RECEIVED	Carelar							
Form 3160-3 3 SEP 1 2 2018		ad Rieia	Ω	FORM APP OMB No. 10 Expires: Januar 75, Lease Serial No. NMNM114354 6. If Indian, Allotee or T	04-0137			
DISTRICTORPARTMENT OF	TATES	Artesi		75 Lease Serial No.				
BUREAU OF LAND APPLICATION FOR PERMIT	TO DRILL OR	REENTER	9	6. If Indian, Allotee or T	ribe Name			
I. Type of work: 🗹 DRILL	REENTER		 .	7. If Unit or CA Agreem	ent. Name and No.			
. Type of Well: 🚺 Oil Well 🛄 Gas Well	Other			8. Lease Name and Well	No.			
. Type of Completion: 🔲 Hydraulie Fracturing	Single Zone	Multiple Zone		CRAZY HORSE 0304				
				4H	323439			
Name of Operator CL&F RESOURCES LP		37.095	1	9. API Well No. 30 · 0/ 3	5-115741			
. Address 6945 Northchase Drive #500 Houston TX 77060	3b. Phone l (281)873-3	No. (include area coa 3013	e gide	10. Field and Pool, or Ex PARKWAY / BONE SF	RING			
Location of Well (Report location clearly and in acco At surface NWNE / 430 FNL / 2135 FEL / LAT 3 At proposed prod. zone SENE / 1927 FNL / 330 F	rdance with any State 32.608469 / LONG	e requirements.*) -103.992511		11. Sec., T. R. M. or Blk SEC 5 / T20S / R30E /	. and Survey or Area			
4. Distance in miles and direction from nearest town or				12. County or Parish	13. State			
Distance from proposed* 430 feet location to nearest property or lease line, ft.	16. No of a 599.68	cres in lease	17. Spaci 320	acing Unit dedicated to this well				
(Also to nearest drig, unit line, if any) Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease ft. 30 feet	19. Propos	•		I/BIA Bond No. in file MB001314				
applied for, on this fease, it.		/ 19296 feet						
. Elevations (Show whether DF, KDB, RT, GL, etc.) 248 feet	03/01/201	imate date work will B	start*	23. Estimated duration 90 days				
	24. Atta	chments		4				
ne following, completed in accordance with the required s applicable)	ments of Onshore Oi	l and Gas Order No.	I, and the I	lydraulic Fracturing rule p	er 43 CFR 3162.3-3			
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover the litem 20 above).	e operatior	ns unless covered by an exis	sting bond on file (see			
A Surface Use Plan (if the location is on National Fore SUPO must be filed with the appropriate Forest Servic		5. Operator certifie		rmation and/or plans as may	be requested by the			
i. Signature Electronic Submission)		e (Printed/Typed) Wood / Ph: (505)4	66-8120	Dat 02/	e 02/2018			
tle		44000 / Fil. (505)4		02/				
resident pproved by (Signature)	Name	e (Printed/Typed)		Dat	e			
Electronic Submission)	Cody	Layton / Ph: (575)	234-5959		23/2018			
lle ssistant Field Manager Lands & Minerals	Offic CAR	e LSBAD						
pplication approval does not warrant or certify that the	applicant holds legal	or equitable title to the	hose rights	in the subject lease which	would entitle the			
plicant to conduct operations thereon. inditions of approval, if any, are attached.								
le 18 U.S.C. Section 1001 and Title 43 U.S.C. Section the United States any false, fictitious or fraudulent stat					lepartment or agency			
	DROVED WI	TH CONDIT	IONS					
Continued on page 2)	r IIV III		-	*(Instru	ctions on page 2)			
	pproval Date	e: 08/23/2018	Ru	P9-14-18.				

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

 SHL: NWNE / 430 FNL / 2135 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.608469 / LONG: -103.992511 (TVD: 0 feet, MD: 0 feet) PPP: SENE / 1911 FNL / 1320 FEL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.604318 / LONG: -103.972786 (TVD: 8400 feet, MD: 13019 feet) PPP: SWNW / 1911 FNL / 0 FWL / TWSP: 20S / RANGE: 30E / SECTION: 3 / LAT: 32.604315 / LONG: -103.968525 (TVD: 8415 feet, MD: 14337 feet) PPP: SENW / 1911 FNL / 1320 FWL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.60434 / LONG: -103.98139 (TVD: 8370 feet, MD: 10357 feet) PPP: NWNE / 430 FNL / 2135 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.60434 / LONG: -103.98139 (TVD: 8370 feet, MD: 10357 feet) PPP: NWNE / 430 FNL / 2135 FEL / TWSP: 20S / RANGE: 30E / SECTION: 5 / LAT: 32.604469 / LONG: -103.985663 (TVD: 8320 feet, MD: 0 feet) PPP: SWNW / 1695 FNL / 0 FWL / TWSP: 20S / RANGE: 30E / SECTION: 4 / LAT: 32.604932 / LONG: -103.985663 (TVD: 8320 feet, MD: 8982 feet) BHL: SENE / 1927 FNL / 330 FEL / TWSP: 20S / RANGE: 30E / SECTION: 3 / LAT: 32.604292 / LONG: -103.95236 (TVD: 8471 feet, MD: 19296 feet)

BLM Point of Contact

Name: Katrina Ponder Title: Geologist Phone: 5752345969 Email: kponder@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CL&F Operating LLC
LEASE NO.:	NMNM-114354
WELL NAME & NO.:	Crazy Horse 0304 Fed Com 4H
SURFACE HOLE FOOTAGE:	0430' FNL & 2135' FEL
BOTTOM HOLE FOOTAGE	1927' FNL & 0330' FEL Sec. 03, T. 20 S., R 30 E.
LOCATION:	Section 05, T. 20 S., R 30 E., NMPM
COUNTY:	County, New Mexico

Communitization Agreement

The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on</u> the sign

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

□ Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Page 1 of 7

- 1. Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.
- Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval – an Incident of Non-Compliance will be written and will be a "Major" violation.
- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Potash Areas:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24 hours</u>. WOC time will be recorded in the driller's log.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

R-111- P Potash High Cave/Karst Capitan Reef Possibility of water flows in the Artesia Group and Salado. Possibility of lost circulation in the Artesia Group, Rustler, Capitan Reef, and Delaware.

A MINIMUM OF TWO CASING STRINGS CEMENTED TO SURFACE IS REQUIRED IN HIGH CAVE/KARST AREAS. THE CEMENT MUST BE IN A SOLID SHEATH. THEREFORE, ONE INCH OPERATIONS ARE NOT SUFFICIENT TO PROTECT CAVE KARST RESOURCES. A CASING DESIGN THAT HAS A ONE INCH JOB PERFORMED DOES NOT COUNT AS A SOLID SHEATH.

- 1. The 20 inch surface casing shall be set at approximately 350 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.

- 2. The minimum required fill of cement behind the 13-3/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Potash.
- 3. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

DV tool shall be set a minimum of 50' below previous shoe and a minimum of 200' above current shoe. Operator shall submit sundry if DV tool depth cannot be set in this range. If an ECP is used, it is to be set a minimum of 50' below the shoe to provide cement across the shoe. If it cannot be set below the shoe, a CBL shall be run to verify cement coverage.

- a. First stage to DV tool:____
- Cement to circulate. If cement does not circulate, contact the appropriate BLM office before proceeding with second stage cement job. Operator should have plans as to how they will achieve circulation on the next stage.
- b. Second stage above DV tool:
- □ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to Potash and Capitan Reef.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required on horizontal leg, must be type for horizontal service and a minimum of one every other joint.

- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - □ Cement to surface. If cement does not circulate, contact the appropriate BLM office. Excess calculates to 11% Additional cement may be required.
- 5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 6. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- C. **PRESSURE CONTROL**
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. A variance is granted for the use of a diverter on the 20" surface casing.
- 4. In the case where the only BOP installed is an annular preventer, it shall be tested to a minimum of 2000 psi (which may require upgrading to 3M or 5M annular).
- 5. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 2nd intermediate casing shoe shall be psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.

- 7. Operator has option to utilize a multi-bowl wellhead assembly. This assembly will only be tested when installed. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) shall be psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Operator shall perform the 2nd intermediate casing integrity test to 70% of the casing burst. This will test the multi-bowl seals.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 8. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - b. The tests shall be done by an independent service company utilizing a test plug **not a cup or J-packer**.
 - c. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - d. The results of the test shall be reported to the appropriate BLM office.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

E. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

JAM 082318

Page 7 of 7

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	CL&F Resources LP
LEASE NO.:	NMNM114354
WELL NAME & NO.:	Crazy Horse 0304 Fed Com 4H
SURFACE HOLE FOOTAGE:	430'/N & 2135'/E
BOTTOM HOLE FOOTAGE	1927'/N & 330'/E
LOCATION:	Section 5, T.20 S., R.30 E., NMPM
COUNTY:	Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
🔀 Special Requirements
Cave/Karst
Hydrology
Rangeland
Potash
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Reclamation

Page 1 of 13

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 13

V. SPECIAL REQUIREMENT(S)

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production:

Construction:

In the advent that any underground voids are opened up during construction activities, construction activities will be halted and the BLM will be notified immediately.

No Blasting:

No blasting will be utilized for pad construction. The pad will be constructed and leveled by adding the necessary fill and caliche.

Pad Berming:

- The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.
- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g., caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised. (Any access road crossing the berm cannot be lower than the berm height.)
- Following a rain event, all fluids will vacuumed off of the pad and hauled off-site and disposed at a proper disposal facility.

Tank Battery Liners and Berms:

Tank battery locations and all facilities will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing, or equivalent, to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ¹/₂ times the content of the largest tank.

Leak Detection System:

A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing

Page 3 of 13

electronic sensors to alarm when a leak is present. Leak detection plan will be submitted to BLM for approval.

Automatic Shut-off Systems:

Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and ground water concerns:

Rotary Drilling with Fresh Water:

Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

Kick off for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

ALL lost circulation zones from the surface to the base of the cave occurrence zone will be logged and reported in the drilling report.

Regardless of the type of drilling machinery used, if a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cavebearing zone, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

Upon well abandonment in cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

Annual pressure monitoring will be performed by the operator on all casing annuli and reported in a sundry notice. If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Hydrology:

The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

Page 4 of 13

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Rangeland Management Mitigation:

Structures that provide water to livestock, such as windmills, pipelines, drinking troughs, and earthen reservoirs, will be avoided by moving the proposed action.

Any damage to fences, cattle guards, and pipelines or structures that provide water to livestock during construction, throughout the life of the project, and caused by its operation, must be immediately corrected by CL&F. CL&F must notify the grazing allottee or the private surface landowner and the BLM-CFO (575-234-5972) if any damage occurs to pipelines or structures that provide water to livestock.

Potash Resource Mitigation:

Lessees must comply with the 2012 Secretarial Potash Order. The Order is designed to manage the efficient development of oil, gas, and potash resources. Section 6 of the Order provides general provisions which must be followed to minimize conflict between the industries and ensure the safety of operations.

To minimize impacts to potash resources, the proposed well is confined within the boundaries of the established Solution Shallow Drill Island (See Potash Memo and Map in attached file for Drill Island description).

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 6 of 13

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

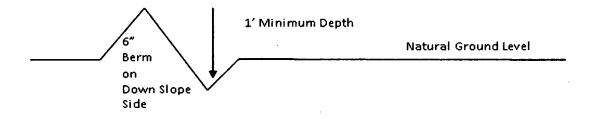
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 7 of 13

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400' + 100' = 200' lead-off ditch interval 4%

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 8 of 13

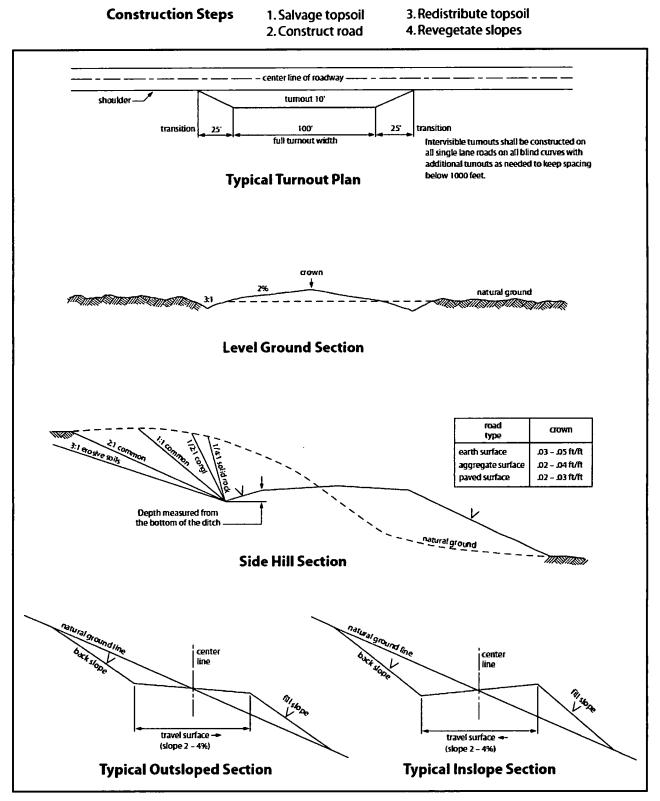


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 10 of 13

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

VRM Facility Requirement Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 11 of 13

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

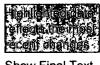
NAME: Brian Wood		Signed on: 02/02/2018
Title: President		
Street Address: 37 Vera	ino Loop	
City: Santa Fe	State: NM	Zip: 87508
Phone: (505)466-8120		
Title: President Street Address: 37 Verano Loop City: Santa Fe State: NM Zip: 87508		
Field Represe	entative	
Representative Name	:	
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

APD ID: 10400026854

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM


Well Type: OIL WELL

Application Data Report

Submission Date: 02/02/2018

Zip: 77060

Well Number: 4H Well Work Type: Drill

Show Final Text

Section 1 - General		
APD ID: 10400026854	Tie to previous NOS?	Submission Date: 02/02/2018
BLM Office: CARLSBAD	User: Brian Wood	Title: President
Federal/Indian APD: FED	Is the first lease penetrated f	or production Federal or Indian? FED
Lease number: NMNM114354	Lease Acres: 599.68	
Surface access agreement in place?	Allotted? Re	servation:
Agreement in place? NO	Federal or Indian agreement:	
Agreement number:		
Agreement name:		
Keep application confidential? NO		
Permitting Agent? YES	APD Operator: CL&F RESOU	RCES LP
Operator letter of designation:		

0	Del	rato	or l	nfo
- V		uu		

Operator Organization Name: CL&F RESOURCES LP

Operator Address: 16945 Northchase Drive #500

Operator PO Box:

Operator City: Houston State: TX

Operator Phone: (281)873-3013

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO	Mater Development Plan name:	
Well in Master SUPO? NO	Master SUPO name:	
Well in Master Drilling Plan? NO	Master Drilling Plan name:	
Well Name: CRAZY HORSE 0304 FED COM	Well Number: 4H	Well API Number:
Field/Pool or Exploratory? Field and Pool	Field Name: PARKWAY	Pool Name: BONE SPRING

Is the proposed well in an area containing other mineral resources? POTASH

Well Number: 4H

Describe other minerals:				
Is the proposed well in a Helium producti	ion area? N	Use Existing Well Pad?	NO	New surface disturbance?
Type of Well Pad: MULTIPLE WELL		Multiple Well Pad Name	:	Number: 3H
the proposed well in a Helium production area ope of Well Pad: MULTIPLE WELL ell Class: HORIZONTAL ell Work Type: Drill ell Type: OIL WELL escribe Well Type: ell sub-Type: INFILL escribe sub-type: stance to town: 19 Miles Distance eservoir well spacing assigned acres Measurer ell plat: CH_4H_Plat_20180403121111.pdf ell work start Date: 03/01/2018		CRAZY HORSE Number of Legs: 1		
Well Work Type: Drill				
Well Type: OIL WELL				
Describe Well Type:				
Well sub-Type: INFILL				
Describe sub-type:				
Distance to town: 19 Miles Di	istance to ne	arest well: 30 FT	Distanc	e to lease line: 430 FT
Reservoir well spacing assigned acres M	leasurement:	320 Acres		
Well plat: CH_4H_Plat_2018040312111	11.pdf			
Weil work start Date: 03/01/2018		Duration: 90 DAYS		
Section 3 - Well Location Ta	able			

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number: 7977

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL	430	FNL	213	FEL	20S	30E	5	Aliquot	32.60846	-	EDD	NEW	NEW	F	NMNM	324	0	0
Leg			5					NWNE	9	103.9925	Y		MEXI		114354	8		
#1										11		со	со					
КОР	430	FNL	213	FEL	20S	30E	5	Aliquot	32.60846	-	EDD	NEW	NEW	F	NMNM	-	890	828
Leg			5					NWNE	9	103.9925	Y	MEXI			114354	503	0	3
#1										11		со	со			5		
PPP	169	FNL	0	FWL	20S	30E	4	Aliquot	32.60493	-	EDD	NEW	NEW	F	NMNM	-	898	832
Leg	5				1			SWN	2	103.9856	Y	MEXI			000677	507	2	0
#1								w		63		со	со		5D	2		

٦

Operator Name: CL&F RESOURCes LP

Well Name: CRAZY HORSE 0304 FED COM

• • •

Well Number: 4H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp ·	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
PPP Leg #1	430	FNL	213 5	FEL	20S	30E	5	Aliquot NWNE	32.60846 9	- 103.9925 11	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 114354	324 8	0	0
PPP Leg #1	191 1	FNL	132 0	FWL	20S	30E	4	Aliquot SENW	32.60434	- 103.9813 9	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 055423 3	- 512 2	103 57	837 0
PPP Leg #1	191 1	FNL	0	FWL	20S	30E	3	Aliquot SWN W	32.60431 5	- 103.9685 25	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 135240	- 516 7	143 37	841 5
PPP Leg #1	191 1	FNL	132 0	FEL	20S	30E	4	Aliquot SENE	32.60431 8	- 103.9727 86	EDD Y	NEW MEXI CO	NEW MEXI CO		NMNM 000677 5E	- 515 2	130 19	840 0
EXIT Leg #1	192 7	FNL	330	FEL	20S	30E	3	Aliquot SENE	32.60429 2	- 103.9523 6	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 135240	- 522 3	192 96	847 1
BHL Leg #1	192 7	FNL	330	FEL	20S	30E	3	Aliquot SENE	32.60429 2	- 103.9523 6	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 135240	- 522 3	192 96	847 1

Well Number: 4H

CH_4H_Choke_20180202105808.pdf

BOP Diagram Attachment:

CH_4H_BOP_20180202105816.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF .	Body SF Type	Body SF
1	CONDUCT OR	36	othe R	NEW	API	N	0	80	0	80	3248			OTH ER	1	OTHER - Weld						
2	SURFACE	26	20.0	NEW	API	N	0	350	0	350	3248		350	J-55		OTHER - BTC	3.46	11.1 4	DRY	46.4	DRY	49
	INTERMED IATE	17.5	13.375	NEW	API	N	0	1680	0	1680	3248		1680	J-55		OTHER - BTC	1.29	2.75	DRY	9.9	DRY	9.3
4	INTERMED IATE	12.2 5	9.625	NEW	ΑΡΙ	N	0	3480	0	3480	3248		3480	J-55	40	LTC	1.6	1.93	DRY	3.73	DRY	4.52
5	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3480	0	3480	3248		3480	J-55	54.5	LTC	1.6	1.93	DRY	3.73	DRY	4.52
6	PRODUCTI ON	8.75	5.5	NEW	API	N	0	19296	0	8471	3248		19296	P- 110		OTHER - Atlas BK	3	1.2	DRY	2.2	DRY	2.1

Casing Attachments

Casing ID: 1 String Type: CONDUCTOR

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Casing Attachments

Casing ID: 2 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_4H_Casing_Design_Assumptions_20180202110721.pdf

Casing ID: 3 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_4H_Casing_Design_Assumptions_20180202110746.pdf

Casing ID: 4 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_4H_Casing_Design_Assumptions_20180202110824.pdf

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Casing Attachments

Casing ID: 5 String Type: INTERMEDIATE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_4H_Casing_Design_Assumptions_20180202121103.pdf

Casing ID: 6 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

CH_4H_Casing_Design_Assumptions_20180202111408.pdf

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
CONDUCTOR	Lead		0	80	0	0	0	0		Redi Mix	None

SURFACE	Lead	0	321	800	1.34	14.8	1072	100	Class C	2% PF01 (CACI2)
									L	

INTERMEDIATE	Lead	0	1680	1200	1.75	13.5	2100	100	Class C	4% PF120 (Gel) & 1%
										PF01 (CACI2) & 3#

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density Cu Ft Excess% Cement type		Cement type	Additives	
											PF42 (Koalseal) & 1/8# PF29 (Cellophane)
INTERMEDIATE	Tail		0	1680	200	1.33	14.8	266	100	Class C	1% PF01 (CACl2)
INTERMEDIATE	Lead		0	3480	350	2.05	12.6	717	50	Class C 35/65 Poz	5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
INTERMEDIATE	Tail		0	3480	200	1.32	14.8	264	50	Class C	.2% PF13 (Retarder)
INTERMEDIATE	Lead		0	3480	220	2.05	12.6	451	50	Class C 35/65 Poz	5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
INTERMEDIATE	Tail		0	3480	200	1.32	14.8	264	50	Class C	2% PF13 (Retarder)
PRODUCTION	Lead		0	1929 6	890	2.47	11.9	2198	25	Class H 50/50 Poz	5% PF44 (Salt) & 10% PF20 (Gel) & .2% PF153 (Anti-settle) & .4# PF45 (Defoam) & 3# PF42 (Koalseal) & 1/8# PF29 (Cellophane)
PRODUCTION	Tail	, ,	0	1929 6	2470	1.31	14.2	3236	25	Class H 50/50 Poz	5% PF44 (Salt) & 2% PF20 (Gel) & .3% FL & .1% PF813 (Retarder) & .2% PF65 (Dispersant) & .3% PF606 (Fluid Loss)

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation (e. g., cedar bark) and weight increase (e. g., barite, bentonite) requirements will be on site at all times.

Describe the mud monitoring system utilized: A Pason, or similar, system will be used to monitor fluid loss or gain.

Circulating Medium Table

86 Top Depth	65 Bottom Depth	ed, L pnw OTHER : Cut	Min Weight (Ibs/gal)	ထ Max Weight (Ibs/gal)	Density (Ibs/cu ft)	Gel Strength (Ibs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
3460	6	brine	0.4	9.5							
0	321	OTHER : Fresh water	8.4	9							
321	1680	OTHER : Brine water	10	10.1							
1680	3480	OTHER : Fresh water	8.4	8.7							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Mud logging program will be used from 3300' to TD. No open hole log is planned at this time. A gyro may be used from surface to first intermediate casing shoe if warranted. GR/MWD will be used from 80' to TD. Completion CBL may be run in vertical to free fall depth of curve 40+.

List of open and cased hole logs run in the well:

GR,MWD

Coring operation description for the well:

No core or drill stem test is planned.

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 4216

Anticipated Surface Pressure: 2352.38

Anticipated Bottom Hole Temperature(F): 140

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

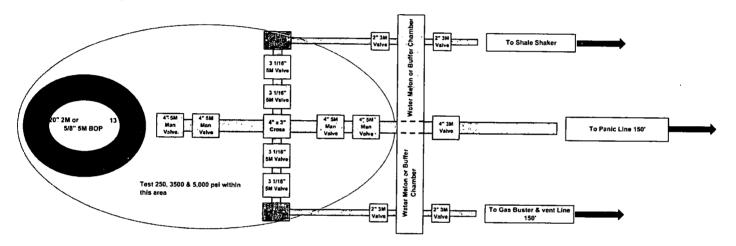
Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

CH_4H_H2S_Plan_20180202124201.pdf

Section 8 - Other Information

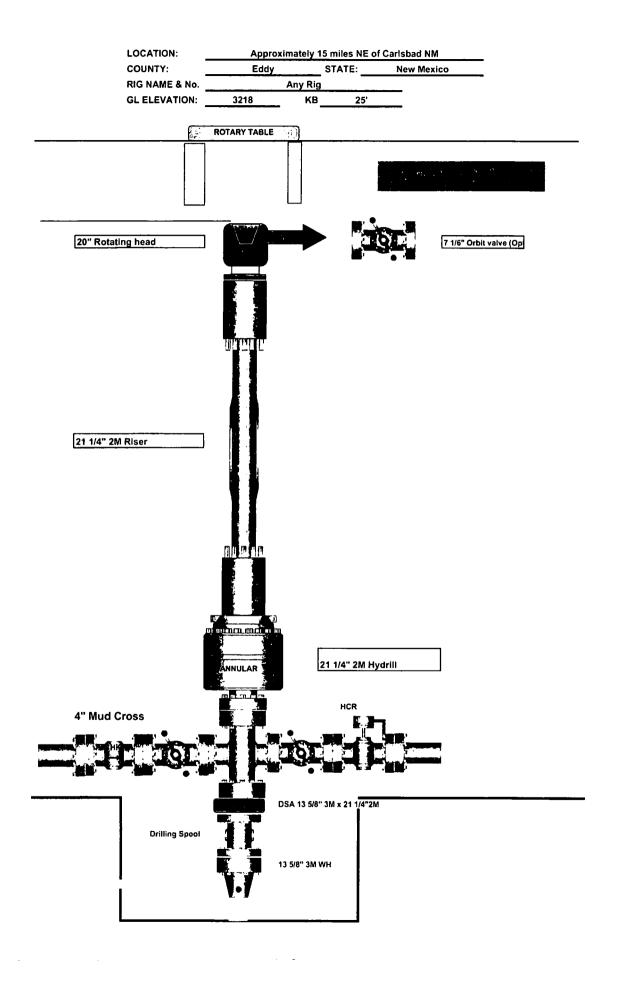

Proposed horizontal/directional/multi-lateral plan submission:

CH_4H_Horizontal_Drill_Plan_20180202124240.pdf

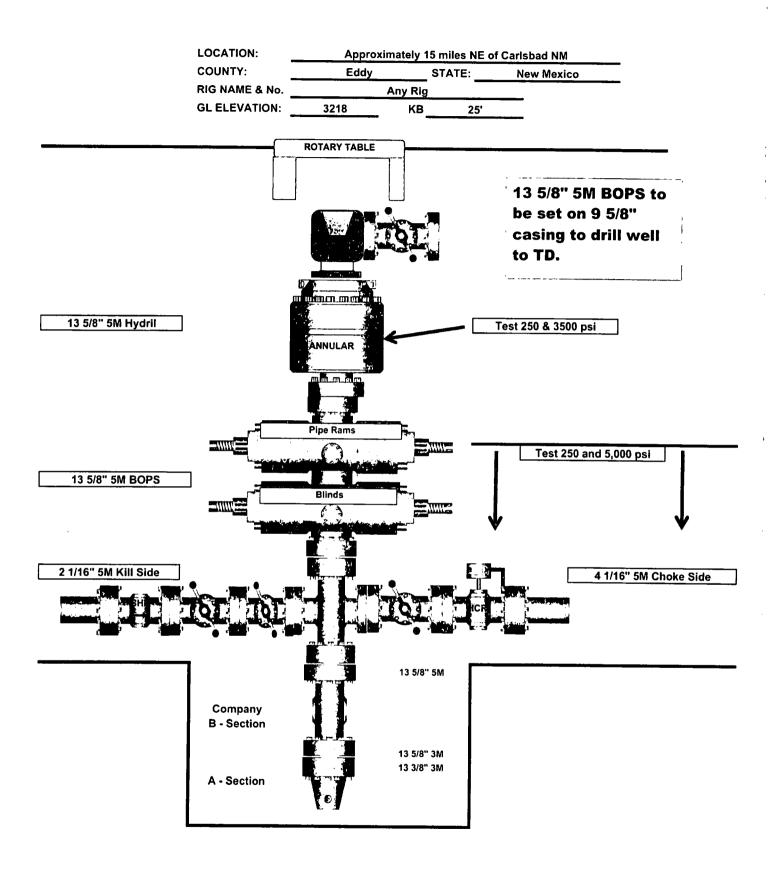
Other proposed operations facets description:

Other proposed operations facets attachment:

CH_4H_General_Drill_Plan_20180202124258.pdf CH_4H_Speedhead_Specs_20180202124311.pdf Other Variance attachment: Choke Manifold



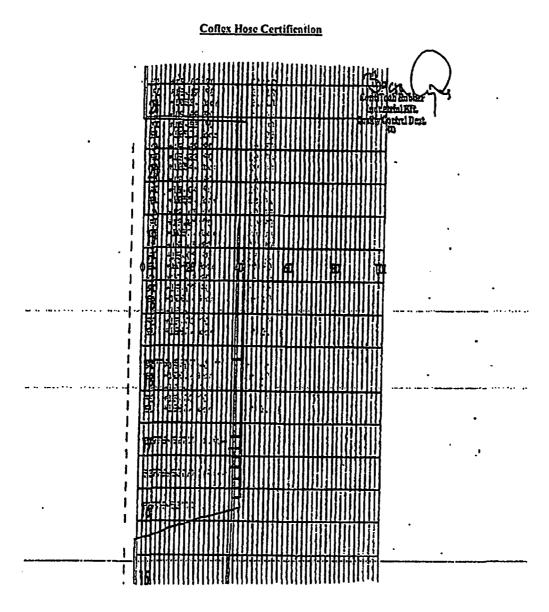
- -----


...

