone. The Exclusion Zone determines the minimum safe distance away from the blown-out well. It is based primarily on the concentration of combustible gas and/or toxic gas in the atmosphere. In general, the Exclusion Zone should be positioned according to the following:

Hazard	Maximum Limit	
Combustible gas	10% of LEL*	
Hydrogen Sulfide	10 ppm	
Flammable liquid	10 bbls	
Noise	85 dB	

*Lower Explosive Limit

Other hazards such as proximity to vehicular traffic, sources of ignition, threats to production facilities and other risks must be evaluated and steps taken to ensure that the Exclusion Zone boundary is set far enough away from the blow-out site to reduce risks to all personnel to an acceptable level.

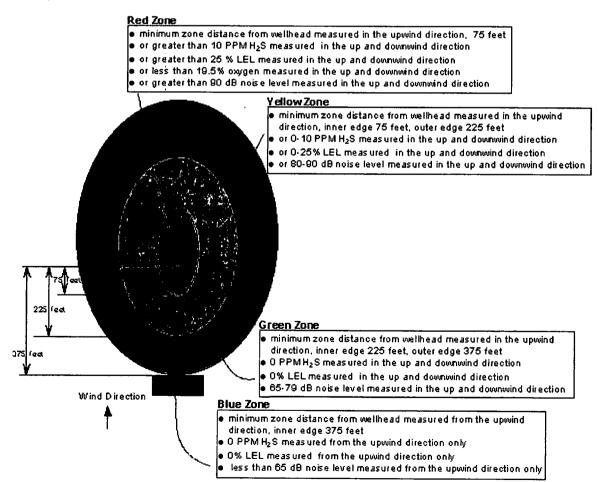
Once the Exclusion Zone Boundaries are set, no person should enter the area without special training, equipment and companion personnel. Often in such situations, persons not familiar with the potential of sudden catastrophic failures inside the Exclusion Zone venture too close to the blow-out in search of fellow workers, valuables left behind during the evacuation or curiosity. Sometimes, these mistaken few become victims if a failure, such as a spontaneous ignition of the plume, occurs while they are inside the Exclusion Zone.

Boundaries of the Exclusion Zone are not firm, and may need to be moved from time to time depending on several conditions such as:

- Flowrate from the well (increasing or decreasing)
- Zone of flow (increased H₂S concentration in the plume)
- Changes in atmospheric conditions (reduced air temperature, wind velocity, wind direction, atmospheric inversion, etc.)
- Hydrocarbon runoff with collection offsite
- Ignition of the plume
- Self-extinguishment of a fire
- Changes in boundary threshold limits

Risk management in the early stages of a blowout is accomplished primarily by prohibiting access to the site. Separation of potential victims from potential hazards is a very effective method of mitigating risks. In the case of Exclusion Zone boundary establishment, personnel are simply kept away from all hazards.

Situation Awareness


This is an area of human factors involving perceptions of people involved in high stress situations. Basically, it is the assessment of the person's concepts and thought processes when multiple data inputs are involved in an emergency. The best example of this area of study involves jet fighter pilots in combat situations.

In high stress situations the human mind can go into sensory overload easily. Alarms are sounding, warning lights are flashing, and there is normally panic, shouting, and rapid movements. All of these render many persons incapable of determining what information is valid and should be honored, and what inputs are redundant or meaningless and should be ignored.

Work zones have been established to control access to areas in which well control specialists and certain support personnel can function safely. Others that do not fully understand the risks involved are simply not allowed to enter these areas. This has been successful in limiting exposure and consequential injuries to those people with poorly developed situation awareness during well control operations.

÷

Example of Work Zones

Appendix

Appendix A	Initial Response Checklist
Appendix B	Initial Status Report
Appendix C	Communications Record

Appendix A

Initial Response Checklist

Has pressure containment and flow control been completely lost and cannot Yes

] No 🗌

ŝ

.

ŧ

!

1

be regained?	·····	
<u></u>		L

If "yes" this is a Level 3 Well Control Incident

Date: Time:		Well Name & No.:		
Drilling Contractor:		Rig Number:		
CL&F Operating LLC DRL Supervisor:		CL&F Operating LLC Sr. Supervisor:		

ACTIONS (Check off as performed)

Evacuate all personnel to designated muster area
Check names at muster area against Check-In Sheet; account for all personnel
If all personnel are not at muster area, determine how many personnel are missing, where
they were last seen and visually check the area, if possible, to see if they are safe
Activate Search and Rescue Team to recover missing personnel, if required
Provide emergency first aid for any injuries
Determine if emergency medical services and ambulance transport are needed; locate landing
site for med-evac helicopter and mark site
Notify nearby rigs or production facilities about potential danger from blow-out
Notify Team Leader about incident; recommend Major Emergency declaration
Establish "Exclusion Zone" around location and mark with available supplies
Secure the area and do not let unauthorized persons inside Exclusion Zone
Contain pollution, if possible
Remain on site pending arrival of Team Leader
Monitor well conditions and report any changes to Team Leader
Brief First Responder upon arrival at location
Assist with well control operations, as needed

*Do not re-enter the Exclusion Zone unless absolutely necessary until qualified help arrives

**If well is on fire, do not attempt to put the fire out; if well is not on fire, try to keep it from catching on fire

	1
- +	

Act quickly and decisively	Wait on instructions		
Evacuate the rig or wellsite, if necessary	Hang around the rig		
Wait in the Muster Area	Leave the well site		
Answer questions asked by	Talk to the press or the public without clearance;		
CL&F Operating LLC Team Leader and well control specialist truthfully	don't speculate about the cause of the incident; don't exaggerate		
	Be a hero		

Appendix B

Initial Status Report

Preliminary	Information:
-------------	--------------

Operator: Rig: Rig Phone: Office Phone:				Well Nam Company Cell Phon Office FA)	e:	
Directions to site:				Unice FA	A:	
Directions to site:		<u>.</u>				
				<u> </u>		
	_					
Blow-out Information:						
Time of blow-out:				Well on	n fire?	
Operation at time of blo	w-ou	it:		•		······································
Point of Escape:				Est. Flo	wrate:	
Type of Fluid:				Н	I2S? Yes No	CO ₂ ? Yes No
Height of plume before	it igni	ites?		ft	Total Height of flame:	ft
Mud Weight:	ppg	MD:	ft	TVD:	ft Last shoe test:	EMW @ depth
Rig Condition:						
BOP Condition:					Closing Unit OK?	· · · · · · · · · · · · · · · · · · ·
Condition of drill string:					TIW valve installed?	Yes 🗌 No 🗌
	-					
Response:						
Personnel Evacuated?	-	Yes	No 🗌	Numbe	r Missing:	
Exclusion Zone set up?	-	Yes 🗌	No 🗌	Injuries	?	·
Nearby rigs notified?	-	Yes	No 🗌	Air Amb	oulance needed/called?	Yes 🚺 No 🗌
Location Secured?	-	Yes	No 🗌	Regulat	ory Agencies notified?	Yes No
Residents evacuated?	-	Yes	No 🗌	Pollutio	in contained?	Yes No

Drawing of Location:

.

.

Appendix C

Communications Record

Phone Transactions / Time Schedule / Contact Verification

Time	Description of Action	Contact

1	
1	
	· · · · · · · · · · · · · · · · · · ·
L	
1	
1	
	•••
1	
1	
1	
· · · · · ·	
1	
1	
	1
	1
	· ·
L	
1	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

.

• • • •

1

,

ì

÷

Hydrogen Sulfide (H2S) Properties and Effects

H2S is an **Extremely Toxic**, Flammable, Explosive and Corrosive Gas. It is heavier than air, paralyses you of smell. Causes breathing to stop and death will result.

At low concentration H2S has the odor of rotten eggs. The smell is very offensive. At slightly high concentration H2S will cause sense of smell to disappear and you are slowly poisoning yourself. At even slightly higher concentrations DEATH will result.

Properties of Hydrogen Sulfide (H2S)

Extremely deadly toxic gas

Colorless

Heavier than air

Burns with a blue flame Produces Sulphur Dioxide (SO2) when burned (another toxic gas) Highly corrosive Irritant skin and eyes Soluble in water and other liquids Extremely flammable and explosive.

Hydrogen Sulfide (H2S) Toxicity Chart

1.1

٠

.

Concentrations	Effects
Less than 1 PPM	Odor
1-PPM	May cause stress or health symptoms in sensitive people
10-PPM	Permissible Exposure Limit (PEL) Allowed 8 hours exposure without breathing apparatus.
15-PPM	Short Term Exposure Limit (STEL) 15-minute exposure 4 times a day allowed without breathing apparatus.
100-PPM	Immediately Dangerous to Life and Health (IDLH) No exposure allowed without breathing apparatus.
150 – 250 PPM	Loss of smell will result within a few minutes, burning of eyes, throat and coughing.
500-PPM	Destroys sense of reasoning and balance, ceases respiratory function within minutes and death will result.

200-PPM	Unconscious quickly, followed by loss of lung function, heart failure and death if not rescued and treated.
1000-PPM	Immediate loss of bodily functions including the lungs. Heart will arrest, DEATH within minutes if not rescued immediately and treated.

t

t.

÷

÷

÷

t

ł

1

10,000 PPM is 1 %

Sulphur Dioxide (SO2) Toxicity Chart

<u>Concentration</u>	<u>Effects</u>
1-PPM	Odor
2-PPM	Permissible Exposure Limit (PEL) Safe for 8 hours without breathing apparatus
5-PPM	Short Term Exposure Limit (STEL) Safe for 15 Minutes – four time a day without breathing apparatus.
12-PPM	Burning of eyes, breathing irritation. Causes damage to the wall lining of the lungs.
100-PPM	Immediately Dangerous to Life and Health (IDLH) Causes serious decaying of skin tissue of respiratory system.
150-PPM	Extreme irritation, tolerated only for a few minutes.

Sense of suffocation with first breath requires medical aid.

Death will result unless rescued and medical aid is provided.

ł

ł

÷

:

;

1

SO2 is known to be a cancer-causing agent.

H2S Emergency Levels:

	Level I	Level II	Levei III
	Low Impact	Significant Impact	Major Impact
	Unconfirmed	Potential	Hazard to People
Drilling	Problems During Drilling in a sour gas zone and the well has significant losses or gas-cut mud or kick	Equipment malfunction while circulating a kick or unable to maintain circulating volumes	Uncontrolled flow of sour gas (ignited or unignited) from the wellbore
Testing	Sour gas zone is open and an event occurs that has the potential to lead to a well control problem (leak at surface setup) Limited release.	An equipment malfunction restricts the ability to manage any level I emergency.	Uncontrollable flow of sour gas (ignited or unignited) from the wellbore.

Rig Crew Emergency Action

Position	Report to	Duties		
Rig Manager	Drilling Supervisor	Activate the H2S Alarm. Supervise evacuation to Safe Briefing Area. Return to Drill Floor and Account for Essential personnel. Report to CO MAN for further Instructions.		

1000-PPM

500-PPM

Driller on Duty	Rig Manager	Prepare to Secure Well. Check Drill Crew personnel for H2S Safety Equipment Readiness. In Case of Emergency Remove Non- Essential Personnel from Rig Floor
Drill Crew	Driller	Check their H2S Breathing Equipment for Readiness and Follow Instruction of the Driller.
H2S Safety Supervisor	Report to Rig Floor	Ensure that all Personnel are Using Required Breathing Apparatus. Report to CO MAN Monitor all Operations and Monitor all Personnel Under Air.
Service Company Personnel Visitors	Safe Briefing Area	Report to Safe Area and Await Further Instructions.
All Non Essential Personnel	Safe Briefing Area	Await further Instructions
	· · · · · · · · · · · · · · · · · · ·	

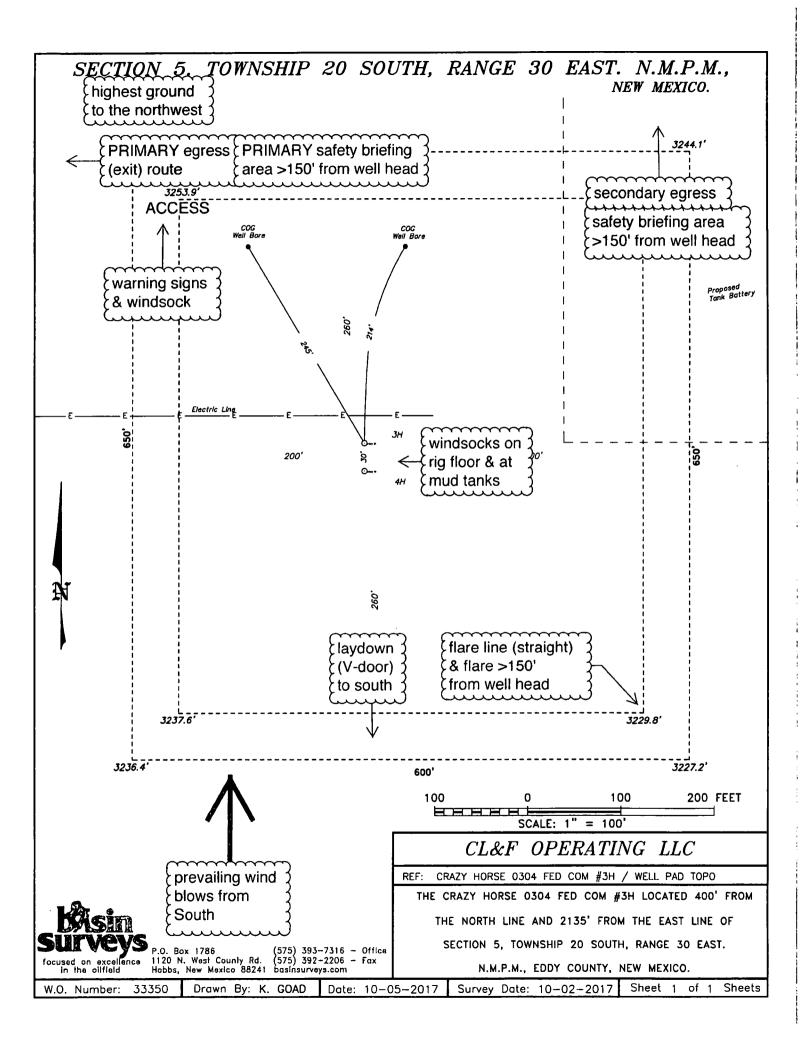
:

• • • • • • •

.

:

:

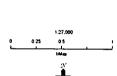

.

•

. . .

:

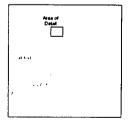
:



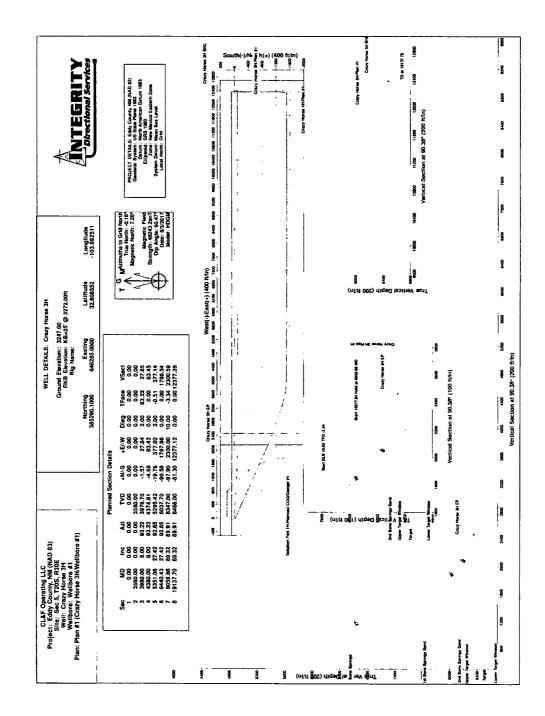
CL & F Operating

Crazy Horse Fed Com #3H H₂S Contingency Plan: 2 Mile Radius Map

Section 5. Township 20S, Range 30E Eddy County, New Mexico


O Surface Hole Location

i


NAD 1983 New Mexico State Plane East FIPS 3001 Feet

-cu stata. w

Survey Report

ł.

ł

:

,

Site: S Well: C Wellbore: W	L&F Operating ddy County, NM ec 5, T20S, R30 razy Horse 3H Vellbore #1 lan #1	1 (NAD 83)		TVD Refe MD Refe North Re	rence: Iference: Calculation M		Well Crazy He KB=25' @ 32' KB=25' @ 32' Grid Minimum Cur EDM 5000.1 1	72.00ft 72.00ft vature	
Project	Eddy County	, NM (NAD 8	33)						
Map System: Geo Datum: Map Zone:	US State Plar North America New Mexico E	in Datum 19		System	n Datum:		Mean Sea Le	vel	
Site	Sec 5, T20S	, R30E							
Site Position: From: Position Uncertai	Map inty:	0.00 ft	Northing: Easting: Slot Radius:	-	300.2000 usft 334.9000 usft 13-3/16 "	Longitud			32.608579 -103.992349 0.18 °
Well	Crazy Horse	зн		<u> </u>			<u></u>	<u></u>	
Well Position	+N/-S +E/-W	0.00 ft 0.00 ft	Northing: Easting:		585,290.10 646,285.00		Latitude: Longitude:		32.608552 -103.992511
Position Uncertai	inty	0.00 ft	Wellhead El	levation:	0.	00 ft	Ground Leve	l:	3,247.00 ft
Wellbore	Wellbore #1	-	<u>.</u>						,
Magnetics	Model Na	ime	Sample Date	·	ination (°)	Di	p Angle (°)	Field	f Strength (nT)
	I	HDGM	8/3/2017		7.47		60.4	7	48,243
Design	Plan #1								· · · · · · · · · · · · · · · · · · ·
Audit Notes: Version:		Death 5	Phase:	PLAN		Tie On Dept		Discotion	0.00
Audit Notes:			Phase: From (TVD) (ft) 0.00	+N/-S (ft)		Tie On Dept +E/-W (ft) 0.00		Direction (°)	0.00
Audit Notes: Version: Vertical Section:			rom (TVD) (ft) 0.00	+N/-S (ft)	;	+E/-W (ft)		(°)	
Audit Notes: Version:			rom (TVD) (ft) 0.00	+N/-S (ft)	;	+E/-W (ft)		(°)	
Audit Notes: Version: Vertical Section: Survey Tool Prog	jram To (ft)) 19,137.70	Date 10/1 Survey (Wel Plan #1 (Wel	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1)	+N/-S (ft) 0.	;	+E/-W (ft)	Description MWD - Stand	(°) 	
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft)	jram To (ft)) 19,137.70	Date 10/1 Survey (Wel	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1)	+N/-S (ft) 0.	00 Tool Name	+E/-W (ft)	Description	(°) 	
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00	jram To (ft)) 19,137.70	Date 10/1 Survey (Wel Plan #1 (Wel	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1)	+N/-S (ft) 0.	00 Tool Name	+E/-W (ft)	Description MWD - Stand	(°) 	
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft) 0.00	Jram To (ft) 19,137.70 Inclination (°) 0.00	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°) 0.00	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00	+N/-S	00 Tool Name MWD +E/-W	+E/-W (ft) 0.00 Vertical Section	Description MWD - Stand Dogleg Rate	(°) Sard Build Rate	90.38 Turn Rate
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft)	Jram To (ft) 19,137.70 Inclination (°) 0.00 0.00 0.00	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°)	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00 100.00	+N/-S (ft) 0. +N/-S (ft) 0.00 0.00 0.00 0.00	5 .00 Tool Name MWD +E/-W (ft) 0.00	+E/-W (ft) 0.00 Vertical Section (ft) 0.00	Description MWD - Stand Rate (°/100usft) 0.00 0.00 0.00	(°) Suild Rate (°/100usft) 0.00 0.00 0.00	0.38 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft) 0.00 100.00 200.00 300.00	Jram To (ft) 19,137.70 Inclination (°) 0 0.00 0 0.00 0 0.00	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°) 0.00 0.00 0.00 0.00 0.00	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+N/-S (ft) 0. +N/-S (ft) 0.00 0.00	5 .00 Tool Name MWD +E/-W (ft) 0.00 0.00	+E/-W (ft) 0.00 Vertical Section (ft) 0.00 0.00 0.00 0.00	Description MWD - Stand Rate (°/100usft) 0.00 0.00 0.00 0.00	(°) Sard Build Rate (°/100usft) 0.00 0.00	90.38 Turn Rate (°/100usft) 0.00 0.00
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft) 0.00 100.00 200.00 300.00 400.00	ram To (ft) 19,137.70 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°) 0.00 0.00 0.00 0.00 0.00	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00 100.00 0.	+N/-S (ft) 0. +N/-S (ft) 0.00 0.00 0.00 0.00 0.00 0.00	5 .00 Tool Name MVVD +E/-W (ft) 0.00 0.00 0.00 0.00 0.00	+E/-W (ft) 0.00 Vertical Section (ft) 0.00 0.00 0.00 0.00 0.00	Description MWD - Stand Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00	(°) Suild Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00	0.38 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft) 0.00 100.00 200.00 300.00 400.00	ram To (ft) 19,137.70 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00 100.00 0.00 100.00 0.00	+N/-S (ft) 0. +N/-S (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5 .00 Tool Name MWD +E/-W (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+E/-W (ft) 0.00 Vertical Section (ft) 0.00 0.00 0.00 0.00 0.00 0.00	Description MWD - Stand Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	(°) Suild Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	0.38 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft) 0.00 100.00 200.00 300.00 400.00 500.00 600.00	ram To (ft) 19,137.70 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00 100.00 0.00 100.00 0.00	+N/-S (ft) 0. +N/-S (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	5 .00 Tool Name MWD +E/-W (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+E/-W (ft) 0.00 Vertical Section (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Description MWD - Stand Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(°) Suild Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.38 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
Audit Notes: Version: Vertical Section: Survey Tool Prog From (ft) 0.00 Planned Survey Measured Depth (ft) 0.00 100.00 200.00 300.00 400.00	ram To (ft) 19,137.70 Inclination (°) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Date 10/1 Survey (Wel Plan #1 (Wel Azimuth (°) 0.00 0.00 0.00 0.00 0.00 0.00	From (TVD) (ft) 0.00 1/2017 Ibore) Ibore #1) Vertical Depth (ft) 0.00 100.00 200.00 0.00	+N/-S (ft) 0. +N/-S (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5 .00 Tool Name MWD +E/-W (ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	+E/-W (ft) 0.00 Vertical Section (ft) 0.00 0.00 0.00 0.00 0.00 0.00	Description MWD - Stand Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	(°) Suild Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	0.38 Turn Rate (°/100usft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Survey Report

Company:	CL&F Operating LLC	Local Co-ordinate Reference:	Well Crazy Horse 3H
Project:	Eddy County, NM (NAD 83)	TVD Reference:	KB=25' @ 3272.00ft
Site:	Sec 5, T20S, R30E	MD Reference:	KB=25' @ 3272.00ft
Well:	Crazy Horse 3H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Pian #1	Database:	EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.0
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.0
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.0
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.00
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.00
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.0
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.00
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.00
3,200.00	0.00	0.00	3,200.00	0.00	0.00	. 0.00	0.00	0.00	0.00
3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.00
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.00
3,500.00	0.00	0.00	3,500.00	0.00	. 0.00	0.00	0.00	0.00	0.00
3,580.00	0.00	0.00	3,580.00	0.00	0.00	0.00	0.00	0.00	0.00
Start Build									
3,600.00	0.40	93.22	3,600.00	0.00	0.07	0.07	2.00	2.00	0.00
3,700.00	2.40	93.22	3,699.96	-0.14	2.51	2.51	2.00	2.00	0.00
3,800.00	4.40	93.22	3,799.78	-0.47	8.43	8.43	2.00	2.00	0.00
3,900.00	6.40	93.22	3,899.34	-1.00	17.83	17.83	2.00	2.00	0.00
3,980.00	8.00	93.22	3,978.70	-1.57	27.84	27.85	2.00	2.00	0.00
	0 hold at 3980								
4,000.00	8.00	93.22	3,998.51	-1.72	30.61	30.63	0.00	0.00	0.00
4,100.00	8.00	93.22	4,097.53	-2.50	44.51	44.53	0.00	0.00	0.00
4,200.00	8.00	93.22	4,196.56	-3.29	58.41	58.43	0.00	0.00	0.00
4,300.00	8.00	93.22	4,295.59	-4.07	72.30	72.33	0.00	0.00	0.00
4,380.00	8.00	93.22	4,374.81	-4.69	83.42	83.45	0.00	0.00	0.00
	2.00 TFO -0.51								
4,400.00	8.40	93.20	4,394.60	-4.85	86.27	86.30	2.00	2.00	-0.12
4,500.00	10.40	93.10	4,493.26	-5.75	102.57	102.61	2.00	2.00	-0.09
4,600.00	12.40	93.04	4,591.28	-6.81	122.31	122.35	2.00	2.00	-0.06
4,700.00	14.40	92.99	4,688.55	-8.02	145.45	145.50	2.00	2.00	-0.05

Survey Report

ł

ł

1

1

1

ţ

t

1

Company:CL&F Operating LLCLocal Co-oProject:Eddy County, NM (NAD 83)TVD RefereSite:Sec 5, T20S, R30EMD RefereWell:Crazy Horse 3HNorth RefereWellbore:Wellbore #1Survey CalDesign:Plan #1Database:

Local Co-ordinate Reference:Well Crazy Horse 3HTVD Reference:KB=25'@ 3272.00ftMD Reference:KB=25'@ 3272.00ftNorth Reference:GridSurvey Calculation Method:Minimum CurvatureDatabase:EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth {°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,800.00	16.40	92.96	4,784.96	-9.40	171.97	172.03	2.00	2.00	-0.04
4,900.00	18.40	92.93	4,880.38	-10.94	201.83	201.90	2.00	2.00	-0.03
5,000.00	20.40	92.91	4,974.69	-12.63	235.00	235.08	2.00	2.00	-0.02
5,100.00	22.40	92.89	5,067 79	-14.47	271.44	271.53	2.00	2.00	-0.02
5,200.00	24.40	92.87	5,159.57	-16.47	311.10	311.20	2.00	2.00	-0.02
5,300.00	26.40	92.86	5,249.89	-18.61	353.94	354.05	2.00	2.00	-0.01
5,351.06	27.42	92.85	5,295.42	-19.76	377.02	377.14	2.00	2.00	-0.01
Start 3089	.38 hold at 535	51.06 MD							
5,400.00	27.42	92.85	5,338.87	-20.89	399.53	399.66	0.00	0.00	0.00
5,500.00	27.42	92.85	5,427.63	-23.18	445.53	445.67	0.00	0.00	0.00
5,600.00	27.42	92.85	5,516.40	-25.47	491.52	491.68	0.00	0.00	0.00
5,700.00	27.42	92.85	5,605.16	-27.76	537.52	537.69	0.00	0.00	0.00
5,800.00	27.42	92.85	5,693.93	-30.05	583.51	583.70	0.00	0.00	0.00
5,900.00	27.42	92.85	5,782.69	-32.35	629.51	629.71	0.00	0.00	0.00
6,000.00	27.42	92.85	5,871.45	-34.64	675.50	675.72	0.00	0.00	0.00
6,100.00	27.42	92.85	5,960.22	-36.93	721.50	721.72	0.00	0.00	0.00
6,200.00	27.42	92.85	6,048.98	-39.22	767.49	767.73	0.00	0.00	0.00
6,300.00	27.42	92.85	6,137.75	-41.52	813.49	813.74	0.00	0.00	0.00
6,400.00	27.42	92.85	6.226.51	-43.81	859.48	859.75	0.00	0.00	0.00
6,500.00	27.42	92.85	6,315.28	-46.10	905.48	905.76	0.00	0.00	0.00
6,600.00	27.42	92.85	6,404.04	-48.39	951.47	951.77	0.00	0.00	0.00
6,700.00	27.42	92.85	6,492.81	-50.69	997.47	997.78	0.00	0.00	0.00
6,800.00	27.42	92.85	6,581.57	-52.98	1,043.46	1,043.79	0.00	0.00	0.00
6,900.00	27.42	92.85	6,670.34	-55.27	1,089.46	1,089.80	0.00	0.00	0.00
7,000.00	27.42	92.85	6,759.10	-57.56	1,135.45	1,135.81	0.00	0.00	0.00
7,100.00	27.42	92.85	6,847.87	-5 9 .86	1,181.45	1,181.82	0.00	0.00	0.00
7,200.00	27.42	92.85	6,936.63	-62.15	1,227.44	1,227.83	0.00	0.00	0.00
7,300.00	27.42	92.85	7,025.40	-64.44	1,273.44	1,273.84	0.00	0.00	0.00
7,400.00	27.42	92.85	7,114.16	-66.73	1,319.43	1,319.84	0.00	0.00	0.00
7,500.00	27.42	92.85	7,202.93	-69.03	1,365.43	1,365.85	0.00	0.00	0.00
7,600.00	27.42	92.85	7,291.69	-71.32	1,411.43	1,411.86	0.00	0.00	0.00
7,700.00	27.42	92.85	7,380.46	-73.61	1,457.42	1,457.87	0.00	0.00	0.00
7,800.00	27.42	92.85	7,469.22	-75.90	1,503.42	1,503.88	0.00	0.00	0.00
7,900.00	27.42	92.85	7,557.99	-78.19	1,549.41	1,549.89	0.00	0.00	0.00
8,000.00	27.42	92.85	7,646.75	-80.49	1,595.41	1,595.90	0.00	0.00	0.00
8,100.00	27.42	92.85	7,735.52	-82.78	1,641.40	1,641.91	0.00	0.00	0.00
8,200.00	27.42	92.85	7,824.28	-85.07	1,687.40	1,687.92	0.00	0.00	0.00
8,300.00	27.42	92.85	7,913.05	-87.36	1,733.39	1,733.93	0.00	0.00	0.00
8,400.00	27.42	92.85	8,001.81	-89.66	1,779.39	1,779.94	0.00	0.00	0.00
8,440.43	27.42	92.85	8,037.70	-90.58	1,797.98	1,798.54	0.00	0.00	0.00
Start DLS	10.00 TFO -3.3	4							
8,500.00	33.37	92.22	8,089.06	-91.90	1,828.08	1,828.64	10.00	9.99	-1.06
8,600.00	43.36	91.52	8,167.37	-93.88	1,890.03	1,890.61	10.00	9.99	-0.71
8,700.00	53.35	91.03	8,233.73	-95.52	1,964.65	1,965.24	10.00	9.99	-0.48