Minimum Configuration of Choke Side

.

- . . .


Coffex Hose Certification

Ontinental S CONTITECH

Faid Toshnology

Ouslity Document

QUA INSPECTION	LITY CON		CATE	,	CEAT.	vr .	748	
Purchaser:	Phonatx Br	istie Co.			P.O. N.		002491	
Continech order Ma:	412838	KOSE TYPE:	3'	Ð	Ch	oke and)	(Я Нозе	<u> </u>
HOBE GERAL HT	52777	MONIDIAL / AC	TUAL LE	NOTH	<u> </u>	10,67 п	}	
W.P. 68,98 WPa	10000 P	TP. 103,4	КРо	15000) pat	Durazion:	60 -	111
Pressonaro text with weather bit Rankiest interpretation T 10 com = 10 bit	Sa	ə allachment	(i pag	j¢)		·		
-+ 10 mm = 25 M	P3						·····	
•=• ••• •		COUP						
Туро		341111 Nº		Q	uality 		Han W	•
" 3" coupting will	·····	913		AISI	4130	11178 1 8234 (****	T7990A	*****
4 1/15' Flage and		a		A1\$5	4120		26084	
INFOCHIP INSTALL				CORDA	NCE WIT	Ter	API Spec 1 mperature i	rete:"B
E CERTORY THAT THE ABON	/2 HOSE MAS BI							
e clatory that the abov Easy use tested as abov Eas	re hose has bi E with Battsfa Inipacia:	OTORY REBULT.	Quality		(en al	ter finisc		

Coflex Hose Certification

.

Form Ho 100/12

.

🛥 Phoenix Beattie

Phoenix Beattle Corp USB Mitazon Art Gron No.50, R 7761 Ril (GD 27410 For (R2) 27440 For (R2) 2740 For (R2) 2740

Delivery Note

	very Noto Number 003078 Page	1
HELHERICH & PATHE INI'L DRILLING CO H 1437 SOUTH BOLADER A TULSA, CK 74219 H	very / Address LHERION 5 FANSE 10C TN: JOE STEPHENSON - RIG 370 609 INDUSTRIAL, ROAD USTON, IX DIS	

Customer Acc No	Phoenbx Beattle Contract Manager	Phoenix Bestile Reference	Date
¥01	Jil	006330	05/23/2008

1 HP10CCI3A-35-6F1 1 3* 10X 16C C&X HOSE x 35ft OAL CM 4.1/16* API SPEC FLANGE E/ End 1: 4.1/16* 10(pais API Spec 6A Type 68X Flange End 2: 4.3/16* 10(pais API Spec 6A Type 68X Flange End 2: 4.3/16* 10(pais API Spec 6A Type 68X Flange C/N BLISS Standard rlog grouve at each end Suitable for H2S Service Norking pressure: 10,000psi Test pressure: 10,000psi Test pressure: 15,000psi Standard: API 10C Full specification Arear Guarding: Included Fire Rating: Not lectuded Fire Rating: Not lectuded Tesperature rating: -20 Deg C to +100 Deg C 2************************************		ry To llow
End 1: 4.1/16" 10(psi API Spac 6A Type 68X Flange End 2: 4.3/16" 10(psi API Spac 6A Type 68X Flange C/W BA155 Standard riog grouve at each end Suitable for H2S Service Working pressure: 10.000psi Test pressure: 15.000psi Test pressure: 15.000psi Standard: API 16C Full specification Arear Buarding: Included Fire Rating: Not lecluded Tespenature rating: -20 Deg C to +100 Deg C 2." SEOC3-H0F3 LIFTUNG & SAFETY EQUIPMENT TO SLIT H010CK2-3S-F1 2 x 160m ID Safety Clarps 2 x 244m F0 Lifting Collars & element C's 2 x 7ft Stainless Steel wine rope 3/4" 00		0
End 1: 4.1/15' 16(psi API Spec 6A Type 60X Flange End 2: 4.3/16' 16(psi API Spec 6A Type 60X Flange C/W BL155 Standard riog groove at each tind Suitable for K2S Service Working pressure: 10,000psi Test pressure: 15,000psi Standard: API 16C Full specification Arour Bourding: Included Fire Rating: Not locluded Tesperature mating: -20 Deg C to +100 Deg C 2' SEOC3-HOF3 LIFTLIG & SAFETY EDUINEAT TO SLITT HP10CK2-35-F1 2 x 160m ID Safety Clarps 2 x 264m ID Lifting Collars & placent C's 2 x 7ft Stainless Steel wire rope 3/4* 00		•
End 2: 4.3/16* 1855 API Spec 6A Type 6BX Flange C/W BX155 Standard ring grouve at each end Suitable for H25 Service Norking pressure: 10,000pis Test pressure: 15,000pis Itest pressure: 15,000pis Standard: API 160 Full specification Arour Guarding: Included Fire Rating: Not locluded Tesperature rating: -20 Deg C to +100 Deg C 2: SECK3:H0F3 LIFTLIG & SAFETY EQUIPMENT TO SULT HP10CK2-35-F1 2 x 160m ID Safety Clarps 2 x 244m ID Lifting Collars & ploment C's 2 x 7ft Stainless Steel wire rope 3/4* 00		
C/W BX155 Standard ring grouve at each end Suitable for H25 Service Norking pressure: 10,000psi Test pressure: 15,000psi Standard: API 100 Full specification Arear Guarding: Included Fire Rating: Not locloded Tesperature rating: -20 Deg C to +100 Deg C 2. SECK3:H0F3 LIFTUG & SAFETY EQUIPMENT TO SUIT HP10CK2-35-F1 2 x 160m ID Safety Clarps 2 x 244m ID Lifting Collars & ploment C's 2 x 7ft Stainless Steel wire rope 3/4* 00		
Working pressure: 10.000psi Test pressure: 15.000psi Stenderd: API 16C Full specification Arour Guarding: Included Fire Rating: Not lecladed Tesperature rating: -20 Deg C to +100 Deg C 2************************************		
Test pressure: 15,000ps1 Stenderd: API 16C Full specification Aroun Guarding: Included Fire Rating: Not locloded Tesperature rating: -20 Deg C to +100 Deg C 2. SECK3-H0F3 LIFTUG & SAFETY EDUIPRENT TO SLIT HP10CK2-35-F1 2 x 160m ID Safety Clarps 2 x 266m ID Liftlag Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4* 00		·
Stenderd: API 160 Full specification Arour Guarding: Included Fire Rating: Not locloded Temperature rating: -20 Deg C to +100 Deg C SEOK3-HOF3 LIFTLIG & SAFETY EQUIPMENT TO SLIT HP100K2-35-F1 2 x 160m ID Safety Clamps 2 x 266m ID Liftleg Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4* 00		
Arear Guarding: Included Fire Rating: Not lecluded Tesperature rating: -20 Deg C to +100 Deg C 2. SEOK3-HOF3 LIFTUG & SAFETY EQUIPMENT TO SUIT HP10CK3-35-F1 2 x 160cm ID Safety Clarps 2 x 244m ID Lifting Collars & alement C's 2 x 7ft Stainless Steel wire rope 3/4* 00	1	
Fire Rating: Not lectuded Texperature rating: -20 Deg C to +100 Deg C 2 SECK3-HOF3 LIFTING & SAFETY EQUIPMENT TO SLET HP10CK3-35-F1 2 x 160cm ID Safety Clarps 2 x 244m ID Lifting Collars & element C's 2 x 7ft Stainless Steel wire rope 3/4* 00		
Tesperature rating: -20 Deg C to +100 Deg C 2 SECK3-HOF3 LIFTUG & SAFETY EQUIPMENT TO SLEIT HP10CK3-35-F1 2 x 160m ID Safety Clarps 2 x 244m ID Lifting Collars & alogent C's 2 x 7ft Stainless Steel wire rope 3/4* 00		
2 SEOK3-HOF3 LIFTLIG & SAFETY EQUIPMENT TO SLITT HP10CK3-35-F1 2 x 160cm ID Safety Clarps 2 x 244m ID Lifting Collars & alement C's 2 x 7ft Stainless Steel wire rope 3/4* 00		
LIFTLIG & SAFETY EQUIPMENT TO SLIT HP10CK2-35-F1 2 x 160m ID Safety Clarps 2 x 244m ID Liftling Collars & planent C's 2 x 7ft Stainless Steel wire rope 3/4* 00	· ·	
2 x 160cm ID Safety Clamps 2 x 244cm ID Lifting Collars & clocent C's 2 x 7ft Stainless Steel wire rope 3/4° 00	-	····
2 x 244m JD Lifting Collars & alexant C's 2 x 7ft Stainless Steel wire rope 3/4* 00	1	•
2 x 7ft Stainless Steel wire rope 3/4" 00		
4 x 7.75t Shuckles		
	1	
scr25-200CS	,	0
SATETY CLAMP 200M 7.25T C/S GALVANISED	·)	Ŭ
	1	

[CI027 1.013	ie.03 - t)4 Fea	Com	# 4H													
			_		<u> </u>	اد 											
Surface													_				_
	Set	Set				1	1			<u> </u>	1	<u> </u>		T			
Csg Size	Depth	Depth	Grade	Weight	Conn	Collapse	Burst	Conn	Body	MD AIr	TVD Air			Cmt	Cmt	Frac	6
	TVD	MD						Yield	Yield	Weight	Weight	Weight	Gradien	u Weigh	it Gradien	t Gradien	t Gra
20* :	350	350	. 155	94	BTC	520	2,110	1,402,00	1,480,00	32,900	32,900	9.00	0.47	14.80	0.77	0.70	10
SH Safety Factor	Collapse	1.20	Mud	Collapse / TVD * MG	3.17	T	1										
		1.20	Cement	Collapse / TVD * CG - MG	4.93	Actual Safety factor				T	1			-			
SH Safety Factor	Burst	1.30	Mud	Burst / TVD * FG - GG	10.22	ual Saf			Per BLM	Burst	Collapse			-			
SH Saftey Factor	r Conn	1.80	Top Joint	Conn Yd / MD * Wt	42.61	- 3 -			PERBLW	1.000	1.125	1.600	(Dry)				
SH Safety Factor	Body	2.00	Top Joint	Body Yd / MD * Wt	44.98	¥			<u> </u>		I	1.800	(Bouyed	9)			
										_							_
Int 1									·								_
	Set	Set						Γ.		r	r—	<u> </u>	Т	T	T	1	1
Csg Size	Depth	Depth	Grade	Weight	Conn	Collapse	Burst	Conn	Body	MD Air	TVD AIr	Orig Mud		Cmt	Cmt	Frac	G
13.2405	TVD	MD	<u> </u>		L			Yield.	Yield	Weisbi	Weight	Weight	Gradien	t Weigh	Gradient	Gradient	Gra
13 3/8"	1680	1680	_ 155	54.5	BTC	1,130	2,730	909,000	853,000	91,560	91,360	- 10.00	0.52	14.20	0.74	0.70	10
SH Safety Factor	Collapse	1.20	Mud	Collapse / TVD * MG	1.29											· · · ·	
		1.20	Cement	Collapse / TVD * CG - MG	3.08	È								-			
SH Safety Factor	Burst	1.30	Mud	Burst / TVD * FG - GG	2.75	Actual Safery factor			Per BLM		Collapse	Joint	+				
SH Saftey Factor	Conn	1.80	Top Joint	Conn Yd / MD * Wt	9.93	32			Per BOM	1.000	1.125	1.600					
	Body	2.00	Top Joint	Body Yd / MD * Wi	9.32	¥			_			1.800	(Bouyed				_
	Body Set Depth	2.00 Set Depth	Top Joint Grade	Body Yd / MD * Wt	9.32 Conn		Burst	Conn	Body	MD Air		Drig Mud		2 	Cmt	Frac	Gi
Int 2 Csg Size	Set Depth TVD	Set Depth MD	Grade	Weight			Burst	Conn Yield	Body Yield	MD Air Weight	TVD Air Weight			= 	Cmt Gradient		
Int 2	Set Depth	Set Depth				Collapse	Burst 3,950				Weight	Drig Mud	Mud	Cmt		Gradient	Grad
Int 2 Csg Size	Set Depth TVD 3480	Set Depth MD 3480	Grade	Weight	Conn LTC	Collapse		Yield	Yield	Weight	Weight	Drig Mud Weight	Mud Gradient	Cmt Weight	Gradient		Grad
Int 2 Csg Size	Set Depth TVD 3480	Set Depth MD 3480	Grade 155 Mud	Weight 40 ' Coilapse / TVD * MG	Conn LTC. 1.58	Collapse		Yield	Yield	Weight 139,200	Weight 139,200	Drlg Mud Weight 9.00	Mud Gradient	Cmt Weight	Gradient	Gradient	Grad
	Set Depth TVD 3480 Collapse	Set Depth MD 3480	Grade	Weight 40 ' Collapse / TVD * MG Collapse / TVD * CG • MG	Conn LTC 1.58 3.02	Collapse		Yield	Yield 630,000	Weight 139,200 Burst	Weight 139,200 Collapse	Drig Mud Weight 9.00	Mud Gradient 0.47	Cmt Weight	Gradient	Gradient	Ga Grad
Int 2 Csg Size 9 5/8* SH Sefety Factor SH Safety Factor	Set Depth TVO 3480 Collapse Burst	Set Depth MD 3480 1.20	Grade 155 Mud Cement	Weight 40 ' Collapse / TVD * MG Collapse / TVD * KG - GG Burst / TVD * KG - GG	Conn LTC 1.58 3.02 1.92	Collapse		Yield	Yield	Weight 139,200	Weight 139,200	Drig Mud Weight 9.00	Mud Gradient 0 47	Cmt Weight	Gradient	Gradient	Grad
Int 2 Csg Size 9 5/8* H Sefety Factor H Safety Factor	Set Depth TVO 3480 Collapse Burst Conn	Set Depth MD 3480 1.20 1.20 1.30	Grade 155 Mud Cement Mud	Weight 40 ' Collapse / TVD * MG Collapse / TVD * CG • MG	Conn LTC 1.58 3.02	Collapse *2,570		Yield	Yield 630,000	Weight 139,200 Burst	Weight 139,200 Collapse	Drig Mud Weight 9.00	Mud Gradient 0.47	Cmt Weight	Gradient	Gradient	Grad
Int 2 Csg Size 9 5/8* H Sefety Factor H Safety Factor	Set Depth TVO 3480 Collapse Burst Conn	Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade JSS Mud Cement Mud Top Joint	Weight Collapse / TVD * MG Collapse / TVD * GG • MG Burst / TVD * FG • GG Conn rd / MD * Wt	Conn LTC. 1.58 3.02 1.92 3.74	Collapse		Yield	Yield 630,000	Weight 139,200 Burst	Weight 139,200 Collapse	Drig Mud Weight 9.00	Mud Gradient 0 47	Cmt Weight	Gradient	Gradient	Grad
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor	Set Depth TVO 3480 Collapse Burst Conn	Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade JSS Mud Cement Mud Top Joint	Weight Collapse / TVD * MG Collapse / TVD * GG • MG Burst / TVD * FG • GG Conn rd / MD * Wt	Conn LTC. 1.58 3.02 1.92 3.74	Collapse		Yield	Yield 630,000	Weight 139,200 Burst	Weight 139,200 Collapse	Drig Mud Weight 9.00	Mud Gradient 0 47	Cmt Weight	Gradient	Gradient	Grad
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor	Set Depth TVO 3480 Collapse Burst Conn	Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade JSS Mud Cement Mud Top Joint	Weight Collapse / TVD * MG Collapse / TVD * GG • MG Burst / TVD * FG • GG Conn rd / MD * Wt	Conn LTC. 1.58 3.02 1.92 3.74	Collapse		Yield 520,000	Vield 630,000 Per BLM	Weight 139,200 Burst 1.000	Weight 139,200 Collapse 1.125	Drig Mud Weight 9.00	Mud Gradient 0 47	Cmt Weight	Gradient	Gradient	Grad
Int 2 Csg Size 9 5/8* SH Sefety Factor	Set Depth TVO 3480 Collapse Burst Conn Body	Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00	Grade JSS Mud Cement Mud Top Joint	Weight Collapse / TVD * MG Collapse / TVD * GG • MG Burst / TVD * FG • GG Conn rd / MD * Wt	Conn LTC. 1.58 3.02 1.92 3.74	Collapse "2,570 Atages to Start Stat		Yield 520,000	Vield 630,000 Per BLM Borly	Weight 139,200 Burst 1.000 MD Air	Weight 139,200 Collapse 1.125	Drig Mud Weight 9.00 Joint 1.600 J.600 Drig Mud	Mud Gradient 0 47	Cmt Weight	Gradient	Gradient	Grad
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor Production Csg Size	Set Depth TVO 3480 Collapse Burst Conn Body Set Depth TVO	Set Depth MD 3480 1.20 1.30 1.30 1.80 2.00 Set Depth MD	Grade JSS Mud Cement Mud Top Joint Top Joint Grade	Weight Collapse / TVD * MG Collapse / TVD * GG - MG Burst / TVD * GG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight	Conn L1C 1.58 3.02 1.92 3.74 4.53	Collapse "2,570 Atigs set Start Start VC	3,950	Yield 520,000	Vield 630,000 Per BLM	Weight 139,200 Burst 1.000 MD Air	Weight 139,200 Collapse 1.125	Drig Mud Weight 9.00 Joint 1.600 J.800	Mud Gradient 0 47 (Dry) (Bouyed)	Cmt Weight 13.70	Gradient	Gradient 0.70	Grad
Int 2 Csg Size 9 5/8* SH Sefety Factor SH Safety Factor SH Safety Factor SH Safety Factor Production	Set Depth TVO 3480 Collapse Burst Conn Body Set Depth TVO	Set Depth MD 3480 1.20 1.30 1.30 1.80 2.00 Set Depth	Grade JSS Mud Cement Mud Top Joint Top Joint	Weight Collapse / TVD * MG Collapse / TVD * GG - MG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight	Conn L1C 1.58 3.02 1.92 3.74 4.53	Collapse "2,570 Atigs set Start Start VC	3,950 Burst	Yield 520,000	Vield 630,000 Per BLM Body Yield	Weight 139,200 Burst 1.000 MD Air	Veight 139,200 Collapse 1.125 TVD Air Weight	Drig Mud Weight 9.00 Joint 1.600 J.600 Drig Mud	Mud Gradient 0 47 (Dry) (Bouyed) Mud	Cmt Weight 13:70	Gradient 071	Gradient 0.70 Frac	Grad
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor Production Csg Size	Set Depth TVO 3480 Collapse Burst Conn Body Set Depth TVO	Set Depth MD 3480 1.20 1.30 1.30 1.80 2.00 Set Depth MD	Grade JSS Mud Cement Mud Top Joint Top Joint Grade	Weight Collapse / TVD * MG Collapse / TVD * GG - MG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight	Conn LTC. 1.58 3.02 1.92 3.74 4.53 Conn	Collapse	3,950 Burst	Yield 520,000 S20,000 S20,000	Vield 630,000 Per BLM Body Yield 641,000	Weight 139,200 Burst 1.000 MD Air Weight 385,920	Veight 139,200 2.125 TVD Air Weight 171,880	Drig Mud Weight 9.00 1.600 1.600 0rig Mud Weight	Mud Gradient 0 47 (Dry) (Bouyed) Mud Gradient	Cmt Weight 13,70 Cmt Weight	Gradient 071 Cmt Gradient	Gradient 0.70 Frac Gradient	Grad Q.: Ga Grad
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor Production Csg Size	Set Depth TVO 3480 Collapse Burst Conn Body Set Depth TVO	Set Depth MD 3480 1.20 1.30 1.30 1.80 2.00 Set Depth MD	Grade JSS Mud Cement Mud Top Joint Top Joint Grade	Weight Collapse / TVD * MG Collapse / TVD * GG - MG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight	Conn LTC. 1.58 3.02 1.92 3.74 4.53 Conn	Collapse	3,950 Burst	Yield 520,000 520,000 Vield 667,000	Vield 630,000 Per BLM Body Vield 641,000 Burst	Weight 139,200 Burst 1.000 MD Air Weight 385,920 Cotlapse	Veight 139,200 Collapse 1.125 TVD Air Weight 171,880	Drig Mud Weight 9.00 Joint 1.600 1.800 Drig Mud Weight 9.50	Mud Gradient 0 47 (Dry) (Bouyed) Mud Gradient	Cmt Weight 13,70 Cmt Weight	Gradient 071 Cmt Gradient	Gradient 0.70 Frac Gradient	Grad Q.: Ga Grad
Int 2 Cig Size 9 5/8* SH Sefety Factor SH Safety Factor SH Safety Factor H Safety Factor Production Cig Size 5 1/2*	Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD 8594	Set Depth MD 1480 1.20 1.30 1.30 1.30 2.00 Set Depth MD 19296	Grade · J55 Mud Cement Mud Top Joint Top Joint Grade ·Pi10	Weight Collapse / TVD * MG Collapse / TVD * MG Collapse / TVD * GG • MG Burst / TVD * GG • GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight . 20	Conn 1.58 3.02 1.92 3.74 4.53 Conn Atlas 8K	Collapse 2,570 3,570 5,570 5,570 7,570 8,5	3,950 Burst	Yield 520,000 S20,000 S20,000	Vield 630,000 Per BLM Body Yield 641,000	Weight 139,200 Burst 1.000 MD Air Weight 385,920	Veight 139,200 Collapse 1.125 TVD Air Weight 171,880 Joint 1.600	Drig Mud Weight 9.00 J.6	Mud Gradient 0 47 (Dry) (Bouyed) Mud Gradient 0.49	Cmt Weight 13,70 Cmt Weight 13,05	Gradient 0 71 Cmt Gradient 0.68	Gradient 0.70 Frac Gradient 0.70	Grad G. Ga Gradi
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor Production Csg Size	Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD 8594	Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD 19296	Grade · :J55 Mud Cement Mud Top Joint Top Joint Grade · Pi10 Mud	Weight Collapse / TVD * MG Collapse / TVD * G- GG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight 20 Collapse / TVD * MG	Conn 1.58 3.02 1.92 3.74 4.53 Conn Atlas 8K	Collapse 2,570 3,570 5,570 5,570 7,570 8,5	3,950 Burst	Yield 520,000 520,000 Vield 667,000	Vield 630,000 Per BLM Body Vield 641,000 Burst	Weight 139,200 Burst 1.000 MD Air Weight 385,920 Cotlapse	Veight 139,200 Collapse 1.125 TVD Air Weight 171,880 Joint 1.600	Drig Mud Weight 9.00 1.600 1.600 U.800 Drig Mud Weight 9.50 (Dry) (Bouyed)	Mud Gradient 0 47 (Dry) (Bouyed) (Bouyed) Gradient 0.49 Minimum	Cmt Weight 13.70 Cmt Weight 13.05	Gradient 0 71 Cmt Gradient 0.68	Gradient 0.70 Frac Gradient 0.70 6.000	Grad Q.: Ga Grad
Int 2 Csg Size 9 5/8* SH Safety Factor SH Safety Factor SH Safety Factor Stafety Factor Safety Factor Csg Size 5 1/2* M Safety Factor (Set Depth TVO 3480 Collapse Burst Conn Body Set Depth TVO 8594	Set Depth MD 1480 1.20 1.30 1.30 1.30 2.00 Set Depth MD 19296	Grade · J55 Mud Cement Mud Top Joint Top Joint Grade ·Pi10	Weight 4D ' Collapse / TVD * MG Collapse / TVD * GG • MG Burst / TVD * FG • GG Con Yd / MD * Wt Body Yd / MD * Wt Weight 20 • · Collapse / TVD * MG Collapse / TVD * MG	Conn 1.52 3.02 1.92 3.74 4.53 Conn Atlas 8K 2.61 7.00	Collapse	3,950 Burst	Yield 520,000 520,000 Vield 667,000	Vield 630,000 Per BLM Body Vield 641,000 Burst	Weight 139,200 Burst 1.000 MD Air Weight 385,920 Cotlapse	Veight 139,200 Collapse 1.125 TVD Air Weight 171,880 Joint 1.600	Drig Mud Weight 9.00 Joint 1.600 1.600 Urig Mud Weight 9.50 (Dry) (Bouyed)	Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradient 0.49 Minimum Maximum	Cmt Weight 13,70 Cmt 13,05 MU Torr	Gradient 0 71 Cmt Gradient 0.68 Que	Gradient 0.70 Frac Gradient 0.70 5.000 17.250	Grad G. Ga Gradi O.1
Int 2 Cig Size 9 5/8* SH Sefety Factor SH Safety Factor SH Safety Factor H Safety Factor Production Cig Size 5 1/2*	Set Depth TVO 3480 Collapse Burst Conn Body Set Depth TVO 8594 Collapse	Set Depth MD 1480 1.20 1.20 1.20 2.00 2.00 5et 1.20 1.20 1.20 1.20 1.20 1.20	Grade JSS Mud Cement Mud Top Joint Top Joint Grade -P110 Mud Cement	Weight Collapse / TVD * MG Collapse / TVD * G- GG Burst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight 20 Collapse / TVD * MG	Conn 1.58 3.02 1.92 3.74 4.53 Conn Atlas 8K	Collapse 2,570 3,570 5,570 5,570 7,570 8,5	3,950 Burst 22,640	Yield S20,000 Conn Yield 667,000 Per BLM	Vield 630,000 Per BLM Body Vield 641,000 Burst	Weight 139,200 Burst 1.000 MD Air Weight 385,920 Cotlapse	Weight 139,200 Collapse 1.125 TVD Air Weight 171,830 Joint 1.600 1.800	Drig Mud Weight 9.00 Joint 1.600 1.600 Urig Mud Weight 9.50 (Dry) (Bouyed)	Mud Gradient 0 47 (Dry) (Bouyed) (Bouyed) Gradient 0.49 Minimum	Cmt Weight 13,70 Cmt Weight 13,05 MU Torr MU Torr	Gradient 0 71 Crnt Gradient 0.68 que que ue	Gradient 0.70 Frac Gradient 0.70 6.000	Grad G. Ga Gradi O.1