Survey Report

ŧ t ł ł

ţ

ł

1 ı. I

Company:	CL&F Operating LLC
Project:	Eddy County, NM (NAD 83)
Site:	Sec 5, T20S, R30E
Well:	Crazy Horse 3H
Wellbore:	Wellbore #1
Design:	Plan #1

Local Co-ordinate Reference: Well Crazy Horse 3H TVD Reference: MD Reference: North Reference: Grid Survey Calculation Method: Database:

KB=25' @ 3272.00ft KB=25' @ 3272.00ft Minimum Curvature EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,800.00	63.35	90.66	8,286.14	-96.76	2,049.66	2,050.25	10.00	10.00	-0.37
8,900.00	73.34	90.35	8,322.99	-97.56	2,142.48	2,143.08	10.00	10.00	-0.31
9,000.00	83.34	90.07	8,343.17	-97.91	2,240.29	2,240.89	10.00	10.00	-0.28
9,059.86	89.32	89.91	8,347.00	-97.90	2,300.00	2,300.59	10.00	10.00	-0.27
Start 1007	7.84 hold at 90	59.86 MD							
9,100.00	89.32	89.91	8,347.47	-97.83	2,340.14	2,340.73	0.00	0.00	0.00
9,200.00	89.32	89.91	8,348.66	-97.67	2,440.13	2,440.72	0.00	0.00	0.00
9,224.95	89.32	89.91	8,348.95	-97.63	2,465.08	2,465.67	0.00	0.00	0.00
Crazy Hors	se 3H EP								
9,300.00	89.32	89.91	8,349.84	-97.50	2,540.13	2,540.71	0.00	0.00	0.00
9,400.00	89.32	89.91	8,351.02	-97.34	2,640.12	2,640.70	0.00	0.00	0.00
9,500.00	89.32	89.91	8,352.20	-97.18	2,740.11	2,740.69	0.00	0.00	0.00
9,600.00	89.32	89.91	8,353.38	-97.01	2,840.11	2,840.68	0.00	0.00	0.00
9,700.00	89.32	89.91	8,354.56	-96.85	2,940.10	2,940.67	0.00	0.00	0.00
9,800.00	89.32	89.91	8,355.74	-96.68	3,040.09	3,040.66	0.00	0.00	0.00
9,900.00	89.32	89.91	8,356.92	-96.52	3,140.08	3,140.65	0.00	0.00	0.00
10,000.00	89.32	89.91	8,358.10	-96.35	3,240.08	3,240.64	0.00	0.00	0.00
10,100.00	89.32	89.91	8,359.28	-96.19	3,340.07	3,340.63	0.00	0.00	0.00
10,200.00	89.32	89.91	8,360.46	-96.02	3,440.06	3,440.62	0.00	0.00	0.00
10,300.00	89.32	89.91	8,361.64	-95.86	3,540.06	3,540.61	0.00	0.00	0.00
10,400.00	89.32	89.91	8,362.82	-95.69	3,640.05	3,640.60	0.00	0.00	0.00
10,500.00	89.32	89.91	8,364.01	-95.53	3,740.04	3,740.59	0.00	0.00	0.00
10,600.00	89.32	89.91	8,365.19	-95.36	3,840.04	3,840.58	0.00	0.00	0.00
10,700.00	89.32	89.91	8,366.37	-95.20	3,940.03	3,940.57	0.00	0.00	0.00
10,800.00	89.32	89.91	8,367.55	-95.03	4,040.02	4,040.56	0.00	0.00	0.00
10,900.00	89.32	89.91	8,368.73	-94.87	4,140.01	4,140.55	0.00	0.00	0.00
11,000.00	89.32	89.91	8,369.91	-94.70	4,240.01	4,240.54	0.00	0.00	0.00
11,100.00	89.32	89.91	8,371.09	-94.54	4,340.00	4,340.53	0.00	0.00	0.00
11,200.00	89.32	89.91	8,372.27	-94.37	4,439.99	4,440.52	0.00	0.00	0.00
11,300.00	89.32	89.91	8,373.45	-94.21	4,539.99	4,540.51	0.00	0.00	0.00
11,400.00	89.32	89.91	8,374.63	-94.05	4,639.98	4,640.50	0.00	0.00	0.00
11,500.00	89.32	89.91	8,375.81	-93.88	4,739.97	4,740.49	0.00	0.00	0.00
11,600.00	89.32	89.91	8,376.99	-93.72	4,839.96	4,840.48	0.00	0.00	0.00
11,700.00	89.32	89.91	8,378.18	-93.55	4,939.96	4,940.46	0.00	0.00	0.00
11,800.00	89.32	89.91	8,379.36	-93.39	5,039.95	5,040.45	0.00	0.00	0.00
11,900.00	89.32	89.91	8,380.54	-93.22	5,139.94	5,140.44	0.00	0.00	0.00
12,000.00	89.32	89.91	8,381.72	-93.06	5,239.94	5,240.43	0.00	0.00	0.00
12,100.00	89.32	89.91	8,382.90	-92.89	5,339.93	5,340.42	0.00	0.00	0.00
12,200.00	89.32	89.91	8,384.08	-92.73	5,439.92	5,440.41	0.00	0.00	0.00
12,300.00	89.32	89.91	8,385.26	-92.56	5,539.91	5,540.40	0.00	0.00	0.00
12,400.00	89.32	89.91	8,386.44	-92.40	5,639.91	5,640.39	0.00	0.00	0.00
12,500.00	89.32	89.91	8,387.62	-9 2.23	5,739.90	5,740.38	0.00	0.00	0.00
12,600.00	89.32	89.91	8,388.80	-92.07	5,839.89	5,840.37	0.00	0.00	0.00
12,700.00	89.32	89.91	8,389.98	-91.90	5,939.89	5,940.36	0.00	0.00	0.00

Survey Report

ł

ŧ

1

ţ

Well Crazy Horse 3H Company: CL&F Operating LLC Local Co-ordinate Reference: KB=25' @ 3272.00ft Eddy County, NM (NAD 83) Project: TVD Reference: Sec 5, T20S, R30E KB=25' @ 3272.00ft Site: MD Reference: Crazy Horse 3H North Reference: Grid Well: Wellbore #1 Minimum Curvature Wellbore: **Survey Calculation Method:** Plan #1 Database: EDM 5000.1 Multi User Db Design:

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
12,800.00	89.32	89.91	8,391.16	-91.74	6.039.88	6,040.35	0.00	0.00	0.00
12,900.00	89.32	89.91	8,392.34	-91.57	6,139.87	6,140.34	0.00	0.00	0.00
13,000.00		89.91	8,393.53	-91.41	6,239.86	6,240.33	0.00	0.00	0.00
13,100.00		89.91	8,394.71	-91.25	6,339.86	6,340.32	0.00	0.00	0.00
13,200.00		89.91	8,395.89	-91.08	6,439.85	6,440.31	0.00	0.00	0.00
13,200.00	03.52	03.51	0,555.05	-51.00	0,455.05	0,440.31	0.00	0.00	0.00
13,300.00	89.32	89.91	8,397.07	-90.92	6,539.84	6,540.30	0.00	0.00	0.00
13,400.00	89.32	89.91	8,398.25	-90.75	6,639.84	6,640.29	0.00	0.00	0.00
13,500.00	89.32	89.91	8,399.43	-90.59	6,739.83	6,740.28	0.00	0.00	0.00
13,600.00		89.91	8,400.61	-90.42	6,839.82	6,840.27	0.00	0.00	0.00
13,700.00		89.91	8,401.79	-90.26	6,939.81	6,940.26	0.00	0.00	0.00
			-,			-,			
13,800.00		89.91	8,402.97	-90.09	7,039.81	7,040.25	0.00	0.00	0.00
13,900.00	89.32	89.91	8,404.15	-89.93	7,139.80	7,140.24	0.00	0.00	0.00
14,000.00	89.32	89.91	8.405.33	-89.76	7,239.79	7,240.23	0.00	0.00	0.00
14,100.00	89.32	89.91	8,406.51	-89.60	7,339.79	7,340.22	0.00	0.00	0.00
14,200.00	89.32	89.91	8,407.70	-89.43	7,439.78	7,440.21	0.00	0.00	0.00
14,300.00	89.32	89.91	8,408.88	-89.27	7,539.77	7,540.20	0.00	0.00	0.00
14,400.00		89.91	8,410.06	-89.10	7,639.77	7,640.19	0.00	0.00	0.00
14,400.00		89.91	8,411.24	-88.94	7,739.76	7,740.18	0.00	0.00	0.00
1 '						,			
14,600.00		89.91	8,412.42	-88.77	7,839.75	7,840.16	0.00	0.00	0.00
14,700.00	89.32	89.91	8,413.60	-88.61	7,939.74	7,940.15	0.00	0.00	0.00
14,800.00	89.32	89.91	8,414.78	-88.45	8,039.74	8,040.14	0.00	0.00	0.00
14,900.00	89.32	89.91	8,415.96	-88.28	8,139.73	8,140.13	0.00	0.00	0.00
15,000.00		89.91	8,417.14	-88.12	8,239.72	8,240.12	0.00	0.00	0.00
15,100.00		89.91	8,418.32	-87.95	8,339.72	8,340.11	0.00	0.00	0.00
15,200.00		89.91	8,419.50	-87.79	8,439.71	8,440.10	0.00	0.00	0.00
15,300.00		89.91	8,420.68	-87.62	8,539.70	8,540.09	0.00	0.00	0.00
15,400.00	89.32	89.91	8,421.87	-87.46	8,639.69	8,640.08	0.00	0.00	0.00
15,500.00	89.32	89.91	8,423.05	-87.29	8,739.69	8,740.07	0.00	0.00	0.00
15,600.00	89.32	89.91	8,424.23	-87.13	8,839.68	8,840.06	0.00	0.00	0.00
15,700.00	89.32	89.91	8,425.41	-86.96	8,939.67	8,940.05	0.00	0.00	0.00
15,800.00		89.91	8,426.59	-86.80	9,039.67	9,040.04	0.00	0.00	0.00
15,900.00		89.91	8,427.77	-86.63	9,139.66	9,140.03	0.00	0.00	0.00
16,000.00		89.91	8,428.95	-86.47	9,239.65	9,240.02	0.00	0.00	0.00
16,100.00	89.32	89.91	8,430.13	-86.30	9,339.64	9,340.01	0.00	0.00	0.00
16,200.00	89.32	89.91	8,431.31	-86.14	9,439.64	9,440.00	0.00	0.00	0.00
16,300.00	89.32	89.91	8,432.49	-85.97	9,539.63	9,539.99	0.00	0.00	0.00
16,400.00		89.91	8,433.67	-85.81	9,639.62	9,639.98	0.00	0.00	0.00
16,500.00		89.91		-85.64	9,739.62	9,739.97	0.00	0.00	0.00
16,600.00		89.91	8,436.03	-85.48	9,839.61	9,839.96	0.00	0.00	0.00
16,700.00	89.32	89.91	8,437.22	-85.32	9,939.60	9,939.95	0.00	0.00	0.00
16,800.00	89.32	89.91	8,438.40	-85.15	10,039.59	10.039.94	0.00	0.00	0.00
16,900.00		89.91	8,439.58	-84.99	10,139.59	10,139.93	0.00	0.00	0.00
17,000.00		89.91	8,440.76	-84.82	10,239.58	10,239.92	0.00	0.00	0.00
	00.02							0.00	

COMPASS 5000.1 Build 74

Survey Report

ŧ

Company:	CL&F Operating LLC	Local Co-ordinate Reference:	Well Crazy Horse 3H
Project:	Eddy County, NM (NAD 83)	TVD Reference:	KB=25' @ 3272.00ft
Site:	Sec 5, T20S, R30E	MD Reference:	·KB=25' @ 3272.00ft
Well:	Crazy Horse 3H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Plan #1	Database:	EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
17,100.00	89.32	89.91	8,441.94	-84.66	10,339.57	10,339.91	0.00	0.00	0.00
17,200.00	89.32	89.91	8,443.12	-84.49	10,439.57	10,439.90	0.00	0.00	0.00
17,300.00	89.32	89.91	8,444.30	-84.33	10,539.56	10,539.89	0.00	0.00	0.00
17,400.00	89.32	89.91	8,445.48	-84.16	10,639.55	10,639.88	0.00	0.00	0.00
17,500.00	89.32	89.91	8,446.66	-84.00	10,739.54	10,739.87	0.00	0.00	0.00
17,600.00	89.32	89.91	8,447.84	-83.83	10,839.54	10,839.85	0.00	0.00	0.00
17,700.00	89.32	89.91	8,449.02	-83.67	10,939.53	10,939.84	0.00	0.00	0.00
17,800.00	89.32	89.91	8,450.20	-83.50	11,039.52	11,039.83	0.00	0.00	0.00
17,900.00	89.32	89.91	8,451.39	-83.34	11,139.52	11,139.82	0.00	0.00	0.00
18,000.00	89.32	89.91	8,452.57	-83.17	11,239.51	11,239.81	0.00	0.00	0.00
18,100.00	89.32	89.91	8,453.75	-83.01	11,339.50	11,339.80	0.00	0.00	0.00
18,200.00	89.32	89.91	8,454.93	-82.84	11,439.50	11,439.79	0.00	0.00	0.00
18,300.00	89.32	89.91	8,456.11	-82.68	11,539.49	11,539.78	0.00	0.00	0.00
18,400.00	89.32	89.91	8,457.29	-82.52	11,639.48	11,639.77	0.00	0.00	0.00
18,500.00	89.32	89.91	8,458.47	-82.35	11,739.47	11,739.76	0.00	0.00	0.00
18,600.00	89.32	89.91	8,459.65	-82.19	11,839.47	11,839.75	0.00	0.00	0.00
18,700.00	89.32	89.91	8,460.83	-82.02	11,939.46	11,939.74	0.00	0.00	0.00
18,800.00	89.32	89.91	8,462.01	-81.86	12,039.45	12,039.73	0.00	0.00	0.00
18,900.00	89.32	89.91	8,463.19	-81.69	12,139.45	12,139.72	0.00	0.00	0.00
19,000.00	89.32	89.91	8,464.37	-81.53	12,239.44	12,239.71	0.00	0.00	0.00
19,100.00	89.32	89.91	8,465.56	-81.36	12,339.43	12,339.70	0.00	0.00	0.00
19,137.70	89.32	89.91	8,466.00	-81.30	12,377.13	12,377.39	0.00	0.00	0.00

Design Targets

Target Name- hit/miss targetDip AngleDip Dir.TVD- Shape(°)(°)(ft)

- Shape	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
Crazy Horse 3H EP	0.00		8,347.00	-97.90	_,	585,192.2000	648,750.1000	32.608261	-103.984506
- plan misses target o - Point	center by 1.	97ft at 92	24.95ft MD	(8348.95 T	VD, -97.63 N	I, 2465.08 E)			
Crazy Horse 3H BHL	0.00	0.00	8,466.00	-81.30	12,377.13	585,208.8000	658,662.1000	32.608213	-103.952317
 plan hits target cent Point 	er								

-- -

+E/-W

~ - -

Northing

.

+N/-S

- - - -

Easting

- -----

Survey Report

.

÷

Company:	CL&F Operating LLC	Local Co-ordinate Reference:	Well Crazy Horse 3H
Project:	Eddy County, NM (NAD 83)	TVD Reference:	KB=25' @ 3272.00ft
Site:	Sec 5, T20S, R30E	MD Reference:	KB=25' @ 3272.00ft
Well:	Crazy Horse 3H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Plan #1	Database:	EDM 5000.1 Multi User Db

	Measured Depth (ft)	Vertical Depth (ft)	Name	Lithology	Dip (°)	Dip Direction (°)
,	1,869.00	1,869.00	Yates	Empty	0.00	
	2,168.00	2,168.00	Seven Rivers	Empty	0.00	
	3,652.01	3,652.00	Delaware Sand	Empty		
	6,643.89	6,443.00	Bone Springs	Empty		
	7,996.90	7,644.00	1st Bone Springs Sand	Empty		
	11,177.05	8,372.00	2nd Bone Springs Sand	Empty		

Plan Annotations

	Measured	Vertical	Local Coc	ordinates		
	Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment	
	3580	3580	0	0	Start Build 2.00	
	3980	3979	-2	28	Start 400.00 hold at 3980.00 MD	
	4380	4375	-5	83	Start DLS 2.00 TFO -0.51	
	5351	5295	-20	377	Start 3089.38 hold at 5351.06 MD	
	8440	8038	-91	1798	Start DLS 10.00 TFO -3.34	
	9060	8347	-98	2300	Start 10077.84 hold at 9059.86 MD	
	19,138	8466	-81	12,377	TD at 19137.70	
Checked By	/:		Ар	proved By:	Date:	<u></u>

CL&F Operating LLC

Eddy County, NM (NAD 83) Sec 5, T20S, R30E Crazy Horse 3H

Wellbore #1 Plan #1

Anticollision Report

11 October, 2017

Anticollision Report

Company:	CL&F Operating LLC	Local Co-ordinate Reference:	Well Crazy Horse 3H
Project:	Eddy County, NM (NAD 83)	TVD Reference:	KB=25' @ 3272.00ft
Reference Site:	Sec 5, T20S, R30E	MD Reference:	KB=25' @ 3272.00ft
Site Error:	0.00 ft	North Reference:	Grid
Reference Well:	Crazy Horse 3H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.00 ft	Output errors are at	2.00 sigma
Reference Wellbore	Wellbore #1	Database:	EDM 5000.1 Multi User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
Reference	Plan #1		······
Filter type:	NO GLOBAL FILTER: Using user defined se	election & filtering criteria	
Interpolation Metho	d: MD + Stations Interval 100.00ft	Error Model:	ISCWSA
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D
Results Limited by:	Maximum center-center distance of 10,000.0	00 ft Error Surface:	Elliptical Conic
Warning Levels Eva	luated at: 2.00 Sigma	Casing Method:	Not applied

Survey Tool Program	m	Date 10/11/2017		
From (ft)	To (ft)	Survey (Wellbore)	Tool Name	Description
0.00	19,137.70) Plan #1 (Wellbore #1)	MWD	MWD - Standard

Summary

	Reference	Offset	Dista	nce		
Site Name Offset Well - Wellbore - Design	Measured Depth (ft)	Measured Depth (ft)	Between Centres (ft)	Between Ellipses (ft)	Separation Factor	Warning
Sec 5, T20S, R30E						
Crazy Horse 4H - Wellbore #1 - Plan #1	3,580.00	3,580.00	30.10	14.29	1.904	сс
Crazy Horse 4H - Wellbore #1 - Plan #1	3,600.00	3,599.92	30.12	14.23	1.895	ES, SF
Solution Fed 1H-Planned COG - Wellbore #1 - Design #1	3,100.00	3,095.00	214.32	200.67	15.701	cc
Solution Fed 1H-Planned COG - Wellbore #1 - Design #1	3,200.00	3,193.70	214.58	200.49	15.235	ES
Solution Fed 1H-Planned COG - Wellbore #1 - Design #1	5,500.00	5,459,79	235.98	207.99	8,430	SF

Offset D	lesign	Sec 5,	T20S, R	30E - Cra.	zy Horse	e 4H - Well	bore #1 - Pla	n #1					Offset Site Error:	0.00
	ogram: 0-M												Offset Well Error:	0 00
Refer		Offs	et	Semi Major	Axis				Dist	алсе				
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	Offset Wellbo +N/-S (ft)	re Centr e +E/-W (ft)	Between Centres (R)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
0.00	0.00	0.00	0.00	0.00	0.00	180.00	-30.10	0.00	30.10					
100.00	100.00	100.00	100.00	0.08	0.08	180.00	-30.10	0.00	30.10	29.93	0.17	178.556		
200.00	200.00	200.00	200.00	0.31	0.31	180.00	-30.10	0.00	30.10	29.48	0.62	48 697		
300.00	300 00	300.00	300.00	0.53	0.53	180.00	-30.10	0.00	30.10	29.03	1.07	28,193		
400.00	400.00	400.00	400.00	0.76	0.76	180.00	-30.10	0.00	30.10	28.58	1.52	19.840		
500.00	500.00	500.00	500.00	0.98	0.98	180.00	-30.10	0.00	30.10	28.13	1.97	15.305		
600.00	600.00	600.00	600.00	1.21	1.21	180.00	-30.10	0.00	30.10	27.68	2.42	12.457		
700 00	700.00	700.00	700.00	1.43	1 43	180.00	-30,10	0.00	30.10	27.23	2.87	10 503		
800.00	800.00	800.00	800.00	1.66	1.66	180.00	-30.10	0.00	30.10	26.78	3.32	9 079		
900.00	900.00	900.00	900.00	1.88	1 88	180.00	-30.10	0.00	30 10	26.34	3.76	7.995		
1,000.00	1,000.00	1,000.00	1,000.00	2.11	2.11	180.00	-30,10	0.00	30.10	25 89	4.21	7.142		
1,100.00	1,100.00	1,100.00	1,100.00	2.33	2.33	180.00	-30.10	0.00	30.10	25.44	4.66	6.454		
1,200.00	1,200.00	1,200.00	1,200.00	2.56	2 56	180.00	-30.10	0.00	30.10	24 99	5.11	5.886		
1,300.00	1,300.00	1,300.00	1,300.00	2.78	2.78	180.00	-30.10	0.00	30,10	24.54	5.56	5.411		
1,400.00	1,400.00	1,400.00	1,400.00	3.01	3.01	180.00	-30.10	0.00	30.10	24 09	6.01	5.006		
1,500.00	1,500.00	1,500.00	1,500.00	3.23	3 23	180.00	-30.10	0.00	30.10	23 64	6.46	4.658		
1,600.00	1,600.00	1,600.00	1,600 00	3.46	3.46	180.00	-30.10	0.00	30 10	23 19	6.91	4.355		
1,700.00	1,700.00	1,700.00	1,700.00	3.68	3 68	180.00	-30.10	0.00	30.10	22.74	7.36	4 089		
1,800.00	1,800.00	1,800.00	1,800 00	3 91	3.91	180.00	-30.10	0.00	30.10	22.29	7.81	3.854		
1,900.00	1,900.00	1,900.00	1,900.00	4.13	4,13	180.00	-30.10	0.00	30.10	21.84	8.26	3.644		
2,000.00	2,000.00	2,000.00	2,000.00	4.35	4.35	180.00	-30.10	0.00	30.10	21 39	8.71	3.456		
2,100.00	2,100.00	2,100.00	2,100.00	4,58	4.58	180.00	-30,10	0.00	30.10	20 94	9.16	3 286		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Offset Site Error:

0.00 ft

i

Company:CL&F Operating LLCProject:Eddy County, NM (NAD 83)Reference Site:Sec 5, T20S, R30ESite Error:0.00 ftReference Well:Crazy Horse 3HWell Error:0.00 ftReference WellboreWellbore #1Reference Design:Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Offset Design Sec 5, T20S, R30E - Crazy Horse 4H - Wellbore #1 - Plan #1

Survey Prog Refere	gram: 0-M ance	WD Offs	et	Semi Major	Axis				Dista	ance			Offset Well Error:	0.00 ft
Measured		Measured	Vertical	Reference		Highside	Offset Wellbor	e Centre		Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres		Separation	Factor		
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	C	(ft)	(ft)	(ft)	(ft)	(ft)			
2,200.00	2,200.00	2,200.00	2,200.00	4.80	4.80	180.00	-30.10	0.00	30.10	20.49	9.61	3,133		
2,300.00	2,300.00	2,300.00	2,300.00	5.03	5.03	180.00	-30.10	0 00	30.10		10.06	2.993		
2,400.00	2,400.00	2,400.00	2,400.00	5,25	5.25	180.00	-30.10	0.00	30.10	19.59	10.51	2.865		
2,500.00	2,500.00	2,500.00	2,500.00	5.48	5.48	180.00	-30.10	0.00	30,10	19.14	10.96	2.747		
2,600.00	2,600.00	2,600.00	2,600.00	5 70	5.70	180.00	-30.10	0 00	30.10	18.69	11,41	2.639		
2,700.00	2,700.00	2,700.00	2,700.00	5.93	5.93	180.00	-30.10	0.00	30.10	18.24	11.86	2,539		
2,800.00	2,800.00	2,800.00	2,800.00	6.15	6.15	180.00	-30,10	0 00	30 10	17.79	12.31	2.446		
2,900.00		2,900.00	2,900.00	6.38	6.38	180.00	-30.10	0.00	30.10		12.76	2.360		
3,000.00		3,000.00	3,000.00	6 60	6.60	180.00	-30.10	0.00	30.10			2.279		
3,100.00		3,100.00	3,100.00	6.83	6.83	180.00	-30.10	0.00	30.10			2.204		
3,200.00	3,200.00	3,200.00	3,200.00	7.05	7.05	180.00	-30,10	0.00	30.10	16.00	14.10	2.134		
3,300.00	3,300.00	3,300.00	3,300.00	7.28	7.28	180.00	-30.10	0.00	30.10			2.068		
3,400.00	3,400.00	3,400.00	3,400.00	7.50	7.50	180.00	-30.10	0.00	30.10			2.006		
3,500.00	3,500.00	3,500.00	3,500.00	7.73	7.73	180.00	-30, 10	0.00	30.10			1.948		
3,580.00		3,580.00	3,580.00	7.91	7.91	180.00	-30.10	0.00	30.10			1.904 (
3,600.00	3,600.00	3,599.92	3,599.91	7.95	7.95	86.79	-30.13	0.06	30.12	14.23	15.89	1.895 E	15, 5F	
3,700.00	3,699.96	3,699.48	3,699.45	8 14	8.13	87.17	-31.11	2.28	30.98	14.70		1.903		
3,800.00	3,799.78	3,799.02	3,798.81	8.34	8.32	88.01	-33.50	7.65	33.05	16.39	16.66	1.983		
3,900.00	3,899.34	3,898.51	3,897.86	8.55	8.52	89.15	-37.29	16.16	36 35			2.130		
3,980.00	3,978.70	3,978.06	3,976.78	8.72	8.68	90.14	-41.32	25.23	39.88	22.49		2.293		
4,000.00	3,998.51	3,998.02	3,996.55	8.76	8.72	90.39	-42.45	27 77	40 87	23.39	17.48	2.338		
4,100.00	4,097.53	4,097.90	4,095.45	8 99	8,93	91.47	-48.09	40.47	45.81	27.90	17.92	2.557		
4,200.00	4,196.56	4,197.77	4,194.35	9.22	9.15	92.33	-53,74	53,17	50.77	32.41	18.37	2.764		
4,300.00	4,295.59	4,297.64	4,293.25	9.45	9.38	93.04	-59.39	65.87	55.74	36.91	18.83	2.960		
4,380 00	4,374 81	4,377 54	4,372.38	9.65	9.57	93.53	-63.90	76 03	59 72	40.51	19.21	3,109		
4,400.00	4,394.60	4,397.41	4,392.04	9.70	9,62	93.66	-65.05	78.61	60.74	41.43	19.31	3,146		
4,500.00	4,493.26	4,496,61	4,489.92	9.95	9.87	94.30	-71,59	93.32	66 57	46.76	19.81	3.361		
4,600.00	4,591.28	4,595.69	4,587.07	10.23	10.14	94.90	-79.49	-111.09	73.67	53.32	20.35	3.620		
4,700.00	4,688.55	4,694.63	4,683.35	10.54	10.43	95.44	-88.74	131.89	82.02	61.07	20.95	3.916		
4,800.00	4,784.96	4,793.41	4,778.64	10.88	10.76	95.90	-99.32	155.68	91.60	70.00	21.60	4 241		
4,900.00	4,680.38	4,892.02	4,872.80	11.25	11.12	96.30	-11 1.2 1	182.40	102.42	80.09	22.33	4.587		
5,000.00	4,974.69	4,990.42	4,965.71	11.68	11.53	96.62	-124.38	212.00	114.45	91.30	23.14	4.945		
5,100.00	5,067.79	5,088.61	5,057.26	12.15	11.99	96.87	-138.80	244.43	127 67	103.61	24.05	5.308		
5,200.00	5,159.57	5,186 58	5,147.33	12.68	12.51	97.07	-154.46	279.62	142.06	116.99	25.07	5.666		
	5,249.89	5,284 30	5,235.81	13.28	13.08	97.21	-171.31	317.50	157.62	131.40	26.21	6.012		
5,351.06	5,295.42	5,334.09	5,280.34	13.61	13.40	97.26	-180.37	337.86	166.00	139.14	26.85	6.182		
5,400.00	5.338.87	5,381.77	5,322.61	13 95	13.72	97.32	-189.33	358.02	174.25	146.76	27.49	6.340		
5,500.00		5,478.97	5,407.61	14.65	14,43	96.70	-208.49	401.08	191.62	162.75	28.87	6.638		
	5,516.40	5,576.36	5,491.28	15.38	15.21	95 36	-228,75	446.62	209.69	179.36	30.33	6.914		
5,700.00	5,605.16	5,674.55	5,575.34	16,14	16.04	94.08	-249.38	492.99	228.01	196.15	31.86	7.157		
5,800.00	5,693.93	5,772.74	5,659.39	16.92	16.90	92.99	-270.01	539.36	246.41	212.99	33.43	7.372		
5,900.00	5,782.69	5,870.94	5,743.45	17.73	17.78	92.05	-290.64	585.73	264.90	229.87	35.03	7.562		
6,000.00	5,871.45	5,969.13	5,827.51	18,54	18,69	91.24	-311.27	632.10	283 44	246.77	36.66	7.731		
6,100.00	5,960.22	6,067.32	5,911.57	19.38	19.62	90.52	-331.89	678.46	302.03	263.70	38.32	7.881		
6,200.00	6,048.98	6,165.51	5,995,63	20.22	20.57	89.89	-352.52	724.83	320.66	280.65		8.014		
6,300.00	6,137.75	6,263.70	6.079.69	21.08	21.53	89.33	-373.15	771.20	339.32	297.61	41.72	8.134		
6,400.00	6.226.51	6,361.89	6,163.75	21.95	22.50	88.83	-393.78	817.57	358.02	314,58	43.44	8.241		
	6,315.28	-	6,247.81	22.83	23 48	88 37	-414 41	863 94	376.73	331.55		8.338		
	6,404.04	6,558.27		23 7 1	24,47	87.96	-435.04	910.30	395.47	348.53	46.94	8.426		
6,700.00	6,492.81	6,656.47	6,415 93	24,60	25 47	87.59	-455.66	956.67	414.22	365 52	48.71	8.505		
6,800.00	6,581.57	6,754.66	6,499.99	25.50	26.48	87.25	-476.29	1,003.04	433.00	382.51	50 49	8 577		
6,900.00	6,670.34	6,852.85	6,584.05	26.40	27.50	86.93	-496.92	1,049 41	451.78	399.50	52 28	8.642		
							gent point, SF					· · · · · · · · · · · · · · · · · · ·	100	

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

10/11/2017 12:49:27PM

Anticollision Report

,

Company:	CL&F Operating LLC
Project:	Eddy County, NM (NAD 83)
Reference Site:	Sec 5, T20S, R30E
Site Error:	0.00 ft
Reference Well:	Crazy Horse 3H
Well Error:	0.00 ft
Reference Wellbore	Wellbore #1
Reference Design:	Plan #1

Local Co-ordinate Reference: Well Crazy Horse 3H TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

offset De			1203, N	JUL - CIA			bore #1 - Pla						Offset Site Error:	~
urvey Prop Refere	gram: 0-M ence	IWD Offs	et	Semi Majo	r Axis				Dist	апсе			Offset Well Error:	0.
easured		Measured	Vertical	Reference	Offset	Highside	Offset Wellbo	re Centre	Between		Minimum	Separation	Warning	
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Toolface (*)	+N/-S (R)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor	_	
									470.58	416.50		8.702		
7,000,00	6,759,10	6,951.04	6,668.11	27.31	28.52	86.64	-517.55	1,095.78 1,142.14	470.58	418.50		8.757		
7,100.00	6,847.87	7,049.23	6,752.17	28.23	29.55	86.38	-538.18	1,142.14	489.38	450.50		8.808		
7,200.00	6,936.63	7,147.42	6,836.23	29.14	30.58	86.13 85.90	-558.81 -579.43	1,234.88	527.02	467.50				
7,300.00			6,920.29	30.07	31.62				545.86	484.51		8.897		
,400.00	7,114.16	7,343.80	7,004.35	30.99	32.66	85.69	-600.06	1,281.25 1,327.62	564.70	501.51				
,500.00	7,202.93	7,441.99	7,088.41	31.92	33.70	85.49	-620.69							
,600.00	7,291.69	7,540.19	7,172.46	32.85	34.75	85.31	-641.32	1,373.98	583.54	518.52				
,700.00	7,380.46	7,638.38	7,256.52	33.78	35.80	85.13	-661.95	1,420.35	602.39	535.52		9.008		
00.008,	7,469.22	7,736.57		34.72	36.85	84.97	-682.58	1,466.72	621.25	552.53				
900.00	7,557.99	7,834.76	7,424.64	35.66	37.91	84.81	-703.20	1,513.09	640.11	569.53		9,070		
000.00	7,646.75	7,932.95	7,508.70	36.60	38.96	84 67	-723.83	1,559 46	658.97	586.54	72.43	9.098		
100.00	7,735.52	8,031,14	7,592.76	37.54	40.02	84.53	-744.46	1,605.82	677.84	603.55	74.29	9.124		
,200.00	7.824.28	8,129.33	7,676.82	38.48	41.08	84.40	-765.09	1,652.19	696.71	620.56	76.15	9.149		
300.00		8,227.52		39.43	42.15	84.28	-785.72	1,698.56	715.59	637,57	78.02	9.172		
3,400.00	8,001,81		7,844.94	40.38	43.21	84.16	-806.35	1,744.93	734,47	654.57	79.89	9.193		
440.43	8,037.70	8,365.42		40.76	43.65	84.12	-814.69	1,763.68	742.10	661,45	80.65	9.202		
450.00	8,046,16	8,374,81	7,886.97	40.85	43.75	84.03	-816.66	1,768.11	743.90	663.12	80,78	9.209		
3,500.00	8,089.05	8,423.87	7,928.97	41.39	44.28	83,71	-826.97	1,791.28	753.19					
8,550.00		8,472.59	7,970.67	42.01	44.81	83.61	-837.20	1,814.28	762 26	679.65				
8,600.00	8,167.37	8,520.58	8,011.76	42.71	45.33	83.74	-847.28	1,836.95	771.13					
3,650.00	8,202.18		8,051 93	43.50	45.84	84.09	-857.14	1,859,10	779.92					
3,700.00	8,233,73	8,607.83	8,086.37	44.37	46.29	84.45	-865.66	1,878.28	788.85	702.32	86.54	9.116		
3,750.00			8,113.52	45.30	46.68	84.57	-873.01	1,895.15	798.57			9.085		
B,800.00		8,673.61		46.30	47.12	84.63	-880.88	1,913.57	809.20			9.056		
8,850.00				47.36	47.59	84.63	-889.26	1,933.52	820.72			9.029		
8,900.00			8,188.94	48.47	48.11	84.58	-898.15	1,955.01	833.10	740,56	92.54	9.003		
8,950.00	8,335.22	8,774.10	8,211.83	49.61	48.67	84.47	-907.56	1,978.06	846.32	752.06	94.25	8.979		
9,000.00		8,808,37	8,233.49	50.77	49,26	84.32	-917.48	2,002.68	860.33	764.30	96,03	8.959		
9,050.00		8,843.19	8,253.84	51.95	49,91	84.13	-927.93	2,028.93	875.10	777.22	97.88	8.941		
9,059.86	8,347.00		8,257.62	52.18	50.03	84.08	-930.01	2,034.19	878.10	779.86	98.24	8,938		
9,100.00			8,273,14	53,13	50 62	85.18	-939.15	2,057.42	890.66	790,78	99.86	8.917		
9,200.00	8,348.66	8,960.42	8,309.09	55.53	52.31	87.63	-965.35	2,125.07	923.96	819.9	1 104.06	6 8.879		
9,300.00				57.96	54,37	89.43	-996.25	2,206.64	958.7			6 8.840		
9,300.00			8,351.12	60,41	56,71	90.26	-1,030.28	2,298.54	993.5					
9,500.00			8,352.83	62.89	58.99	90.29	-1,063.07	2,388.55	1,027.88					
9,600.00	8.353.38		8,353.95	65.40	61.26	90.28	1,095 19	2,476.79	1,062.24					
9,700.00	8,354,56	9,434.88	8,355.06	67.92	63.54	90.28	-1,127.30	2,565.04	1,096.59	969.66	6 126.93	8.639		
9,800.00		-	8,356.18	70.46	65.85	90 27	-1,159 42	2,653.28	1,130.95		3 131.62	8,593		
9,900.00			-	73.01	68.17	90.27	-1,191 54	2,741.52	1,165.30			6 8.547		
0,000.00			8,358.40	75.59	70,51	90.26	-1,223 66	2,829.77	1,199.66			8.502		
0,100.00			8,359.52	78.17	72.87	90.26	-1,255 78	2,918 01	1,234 0	1 1,088,12	145.89	8.459		
0,200.00	8,360.46	9,904.45	8,360.63	80.76	75.24	90.26	-1,287 89	3,006.26	1,268.36	6 1,117.67	7 150.70	8.417		
10,300.00				83.37	77.62	90.25	+1,320.01	3,094.50	1,302.72	2 1,147.19	9 155.53	8 8.376		
0,400.00				85.98	B1.15	90,25	-1,365.71	3,224.59	1,336,25	5 1,174.79	9 161.46	6 8.276		
0,500.00				88.61		90.24	-1,416.64	3,398.76	1,364.48	1,195.92	2 168.56			
0,600.00				91.24	90.65	90.24	-1,457.59	3,581.88	1,386.48	1,210.53	3 175.9	5 7.880		
10,700.00	8,366 37	10,697.96	8,370.11	93.88	95.59	90.24	-1,487.05	3,772.06	1,401.95	5 1,218.38	8 183,57	7 7.637		
0,800.00				96.52		90.24	-1,503.84	3,967.00	1,410.70	1,219.3	5 191.3	5 7.372		
0,900.00				99.17	104.92	90.23	-1,507 67	4,139.91	1,412.8	1 1,214.2	5 198.50	5 7.115		
11,000.00				101.83	107.43	90.23	-1,507.67	4,239.90	1,412 98	1,209.12	2 203.86	6.931		
11,100.00		11,266.66		104.49		90.23	-1,507.68	4,339.89	1,413.15	5 1,203.9	7 209.18	6.756		
		11,366.66	8.377.99	107.16	112.48	90.23	-1,507.68	4,439.89		2 1,198.8	1 214.50	6.589		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

10/11/2017 12:49:27PM

.

Anticollision Report

Company:CL&F Operating LLCProject:Eddy County, NM (NAD 83)Reference Site:Sec 5, T20S, R30ESite Error:0.00 ftReference Well:Crazy Horse 3HWell Error:0.00 ftReference WellboreWellbore #1Reference Design:Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

·····	esign		1200, 10	30E - Cra:	Ly Horse		0010 #1 *1 10	1 # 1					Offset Site Error:	0.00 f
iurvey Pro Refer	gram: 0-M	WD Offs	tet	Somi Hain	Anie								Offset Well Error:	0.00 (
Refer leasured		Measured	Vertical	Semi Majo Reference		Highside	Offset Wellbo	re Centre	Dista Between		Minimum	Separation		
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor	Warning	
(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(*)	(ft)	(ft)	(ft)	(ft)	(ft)			
1,300.00	8,373.45		8,379,17	109,83	115.02	90.23	-1,507.68	4,539.88	1,413.48	1,193.65	219.84	6.430		
1,400.00	8,374.63	11,566.66	8,380,34	112.51	117.57	90.23	-1,507.69	4,639.87	1,413.65	1,188.47	225.18	6.278		
1,500.00	8,375.81		8,381.51	115.19	120.13	90.23	-1,507.69	4,739.86	1,413.82		230.53	6.133		
1,600.00	8,376.99	11,766.66	8,382.69	117.87	122.70	90.23	-1,507.69	4,839.86	1,413.99	1,178.10	235.89	5.994		
11,700.00	8,378.18	11,866.66	8,383.86	120.56	125.28	90.23	-1,507.69	4,939.85	1,414.15		241 25	5.862		
1,600.00	8,379.36	11,966.66	8,385.03	123.25	127.86	90.23	-1,507.70	5,039.84	1,414.32	1,167.69	246.63	5.735		
1,900.00	8,380.54	12,066.66	8,386.20	125.94	130.46	90.23	-1,507.70	5,139.84	1,414,49	1,162.48	252.00	5.613		
2,000.00	8,381.72	12,166.66	8,387.38	128.64	133.05	90.23	-1.507.70	5,239.83	1,414.66	1,157.27	257.39	5.496		
2,100.00	8,382.90	12,266 66	8,388.55	131.34	135.66	90.23	1,507.70	5,339.82	1,414.82		262.78	5.384		
2,200.00	8,384.08	12,366.66	8,389,72	134.04	138.27	90.23	-1,507.71	5,439.82	1,414.99	1,146.82	268.17	5.276		
2,300.00	8,385.26	12,466.66	8,390.90	136.74	140.89	90.23	-1,507.71	5,539.81	1,415 16	1,141.59	273.57	5.173		
2,400.00	9 396 44	17 566 66	8 202 07	120 44	143.61	00.02	4 507 74	5 000 00						
2,500.00	8,386.44 8,387.62		8,392.07 8,393.24	139.44	143 51	90.23	1,507.71	5,639,80	1,415.33	1,136.35	278.98	5.073		
2,500.00	8,387.62	12,666.66 12,766.66	8,393.24 8,394,41	142.15 144.86	146.13 148,77	90.23	-1,507.72	5,739.79	1,415.49	1,131.11	284.39	4,977		
2,700.00	8,389.98	12,866.66	8,395.59	144.00	148.77	90.23 90,23	-1,507.72	5,839.79	1,415.66	1,125.86	289.80	4.885		
2,800.00		12,966.66	8,395.39	150.28	151.40	90,23	-1,507.72 -1,507.72	5,939.78 6,039.77	1,415.83	1,120.61	295.22	4.796		
	-,		5,000.70	.00.20	104.04	50.25	-1,307.72	0,035,17	1,416.00	1,110.30	300.64	4.710		
2,900.00	8,392,34	13,066.66	8,397,93	153.00	156.69	90.23	-1,507.73	6,139.77	1,416.16	1,110.10	306.06	4.627		
3,000.00	8,393.53	13,156.66	8,399.11	155.71	159,34	90.23	-1,507.73	6,239.76	1,416 33	1,104.84	311.49	4.547		
3, 100.00	8,394,71	13,266.66	8,400.28	158.43	161.99	90,23	-1,507.73	6,339.75	1,416.50	1,099.58	316.92	4.470		
3,200.00	8,395.89	13,366.66	8,401.45	161.15	164,64	90 23	-1,507,74	6,439.75	1,416.67	1.094.32	322.35	4.395		
,300.00	8,397.07	13,466.66	8,402.62	163.87	167.30	90.23	-1,507.74	6,539,74	1,416.83	1.089.05	327.79	4.322		
400.00	8,398.25	13,566.66	8,403 80	166.59	169.97	90.23	1 607 74	6 6 2 0 7 2	4 447 00					
,500.00	8,399.43	13,666.66	8,404.97	169.31	172.63	90.23	-1,507.74 -1,507.74	6,639,73 6,739,72	1,417.00 1,417,17	1,083.78	333.22	4.252		
600.00		13,766.66	8,406.14	172.04	175.30	90.22	-1,507.75	6,839.72	1,417.34	1,078,50	338.66	4.185		
700.00	8,401.79	13,866.66	8,407.32	174,76	177.97	90.22	-1,507.75	6,939.71	1,417.50	1,067.95	344.11 349.55	4.119 4.055		
3,800.00	8,402.97		8,408.49	177.49	180.64	90.22	-1,507.75	7,039,70	1,417.67	1,062,67	355.00	3.993		
										1,002.07	000.00	0.000		
,900.00	8,404.15	14,066.66	8,409.66	180.21	183.32	90.22	-1.507.76	7,139.70	1.417.84	1,057.39	360.45	3.934		
000.00	8,405.33	14,166.66	8,410.83	182.94	186.00	90.22	-1,507.76	7,239.69	1,418.01	1,052.10	365.90	3.875		
100.00	8,406.51	14,266.65	8,412.01	185.67	188.68	90.22	-1,507.76	7,339.68	1,418.17	1,046.82	371.36	3.819		
,200.00	8,407.70	14,366.65	8,413.18	188.40	191.36	90.22	-1,507.76	7,439.68	1,418.34	1,041.53	376.81	3.764		
,300.00	8,408.88	14,466.65	8,414.35	191.13	194.05	90.22	-1,507.77	7,539.67	1,418.51	1,036 24	382.27	3.711		
1,400.00	8,410.06	14,566.65	8,415.53	193.86	196.74	90.22	-1,507.77	7,639.66	1,418,68	1,030.95	387.73	3.659		
500.00	8,411.24	14,666.65	8,416.70	196.59	199.43	90.22	-1,507,77	7,739 65	1,418 84	1,025.65	393.19	3.609		
,600.00		14,766.65	8,417.87	199.33	202.12	90.22	-1,507.78	7,839.65	1,419.01	1 020.36	398.65	3.560		
700.00	8,413.60	14,866.65	8,419.04	202.06	204.81	90.22	-1,507.78	7,939.64	1,419 18	1,015.06	404.12	3.512		
,800.00	8,414.78	14,966.65	8,420.22	204.79	207.50	90.22	-1,507.78	8,039.63		1,009.77	409.58	3.465		
000.00	0.445.00	45 000 07	-											
,900.00	8,415.96	15,066.65	8,421.39	207.53	210 20	90 22	-1,507.78	8,139.63	1,419.51	1,004.47	415,05	3.420		
,000.000	8,417.14	15,166.65	8,422.56	210.26	212.90	90.22	-1,507.79	8,239.62	1,419.68	999.17	420.51	3.376		
,100.00	8,418.32	15,266.65	8,423.74	213.00	215.60	90.22	-1,507.79	8,339.61	1,419.85	993.87	425.98	3.333		
300.00	8,419.50 8,420.68	15,366.65	8,424.91	215.73	218 30	90 22	-1,507 79	8,439 60	1,420.02	988.56	431.45	3.291		
,000.00	0,420.00	15,466.65	8,426.08	218.47	221.00	90 22	-1,507.80	8,539.60	1,420.18	983.26	436.92	3.250		
,400.00	8,421.87	15,566 65	8,427.25	221.21	223.71	90.22	-1,507.80	8,639.59	1,420.35	977.95	442.40	3.211		
500.00			8,428.43	223.95	226 41	90 22	-1,507 80	8,739.58	1,420.52	972.65	442.40	3.172		
.600.00	8,424.23		8,429.60	226.68	229.12	90.22	-1,507.80	8,839.58	1,420.69	967.34	453.35	3.134		
700.00			8,430.77	229.42	231.83	90.22	-1,507.81	8,939.57	1,420.85	962.03	458.82	3.097		
800.00			8,431.95	232.16	234.53	90.22	-1,507.81	9,039.56	1,421.02	956.72	464.30	3.061		
000 00	9 497 77		0 400 10											
			8,433.12	234.90	237.24	90.22	-1,507.81	9,139.56	1,421.19	951.41	469.78	3.025		
			8,434.29	237.64	239.96	90.22	-1,507.81	9,239.55	1,421.36	946.10	475.25	2.991		
		16,266 65		240.38	242.67	90.22	-1,507.82	9,339.54	1,421.52	940.79	480.73	2.957		
,200.00 ,300.00			8,436.64	243.12	245.38	90.22	-1,507.82	9,439.53	1,421.69	935.48	486.21	2.924		
	8,432.49	10,400 65	8,437.81	245 87	248.10	90.22	-1,507.82	9,539.53	1,421.86	930.17	491.69	2.892		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

10/11/2017 12:49:27PM

Anticollision Report

ţ

Ì

,

;

ł

.

ŗ

Company:CL&F Operating LLCProject:Eddy County, NM (NAD 83)Reference Site:Sec 5, T20S, R30ESite Error:0.00 ftReference Well:Crazy Horse 3HWell Error:0.00 ftReference WellboreWellbore #1Reference Design:Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Offset D	esian	Sec 5,	T205, R	30E - Craz	y Horse	4H - Well	bore #1 - Plai	n #1					Offset Site Error:	0.00
	gram: 0-N	•			•								Offset Well Error:	0.00
Refer		Offs	et	Semi Major	Axis				Dist	ance				
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface (°)	Offset Wellbo +N/-S (ft)	re Centre +E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
16,500,00	8,434,85	16.666.65	8,440,16	251.35	253.53	90.21	-1,507,83	9,739.51	1,422.19	919.54	502.66	2.829		
16,600.00	-	16,766.65	8,441.33	254.09	256.24	90.21	-1,507.83	9,839.51	1,422.36	914.22	508.14	2.799		
16,700.00		16,866.65	8,442.50	256.83	258.96	90.21	-1,507,83	9,939.50	1,422.53	908.90	513.63	2.770		
16,800.00	-		8,443.67	259.58	261.68	90.21	-1,507.84	10,039.49	1,422.70	903.59	519,11	2.741		
16,900.00		17,066.65	8,444.85	262.32	264.40	90.21	-1,507.84	10,139.49	1,422 86	898.27	524.59	2.712		
17,000.00	8,440.76	17,166.65	8,446.02	265.06	267.12	90.21	-1,507.84	10,239.48	1,423.03	892.95	530.08	2.685		
17,100.00	8,441.94	17,266.65	8,447.19	267.81	269.84	90.21	-1,507.85	10,339.47	1,423.20	887.63	535.57	2.657		
17,200.00		17,366.65	8,448.37	270,55	272.56	90.21	-1,507.85	10,439.46	1,423.37	882.31	541.05	2.631		
17,300,00			8,449.54	273.30	275.29	90.21	-1,507.85	10,539.46	1,423.53	876.99	546.54	2,605		
17,400.00	8,445,48	17,566,65	8,450.71	276.04	278.01	90.21	-1,507.85	10,639.45	1,423,70	871.67	552.03	2.579		
17.500.00	8,446.66	17,666.65	8,451 88	278.79	280.74	90.21	-1,507.86	10,739.44	1,423.87	866.35	557.52	2.554		
17,600.00	8,447.84	17,766.65	8,453.06	281.53	283.46	90.21	-1,507.86	10,839.44	1,424.04	861.03	563.01	2.529		
17,700.00	8,449.02	17,866.65	8,454.23	284.28	286.19	90.21	-1,507.86	10,939.43	1,424.20	855.71	568.50	2.505		
17,800.00	8,450.20	17,966.65	8,455 40	287.02	288.91	90.21	-1,507.87	11,039.42	1,424.37	850.38	573.99	2.482		
17,900.00	8,451.39	18,066.65	8,456 58	289.77	291.64	90.21	-1,507.87	11,139.42	1,424.54	845.06	579.48	2.458		
18,000.00	8,452.57	18,166 65	8,457.75	292.52	294.37	90.21	-1,507.87	11,239,41	1,424,71	839.73	584.97	2.436		
18,100.00	8,453.75	18,266.65	8,458 92	295.26	297.09	90.21	-1,507.87	11,339.40	1,424.87	834.41	590.46	2.413		
18,200.00	8,454.93	18,366,65	8,460 09	298 01	299.82	90.21	-1,507.88	11,439.39	1,425.04	829.09	595.96	2.391		
18,300,00	8,456,11	18,466.65	8,461.27	300.76	302.55	90.21	-1,507.88	11,539.39	1,425.21	823.76	601.45	2.370		
18,400.00	8,457.29	18 566 65	8,462.44	303.50	305.28	90.21	-1,507.88	11,639.38	1,425.38	818.43	606.94	2.348		
18,500.00	8,458.47	18,666.65	8,463.61	306.25	308.01	90.21	-1,507.89	11,739.37	1,425.54	813.11	612.44	2.328		
18,600.00	8,459.65	18,766.65	8,464.79	309.00	310.74	90.21	-1,507.89	11,839.37	1,425 71	807.78	617.93	2.307		
18,700.00	8,460.83	18,866.65	8,465.96	311.75	313.47	90.21	-1,507.89	11,939.36	1,425.88	802.45	623.42	2.287		
18,800.00	8,462.01	18,966.65	8,467.13	314.49	316.20	90.21	-1,507.89	12,039.35	1,426.05	797.13	628.92	2.267		
18,900.00	8,463.19	19,066.65	8,468.30	317.24	318.94	90.21	-1,507.90	12,139.35	1,426.21	791.80	634.41	2.248		
19.000.00	8,464.37	19,166.65	8,469.48	319.99	321.67	90.21	-1,507.90	12,239.34	1,426.38	786.47	639.91	2.229		
19,100.00	8,465.56	19,266.65	8,470.65	322.74	324.40	90.21	-1,507.90	12,339.33	1,426.55	781.14	645.41	2.210		
19,137.70	8,466.00	19,296.44	8,471.00	323.77	325 22	90.21	-1,507 90	12,369,13	1,426.63	779.37	647.26	2.204		

Anticollision Report

.