· · ·

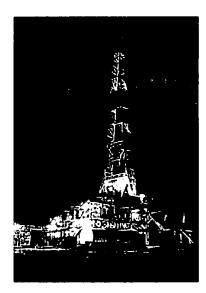
Crazy Hors	e 03 - 0	4 Fer	Com	# 4H		7											
						1											
Surface																	
	Set	Sei		1	1	<u> </u>		1	I "		1	I	,				r
Csg Size	Depth	Depth	Grade	Weight	Conn	Collapse	Burst	Conn	Body	MD Air	TVD Air	Drig Mud		Crnt	Crnt	Frac	Gas
	TVD	MD						Yield	Yield	Weight	Weight	Weight	Gradient	Weight	Gradient	Gradient	Gradient
20*	350	350	155	9.9.	BTC	520	2,110	1,402,000	f 480,000	32,900	32,900	9.00	0.47	14.80	0.77	0.70	0.11
SH Safety Facto	6.0.	1.20	Mud	Collapse / TVD * MG			1										
SH Salety Pacto	Constraine	1.20	Cement		3.17	- E											
SH Safety Facto	- Burrt	1.30	Mud	Collapse / TVD * CG - MG Burst / TVD * FG - GG	4.93	Actual Safety factor			Per BLM	Burst 1.000	Collapse 1.125	Joint 1.600	10.1	1			
SH Saftey Facto		1.80	Top Joint	Conn Yd / MD * Wt	42.61	3.8			Per BUM	1.000	1.125	1.600	(Dry) (Bouyed)	1			
SH Safety Facto		2.00	Top Joint	Body Yd / MD * Wt	41.98	1 2			·	1		1 1.000	Nocover)	1			
							·	-								_	
Int 1																-	
	Set	Set		····	T	, <u> </u>	r	·····	1 <u> </u>		<u> </u>		r				1
Csg Size	Depth	Depth	Grade	Weight	Conn	Collapse	Burst	Conn	Body	MD Air	TVD Air	Drig Mud	Mud	Crnt	Cmt	Frac	Gas
	TVD	MD	0.000	weight .			04151	Yield.	Yield	Weisbu	Weight	Weight	Gradient	Weight	Gradient	Gradient	Gradient
13 3/8"	1680	1680	155	.54.5	BIC.	1,130	2,730	909,000	.853,000*	91,560	91,560	10.00	0.52	14,20	0.74	0.70	0.11
SH Safety Facto	Collapse	1.20	Mud	Collapse / TVD • MG	1.29	. ≥											
		1.20	Cement	Collapse / TVD * CG - MG	3.08	ual Safe				Burst	Collapse	Joint					
SH Safety Factor	Burst	1.30	Mud	Burst / TVD * FG - GG	2.75				Per BLM	1.000	L125	1.600	(Dry)				
	6000	1.00	Ten Islas	Cone Vel (MD 4 MD	0.03	132.											
H Saftey Facto H Safety Facto		1.80 2.00	Top Joint Top Joint	Conn Yd / MD * Wt Body Yd / MD * Wt	9.93 9.32	Actual Safery factor						1.800	(Bouyed)				
SH Saftey Facto SH Safety Facto	Body Set Depth	2.00 Set Depth				Collapse	Burst	Conn Yield	Body Yield	MD Air	TVD Air	1.800 Drig Mud	(Bouyed)	Cmt	Cmt	Frac	Gas Gradient
SH Saftey Facto SH Safety Facto Int 2 Csg Size	Set Depth TVD	2.00 Set Depth MD	Top Joint Grade	Body Yd / MD * Wi Weight	9.32 Conn	Collapse		Yield	Vield	MD Air Weight	TVD Air Weight	1.800 Drlg Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Saftey Facto Int 2	Body Set Depth	2.00 Set Depth	Top Joint	Body Yd / MD * Wl	9.32		Burst 3,950			MD Air	TVD Air Weight	1.800 Drig Mud	(Bouyed)				
SH Saftey Facto SH Safety Facto Int 2 Csg Size	Body Set Depth TVD 3480	2.00 Set Depth MD	Top Joint Grade	Body Yd / MD * Wi Weight	9.32 Conn	Collapse 2,570		Yield	Vield	MD Air Weight	TVD Air Weight	1.800 Drlg Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Safety Facto Int 2 Csg Size	Body Set Depth TVD 3480	2.00 Set Depth MD 3480	Grade	Body Yd / MD * Wt Weight 40	9.32 Conn ^{- '} LTC.	Collapse 2,570		Yield	Vield	MD Air Weight 139,200	TVD Air Weight 139,200	1.800 Drlg Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Safety Facto Int 2 Csg Size	Body Set Depth TVD 3480 Collapse	2.00 Set Depth MD 3480 1.20	Grade JSS Mud	Body Yd / MD * Wt Weight 40 Collapse / TVD * MG	9.32 Conn ''LTC. 1.58	Collapse 2,570		Yield	Vield	MD Air Weight 139,200	TVD Air Weight	1.800 Drig Mud Weight 9.00	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradient
SH Safety Facto SH Safety Facto Csg Size 9 S/8" SH Safety Factor SH Safety Factor SH Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade ISS Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn 'LTC. 1.58 3.02 1.92 3.74	Collapse 2,570		Yield	Yield 630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight 9.00	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Safety Facto Csg Size 9 S/8" SH Safety Factor SH Safety Factor SH Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade JSS Mud Cement Mud	Body Yd / MD * Wt Weight Collapse / TVD * MG Collapse / TVD * GG - MG Burst / TVD * FG - GG	9.32 Conn "LTC. 1.58 3.02 1.92	Collapse		Yield	Yield 630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight 9.00 Joint 1.600	(Bouyed) Mud Gradient 0.47 (Dry)	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Safety Facto Int 2 Csg Size 9 S/B ^a SH Safety Facto SH Safety Facto SH Safety Facto SH Safety Facto	Body Set Depth TVD 3480 Collapse Burst Corn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade ISS Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn 'LTC. 1.58 3.02 1.92 3.74	Collapse 2,570		Yield	Yield 630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight 9.00 Joint 1.600	(Bouyed) Mud Gradient 0.47 (Dry)	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Safety Facto Int 2 Csg Size 9 S/B ^a SH Safety Facto SH Safety Facto SH Safety Facto SH Safety Facto	Body Set Depth TVD 3480 Collapse Burst Corn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade ISS Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn 'LTC. 1.58 3.02 1.92 3.74	Collapse 2,570		Yield	Yield 630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight 9.00 Joint 1.600	(Bouyed) Mud Gradient 0.47 (Dry)	Weight	Gradient	Gradient	Gradient
SH Saftey Facto SH Saftey Facto Int 2 Csg Size 9 S/B [*] SH Saftey Facto IH Safty Facto IH Safty Facto Production	Body Set Depth TVD 3480 Collapse Burst Conn Body Set	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00	Grade ISS Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * CG - MG Burst / TVD * CG - GG Con Yd / MD * Wi	9.32 Conn LTC. 1.58 3.02 1.92 3.74 4.53	Collapse 2,570 Autrast Safet Autrost Autrost Autrost Autrost	3;950	Yield 520,000	Vield 630,000 Per BLM	MD Air Weight 139,200 Burst 1.000	TVD Air Weight 139,200 Collapse 1.125	1.800 Drig Mud Weight 9.00 Joint 1.600 1.800	(Bouryed) Mud Gradient 0.47 (Dry) (Bouryed)	Weight 13:70	Gradient 0.71	Gradient	Gradient 0.11
SH Saftey Facto SH Safety Facto Int 2 Csg Size 9 S/B ^a SH Safety Facto SH Safety Facto SH Safety Facto	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth	2.00 Set Depth 3480 1.20 1.30 1.80 2.00	Grade ISS Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn 'LTC. 1.58 3.02 1.92 3.74	Collapse 2,570		Yield 520,000	Vield 630,000 Per BLM Body	MD Air Weight 139,200 Burst 1.000 MD Air	TVD Air Weight 139,200 Collapse 1.125	1.800 Drig Mud Weight 9.00 1.600 1.800 Drig Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed)	Weight 13:70	Gradient 0.71 Cmt	Gradient 0.70	Gradient 0.11 Gas
SH Saftey Facto SH Saftey Facto Int 2 Csg Size 9 5/8" SH Safety Facto H Safety Facto H Safety Facto Production Csg Size	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD	2.00 Set Depth 3480 1.20 1.20 1.30 1.80 2.00 Set Depth MD	Grade ISS Mud Cement Mud Top Joint Top Joint	Body Yd / MD * Wi Weight Collapse / TVD * MG Collapse / TVD * GG Garat / TVD * GG · GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn "LTC. 1.58 3.02 1.92 3.74 4.53	Collapse 2.570	3,950 Burst	Yield 520,000 Conn Yield	Vield 630,000 Per BLM Body Vield	MD Air Weight 139,200 Burst 3.000 MD Air Weight	TVD Air Weight 139,200 Collapse 1.125	1.800 Drig Mud Weight 9.00 1.600 1.800 Drig Mud Weight	(Bourred) Mud Gradient 0.47 (Dry) (Bourred) Mud Gradient	Weight 13:70 Cmt Weight	Gradient 0.71 Cmt Gradient	Gradient 0.70 Frac Gradient	Gradient 0.11 Gas Gradient
H Safety Facto H Safety Facto Int 2 Csg Size 9 S/B [*] H Safety Facto H Safety Facto H Safety Facto H Safety Facto Production	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD	2.00 Set Depth 3480 1.20 1.30 1.80 2.00	Grade ISS Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * CG - MG Burst / TVD * CG - GG Con Yd / MD * Wi	9.32 Conn LTC. 1.58 3.02 1.92 3.74 4.53	Collapse 2.570	3,950 Burst	Yield 520,000 Conn Yield	Vield 630,000 Per BLM Body	MD Air Weight 139,200 Burst 1.000 MD Air	TVD Air Weight 139,200 Collapse 1.125	1.800 Drig Mud Weight 9.00 1.600 1.800 Drig Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed)	Weight 13:70	Gradient 0.71 Cmt	Gradient 0.70	Gradient 0.11 Gas
SH Saftey Facto SH Saftey Facto Int 2 Csg Size 9 5/8" SH Safety Facto H Safety Facto H Safety Facto Production Csg Size	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD	2.00 Set Depth 3480 1.20 1.20 1.30 1.80 2.00 Set Depth MD	Grade ISS Mud Cement Mud Top Joint Top Joint	Body Yd / MD * Wi Weight Collapse / TVD * MG Collapse / TVD * GG Garat / TVD * GG · GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn "LTC. 1.58 3.02 1.92 3.74 4.53	Collapse 2.570	3,950 Burst	Yield 520,000 Conn Yield	Vield 630,000 Per BLM Body Vield 641,000	MD Air Weight 139,200 Burst 3.000 MD Air Weight	TVD Air Weight 139,200 Collapse 1.125	1.800 Drlg Mud Weight 9.00 Joint 1.600 1.800 Drlg Mud Weight . 9.50	(Bourred) Mud Gradient 0.47 (Dry) (Bourred) Mud Gradient	Weight 13:70 Cmt Weight	Gradient 0.71 Cmt Gradient	Gradient 0.70 Frac Gradient	Gradient 0.11 Gas Gradient
in Safter Facto in Safter Facto in Safery Facto Int 2 Csg Size 9 5/8" In Safery Facto In Safery Facto In Safery Facto Froduction Csg Size 5 1/2"	Body Set Depth TVD 3480 Collapse Burst Com Body Set Depth Typh Body 8594	2.00 Set Depth 3480 1.20 1.20 1.30 1.80 2.00 Set Depth MD	Grade ISS Mud Cement Mud Top Joint Top Joint	Body Yd / MD * Wi Weight Collapse / TVD * MG Collapse / TVD * GG Garat / TVD * GG · GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn "LTC. 1.58 3.02 1.92 3.74 4.53	Collapse 2,570	3,950 Burst	Yield 520,000 Conn Yield 667,000,	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171,680 Joint 1.600	1.800 Drig Mud Weight 9.00 Joint 1.600 1.800 Drig Mud Weight 9 50 (Dry)	(Bourred) Mud Gradient 0.47 (Dry) (Bourred) Mud Gradient	Cmt 13:70 Cmt Weight 13:05	Gradient 0.71 Cmt Gradient 0.68	Gradient 0.70 Frac Gradient	Gradient 0.11 Gas Gradient
SH Saftey Facto SH Saftey Facto SH Safery Facto Int 2 Csg Size 9 5/8" SH Safety Facto H Safety Facto SH Safety Facto Csg Size 5 1/2"	Body Set Depth TVD 3480 Collapse Burst Com Body Set Depth Typh Body 8594	2.00 Set Depth MD 1.480 1.20 1.30 1.80 2.00 Set Depth MD 19296	Grade ISS Mud Cement Mud Top Joint Top Joint Grade P110	Body Yd / MD * Wt Weight Collapse / TVD * MG Collapse / TVD * G • MG Burst / TVD * G • GG Con Yd / MD * Wt Body Yd / MD * Wt Weight 20	9.32 Conn LTC. 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK	Collapse 2,570	3,950 Burst	Yield 520,000 Conn Yield 667,000,	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171,680 Joint 1.600	1.800 Drig Mud Weight 9.00 Joint 1.600 1.800 Drig Mud Weight 9 50 (Dry)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradient 0.49 Minimum	Cm1 Weight 13:70 Cm1 Weight 13:05	Gradient 0.71 Cmt Gradient 0.68	Gradient 0.70 Frac Gradient 0.70 6,000	Gradient 0.11 Gas Gradient 0.11
SH Saftey Facto SH Saftey Facto Int 2 Csg Size 9 5/8" SH Safety Facto H Safety Facto Production Csg Size 5 1/2"	Body Set Depth TVD 3480 Collapse Burst Conn Body Body Set Oepth TVD 8594 Collapse	2.00 Set Depth MD 1.20 1.30 1.80 2.00 Set Depth MD 19295 1.220 1.20 1.30	Top Joint Grade 155 Mud Cement Mud Top Joint Top Joint Grade P110 Mud	Body Yd / MD * Wi Weight Collapse / TVD * MG Collapse / TVD * GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight 20 Collapse / TVD * MG	9.32 Conn LTC. 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK	Collapse 2.570	3,950 Burst	Yield 520,000 Conn Yield 667,000,	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171,680 Joint 1.600	1.800 Drig Mud Weight 9.00 Joint 1.600 1.800 Drig Mud Weight 9 50 (Dry)	(Bouyed) Mud Gradient (Dry) (Bouyed) Mud Gradient 0.49	Cm1 Weight Cm1 Weight 13.05 MU Toro MU Toro	Gradient 0.71 Cmt Gradient 0.68	Gradient 0.70 Frac Gradient 0.70	Gradient 0.11 Gas Gradient 0.11 ftlbs
SH Saftey Facto SH Saftey Facto Int 2 Csg Site 9 S/8" SH Safety Facto SH Safety Facto SH Safety Facto SH Safety Facto Production Csg Site	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TvD 8594 Collapse Burst Collapse Burst Collapse	2.00 Set Depth MD 1.20 1.30 1.80 2.00 Set Depth MD 19295 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	Grade 155 Mud Cement Mud Top Joint Top Joint Grade P110 Mud Cement	Body Yd / MD * Wi Weight Collapse / TVD * MG Collapse / TVD * G - MG Burst / TVD * FG - GG Con Yd / MD * Wi Body Yd / MD * Wi Weight 20 Collapse / TVD * MG Collapse / TVD * G - MG	9.32 Conn 'LTC. 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK 2.61 7.00	Collapse 2,570 August 2,570 Collapse 11,100	3;950 Burst 12,640	Yield 520,000 Conn Yield 667,000, Per BLM	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Coltapse 1,123 TVD Air Weight 171,880 Joint 1,600 1,800	1.800 Drig Mud Weight 9.00 Joint 1.600 1.800 Drig Mud Weight 9 50 (Dry)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradient 0.49 Minimum Maximum	Cmt Weight 13:70- Weight 13:05 MU Toro MU Toro	Gradient 0.71 Gradient 0.68	Gradient 0.70 Frac Gradient 0.70 6,000 17,250	Gradient 0.11 Gas Gradient 0.11 ftlbs ftlbs

Crazy Hors	e 03 - C)4 Fea	Com	- #4H		-											
		_			-											_	
Surface	_			·													
Csg Size	Set Depth TVD	Set Depth MD	Grade	Weight	Conn	Collapse	Burst	Conn Yield	Body Yield	MD Air Weight	TVD Air Weight	Drig Mud Weight	Mud Gradient	Cmt Weight	Crnt Gradient	Frac	Gas Gradie
20"	350	350	. 155	94	- BIC.	520	2,110	1,402,000	f 480,000	32,900		9.00	0.47	14.80	0.77	0.70	0.11
		1									• · · -				1_ 0.11		<u> </u>
H Safety Factor	Collapse	1.20	Mud	Collapse / TVD * MG	3.17	- ₹	1							_			
SH Safety Factor	9	1.20	Cement Mud	Collapse / TVD * CG - MG	4.93	Actual Safety factor				Burst	Collapse						
SH Saftey Factor		1.80	Top Joint	Burst / TVD * FG - GG Conn Yd / MD * Wt	10.22	ual Saf			Per BLM	1.000	1.125	1.600	(Dry)				
SH Safety Factor		2.00	Top Joint	Body Yd / MD * Wt	44.98	- ¥			<u> </u>			1.800	(Bouyed)				
			i op joint		44.30			-									
Int 1	1							_									_
	Set	r			<u> </u>	.											
Csg Size	Depth	Set Depth	Grade					Conn	Body	MD Air	TVD Air	Drig Mud	Mud	Cmt	Cmt	Frac	Gas
CIR LILL	TVD	MD	Graue	Weight	Conn	Collapse	Burst	· Yield ,	Yield	Weight	Weight	Weight	Gradient	Weight	Gradient	Gradient	Gradie
13 3/8*	1680	1680	155	54.5	· BTC'	1,130	2,730	. 909,000	853.000	91,560	91,560	10:00*/					
	-			······	1.010	1.4.4.10.	2,730	1. 303,000	055,000	91,260	91,560	• 10:00*;	0.52	14.20	0.74	0.70	0.11
H Safety Factor	Collapse	1.20	Mud	Collapse / TVD * MG	1.29		1										
		1.20	Cement	Collapse / TVD * CG - MG	3.08	1.2			<u> </u>	Burst	Coltapse	Joint					
H Safety Factor		1.30	Mud	Burst / TVD * FG - GG	2.75	ual Saf			Per BLM	1.000	1.125	1.500	(Dry)				
5H Saftey Factor	Conn	1.80	Top Joint														
H Safety Factor		2.00	Top Joint Top Joint	Conn Yd / MD * Wt Body Yd / MD * Wi	9.93 9.32	Actual Safety factor							(Bouyed)				
5H Safety Factor	Body Set Depth	2.00 Set Depth				Collapse	Burst	Conn Visite	Body	MD Air	TVD Air	1.800 Drig Mud	(Bouyed) Mud	Cmt	Cmt	Frac	Gas
SH Safety Factor Int 2 Csg Size	Body Set Depth TVD	2.00 Set Depth MD	Top Joint Grade	Body Yd / MD * W1	9.32 Cann	Collapse		Yield	Yield	MD Air Weight	TVD Air Weight	1.800 Drig Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	
5H Safety Factor	Body Set Depth	2.00 Set Depth	Top Joint	Body Yd / MD * Wi	9.32	I 	Burst 3,950		Yield	MD Air	TVD Air Weight	1.800 Drig Mud	(Bouyed) Mud				
SH Safety Factor Int 2 Csg Size	Body Set Depth TVD 3480	2.00 Set Depth MD	Top Joint Grade	Body Yd / MD * Wt Weight 40	9.32 Cann	Collapse		Yield	Yield	MD Air Weight	TVD Air Weight	1.800 Drig Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradier
SH Safety Factor Int 2 Csg Size 9 5/8 th	Body Set Depth TVD 3480	2.00 Set Depth MD 3480	Top Joint Grade	Body Yd / MD * Wt Weight 40 Collapse / TVD * MG	9.32 Cann LTC 1.58	Collapse		Yield	Yield	MD Air Weight 139,200	TVD Air Weight 139,200	1.800 Drig Mud Weight .9.00 - i	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradie
SH Safety Factor Int 2 Csg Size 9 5/8 th	Body Set Depth TVD 3480 Collapse	2.00 Set Depth MD 3480	Top Joint Grade 1355	Body Yd / MD * Wt Weight 40	9.32 Cann	Collapse		Yield	Yield	MD Air Weight 139,200 Burst,	TVD Air Weight 139,200 Collapse	1.800 Drig Mud Weight .9.00 - i	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradier
H Safety Factor Int 2 Cig Size 9 5/8 ⁺ H Safety Factor H Safety Factor H Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20	Grade 155 Mud Cement	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG • MG	9.32 Cann LTC 1.58 3.02	Collapse		Yield	Yield 530,000	MD Air Weight 139,200	TVD Air Weight 139,200	1.800 Drig Mud Weight .9:00 - (Joint 1.600	(Bouyed) Mud Gradient 0.47 (Dry)	Weight	Gradient	Gradient	Gradie
H Safety Factor Int 2 Cig Size 9 5/8 ⁺ H Safety Factor H Safety Factor H Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30	Grade 1355 Mud Cement Mud	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * FG - GG	9.32 Conn LTC 1.58 3.02 1.92	Collapse		Yield	Yield 530,000	MD Air Weight 139,200 Burst,	TVD Air Weight 139,200 Collapse	1.800 Drig Mud Weight .9:00 - (Joint 1.600	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradier
H Safety Factor Int 2 Cig Size 9 5/8 ⁺ H Safety Factor H Safety Factor H Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Top Joint Grade 155 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG · GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield	Yield 530,000	MD Air Weight 139,200 Burst,	TVD Air Weight 139,200 Collapse	1.800 Drig Mud Weight .9:00 - (Joint 1.600	(Bouyed) Mud Gradient 0.47 (Dry)	Weight	Gradient	Gradient	Gradier
SH Safety Factor Int 2 Csg Size 9 5/8 ⁿ SH Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Top Joint Grade 155 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG · GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield	Yield 530,000	MD Air Weight 139,200 Burst,	TVD Air Weight 139,200 Collapse	1.800 Drig Mud Weight .9:00 - (Joint 1.600	(Bouyed) Mud Gradient 0.47 (Dry)	Weight	Gradient	Gradient	Gradier
H Safety Factor Int 2 Csg Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor H Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Top Joint Grade 155 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG · GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield 520,000	Yield 630,000 Per BLM	MD Air Weight 139,200 Burst 1.000	TVD Air Weight 139,200 1.125	1.800 Drtg Mud Weight :9:00 - i Joint 1.600 1.800	(Bouyed) Mud Gradient 0.47 (Dry)	Weight .13.70	Gradient	Gradient	Gradie
H Safety Factor Int 2 Csg Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor H Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00	Top Joint Grade 155 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG · GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse	3,950	Yield 520,000	Yield 630,000 Per BLM Body	MD Air Weight 139,200 Burst. 1.000 MD Air	TVD Air Weight 139,200 Collapse 1.125	1.800 Drig Mud Weight .9.00 - i Joint 1.600 2.800 Drig Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud	Weight .13.70 Cmt	Gradient 0.71 Cmt	Gradient 0.70 Frac	Gradier 0.11 Gas
H Safety Factor Int 2 Cig Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor Production Cig Size	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD	Grade 155 Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn	Collapse 72,570 : Yunal Safety Factor	3,950	Yield 520,000 520,000	Yield 630,000 Per BLM	MD Air Weight 139,200 Burst. 1.000 MD Air	TVD Air Weight 139,200 1.125	1.800 Drig Mud Weight 	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud	Weight .13.70 Cmt	Gradient	Gradient 0.70 Frac	Gradier 0.11
H Safety Factor Cig Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor Production	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth	Grade 155 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * MG Bust / TVD * FG - MG Bust / TVD * FG - GG Conn Yd / MD * Wi Body Yd / MD * Wi	9.32 Cann LTC 1.58 3.02 1.92 3.74 4.53	Collapse	3,950	Yield 520,000	Yield 630,000 Per BLM Body Yield	MD Air Weight 139,200 Burst. 1.000 MD Air	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight	1.800 Drig Mud Weight .9.00 - i Joint 1.600 2.800 Drig Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud	Weight .13.70 Cmt	Gradient 0.71 Cmt	Gradient 0.70 Frac	Gradier 0.11 Gas
H Safety Factor Int 2 Cig Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor Production Cig Size	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD	Grade 155 Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn	Collapse	3,950 Burst	Yield 520,000 520,000	Vield 530,000 Per BLM Body Vield 7641,000	MD Air Weight 139,200 Burst. 1.000 MD Air Weight 385,920	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171.880	1.800 Drtg Mud Weight .9.00 · · Joint 1.600 L.800 Drtg Mud Weight	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradient	Weight 13.70 Cmt Weight	Gradient 0.71 Cmt Gradient	Gradient 0.70 Frec Gradient	Gradier 0.11 Gas Gradier
H Safety Factor Int 2 Cig Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor Production Cig Size	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD	Grade 155 Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn	Collapse	3,950 Burst	Yield 520,000" Conn Yield 667,000"	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collapse	TVD Air Weight 139,200 1.125 TVD Air Weight 171.880 Joint	1.800 Drtg Mud Weight .9.00 - i Joint 1.600 1.800 Drtg Mud Weight 9.50	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradient	Weight 13.70 Cmt Weight	Gradient 0.71 Cmt Gradient	Gradient 0.70 Frec Gradient	Gradier 0.11 Gas Gradier
in Safety Factor Int 2 Csg Size 9 5/8" H Safety Factor H Safety Factor H Safety Factor H Safety Factor Safety Factor Safety Factor Safety Factor Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD 8594	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD	Grade 155 Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn	Collapse	3,950 Burst	Yield 520,000 520,000	Vield 530,000 Per BLM Body Vield 7641,000	MD Air Weight 139,200 Burst. 1.000 MD Air Weight 385,920	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171.880 Joint 1.600	1.800 Drig Mud Weight 9.00 · ; Joint 1.600 1.800 Drig Mud Weight 9.50 (Ory)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent 0.49	Cmt Weight	Gradient 0.71 Crnt Gradient 0.68	Gradient 0.70 Frac Gradient 0.70	Gradier 0.11 Gas Gradier 0.11
in Safety Factor Int 2 Csg Size 9 5/8" H Safety Factor H Safety Factor H Safety Factor H Safety Factor Safety Factor Safety Factor Safety Factor Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD 8594	2.00 Set Depth MD 3480 1.20 1.20 1.80 2.00 Set Depth MD 19296	Grade 155 Mud Cement Mud Top Joint Top Joint Grade P110	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * MG Collapse / TVD * G - MG Burst / TVD * FG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight 20	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK	Collapse	3,950 Burst	Yield 520,000" Conn Yield 667,000"	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collapse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171.880 Joint 1.600	1.800 Drtg Mud Weight .9.00 · i Joint 1.600 2.800 Drtg Mud Weight 9:50	(Bouyed) Mud Gradient 0.47 (Ory) (Bouyed) Mud Gradlent 0.49 Minimum	Cmt Weight 13.70 Cmt Weight 13.05	Gradient 0.71 Cmt Gradient 0.68	Gradient 0.70 Frac Gradient 0.70 6,000	Gradier 0.11 Gas Gradier 0.11 ftlbs
in Safety Factor Csg Size 9 5/8 ¹ H Safety Factor H Safety Factor H Safety Factor Production Csg Size 5 1/2 ¹ - H Safety Factor	Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD 8594	2.00 Set Depth MD 1.20 1.20 1.30 1.80 2.00 Set Depth MD 19296	Top Join1 Grade 'JSS Mud Cement Mud Top Joint Top Joint Grade - P110 Mud	Body Yd / MD * WI Weight 20 Collapse / TVD * MG Collapse / TVD * GG - GG Burst / TVD * FG - GG Conn Yd / MD * WI Body Yd / MD * WI Weight 20 Collapse / TVD * MG	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK	Collapse	3,950 Burst	Yield 520,000" Conn Yield 667,000"	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collapse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171.880 Joint 1.600	1.800 Drig Mud Weight 9:00 - i Joint 1.600 1.800 Drig Mud Weight 9:50 (Ory) (Bouyed)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent 0.49 Minimum	Cmt Weight 13.70 Cmt Weight 13.05	Gradient 0.71 Cmt Gradient 0.68 Jue	Gradient 0.70 Frac Gradient 0.70 6,000 17,250	Gradier 0.11 Gas Gradier 0.11 filbs filbs
H Safety Factor Int 2 Cig Size 9 5/8 th H Safety Factor H Safety Factor H Safety Factor Production Cig Size	Body Set Depth TVD 3480 Collapse Body Set Conn Collapse Collapse Collapse Collapse Collapse Collapse Burst Collapse Burst	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 1.80 2.00 1.20 1.20 1.20 1.20 1.20 1.20 1.2	Top Joint Grade 155 Mud Cement Mud Top Joint Grade -P110 Mud Cement	Body Yd / MD * Wi Weight 40 Colliapse / TVD * MG Colliapse / TVD * MG Burst / TVD * FG - MG Burst / TVD * FG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Body Yd / MD * Wi Colliapse / TVD * MG Colliapse / TVD * MG	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK 2.61 7.00	Collapse 2,570 : Asjest Formula Values Collapse 11,100 Logonal Logon	3,950 Burst	Yield 520,000 Conn Yield 667,000 Per BLM	Vield 630,000 Per BLM Body Vield 641,000 Burst	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920 Collapse	TVD Air Weight 139,200 1.125 TVD Air Weight 171.880 Joint 1.600 1.800	1.800 Drtg Mud Weight .9.00 - i Joint 1.600 1.800 Drtg Mud Weight 9:50 (Ory) (Bouyed)	(Bouyed) Mud Gradient 0.47 (Ory) (Bouyed) Mud Gradlent 0.49 Minimum	Cmt Weight 13.70 Cmt Weight 13.05	Gradient 0.71 Cmt Gradient 0.68 ue ue	Gradient 0.70 Frac Gradient 0.70 6,000	Gradie 0.11 Gas Gradie 0.11 ft/bs