CL&F Operating LLC Company: Project: Eddy County, NM (NAD 83) **Reference Site:** Sec 5, T20S, R30E Site Error: 0.00 ft Crazy Horse 3H Reference Well: Well Error: 0.00 ft Reference Wellbore Wellbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: Well Crazy Horse 3H TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Barbery Deriver Other Note of the second s	Offset D			, T20S, R	30E - Solu	ition Fed	1H-Plann	ed COG - We	libore #1	- Design i	¥1			Offset Site Error:	0.00 ft
Method Dr(h) Venical (h) Venical (h) Venical (h) Venical (h) Professor (h) Venical (h) Professor (h) Dessor (h) Bayes (h) Bay					6 1 • • •									Offset Well Error:	0.00 ft
Depth Depth Depth Totalica Pure A Pure A Disess Seguration Pure A ure A <th< th=""><th></th><th></th><th></th><th></th><th>•</th><th></th><th>111-h-1-1-</th><th>00</th><th></th><th></th><th></th><th></th><th>_ .</th><th></th><th></th></th<>					•		111-h-1-1-	00					_ .		
(b) (b) <th></th> <th></th> <th></th> <th></th> <th>Reference</th> <th>Offset</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Warning</th> <th></th>					Reference	Offset								Warning	
0.00 0.00 0.00 0.00 0.00 1.00 2075 1.33 274.39 0.000 1.000 2000 1.000 2007 1.33 274.32 21.11 0.17 255.657 2000 2000 2500					(ft)	(ft)							Factor		
100.00 190.00 195.00 50.00 0.08 0.09 1180 202979 4138 214.12 214.13 0.61 329.78 300.00 300.00 295.00 0.53 0.53 0.18 202979 4138 214.22 212.81 1.15 141.64 500.00 600.00 455.00 355.00 1.16 205.79 4383 214.32 212.81 1.15 141.64 500.00 600.00 455.00 55.00 1.13 1.14 1.18 205.79 4383 214.32 212.81 1.15 141.64 500.00 605.00 655.00 1.43 1.43 1.18 205.79 4383 214.32 21.16 2.41 86861 700.00 750.00 755.00 75.00 2.33 2.33 1.18 205.79 4.38 214.32 21.16 4.31 50.00 100.00 1.050.00 1.055.00 2.23 2.33 2.33 1.18 205.79 4.38 214.32 201.66 4.58.98 1.000.00 1.050.00 1.050.0 <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>11.80</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	0.00	0.00	0.00	0.00	0.00	0.00	11.80					-			
2000 2000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 17</td><td>1 255 057</td><td></td><td></td></th<>												0 17	1 255 057		
300.0 300.0 300.0 326.00 255.00 6.35 0.43 11.80 207.97 4.83 21.23 1.51 1.66 20.592 500.00 500.00 550															
400.0 400.0 430.0 430.0 430.0 243.0 242.3 212.36 1.50 141.664 500.00 500.00 690.00 695.00 655.00 1.21 1.20 1180 200.79 433.0 214.32 211.31 2.44 88.866 500.00 690.00 695.00 695.00 655.00 1.66 1.65 1.16 200.79 433.0 214.32 211.04 2.16 7.404 500.00 600.00 695.00 695.00 1.66 1.65 1.16 200.79 433.0 214.32 210.14 4.21 50.509 1.000.00 1.005.00 1.065.00 2.33 2.33 11.80 200.79 4.33 214.32 200.41 4.66 45968 1.000.01 1.050.00 1.695.00 2.23 2.78 1.180 200.79 4.33 214.32 200.41 6.56 38.658 1.000.00 1.050.00 1.495.00 2.27 2.78 1.180 200.79 4.33 214.32 200.47 6.56 39.698 30.60 30.60	300.00	300.00	295.00												
5000 600.0 595.00 121 120 1180 2097 433 21.43 21.13 24.1 Base 700.0 795.00 755.00 755.00 168 1180 20979 43.3 21.43 21.13 21.14 33.6 67.34 100.00 10000 795.00 755.00 168 1180 20079 43.3 21.43 21.13 33.6 67.34 100.00 1005.00 2.33 2.33 1180 209.79 43.33 21.43 209.21 511 44.950 1.000.00 1.005.00 1.955.00 2.78 2.78 11.80 209.79 43.33 21.43 200.74 6.91 44.950 1.000.00 1.005.00 1.955.00 2.78 2.77 11.80 209.79 43.33 21.43 200.74 6.91 31.09 11.950 1.950 3.66 3.66 3.169 3.66 3.66 3.66 3.66 3.66 3.66 3.66	400.00	400.00	395.00	395.00	0.76	0.75	11.80	209 79							
700.00 695.00 695.00 143 144 11.00 200.79 43.83 214.32 211.01 33.1 64.73 900.00 095.00 995.00 1.88 1.88 1.80 208.79 43.83 214.32 210.11 42.15 50.69 1100.00 1.005.00 1.085.00 955.00 23.3 23.3 11.80 200.79 43.83 214.32 210.11 44.15 50.69 1100.00 1.005.00 1.095.00 1.095.00 2.50 2.55 11.80 200.79 43.83 214.32 20.76 6.46 45.998 1.000.00 1.395.00 1.395.00 3.03 3.00 11.80 200.79 43.83 214.32 20.76 6.46 33.193 1.600.00 1.495.00 1.495.00 3.23 11.80 209.79 43.83 214.32 20.76 6.46 33.193 1.600.00 1.495.00 1.495.00 3.46 3.46 11.80 209.79 43.83 214.32 205.67 8.75 2.71 27.456 2.7465 2.356.1 <	500.00	500.00	495.00	495.00	0.98	0.98	11.80	209.79	43.83	214.32	212.36	1.96	109.225		
700.00 695.00 695.00 143 144 11.00 200.79 43.83 214.32 211.01 33.1 64.73 900.00 095.00 995.00 1.88 1.88 1.80 208.79 43.83 214.32 210.11 42.15 50.69 1100.00 1.005.00 1.085.00 955.00 23.3 23.3 11.80 200.79 43.83 214.32 210.11 44.15 50.69 1100.00 1.005.00 1.095.00 1.095.00 2.50 2.55 11.80 200.79 43.83 214.32 20.76 6.46 45.998 1.000.00 1.395.00 1.395.00 3.03 3.00 11.80 200.79 43.83 214.32 20.76 6.46 33.193 1.600.00 1.495.00 1.495.00 3.23 11.80 209.79 43.83 214.32 20.76 6.46 33.193 1.600.00 1.495.00 1.495.00 3.46 3.46 11.80 209.79 43.83 214.32 205.67 8.75 2.71 27.456 2.7465 2.356.1 <	600.00	600.00	505.00	605.00		4.00									
B0000 B0000 B0500 B0500 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
900.00 950.00 955.00 188 188 1180 209.79 4133 214.32 210.56 3.76 56.95 1.00.00 1.005.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.050.00 1.250.00 2.78 2.78 1.180 200.79 4.383 214.32 200.81 6.01 3.66.0 1.000.00 1.350.00 1.250.00 2.78 2.78 1.180 200.79 4.383 214.32 200.81 6.01 3.67.3 1.00000 1.455.00 1.550.00 3.66 3.66 3.66 3.66 3.66 3.66 3.66 3.66 3.66 3.67 3.66 3.68<															
1.000.00 1.000.00 995.00 2.11 2.10 1.180 209.79 42.83 214.32 210.11 4.21 50.909 1.100.00 1.050.00 1.955.00 1.955.00 2.33 2.33 2.13 1.180 209.79 4.483 214.32 200.66 4.66 4.598 1.300.00 1.250.00 1.256.00 2.78 2.74 1.180 209.79 4.283 214.32 200.76 5.56 355.3 1.500.00 1.950.00 1.955.00 3.26 3.64 1.180 209.79 4.383 214.32 207.64 6.46 31.56 1.500.00 1.950.00 1.955.00 3.66 3.45 11.80 209.79 4.383 214.32 207.64 6.46 31.169 1.700.00 1.955.00 1.956.00 3.68 3.68 11.80 209.79 4.383 214.32 205.67 7.38 2.21.31 1.700.00 1.955.00 1.956.00 4.58 11.80 209.79 4.383 214.32 205.7 7.81 2.4620 2.10000 2.056.															
1,100.00 1,095.00 1,095.00 2.33 2.33 11.80 200.79 42.83 214.32 200.66 4.66 4.598 1,200.00 1,205.00 1,285.00 7.84 2.74 2.78 2.15 11 11.55 5.11 41.55 5.13 41.55 1,400.00 1,305.00 1,385.00 3.01 3.00 11.80 209.79 44.83 214.32 208.11 6.01 3.5573 1,400.00 1,485.00 1,485.00 3.46 3.45 11.80 209.79 44.83 214.32 208.16 6.01 3.5573 1,500.00 1,595.00 1,595.00 3.66 3.45 11.80 209.79 44.83 214.32 206.66 7.30 21.13 1,500.00 1,595.00 1,595.00 3.66 3.45 11.80 209.79 43.83 214.32 206.77 3.6 2.9 2.131 1,500.00 2,595.00 2,595.00 3.5 1.80 209.79 43.83 214.32 208.17 24.630 2,100.00 2,005.00 2,685.00															
1,200.00 1,95.00 3,46 3,46 1,16.0 206.79 4,38.3 214.32 207.86 6,66 33.109 1,700.00 1,95.00 1,95.00 3,46 3,46 11.80 206.79 4,38.3 214.32 206.86 7,38 221.33 1,700.00 1,95.00 1,95.00 3,46 3,46 11.80 206.79 4,38.3 214.32 206.67 7,84 25.951 1,900.00 1,95.00 1,95.00 4,36 3,5 11.80 206.79 4,38.3 214.32 206.47 8,74 25.951 1,900.00 1,95.00 1,95.00 4,36 4,58 11.80 206.79 4,38.3 214.32 204.72 96.00 2,311 2,000.00 2,95.00 2,95.00 5.70 5.70 11.80 2								200.70	40.00	£ 14,92	210.11	7.21	30.303		
1.300 00 1.395 00 1.285 00 1.285 00 2.78 1.80 20979 4383 214.32 20876 5.66 36563 1.500 00 1.395 00 1.395 00 3.360 3.00 1.80 20979 4383 214.32 207.46 6.46 33.169 1.600 00 1.995 00 1.995 00 1.995 00 1.995 00 3.46 3.45 11.80 20979 4383 214.32 206.52 7.36 2.20131 1.600 00 1.995 00 1.995 00 1.995 00 1.995 00 1.995 00 1.995 00 1.995 00 4.33 4.33 214.32 206.52 7.81 2.7466 2.0000 0 1.995 00 1.995 00 4.35 4.33 11.80 20979 4.383 214.32 206.57 9.15 2.4111 2.0000 0 2.095 00 2.995 00 4.35 4.35 11.80 20979 4.383 214.32 204.77 10.05 2.311 2.0000 2 2.0000 2 2.950 0 2.950 0 5.93 5.92 11.80 20979 4.383 214.32 204.77							11.80	209.79	43.83	214.32	209.66	4.66	45. 9 98		
1.400.00 1.395.00 1.395.00 3.00 1160 206.79 4383 214.32 207.81 6.01 356.73 1.500.00 1.505.00 1.495.00 3.23 3.23 11.60 206.79 4383 214.32 207.86 6.64 33.169 1.700.00 1.505.00 1.595.00 3.64 3.64 1.60 206.79 4383 214.32 207.86 6.64 33.169 1.700.00 1.795.00 3.99 3.90 1.80 206.79 4383 214.32 206.67 7.64 2.5961 1.900.00 1.995.00 1.995.00 4.35 4.35 11.80 206.79 4383 214.32 206.67 8.76 2.5961 2.000.00 2.095.00 2.095.00 4.80 4.80 11.80 206.79 4383 214.32 204.72 9.60 2.311 2.000.00 2.995.00 2.995.00 5.70 5.70 11.80 206.79 4383 214.32 204.71 10.65 2.317 2.000.00 2.995.00 2.295.00 5.70 5.70									43.83	214.32	209.21	5.11	41.950		
1.500.00 1.495.00 1.495.00 3.23 3.23 11.80 209.79 43.83 214.32 207.86 6.46 33.189 1.600.00 1.595.00 1.595.00 3.46 3.45 11.80 209.79 43.83 214.32 207.41 6.91 31(29) 1.800.00 1.795.00 1.795.00 3.91 3.90 11.80 209.79 43.83 214.32 205.62 7.81 27.66 2.000.00 1.995.00 1.995.00 4.35 4.35 11.80 209.79 43.83 214.32 205.62 8.71 24.620 2.000.00 2.000.00 2.995.00 4.54 4.58 11.80 209.79 43.83 214.32 205.17 9.15 23.411 2.000.00 2.905.00 2.955.00 5.35 5.22 11.80 209.79 43.83 214.32 204.71 10.05 21.317 2.000.00 2.905.00 5.70 5.70 11.80 209.79 43.83 214.32 202.92 11.40 17.75 20.465 2.000.00 2.805.00 5.										214.32	208.76	5.56	38.558		
1.600.00 1.555.00 1.555.00 1.64 1.160 200.79 4.83 27.432 207.41 6.91 3.1.029 1.700.00 1.695.00 1.595.00 3.64 3.46 1.180 209.79 4.83 27.432 205.65 7.36 29.133 1.900.00 1.905.00 1.995.00 1.955.00 4.13 4.13 11.80 209.79 4.83 27.432 205.67 8.25 25.951 2.000.00 1.995.00 1.995.00 4.35 4.35 11.80 209.79 4.83 27.432 205.07 9.15 23.411 2.000.00 2.090.00 2.995.00 4.84 4.80 11.80 209.79 4.83 27.432 204.72 9.80 22.311 2.000.00 2.995.00 2.955.00 5.05 5.25 11.80 209.79 4.83 27.432 204.72 9.80 22.315 2.000.00 2.695.00 2.955.00 5.46 5.47 11.80 209.79 4.83 27.432 202.47 10.05 19.16 2.000.00 2.695.00 5.															
170000 1.685.00 1.685.00 1.685.00 1.685.00 1.860.00 1.860.00 1.765.00 1.756.00 2.757.00 1.756.00 2.757.00 1.756.00 2.756.00 2.756.00 2.756.00 5.956.00 5.957.00 5.97.0 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00	1,500.00	1,500.00	1,495.00	1,495.00	3.23	3.23	11,80	209.79	43.83	214.32	207.86	6.46	33.189		
170000 1.685.00 1.685.00 1.685.00 1.685.00 1.860.00 1.860.00 1.765.00 1.756.00 2.757.00 1.756.00 2.757.00 1.756.00 2.756.00 2.756.00 2.756.00 5.956.00 5.957.00 5.97.0 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00 5.70.00	1.600.00	1.600.00	1.595.00	1 595 00	3 46	3 45	11 80	209 70	∆ 3 83	214 22	207 44	6.01	31.020		
180000 1785.00 1785.00 1785.00 1391 390 1180 20979 4383 21432 205.52 7.31 27.455 190000 195000 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 1895.00 458 438 1180 20979 4383 21432 205.12 9.15 23.411 220000 200000 2195.00 458 458 11.80 20979 43.83 214.32 206.17 9.15 23.411 220000 2300.00 2295.00 2395.00 5.25 5.25 11.80 20979 43.83 214.32 203.27 10.80 24.912 24000 2.480.00 2.485.00 5.35 5.25 11.80 20979 43.83 214.32 202.87 10.80 24.92 20.17 1.85 185.00 25000 2.695.00 2.595.00 5.70 5.70 11.80 209.79 43.83 214.32 202.92 11.40															
190000 190500 199500 433 413 413 1180 20979 4383 21432 20567 826 25991 200000 200000 209500 209500 209500 209500 209500 209500 209500 209500 21317 210000 210000 229500 229500 503 502 1180 20979 4383 21432 20477 960 22315 230000 229500 229500 503 502 1180 20979 4383 21432 20471 1050 20405 24000 24000 249500 249500 548 547 1180 20979 4383 21432 20327 1050 20405 250000 269500 259500 548 547 1180 20979 4383 21432 20237 1180 1876 260000 269500 259500 553 592 1180 20979 4383 21432 20171 1185 18003 280000 269500 269500 566 660		-	•												
2.00.00 2.00.00 1.995.00 4.35 4.35 11.60 2.09.79 43.83 214.32 205.62 8.71 24.620 2.100.00 2.095.0															
2,100.00 2,095.00 2,095.00 4,58 4,58 11.80 209.79 43.83 214.32 204.72 9,60 22.315 2,200.00 2,295.00 2,295.00 2,295.00 2,295.00 2,204.72 9,60 22.315 2,000.00 2,295.00 2,295.00 5,25 5,25 11.80 209.79 43.83 214.32 204.72 9,60 22.315 2,400.00 2,495.00 2,495.00 5,48 5,47 11.80 209.79 43.83 214.32 203.82 10.50 20.405 2,500.00 2,495.00 2,495.00 5,93 5,92 11.80 209.79 43.83 214.32 202.92 11.40 18.796 2,500.00 2,595.00 2,595.00 5,93 5,92 11.80 209.79 43.83 214.32 202.02 12.30 17.422 2,600.00 2,795.00 6.15 615 11.80 209.79 43.83 214.32 201.72 13.65 15.701 CC 2,000.02 2,900.00 2,995.00 6.60 6.60 11.80 209.79 <td></td> <td>2,000.00</td> <td></td>		2,000.00													
220000 2.20000 2.295.00 2.485.00 5.48 5.47 11.80 209.79 43.83 214.32 200.22 11.40 18.76 2.600.00 2.695.00 2.595.00 5.90 5.92 11.80 209.79 43.83 214.32 200.22 11.40 18.76 2.600.00 2.695.00 2.695.00 6.15 615 11.80 209.79 43.83 214.32 200.27 12.75 18.60 2.600.00 2.695.00 2.695.00 6.66 6.60 11.80 209.79 43.83 214.32 201.57 12.75 18.60 3.000.01 3.090.02 2.895.00 6.83 6.82 11.80 209.79 43.83 214.32 2															
2.300.00 2.290.00 2.295.00 5.29 5.03 5.02 11.80 209.79 43.83 214.32 204.27 10.05 21.317 2.400.00 2.395.00 2.395.00 5.25 5.25 5.25 11.80 209.79 43.83 214.32 203.82 10.50 20.405 2.500.00 2.495.00 2.495.00 2.595.00 5.76 5.70 5.70 11.80 209.79 43.83 214.32 202.92 11.40 16.766 2.700.00 2.695.00 2.595.00 5.95 5.92 11.80 209.79 43.83 214.32 202.47 11.85 18.083 2.600.00 2.795.00 2.795.00 2.695.00 6.60 6.60 11.80 209.79 43.83 214.32 201.57 12.75 16.808 3.000.00 3.095.00 2.895.00 6.68 6.60 11.80 209.79 43.83 214.32 201.67 13.65 15.701CC 3.200.00 3.095.00 3.085.00 6.83 6.62 11.80 209.79 45.84 214.59 201.69											205.17	9.15	23.411		
2400.00 2.395.00 2.395.00 5.25 5.25 5.25 11.80 209.79 43.83 214.32 203.87 10.95 19.568 2.600.00 2.690.00 2.595.00 2.595.00 5.71 1.75 16.80 3.71 1.80 209.79 43.83 214.32 202.02 12.30 17.422 2.300 2.300.00 3.900.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.990.00 3.997.70 7.43 15.31<															
2.500.00 2.495.00 2.495.00 5.48 5.47 11.80 209.79 43.83 214.32 203.37 10.95 19.568 2.600.00 2.595.00 2.595.00 2.595.00 5.93 5.92 11.80 209.79 43.83 214.32 202.92 11.40 18 796 2.700.00 2.700.00 2.705.00 2.595.00 5.93 5.92 11.80 209.79 43.83 214.32 202.92 12.30 17.422 2.900.00 2.905.00 2.895.00 6.38 6.37 11.80 209.79 43.83 214.32 201.72 12.75 16 606 3.000.00 3.095.00 3.985.00 6.88 6.82 11.80 209.79 43.83 214.32 201.67 13.65 15.701 CC 3.000.00 3.095.00 3.985.00 6.88 6.82 11.80 209.79 43.83 214.32 20.67 13.65 15.701 CC 3.000.00 3.291.97 7.93 7.03 12.12 209.79 57.5 21.59 201.09 14.50 14.684 14.379 350.00															
2.600.00 2.595.00 2.595.00 5.70 5.70 5.70 11.80 209.79 43.83 214.32 200.92 11.40 19.796 2.700.00 2.700.00 2.795.00 6.15 6.15 11.80 209.79 43.83 214.32 200.21 12.30 17.422 2.900.00 2.795.00 6.15 6.15 6.15 11.80 209.79 43.83 214.32 201.57 11.80 18.083 2.900.00 2.995.00 2.995.00 6.60 6.60 11.80 209.79 43.83 214.32 201.57 15.80 3.000.00 3.095.00 3.095.00 6.68 6.60 11.80 209.79 43.83 214.32 201.67 13.65 15.701 CC 3.000.00 3.197.70 113.66 7.03 12.12 209.79 43.83 214.32 200.67 13.65 15.55 13.60 13.65 15.701 CC 3.000.00 3.397.37 3.99.38 750 7.43 15.31 209.79 7.96 224.78 209.10 14.56 14.864 3.4															
2,700.00 2,605.00 2,695.00 5.93 5.92 11.80 209.79 43.83 214.32 202.47 11.85 18.083 2,800.00 2,905.00 2,795.00 6.15 6.15 6.15 11.80 209.79 43.83 214.32 202.02 12.30 17.422 2,900.00 2,905.00 2,985.00 6.86 6.60 6.60 11.80 209.79 43.83 214.32 201.67 13.65 15.751 16.808 3,000.00 3,095.00 3,095.00 6.63 6.62 11.80 209.79 43.83 214.32 201.67 13.65 15.701CC 3,200.00 3,090.00 3,193.70 7.05 7.03 12.12 209.79 43.83 214.32 200.67 13.65 15.701CC 3,200.00 3,200.00 3,291.97 3,291.85 7.23 13.30 209.79 57.45 217.59 202.66 14.92 14.644 3,400.00 3,467.02 3,465.94 7.73 7.64 18.10 209.79 7.25 15.55 15.35 14.395	2,500.00	2,500.00	2,495,00	2,495.00	5.48	5.47	11.80	209.79	43.83	214.32	203,37	10.95	19.568		
2.700.00 2.695.00 2.695.00 5.93 5.92 11.80 209.79 43.83 214.32 202.47 11.85 18.083 2.800.00 2.795.00 2.795.00 6.15 6.15 11.80 209.79 43.83 214.32 202.02 12.30 17.422 2.900.00 2.905.00 2.995.00 6.66 6.60 11.80 209.79 43.83 214.32 201.57 12.75 16.636 3.000.00 3.095.00 3.095.00 6.63 6.62 11.80 209.79 43.83 214.32 201.67 13.65 15.701 CC 3.200.00 3.193.69 7.05 7.03 12.12 209.79 43.83 214.32 200.67 13.65 15.735 ES 3.200.00 3.300.00 3.291.97 3.291.85 7.28 7.43 15.31 209.79 57.45 217.59 202.66 14.82 14.864 3.400.00 3.641.7 3.562.27 7.91 7.81 20.80 209.79 79.69 224.78 209.10 15.68 14.332 3.600.00 3.564.17 <td>2,600.00</td> <td>2,600.00</td> <td>2,595.00</td> <td>2,595.00</td> <td>5.70</td> <td>5 70</td> <td>11.80</td> <td>209.79</td> <td>43.83</td> <td>214.32</td> <td>202.92</td> <td>11.40</td> <td>18 796</td> <td></td> <td></td>	2,600.00	2,600.00	2,595.00	2,595.00	5.70	5 70	11.80	209.79	43.83	214.32	202.92	11.40	18 796		
2,800.00 2,800.00 2,795.00 2,795.00 2,795.00 2,795.00 2,795.00 2,795.00 2,795.00 2,895.00 6,38 6,37 11,80 209.79 43,83 214,32 201.57 12,75 16,600 3,000.00 3,095.00 3,095.00 6,60 6,60 11,80 209.79 43,83 214,32 201.57 13,20 15,235 15,701 CC 3,000.00 3,095.00 3,095.00 6,63 6,82 11,80 209.79 43,83 214,32 201.67 13,65 15,701 CC 3,000.00 3,095.00 3,095.00 6,63 6,82 11,80 209.79 43,83 214.32 200.67 13,65 15,701 CC 3,000.00 3,291.97 3,291.85 7,23 15,31 209.79 45,64 214,56 200.67 14,50 14,864 3,400.00 3,589.20 3,561.27 7,91 7,81 20.80 205.79 79.69 224.78 209.10 15.68 14,301 3,600.00 3,693.36 3,561.22 7,91 7,66 7,168 209.79	2,700.00	2,700.00	2,695.00	2,695.00											
3.000.00 3.000.00 2.995.00 2.995.00 6.60 6.60 11.80 209.79 43.83 214.32 201.12 13.20 16.236 3.100.00 3.095.00 3.095.00 3.095.00 6.63 6.82 11.80 209.79 43.83 214.32 200.67 13.65 15.701 CC 3.200.00 3.200.00 3.291.97 3.193.69 7.05 7.03 12.12 209.79 45.04 214.59 200.67 13.65 15.701 CC 3.300.00 3.201.00 3.291.97 7.28 7.23 13.30 209.79 49.58 215.59 201.09 14.50 14.864 3.400.00 3.399.38 7.50 7.43 15.31 209.79 7.65 7.45 11.80 14.301 3.500.00 3.564.17 3.562.27 7.91 7.81 20.80 209.79 79.69 224.78 209.10 15.68 14.301 3.600.00 3.583.36 3.581.22 7.95 7.66 7.16 209.79 15.75 16.22 14.301 3.700.00 609.96 6.61.44 <td>2,800.00</td> <td>2,800.00</td> <td>2,795.00</td> <td>2,795.00</td> <td>6.15</td> <td>6 15</td> <td>11.80</td> <td>209.79</td> <td>43.83</td> <td>214.32</td> <td>202.02</td> <td></td> <td></td> <td></td> <td></td>	2,800.00	2,800.00	2,795.00	2,795.00	6.15	6 15	11.80	209.79	43.83	214.32	202.02				
3,100.00 3,095.00 3,095.00 3,095.00 3,095.00 3,095.00 3,095.00 3,095.00 3,193.70 3,193.69 7.05 7.03 12,12 200.79 43,83 214,32 200.67 13,65 15,701 CC 3,200.00 3,200.00 3,291.97 3,291.85 7.28 7.23 13,30 209.79 49.58 215.59 201.09 14.50 14.864 3,400.00 3,400.00 3,487.02 3,485.94 7.73 7.64 18.10 209.79 57.45 217.59 202.66 14.92 14.579 3,500.00 3,681.42 3,652.27 7.91 7.81 20.80 209.79 79.65 224.78 209.10 15.68 14.321 3,600.00 3,564.17 3,562.27 7.91 7.81 20.80 209.79 79.65 224.78 209.10 15.68 14.301 3,700.00 3,699.78 3,681.44 3,677.83 8.14 8.09 -68.23 209.79 19.69 24.78 209.10 15.68 14.255 3,900.00 3,997.78 3,780.77 3,75.65<			2,895.00	2,895.00	6.38	6.37	11.80	209.79	43.83	214.32	201.57	12.75	16.808		
3.200.00 3.193.70 3.193.69 7.05 7.03 12.12 209.79 45.04 214.58 200.49 14.08 15.235.ES 3.300.00 3.201.07 3.291.97 3.291.85 7.28 7.23 13.30 209.79 45.68 215.59 201.09 14.50 14.864 3.400.00 3.487.02 3.485.94 7.73 7.64 18.10 209.79 57.45 217.59 202.66 14.92 14.579 3.500.00 3.564.17 3.562.27 7.91 7.86 71.66 209.79 79.69 224.78 209.10 15.68 14.301 3.700.00 3.690.96 3.681.44 3.677.83 8.14 8.09 -68.23 209.79 99.69 231.97 215.75 16.22 14.301 3.700.00 3.699.34 3.80.44 3.877.83 8.14 8.09 -68.23 209.79 134.25 241.68 245.91 17.09 14.1301 3.800.00 3.993.44 3.873.81 8.55 8.60 63.98 209.79 134.25 241.62 14.92 14.1301	3,000.00	3,000.00	2,995.00	2,995.00	6.60	6.60	11.80	209.79	43.83	214 32	201.12	13.20	16 236		
3.200.00 3.193.70 3.193.69 7.05 7.03 12.12 209.79 45.04 214.58 200.49 14.08 15.235.ES 3.300.00 3.201.07 3.291.97 3.291.85 7.28 7.23 13.30 209.79 45.68 215.59 201.09 14.50 14.864 3.400.00 3.487.02 3.485.94 7.73 7.64 18.10 209.79 57.45 217.59 202.66 14.92 14.579 3.500.00 3.564.17 3.562.27 7.91 7.86 71.66 209.79 79.69 224.78 209.10 15.68 14.301 3.700.00 3.690.96 3.681.44 3.677.83 8.14 8.09 -68.23 209.79 99.69 231.97 215.75 16.22 14.301 3.700.00 3.699.34 3.80.44 3.877.83 8.14 8.09 -68.23 209.79 134.25 241.68 245.91 17.09 14.1301 3.800.00 3.993.44 3.873.81 8.55 8.60 63.98 209.79 134.25 241.62 14.92 14.1301	3 100 00	3 100 00	3 095 00	2 005 00	6 93	6 82	11.00	200 70	42.02	~ ~ ~ ~ ~	000.07			•	
3,300.00 3,291.97 3,291.95 7,28 7,23 13,30 209.79 49.58 215.59 201.09 14,50 14,664 3,400.00 3,407.00 3,485.92 3,485.94 7,73 7,64 18.10 209.79 57,45 217,59 202.66 14,92 14,579 3,500.00 3,607.02 3,485.94 7,73 7,64 18.10 209.79 68.55 220.89 205.55 15.35 14,395 3,500.00 3,600.00 3,564.17 3,562.27 7.91 7,81 20.80 209.79 79.69 224.78 209.10 15.68 14,332 3,600.00 3,699.63 3,681.44 3,677.83 8.14 8.09 68.23 209.79 95.69 231.97 215.75 16.62 14,301 3,700.00 3,699.63 3,691.43 3,677.83 8.14 8.09 68.23 209.79 116.94 237.39 220.73 16.65 14.255 3,900.00 3,978.70 3,960.33 3,972.18 8.60 63.05 209.79 134.25 241.68 224.59 1															
3,400.00 3,389.82 3,389.38 7 50 7.43 15.31 209 79 57.45 217.59 202.66 14.92 14.579 3,500.00 3,680.00 3,681.02 3,685.94 7 73 7.64 18.10 209 79 68.55 220.89 205.55 15.35 14.395 3,500.00 3,560.00 3,561.27 7.91 7.81 20.80 209.79 79.69 224 78 209.10 15.68 14.322 3,600.00 3,560.35 3,581.22 7.95 7.86 -71.68 209.79 99.69 231.97 215.75 16.62 14.301 3,700.00 3,699.96 3,681.44 3,677.83 8.14 8.09 -68.23 209.79 136.42 24.17.89 202.73 16.65 14.255 3,900.00 3,997.87 3,960.73 3,775.65 8.34 8.55 8.60 -63.96 209.79 148.12 241.11 226.66 17.46 13.985 3,900.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60														5	
3,500.00 3,687.02 3,487.02 3,485.94 7 73 7,64 18.10 209.79 68.55 220.89 205.55 15.35 14.395 3,500.00 3,560.00 3,564.17 3,562.27 7.91 7,81 20.80 209.79 79.69 224 78 209.10 15.68 14.301 3,600.00 3,680.00 3,581.36 3,581.22 7.95 7.86 -71.68 209.79 99.69 231.97 215.75 16.22 14.301 3,700.00 3,699.96 3,681.44 3,677.83 8.14 8.09 -68.23 209.79 116.94 237.39 220.73 16.65 14.255 3,900.00 3,799.78 3,780.77 3,775.65 8.34 63.16 209.79 134.25 241.68 224.59 17.09 14.138 3,980.00 3,978.70 3,960.34 3,952.49 8.72 8.82 -63.18 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.59															
3,580.00 3 564.17 3,562.27 7.91 7.81 20.80 209.79 79.69 224.78 209.10 15.68 14.332 3,600.00 3,630.00 3,583.36 3,581.22 7.95 7.66 -71.68 209.79 82.79 225.93 210.13 15.80 14.301 3,700.00 3,699.96 3,681.44 3,677.83 81.44 8.09 68.23 209.79 99.69 231.97 215.75 16.22 14.301 3,800.00 3,799.78 3,780.77 3,775.65 8.34 8.34 65.66 209.79 116.94 237.39 220.73 16.65 14.255 3,900.00 3,899.34 3,880.44 3,873.81 8.55 8.60 -63.96 209.79 148.12 244.11 226.66 17.46 13.985 4,000.00 3,998.51 3,980.33 3,972.18 8.76 8.87 63.05 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 168.95															
3,600.00 3,583.36 3,581.22 7.95 7.86 -71.68 209.79 82.79 225.93 210.13 15.80 14.301 3,700.00 3,699.96 3,681.44 3,677.83 8.14 8.09 -68.23 209.79 99.69 231.97 215.75 16.22 14.301 3,800.00 3,799.78 3,780.77 3,775.65 8.34 8.34 -65.66 209.79 116.94 237.39 220.73 16.65 14.255 3,900.00 3,899.34 3,880.44 3,873.81 8.55 8.60 -63.96 209.79 134.25 241.68 224.59 17.09 14.138 3,980.00 3,978.70 3,960.34 3,952.49 8.72 8.82 -63.18 209.79 148.12 244.11 226.66 17.46 13.985 4,000.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,000.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95											200.00				
3,700.00 3,699.96 3,681.44 3,677.83 8.14 8.09 -68.23 209.79 99.69 231.97 215.75 16.22 14.301 3,800.00 3,799.78 3,760.77 3,775.65 8.34 8.34 -65.66 209.79 116.94 237.39 220.73 16.65 14.255 3,900.00 3,899.34 3,880.44 3,873.81 8.55 8.60 -63.96 209.79 134.25 241.68 224.59 17.09 14.138 3,980.00 3,978.70 3,960.34 3,952.49 8.72 8.82 -63.18 209.79 148.12 244.11 226.66 17.46 13.985 4,000.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>79.69</td> <td>224 78</td> <td>209.10</td> <td>15.68</td> <td>14.332</td> <td></td> <td></td>									79.69	224 78	209.10	15.68	14.332		
3,800.00 3,799.78 3,780.77 3,775.65 8.34 8.34 -65.65 209.79 116.94 237.39 220.73 16.65 14.255 3,900.00 3,899.34 3,860.44 3,873.81 8.55 8.60 -63.96 209.79 134.25 241.68 224.59 17.09 14.138 3,960.00 3,978.70 3,960.34 3,952.49 8.72 8.82 -63.18 209.79 134.25 241.68 224.59 17.09 14.138 3,960.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 166.30 249.53 231.01 18.52 13.473 4,300.00 4,295.59 4.280.14 4.267.43 9.45 9.73 -61.25 209.79 <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>210.13</td> <td></td> <td>14.301</td> <td></td> <td></td>				•							210.13		14.301		
3,900.00 3,899.34 3,880.44 3,873.81 8.55 8.60 -63.96 209.79 134.25 241.68 224.59 17.09 14.138 3,980.00 3,978.70 3,960.34 3,952.49 8.72 8.82 -63.18 209.79 148.12 244.11 226.66 17.46 13.985 4,000.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 168.30 249.53 231.01 18.52 13.473 4,300.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,300.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 <td></td> <td>14.301</td> <td></td> <td></td>													14.301		
3.980.00 3.978.70 3.960.34 3.952.49 8.72 8.82 -63.18 209.79 148.12 244.11 226.66 17.46 13.985 4,000.00 3.998.51 3.980.33 3.972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4.097.53 4.080.27 4.070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4.200.00 4.196.56 4.180.20 4.169.01 9.22 9.44 -61.84 209.79 186.30 249.53 231.01 18.52 13.473 4.300.00 4.295.59 4.280.14 4.267.43 9.45 9.73 -61.25 209.79 203.65 252.04 233.02 19.02 13.249 4.380.00 4.374.81 4.360.08 4.346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4.400.00 4.394.60 4.360.06 4.464.31 9.95 10.34 60.65 209 79 <td></td>															
4,000.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 186.30 249.53 231.01 18.52 13.473 4,300.00 4,295.59 4,280.14 4,267.43 9.45 9.73 -61.25 209.79 203.65 252.04 233.02 19.02 13.249 4,380.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,400.00 4,394.60 4,360.07 4,365.85 9.70 10.03 -60.65 209.79 221.01 254.54 235.01 19.53 13.033 4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 60.44 209.79 </td <td>3,900.00</td> <td>3,899.34</td> <td>3,880.44</td> <td>3,873.81</td> <td>8.55</td> <td>8.60</td> <td>-63.96</td> <td>209.79</td> <td>134.25</td> <td>241.68</td> <td>224.59</td> <td>17.09</td> <td>14.138</td> <td></td> <td></td>	3,900.00	3,899.34	3,880.44	3,873.81	8.55	8.60	-63.96	209.79	134.25	241.68	224.59	17.09	14.138		
4,000.00 3,998.51 3,980.33 3,972.18 8.76 8.87 -63.05 209.79 151.59 244.60 227.05 17.55 13.937 4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 186.30 249.53 231.01 18.52 13.473 4,300.00 4,295.59 4,280.14 4,267.43 9.45 9.73 -61.25 209.79 203.65 252.04 233.02 19.02 13.249 4,380.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,400.00 4,394.60 4,360.07 4,365.85 9.70 10.03 -60.65 209.79 221.01 254.54 235.01 19.53 13.033 4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 60.44 209.79 </td <td>3,980,00</td> <td>3.978 70</td> <td>3,960 34</td> <td>3 952 49</td> <td>A 72</td> <td>8 82</td> <td>-63.18</td> <td>200 70</td> <td>149 12</td> <td>244.11</td> <td>776 FF</td> <td>17 40</td> <td>13 005</td> <td></td> <td></td>	3,980,00	3.978 70	3,960 34	3 952 49	A 72	8 82	-63.18	200 70	149 12	244.11	776 FF	17 40	13 005		
4,100.00 4,097.53 4,080.27 4,070.59 8.99 9.15 -62.44 209.79 168.95 247.05 229.02 18.03 13.702 4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 168.03 249.53 231.01 18.52 13.473 4,300.00 4,295.59 4,280.14 4,267.43 9.45 9.73 -61.25 209.79 203.65 252.04 233.02 19.02 13.249 4,380.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,400.00 4,394.60 4,360.07 4,365.85 9.70 10.03 -60.65 209.79 221.01 254.54 235.01 19.53 13.033 4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 -60.44 209.79 238.37 255.87 235.83 20.04 12.767 4,600.00 4,591.28 4,580.02 4,552.75 10.23 10.65 -60.97 209.7				-											
4,200.00 4,196.56 4,180.20 4,169.01 9.22 9.44 -61.84 209.79 186.30 249.53 231.01 18.52 13.473 4,300.00 4,295.59 4,280.14 4,267.43 9.45 9.73 -61.25 209.79 203.65 252.04 233.02 19.02 13.249 4,380.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,400.00 4,394.60 4,360.07 4,365.65 9.70 10.03 -60.65 209.79 221.01 254.54 235.01 19.53 13.033 4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 -60.44 209.79 238.37 255.87 235.83 20.04 12.767 4,600.00 4,591.28 4,580.02 4,562.75 10.23 10.65 -60.97 209.79 255.73 255.48 234.69 20.58 12.411 4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209															
4,300.00 4,295.59 4,280.14 4,267.43 9.45 9.73 -61.25 209.79 203 65 252.04 233.02 19.02 13.249 4,380.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,400.00 4,394.60 4,360.68 9.70 10.03 -60.65 209.79 221 01 254.54 235 01 19.53 13.033 4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 -60.44 209.79 238.37 255.87 235.83 20.04 12.767 4,600.00 4,591.28 4,580.02 4,552.75 10.23 10.65 -60.97 209.79 255.73 255.48 234.89 20.58 12.411 4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209.79 273.06 253.44 232.28 21.17 11.973															
4,380.00 4,374.81 4,360.08 4,346.16 9.65 9.97 -60.79 209.79 217.54 254.07 234.64 19.43 13.076 4,400.00 4,394.60 4,360.07 4,365.85 9.70 10.03 -60.65 209.79 221.01 254.54 235.01 19.53 13.033 4,500.00 4,493.26 4,460.31 9.95 10.34 -60.44 209.79 238.37 255.87 235.83 20.04 12.767 4,600.00 4,591.28 4,560.05 10.23 10.65 -60.97 209.79 255.73 255.48 234.89 20.58 12.411 4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209.79 273.06 253.44 232.28 21.17 11.973															
4,400.00 4,394.60 4,360.07 4,365.85 9.70 10.03 -60.65 209.79 221.01 254.54 235.01 19.53 13.033 4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 -60.44 209.79 238.37 255.87 235.83 20.04 12.767 4,600.00 4,591.28 4,580.02 4,562.75 10.23 10.65 -60.97 209.79 255.73 255.48 234.89 20.58 12.411 4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209.79 273.06 253.44 232.28 21.17 11.973										202.01	200.02	10.02			
4,500.00 4,493.26 4,480.06 4,464.31 9.95 10.34 -60.44 209.79 238.37 255.87 235.83 20.04 12.767 4,600.00 4,591.28 4,580.02 4,562.75 10.23 10.65 -60.97 209.79 255.73 255.48 234.89 20.58 12.411 4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209.79 273.06 253.44 232.28 21.17 11.973									217.54	254.07	234.64	19.43	13.076		
4,600.00 4,591.28 4,580.02 4,562.75 10.23 10.65 -60.97 209.79 255.73 255.48 234.89 20.58 12.411 4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209.79 273.06 253.44 232.28 21.17 11.973										254 54	235 01	19.53	13.033		
4,700.00 4,688.55 4,679.83 4,661.05 10.54 10.97 -62.24 209.79 273.06 253.44 232.28 21.17 11.973											235.83	20.04	12.767		
4,800.00 4,784.96 4,779.38 4,759.08 10.88 11.29 -64.27 209.79 290.34 249.99 228.18 21.81 11.462	4,700.00	4,668.55	4,679.83	4,661.05	10.54	10.97	-62.24	209.79	273.06	253 44	232 28	21.17	11.973		
	4,800.00	4,784.96	4,779.38	4,759.08	10 88	11,29	-64 27	209 79	290 34	240 00	228 1P	21.81	11 460		
CC - Min centre to center distance or covergent point SE - min separation factor, ES - min ellipse separation				_											

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

10/11/2017 12:49:27PM

T

Anticollision Report

Company:	CL&F Operating LLC
Project:	Eddy County, NM (NAD 83)
Reference Site:	Sec 5, T20S, R30E
Site Error:	0.00 ft
Reference Well:	Crazy Horse 3H
Well Error:	0.00 ft
Reference Wellbore	Wellbore #1
Reference Design:	Plan #1

Local Co-ordinate Reference:WeTVD Reference:KEMD Reference:GrNorth Reference:GrSurvey Calculation Method:MiOutput errors are at2.0Database:EDOffset TVD Reference:Of

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

	esign		T20S, R						-					-
urvey Pro Refer	gram: 0-N rence	WD Offs	et	Semi Majo	r Axis				Dist	8068			Offset Well Error:	0.0
easured		Measured	Vertical	Reference	Offset	Highside	Offset Wellbo	re Centre	Between	Between	Minimum	Separation	Warning	
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Toolface (*)	+N/-S (R)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)		wanning	
4.900.00	4,880.38	4,878.53	4,856.73	11.25	11.61	-67.11	209.79	307.56	245.45	222.93		10.897		
5,000.00	4,880.38	4,878.53	4,858.73	11.68	11.94	-70.81	209.79	307.56	245.45	217.02	22.52 23.33	10.897		
5,100.00	5,067.79	5,075.19	5,050.40	12.15	12.26	-75.42	209.79	341.71	240.34	211.02	23.33	9.718		
5,200.00	5,159.57	5,172.46	5,146.19	12.68	12.59	-80.96	209.79	358.60	231,34	206.15	25.19	9.185		
5,300.00		5,268.85	5,241.12	13.28	12.92	-87.35	209.79	375.34	229.43	203.24	26.19	8,760		
5,313.57	5,262.04	5,281.86	5,253.93	13.37	12 96	-88.27	209.79	377.60	229.40	203.07	26.33	8.713		
5,351.06	5,295.42	5.317.69	5,289.22	13.61	13 08	-90.89	209.79	383.82	229.66	202.96	26.69	8.603		
5,400.00	5,338.87	5,364.39	5,335.21	13.95	13 24	-94.36	209.79	391.93	230.81	203.65	27.15	8.500		
5,500.00	5,427.63	5,459.79	5,429.16	14.65	13 57	-101.30	209.79	408.50	235.98	207.99	27,99	8 430 5	F	
5,600.00		5,555.19	5,523.11	15.38	13.90	-107.87	209.79	425.06	244.75	216.05	28.70	8.529		
5,700.00	5,605.16	5,650.60	5,617.07	16.14	14.24	-113.95	209.79	441.63	256.73	227.46	29.27	8.771		
5,800.00	5,693.93	5,746.00	5,711.02	16.92	14.57	-119.48	209.79	458.20	271.51	241.77	29.74	9.128		
5,900.00		5,841.40	5,804.98	17.73	14 91	-124.42	209.79	474.76	288.65	258.51	30.14	9.576		
5,000.00	5,871.45	5,936.81	5,898.93	18.54	15.25	-128.82	209.79	491.33	307.77	277.27	30.49	10.093		
6,100.00		6.032.21		19.38	15.59	-132.70	209.79	507.90	328.51	297.68	30 82	10.658		
6,200.00		6,127.61	6,086.84	20.22	15.93	-136 14	209.79	524.46	350.58	319.44	31.14	11.258		
5,300.00		6,223.02	6,180.79	21.08	16.27	-139 17	209.79	541.03	373 76	342.30	31.46	11.880		
5,400.00	6,226.51	6,318.42	6,274.74	21.95	16.61	-141,85	209.79	557.60	397 85	366.06	31 79	12.515		
5,500.00		6,413.82	6,368.70	22.83	16.96	-144 24	209.79	574,16	422 69	390.55	32.13	13.154		
5,600.00 5,700.00	6,404.04 6,492.81	6,509.23 6,604.63	6,462.65 6,556.61	23.71 24.60	17.31 17.65	-146.36 -148.26	209.79 209.79	590.73 607 30	448.15 474.15	415.66 441.28	32,49 32,86	13.793 14,427		
6,800.00	6,581.57	6,700.03	6,650.56	25.50	18.00	-149.96	209,79	623.86	500.59	467.33	33.25	15.054		
6,900.00	6,670.34	6,795.44	6,744.51	26.40	18.35	-151.49	209.79	640.43	527.40	493.75	33.66	15,670		
7,000.00		6,890.84	6,838.47	27.31	18.70	-152.88	209.79	657.00	554.54	520.47	34.07	16.274		
7,100.00		6,986.24	6,932.42	28.23	19.05	-154.14	209.79	673.56	581.96	547.45	34.51			
7,200.00	6,936.63	7,081.65	7,026.38	29.14	19.40	-155.29	209.79	690.13	609.62	574.67	34,95	17.442		
7,300.00	7,025.40	7,177.05	7,120.33	30 07	19.76	-156.33	209,79	706.70	637.49	602,08	35.41	18.005		
7,400.00	7,114.16	7,272.45	7,214.28	30,99	20.11	-157.30	209.79	723 26	665.54	629.66	35.87	18.553		
7,500.00	7,202.93	7,357.43	7,298.03	31.92	20.40	-158.10	209.79	737 64	694.18	657.84	36.33	19,106		
7,600.00	7,291.69 7,380.46		7,374.18	32.85	20.62	-158.84	209.79	748.73	725.15	688.38	36.77	19.724		
7,700.00		7,509.87	7,449,14	33.78	20.81	-159.58	209.79	757.63	758.59	721.41	37.17	20.406		
7,800.00	7,469.22	7,583.83	7,522.79	34.72	20.98	-160.31	209.79	764 42	794.46	756.89	37,57	21.146		
7,900.00	7,557,99 7,646.75	7,656.22 8,959.00	7.595.02 8,370.82	35.66 36.60	21,13 32.62	-161.03 156.79	209.79 -314.29	769 23 1,311.06	832.70 816.74	794.75 767.39	37.95 49.35	21.940 16.549		
3,100.00	7,735.52	8,985.06	8,370.92	30.00	33.05	154.59	-314.29	1,317.00	756.24	704.89	49.35	16.349		
8,200.00	7,824.28	9,010.36	8,371.01	38.48	33,46	152.41	-354.16	1,343,42	703.66	650.25	53.41	13.175		
8,300.00	7,913.05	9,034.92	8,371.10	39.43	33.87	150.26	-373.53	1,358 52	660.94	605.42	55.51	11.906		
3,400.00	8,001.81	9,058,77	8,371.19	40.38	34,26	148,14	-392.53	1,372.95	630.15	572.51	57.64	10.932		
8,440.43	B,037.70	9,068.22	8,371.23	40.76	34.42	147.30	-400,10	1,378.59	621.52	563.02	58.50	10.624		
3,450.00 3,500.00	8,046.16 8,089.06	9,070.47 9,083.14	8,371.23 8,371.28	40.85 41.39	34.45 34.66	147 <u>.</u> 28 146.81	-401.91 -412.12	1,379.93 1,387.44	619.89 615.80	561.36 557.01	58.53 58.78	10.590 10.476		
8,502.47	8,091.11	9,083.80	8,371.28	41.42	34.68	146.77	-412.66	1,387,83	615,79	556.98	58,80	10,472		
9,550.00	8,129.56	9,100.00	8,371,34	42.01	34.95	145.50	-425.78	1,397.31	619,13	559,71	59.42	10.420		
9,600.00	8,167.37	9,112.44	8,371.39	42.71	35,15	144.08	-435.92	1,404.52	629.60	569.67	59,93	10.505		
3,650.00	8,202.18	9,128.67	8,371.45	43,50	35.41	141.84	-449.22	1,413.83	646.70	585.72	60,98	10 604		
3,700.00	8,233.73	9,145.68	8,371.51	44.37	35.69	138.96	-463.24	1,423,47	669.69	607.20	62.49	10.718		
8,750.00	8,261.79	9,163.28	8,371.58	45.30	35.98	135.39	-477.83	1,433.30	697.73	633.19	64 53	10 812		
8,800.00	8,286.14	9,181.25	8.371.65	46.30	36.28	131.04	-492.82	1,443.21	729.96	662.76	67.20	10.862		
8,850.00	8,306.59	9,200.00	8,371.72	47.36	36.60	125.80	-508.57	1,453.39	765.59	695.07	70.52	10.856		
8,900.00	8,322.99	9,217.59	8,371.78	48.47	36.88	119.74	-523.43	1,462.80	803 88	729 61	74.27	10.824		
8,950.00	8,335.22	9,235.62	8,371.85	49 61	37,17	112.72	-538.75	1,472.31	844.17	765.91	78.26	10,787		
000.00	8,343 17	9,253.35	9 271 02	50.77	37.46	104.89	-553.90	1,481.51	885.90	803.89	82.01	10.802		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company:CL&F Operating LLCProject:Eddy County, NM (NAD 83)Reference Site:Sec 5, T20S, R30ESite Error:0.00 ftReference Well:Crazy Horse 3HWell Error:0.00 ftReference WellboreWellbore #1Reference Design:Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Offset D	esign	Sec 5.	T205, R	30E - Solu	tion Fee	1H-Plann	ed COG - We	elibore #1	- Design #	#1			Offset Site Error:	0.00 ft
	gram: 0-N	WD											Offset Well Error:	0.00 ft
Refer		Offs		Semi Major					Dist					
Measured		Measured	Vertical	Reference	Offset	Highside	Offset Wellbo		Between		Minimum	Separation	Warning	
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(ft)	(ft)	Toolface (")	+N/-S (ft)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor		
9,050.00	8,346.80	9,270.64	8.371.98	51.95	37.75	96.48	-568,76	1.490.35	928.59			40.007		
9.059.86	8,346.80	9,270.84	8,372.00	52.18	37.80	96.48 94,78	-500,76	1,490.35	926.59 937.08	843.61 851.65	84.98 85.43	10.927 10.969		
9,100.00	8,347.47	9,300.00	8,372.09	53.13	38.23	94,75 94,56	-594.17	1,505.06	97191	885.27	86.64	11.218		
9,200.00	8,348.66	9,319.48	8,372.17	55.53	38.54	94.41	-611.16	1,514.60	1,058 82	969.62	89.20	11.870		
9,300.00		9,349.72	8,372.28	57.96	39.03	94,18	-637.71	1,529.06	1,146.67	1,054,77	91.90	12.478		
9,400.00		9,378.25	8,372.39	60.41	39.49	93.99	-662.98	1,542.32	1,235.24	1,140.64	94.60	13.057		
9,500.00	8,352.20	9,400.00	8,372.47	62.89	39.85	93.86	-682.37	1,552,17	1,324.50	1,227.23	97.27	13.617		
9,600.00	8,353.38 8,354.56	9,430.73	8,372.59	65.40 67.92	40.33 40.71	93.68	-709.95	1,565.71	1,414.34	1,314.33	100.01	14.142		
9,700.00	8,355.74	9,454.90 9,500.00	8,372.68 8,372.85	70,46	40.71	93.55 93.33	-731.80 -772.90	1,576.05 1,594.60	1,504.77 1,596.00	1,402.05	102.72 105.60	14.650 15.113		
9,900,00		9,500.00	8,372.85	73.01	41.43	93,33	-772,90	1,594.60	1,687,14	1,578.99	108.16	15.599		
		-,	-,							.,		10.000		
10,000.00	8,358.10	9,500.00	8,372.85	75,59	41.43	93.33	-772.90	1,594.60	1,779.24	1,668.52	110.73	16.069		
10,100.00	8,359.28	9,539.90	8,373.01	78.17	42.04	93,15	-809.63	1,610.20	1,871,31	1,757.73	113.58	16,476		
10,200.00	8,360.46	9,558.63	8,373 08	80.76	42.32	93.08	-826.97	1,617.26	1,963.98	1,847.69	116.30	16.888		
10,300.00	8,361.64	9,600.00	8,373.23	83.37	42.97	92.92	-865.54	1,632.24	2,057.29	1,938 12	119.18	17.263		
10,400.00	8,362.82	9,600 00	8,373 23	85.98	42.97	92.92	-865.54	1,632.24	2,150.40	2,028.61	121.79	17.657		
10,500.00	8,364.01	9,600.00	8,373 23	88.61	42.97	92.92	-865.54	1,632.24	2,244.09	2,119.68	124.41	18.038		
10,600.00	8,365.19	9,600.00	8,373.23	91.24	42 97	92.92	-865 54	1,632.24	2,338.31		127.04	18,406		
10,700.00	8,366.37	9,640.18	8,373.39	93.88	43.56	92.78	-903 29	1,645.99	2,432.24	2,302.33	129.91	18,723		
10,800.00	8,367.55	9,654.41	8,373,44	96.52	43,77	92.74	-916 73	1,650.67	2,526.72	2,394.09	132.63	19.050		
10,900.00	8,368.73	9,668.06	8,373.49	99.17	43.98	92.70	-929.65	1,655.06	2,621.44	2,486.08	135.36	19.366		
11,000.00	8,369.91	9,700 00	8,373.61	101.83	44.46	92.60	-960.01	1,664,98	2,716.55	2,578.34	138.20	10 665		
11,100.00	8,371.09	9,700 00	8,373.61	101.83	44.46	92.60	-960.01	1,664,98	2,710.55	2,578.34	140.86	19.656 19.960		
11,200.00	8,372.27	9,700 00	8,373.61	107.16	44.46	92.60	-960.01	1,664.98	2,906.90	2,763.38	143.53	20.253		
11,300.00	8.373.45	9,700.00	8,373.61	109.83	44.46	92.60	-960.01	1,664,98	3,002.55	2,856.36	146.20	20.538		
11,400.00	8,374.63	9,700.00	8,373.61	112.51	44,46	92.60	-960.01	1,664.98	3,098.48	2,949.61	148.87	20.813		
					_									
11,500.00	8,375.81	9,739.22	8,373.76	115.19	45.02	92.49	-997 52	1,676.46	3,194.01		151.74	21.049		
11,600.00	8,376.99 8,378 18	9,749.56 9,759 52	8,373.80 8,373.84	117.87 120.56	45.17 45.31	92.47 92.44	-1,007.44 -1,017.01	1,679.36	3,290.04	3,135.57	154.47	21.299		
11,800.00	8,379 36	9,800.00	8,373.99	123.25	45.90	92.34	-1,056.07	1,682.10 1,692.72	3,386.21	3,229.01 3,322.83	157.20 160.08	21.540 21.757		
11,900.00	8,380.54	9,800.00	8,373.99	125.94	45.90	92.34	-1,056.07	1,692 72	3,579 16	3,416 39	162 78	21.988		
									-,					
12,000.00	8,381.72	9,800.00	8,373.99	128 64	45 90	92 34	-1,056.07	1,692.72	3,675.61		165.47	22.213		
12,100.00	8,382.90	9,600.00	8,373.99	131.34	45 90	92.34	-1.056.07	1,692.72	3,772.25	3,604 08	168.17	22.432		
12,200.00	8,384.08	9,800.00	8,373.99	134.04	45.90	92.34	-1,056.07	1,692.72	3,869.05	3,698.19	170.87	22.644		
12,300.00	8,385.26	9,800.00 9,800.00	8.373.99	136.74	45.90	92.34	-1,056.07	1,692.72	3,966.02		173.57	22.850		
12,400.00	8,386.44	3,000.00	8,373.99	139,44	45.90	92.34	-1,056.07	1,692.72	4,063.13	3.886 86	176.27	23.050		
12,500.00	8,387.62	9,800.00	8,373.99	142.15	45.90	92,34	-1,056.07	1,692.72	4,160.37	3,981.40	178.98	23.245		
12,600.00	8,388.80	9,835.11	8,374.12	144.86	46.39	92.27	-1,090.13	1,701.27	4,257.28	4,075.46	181.82	23.415		
12,700.00	8,389.98	9,842.21	8,374.15	147.57	46.49	92.25	-1.097.03	1,702.92	4,354.57	4,170.01	184.56	23.595		
12,800.00	8,391.16	9,849.09	8,374.17	150.28	46.58	92.24	-1,103.73	1,704.49	4,451.95	4,264.65	187 30	23.770		
12,900.00	8,392.34	9,855.76	8,374.20	153.00	46.67	92.22	-1,110.23	1,706.00	4,549.40	4,359.37	190.03	23.940		
13,000.00	8 303 53	9,862.24	8,374.22	155.71	46.76	92.21	-1 116 54	1,707.44	4 646 03	A 454 15	103 77	24 100		
13,100.00	8,394.71	9,900.00	8,374.22 8,374.36	158.43	40.70	92.21	-1,116.54 -1,153.46	1,707.44		4,454.16 4,549 27	192.77 195.63	24.106 24 254		
13,200.00	8,395.89	9,900.00	8,374.36	161.15	47.29	92.13	-1,153.46	1,715.40	4,744.90	4,549 27	195.63	24 254 24,413		
13,300.00	8,397.07	9,900.00	8,374.36	163.87	47.29	92.13	-1,153.46	1,715.40	4,940.09	4,739.02	201.07	24,413		
13,400.00	8,398.25	9,900.00	8,374.36	166.59	47.29	92.13	-1,153.46	1,715.40	5,037.83	4,834.04	203.79	24.721		
13,500.00		9,900.00	8,374.36	169.31	47.29	92.13	-1,153.46	1,715.40		4,929.14	206.51	24.869		
13,600.00	8,400.61	9,900.00	8,374.36	172.04	47,29	92.13	-1,153.46	1,715.40		5,024.33	209 23	25.013		
13,700.00	8,401 79	9,900.00	8,374.36	174.76	47.29	92.13	-1,153.46	1,715,40		5,119.59	211 96	25,154		
13,800.00	8,402 97 8 404 15		8,374 36	177.49	47.29	92.13	-1,153.46	1,715.40		5,214.92	214 68	25.291		
13,900.00	8,404 15	9 900.00	8,374.36	180 21	47.29	92.13	-1,153.46	1,715.40	5,52773	5,310.32	217.41	25.426		
14,000.00	8,405.33	9,900.00	8,374 36	182 94	47 29	92 13	-1,153 46	1,715.40	5,625.92	5,405.79	220.13	25.557		
							ant point CE							