Set Set Set Depth Grade Weight Conn Collapse Burst Conn Preduction 1 9 5/8" 3480 3480 155																		
Surface Str Set	Casing Des	igns					_											
Cap Site Set Set Grade Weight Conn Collapse Burst Conn Bedy WD Air Drig Mud Mud Cmt Fract Gradem Gradem <t< td=""><td>Crazy Hors</td><td>e 03 - I</td><td>04 Fee</td><td>l Com</td><td>#4H</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Crazy Hors	e 03 - I	04 Fee	l Com	#4H													
Case ise grist Depth (Depth (Depth) (Depth) (Grade (Sale) (Sale (Sale (Sale (Sale (Sale) (Sale (Sale (Sale (Sa	Surface					_									_			
207 350 350 55 -94 91 510 210 Callages 2.00 -9.00	Csg Size	Depth	Depth	Grade	Weight	Солл	Collapse	e Burst		1 '								
Site Steep Factor Collapse 1.20 Muid Collapse f 700 * MG 3.17 H3 Safery Factor Bourt 1.30 Control 700 * GG 10.22 Site Steep Factor Bourt 1.30 Muid Burst / Collapse / MD * Wt 44.38 Site Steep Factor Bourt 2.00 Top Joint Control 700 * GG 10.22 Site Steep Factor Bourt 2.00 Top Joint Control 700 * GG 10.22 Site Steep Factor Bourt 2.00 Top Joint Control 700 * GG 10.22 Site Steep Factor Bourt 2.00 Top Joint Control 700 * GG 10.22 Site Steep Factor Bourt 1.30 Muid Control 700 * MD 44.38 Site Steep Factor Collapse 1.20 Keight Conn Collapse Burst Conn Body MD Air TVD Air Orig Mod Muid Cmit Frac Gas Site Steep Factor Collapse 1.20 Muid Collapse / TVD * MG 1.29 Y Y Site Steep Factor Collapse / TVD * MG 1.29 Y Y Site Steep Factor Collapse / TVD * MG 1.29 Y Y Y Y Y Y Y Y Y	20*			355	- 94 -	BTC	520	2,110	1,402,000	0 1,480,000	32.900	32.900		0.47	14.80		L	
Sin Settery Factor Conn 180 Top Joint Conn Value Val	SH Safety Factor	Collapse	1.20	Mud	Collapse / TVD ' MG	3.17		٦										
Sin Settery Factor Com 180 Top Joint Com							_ afer				Burst	Collaps	e Joint	1	ר			
Int 1 Set Set </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- S D</td> <td>F</td> <td></td> <td>Per BLM</td> <td>1.000</td> <td>1.125</td> <td>1.600</td> <td>(Dry)</td> <td>1</td> <td></td> <td></td> <td></td>							- S D	F		Per BLM	1.000	1.125	1.600	(Dry)	1			
Int 1 Set Set </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 - -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.800</td> <td>(Bouyed</td> <td>)</td> <td></td> <td></td> <td></td>							2 - -						1.800	(Bouyed)			
Set Depth Dep	SH Safety Factor	Body	2.00	Top Joint	Body Yd / MD * Wt	44,98	4						_					
Cig Size TVD TVD MO Openth MO	Int 1	1	_							,				_		_		-
Cig Size TVD TVD MO Openth MO		Set	Set	<u> </u>		<u> </u>	1		1	r			1		Υ <u></u>	1	r	
SH Safety Factor Collapse 1.20 Mud Collapse/ TVD * MG 1.29 SH Safety Factor Collapse 1.20 Mud Collapse/ TVD * GG 3.60 91,360 91,200 92,90 94,71 92,70 0,111 Sh Safety Factor Bo				Grade	Weight	Conn	Collapse	Burst	1			· ·						
L20 Cement Collapse / IVD * CG · MG 3.68 Junct / VD * CG · MG 3.68 SH Safety Factor Burst 1.30 Mud Burst / VD * GG · GG · Z.75 9 9 9 SH Safety Factor Burst 1.30 Mud Burst / VD * GG · GG · Z.75 9 9 9 9 SH Safety Factor Body 2.00 Top Joint Body Vd / MD · Wt 9.32 9 <t< td=""><td>13 3/8"</td><td>1680</td><td>1680</td><td></td><td>54.5</td><td>· BTC</td><td>1,130</td><td>2,730</td><td>909,000</td><td>853,000</td><td>91,560</td><td>91,560</td><td>10.00</td><td>0.52</td><td>14.20</td><td>0.74</td><td>0.70</td><td>0.11</td></t<>	13 3/8"	1680	1680		54.5	· BTC	1,130	2,730	909,000	853,000	91,560	91,560	10.00	0.52	14.20	0.74	0.70	0.11
L20 Cement Collapse / IVD * CG · MG 3.68 Junct / VD * CG · MG 3.68 SH Safety Factor Burst 1.30 Mud Burst / VD * GG · GG · Z.75 9 9 9 SH Safety Factor Burst 1.30 Mud Burst / VD * GG · GG · Z.75 9 9 9 9 SH Safety Factor Body 2.00 Top Joint Body Vd / MD · Wt 9.32 9 <t< td=""><td>SH Safety Factor</td><td>Collapse</td><td>1.20</td><td>Mud</td><td>Collanse / TVD * MG</td><td>1 1 29</td><td></td><td>n</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SH Safety Factor	Collapse	1.20	Mud	Collanse / TVD * MG	1 1 29		n										
Sit Saftey Factor Conn LSD Top Joint Conn Yd / MD * Wt 9.93 By S Sit Saftey Factor Conn LSD Top Joint Conn Yd / MD * Wt 9.93 By S Sit Saftey Factor Conn LSD Top Joint Conn Yd / MD * Wt 9.93 By S Sit Saftey Factor Body Z.00 Top Joint Body Yd / MD * Wt 9.93 By S Early P LLOU LLOU <thlou< th=""> LLOU LLOU</thlou<>							et /	1				10-0-11		· · · · · · · · · · · · · · · · · · ·	1			
Sin Safety Factor Body Lob Top Joint Body YMD * Wit 9:32 V 1.800 [Bodywed] Sin Safety Factor Body 2.00 Top Joint Body YMD * Wit 9:32 V 1.800 [Bodywed] Sin Safety Factor Body 2.00 Top Joint Body YMD * Wit 9:32 V 1.800 [Bodywed] Sin Safety Factor Body 2.00 Top Joint Body YMD * Wit 9:32 V 1.800 [Bodywed] Sin Safety Factor Body 2.00 Top Joint Gradent Conn Collapse Burst Conn Yoeld Yeeld Weight Weight Weight Weight Gradent Weight Gradent Weight Gradent Weight Gradent Weight No 0.71 0.70 0.11 Sin Safety Factor Body 1.20 Cement Collapse / TVD * MG 1.55 Yeight Yeight Yeight Yeight Solo 1.125 1.600 (Dry) Sin Safety Factor Body 2.00 Top Joint Body Yd / MD * Wit 4.53 Yeight Yeight Mod Mud Mud	SH Safety Factor	Burst					to Sal	F		Dar Bi M				1 (0-1	{			
SH Safety Factor Body 2.00 Top Joint Body Yd / MD • Wi 9.32 2 Into Z Cig Size Depth Depth Grade Weight Conn Collapse Burst Conn Yield Weight Weight Gradent Frac Gas 1 95/8" 3480 3480 3480 155								1		. er bl.m	1.000	1 200			1			
Set Set Set Set Depth Grade Weight Conn Collapse Burst Conn Preduction 1 95/8" 3480 3480 155	SH Safety Factor	Body	2.00				†₹	1		<u> </u>			1.000	1.000780	1			
Set Set Set Set Depth Grade Weight Conn Collapse Burst Conn Production 1 9.5/8" 3480 2480 135			_										_		_	-		
Crg Size Depth TVD Depth MD Grade MD Weight MD TVD Air Sight	Int 2																	
Cig. Are Orpol Open Orgon <	6 6					1		1 -	Cone	Borty	MDAI	TVD A	Drie Marrie	Adure	Cmi	C.m.	fear	<u></u>
9 5/8" 3480 7480 155 40 117C. 2,570 3,950 520,000 630,000 139,200 139,200 130 Mode Mo	Csg Size			Grade	Weight	Conn	Collapse	Burst									-	
SH Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 1.56 I.20 Cement Collapse / TVD * G · MG 0.20 1.56 SH Safety Factor Burst 1.30 Mud Burst / TVD * G · MG 0.21 SH Safety Factor Burst 1.30 Mud Burst / TVD * G · MG 0.22 SH Safety Factor Body 2.00 Top Joint Body Yd / MD * Wt 3.74 SH Safety Factor Body 2.00 Top Joint Body Yd / MD * Wt 4.53 Production Set Set Set Set Set Set Safety Factor Collapse Utop Joint Body Yd / MD * Wt 4.53 Vo MO Grade Weight Conn Vield Weight Weight Gradient Weight Gradient Weight Gradient Gra	· · 9 5/8"				40	1.170	1. 1. 170	1.000	L		-							
L20 Cement Collapse / TVD * CG · MG 302 SH Safety Factor Burst 1.30 Mud Burst / TVD * FG · GG 1.92 SH Safety Factor Burst 1.30 Mud Burst / TVD * FG · GG 1.92 SH Safety Factor Burst 1.30 Mud Burst / TVD * FG · GG 1.92 Sh Safety Factor Body 2.00 Top Joint Body Yd / MD * Wt 4.53 Production Set Set Set Set Set Set Depth Grade Weight Conn Collapse Burst Conn Body MO Air TVD Air Drig Mud Mud Cmt Fract Gas SJ/2* B594 19236 P10 20 Atlas BK 11.100 12.640 667.000 641.000 385.920 171.880 950 0.49 13.05 0.68 0.70 0.11 SH Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 2.61 P crow P crow 1.800 (Bouyed) Minmum MU Torque 6.000 ftlbs SH Safety Factor Collapse 1.20 Mud		1 ,7100	1.2469	123	L 40	<u>Luc.</u>	1 2,570	1 3,950	520,000	1. 630,000	1 39,200	139,200	9:00	0.47	13.70	0.71	0.70	0.11
L20 Centent Collapse / IVD * GC · MG 302 SH Safety Factor Burst 1.30 Mud Burst / IVD * GC · MG 1.20 SH Safety Factor Burst L30 Top Joint Burst / IVD * GC · MG 1.30 SH Safety Factor Body 2.00 Top Joint Body Yd / MD * Wt 4.53 Production End Collapse Burst Conn Collapse Burst Conn Sh Safety Factor Body 2.00 Top Joint Body Yd / MD * Wt 4.53 -	SH Safety Factor	Collapse	1.20	Mud	Collapse / TVD * MG	1.56	>	1										
Production Set Set Set Set Set Galapse Weight Conn Collapse Burst Conn Yield MD Air TVD Air Drig Mud Mud Cmt Frac Gas 5 J/2* 8594 19296 P110 20 Atlas BK 11,100 12,640 667/000. 641,000 385,920 171,860 9'50 0.49 -3.305 0.68 0.70 0.11 Sh Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 2.61 Per BLM Burst Collapse / IOPy Minmum MU Torque 6.000 ftlbs Sh Safety Factor Collapse 1.20 Mud Collapse / TVD * GG 7.00 Per St 2.61 Diago 1.800 (Boryed) Minmum MU Torque 6.000 ftlbs Sh Safety Factor Collapse / Jaco 1.20 Collapse / TVD * GG 2.61 Per St 2.60 Maximum MU Torque 6.000 ftlbs Sh Safety Factor Conlapse 1.20 Collapse / TVD * GG 2.43 2.43 <				Cement	Collapse / TVD * CG · MG		Į,				Burst	Collapse	Joint	T				
Production Set Set Set Set Set Galapse Weight Conn Collapse Burst Conn Yield MD Air TVD Air Drig Mud Mud Cmt Frac Gas 5 J/2* 8594 19296 P110 20 Atlas BK 11,100 12,640 667/000. 641,000 385,920 171,860 9'50 0.49 -3.305 0.68 0.70 0.11 Sh Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 2.61 Per BLM Burst Collapse / IOPy Minmum MU Torque 6.000 ftlbs Sh Safety Factor Collapse 1.20 Mud Collapse / TVD * GG 7.00 Per St 2.61 Diago 1.800 (Boryed) Minmum MU Torque 6.000 ftlbs Sh Safety Factor Collapse / Jaco 1.20 Collapse / TVD * GG 2.61 Per St 2.60 Maximum MU Torque 6.000 ftlbs Sh Safety Factor Conlapse 1.20 Collapse / TVD * GG 2.43 2.43 <						1.92		1	j	Per BLM				(Dry)				
Production Set Set Set Set Set Galapse Weight Conn Collapse Burst Conn Yield MD Air TVD Air Drig Mud Mud Cmt Frac Gas 5 J/2* 8594 19296 P110 20 Atlas BK 11,100 12,640 667/000. 641,000 385,920 171,860 9'50 0.49 -3.305 0.68 0.70 0.11 Sh Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 2.61 Per BLM Burst Collapse / IOPy Minmum MU Torque 6.000 ftlbs Sh Safety Factor Collapse 1.20 Mud Collapse / TVD * GG 7.00 Per St 2.61 Diago 1.800 (Boryed) Minmum MU Torque 6.000 ftlbs Sh Safety Factor Collapse / Jaco 1.20 Collapse / TVD * GG 2.61 Per St 2.60 Maximum MU Torque 6.000 ftlbs Sh Safety Factor Conlapse 1.20 Collapse / TVD * GG 2.43 2.43 <							1 2 2											
Set Set Set Set Set Depth Grade Weight Conn Collapse Burst Conn Body MD Air TVD Air Drig Mud Mud Cmt Frac Gas 51/2* 8594 19296 P110 20 Atlas BK 11,100 12,640 667,000 641,000 385,920 171,880 950 0.49 -13.05 0.68 0.70 0.11 SH Safety Factor Collapse 1.20 Cement Collapse/TVD * CG · MG 2.61 TV product Epsilon 1.20 Cement Collapse/TVD * CG · MG 7.00 Epsilon 1.20 Lement Collapse/TVD * CG · MG 7.00 Epsilon 1.20 Lement Collapse/TVD * CG · MG 7.00 Epsilon 1.200 1.20 Cement Collapse/TVD * CG · MG 7.00 Epsilon 2.61 Epsilon<	SH Safety Factor	Body	2.00	Top Joint	Body Yd / MD * Wt	4.53	<u>۲</u>											
Set Set Set Set Depth Grade Weight Conn Collapse Burst Conn Body MD Air TVD Air Drig Mud Mud Cmt Frac Gas 5 1/2" B594 15266 P110 20 Atlas BK 11,100 12,640 667,000 641,000 385,920 171,880 950 0.49 .33.05 0.68 0.70 0.11 SH Safety Factor Collapse 1.20 Cement Collapse/TVD * MG 2.61 TV 0/2 voltapse/VVD 1.80 1.20 Mod Collapse/TVD * G - MG 7.00 V/2 voltapse/VVD 1.80 1.20 Mod Collapse/TVD * G - MG 7.00 V/2 voltapse/VVD 1.80 1.20 Mod Collapse/TVD * MG 2.61 TV 0/2 voltapse/VVD 1.20 Cement Collapse/TVD * G - MG 7.00 V/2 voltapse/VVD 1.80 1.20 Mod Collapse/TVD * MG 2.61 TV 0/2 voltapse/VVD 1.20 Mod Mod Mod Mod Mod Mod Mod Mod <td>D</td> <td>1</td> <td></td>	D	1																
Csg Size Depth TVD Depth MD Grade Weight Conn Collapse Vield Burst Conn Vield Body Vield MD Air Vield TVD Air Weight Drg Mud Weight Cmt Weight Frace Gradient Gradient Gradient Frace Gradient Gradient Gradient<	Production																	
S J/Z* B594 15266 P110 20 Atlas BK 11,100 12,640 667,000 641,000 385,920 171,880 9:50 0.49 -13.05 0.68 0.70 0.11 SH Safety Factor Collapse 1.20 Mud Collapse/TVD * MG 2.61 # Collapse/L000 1.125 1.660 Dry SH Safety Factor Burst 1.30 Mud Collapse/TVD * GG · MG 7.00 #<	Csg Size	Depth	Depth	Grade	Weight	Conn	Collapse	Burst										
SH Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 2.61 E <	5 1/2			P110	20	Atlas BK	11 100	12 640	667'000"		-	-	-			_		
SM Safety Factor Collapse 1.20 Mud Collapse / TVD * MG 2.61 1.20 1.200 (Dovyed) Minimum MU Torque 6.000 ftbs 1.20 Cement Collapse / TVD * CG · MG 7.00 0 0 0 0 0 0 0 1000 1.125 1.600 (Dovyed) Minimum MU Torque 6.000 ftbs SM Safety Factor Burst 1.30 Mud Burst / TVD * FG - GG 2.49 V Maximum MU Torque 17.250 ftbs SH Safety Factor Burst 1.30 Mud Burst / TVD * FG - GG 2.49 V Maximum MU Torque 17.250 ftbs SH Safety Factor Conn 1.80 Top Joint Conn Yd / MD * Wt 1.73 Conn Yd @ CurveTVD 3.88 Actual Safety Max Operating Torque 19,550 ftbs	·		التحجيب						007,000,		Ja 9,920	1111,000	- 3.30	0.43	. 13.05	0.68	0.70	0.11
SH Safety Factor Collapse 1.20 Mud Collapse VD * MG 2.61 E E I.800 (Bouyed) Minimum MU Torque 6.000 ftlbs SH Safety Factor Burst 1.30 Mud Burst / VD * G - MG 7.00 E V V Max Max Deraining Torque 1.72.50 ftlbs SH Safety Factor Burst 1.30 Mud Burst / VD * FG - GG 2.49 Max Deraining Torque 8.300 ftlbs SH Safety Factor Burst 1.30 Top Joint Conn Yd / MD * Wt 1.73 Conn Yd @ CurveTVD 3.88 Actual Safety Max Operating Torque 19,550 fttbs									Per BLM				(Dry)					
1.20 Cement Collapse / IVD * CG · MG 7.00 P = 0 P P Maintym MU Torque 17.25 ftibs SM Safety Factor Burst 1.30 Mud Burst / IVD * FG - GG 2.43 V Y Y Y This Dptimum MU Torque 17.250 ftibs SM Safety Factor Burst 1.30 Mud Burst / IVD * FG - GG 2.43 V Y This Dptimum MU Torque 10.200 ftibs SM Safety Factor Conn 1.80 Top Joint Conn Yd / MD * WI 1.73 Conn Yd @ CurveTVD 3.88 Actual Salety Max Operating Torque 19,550 ftibs	SH Safety Factor	Collapse					= ≥ €	1						Minimum	MU Toro	aue I	6,000	filbs
SH Saftey Factor Conn 1.80 Top Joint Conn Yd / MD *Wt 1.73 Conn Yd @ CurveTVD 3.88 Actual Safety Max Operating Torque 19,550 fttbs		_					afer (tr											
SH Safter Factor Conn 1.80 Top Joint Conn Yd / MD * Wt 1.73 Conn Yd @ CurveTvD 3.88 Actual Safety Max Operating Torque 19,550 fttbs																		
																que		
SH Safety Factor Body 2.00 Top Joint Body Yd / MD * Wt 1.66 Body Yd @ Curve TVD 3.73 Factors Yield Torque 23,000 fritos	an salety Factor I	sody	2.00	rop Joint	Body Yd / MD * Wt	1.66	Body Y	d @ Cu	rve TVD	3.73	Fac	tors		Yield Torq	ue		23,000	ftibs