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

10/11/2017 12:49:27PM

Anticollision Report

ł

ì

÷

ł

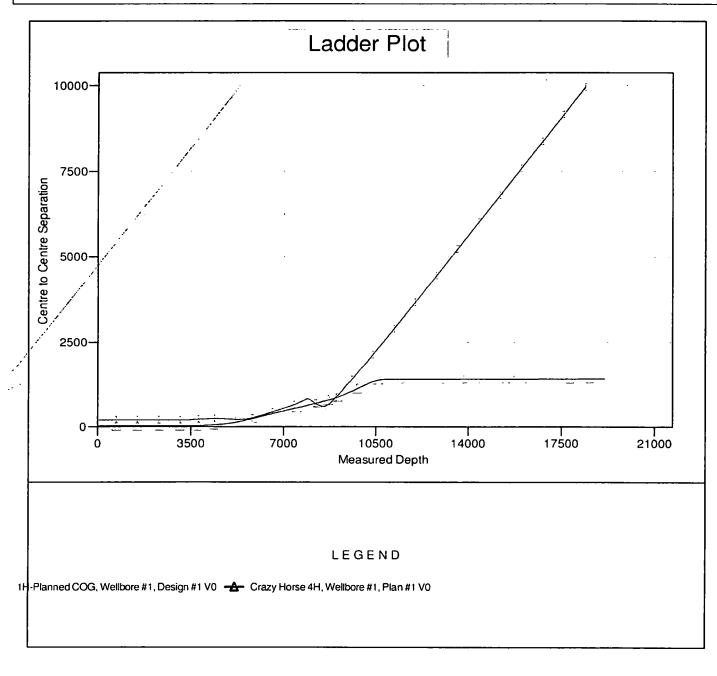
Company:	CL&F Operating LLC
Project:	Eddy County, NM (NAD 83)
Reference Site:	Sec 5, T20S, R30E
Site Error:	0.00 ft
Reference Well:	Crazy Horse 3H
Well Error:	0.00 ft
Reference Wellbore	Wellbore #1
Reference Design:	Plan #1

Local Co-ordinate Reference:WeTVD Reference:KBMD Reference:GriNorth Reference:GriSurvey Calculation Method:MirOutput errors are at2.0Database:EDOffset TVD Reference:Off

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

(ft) 14,100.00 14,200.00 14,300.00 14,400.00 14,500.00 14,600.00	nce	WD Offs Measured Depth (ft) 9,900.00 9,900.00 9,900.00	et Vertical Depth (ft) 8,374.36	Semi Major Reference (ft)		Highside			Dist	ence			Offset Well Error:	0 00 ft						
Measured V Depth I (ft) I 14.100.00 I 14.200.00 I 14.300.00 I 14.400.00 I 14.500.00 I 14.600.00 I	Vertical Depth (ft) 8,406.51 8,407.70 8,408.88 8,410.06	Measured Depth (ft) 9,900.00 9,900.00	Vertical Depth (ft)	Reference		Micheide				11100		Semi Major Axis Distance								
(ft) 14,100.00 14,200.00 14,300.00 14,400.00 14,500.00 14,600.00	(ft) 8,406.51 8,407.70 8,408.88 8,410.06	(ft) 9,900.00 9,900.00	(ft)	(ft)		កាម្លូកទាំងថ	Offset Wellbo	re Centre	Between	Between	Minimum	Separation	Warning							
14,200.00 14,300.00 14,400.00 14,500.00 14,600.00	8,407.70 8,408.88 8,410.06	9,900.00	8,374,36		(ft)	Toolface (*)	+N/-S (ft)	+E/-W (ft)	Centres (ft)		Separation (ft)									
14,300.00 14,400.00 14,500.00 14,600.00	8,408.88 8,410.06			185 67	47.29	92.13	-1,153.46	1,715.40	5,724.18	5,501.32	222.86	25,685								
14,400.00 14,500.00 14,600.00	8,410.06	0 000 00	8,374.36	188.40	47.29	92.13	-1,153.46	1,715 40	5,822.49	5,596.91	225.59	25,810								
14,500.00 14,600.00		3,300,00	8,374.36	191.13	47.29	92.13	-1,153.46	1,715.40	5,920.86	5,692.55	228.32	25.933								
14,600.00	8 411 24	9,900.00	8,374.36	193,86	47.2 9	92.13	-1,153.46	1,715.40	6,019.29	5,788.24	231.05	26.052								
	-	9,940.42	8,374.51	196.59	47.83	92.06	-1,193.13	1,723.12	6,117.20	5,683.31	233.90	26.153								
	8,412.42	9,944.63	8,374.53	199.33	47.88	92.05	-1,197.27	1,723 87	6,215.61	5,978.97	236.64	26.266								
14,700.00	8,413.60	9,948.73	8,374.55	202.06	47.94	92.04	-1,201.31	1,724.60	6,314.05	6.074.67	239.39	26.376								
14,800.00	8,414.78	9,952.74	8,374.56	204.79	47.99	92.04	-1,205.25	1,725 30	6,412.53	6,170,40	242.13	26 484								
14,900.00	8,415.96	9,956.65	8,374.57	207.53	48.04	92. 03	-1,209.11	1,725.98	6,511.05	6,266.17	244.87	26.589								
15,000.00	8,417,14	9,960.47	8,374.59	210.26	48.10	92.02	-1,212.87	1,726.64	6,609.60	6,361,98	247.62	26.693								
15,100.00	8,418.32	10,000.00	8,374.73	213.00	48 63	91.96	-1,251.89	1,732.96	6,708.61	6,458.14	250.47	26.784								
15,200.00	8,419.50	10,000.00	8,374.73	215.73	48.63	91.96	-1,251.89	1,732.96	6,807.15	6,553.94	253.21	26.884								
15,300.00	8,420.68	10,000.00	8,374.73	218.47	48.63	91,96	-1,251.89	1,732.96	6,905.72		255.94	26 982								
15,400.00	8,421.87	10,000.00	8,374,73	221.21	48.63	91,96	1,251.89	1,732.96	7,004.33	6,745.66	258.68									
15,500.00	8,423.05	10,000.00	8,374.73	223.95	48,63	91,96	-1,251.89	1,732.96	7,102.99	6,841.57	261.42									
15,600.00	8,424.23	10,000.00	8,374.73	226.68	48.63	91.96	-1,251.89	1,732.96	7,201.68	6,937.53	264.15									
15,700.00	8,425.41	10,000.00	8,374.73	229 42	48.63	91.96	-1,251.89	1,732.96	7,300 40	7,033.51	266.89	27.354								
15,800.00	8,426.59	10,000.00	8,374.73	232.16	48.63	91.96	-1,251,89	1,732.96	7,399.16	7,129.54	269.63	27,442								
15,900.00	8,427.77	10,000.00	8,374.73	234.90	48.63	91.96	-1,251.89	1,732.96	7,497.96	7,225.59	272,37	27.529								
16,000.00 8	8,428,95	10,000.00	8,374.73	237 64	48.63	91.96	-1,251.89	1,732.96	7,596.78	7.321.68	275 11	27.614								
16,100.00	8,430.13	10,000.00	8,374 73	240.38	48 63	91.96	-1,251.89	1,732.96	7,695.64	7,417.79	277.84	27.698								
16,200.00	8,431.31	10,000.00	8,374.73	243.12	48.63	91.96	-1,251,89	1,732.96	7,794.52	7,513.94	280.58	27.780								
16,300.00 8	8,432,49	10,000.00	8,374.73	245.87	48.63	91.96	-1,251.89	1,732.96	7,893.43	7,610.11	283.32	27.860								
16,400.00	8,433.67	10,000.00	8,374.73	248 61	48.63	91.96	-1,251.89	1,732.96	7,992.37	7,706.31	286.06	27.939								
16,500.00	8,434.85	10,000.00	8,374 73	251.35	48.63	91.96	-1,251.89	1,732.96	8,091.34	7,802.53	288,81									
16.600.00	8,436.03	10,000.00	8,374 73	254.09	48.63	91.96	-1,251.89	1,732.96	8,190.33	7.898.78	291.55									
16,700.00	8,437.22	10,000.00	8,374.73	256.83	48.63	91.96	-1,251.89	1,732.96	8,289.34	7,995.06	294.29	28.167								
16,800.00 8	8,438.40	10,000.00	8,374 73	259.58	48.63	91,96	-1,251.89	1,732.96	8,388.38	8,091,35	297.03	28.241								
16,900,00 8	8,439.58	10,000.00	8,374 73	262.32	48 63	91.96	-1,251,89	1,732.96	8,487.44	8,187.67	299.77	28.313								
17,000.00 8	8,440 76	10,000 00	8,374.73	265.06	48.63	91.96	-1,251.89	1,732.96	8,586.53	8,284.01	302.51	28.384								
17,100.00 8	8,441.94	10,000 00	8,374.73	267.81	48 63	91.96	-1,251.89	1,732.96	8,685.63	8,380.37	305.26	28.453								
17,200.00	8,443 12	10,000 00	8,374.73	270.55	48 63	91.96	-1,251.89	1,732.96	8,784.75	8.476.75	308.00	28.522								
17,300.00 8	8,444.30	10,000.00	8,374.73	273.30	48.63	91.96	-1,251.89	1,732.96	8,883.90	8 573.15	310,74	28.589								
17,400.00 8	8,445.48	10,000 00	8,374.73	276.04	48.63	91.96	-1,251.89	1,732.96	8,983.06	8,669.57	313.49	28.655								
17,500.00 8	8,446.66	10,000.00	8,374.73	278.79	48.63	91.96	-1,251.89	1,732.96	9,082.24	8,766.01	316,23	28.720								
17,600.00 8	8,447.84	10,000 00	8,374,73	281 53	48 63	91 96	-1.251.89	1,732.96	9,181.44	8,862.46	318.97	28.784								
•	8,449.02	10,000 00	8,374.73	284.28	48.63	91.96	1,251.89	1,732,96	9,280.65	8,958.94	321.72	28.847								
•	8,450.20	10,000 00	8,374,73	287.02	48.63	91 96	-1,251.89	1,732.96	9,379.89	9,055.42	324.46	28.909								
	8,451.39	10.042 47	8,374.89	289.77	49.16	91.89	-1,293.95	1,738.85	9,478.57	9,151.27	327.30	28.960								
	8,452.57	10,044.57	8,374.90	292.52	49.19	91 89	-1,296.03	1,739.12	9,577.78	9,247 73	330.05	29.019								
18,100.00 8	8,453.75	10,046.63	8,374.91	295.26	49 22	91 89	-1,298 08	1,739.38	9.677.00	9,344.20	332.80	29.078								
18,200.00 8	8,454.93	10,048.66	8,374.91	298.01	49.24	91.89	-1,300.08	1,739.63	9.776.23	9,440.68	335.55	29.135								
18,300.00	8,456,11	10,050.65	8.374.92	300.76	49.27	91.68	-1,302.06	1,739.88	9,875.48	9,537.18	338.30	29.191								
18,400.00 8	8,457.29	10,052.60	8,374.93	303.50	49.29	91.88	-1,304.00	1,740.12		9,633.69	341.05	29.247								

Anticollision Report

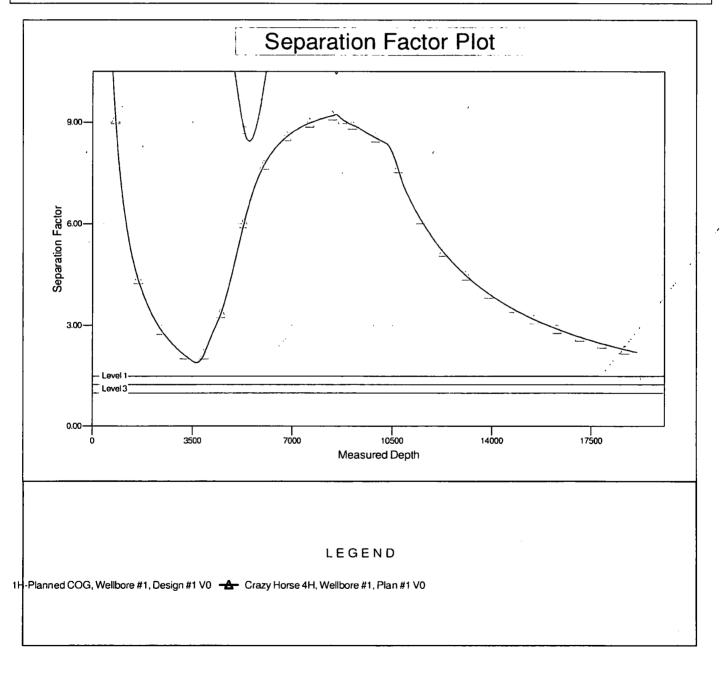

CL&F Operating LLC Company: Eddy County, NM (NAD 83) Project: Reference Site: Sec 5, T20S, R30E Site Error: 0.00 ft Crazy Horse 3H **Reference Well:** 0.00 ft Well Error: Reference Wellbore Wellbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: **Survey Calculation Method:** Output errors are at Database: Offset TVD Reference:

Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Reference Depths are relative to KB=25' @ 3272.00ft Offset Depths are relative to Offset Datum Central Meridian is -104.333334

Coordinates are relative to: Crazy Horse 3H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.18°


Anticollision Report

Company:	CL&F Operating LLC
Project:	Eddy County, NM (NAD 83)
Reference Site:	Sec 5, T20S, R30E
Site Error:	0.00 ft
Reference Well:	Crazy Horse 3H
Well Error:	0.00 ft
Reference Wellbore	Wellbore #1
Reference Design:	Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 3H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Reference Depths are relative to KB=25' @ 3272.00ft Offset Depths are relative to Offset Datum Central Meridian is -104.333334 Coordinates are relative to: Crazy Horse 3H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.18°

DRILL PLAN PAGE 1

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

Drilling Program

1. ESTIMATED TOPS

Formation Name	TVD	MD	Bearing
Quaternary caliche	000′	000′	water
Rustler anhydrite	200′	200'	N/A
Top salt	460′	460′	N/A
Tansill sandstone	1560′	1560′	N/A
Yates sandstone	1777′	1777′	N/A
Seven Rivers gypsum	2076′	2076′	N/A
Capitan Reef limestone	2169'	2169'	water
Delaware sandstone	3532'	3532′	hydrocarbons
Bone Spring carbonate	6270′	6450'	hydrocarbons
1 st Bone Spring sandstone	7487′	7820′	hydrocarbons
(КОР	8037′	8440′	hydrocarbons)
2nd Bone Spring sandstone (& goal)	8143′	8569′	hydrocarbons
TD	8466'	19138′	hydrocarbons

2. NOTABLE ZONES

Second Bone Spring sand is the goal. Closest water well (CP 00644 POD2) is 5412' southeast. Water bearing strata were found from 68' to 285' in the 285' deep well.

3. PRESSURE CONTROL

A 10,000' 2,000 psi and 5,000 psi BOPE system will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams.

A Variance is requested from the BLM for the use of a diverter on the 26" section. A Variance is requested from the BLM for the use of a 20" 3M Annular on the 17 1/2" and 12 1/4" sections.

BOP Installed on this size hole	Section Depth	MW Anticipated	Size	Min Required WP	Device Closure Type (not sequence)	Application	Tested To			
				None	Annular					
					Ram		100%			
26"	321'	9	None		Ram		Diverter			
20	521	5	None	NOTe	none	None	Double Pipe &		Assy - No	
					Blind		Test Used			
					Other - Diverter	x				
					Annular	x				
17.5"				" 2M -	Ram	1	50% of 2000 psi component WP			
	1680'	10	20"		Ram					
	1000				Double Pipe &					
					Blind					
					Other					
					Annular	x	50% of 2000 psi			
					Ram					
12.25"	3480'	8.4	20"	2M	Ram					
12.25	5480	0.4	20		Double Pipe &	1	component			
					Blind		WP			
					Other					
					Annular	x	70% of WP			
					Ram		100% of 5000 psi component WP			
8.75" x 8.5"	8466' TVD 19.137'	0.5	12 625"	5M	Ram					
0./J X 0.5	19,137 MD	9.5	13.625"		Double Pipe &					
					Blind	×				
					Other					

Independent service company will test BOP / BOPE to 250 psi low and the high pressure as listed above. System may be upgraded to a higher pressure, but still tested at % listed for component WP as listed above. If the system is upgraded, all the components for that section will be functional and tested.

Pipe rams will be functionally checked each 24-hour period. Blind rams will be operationally checked on each TOH.

These checks will be noted on the IADC records onsite.

Other BOPE accessories will include a kelly cock, floor safety valve, inside BOP, choke manifold, and lines.

See attached BOPE schematics.

Formation integrity test will be performed per Onshore Order # 2. On exploratory wells, or on that portion of any well approved for a 5M BOPE sytem or greater, a pressure integrity test of each casing shoe shall be performed. All will be tested in accordance with Onshore oil and Gas Order # 2 III.1.i.

A Variance is requested from BLM for the use of a flexible choke line from the BOP to the choke manifold. See attached specifications and hydrostatic test chart.

A Multibowl wellhead (may) be used. The BOP will be tested per Onshore order # 2 after installation on the 1st Intermediate casing (13 3/8" @ 1815') which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken, the system must be tested. <u>Should a conventional wellhead be used, testing provisions will apply to each section as components are set.</u>

4. CASING & CEMENT

All casing will be API and new. See attached casing assumption worksheet.

Hole Size	Interval	Casing Size	Weight (Ibs)	Grade	Joint	мw	SF Collapse	SF Burst	SF Joint Tension	SF Body Tension	
36"	0' - 80'	30" cond.	157.5	H40	Weld	FW	NA	NA	NA	NA	
26"	0' - 350' TVD	20" surface	94	J55	BTC	9.00	3.46	11.14	46.40	49.00	
17.5"	0' - 1680' TVD	13.375" inter. 1	54.5	J55	втс	10.00	1.29	2.75	9.90	9.30	
12.25"	0' - 3480' TVD	9.625" inter. 2	40	J55	LTC	8.40	1.6	1.93	3.73	4.52	
8.75" x 8.5"	0' - 8466' TVD 0' - 19137' MD	5.5" product.	20	P110	Atlas BK	9.50	3.00	1.20	2.20	2.10	
						<u></u>				1.6 Dry	
	BLM Minimum Safety Factor 1.125 1.000 1.8 Wet										
	All casing strings will be tested in accordance with Onshore Oil & Gas Order # 2 III.B.1.h										
Sierra H	Sierra Hamilton standards used for all SF calculations. Collapse 1.3, Burst 1.2, Tension Jt 1.8, Tension Body 2.0										
		Assume	d .70 FG a	nd 100%	evacuati	on of Ga	is @ .11 GF	R			

Special Conditions			
Is casing new? If used, attach certification as required in Onshore Order # 1.	Ŷ		
Does Casing meet API specifications? If no, attach casing specification sheet.	Y		
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N		
Does the above casing design meet or exceed BLM's minimum standards? If not, provide justification (loading assumptions, casing design criteria).	Y		
Will intermediate pipe be kept at least 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y		
Is the well located within the Capitan Reef?	Y		
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Ŷ		
Is well within the designated 4 string boundry?	Y		
Is the well located in SOPA but not R-111-P?			
If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing?			
Is the well located in R-111-P and SOPA?	Y		
If yes, are the first three strings cemented to surface?	Y		
Is 2nd string set 100' to 600' below base of salt?	Y		
Is well located in high Cave / Karst?	Y		
If yes, are there two strings cemented to surface?	Y		
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?			
Is the well located in critical Cave / Karst?	N		
If yes, are there three strings cemented to surface?			

TOC for all casing will be surface.

Casing	Depth	Lead Tail	Sacks	Density PPg	Yield	Volume cu ft	H2O gal/sack	Excess OH	500# Comp Strength (hours)	Blend
30" conduct.	80'		A/R					A/R		Redi Mix
20" surface	321'	Lead	800	14.8	1.34	1072	6.3	100%	7.01	Class C & 2% PF01 (CACl2)
Surrace		Tail	None					100%		

DRILL PLAN PAGE 5

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

13.375" inter. 1	1 1680'	Lead	1200	13.5	1.75	2100	8.9	100%	7.47	Class C & 4% PF120 (Gel) & 1% PF01 (CACl2) & 3# PF42 (Koalseal) & 1/8# PF29 (Cellophane)
		Tail	200	14.8	1.33	266	6.3	100%	4.01	Class C & 1% PF01 (CACl2)
		Lead Stg 1	350	12.6	2.05	717	15.36	50%	11.3	Class C 35/65 Poz & 5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
9.625"		Tail Stg 1	200	14.8	1.32	264	6.3	50%	5.45	Class C & .2% PF13 (Retarder)
inter. 2	3480'				r					
		Lead Stg 2	220	12.6	2.05	451	15.36	50%	16.5	Class C 35/65 Poz & 5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
		Tail Stg 2	200	14.8	1.32	264	6.3	50%	5.9	Class C & .2% PF13 (Retarder)

DRILL PLAN PAGE 6

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

5.5"	19137'	Lead	880	. 11.9	2.47	2173	13.84	25%	62.79	Class H 50/50 Poz & 5% PF44 (Salt) & 10% PF20 (Gel) & .2% PF153 (Anti-settle) & .4# PF45 (Defoam) & 3# PF42 (Koalseal) & 1/8# PF29 (Cellophane)
product.		Tail	2450	14.2	1.31	3209	5.96	25%	23.45	Class H 50/50 Poz & 5% PF44 (Salt) & 2% PF20 (Gel) & .3% FL & .1% PF813 (Retarder) & .2% PF65 (Dispersant) & .3% PF606 (Fluid Loss)
DV Tool de at the time	DV Tool depth(s) will be adjusted based on hole conditions. ECP usage will be determined as per hole conditions									
		l be ad	usted pe	er fluid cal	iper or d	other devic	e if ran, pe	ercentage	excess ma	y increase.
						·····		-	pth 1730 -	
Lab report	s with the	500 ps	i compre	essive stre	ngth tin	nes for all s	lurries will	l be onsite	2.	

Bow spring centralizers will be run on every second joint of the surface casing. Bow spring centralizers will be run on every third joint of the intermediate casing strings. Bow spring centralizers will be run on every fourth joint of the vertical portion of the production casing. Positive centralizers will be run on every second joint of the curve and horizontal portions of the production casing.

5. MUD PROGRAM

Sufficient mud materials to maintain mud properties and meet minimum lost circulation (e. g., cedar bark) and weight increase (e. g., barite, bentonite)

requirements will be on site at all times. A Pason, or similar, system will be used to monitor fluid loss or gain. A closed loop system will be used.

Туре	Interval (MD)	lb/gal	Viscosity	Fluid Loss
fresh water	0' - 321'	8.4 - 9.0	29 - 40	NC
brine water	321' - 1680'	10.0 - 10.1	29 - 32	NC
fresh water	1680' - 3480'	8.4 - 8.7	28 - 32	NC
cut brine	3480' - 19137'	8.4 - 9.5	29 - 36	NC

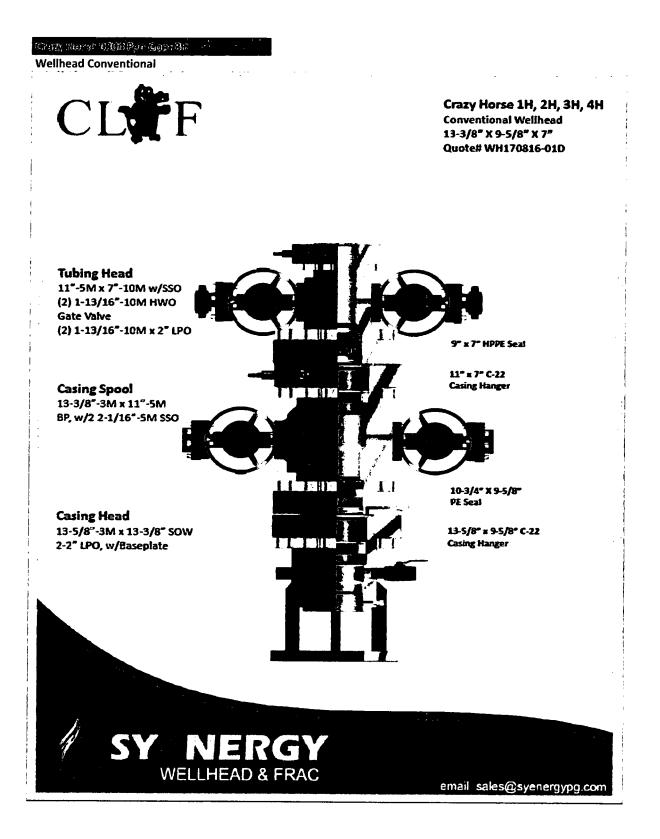
6. <u>CORES, TESTS, & LOGS</u>

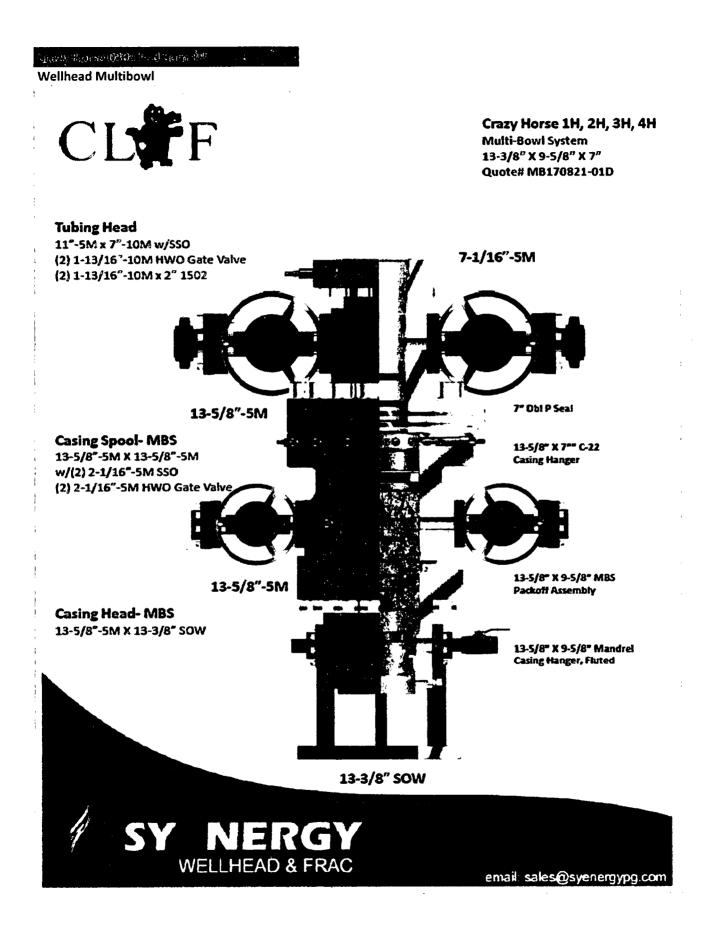
No core or drill stem test is planned. Mud logging program will be used from $\approx 3300'$ to TD. No open hole log is planned at this time. A gyro may be used from surface to first intermediate casing shoe if warranted. GR/MWD will be used from 80' to TD. Completion CBL may be run in vertical to free fall depth of curve 40° ±.

7. DOWN HOLE CONDITIONS

Maximum expected bottom hole pressure is \approx 4182 psi. Expected bottom hole temperature is \approx 140° F. Water flows, lost circulation, and abnormally high pressures are possible from the Sevens Rivers to TD.

H2S is potentially present from the Seven Rivers to TD. H2S monitors will be installed before drilling out of the surface casing. If H2S is detected in concentrations >100 ppm, then CL & F will comply with Onshore Order 6. If H2S is encountered, then CL & F will provide measured values and formations to BLM.


DRILL PLAN PAGE 8


CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

8. OTHER INFORMATION

Anticipated spud date is upon approval. It is expected it will take \approx 3 months to drill and complete the well.

Gray Norse (1910) Seels on 311-

CL**F**F

Production Tree

1

1

Crazy Horse 1H, 2H, 3H, 4H Production Tree 2-9/16⁷⁻5M Quote# WH170816-01D i

Upper Tree Assembly 2-9/16" (FE) A5P-EN 7-1/16"-10M X 2-9/16"-5M, DD TC1A-EN HGR 7-1/16"-10M X 2-7/8" 8Rd EUE Top, w/ 2-7/8" 8Rd EUE 8tm, DD Gate Valve, 2-9/16"-5M, DD Run Tee, 2-9/16"-5M x 2-1/16"-5M, DD Gate Valve, 2-1/16"-5M, DD Wing Adjustable Choke 2-1/16-5M FE X FE, DD,

WEECO 2-1/16"-5M x 2" 1502, DD

TC1A-EN Hanger 7-1/16"-10M X 2-7/8" EUE Top w/ 2-7/8" 8Rd EUE Bottom, DD

Conversion of the second s

5.5 20# P110 BK Connection Data

:

					
Precision Connections I 5.5 in. 20 lb/ft P-110 v		in. Cour	bling OD		
Pipe Body		·	Connection		
Nominal OD	5.500	inches	Coupling OD	6.300	inches
Nominal Weight	20.00	lb/ft	Coupling Length	8.250	inches
Wall Thickness	0.361	inches	Make Up Loss	4.125	inches
Plain End Weight	19.81	lb/ft	Critical Section Area	8.456	in²
Drift	4.653	inches	Internal Pressure Rating	100%	
Nominal ID	4.778	inches	External Pressure Rating	100 %	
Grade	P-110		Tension Efficiency	100%	
Min Yield ;	110,000	lbf/in²	Connection Strength	641	kips
Min Tensile 🕠	125,000	ibf/in²	Compression Efficiency	100%	
Critical Section Area	5.828	in²	Uniaxial Bend Rating	80.0	°/100
Pipe Body Yield Strength	641	kips	Min Make Up Torque	8,300	ft-lbs
Min Internal Yield Pressure	12,640	psi	Yield Torque	32,000	ft-lbs
Collapse Pressure	11,100	psi		v1.1	10/10/

PRECISION CONNECTIONS.LLC P **Torque Data Sheet - Precision Connections BK-HT** 5.5 in. 20 lb/ft P-110 with 6.3 in. Coupling OD Min Måke Up Torque Max Operating Torque 27,200 ft-lbs 8,300 ft-lbs Max Make Up Torque 24,000 Yield Torque ft-lbs 32,000 ft-lbs **Optimum Torque** 11,500 ft-lbs **Representative Torque Turn Graph** 30,000 25.000 24,000 Torque (ft-lbs) 12'000 12'000 12'000 11.500 8,300 5,000 4,000 0 6 Turns o 1 2 3 4 5 10 11 12 8 9 v1.1 10/10/2016

Contraction and a contraction many

Precision Connections BK

•

Semi Premium Connection

Designed Primarily for High Torque Frac Strings

:

1

.....

1

;

, ,

•

.

į

ļ

÷

.

ł

:

.

- Better Buttress Sealing Modified buttress thread for tighter thread sealing and pin nose seal stabilization.
- API Thread Tolarance Verified fit of several major insert manufacturers.

(

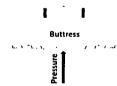
 BK Thread Tolerance – Minimizes thread gap for better thread sealing. <u>Uses g Custom Premium</u> <u>Insert.</u>

Advanced Relief Groove ensures more threads are engaged for maximum sealing. The thicker midpoint cross sectional area provides additional coupling strength.

BK Reflet Groove

and the second s

Dark areas Indicate unengaged thread regions First Generation Relief Groove


That Generation when also

.

 Strength Pin Nose to Pin Nose contact for high torque resistance, higher pressure ratings, higher bending loads and higher structural compressive loading. Smooth Premium Bore with no I-Area to get hung up on.

BK 1750 - Starter



High RPM Fatigue Resistance from Low Stress Runout Threads The BK uses the field proven buttress thread with low stress runout threads to extend the time it can be rotated through a dogleg at high RPM.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

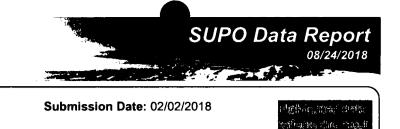
Existing Road Map:

CH_3H_Road_Map_20180125094712.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:


Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES			
New Road Map:			
CH_3H_New_Road_Map_20180125094738.pdf			
New road type: RESOURCE			
Length: 113	Feet	Width (ft.): 30	
Max slope (%): 0		Max grade (%): 1	
Army Corp of Engineers (ACOE) permit required? NO			
ACOE Permit Number(s):			
New road travel width: 14			
New road access erosion control: Crowned and ditched			
New road access plan or profile prepared? NO			
New road access plan attachment:			
Access road engineering design? NO			
Access road engineering design attachment:			

Show Final Text

Well Number: 3H Well Work Type: Drill

Row(s) Exist? NO

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Access surfacing type: OTHER Access topsoil source: ONSITE Access surfacing type description: Caliche Access onsite topsoil source depth: 6 Offsite topsoil source description: Onsite topsoil removal process: Grader Access other construction information: Access miscellaneous information:

Number of access turnouts:

Access turnout map:

New road drainage crossing: OTHER

Drainage Control

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CH_3H_Well_Map_20180125095053.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A 400' x 400' tank battery will be built on the northeast side of the pad. Southeast corner of the battery will be rounded off to avoid a fence. Gas pipeline and power line plans have not been finalized. **Production Facilities map:**

CH_3H_Production_Facilities_20180125095236.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Operator Name: CL&F RESOURCES	LP	•	
Well Name: CRAZY HORSE 0304 FEI	D COM Well N	lumber: 3H	
Water source use type: DUST CON INTERMEDIATE/PRODUCTION CAS			
Describe type:		Source longitude:	
Source latitude:			
Source datum:			
Water source permit type: WATER	WELL		
Source land ownership: PRIVATE	RUOKINO		
Water source transport method: The			
Source transportation land ownership: PRIVATE			
Water source volume (barrels): 250 Source volume (gal): 1050000		Source volume (acre-feet): 3.2223275	
Water source and transportation map):		
CH_3H_Water_Source_Map_20180125	i095627.pdf		
Water source comments:			
New water well? NO			
New Water Well Ir			
Well latitude:	Well Longitude:	Well datum:	
Well target aquifer:			
Est. depth to top of aquifer(ft): Aquifer comments:	Est thickness	or aquirer:	
Aquifer documentation:			
Well depth (ft): Well eacing outside diameter (in):	Well casing typ		
Well casing outside diameter (in.): New water well casing?	-	Well casing inside diameter (in.):	
-	-	Used casing source:	
Drilling method:		Drill material:	
Grout material:		Grout depth:	
Casing length (ft.): Well Broduction type:	Casing top dep		
Well Production type: Water well additional information:	Completion Met	ingu.	
State appropriation permit:			
Additional information attachment:			

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Section 6 - Construction Materials

Construction Materials description: COG and NM One Call (811) will be notified before construction starts. COG has 1 approved well on the north side of the pad and a second well staked. An un-energized overhead power line will be moved to the west side of the pad and reserved for future use. Top 6" of soil and brush will be stockpiled west of the pad. Pipe racks will be to the south. A closed loop drilling system will be used. Caliche will be hauled from existing Constructors, Inc. pit on private land in NWNE 34-21s-27e. Tank battery will be built overlapping the northeast side of the well pad. Top 6" of soil and brush will be stockpiled east of the battery and west of the fence. North edge of battery is the border with State land. There will be no construction on State land.

Construction Materials source location attachment:

CH_3H_Construction_Methods_20180125095321.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: BURIAL ONSITE Disposal location ownership: PRIVATE

Disposal type description:

Disposal location description: R360's state approved (NM1-6-0) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Operator Name: CL&F RESOURCES LP Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CH_3H_Well_Site_Layout_20180125095859.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CRAZY HORSE

Multiple Well Pad Number: 3H

Recontouring attachment:

CH_3H_Recontour_Plat_20180125095914.pdf

CH_3H_Interim_Reclamation_Diagram_20180125095920.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 5.7	Well pad interim reclamation (acres): 0.57	Well pad long term disturbance (acres): 5.13
Road proposed disturbance (acres): 0.08	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance (acres): 0	Powerline interim reclamation (acres): 0 Pinaline interim realemation (acres): 0	(acres): 0
Pipeline proposed disturbance (acres): 0 Other proposed disturbance (acres): 3.67	Pipeline interim reclamation (acres): 0 Other interim reclamation (acres): 0	(acres): 0 Other long term disturbance (acres):
	Total interim reclamation: 0.57	3.67 Total long term disturbance: 8.8

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Total proposed disturbance: 9.45

Disturbance Comments: There will be a 75' x 250' overlap between pad & battery = 0.43 acre therefore making the true short-term disturbance acres 9.45 acres. The equation above does not allow for this calculation.

Reconstruction method: Interim reclamation will shrink the well pad 9% by removing caliche and reclaiming the south 50', leaving 5.74 acres for 2 CL & F wells and 2 COG wells, truck turn arounds for two CL & F and COG. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas. Disturbed areas will be seeded in accordance with BLM requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad and battery when the wells are plugged. Once the last well is plugged, then the remainder of the pad, battery, and new road will be similarly reclaimed. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Operator Name: CL&F RES		
Weil Name: CRAZY HORSE		Well Number: 3H
		
Seed type:		Seed source:
Seed name:		
Source name:		Source address:
Source phone:		
Seed cultivar:		
Seed use location:		
PLS pounds per acre:		Proposed seeding season:
Seed S	ummary	Total pounds/Acre:
Seed Type	Pounds/Acre	
First Name:		Last Name:
Operator Contact/	Responsible Offic	cial Contact Info
Phone:		Last Name: Email:
Filone.		Eman:
Seedbed prep:		
Seed BMP:		
Seed method:		
Existing invasive species? I	NO	
Existing invasive species tro	eatment description:	
Existing invasive species tre	eatment attachment:	
Need treatment plan descri	ption: To BLM standard	Is
Need treatment plan attach	ment:	
Ionitoring plan description	: To BLM standards	<i>,</i>
Ionitoring plan attachment:	:	
Success standards: To BLM	satisfaction	
Pit closure description: Non	e	
Pit closure attachment:		

Section 11 - Surface Ownership

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Disturbance type: EXISTING ACCESS ROAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Disturbance type: NEW ACCESS ROAD Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Page 8 of 10

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 3H

Disturbance type: WELL PAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGE	MENT
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information:

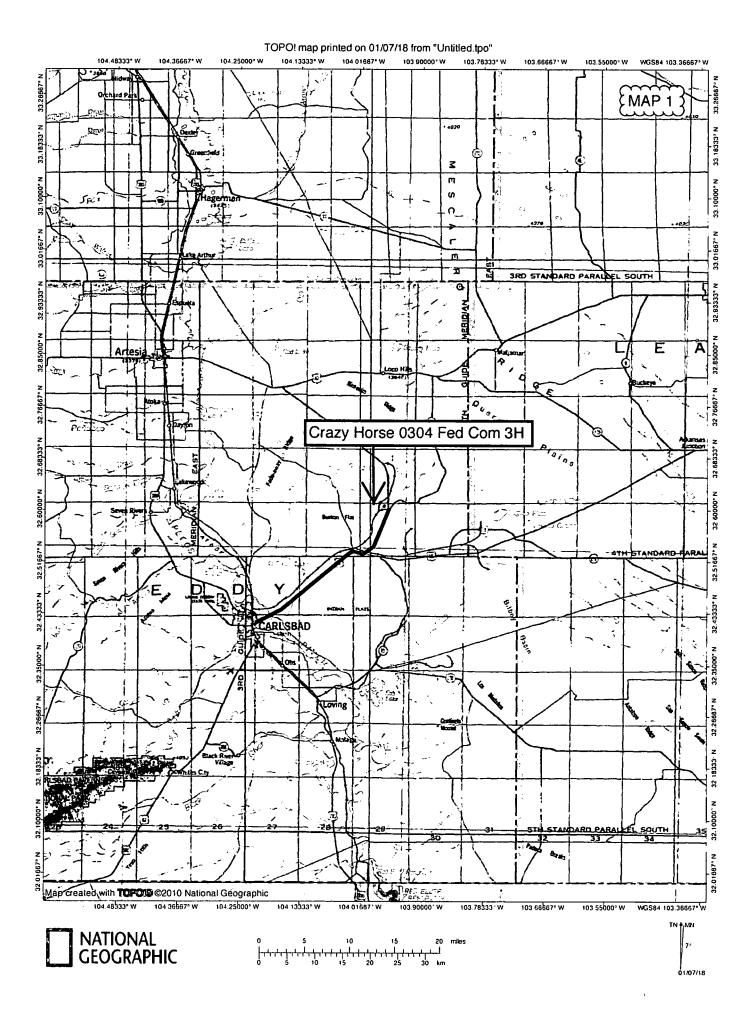
Use a previously conducted onsite? YES

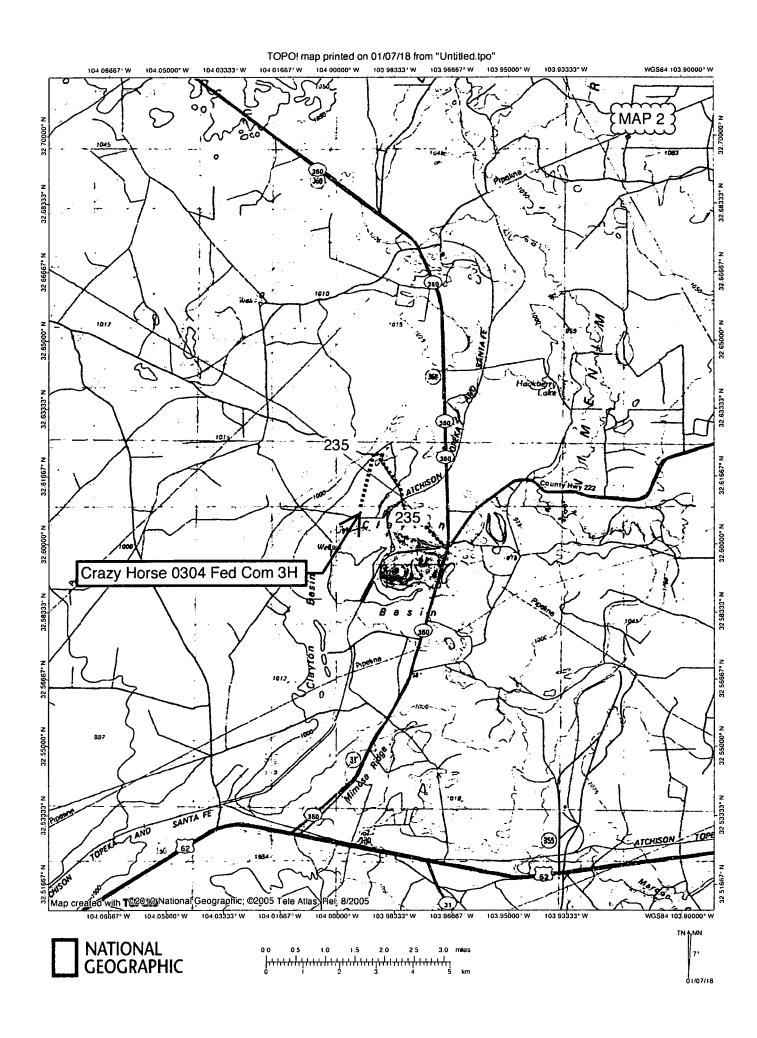
Previous Onsite information: On-site inspection was held with Jim Rutley, Bobby Ballard, Jim Goodbar, Chelsie Dugan, and June Hernandez (all BLM) on September 26, 2017.

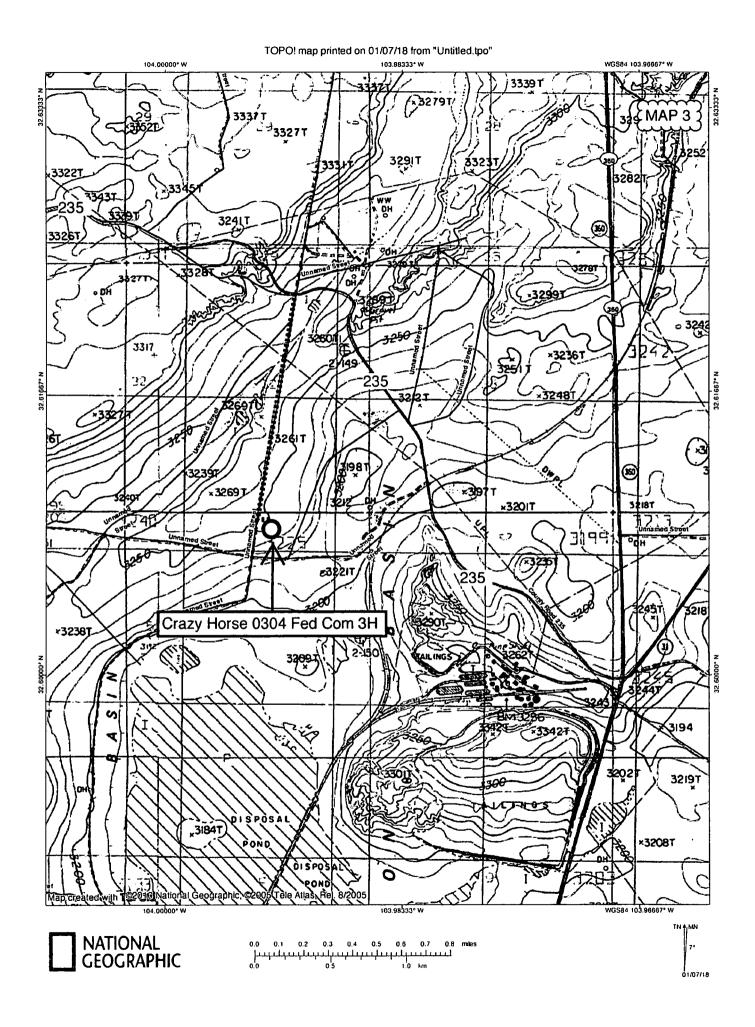
Other SUPO Attachment

CH_3H_General_SUPO_20180125101247.pdf

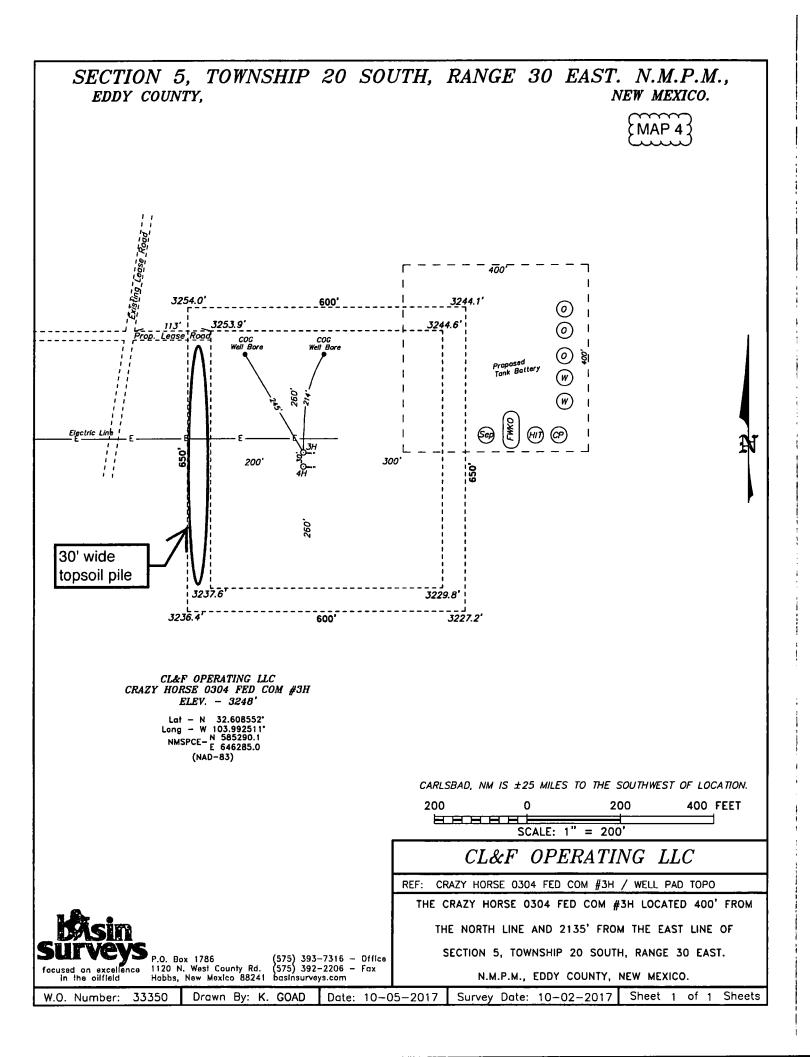
.

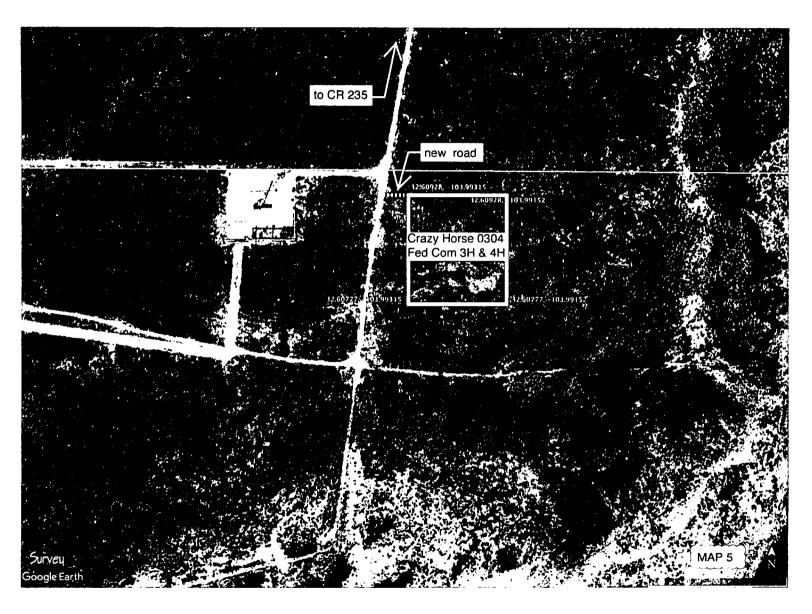

....

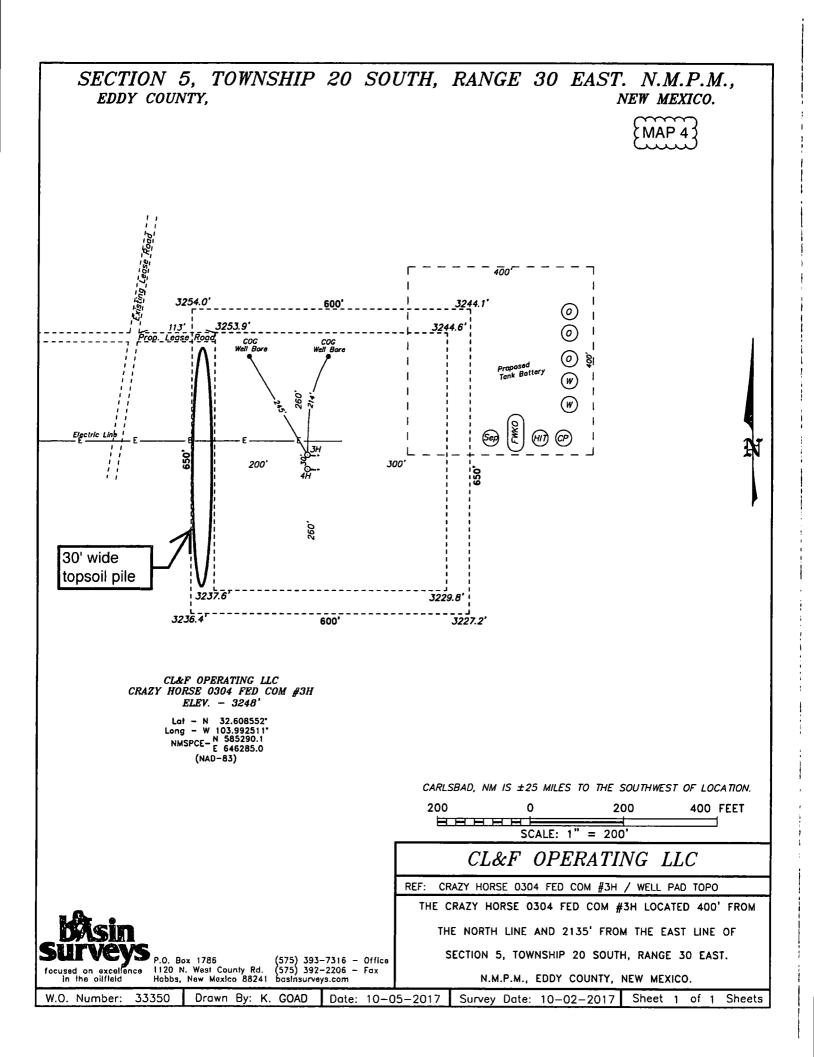

•••• •

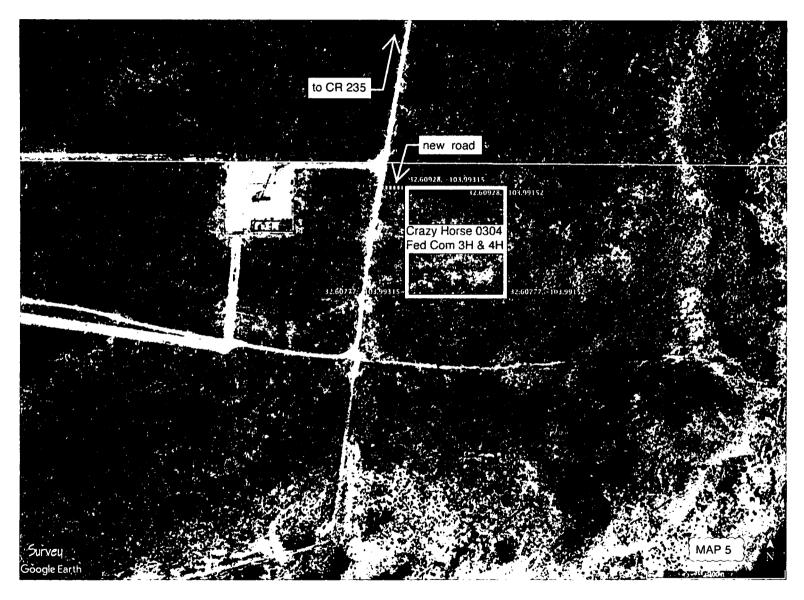

.

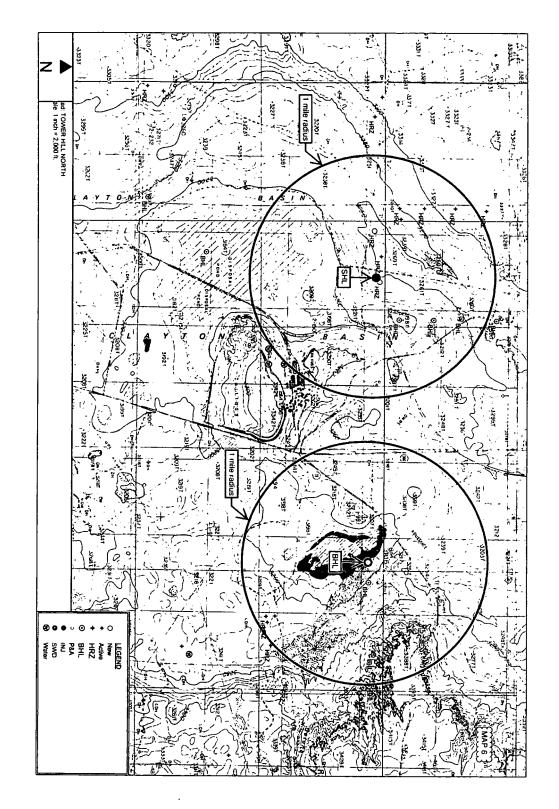
.