· · · · · ·

• • ·


Crazy Hors	se 03 - 0)4 Fea	d Com	* # 4H													
						ان 											
Surface															_		
Csg Size	Set Depth TVD	Sei Depth MD	Grade	Weight	Cann	Collapse	Burst	Conn Yield	Body Yield	MD Air Weight	TVD Air Weight	Drig Mud Weight	Mud Gradient	Cmt Weight	Cmt Gradient	Frac	Gas Gradie
20"	350	350	. 155	94	BTC-	\$ 520	2,110	1,402,000	0 1,480,000	32,900	32,900	9:00	0.47	14.80	0.77	0.70	0.11
							_	- · · ·			1			14.00		1 0.70	1_0.11
SH Salety Facto	# Collapse	1.20	Mud	Collapse / TVD * MG	3.17	2					-			_			
SH Safety Facto		1.20	Cement	Collapse / TVD * CG - MG	4.93	Actual Safety factor	1			Burst	Collapse	Joint					
SH Saftey Facto		1.80	Mud Top Joint	Burst / TVD * FG - GG Conn Yd / MD * Wt	10.22	ual Saf			Per BLM	1.000	1.125	1.600	(Dry)				
SH Safety Facto		2.00	Top Joint	Body Yd / MD * Wt	44.98	Ę.				L		1.600	(Bouyed)				
		4.00	T top tonin	BODY 107 MD WI	44.98		I			-		_					
Int 1		_	-				_			_							
	Set	Set	·	r 		r											
Csg Size	Depth	Depth	Grade	M 1.7.8.				Conn	Body	MD Air.	TVD Air	Drig Mud	Mud	Cmt	Cmt	Frac	Gas
C38 JAZE	TVD	MD	Grade	Weight	Conn	Collapse	Burst	· Yield.	Yield	Weight	Weight	Weight	Gradient	Weight	Gradient	Gradient	Gradie
13.3/8"	1680	1680	J55	54.5	BTC	1,130	2,730	909,000						-			
						1,1,130	2,730	1 909,000	. 853,000	91,560	91,560	• 10,00";	0.52	14.20	0.74	0.70	0.11
H Safety Factor	r Collapse	1.20	Mud	Collapse / TVD * MG	1.29		1										
		1.20	Cement	Collapse / TVD * CG - MG	3.08	£				Burst	Collapse	Joint		1			
H Safety Factor	r Burst	1.30	Mud	Burst / TVD * FG - GG	2.75	ual Saf			Per BLM	1.000	1.125	1.600	(Dry)				
iH Saftey Factor		1.80	Territory.														
	-		Top toint	Conn Yd / MD * Wt	9.93	1 8 4							(Bouyed)				
H Safety Factor	-	2.00	Top Joint	Conn Yd / MD * Wt Body Yd / MD * Wt	9.93	Actual Safety factor											
H Safety Factor	Set Depth	2.00 Set Depth				Collapse	Burst	Conn Yield	Body Yield				(Bouyed)	Crnt Weight	Cmt Gradient	Frac	Gas
H Safety Factor	set	2.00 Set Depth MD	Top Joint Grade	Body Yd / MD * Wi Weight	9.32 Conn	Collapse		Yield	Yield	MD Air Weight	TVD Air Weight	1.800 Drig Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradien
H Safety Factor nt 2 Csg Size	Set Depth TVD	2.00 Set Depth	Top Joint	Body Yd / MD ° Wi	9.32		Burst 3,950		Yield	MD Air	TVD Air Weight	1.800 Drlg Mud	(Bouyed)				Gas Gradien 0.11
nt 2 Csg Size	Set Depth TVD 3480	2.00 Set Depth MD	Top Joint Grade	Body Yd / MD * Wi Weight	9.32 Conn	Collapse		Yield	Yield	MD Air Weight	TVD Air Weight	1.800 Drig Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradier
H Safety Factor Int 2 Csg Size 9 S/8" H Safety Factor	Set Depth TVD 3480	2.00 Set Depth MD 3480 1.20 1.20	Top Joint Grade JSS	Body Yd / MD * Wi Weight 40	9.32 Conn LTC	Collapse		Yield	Yield	MD Air Weight 139,200	TVD Air Weight 139,200	1.800 Drig Mud Weight	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradier
H Safety Factor nt 2 Csg Size 9 S/8" H Safety Factor H Safety Factor	Set Depth TVD 3480	2.00 Set Depth MD 3480 1.20 1.20 1.30	Grade J55 Mud Cement Mud	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * FG - GG	9.32 Conn LTC 1.58 3.02 1.92	Collapse		Yield	Yield	MD Air Weight 139,200	TVD Air Weight	1.800 Drig Mud Weight .9.00	(Bouyed) Mud Gradient	Weight	Gradient	Gradient	Gradier
H Safety Factor nt 2 Csg Size 9 S/8" H Safety Factor H Safety Factor H Safety Factor	Set Depth TVD 3480 Collepse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade JSS Mud Cement	Body Yd / MD * Wt Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG	9.32 Conn LTC 1.58 3.02	Collapse		Yield	Yield (630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight .9.00 (Joint 1.600	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradien
H Safety Factor nt 2 Csg Size 9 S/8" H Safety Factor H Safety Factor H Safety Factor	Set Depth TVD 3480 Collepse Burst Conn	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade J55 Mud Cement Mud	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * FG - GG	9.32 Conn LTC 1.58 3.02 1.92	Collapse '2,570		Yield	Yield (630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight .9.00 (Joint 1.600	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradien
H Safety Factor Csg Size 9 5/8* H Safety Factor H Safety Factor H Safety Factor H Safety Factor	c Body Set Depth TVD 3480 Collepse Burst Conn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade J55 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield	Yield (630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight .9.00 (Joint 1.600	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradien
iH Safety Factor Int 2 Csg Size	c Body Set Depth TVD 3480 Collepse Burst Conn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade J55 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield	Yield (630,000	MD Air Weight 139,200 Burst	TVD Air Weight 139,200	1.800 Drig Mud Weight .9.00 (Joint 1.600	(Bouyed) Mud Gradient 0.47	Weight	Gradient	Gradient	Gradien
H Safety Factor Csg Size 9 5/8* H Safety Factor H Safety Factor H Safety Factor H Safety Factor	c Body Set Depth TVD 3480 Collepse Burst Conn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80	Grade J55 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield 1520,000	Yield (630,000 Per BLM	MD Air Weight 139,200 Burst 1.000	TVD Air Weight 139,200 Coflapse 1.125	1.800 Drlg Mud Weight 9.00 { Joint 1.600 2.800	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed)	Weight ^13.70	Gradient	Gradient	Gradier
H Safety Factor Csg Size 9 S/8** H Safety Factor H Safety Factor H Safety Factor H Safety Factor	Collapse Burst Conn Body	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00	Grade J55 Mud Cement Mud Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * FG - GG Conn Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74	Collapse		Yield 1520,000	Yield (630,000 Per BLM Body	MD Air Weight 139,200 Burst 1.000 MD Air	TVD Air Weight 139,200 Coflapse 1.125	1.800 Drlg Mud Weight .9.00 (1.600 1.800 Drlg Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud	Weight ^13.70 Cmt	Gradient 0.71 Crnt	Gradient	Gradier
H Safety Factor nt 2 Csg Size 9.5/8** H Safety Factor H Safety Factor H Safety Factor H Safety Factor Troduction Csg Size	e Body Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00 2.00	Grade JSS Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * CG - MG Conn Yd / MD * Wi Body Yd / MD * Wi	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53	Collapse '2,570 '2,570 Atter gate yate yate	3,950	Yield 1520,000	Yield (630,000 Per BLM	MD Air Weight 139,200 Burst 1.000 MD Air	TVD Air Weight 139,200 Coflapse 1.125	1.800 Drlg Mud Weight .9.00 (1.600 1.800 Drlg Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud	Weight ^13.70 Cmt	Gradient	Gradient	Gradier 0.11 Gas
H Safety Factor Csg Size 9 S/8" H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor	e Body Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00 2.00	Grade J55 Mud Cement Mud Top Joint Top Joint	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53	Collapse '2,570 August Stant August Stant Collapse	3,950	Yield 1520,000 Conn Yield	Yield (630,000 Per BLM Body Yield	MD Air Weight 139,200 Burst 1.000 MD Air	TVD Air Weight 139,200 Coflapse 1.25 TVD Air Weight	1.800 Drlg Mud Weight .9.00 (1.600 1.800 Drlg Mud	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent	Weight ^13.70 Cmt	Gradient 0.71 Crnt	Gradient 0.70 Frac	Gradien 0.11
H Safety Factor nt 2 Csg Size 9.5/8*** H Safety Factor H Safety Factor H Safety Factor H Safety Factor Production Csg Size	e Body Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00 2.00	Grade JSS Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53	Collapse '2,570 August Stant August Stant Collapse	3,950 Burst	Yield 1520,000 Conn Yield	Yield (630,000 Per BLM Body Yield	MD Air Weight 139,200 Burst 1.000 MD Air Weight	TVD Air Weight 139,200 Coflapse 1.25 TVD Air Weight	1.800 Drlg Mud Weight .9.00 (1.600 1.800 Drlg Mud Weight	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent	Weight <u>13.70</u> Cmt Weight	Gradient 0.71 Crnt Gradient	Gradient 0.70 Frac Gradient	Gradier 0.11 Gas Gradien
H Safety Factor nt 2 Csg Size 9.5/8*** H Safety Factor H Safety Factor H Safety Factor H Safety Factor Production Csg Size	e Body Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD	2.00 Set Depth MD 3480 1.20 1.20 1.30 1.80 2.00 2.00	Grade JSS Mud Cement Mud Top Joint Top Joint Grade	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53	Collapse '2,570 August Stant August Stant Collapse	3,950 Burst	Yield 1520,000 Conn Yield 667,000	Yield (630,000) Per BLM Body Yield 641,000 Burst	MD Air Weight 139,200 8urst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Coffapse 1.125 TVD Air Weight 171,680 Joint	1.800 Drlg Mud Weight .9.00 (1.600 1.800 Drlg Mud Weight	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent	Weight <u>13.70</u> Cmt Weight	Gradient 0.71 Crnt Gradient	Gradient 0.70 Frac Gradient	Gradier 0.11 Gas Gradien
H Safety Factor nt 2 Csg Size 9 5/8*- H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor Safety Safet	e Body Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD Set Depth TVD 8594	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD 19296	Grade J55 Mud Cement Mud Top Joint Top Joint Grade P110	Body Yd / MD * Wt Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Rurst / TVD * FG - GG Conn Yd / MD * Wt Body Yd / MD * Wt Weight . 20-	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK	Collapse '2,570 August Stant August Stant Collapse	3,950 Burst	Yield 1520,000 Conn Yield	Yield (630,000) Per BLM Body Yield 641,000	MD Air Weight 139,200 Burst 1.000 MD Air Weight 385,920	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171,880 Joint 1.600	1.800 Drig Mud Weight 9.00 (1.600 1.800 Drig Mud Weight 9.50 (0ry)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent	Weight <u>13.70</u> Cmt Weight	Gradient 0.71 Crnt Gradient	Gradient 0.70 Frac Gradient	Gradier 0.11 Gas Gradier
H Safety Factor nt 2 Csg Size 9 5/8*- H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor Safety Safet	e Body Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD Set Depth TVD 8594	2.00 Set Depth MD 3480 1.20 1.20 1.20 1.80 2.00 Set Depth MD 19296	Grade J55 Mud Cement Mud Top Joint Top Joint Grade - P110 Mud	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * GG Burst / TVD * GG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight 20** Collapse / TVD * MG	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK	Collapse 2,570	3,950 Burst	Yield 1520,000 Conn Yield 667,000	Yield (630,000) Per BLM Body Yield 641,000 Burst	MD Air Weight 139,200 8urst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171,880 Joint 1.600	1.800 Drig Mud Weight 9.00 (1.600 1.800 Drig Mud Weight 9.50 (0ry)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradlent	Cmt Weight	Gradient 0.71 Crnt Gradient 0.68	Gradient 0.70 Frac Gradient	Gradier 0.11 Gas Gradier
H Safety Factor nt 2 Csg Size 9 5/8** H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor H Safety Factor	r Body Set Depth TVD 3480 Collapse Burst Conn Body Set Depth TVD 8594	2.00 Set Depth MD 3480 1.20 1.20 1.20 2.00 Set 1.20 2.00 19296	Grade J55 Mud Cement Top Joint Top Joint Grade - P110 Mud Cement	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * MG Galrat / TVD * FG - MG Burst / TVD * FG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight - 20** Collapse / TVD * MG Collapse / TVD * MG	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK 2.61 7.00	Collapse 2,570	3,950 Burst	Yield 1520,000 Conn Yield 667,000	Yield (630,000) Per BLM Body Yield 641,000 Burst	MD Air Weight 139,200 8urst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Collapse 1.125 TVD Air Weight 171,880 Joint 1.600	1.800 Drig Mud Weight .9.00 (1.600 1.800 Drig Mud Weight 9.50 (Dry) (Bouyed)	(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Mud Gradient 0.49	Cmt Weight	Gradient 0.71 Crnt Gradient 0.68 ue	Gradient 0.70 Frac Gradient 0.70	Gradier 0.11 Gas Gradien 0.11
HY Safety Factor nt 2 Csg Size 9 5/8*- H Safety Factor H Safety Factor H Safety Factor H Safety Factor Safety Factor Safety Factor + Safety Factor + Safety Factor + Safety Factor + Safety Factor	r Body Set Depth TVD 3/800 Collapse Burst Conn Body Set Depth TVD 8594 Collapse Burst	2.00 Set Depth MD 3480 1.20 1.30 1.80 2.00 Set Depth MD 19296 19296	Grade J55 Mud Cement Mud Top Joint Top Joint Grade - P110 Mud Cement Mud	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * CG - MG Burst / TVD * FG - GG Cann Yd / MD * Wi Body Yd / MD * Wi Body Yd / MD * Wi Collapse / TVD * GG - MG Burst / TVD * FG - GG	9.32 Conn LTC 1.58 3.02 3.74 4.53 Conn Atlas BK 2.61 7.00 2.49	Collapse 22,570 Ataiss lenux Collapse 11,100	3,950 Burst 12,640	Yield '520,000 Conn Yield 667,000 Per BLM	Yield (630,000 Per BLM Body Yield 641,000 Burst 1.000	MD Air Weight 139,200 MD Air Weight 1,000 Cottapse 1,125	TVD Air Weight 1.129,200 Collapse 1.125 TVD Air Weight 171,880 J.600 1.600	1.800 Drig Mud Weight .9.00 (Joint 1.600 1.800 Drig Mud Weight .9.50 ((Dry) (Bouyed) [(Bouyed) Mud Gradient 0.47 (Dry) (Bouyed) Gradient 0.49 Viaximum M Maximum M	Cmt '13.70 Cmt Weight '13.05' MU Torq MU Torq MU Torq	Gradient 0.71 Crmt Gradient 0.68 ue ue	Gradient 0.70 Frac Gradient 0.70 6,000 17,250 8,300	Gradier 0.11 Gas Gradien 0.11 ftlbs
H Safety Factor nt 2 Csg Size 9.5/8*** H Safety Factor H Safety Factor H Safety Factor H Safety Factor Production Csg Size	Set Depth TVD 3480 Collepse Burst Conn Body Set Depth TVD Set Depth TVD Set Depth TVD Set Conn Collapse Collapse Gan	2.00 Set Depth MD 1.20 1.30 1.80 2.00 Set Depth MD 19296 1.20 1.30 1.30 1.30 1.32 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	Grade J55 Mud Cement Top Joint Top Joint Grade - P110 Mud Cement	Body Yd / MD * Wi Weight 40 Collapse / TVD * MG Collapse / TVD * MG Galrat / TVD * FG - MG Burst / TVD * FG - GG Conn Yd / MD * Wi Body Yd / MD * Wi Weight - 20** Collapse / TVD * MG Collapse / TVD * MG	9.32 Conn LTC 1.58 3.02 1.92 3.74 4.53 Conn Atlas BK 2.61 7.00	Collapse 22,570 Ataiss lenux Collapse 11,100	3,950 Burst 12,640	Yield '520,000 Conn Yield 667,000 Per BLM	Yield (630,000) Per BLM Body Yield 641,000 Burst	MD Air Weight 139,200 8urst 1.000 MD Air Weight 385,920 Collepse	TVD Air Weight 139,200 Collapse 1.225 TVD Air Weight 171,880 Joint 1.800 1.800	1.800 Drlg Mud Weight 9.00 (3.600 2.800 Drlg Mud Weight 9.50 (Dry) (Dry)	(Bouyed) Mud Gradient (Ory) (Bouyed) Gradient 0.49 Winimum H	Cmt 13.70 Weight 13.05 MU Torq ting Torq	Gradient 0.71 Crmt Gradient 0.68 ue ue	Gradient 0.70 Frac Gradient 0.70 6,000 17,250	Gradier 0.11 Gas Gradier 0.11 ftibs ftibs

• • · · · • •

Crazy Horse 03-04 Fed Com #4H SURFACE LOCATION 430' FNL & 2135' FEL SECTION 5 T20S R30E EDDY COUNTY, NEW MEXICO Latitude: N 32.608469 Longitude: W -103.992511

«CONTINGENCY PLAN»

422 West Main street suite 6 Artesia, New Mexico (575)746/1096 (432)363/0198 fax

WELL CONTROL EMERGENCY RESPONSE PLAN

CL&F OPERATING LLC

CUSTOMER COPY

Permit Number:	Date issue:	District- NM
API #:	Form W-1 Rec-	County-EDDY
Type: New Drill	ACRES-	

Operator	
CL&F Operating LLC	

Lease Name: Crazy Horse 03-04 Fed Com Well Number: 4H

Location:	Total Depth: TVD 8471' MDTD 19296'
Location:	Total Depth: TVD 8471' MDTD 19296'

Section: SECTION 5 T20S R30E Abstract:

Surface Location: 430' NORTH 2135' EAST Dist to Nearest Lease Line 430'

Dist to Nearest Well:

Directions: Approximately 15 miles NE of Carlsbad, NM.

THIS PERMIT IS GRANTED PURSUANT TO BUREAU OF LAND MANAGEMENT 43 CFR 3160 ONSHORE OIL AND GAS ORDER NO. 6 HYDROGEN SULFIDE OPERATIONS

:

Permit Plat:

CL&F Operating LLC

Crazy Horse 03-04 #4H

Location in Survey: 400' FNL & 2135' FEL in SECTION 5 T20S R30E

EDDY COUNTY, NEW MEXICO

This is a Hydrogen Sulfide field and shall be drilled in accordance with BLM ONSHORE ORDER NO. 6

***Information in this section was provided to American Safety Services Inc. by

Sierra-Hamilton.***

CL&F OPERATING LLC Emergency Contact List

Division & Title	Name	Office	Residence	Cellular
Drilling Operations	Russ Ginanni	432.425.7450	432.218.6473	432.425.7450
Wellsite Supervisor	TBD			
Field Superintendent	ТВО			
Engineer	TBD			
Drilling Manager	Mark Stover	281.873.9378		281.352.0391
Geologist	Mark Parrott	281.873.3033		713.560.7707
Land	Allison Gill	281.873.3013		337.302.7188
Public Safety	Facility	Contact	Direct	Cellular

,

EDDY COUNTY:				
Sheriff Department	Artesia, NM		575-746-9888	
Fire Department	Artesia, NM		575-746-2701	
Ambulance	Artesia, NM		911	·
State Police	Artesia, NM		575-746-2703	
City Police	Artesia, NM		575-746-2703	
Sheriff Department	Carlsbad, NM		575-887-7551	
Fire Department	Carlsbad, NM		575-885-2111	
Ambulance	Carlsbad, NM		911	
State Police	Carlsbad, NM		575-885-3137	
City Police	Carlsbad, NM		575-885-2111	
Hospital	Carlsbad, NM		575-887-4121	· · · · ·
Flight for Life	CARLSBAD,NM	-	800.242.6199	
AEROCARE	ARTESIA, NM		800.800.0900	
Latitude	N 32.608469			
Longitude	W -103.992511			
Safety Contractor	Name	Office	Residence	Cellular
American Safety		575.746.1096		
Safety Supervisor NM	Tell Montoya	575.746.1096	575.749.0009	432.653.3866
Safety Manager NM	Andres Holguin	575.746.1096	575.202.2720	575.513.5033
Owner	Kevin Hokett	575.746.1096	432.363.3911	432.208.4372

DIRECTIONS: FROM CARLSBAD NM TAKE HWY 62/180 EAST FOR 16 MILES TO HWY 360 TURN NORTH FOR 8 MILES TO CR 235 (CURRY COMB RD.) TURN LEFT (WEST) FOR 1.5 MILES TO LEASE ROAD ON LEFT FOLLOW LEASE RD TO LOCATION.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	. 6
RESPONSE LEVELS	. 7
LEVEL 1 WELL CONTROL INCIDENTS	. 7
LEVEL 2 WELL CONTROL INCIDENT	. 9
LEVEL 3 WELL CONTROL INCIDENTS 1	13
DUTIES AND RESPONSIBILITIES, RIG SUPERVISOR 1	18
EXAMPLE OF WORK ZONES	23
Appendix	24

Additional H2s information is included at the end of the plan.....

Prepared by:

American Safety Services Inc

422 west main street suite 6

Artesia, New Mexico 88210

This publication is confidential and proprietary. Any part thereof may not be reproduced or transmitted in any form or by any other means, electronic or mechanical, including photocopying, recording, storage in an information retrieval system, or otherwise, without the prior written permission of *American Safety Services Inc.*

Executive Summary

This plan is intended to document **CL&F Operating LLC** procedures for dealing with well control emergency situations. American Safety Services Inc encourages taking all preventative measures required to reduce the probability of a well control incident from occurring. If it does occur, however, this pre-developed strategic action plan can be implemented quickly and decisively in response to the emergency. It is intended to supplement the **CL&F Operating LLC** Emergency Procedure and other similar plans.

This Well Control Emergency Response Plan (WCERP) was formulated during low-stress, nonemergency conditions. It is our experience that those response actions hastily grasped during the event suffer from the panic, confusion and indecisiveness of persons not normally involved with high-stress situations.

In any emergency response plan the health and safety of people is the prime concern. Generally, persons not familiar with highly specialized oil well firefighting, capping and dealing with the high pressures and flow rates associated with blow-outs should not attempt to handle one of these events. Guidelines for early response procedures are included to mitigate risks, losses and damages, however.

There are three incident levels for which an emergency well control response is required. These levels are based on the severity and potential impacts of the incident. They are simply labeled Level 1, Level 2 and Level 3, with Level 1 being the least serious and Level 3 the worst. Level 3 denotes a complete loss of well control with no opportunity for regaining it using equipment and procedures available on-site. These correspond roughly to the Emergency Categories listed in the General Emergency Procedure.

In dealing with a well control emergency response, each person has duties and responsibilities. All critical tasks must be delegated to one person with minimal overlap. Thus, each responsibility is handled effectively without undue duplication.

The on-site organization is supervised and controlled by the Team Leader for the rig involved in the blow-out. The overall situation is controlled by the Manager over the area in which the blowout occurs who will serve as the Incident Commander. For most operations this will be the Manager (Drilling Operations) or the Manager (Exploration). These are individuals with long experience who are familiar with

CL&F Operating LLC's drilling and workover operations, corporate internal structure, corporate culture, personnel, various support services, and the capabilities of all emergency response groups including American Safety Services Inc. Each commander is assisted by several deputies, each of whom deals with responsibilities in their areas of expertise. This provides the most efficient and effective method of dealing with the emergency, protecting human lives and health, mitigating damages, and protecting the environment.

Response Levels

This plan involves three types of incidents classified as Level 1, Level 2 and Level 3 depending on the seriousness of the incident. A **Level 1** incident involves an uncomplicated kick that requires only normal operating procedures by the

CL&F Operating LLC Rig Supervisor (Company Man) and the drilling crew with notification to the Team Leader (TL) having supervisory authority over that rig. A **Level 2** incident involves a complication of some type that requires extraordinary measures to be taken by the Company Man, drilling contractor personnel, the TL, Sr. Drilling Engineer and, in some instances, American Safety Services Inc to successfully deal with the situation. A **Level 3** incident involves the complete loss of well control. Response to this type incident requires declaration of a Major Incident, activation of the Well Control Organization within **CL&F Operating LLC** and all the personnel listed below to provide On-Scene Command at the site, Headquarters Control, Support Services and Operations Engineering Support.

Level 1 Well Control Incidents

Characteristics

Definition A Level 1 incident is defined as a well control problem that occurs during drilling or workover operations for which formal or informal standard operating procedures (SOPs) exist to control the event. There are no injuries or fires associated with this type incident and the situation can be brought under control using only the resources available on-site.

Action	These SOPs are executed by the rig crewmembers under the supervision of the
Requirement	toolpusher and CL&F Operating LLC Drilling Supervisor. The appropriate Team
	Leader is notified about the incident and the actions taken to control it.
	Support is rarely required from Drilling Services or from the well control
	services contractor unless the event escalates to a more serious level.

Examples

Drilling- related incidents	An uncomplicated kick
incidents	• Complete loss of circulation (e.g., >500 bph) with hydrocarbon zone open
	 Leak in casing with a permeable hydrocarbon zone open
Completion- or Workover- related	Unable to kill a well to start a workover
incidents	 Tripping with high loss rate (e.g., >250 bph)
	A kick taken after the well is killed
	 Hole in surface/intermediate/production casing due to corrosion or damage
	 Swabbing the well in during pipe tripping
Production- related incidents	Pressure on production casing that cannot be bled down
	 Small leak on master valve, swab valve of wing valve on tree
	 Erosion and failure of the vent line to the pit, tank or test unit
	 Master valve frozen or stem broken with valve in closed position
Simultaneous operations	 Moving in rig or workover unit with wellhead damage due to collision
incidents	 Wellhead damage during heavy lift operations while installing BOPs, wireline lubricator, coiled tubing, etc.
	 Close approach/near miss drilling past existing well(s) from same drilling pad while drilling new well

Additional• Chemical stocks for mixing kill weight mud fall below pre-determined
adequate levels

- Kick tolerance falls below pre-determined level (e.g., 2 ppg or 24 bbls)
- Casing wear exceeds acceptable amount
- Failure of critical equipment (e.g., main power system on rig)
- Severe lost circulation and continued mud losses to the loss zone
- Impending severe weather
- Flow after cementing intermediate casing, production casing, or production liner

Response Actions

Responsible Rig Supervisor party

Process overview The following table provides an overview of the actions required during a Level 1 well control incident:

Step	Action
1	Evaluate the situation
	Determine that the incident is Level 1
2	Notify all personnel on location
3	Immediately execute initial response action based on standard operating procedures
4	Notify Team Leader
5	Continue using standard operating procedures until situation is resolved

Level 2 Well Control Incident

Characteristics

Definition	A Level 2 emergency can be defined as an abnormal well control event involving some sort of complication in which:		
	 Well control has not been lost at the surface 		
	 Resources beyond the normal capabilities of the rig crew or production operations staff may be required such as unfamiliar or complex well control procedures 		
	 Outside well control consultation, materials, special equipment or personnel may be required 		
	There are no injuries or fires associated with this incident level since control has not been lost. The situation is not sufficiently threatening to declare a Major Emergency or to activate an Incident Command System to deal with the situation.		
Action Required	Trained drilling staff should be able to handle a Level 2 emergency in the normal course of drilling or working over a well by:		
	 Removing the complication, thereby reducing the incident severity to Level 1 status, then using SOPs to circulate out the kick and resolve the problem 		
	 Prepare a specialized procedure to control the incident with the complication remaining throughout the procedure 		
	It is important that action be taken quickly to resolve the situation. Level 2 incidents are more serious than Level 1 incidents and they can escalate quickly to a complete loss of well control (i.e., a Level 3 incident). Even if control is not lost at the surface, an underground blowout or other similar event can occur if measures are not taken quickly.		
<u>Examples</u>	Kick with no pipe in the holeKick with the bit off the bottom		
Drilling-related	Drill collars or other BHA components across the pipe rams, well shut in on the annular preventer		
incidents	Kick while fishing, pipe off bottom, fish in hole		
	• Kick with the bit off bottom, pipe stuck		
	• Kick with very high intensity or large volume taken (high shut-in pressure)		

,

1

,

•

I I

:

1

ł

- Kick with simultaneous losses (above or below the bit)
- Kick with bit or drill string plugged
- Kick with critical equipment failure (e.g., pumps, electrical system, etc.)
- Kick with hole in drill string
- Kick without sufficient chemicals to weight up mud
- Kick with wireline in the hole
- Shallow gas kick with diversion
- Low volume flow after cementing surface casing

Level 1 incidents escalating to a Level 2 while circulating out a kick

- Exceeding maximum allowable surface pressure while circulating kick out of the open hole section (before kick reaches the casing shoe)
- Suspected underground cross-flow requiring further diagnosis
- Small leak in BOP or wellhead
- Leak in stab-in safety valve through ball seat and/or operating system seal
- Gas hydrate (ice) plug in circulation system
- Choke plugged or cut out
- Washout in drill string or in surface equipment
- Dropped drill string
- Sheared drillpipe
- Loss of BOP control function

Completion-or workover- related incidents • Fishing operation performed under pressure

Potential underground crossflow

- Leak in wireline BOP, lubricator and/or tree valves
- Fishing or milling operation performed under pressure with coiled tubing or snubbing unit where loss of well control is imminent

Production- related incidents	 Production casing leak with tubing leak Leak in master valve with failure of ESD valve control
	Leak in tubing with casing valve leak
	Tree component eroded to critical limit by sand
	Surface safety valves do not effectively shut-off flow
Simultaneous operations	Drilling into existing well casing from new well
incidents	 Casing leak develops during workover operations Damage to tree, wellhead or casing near surface due to heavy dropped object
	 Motor vehicle collision resulting in severe damage to tree or wellhead Inability to access casing annulus due to inoperative (stuck) side outlet valve on wellhead

Response Actions

Responsible	Rig Supervisor
party	

Process overview The following table provides an overview of the actions required during a Level 2 well control incident:

Step	Action
1	Evaluate the situation; determine that the situation constitutes a Level 2 Incident classification and advise the Team Leader
2	Down man rig; remove all non-essential personnel and equipment from the site
3	Execute initial response actions to protect personnel, the rig, the well and the reservoir
4	Develop a procedure to remove the complication and deal with the situation using SOPs
5	If complication cannot be removed, prepare a non-standard procedure to deal with the incident

6	Consult with the appropriate Team Leader, Drilling Engineer and well control specialists, if needed
7	Obtain approval for execution of either action plan from the Team Leader
8	Execute approved procedure to resolve situation (may require the participation of well control specialists to assist)
9	Review outcome of procedure with the Team Leader

Level 3 Well Control Incidents

Characteristics

- DefinitionA Level 3 emergency denotes a total loss of well control with no opportunity to
restore it using all the resources available on-site.
- Action Required Level 3 Incidents require the declaration of a Major Emergency and the activation of a fully-functional Incident Command System to effectively deal with the situation.

Discussion	A Level 3 Incident is, quite simply, a blowout. These incidents are equivalent to Category 2 or Category 3 Emergencies, depending on the severity and circumstances involved in the blowout. The Well Control Organization must be activated upon determining that the well is out of control and measures must immediately be taken to protect people, the environment and material assets in that order.
	These emergencies, although serious at the outset, have the potential to escalate further during control procedures. Such escalation may cause serious structural damage or total loss of the rig, BOP stack and wellhead due to explosion, fire, or cratering. Other nearby wells may also be damaged due to underground crossflow and erosion caused by the blow-out. This could result in multiple, simultaneous well control problems on several wells. Clearly, prompt decisive action is needed to avoid this situation.
	The response to a Level 3 Incident can be divided into stages for clarity. Different activities, personnel, equipment and safety issues exist at each stage. These are discussed more fully below:
Phase 1: Initial response	Phase 1 is the initial reaction to the well control emergency. It commences at the outset of the Level 3 Incident when it is clear that control is lost and cannot be regained. Actions such as evacuation, exclusion zone establishment and site isolation occur during this stage. Preliminary work to provide water for fire fighting and setting on-scene command facilities at the site are included. It ends when well control intervention operations site begin including fire extinguishment operations.
Phase 2: Well control operations	Phase 2 is the on-site operations phase of the well control emergency. This phase begins when actual well control actions are initiated at the site using surface intervention techniques. It ends when the well has been brought under control by any means. This phase is concluded when the Incident Commander officially declares the emergency resolved, and well salvage and recovery operations begin.
Phase 3: Relief well planning and drilling	Phase 3 is the relief well planning and drilling phase of the well control emergency. It begins when the Incident Commander approves a relief well as part of the well control project. It ends when the blow-out well is intersected and killed by pumping through the relief well or when the well is brought under control using surface intervention techniques and the Incident Commander declares the emergency resolved. Note that Phase 2 and Phase 3 operations can occur simultaneously depending on the circumstances of the blowout event.

!