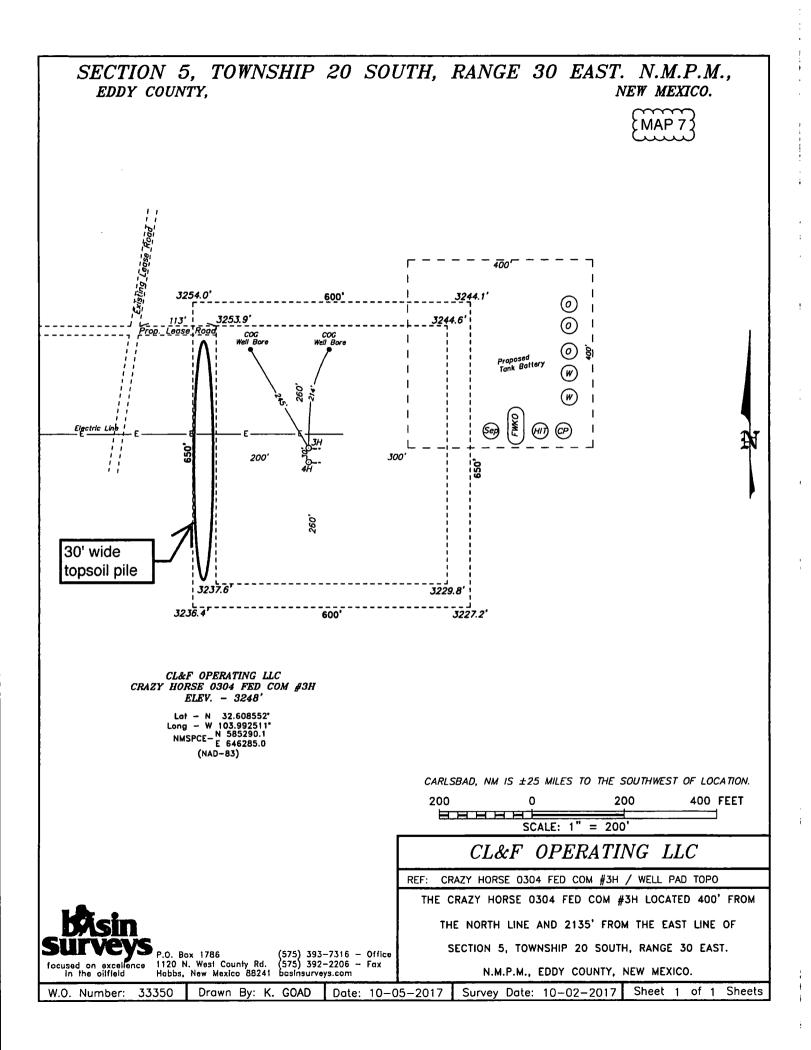

.

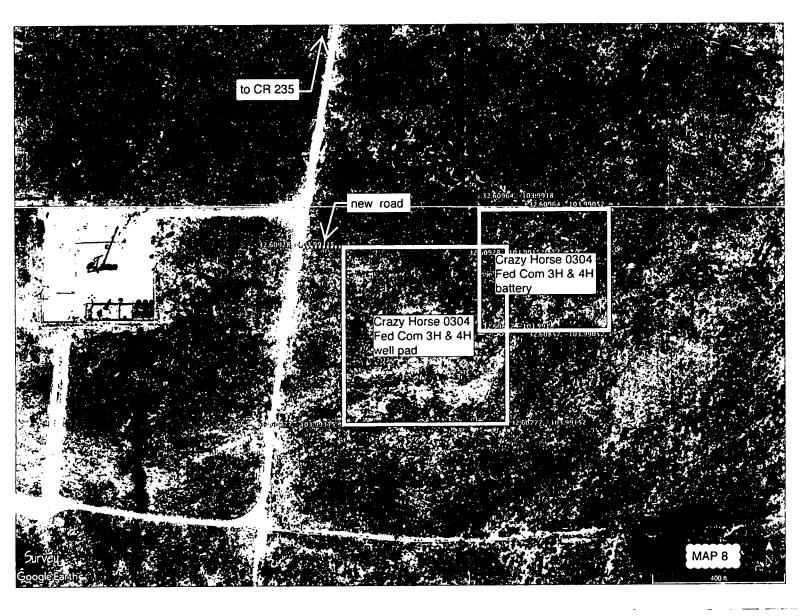


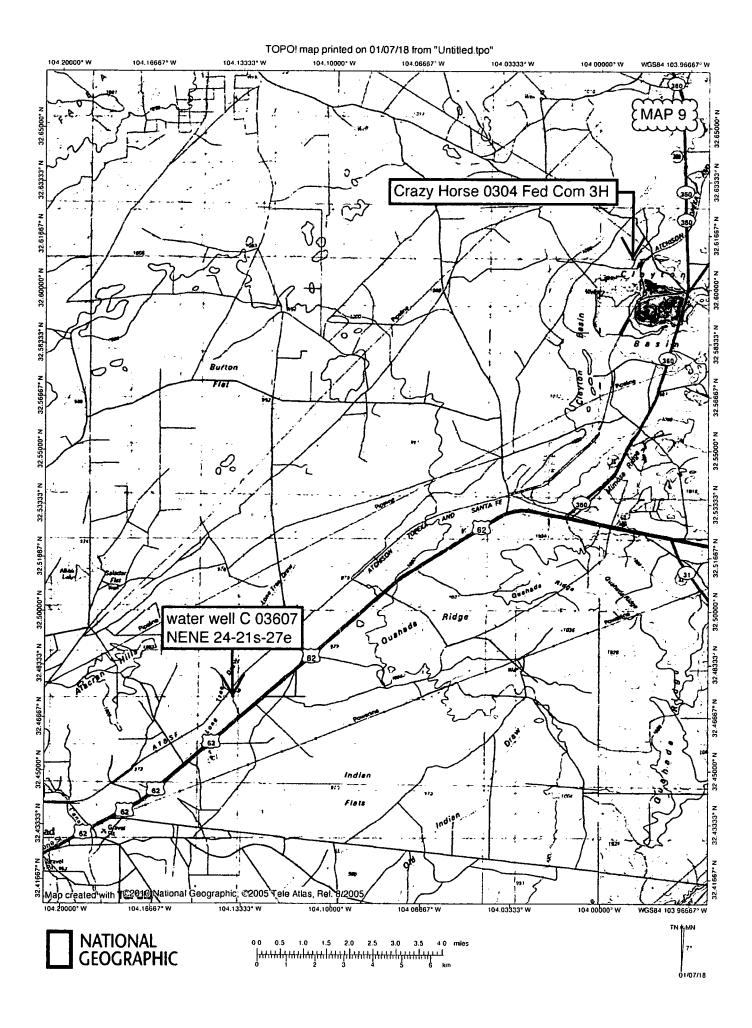


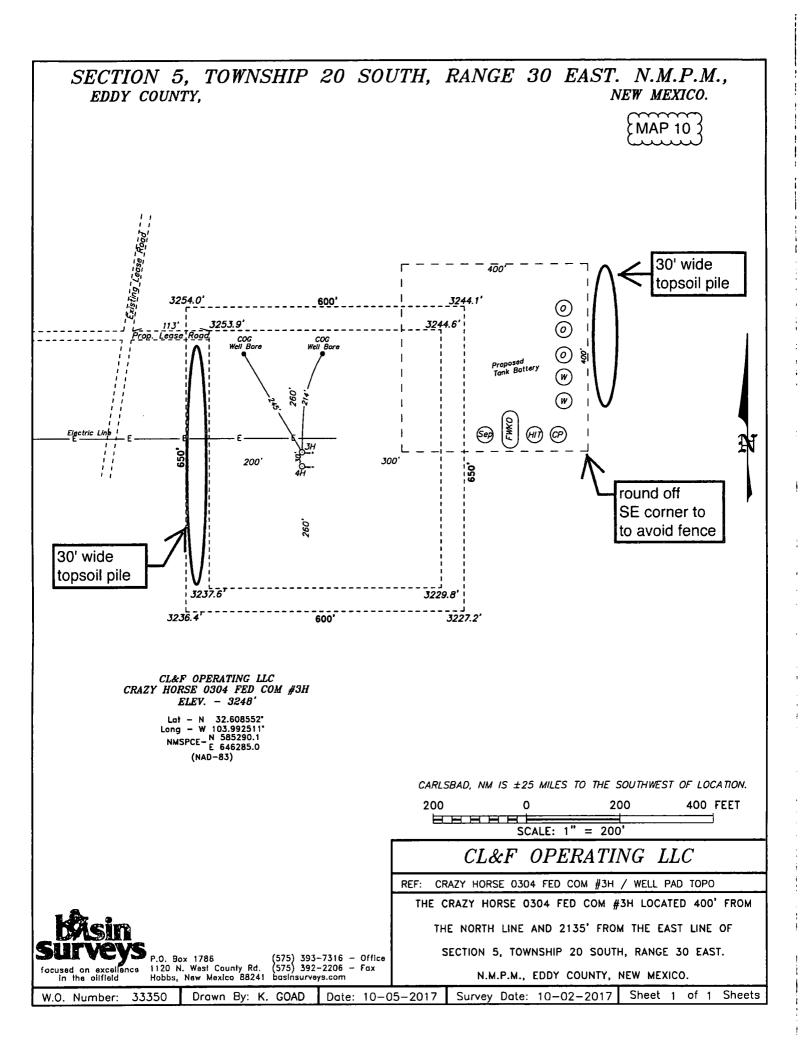


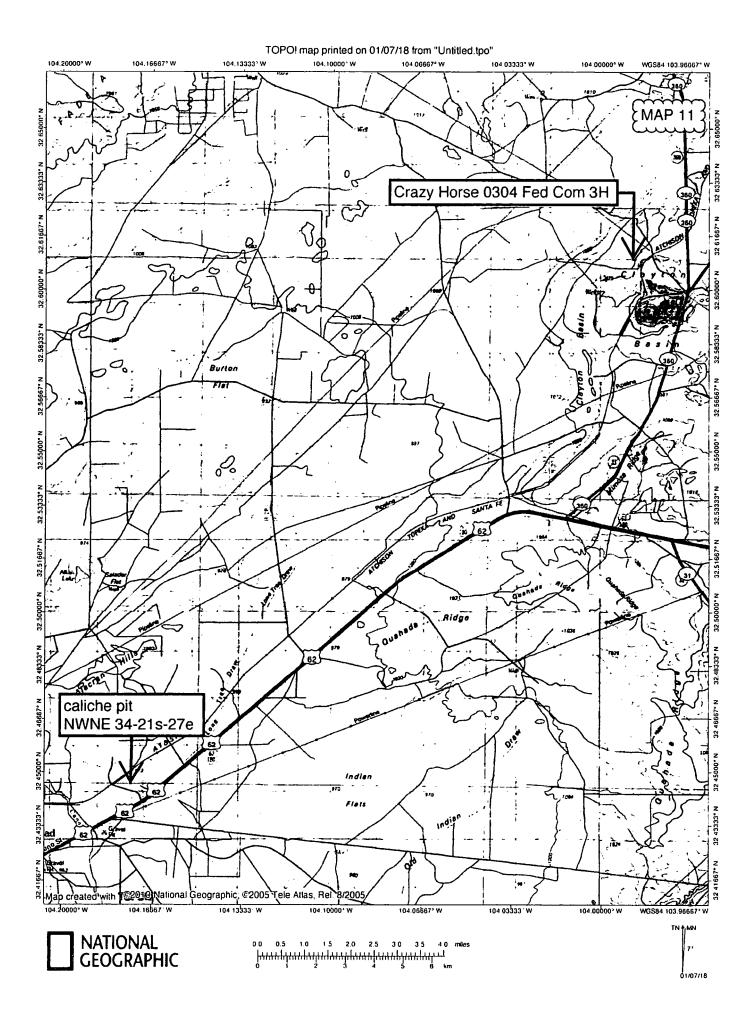

:

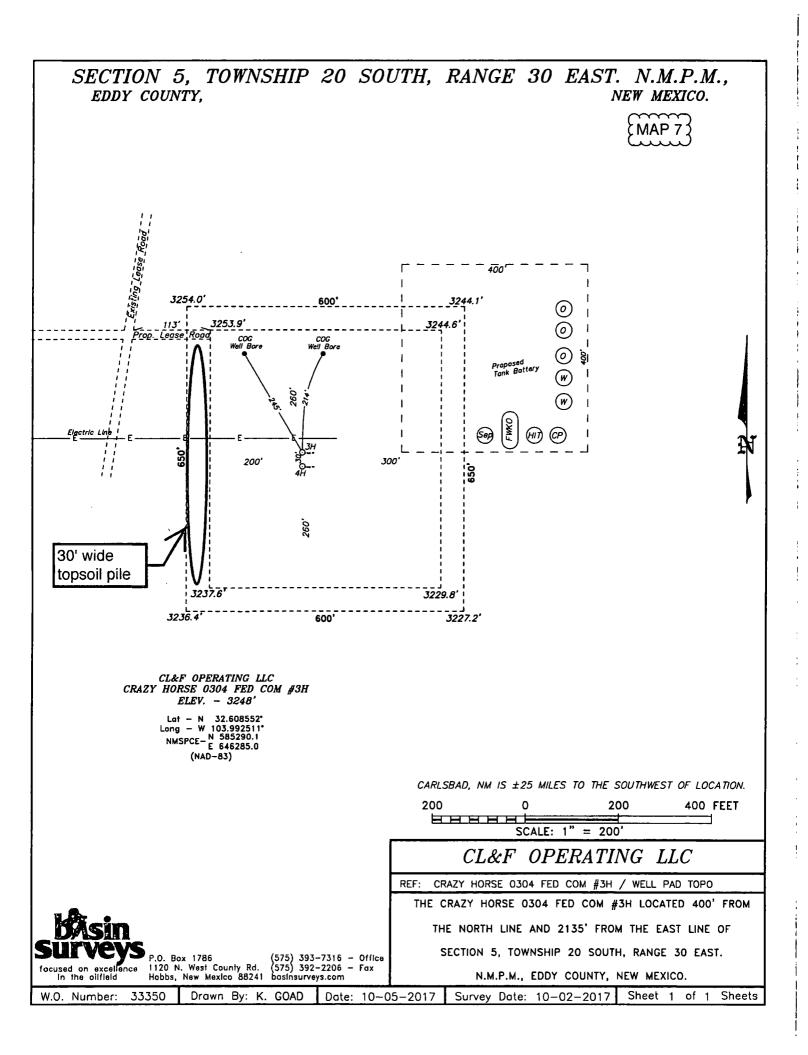




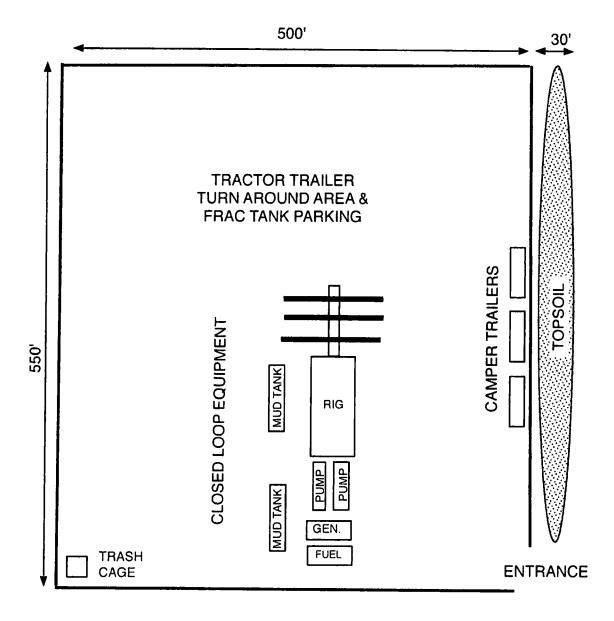


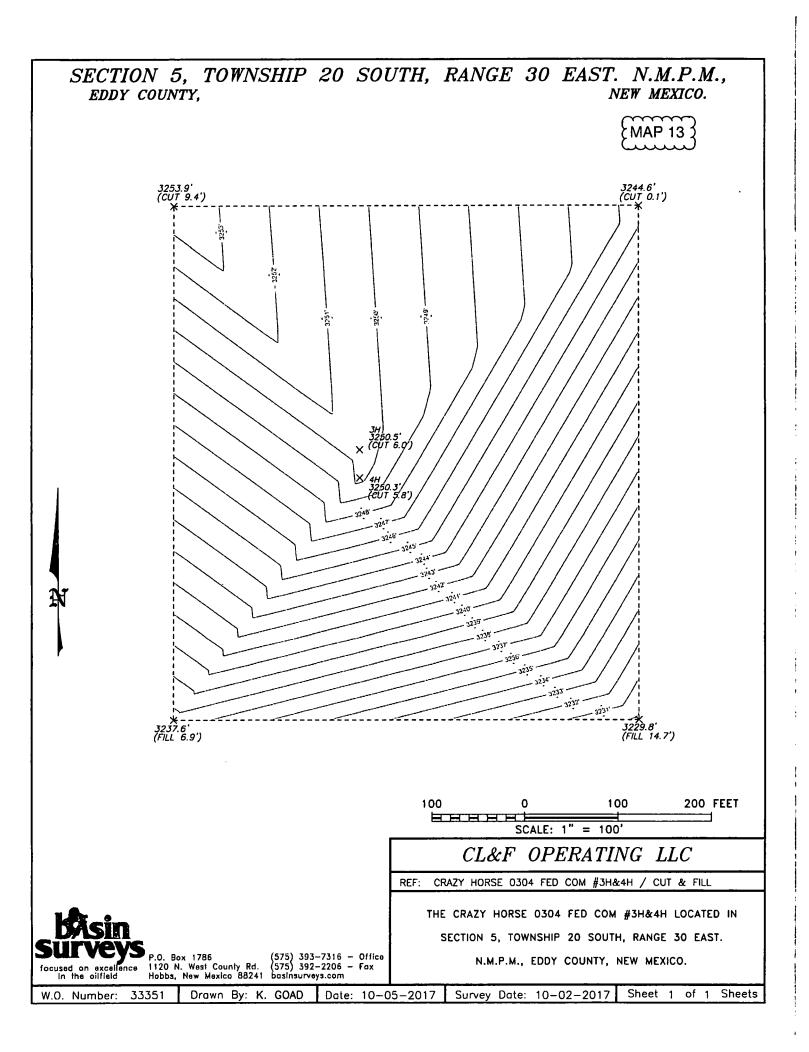


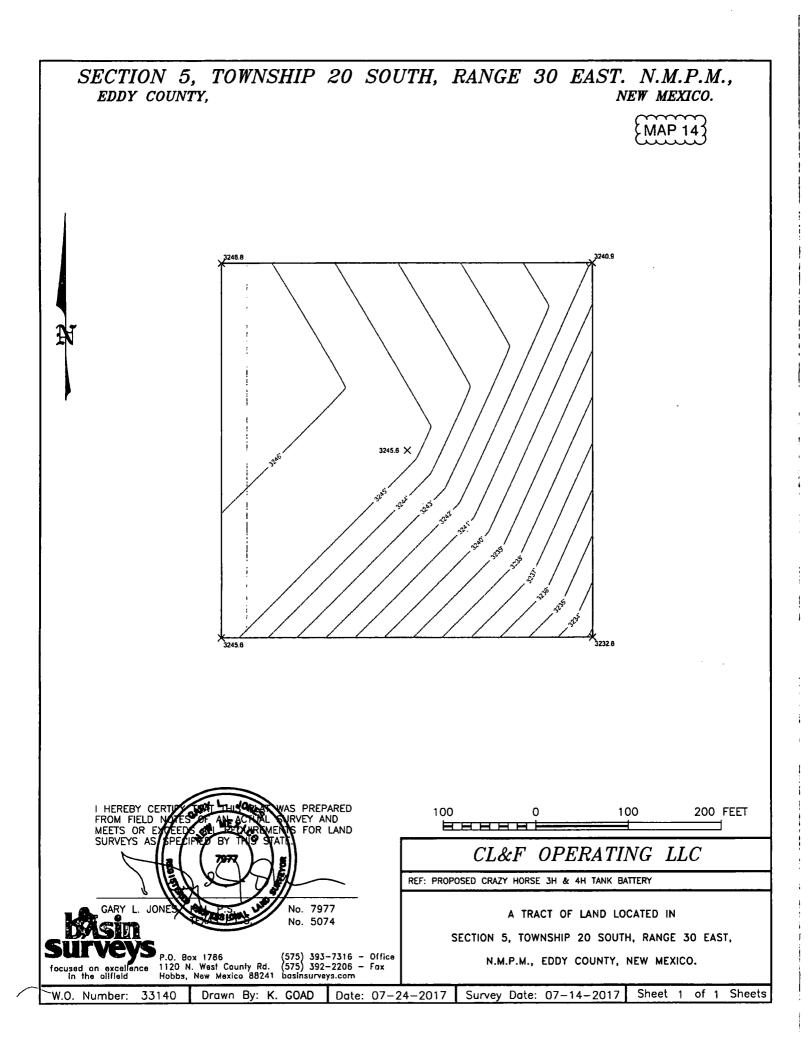


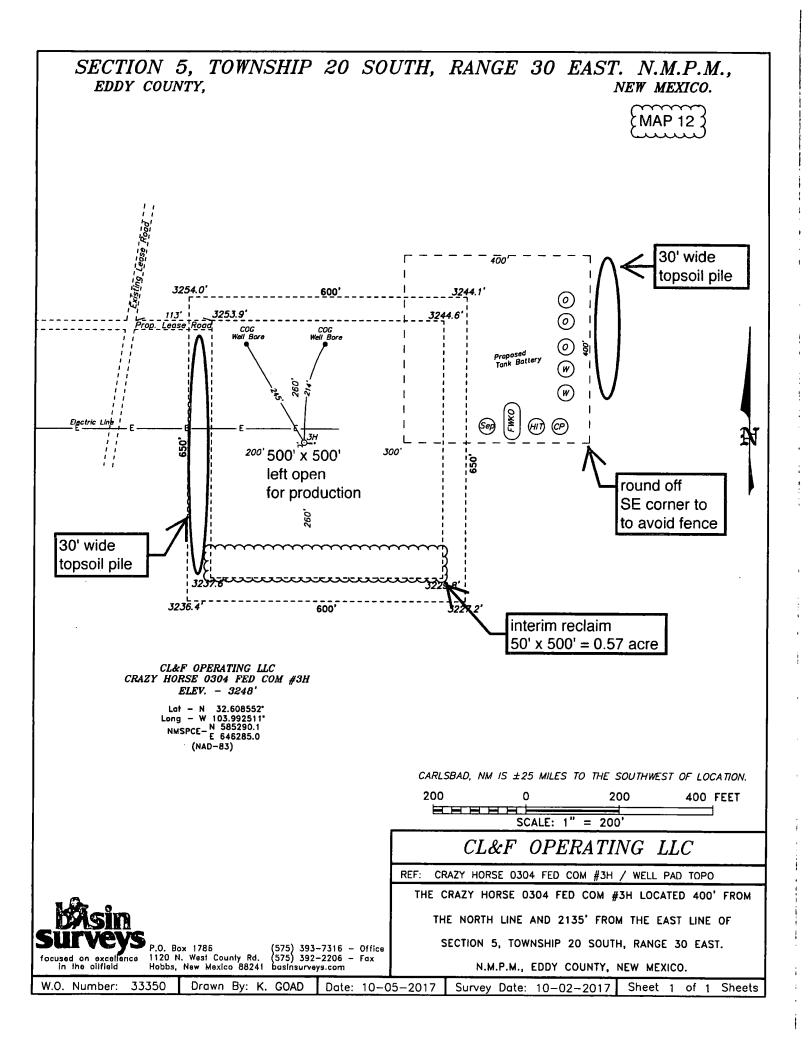












SURFACE PLAN PAGE 1

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

Surface Use Plan

1. <u>ROAD DIRECTIONS & DESCRIPTIONS</u> (See MAPS 1 - 5)

From the junction of US 285 and US 62/180 in Carlsbad... Go NE 15.6 miles on paved US 62/180 to the equivalent of Mile Post 50.7 Then turn left and go North 5.7 miles on paved NM 360 Then turn left and go NW 2.3 miles on caliche County Road 235 Then turn left and go SSW 0.9 miles on a caliche road Then turn left and go East 113' on a proposed road to the proposed pad

Non-county roads will be maintained as needed to Gold Book standards. This includes pulling ditches, preserving the crown, and cleaning culverts. This will be done at least once a year, and more often as needed. Caliche will be hauled from Constructors, Inc. existing pit on private land in NWNE 34-21s-27e.

2. <u>ROAD TO BE BUILT OR UPGRADED</u> (See MAPS 4 & 5)

One hundred thirten feet of new resource road will be built. The new road will be crowned and ditched, have a 14' wide driving surface, and be surfaced with caliche. Maximum disturbed width = 30'. Maximum grade = 1%. Maximum cut or fill = 1'. No upgrade, culvert, cattle guard, or vehicle turn out is needed.

3. EXISTING WELLS (See MAP 6)

Existing oil, gas, water, and P & A wells are within a mile. No disposal or injection well is within a mile.

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

4. PROPOSED PRODUCTION FACILITIES (See MAPS 7 & 8)

A 400' x 400' tank battery will be built on the northeast side of the pad. Southeast corner of the battery will be rounded off to avoid a fence. Gas pipeline and power line plans have not been finalized.

5. WATER SUPPLY (See MAP 9)

Water will be trucked from a private water well (C 03607) on private land in NENE 24-21s-27e.

6. <u>CONSTRUCTION MATERIALS & METHODS</u> (see MAPS 10 & 11)

COG and NM One Call (811) will be notified before construction starts. COG has 1 approved well on the north side of the pad and a second well staked. An unenergized overhead power line will be moved to the west side of the pad and reserved for future use. Top \approx 6" of soil and brush will be stockpiled west of the pad. Pipe racks will be to the south. A closed loop drilling system will be used. Caliche will be hauled from existing Constructors, Inc. pit on private land in NWNE 34-21s-27e.

Tank battery will be built overlapping the northeast side of the well pad. Top ≈ 6 " of soil and brush will be stockpiled east of the battery and west of the fence. North edge of battery is the border with State land. There will be no construction on State land.

7. WASTE DISPOSAL

All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360's state

SURFACE PLAN PAGE 3

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

approved (NM1-6-0) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

8. ANCILLARY FACILITIES

There will be no airstrip or camp. Camper trailers will be on location for the company man, tool pusher, or mud logger.

9. WELL SITE LAYOUT

See Rig Diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

10. <u>RECLAMATION</u> (See MAPS 12 - 14)

Interim reclamation will shrink the well pad $\approx 9\%$ by removing caliche and reclaiming the south 50', leaving 5.74 acres for 2 CL & F wells and 2 COG wells, truck turn arounds for two CL & F and COG. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas. Disturbed areas will be seeded in accordance with BLM requirements. Enough stockpiled topsoil will be retained to cover the remainder of the pad and battery when the wells are plugged. Once the last well is plugged, then the remainder of the pad, battery, and new road will be similarly reclaimed. Noxious weeds will be controlled.

11. SURFACE OWNER

All construction will be on BLM. Land use:

SURFACE PLAN PAGE 4

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

> + 30' x 113' road = 0.08 acre + 500' x 550' pad = 6.13 acres <u>+ 400' x 400' battery = 3.67 acres</u> - <u>75' x 250' overlap between pad & battery = 0.43 acre</u> short term = 9.45 acres

short term = 9.45 acres <u>- 50' x 500' interim reclamation on well pad = 0.57 acre</u> 8.88 acres long term (0.08 ac. road + 8.80 pad & battery)

12. OTHER INFORMATION

On-site inspection was held with Jim Rutley, Bobby Ballard, Jim Goodbar, Chelsie Dugan, and June Hernandez (all BLM) on September 26, 2017.

CL & F Operating LLC Crazy Horse 0304 Fed Com 3H SHL 400' FNL & 2135' FEL Sec. 5 BHL 500' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

CERTIFICATION

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U. S. C. 1001 for the filing of false statements. Executed this <u>21st</u> day of <u>January, 2018</u>.

Brian Wood, Consultant Permits West, Inc. 37 Verano Loop, Santa Fe, NM 87508 (505) 466-8120 FAX: (505) 466-9682

Cellular: (505) 699-2276

Field representative will be: Allison Johnson CL & F Operating LLC 16945 Northchase Dr., Suite 500 Houston TX 77060 Phone: (281) 873-3013 FAX: (281) 872-4398

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

Mineral protection attachment:

Underground Injection Control (UIC) Permit?

UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:PWD surface owner:PWD disturbance (acres):Surface discharge PWD discharge volume (bbl/day):Surface Discharge NPDES Permit?Surface Discharge NPDES Permit attachment:Surface Discharge site facilities information:Surface discharge site facilities map:Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

PWD disturbance (acres):

Injection well name:

Injection well API number:

FAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001314

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment:

Bond Info Data Report

100

08/24/2018