ļ

ł

ł

J

ļ

i

•

;

Phase 4: Well recovery operations	Phase 4 is the recovery phase of operations on the now dead blow-out well. This phase begins when the well or blow-out is brought under control. It ends when normal drilling, workover or production operations resume or when well is plugged and abandoned.
Phase 5: Post- incident evaluation	Phase 5 involves evaluation of the incident following resolution of the emergency situation. This phase begins at or near the conclusion of well recovery operations. It ends with the submission of the final incident report to CL&F Operating LLC management.

Examples

Drilling-related Incidents	•	Underground flow with BOP stack closed and gas, oil or water broaches to the surface
	•	Uncontrolled flow to surface through drillpipe with no means of shutting off the flow
	•	Gas or oil comes to surface through the drillpipe x casing annulus and the BOP cannot control the flow
	•	Uncontrolled flow from BOP stack with drill string out of the hole and unable to close blind rams
	•	Drilling rig on fire due to blowout
	•	Surface failure of choke line, kill line or choke manifold and well cannot be shut-in
Workover-related	_	
	٠	Loss of BOP function
Incidents	•	Loss of BOP function Uncontrolled flow to surface through tubing with no means of shutting off flow
		Uncontrolled flow to surface through tubing with no means of shutting off
	•	Uncontrolled flow to surface through tubing with no means of shutting off flow Gas or oil comes to surface through casing x tubing annulus and stack does
	•	Uncontrolled flow to surface through tubing with no means of shutting off flow Gas or oil comes to surface through casing x tubing annulus and stack does not shut off flow Uncontrolled flow from BOP stack with no tubing in the hole and unable to
	•	Uncontrolled flow to surface through tubing with no means of shutting off flow Gas or oil comes to surface through casing x tubing annulus and stack does not shut off flow Uncontrolled flow from BOP stack with no tubing in the hole and unable to close blind rams

Production-	 Collision between vehicle and wellhead resulting in major leak
related Incidents	 Wellhead/tree on fire with no way to shut off flow
	 Mechanical failure of master valve, wing valve or flowline with no means to stop the flow
Simultaneous operations Incidents	 Falling object from rig damages wellhead or flowline resulting in catastrophic leak
incluents	 Gas cloud from major leak prevents access to wellhead or tree to shut-in well

Response Actions

Responsible Rig Supervisor party

Process overview The following table provides an overview of the actions required by the Rig Supervisor or Sr. CL&F Operating LLC employee during a Level 3 well control incident:

Step	Action
1	Evaluate situation and determine that well control is lost with no means to restore control
2	Order all personnel at the site to a designated Safe Area
3	Account for all personnel on the site. If all personnel cannot be accounted for, organize a Search and Rescue Party and attempt to locate all personnel if it is safe for them to do so
4	Determine injuries, if any, and provide first aid. Assess the need for air ambulance evacuation of injured persons. Assign personnel to mark the landing site for helicopter in the Safe Area
5	Notify the Team Leader about the situation and request declaration of a Major Emergency
6	Establish Exclusion Zone around site and mark zone boundary using available supplies and materials
7	Post a watch to secure the rig and prevent unauthorized persons from entering the Exclusion Zone
8	Notify and evacuate nearby rigs, homes, businesses or other facilities if they are affected by the blow-out plume

9	Down man the rig and move non-essential personnel away from the area. Note: Do not release the rig crew until they are interviewed regarding events leading up to the blowout incident.
10	Request that the local Fire Station provide equipment and personnel to contain the fire and protect nearby assets with water spray, if it is safe to do so.
	<u>Note</u> : Do not attempt to extinguish fire at rig; wait for well control specialists to enter the Exclusion Zone.
11	Complete Initial Status Report and fax to American Safety Services Inc. 432-363-0198
12	Remain on the site and coordinate support services needed for initial well control efforts; await the arrival of the Team Leader (On- Scene Commander)
13	Contain pollution/oil spill, if possible and if safe to do so
14	Monitor well conditions, keep a log recording all observations and report any changes to Team Leader (if not yet on-site) by radio and to CWC via fax or phone
15	Brief American Safety Services Inc First Responder upon arrival at the site; assist First Responder in determining if boundaries of Exclusion Zone should be moved
16	Remain on-site to assist with well control operations

Duties and Responsibilities, Rig Supervisor

Reports to:

On-Scene Commander

Team Authority	Job Title
Team Member	Rig Supervisor (Company Man)

Pre-Spud	
----------	--

Daily duties on location include:

- Conducts safety meetings
- Designates two Safe Areas (Muster Areas) for emergencies
- Maintains census of all personnel on site
- Reviews his duties and the Initial Response Checklist

Maintains supply of Communications Record at the wellsite

Maintains a current copy of **CL&F Operating LLC** General Emergency Procedure at the site and in toolpusher's quarters

Responsibility

Provides training to rig personnel on required response steps in each type of incident including mustering at designated Safe Areas and evacuation, if required. Periodically runs Search and Rescue exercises to ensure team readiness.

Level 1	Responsibility
Well control incident	Determines that the incident is a Level 1 incident; responds quickly to the situation before it can escalate to a more serious level:
	Obtains data necessary for response
	Prepares a procedure for dealing with the incident
	Follows standard operating procedures to deal with the situation
	Notifies the Team Leader about the incident and steps taken to resolve it
Level 2	Responsibility
Well control incident	Determines that the situation is a Level 2 incident and defines the complication involved; responds to the situation to keep it from escalating to a more serious incident level:
	• Determines the best way to remove the complication, thus lowering the incident to Level 1

- Contacts the Team Leader, Sr. Drilling Engineer and possibly American ٠ Safety Services Inc for consultation about the problem
- Prepares a procedure to remove the complication, lower the severity • level and deal with the incident using SOPs; alternatively, jointly prepares a procedure to deal with the situation without removing the complication
- ٠ Reviews procedure with Team Leader and obtains approval to proceed
- Advises Team Leader of the outcome •

Level 3	Responsibility
Well control incident	Determines that the situation constitutes a complete loss of well control that cannot be regained using assets on-site
Level 3	Responsibility
Phase 1: Initial Response	Executes steps outlined in the <i>Initial Response Checklist</i> to deal quickly and decisively with the situation at the wellsite; maintains records of all contacts and communications using the <i>Communications Record</i> , if possible
	With the assistance of the Toolpusher:
	Musters all personnel on the rig to one of the designated Safe Areas
	 Accounts for all personnel at each Safe Area by comparing personnel at the muster point to the current on-site personnel census
	 Determines the extent of any injuries, provides emergency first aid treatment and assesses the need for air evacuation of injured persons on an emergency basis
	 Locates a safe landing zone for emergency aircraft to evacuate injured personnel, if required, and marks it for med-evac helicopter
	 Notifies Team Leader about situation and recommends classification of event as Level 3 Incident; provides initial report on event and current activities
	 Notifies nearby rigs, facilities, residences, businesses and other persons that could be at risk from the blow-out
	 Once site is evacuated, establishes Exclusion Zone around the well/rig, marks with on-hand materials and posts a watch to keep everyone out of the Exclusion Zone
	<u>NOTE</u> : Do not re-enter the Exclusion Zone for any reason until well control specialists arrive to assist.
	Meets with local security personnel and requests they secure and restrict access to the blow-out site
	 Requests assistance to evacuate nearby rigs, facilities, residences and businesses that may be affected by the blow-out

 If site evacuation is not required, contains the fire and protect assets by eliminating possible ignition sources and using a protective water spray by local fire department, if available

<u>Note</u>: Do not attempt to extinguish the fire.

- Completes Initial Status Report and faxes to:
 - American Safety Services Inc Fax 432-363-0198
- Contains pollution and/or spill, if possible without exposing personnel to danger or contamination
- Monitors well conditions and maintains a log. Reports any significant changes in blow-out behavior to Team Leader
- Briefs the American Safety Services Inc First Responder upon his arrival at the site
- Relinquishes control of the wellsite to the On-Scene Commander (Team Leader) upon his arrival
- Remains at the site and assists in well control efforts, as needed

Level 3	Responsibility
Phase 2: Well control	Assists with well control operations and support, as needed
	Prepares a detailed report of incidents immediately preceding the blow-out and provides to the On-Scene Incident Commander; reviews the report's content with the American Safety Services Inc Team Leader
Level 2	

Level 3	Responsibility
Phase 3 Relief well	Assists in well control planning, as needed, from his/her knowledge of the local area
	Visually surveys prospective relief well sites and roads for obstructions such as high lines, pipelines, unsatisfactory topography and other problems; provides details on each site to the Relief Well Design Team
	Provides information to the Rig Supervisor on the relief well rig and others supporting relief well drilling operations regarding local drilling conditions and any expected problems while drilling relief well and making intercept
	Assists On-Scene Commander to co-ordinate activities during relief well drilling

Level 3	Responsibility
Phase 4: Well recovery	Assists in planning well recovery work as directed by the On-Scene Commander
	Assists in developing recommendation to cease recovery operations, abandon blow-out well and substitute relief well after sidetracking

Supervises well recovery work on the blow-out well if feasible, or abandonment if not

Level 3

Responsibility Phase 5: Assists On-Scene Commander in preparing post-incident report and evaluation Post-incident from field standpoint; includes his summary of events leading up to the incident evaluation and review of initial response efforts

Initial Risk Assessment

The Rig Supervisor will be the first to assess risks and determine the boundaries of the Exclusion Zone. The Exclusion Zone determines the minimum safe distance away from the blown-out well. It is based primarily on the concentration of combustible gas and/or toxic gas in the atmosphere. In general, the Exclusion Zone should be positioned according to the following:

Hazard	Maximum Limit
Combustible gas	10% of LEL*
Hydrogen Sulfide	10 ppm
Flammable liquid	10 bbls
Noise	85 dB

4

*Lower Explosive Limit

Other hazards such as proximity to vehicular traffic, sources of ignition, threats to production facilities and other risks must be evaluated and steps taken to ensure that the Exclusion Zone boundary is set far enough away from the blow-out site to reduce risks to all personnel to an acceptable level.

Once the Exclusion Zone Boundaries are set, no person should enter the area without special training, equipment and companion personnel. Often in such situations, persons not familiar with the potential of sudden catastrophic failures inside the Exclusion Zone venture too close to the blow-out in search of fellow workers, valuables left behind during the evacuation or curiosity. Sometimes, these mistaken few become victims if a failure, such as a spontaneous ignition of the plume, occurs while they are inside the Exclusion Zone.

Boundaries of the Exclusion Zone are not firm, and may need to be moved from time to time depending on several conditions such as:

- Flowrate from the well (increasing or decreasing)
- Zone of flow (increased H₂S concentration in the plume)
- Changes in atmospheric conditions (reduced air temperature, wind velocity, wind direction, atmospheric inversion, etc.)
- Hydrocarbon runoff with collection offsite
- Ignition of the plume
- Self-extinguishment of a fire
- Changes in boundary threshold limits

Risk management in the early stages of a blowout is accomplished primarily by prohibiting access to the site. Separation of potential victims from potential hazards is a very effective method of mitigating risks. In the case of Exclusion Zone boundary establishment, personnel are simply kept away from all hazards.


Situation Awareness

This is an area of human factors involving perceptions of people involved in high stress situations. Basically, it is the assessment of the person's concepts and thought processes when multiple data inputs are involved in an emergency. The best example of this area of study involves jet fighter pilots in combat situations.

In high stress situations the human mind can go into sensory overload easily. Alarms are sounding, warning lights are flashing, and there is normally panic, shouting, and rapid movements. All of these render many persons incapable of determining what information is valid and should be honored, and what inputs are redundant or meaningless and should be ignored.

Work zones have been established to control access to areas in which well control specialists and certain support personnel can function safely. Others that do not fully understand the risks involved are simply not allowed to enter these areas. This has been successful in limiting exposure and consequential injuries to those people with poorly developed situation awareness during well control operations.

Example of Work Zones

Appendix

Appendix A	Initial Response Checklist
Appendix B	Initial Status Report
Appendix C	Communications Record

Appendix A

Initial Response Checklist

Has pressure containment and flow control been completely lost and cannot Yes

] No []

1

be regained?	
	L]

If "yes" this is a Level 3 Well Control Incident

Date:	Time:	Well Name & No.:	
Drilling Contractor:		Rig Number:	
CL&F Operating LLC DRL Supervisor:		CL&F Operating LLC Sr. Supervisor:	

ACTIONS (Check off as performed)

Evacuate all personnel to designated muster area			
Check names at muster area against Check-In Sheet; account for all personnel			
If all personnel are not at muster area, determine how many personnel are missing, where			
they were last seen and visually check the area, if possible, to see if they are safe			
Activate Search and Rescue Team to recover missing personnel, if required			
Provide emergency first aid for any injuries			
Determine if emergency medical services and ambulance transport are needed; locate landing			
site for med-evac helicopter and mark site			
Notify nearby rigs or production facilities about potential danger from blow-out			
Notify Team Leader about incident; recommend Major Emergency declaration			
Establish "Exclusion Zone" around location and mark with available supplies			
Secure the area and do not let unauthorized persons inside Exclusion Zone			
Contain pollution, if possible			
Remain on site pending arrival of Team Leader			
Monitor well conditions and report any changes to Team Leader			
Brief First Responder upon arrival at location			
Assist with well control operations, as needed			

*Do not re-enter the Exclusion Zone unless absolutely necessary until qualified help arrives

**If well is on fire, do not attempt to put the fire out; if well is not on fire, try to keep it from catching on fire

	-		
1	· · · · · · · · · · · · · · · · · · ·	 	

Act quickly and decisively	Wait on instructions
Evacuate the rig or wellsite, if necessary	Hang around the rig
Wait in the Muster Area	Leave the well site
Answer questions asked by	Talk to the press or the public without clearance;
CL&F Operating LLC Team Leader and well control specialist truthfully	don't speculate about the cause of the incident; don't exaggerate
	Be a hero

.

Appendix B

ł

Initial Status Report

Preliminary Information:			
Operator:		Well Name & Number:	
Rig:		Company Man:	
Rig Phone:		Cell Phone:	
Office Phone:		Office FAX:	
Directions to site:			
	· · · · ·		
Blow-out Information:			
Time of blow-out:		Well on fire?	
Operation at time of blow-o	ut:		
Point of Escape:		Est. Flowrate:	
Type of Fluid:		H ₂ S? Yes No CO ₂ ? Yes N	No 🗌
Height of plume before it igr	nites?	ft Total Height of flame:	ft
Mud Weight: ppg	MD: ft	TVD: ft Last shoe test: EMW @	depth
Rig Condition:			
BOP Condition:		Closing Unit OK?	
Condition of drill string:		TIW valve installed? Yes	No 🗌
Response:			
Personnel Evacuated?	Yes 🗌 No 🗌	Number Missing:	
Exclusion Zone set up?	Yes 🚺 No 🗌	Injuries?	
Nearby rigs notified?	Yes 🗌 No 🗌	Air Ambulance needed/called? Yes 🗌 No 🗌]
Location Secured?	Yes 🗌 No 🗌	Regulatory Agencies notified? Yes No]
Residents evacuated?	Yes 🗌 No 🗌	Pollution contained? Yes No]

Drawing of Location:

.

Appendix C

Communications Record

Phone Transactions / Time Schedule / Contact Verification

Time	Description of Action	Contact
L		

· ··- · · · · · · · · · · · · · · · · ·	
·	
}	

	1
·	
1	
l í	
J	
{	

Hydrogen Sulfide (H2S) Properties and Effects

H2S is an **Extremely Toxic**, Flammable, Explosive and Corrosive Gas. It is heavier than air, paralyses you of smell. Causes breathing to stop and death will result.

At low concentration H2S has the odor of rotten eggs. The smell is very offensive. At slightly high concentration H2S will cause sense of smell to disappear and you are slowly poisoning yourself. At even slightly higher concentrations DEATH will result.

i

Properties of Hydrogen Sulfide (H2S)

Extremely deadly toxic gas

Colorless

Heavier than air

Burns with a blue flame Produces Sulphur Dioxide (SO2) when burned (another toxic gas) Highly corrosive Irritant skin and eyes Soluble in water and other liquids Extremely flammable and explosive.

Hydrogen Sulfide (H2S) Toxicity Chart

Concentrations	Effects
Less than 1 PPM	Odor
1-PPM	May cause stress or health symptoms in sensitive people
10-PPM	Permissible Exposure Limit (PEL) Allowed 8 hours exposure without breathing apparatus.
15-PPM	Short Term Exposure Limit (STEL) 15-minute exposure 4 times a day allowed without breathing apparatus.
100-РРМ	Immediately Dangerous to Life and Health (IDLH) No exposure allowed without breathing apparatus.
150 – 250 PPM	Loss of smell will result within a few minutes, burning of eyes, throat and coughing.
500-РРМ	Destroys sense of reasoning and balance, ceases respiratory function within minutes and death will result.

200-PPM	Unconscious quickly, followed by loss of lung function, heart failure and death if not rescued and treated.
1000-PPM	Immediate loss of bodily functions including the lungs. Heart will arrest, DEATH within minutes if not rescued immediately and treated.

10,000 PPM is 1 %

Sulphur Dioxide (SO2) Toxicity Chart

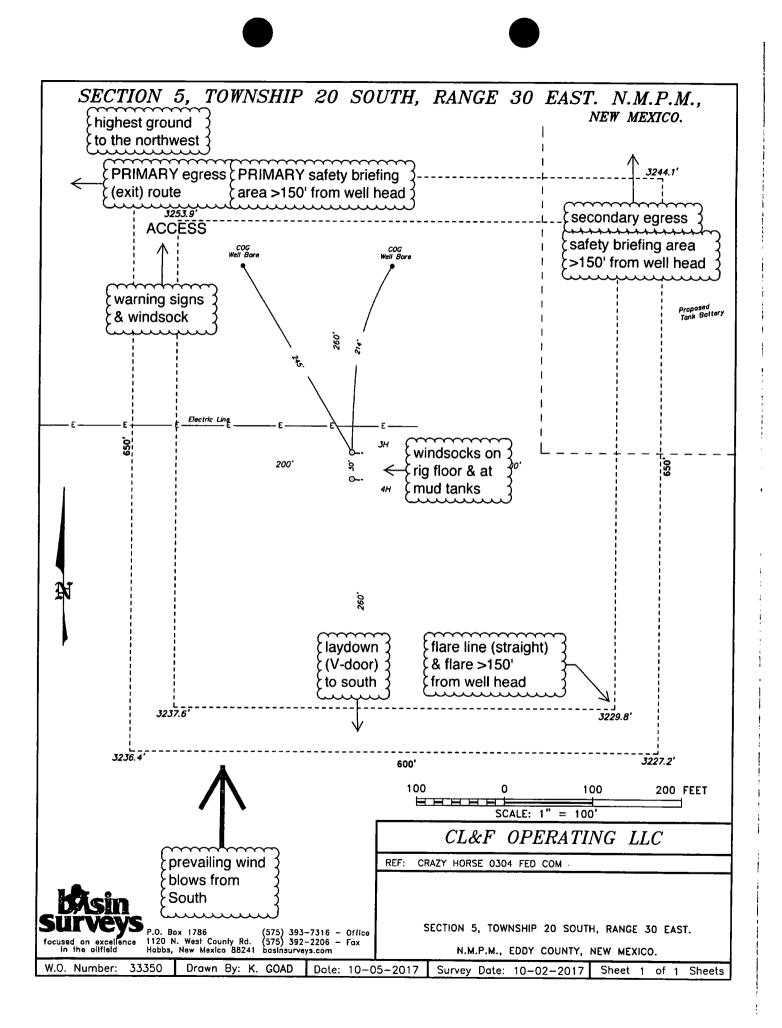
1

Concentration	Effects
1-PPM	Odor
2-РРМ	Permissible Exposure Limit (PEL) Safe for 8 hours without breathing apparatus
5-РРМ	Short Term Exposure Limit (STEL) Safe for 15 Minutes – four time a day without breathing apparatus.
12-PPM	Burning of eyes, breathing irritation. Causes damage to the wall lining of the lungs.
100-PPM	Immediately Dangerous to Life and Health (IDLH) Causes serious decaying of skin tissue of respiratory system.
150-PPM	Extreme irritation, tolerated only for a few minutes.

 500-PPM
 Sense of suffocation with first breath requires medical aid.

 1000-PPM
 Death will result unless rescued and medical aid is provided.

SO2 is known to be a cancer-causing agent.


H2S Emergency Levels:

	Level I	Level II	Level III
	Low Impact	Significant Impact	Major Impact
	Unconfirmed	Potential	Hazard to People
Drilling	Problems During Drilling in a sour gas zone and the well has significant losses or gas-cut mud or kick	Equipment malfunction while circulating a kick or unable to maintain circulating volumes	Uncontrolled flow of sour gas (ignited or unignited) from the wellbore
Testing	Sour gas zone is open and an event occurs that has the potential to lead to a well control problem (leak at surface setup) Limited release.	An equipment malfunction restricts the ability to manage any level I emergency.	Uncontrollable flow of sour gas (ignited or unignited) from the wellbore.

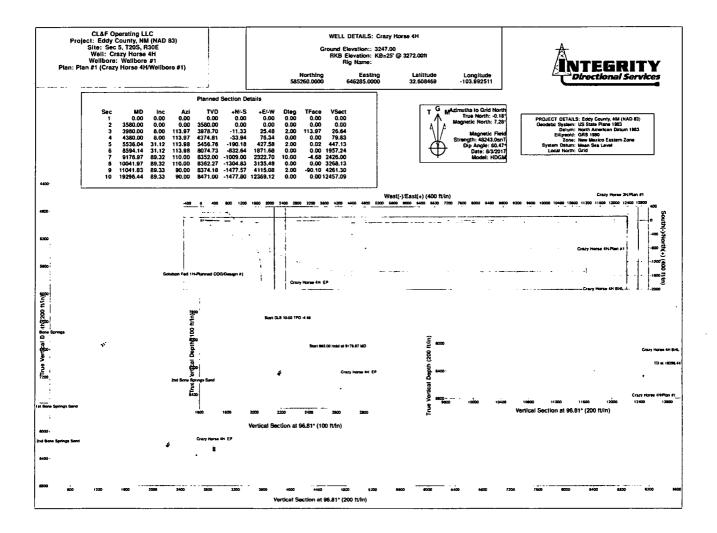
Rig Crew Emergency Action

Position	Report to	Duties			
Rig Manager	Drilling Supervisor	Activate the H2S Alarm. Supervise evacuation to Safe Briefing Area. Return to Drill Floor and Account for Essential personnel. Report to CO MAN for further Instructions.			

Driller on Duty	Rig Manager	Prepare to Secure Well. Check Drill Crew personnel for H2S Safety Equipment Readiness. In Case of Emergency Remove Non- Essential Personnel from Rig Floor
Drill Crew	Driller	Check their H2S Breathing Equipment for Readiness and Follow Instruction of the Driller.
H2S Safety Supervisor	Report to Rig Floor	Ensure that all Personnel are Using Required Breathing Apparatus. Report to CO MAN Monitor all Operations and Monitor all Personnel Under Air.
Service Company Personnel Visitors	Safe Briefing Area	Report to Safe Area and Await Further Instructions.
All Non Essential Personnel	Safe Briefing Area	Await further Instructions

Section 5, Township 20S, Range 30E Eddy County, New Mexico

O Surface Hole Location


·--- · · · ·

1

i

.

Survey Report

١

Project: I Site: S Well: C Wellbore: N	CL&F Operatin Eddy County, N Sec 5, T20S, R Crazy Horse 4ł Wellbore #1 Plan #1	M (NAD 83) 30E		TVD Rei MD Refe North R	eference: Calculation N		Well Crazy H KB=25' @ 32 KB=25' @ 32 Grid Minimum Cu EDM 5000.1	272.00ft 272.00ft	
Project	Eddy Cour	ity, NM (NAD	83)			<u> </u>		· · · · ·	
Map System: Geo Datum: Map Zone:		ane 1983 can Datum 19 Eastern Zone		Syster	n Datum:		Mean Sea Lo	evel	
Site	Sec 5, T20	S, R30E							
Site Position: From: Position Uncerta	Map inty:	0.00 ft	Northing: Easting: Slot Radius:		,300.2000 usf ,334.9000 usf 13-3/16 "	t Longitu			32.60857 -103.99234 0.18 °
Well	Crazy Hors	e 4H	,		-				
Well Position	+N/-S	0.00 ft	Northing:		585,260.00	100 usfi	Latitude:		32.60846
	+E/-W	0.00 ft	Easting:	646,285.0000 usf Longitude:			-103.99251		
Position Uncerta	inty	0.00 ft	Wellhead E	levation:	0.	00 ft	Ground Leve	4:	3,247.00 ft
Wellbore	Wellbore #	 1							······································
Magnetics	Model N	lame	Sample Date	Dec	lination (°)	Di	ip Angle (°)	Field	d Strength (nT)
		HDGM	8/3/2017		7.47		60.4	7	48,243
Design Audit Notes: Version:	Plan #1		Phase:	PLAN		Tie On Depl	th:		0.00
Vertical Section:			From (TVD) (ft) 0.00		-	+E/-W (ft) 0.00		Direction (°)	96.81
Survey Tool Prog		Date 10/1							
From	То	Date 10/1	1/2017						
(ft)	(ft)	Survey (Wel	lbore)		Tool Name		Description		
0.00) 19,296.44	l Plan #1 (Wel	lbore #1)		MWD		MWD - Stan	dard	
Planned Survey	· . <u></u>								
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.00				0.00	0.00	0.00	0.00	0.00	0.00
100.00				0.00	0.00	0.00	0.00	0.00	0.00
200.00 300.00				0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	0.00
400.00				0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00
500.00	0.00		500.00	0.00	0.00	0.00	0.00	A AA	
600.00				0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00
700.00				0.00	0.00	0.00	0.00	0.00	0.00
800.00				0.00	0.00	0.00	0.00	0.00	0.00 0.00
900.00				0.00	0.00	0.00	0.00	0.00	0.00
0/11/2017 12:43:0	1PM	······································		Par				<u> </u>	1PASS 5000 1 Build 7

10/11/2017 12:43:01PM

-

COMPASS 5000.1 Build 74

i

1

Survey Report

TVD Reference:

MD Reference:

Database:

North Reference:

Local Co-ordinate Reference:

Survey Calculation Method:

Well Crazy Horse 4H

KB=25' @ 3272.00ft

KB=25' @ 3272.00ft

Minimum Curvature

EDM 5000.1 Multi User Db

Grid

ł

ł

1

Company:CL&F Operating LLCProject:Eddy County, NM (NAD 83)Site:Sec 5, T20S, R30EWell:Crazy Horse 4HWellbore:Wellbore #1Design:Plan #1

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.0
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.0
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.0
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.0
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.0
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.0
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.0
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.0
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.0
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.0
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.0
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.0
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.0
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.0
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.0
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.0
2,600.00	0.00	0.00	2,600.00	0.00	0.00	0.00	0.00	0.00	0.0
2,700.00	0.00	0.00	2,700.00	0.00	0.00	0.00	0.00	0.00	0.0
2,800.00	0.00	0.00	2,800.00	0.00	0.00	0.00	0.00	0.00	0.0
2,900.00	0.00	0.00	2,900.00	0.00	0.00	0.00	0.00	0.00	0.0
3,000.00	0.00	0.00	3,000.00	0.00	0.00	0.00	0.00	0.00	0.0
3,100.00	0.00	0.00	3,100.00	0.00	0.00	0.00	0.00	0.00	0.0
3,200.00	0.00	0.00	3,200.00	0.00	0.00	0.00	0.00	0.00	0.0
3,300.00	0.00	0.00	3,300.00	0.00	0.00	0.00	0.00	0.00	0.0
3,400.00	0.00	0.00	3,400.00	0.00	0.00	0.00	0.00	0.00	0.0
3,500.00	0.00	0.00	3,500.00	0.00	0.00	0.00	0.00	0.00	0.0
3,580.00	0.00	0.00	3,580.00	0.00	0.00	0.00	0.00	0.00	0.0
Start Build									
3,600.00	0.40	113.97	3,600.00	-0.03	0.06	0.07	2.00	2.00	0.00
3,700.00	2.40	113.97	3,699.96	-1.02	2.30	2.40	2.00	2.00	0.00
3,800.00	4.40	113.97	3,799.78	-3.43	7.72	8.07	2.00	2.00	0.00
3,900.00	6.40	113.97	3,899.34	-7.25	16.31	17.06	2.00	2.00	0.00
3,980.00	8.00	113.97	3,978.70	-11.33	25.48	26.64	2.00	2.00	0.00
) hold at 3980.	00 MD							
4,000.00	8.00	113.97	3,998.51	-12.46	28.02	29.30	0.00	0.00	0.00
4,100.00	8.00	113.97	4,097.53	-18.11	40.74	42.60	0.00	0.00	0.00
4,200.00	8.00	113.97	4,196.56	-23.77	53.45	55.89	0.00	0.00	0.00
4,300.00	8.00	113.97	4,295.59	-29.42	66.17	69.19	0.00	0.00	0.00
4,380.00	8.00	113.97	4,374.81	-33.94	76.34	79.83	0.00	0.00	0.00
Start DLS 2	.00 TFO 0.02								
4,400.00	8.40	113.97	4,394.60	-35.10	78.95	82.56	2.00	2.00	0.00
4,500.00	10.40	113.97	4,493.26	-41.74	93.87	98.16	2.00	2.00	0.00
4,600.00	12.40	113.98	4,591.28	-49.77	111.93	117.05	2.00	2.00	0.00
4,700.00	14.40	113.98	4,688.55	-59.19	133.11	139.19	2.00	2.00	0.00

10/11/2017 12:43:01PM

-

Page 3

COMPASS 5000.1 Build 74

i

Survey Report

Company: CL&F Operating LLC Local Co-ordinate Reference: Well Crazy Horse 4H TVD Reference: Project: Eddy County, NM (NAD 83) KB=25' @ 3272.00ft MD Reference: Site: Sec 5, T20S, R30E KB=25' @ 3272.00ft Well: Crazy Horse 4H North Reference: Grid Wellbore: Wellbore #1 Survey Calculation Method: Minimum Curvature Design: Plan #1 Database: EDM 5000.1 Multi User Db

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
4,800.0	0 16.40	113.98	4,784.96	-69.98	157.37	164.56	2.00	2.00	0.00
4,900.0	0 18.40	113.98	4,880.38	-82.13	184.69	193.13	2.00	2.00	0.00
5,000.0	0 20.40	113.98	4,974.69	-95.63	215.04	224.86	2.00	2.00	0.00
5,100.0	0 22.40	113.98	5,067.79	-110.46	248.37	259.72	2.00	2.00	0.00
5,200.0		113.98	5,159.56	-126.60	284.66	297.67	2.00	2.00	0.00
5,300.0	0 26.40	113.98	5,249.89	-144.03	323.85	338.65	2.00	2.00	0.00
5,400.0		113.98	5,338.67	-162.74	365.89	382.61	2.00	2.00	0.00
5,500.0		113.98	5,425.79	-182.69	410.74	429.51	2.00	2.00	0.00
5,536.04		113.98	5,456.76	-190.18	427.58	447.13	2.00	2.00	0.00
Start 305	8.10 hold at 553	86.04 MD							
5,600.00		113.98	5,511.51	-203.62	457.79	478.71	0.00	0.00	0.00
5,700.00		113.98	5,597.12	-224.63	505.01	528.09	0.00	0.00	0.00
5,800.00		113.98	5,682.73	-245.64	552.23	577.47	0.00	0.00	0.00
5,900.00		113.98	5,768.34	-266.64	599.45	626.85	0.00	0.00	0.00
6,000.00	31.12	113.98	5,853.94	-287.65	646.67	676.23	0.00	0.00	0.00
6,100.00		113.98	5,939.55	-308.66	693.90	725.61	0.00	0.00	0.00
6,200.00		113.98	6,025.16	-329.67	741.12	774.99	0.00	0.00	0.00
6,300.00	31.12	113.98	6,110.77	-350.68	788.34	824.38	0.00	0.00	0.00
6,400.00	31.12	113.98	6,196.38	-371.69	835.56	873.76	0.00	0.00	0.00
6,500.00	0 31.12	113.98	6,281.98	-392.69	882.79	923.14	0.00	0.00	0.00
6,600.00		113.98	6,367.59	-413.70	930.01	972.52	0.00	0.00	. 0.00
6,700.00		113.98	6.453.20	-434.71	977.23	1,021.90	0.00	0.00	0.00
6,800.00		113.98	6,538.81	-455.72	1,024.45	1.071.28	0.00	0.00	0.00
6,900.00		113.98	6,624.41	-476.73	1,071.67	1,120.66	0.00	0.00	0.00
7,000.00	31.12	113.98	6,710.02	-497.74	1,118.90	1,170.04	0.00	0.00	0.00
7,100.00		113.98	6,795.63	-518.74	1,166.12	1,219.42	0.00	0.00	0.00
7,200.00) 31.12	113.98	6,881.24	-539.75	1,213.34	1,268.80	0.00	0.00	0.00
7,300.00		113.98	6,966.85	-560.76	1,260.56	1,318.19	0.00	0.00	0.00
7,400.00		113.98	7,052.45	-581.77	1,307.79	1,367.57	0.00	0.00	0.00
7,500.00) 31.12	113.98	7,138.06	-602.78	1,355.01	1,416.95	0.00	0.00	0.00
7,600.00		113.98	7,223.67	-623.79	1,402.23	1,466.33	0.00	0.00	0.00
7,700.00		113.98	7,309.28	-644.79	1,449.45	1,515.71	0.00	0.00	0.00
7,800.00		113.98	7,394.89	-665.80	1,496.67	1,565.09	0.00	0.00	0.00
7,900.00		113.98	7,480.49	-686.81	1,543.90	1,614.47	0.00	0.00	0.00
8,000.00) 31.12	113.98	7,566.10	-707.82	1,591.12	1,663.85	0.00	0.00	0.00
8,100.00		113.98	7,651.71	-728.83	1,638.34	1,713.23	0.00	0.00	0.00
8,200.00		113.98	7,737.32	-749.84	1,685.56	1,762.61	0.00	0.00	0.00
8,300.00		113.98	7,822.93	-770.84	1,732.78	1,811.99	0.00	0.00	0.00
8,400.00		113.98	7,908.53	-791.85	1,780.01	1,861.38	0.00	0.00	0.00
8,500.00	31.12	113.98	7,994.14	-812.86	1,827.23	1,910.76	0.00	0.00	0.00
8,594.14	31.12	113.98	8,074.73	-832.64	1,871.68	1,957.24	0.00	0.00	0.00
Start DLS	10.00 TFO -4.6								
8,600.00		113.89	8,079.73	-833.88	1,874.48	1,960.16	10.00	9.97	-1.55
8,700.00	41.68	112.69	8,159.82	-857.41	1,929.31	2,017.41	10.00	9.97	-1.20

10/11/2017 12:43:01PM

Planned Survey

Page 4

Integrity Directional Services, LLC Survey Report

Company:	CL&F Operating LLC	Local Co-ordinate Reference:	Well Crazy Horse 4H
Project:	Eddy County, NM (NAD 83)	TVD Reference:	KB=25' @ 3272.00ft
Site:	Sec 5, T20S, R30E	MD Reference:	KB=25' @ 3272.00ft
Well:	Crazy Horse 4H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Plan #1	Database:	EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
8,800.00	51.66	111.89	8,228.35	-884.92	1,996.55	2,087.43	10.00	9.98	-0.81
8,900.00	61.65	111.28	8,283.25	-915.58	2,074.14	2,168.12	10.00	9.99	-0.61
9,000.00	71.64	110.77	8,322.84	-948.47	2,159.73	2,257.00	10.00	9.99	-0.50
9,100.00	81.63	110.33	8,345.93	-982.57	2,250.72	2,351.39	10.00	9.99	-0.45
9,176.98	89.32	110.00	8,352.00	-1,009.00	2,322.70	2,426.00	10.00	9.99	-0.43
Start 865.0	0 hold at 9176	6.97 MD							
9,200.00	89.32	110.00	8,352.27	-1,016.87	2,344.33	2,448.41	0.00	0.00	0.00
9,300.00	89.32	110.00	8,353.46	-1,051.07	2,438.30	2,545.77	0.00	0.00	0.00
9,400.00	89.32	110.00	8,354.65	-1,085.27	2,532.26	2,643.13	0.00	0.00	0.00
9,484.06	89.32	110.00	8,355.64	-1,114.02	2,611.24	2,724.96	0.00	0.00	0.00
Crazy Hors	se 4H EP								
9,500.00	89.32	110.00	8,355.83	-1,119.47	2,626.22	2,740.48	0.00	0.00	0.00
9,600.00	89.32	110.00	8,357.02	-1,153.67	2,720.19	2,837.84	0.00	0.00	0.00
9,700.00	89.32	110.00	8,358.21	-1,187.87	2,814.15	2,935.19	0.00	0.00	0.00
9,800.00	89.32	110.00	8,359.39	-1,222.07	2,908.11	3,032.55	0.00	0.00	0.00
9,900.00	89.32	110.00	8,360.58	-1,256.27	3,002.07	3,129.91	0.00	0.00	0.00
10,000.00	89.32	110.00	8,361.77	-1,290.47	3,096.04	3,227.26	0.00	0.00	0.00
10,041.98	89.32	110.00	8,362.27	-1,304.83	3,135.48	3,268.13	0.00	0.00	0.00
Start DLS 2 10.100.00	2.00 TFO -90.1 89.32	108.84	8,362.96	-1,324.12	3,190.20	3,324.75	2.00	0.00	-2.00
	,								
10,200.00	89.32	106.84	8,364.15	-1,354.75	3,285.38	3,422.89	2.00	0.00	-2.00
10,300.00	89.31	104.84	8,365.34	-1,382.04	3,381.57	3,521.64	2.00	0.00	-2.00
10,400.00	89.31 89.31	102.84 100.84	8,366.54 8,367.74	-1,405.96 -1,426.47	3,478.65 3,576.51	3,620.88 3,720.48	2.00 2.00	0.00 0.00	-2.00 -2.00
10,500.00 10,600.00	89.31	98.84	8,368.94	-1,428.47	3,675.03	3,820.33	2.00	0.00	-2.00
10,700.00	89.32	96.84	8,370.13	-1,457.19	3,774.08	3,920.30	2.00	0.00	-2.00
10,800.00	89.32	94.84	8,371.33	-1,467.36	3,873.55	4,020.28	2.00	0.00	-2.00
10,900.00	89.32	92.84	8,372.51	-1,474.06	3,973.32	4,120.13	2.00	0.00	-2.00
11,000.00	89.33	90.84	8,373.69	-1,477.26	4,073.25	4,219.74	2.00	0.00	-2.00
11,041.83	89.33	90.00	8,374.18	-1,477.57	4,115.08	4,261.30	2.00	0.00	-2.00
	62 hold at 110		•1						2.00
11,100.00	89.33	90.00	8,374.87	-1,477.57	4,173.25	4,319.06	0.00	0.00	0.00
11,200.00	89.33	90.00	8,376.04	-1,477.57	4,273.24	4,418.35	0.00	0.00	0.00
11,300.00	89.33	90.00	8,377.21	-1,477.58	4,373.23	4,517.64	0.00	0.00	0.00
11,400.00	89.33	90.00	8,378.38	-1,477.58	4,473.22	4,616.92	0.00	0.00	0.00
11,500.00	89.33	90.00	8,379.56	-1,477.58	4,573.22	4,716.21	0.00	0.00	0.00
11,600.00	89.33	90.00	8,380.73	-1,477.59	4,673.21	4,815.50	0.00	0.00	0.00
11,700.00	89.33	90.00	8,381.90	-1,477.59	4,773.20	4,914.79	0.00	0.00	0.00
11,800.00	89.33	90.00	8,383.08	-1,477.59	4,873.20	5,014.07	0.00	0.00	0.00
11,900.00	89.33	90.00	8,384.25	-1,477.59	4,973.19	5,113.36	0.00	0.00	0.00
12,000.00	89.33	90.00	8,385.42	-1,477.60	5,073.18	5,212.65	0.00	0.00	0.00
12,100.00	89.33	90.00	8,386.59	-1,477.60	5,173.18	5,311.94	0.00	0.00	0.00
12,200.00	89.33	90.00	8,387.77	-1,477.60	5,273.17	5,411.22	0.00	0.00	0.00
12,300.00	89.33	90.00	8,388.94	-1,477.61	5,373.16	5,510.51	0.00	0.00	0.00

10/11/2017 12:43:01PM

Survey Report

Company: CL&F Operating LLC Local Co-ordinate Reference: Well Crazy Horse 4H Project: Eddy County, NM (NAD 83) KB=25' @ 3272.00ft **TVD Reference:** Site: Sec 5, T20S, R30E MD Reference: KB=25' @ 3272.00ft Well: Crazy Horse 4H North Reference: Grid Wellbore: Wellbore #1 Survey Calculation Method: Minimum Curvature Design: Plan #1 Database: EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
12,400.00	89.33	90.00	8,390.11	-1,477.61	5,473.16	5,609.80	0.00	0.00	0.00
12,500.00	89.33	90.00	8,391.29	-1,477.61	5,573.15	5,709.08	0.00	0.00	0.00
12,600.00	89.33	90.00	8,392.46	-1,477.61	5,673.14	5,808.37	0.00	0.00	0.00
12,700.00	89.33	90.00	8,393.63	-1,477.62	5,773.14	5,907.66	0.00	0.00	0.00
12,800.00	89.33	90.00	8,394.80	-1,477.62	5,873.13	6,006.95	0.00	0.00	0.00
12,900.00	89.33	90.00	8,395.98	-1,477.62	5,973.12	6,106.23	0.00	0.00	0.00
13,000.00	89.33	90.00	8,397.15	-1,477.63	6,073.11	6,205.52	0.00	0.00	0.00
13,100.00	89.33	90.00	8,398.32	-1,477.63	6,173.11	6,304.81	0.00	0.00	0.00
13,200.00	89.33	90.00	8,399.50	-1,477.63	6,273.10	6,404.10	0.00	0.00	0.00
13,300.00	89.33	90.00	8,400.67	-1,477.63	6,373.09	6,503.38	0.00	0.00	0.00
13,400.00	89.33	90.00	8,401.84	-1,477.64	6,473.09	6,602.67	0.00	0.00	0.00
13,500.00	89.33	90.00	8,403.02	-1,477.64	6,573.08	6,701.96	0.00	0.00	0.00
13,600.00	89.33	90.00	8,404.19	-1,477.64	6,673.07	6,801.25	0.00	0.00	0.00
13,700.00	89.33	90.00	8,405.36	-1,477.65	6,773.07	6,900.53	0.00	0.00	0.00
13,800.00	89.33	90.00	8,406.53	-1,477.65	6.873.06	6,999.82	0.00	0.00	0.00
13,900.00	89.33	90.00	8,407.71	-1,477.65	6,973.05	7,099.11	0.00	0.00	0.00
14,000.00	89.33	90.00	8,408.88	-1,477.65	7,073.05	7,198.39	0.00	0.00	0.00
14,100.00	89.33	90.00	8,410.05	-1,477.66	7,173.04	7,297.68	0.00	0.00	0.00
14,200.00	89.33	90.00	8,411.23	-1,477.66	7,273.03	7,396.97	0.00	0.00	0.00
14,300.00	89.33	90.00	8,412.40	-1,477.66	7,373.03	7,496.26	0.00	0.00	0.00
14,400.00	89.33	90.00	8,413.57	-1,477.66	7,473.02	7,595.54	0.00	0.00	0.00
14,500.00	89.33	90.00	8,414.74	-1,477.67	7,573.01	7,694.83	0.00	0.00	0.00
14,600.00	89.33	90.00	8,415.92	-1,477.67	7,673.00	7,794.12	0.00	0.00	0.00
14,700.00	89.33	90.00	8,417.09	-1,477.67	7,773.00	7,893.41	0.00	0.00	0.00
14,800.00	89.33	90.00	8,418.26	-1,477.68	7,872.99	7,992.69	0.00	0.00	0.00
14,900.00	89.33	90.00	8,419.44	-1,477.68	7,972.98	8,091.98	0.00	0.00	0.00
15,000.00	89.33	90.00	8,420.61	-1,477.68	8,072.98	8,191.27	0.00	0.00	0.00
15,100.00	89.33	90.00	8,421.78	-1,477.68	8,172.97	8,290.56	0.00	0.00	0.00
15,200.00	89.33	90.00	8,422.95	-1,477.69	8,272.96	8,389.84	0.00	0.00	0.00
15,300.00	89.33	90.00	8,424.13	-1,477.69	8,372.96	8,489.13	0.00	0.00	0.00
15,400.00	89.33	90.00	8,425.30	-1,477.69	8,472.95	8,588.42	0.00	0.00	0.00
15,500.00	89.33	90.00	8,426.47	-1,477.70	8,572.94	8,687.70	0.00	0.00	0.00
15,600.00	89.33	90.00	8,427.65	-1,477.70	8,672.94	8,786.99	0.00	0.00	0.00
15,700.00	89.33	90.00	8,428.82	-1,477.70	8,772.93	8,886.28	0.00	0.00	0.00
15,800.00	89.33	90.00	8,429.99	-1,477.70	8,872.92	8,985.57	0.00	0.00	0.00
15,900.00	89.33	90.00	8,431.16	-1.477.71	8,972.92	9,084.85	0.00	0.00	0.00
16,000.00	89.33	90.00	8,432.34	-1,477.71	9,072.91	9,184.14	0.00	0.00	0.00
16,100.00	89.33	90.00	8,433.51	-1,477.71	9,172.90	9,283.43	0.00	0.00	0.00
16,200.00	89.33	90.00	8,434.68	-1,477.72	9,272.89	9,382.72	0.00	0.00	0.00
16,300.00	89.33	90.00	8,435.86	-1,477.72	9,372.89	9,482.00	0.00	0.00	0.00
16,400.00	89.33	90.00	8.437.03	-1,477.72	9,472.88	9,581.29	0.00	0.00	0.00
16,500.00	89.33	90.00	8.438.20	-1,477.72	9,572.87	9,680.58	0.00	0.00	0.00
16,600.00	89.33	90.00	8,439.37	-1,477.73	9,672.87	9,779.87	0.00	0.00	0.00

10/11/2017 12:43:01PM

Survey Report

Company:	CL&F Operating LLC	Local Co-ordinate Reference:	Well Crazy Horse 4H
Project:	Eddy County, NM (NAD 83)	TVD Reference:	KB=25' @ 3272.00ft
Site:	Sec 5, T20S, R30E	MD Reference:	KB=25' @ 3272.00ft
Well:	Crazy Horse 4H	North Reference:	Grid
Wellbore:	Wellbore #1	Survey Calculation Method:	Minimum Curvature
Design:	Plan #1	Database:	EDM 5000.1 Multi User Db

Planned Survey

Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Vertical Section (ft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft
16,700.00	89.33	90.00	8,440.55	-1,477.73	9,772.86	9,879.15	0.00	0.00	0.0
16,800.00	89.33	90.00	8,441.72	-1 477.73	9,872.85	9,978.44	0.00	0.00	0.0
16,900.00	89.33	90.00	8,442.89	-1,477.74	9,972.85	10,077.73	0.00	0.00	0.0
17,000.00	89.33	90,00	8,444.07	-1,477.74	10,072.84	10,177.02	0.00	0.00	0.0
17,100.00	89.33	90.00	8,445.24	-1,477.74	10,172.83	10,276.30	0.00	0.00	0.0
17,200.00	89.33	90.00	8,446.41	-1.477.74	10,272.83	10,375.59	0.00	0.00	0.0
17,300.00	89.33	90.00	8,447.58	-1,477.75	10,372.82	10,474.88	0.00	0.00	0.0
17,400.00	89.33	90.00	8,448.76	-1,477.75	10,472.81	10,574.16	0.00	0.00	0.0
17,500.00	89.33	90.00	8,449.93	-1,477.75	10,572.81	10,673.45	0.00	0.00	0.0
17,600.00	89.33	90.00	8,451.10	-1,477.76	10,672.80	10,772.74	0.00	0.00	0.0
17,700.00	89.33	90.00	8,452.28	-1,477.76	10,772.79	10,872.03	0.00	0.00	0.0
17,800.00	89.33	90.00	8,453.45	-1,477.76	10,872.78	10,971.31	0.00	0.00	0.0
17,900.00	89.33	90.00	8,454.62	-1,477.76	10,972.78	11,070.60	0.00	0.00	0.0
18,000.00	89.33	90.00	8,455.79	-1,477.77	11,072.77	11,169.89	0.00	0.00	0.0
18,100.00	89.33	90.00	8,456.97	-1,477.77	11,172.76	11,269.18	0.00	0.00	0.0
18,200.00	89.33	90.00	8,458.14	-1, 477 .77	11,272.76	11,368.46	0.00	0.00	0.0
18,300.00	89.33	90.00	8,459.31	-1,477.77	11,372.75	11,467.75	0.00	0.00	0.0
18,400.00	89.33	90.00	8,460.49	-1,477.78	11,472.74	11,567.04	0.00	0.00	0.0
18,500.00	89.33	90.00	8,461.66	-1,477.78	11,572.74	11,666.33	0.00	0.00	0.0
18,600.00	89.33	90.00	8,462.83	-1,477.78	11,672.73	11,765.61	0.00	0.00	0.0
18,700.00	89.33	90.00	8,464.00	-1,477.79	11,772.72	11,864.90	0.00	0.00	0.0
18,800.00	89.33	90.00	8,465.18	-1,477.79	11,872.72	11,964.19	0.00	0.00	0.0
18,900.00	89.33	90.00	8,466.35	-1,477.79	11,972.71	12,063.47	0.00	0.00	0.0
19,000.00	89.33	90.00	8,467.52	-1,477.79	12,072.70	12,162.76	0.00	0.00	0.0
19,100.00	89.33	90.00	8,468.70	-1,477.80	12,172.70	12,262.05	0.00	0.00	0.0
19,200.00	89.33	90.00	8,469.87	-1,477.80	12,272.69	12,361.34	0.00	0.00	0.0
19,296,44	89.33	90.00	8,471.00	-1,477.80	12,369.13	12,457.09	0.00	0.00	0.0

Design Targets

Target Name - hit/mlss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Crazy Horse 4H EP - plan misses targe - Point	0.00 t center by		8,352.00 9484.06ft					32.604339	-103.984497
Crazy Horse 4H BHL - plan hits target ce - Point	0.00 Inter	0.00	8,471.00	-1,477.80	12,369.13	583,782.2000	658,654.1000	32.604292	-103.952360

Survey Report

Company:	CL&F Operation	ating LLC		Local Co-c	ordinate Reference:	Well Crazy Horse	4H
Project:	Eddy Count	y, NM (NAD 8	3)	TVD Refer	ence:	KB=25' @ 3272.00	Oft
Site:	Sec 5, T205		-,	MD Refere	nce:	KB=25' @ 3272.00	ft
Well:	Crazy Horse			North Refe		Grid	
Wellbore:	Wellbore #1			Survey Ca	Iculation Method:	Minimum Curvatur	e
Design:	Plan #1			Database:		EDM 5000.1 Multi	User Db
Formations			······				
	Measured Depth (ft)	Vertical Depth (ft)				Dip	Dip Direction (°)
		• •	Nar	ne	Lithology	(°)	()
	1,869.00	1,869.00			Empty	0.00	
	2,168.00	2,168.00	Seven Rivers		Empty	0.00	
	3,652.01	3,652.00	Delaware Sand		Empty		
	6,688.09	6,443.00	Bone Springs		Empty		
	8,090.99	7,644.00	1st Bone Springs \$	Sand	Empty		
	10,856.78	8,372.00	2nd Bone Springs	Sand	Empty		
Plan Annota	tions				· · · ·		
	Measured	Vertical	Local Coor	dinates			
	Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment		
	3580	3580	0	· 0	Start Build 2.00		•
	3980	3979	-11	25	Start 400.00 hold at 3	3980.00 MD	
	4380	4375	-34	76	Start DLS 2.00 TFO		
	5536	5457	-190	428	Start 3058.10 hold at		
	8594	8075	-833	1872	Start DLS 10.00 TFO		
	9177	8352	-1009	2323	Start 865.00 hold at 9		
	10,042	8362	-1305	3135	Start DLS 2.00 TFO		
	11 042	8374	-1478	4115	Start 8254 62 hold at	11041.83 MD	

4115

12,369

Approved By:

Start 8254.62 hold at 11041.83 MD

Date:

TD at 19296.44

-1478

-1478

10,042 11,042

19,296

Checked By:

8374

8471

10/11/2017 12:43:01PM

CL&F Operating LLC

Eddy County, NM (NAD 83) Sec 5, T20S, R30E Crazy Horse 4H

Wellbore #1 Plan #1

Anticollision Report

11 October, 2017

٤

Anticollision Report

Company: CL&F Operating LLC Well Crazy Horse 4H Local Co-ordinate Reference: Project: Eddy County, NM (NAD 83) TVD Reference: KB=25' @ 3272.00ft Reference Site: Sec 5, T20S, R30E KB=25' @ 3272.00ft MD Reference: Site Error: 0.00 ft North Reference: Grid Reference Well: Crazy Horse 4H Survey Calculation Method: Minimum Curvature Well Error: 0.00 ft 2.00 sigma Output errors are at **Reference Wellbore** Wellbore #1 Database: EDM 5000.1 Multi User Db Reference Design: Plan #1 **Offset TVD Reference:** Offset Datum Reference Plan #1 Filter type: NO GLOBAL FILTER: Using user defined selection & filtering criteria Interpolation Method: MD + Stations Interval 100.00ft ISCWSA Error Model: Depth Range: Unlimited Scan Method: Closest Approach 3D **Results Limited by:** Maximum center-center distance of 10,000.00 ft Error Surface: Elliptical Conic Warning Levels Evaluated at: 2.00 Sigma Casing Method: Not applied Survey Tool Program Date 10/11/2017 From То (ft) Survey (Wellbore) (ft) **Tool Name** Description 0.00 19,296.44 Plan #1 (Wellbore #1) MWD MWD - Standard Summary Reference Offset Distance Measured Measured Between Between Separation Warning

Site Name	Depth	Depth	Centres	Ellipses	Factor
Offset Well - Wellbore - Design	(ft)	(ft)	(ft)	(ft)	
Sec 5, T20S, R30E					
Crazy Horse 3H - Wellbore #1 - Plan #1	3,580.00	3,580.00	30.10	14.29	1.904 CC
Crazy Horse 3H - Wellbore #1 - Plan #1	3,600.00	3,600.01	30.12	14.23	1.895 ES, SF
Solution Fed 1H-Planned COG - Wellbore #1 - Design #1	3,100.00	3,095.00	243.86	230.21	17.865 CC
Solution Fed 1H-Planned COG - Wellbore #1 - Design #1	3,200.00	3,193.70	244.09	230.00	17.330 ES
Solution Fed 1H-Planned COG - Wellbore #1 - Design #1	8,800.00	9,748.49	363.03	294.04	5.263 SF

Offset De			720S, R30	E - Crazy H	lorse 3H	 Wellbore # 	41 - Plan #1						Offset Site Error:	0.00
urvey Prog													Offset Well Error.	0.00
Refer		Offse		Semi Major					Dista					
Acasured Depth (ft)	Vertical Depth (ft)	Measured Depth (R)	Vertical Depth (ft)	Reference (ft)	Offset (ft)	Highside Toolface ("}	Offset Wellbor +N/-S (ft)	e Centre +E/-W (R)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
0.00	0.00	0 00	0.00	0.00	0 00	0.00	30,10	0.00	30 10					
100.00	100.00	100.00	100.00	0.08	0.08	0.00	30.10	0 00	30.10	29.93	0,17	178.556		
200.00	200.00	200 00	200.00	0.31	0.31	0 00	30.10	0.00	30.10	29.48	0.62	48.697		
300.00	300.00	300.00	300.00	0 53	0.53	0.00	30.10	0.00	30,10	29.03	1.07	28 193		
400.00	400.00	400 00	400.00	0 76	0.76	0.00	30.10	0 00	30.10	28.58	1.52	19 840		
500.00	500.00	500 00	500.00	0.98	0.98	0.00	30.10	0.00	30.10	28.13	1.97	15.305		
600.00	600.00	600.00	600.00	1 21	1.21	0.00	30.10	0.00	30.10	27.68	2.42	12.457		
700.00	700 00	700.00	700.00	1.43	1.43	0.00	30.10	0.00	30 10	27.23	2.87	10.503		
800.00	800 00	800.00	800,00	1.66	1.66	0 00	30.10	0 00	30 10	26.78	3.32	9.079		
900.00	900.00	900.00	900.00	1.88	1.88	0.00	30.10	0.00	30.10	28.34	3.76	7.995		
1,000.00	1,000.00	1,000.00	1,000.00	2.11	2.11	0.00	30.10	0.00	30.10	25.89	4 2 1	7.142		
1,100.00	1,100.00	1,100.00	1,100 00	2.33	2.33	0.00	30 10	0.00	30,10	25.44	4.66	6.454		
1,200.00	1,200.00	1,200,00	1,200 00	2.56	2.56	0.00	30,10	0.00	30.10	24.99	5,11	5 886		
1,300.00	1,300 00	1,300.00	1,300.00	2.78	2.78	0.00	30 10	0.00	30.10	24.54	5.56	5.411		
1,400.00	1,400.00	1,400.00	1,400.00	3.01	3.01	0.00	30,10	0.00	30.10	24.09	6.01	5.006		
1,500.00	1,500.00	1,500.00	1,500.00	3.23	3.23	0.00	30.10	0.00	30,10	23.64	6 46	4.658		
1,600.00	1,600.00	1,600.00	1,600.00	3,46	3.46	0.00	30.10	0 00	30.10	23.19	691	4.355		
1,700.00	1,700.00	1,700.00	1,700.00	3.68	3.68	0.00	30 10	0.00	30,10	22.74	7.36	4.089		
1,800.00	1,800.00	1,800.00	1,800.00	3.91	3.91	0.00	30.10	0.00	30.10	22.29	7.81	3.854		
1,900.00	1,900.00	1,900.00	1,900.00	4,13	4 13	0.00	30.10	0.00	30,10	21 84	8.26	3.644		
2,000.00	2,000 00	2,000.00	2,000.00	4.35	4.35	0.00	30.10	0.00	30 10	21 39	8.71	3.456		
2,100.00	2,100.00	2,100.00	2,100.00	4.58	4 58	0 00	30.10	0.00	30,10	20 94	9.16	3,286		

10/11/2017 12:44:10PM

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation Page 2

Anticollision Report

CL&F Operating LLC Company: Project: Eddy County, NM (NAD 83) Sec 5, T20S, R30E **Reference Site:** Site Error: 0.00 ft Reference Well: Crazy Horse 4H 0.00 ft Well Error: **Reference Wellbore** Wellbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

vey Prog	ram: 0-M	WD											Offere Mall Care	
Rafer		Offs	et	Semi Major	Axis				Dista	ince			Offset Weil Error:	00
asured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbor	e Centre	Between	Between	Minimum	Separation	Warning	
lepth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(n)	(ft)	Toolface (*)	+N/-S (ft)	+E/-W (ft)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor		
200.00	2,200.00	2,200.00	2,200.00	4.80	4,80	0.00	30.10	0.00	30.10	20 49	9.61	2 (22		
300.00	2,300.00	2,300.00	2,300.00	5 03	5.03	0.00	30.10	0.00	30.10	20.49	10.06	3.133 2.993		
400.00	2,400.00	2,400.00	2,400.00	5.25	5.25	0.00	30.10	0.00	30.10	19.59	10.08	2.993		
500.00	2,500.00	2,500.00	2,500.00	5.48	5.48	0.00	30 10	0.00	30.10	19.14	10.96	2.805		
600.00	2,600.00	2,600.00	2,600.00	5.70	5.70	0.00	30.10	0.00	30.10	18.69	11,41	2.639		
700.00	2,700.00	2,700.00	2,700.00	5.93	5,93	0.00	30.10	0.00	30 10	18.24	11.86	2.539		
,800.00	2,800.00	2,800.00	2,800.00	6.15	6,15	0.00	30,10	0.00	30.10	17.79	12.31	2.446		
900.00	2,900.00	2,900.00	2,900.00	6.38	6.38	0 00	30.10	0,00	30.10	17.34	12.76	2.360		
.000.000	3,000.00	3,000.00	3,000.00	6 60	6.60	0.00	30,10	0 00	30.10	16.90	13,21	2.279		
100.00	3,100.00	3,100.00	3,100.00	6.83	6.83	0.00	30.10	0.00	30.10	16.45	13.65	2.204		
,200,00	3,200.00	3,200.00	3,200.00	7 05	7.05	0.00	30,10	0.00	30,10	16,00	14.10	2.134		
,300.00	3,300.00	3,300 00	3,300.00	7.28	7.28	0.00	30.10	0 00	30.10	15.55	14.55	2.068		
,400.00	3,400.00	3,400.00	3,400.00	7.50	7.50	0.00	30.10	0.00	30.10	15 10	15.00	2.006		
.500.00	3,500.00	3,500.00	3,500 00	7.73	7.73	0.00	30.10	0.00	30.10	14.65	15.45	1.948		
580.00 600.00	3,580.00 3,600.00	3,580.00 3,600.01	3,560,00 3,600.01	7.91 7.95	7.91 7.95	0.0D •113.96	30.10 30.10	0.00	30.10 30.12	14.29 14.23	1581 1589	1.904 CC 1.895 ES, 5	F	
700 00	3,699.96 3,799.78	3,700.06 3,800.09	3,700.03 3,7 9 9.87	B.13	8.14	+113.56	29 96	2.51	30.98	14.71	16 27	1.904		
900.00	3,799,78	3,800.09	3,799.87 3,899.39	8.32 8.52	6.34 8.55	-112.67	29.63	8.44	33.06	16 40	16.66	1.985		
980.00	3,978.70	3,979.98	3,978.69	8.68	8.55	- 111.47 - 110.40	29,10 28.53	17.63 27.83	36 38	19.33	17.05	2.133		
000.00	3,998.51	3,999.96	3,998.47	8.72	8.76	-110.15	28.38	30.61	39.93 40.92	22.55 23.45	17.38 17.47	2.297 2.343		
100.00	4,097.53	4,099.83	4,097.37	8 94	8,99	-109.08	27.60	44.49	45.86	27.96	17.90	2.562		
200.00	4,196.56	4,199,71	4,196.27	9.16	9.22	-108.21	26.62	58.36	50.82	32.47	18.35	2.769		
300.00	4,295.59	4,299.58	4,295.17	9.39	9.45	-107.50	26.04	72.24	55.79	36,97	18.82	2.954		
380.00	4,374.81	4,379.48	4,374.30	9.58	9.65	-107.02	25.41	83.35	59.77	40.57	19.20	3.113		
400.00	4,394.60	4,399.43	4,394.04	9.62	9.70	106.89	25.25	88.18	60.79	41,49	19.29	3,151		
,500.00	4,493.26	4,499.08	4,492.35	9.87	9.95	-106.22	24.36	102.41	68.65	46.86	19.79	3.368		
,600.00	4,591.28	4,598.61	4,589.92	10.15	10.23	-105.55	23.31	122.01	73,78	53.45	20.33	3.629		
,700.00	4,688.55	4,698.00	4,686.61	10.45	10.53	-104.89	22.10	144,95	82.17	61.25	20.92	3.928		
,800.00	4,784.98	4,797.21	4,782.28	10.78	10.87	-104.27	20.74	171.18	91.80	70.23	21.57	4.256		
,900.00	4,880.38	4,896.25	4,876.81	11.15	11.24	-103.68	19.22	200 85	102.66	60.37	22.30	4.604		
000.00	4,974.69	4,995.07	4,970.07	11.57	11.68	-103,14	17.56	233.29	114,74	91.63	23.11	4.965		
100.00	5,067.79	5,093.68	5,061.95	12.05	12.12	-102.64	15 75	269.04	128.02	104.00	24.02	5.330		
200.00	5,159.56	5,192.04	5,152.31	12.58	12.64	-102.17	13.80	307.83	142.48	117.44	25 04	5.690		
300.00	5,249.89	5,290.16	5.241.07	13.17	13.22	-101.73	11.71	349.58	158,10	131.91	26.19	6.037		
400.00	5,338.67	5,388.30	5,328.48	13.84	13.87	-101.39	9,48	394.15	174.82	147.36	27.46	6.367		
500.00	5,425.79	5,486.71	5,415.84	14.59	14.56	-101.88	7.23	439,41	192.33	163 50	28.83	6.671		
536.04	5,456.76	5,522.12	5,447.27	14 87	14.81	-102.26	6.42	455.70	198.83	169 48	29.34	6.776		
600.00	5,511.51	5,584.92	5,503.01	15.40	15.27	-103.19	4.98	484.59	210.48	180.21	30.28	6.952		
700.00 800.00	5,597.12 5,682.73	5,683.11 5,781.30	5,590.17 5,677,33	16.26 17 14	16.01 16.78	- 104.46 - 105,54	2.72 0.47	529.75 574.91	228.80 247.21	197.02 213.88	31.78 33.33	7.199 7.417		
900.00	5,768,34	5,879.50												
900.00	5,853.94	5,977.69	5,764,49 5,851.65	16.05 18.98	17.56 18.36	-106.48 -107,29	-1.78	620.08	265.70	230.77	34.92	7.600		
100.00	5,939 55	6,075 88	5,938.81	19.93	18.30		-4.03	655.24	284 24	247.69	36.55	7.777		
200.00	6,025.16	6,174.07	6,025.97	20.90	20.00	-108.00 -108.62	-6.28	710.40	302.83	264.63	38.20	7.927		
300.00	6,110.77	6,272.26	6,113.13	20.90	20.00	-108.62	-8.53 -10,78	755.57	321,46	281.58	39.88	8.061 P.180		
								800.73	340,13	298.55	41.58	8.180		
400.00 500.00	6,195.38 6,281.98	6,370.45 6,468.64	6,200.29 6,287.44	22.89	21.69	-109.69	-13.03	845.89	358.82	315.52	43.30	8.286		
600.00	6,367.59			23.88	22.55	-110.14	-15.28	891.06	377.54	332.50	45.04	8,382		
700.00	6,453.20	6,566.83 6,665.03	6,374.60	24.90	23 42	-110 55	-17.53	936.22	396.28	349.48	46.80	8.468		
800.00	6,538.81	6,763.22	6:461.76 6:548.92	25.92 26.95	24.29 25.17	-110.92 -111.26	-19.78 -22.04	981.38 1,026.55	415.04 433.81	368.47 383.46	48.57 50.35	8.546 8.617		
00.00	6,624.41	6.861.41	6,636.08	27.99	26.06	-111.57	-24.29	1,071.71	452.59	400.45	52.14	8.681		

10/11/2017 12:44:10PM

-- -- ----

Anticollision Report

CL&F Operating LLC Company: Project: Eddy County, NM (NAD 83) Reference Site: Sec 5, T20S, R30E Site Error: 0.00 ft Reference Well: Crazy Horse 4H 0.00 ft Well Error: Reference Wellbore Wellbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Offset Des Survey Progri	•		T20S, R30	E - Crazy ł	Horse 3H	- Wellbore #1	- Plan #1						Offset Site Error: Offset Well Error:	0.00
Refere		Offs	et	Semi Major	Axis				Dista	ince			Other wen Error:	0.00
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertica) Depth (ft)	Reference (N)	Offset (ft)	Highside Toolface (*)	Offset Wellbox +N/-S (ft)	∙ Centre +E/-₩ (ft)	Between Centres (ft)	Batween Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
7,000.00	6,710.02	6,959.60	6,723 24	29.03	26.95	-111.86	-26.54	1,116.87	471.39	417.45	53.94	8 740		
7,100.00	6,795.63	7,057.79	6,810.40	30.08	27.84	-112.12	-28.79	1, 162 03	490 20	434.45	55.75	8.793		
7,200.00	6,681.24	7,155.98	6,697.56	31.13	28.74	-112.37	-31.04	1,207,20	509.01	451.45	57.56	8.843		
7,300.00	6,966.85	7,254.17	6,984 72	32.19	29 64	-112.60	-33.29	1,252.36	527.84	468.45	59.39	8.888		
7,400.00	7,052.45	7,352 38	7,071 88	33 25	30 55	-112.81	-35.54	1,297.52	546.67	485.45	61.22	8.930		
7,500.00	7,138.06	7,450 58	7,159 04	34 32	31 46	-113.01	-37.79	1,342.69	565 51	502 45	63 05	8.969		
7,600.00	7,223 67	7,548 75	7,246.20	35.39	32 37	-113.19	-40 04	1,387.85	584,35	519.46	64,90	9.004		
7,700.00	7,309.28	7,646 94	7,333.36	36 46	33 29	-113.37	-42.29	1,433.01	603 21	536 48	66.74	9 038		
7,800.00	7,394.89	7,745 13	7,420 51	37.53	34 21	-113 53	-44,54	1,478.18	622.06	553.47	68.59	9 069		
7,900 00	7,480.49	7,843 32	7,507.67	38 61	35 13	-113.68	-46.80	1,523.34	640 92	570 47	70.45	9.098		
8,000.00	7,568.10	7,941.51	7.594.83	39 69	36.05	-113.83	-49 05	1,568.50	659.79	587.48	72 31	9.124		
8,100.00	7,651.71	8,039 70	7,681,99	40.77	36.97	-113 97	-51 30	1,613.67	678 66	604 48	74 17	9.150		
8,200.00	7,737.32	8,137.89	7,769.15	4185	37 90	-114.10	-53.55	1,658.83	697 53	62149	76 04	9.173		
8,300.00	7,822.93	8 238 09	7,856.31	42 93	38.63	-114 22	-55.60	1,703.99	716.40	638 49	77 91	9 196		
8,400.00	7,908.53	8.334.28	7,943,47	44 02	39.75	-114 33	-58.05	1,749 16	735.28	655.50	79 78	9.216		
8,500 00	7,994.14	8.432.47	8.030 63	45 11	40.69	-114 44	-60.30	1,794.32	754 16	672.51	81 65	9.236		
8,594,14	8.074 73	8,530 09	8,113 74	46 13	41 76	-114.02	-62.43	1,845.27	771 65	687.86	83 78	9 2 1 0		
8,600,00	8.079 73	8,538 11	8,118 57	46 20	41 84	-113 78	-62.55	1,848 86	772.72	688 78	83 94	9 206		
8 650 00	8,121.08	8,587.00	8,157 82	46 80	42 53	-111 72	-63.54	1,881 22	782 64	697 25	85 39	9.165		
8,700.00	B,159 82	8,637.00	8,193 43	47.48	43 30	-109 68	-64.43	1,916 28	793 79	706 76	87.03	9,121		
8,750.00	8,195 67	8,686.14	8,225 33	48 26	44 13	-107.63	-65.21	1,953 63	806.08	717.25	88.84	9.074		
8,800 00	8,228 35	8,734 46	8,253 46	49 11	45 01	-105.55	-65 89	1,992 90	619.42	728.62	90.80	9.024		
8,850.00	8,257.62	8,782 03	8,277 83	50 03	45.94	-103.46	-66 47	2,033.73	833.69	740 79	92.90	6.974		
8,900.00	8,283.25	8,828,91	8,298 45	51.03	46.92	-101 35	-66 94	2.075.82	848.79	753.68	95.11	8.925		
8,950.00	8,305.05	8,875 19	8,315 37	52.08	47.92	-99.23	-67 31	2,118.87	864.57	767 18	97 39	8 877		
9,000 00	8,322.84	8,920.94	8,328.62	53.18	48.94	-97.12	-67 58	2.162.65	880 91	781 19	99 72	8 833		
9,050.00	8,336,51	8,966.25	8,338 27	54.33	49 99	-95.03	-67 75	2,206,91	897.69	795 61	102.08	8.794		
9,100.00	8,345.93	9,011.23	8,344.37	55.49	51 04	-92 98	-67 82	2,251,46	914.75	810 33	104.41	8 761		
9,150 00	8,351.05	9,055.95	8,346.94	56.68	52.09	-90 97	-67 81	2,296 09	931,96	625 24	106.72	8,733		
9,176.98	8,352.00	9,081.08	8,347 25	57.32	52.69	-89.94	-67.77	2,321.21	941 25	833 29	107.96	8719		
9,200 00	8,352.27	9,102 69	8,347.51	57.87	53 20	-89.94	-67.73	2,342.83	949.16	840 17	108.98	8.709		
9,300.00	8,353 46	9,196.60	8,348 61	60.26	55.45	-89.95	-87.57	2,438 73	983 51	870 03	113 48	8.667		
9,400.00	8,354 65	9,290 51	8,349.72	62 69	57 73	-89 95	-67 42	2,530 64	1,017,87	899 84	118 03	8 624		
9,500 00	8,355 83	9,384.43	8,350.83	65,14	60.03	-89.96	-67 27	2,824.55	1,052.22	929 59	122 63	8.580		
9,600.00	8,357.02	9,478 34	8,351.94	67 61	62.36	-69.96	-67 11	2,718 46	1,086,58	959.30	127.27	8 537		
9,700.00	8,358 21	9,572 25	8,353 05	70 10	64.70	-89,97	-68.96	2,812 38	1,120.93	988 97	131 96	8 495		
9,800 00	8,359 39	9,666 17	8.354 16	72 60	67.06	-89.97	-66.80	2,906 27	1,155.28	1,018 61	136 67	8 453		
9,900 00	8,360.58	9,760.08	8,355.27	75 13	69.44	-89 98	-66 65	3,000.18	1,189.64	1,048.22	141.42	8 4 1 2		
10,000 00	8,361.77	9,854.00	8,356.38	77 67	71 84	-89 98	-66 49	3,094 08	1.223 99	1,077.80	146 20	8 372		
10,041.98	8,362.27	9,893.42	8,356.84	78 73	72 85	-89 98	-66.43	3,133.50	1,238.41	1,090.21	148 21	8 356		
10,100 00	8,362.96	9,948 11	8 357.49	80 22	74.25	-89 97	-66.34	3,188.19	1,257.79	1,108.45	151.34	8 311		
10,200 00	8,364 15	10 043.24	8,358.61	82.78	76.70	-89 95	-66 18	3,283 32	1,288.58	1,131 89	156 70	8 223		
10,300.00	8,365 34	10,139,40	8,359.75	85 35	79 19	-89 93	-66 02	3,379 47	1,316 03	1,154.05	161.98	8.125		
10,400.00	8,366.54	10,236.45	8,360.89	87.93	81.71	-89 91	-65.86	3,478 51	1,340.11	1,172 92	167.18	8 0 1 6		
10,500.00	B,367.74	10,334.29	8,362.05	90 51	84 26	-89 89	-65.70	3,574 34	1,360.78	1,188.51	172.28	7.899		
10,600.00	8,368 94	10,432.78	8,363 21	93.08	86.84	-89 87	-65 54	3,672 83	1,378 03	1,200 78	177 25	7,775		
10,700.00	8,370 13	10,531.82	8,364 38	95 65	89 44	-89 84	-65.38	3,771.86	1,391.83	1,209.75	182.08	7 644		
10,800 00	8,371 33	10,631.28	8,365 56	98 20	92 06	-89 82	-65.21	3,871.31	1,402 17	1,215 42	186 74	7 509		
10.900.00	8,372.51	10,731 04	8,366 73	100 74	94 70	-89 80	-65.05	3,971 06	1,409 02	1,217.80	191.23	7.368		
11,000.00	8,373.69	10,830 98	8,387 91	103 25	97 34	-89.78	-64.88	4.071 00	1,412.39	1,216 88	195 51	7 224		
11.041.83	8,374.18	10,872 80	8,368 41	104.30	98 45	-89 77	-64.81	4,112 82	1,412 77	1,215 53	197.24	7.163		
	8,374,87	10.930 97	8,369 09	105.75	100.00	-89 77	-64 72	4 170 99	1,412 87	1,212.54	200 32	7.053		

10/11/2017 12:44:10PM

_

-

Anticollision Report

CL&F Operating LLC Company: Project: Eddy County, NM (NAD 83) Reference Site: Sec 5, T20S, R30E Site Error: 0.00 ft Reference Well: Crazy Horse 4H Well Error: 0.00 ft Reference Wellbore Wellbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Offset De Survey Prog	-	Sec 5, IWD	T20S, R30	E - Crazy	Horse 3H	- Wellbore (#1 - Plan #1						Offset Site Error:	0.00
Refer		Off	sei	Semi Major	Auts				Dist	000			Offset Well Error:	0.00
Measured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Reference	Offset (ft)	Highside Toolface (")	Offset Wellbor +N/-S (ft)	re Centre +E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
11,200.00	8,376.04	11,030 97	8,370.28	108 27	102 66	-89,77	-64.55	4,270 98	1,413.04	1,207.41	205.63	6.872		
11,300.00	8,377.21	11,130.97	8,371.46	110.79	105 32	-69.77	-64.39	4,370.97	1,413 20	1,202.26	210.95	6 699		
11,400.00	8,378.38	11,230 97	8,372.64	113.33	107.99	-89.77	-64.22	4,470.96	1,413 37	1,197.10	216 28	6 535		
11,500 00	8,379.56	11,330 97	8,373.82	115.87	110.66	-89 77	-64 06	4,570 96	1,413.54	1,191.93	221 61	6 378		
11,600 00	8,380.73	11,430.97	8,375.00	, 118.42	113 34	-89.77	-63.89	4,670.95	1,413 71	1,186 75	226 96	6.229		
11,700.00	8,381.90	11,530 97	8,376.18	120 99	116.02	-89.77	-63.73	4,770.94	1,413 87	1,181.56	232.31	6 085		
11,800.00	6,383.08	11,630 97	8,377.36	123 56	118.70	-89 77	-63 56	4,870 94	1.414 04	1,176.37	237 67	5.950		
11,900.00	8,384.25	11,730.97	8,378.54	126 14	121 39	-89,77	-63.40	4,970.93	1,414 21	1,171 17	243 04	5,819		
12,000.00	8,385 42	11,830.97	8,379 72	128.73	124.08	-89 77	-63 24	5,070.92	1,414.38	1,165.96	248 4 1	5 694		
12,100.00 12,200.00	8,386 59 8,387.77	11,930.97 12,030.97	8,380.90 8,382.08	131.32 133 92	126.78 129 47	-89 77 -89 77	-63 07 -62.91	5,170.91 5 270.91	1,414 54 1,414.71	1,160 75 1,155 53	253.79 259.18	5.574 5 458		
12,300 00	8,388.94	12,130 97	8,383 26	136.53	132.17	-89.77	67.74	6 370 00						
12,400 00	8,390.11	12,130 97	8,384 45	130.53	134 87	-89.77	-62.74 -62.58	5,370.90 5,470 89	1,414 88 1,415 05	1,150.31	264.57	5.348		
12,500 00	8,391.29	12,330 97	8,385 63	141.76	137 58	-89 77	-62.30	5,570 88	1,415 05	1,145 08 1,139 84	269 97 275.37	5 242 5 139		
12,600.00	8,392.46	12,430 97	8,386.81	144 38	140 28	-89 77	-62.25	5,670 88	1,415 38	1,139.64	280.78	5 041		
12,700 00	8,393.63	12,530.97	8,387.99	147 01	142 99	-89,77	-62.08	5,770.87	1 415.55	1,129 36	286.19	4 946		
12,800.00	8,394 80	12,630 97	8,389.17	149,64	145 70	-89,77	61.92	5,870 66	1,415 72	1,124,12	291 60	4 855		
12,900.00	8,395.98	12,730 97	8,390.35	152.28	148 41	-89 77	-61,75	5,970 86	1,415.88	1,118 87	297 02	4 767		
13,000.00	8,397.15	12,830 97	8,391.53	154.92	151.13	-89.77	-61.59	8,070.85	1,416.05	1,113.61	302 44	4 682		
13,100.00	8,398.32	12,930.97	8,392.71	157.57	153.84	-89 77	-61.42	6,170 84	1,416.22	1,108.35	307.86	4 600		
13,200.00	8,399.50	13,030 97	8,393.89	160.22	156.56	-89 77	-61 26	6,270.83	1,416.39	1,103.09	313.29	4.521		
13,300 00	8,400.67	13,130 97	8,395.07	162 87	159.27	-89 77	61.09	6,370 83	1,416 55	1,097.83	318,72	4 444		
13,400.00	8,401.84	13,230.97	8,396.25	165 53	161 99	-89.78	-60.93	6,470.82	1,416.72	1,092 56	324.16	4 370		
3,500 00	B,403.02	13,330 97	8,397.43	168.19	164.71	-89 78	-60 76	6,570 81	1,416 89	1,087.30	329.59	4.299		
13.600.00 13,700.00	8,404.19 8,405.35	13,430.97 13,530.97	8,398.61 8,399 50	170 85 173 52	167 43 170,16	-89.78 -89.78	-60.60 -60.44	6,670.80 6,770.80	1,417 06 1,417 22	1,082.02 1,076.75	335.03 340 47	4.230 4.163		
13,800.00	8,408.53	13,630.97	8,400 98	176,19	172.88	-89.78	-60.27	6 970 70						
13,900.00	8,407.71	13,730.97	8,402 16	178.86	175.61	-89 78	-60.27	6,870,79	1,417.39	1,071 47	345 92	4 097		
14,000.00	8,408.88	13,830.97	8,403 34	181 54	178 33	-89 78	-59.94	6,970,78 7,070 78	1,417.56 1,417.73	1.066.19 1.060.91	351 36 356 81	4 034 3.973		
14,100.00	8,410.05	13,930 97	8,404 52	184 21	181 06	-89.78	-59 78	7,170.77	1,417 89	1,055 63	362.26	3.914		
14,200 00	8,411.23	14.030 97	8,405.70	186 89	183 79	-89 78	-59 61	7,270.76	1,418.06	1,050 35	367 71	3.856		
14,300 00	8,412.40	14,130.97	8,406.88	189 57	186 52	-89 78	-59.45	7,370 75	1 4 18 23	1,045 06	373.17	3.800		
14,400 00	8,413.57	14,230.97	8,408.06	192.26	189 25	-89.78	-59 28	7,470 75	1,418.40	1,039 77	378.63	3 746		
14,500 00	8,414.74	14,330.97	8,409.24	194 94	191 98	-89.78	-59 12	7,570 74	1,418,56	1,034 48	384.08	3 693		
14,600 00	8,415.92	14,430 97	8,410.42	197 63	194 71	-89 78	-58 95	7,670 73	1,418 73	1,029 19	389.54	3 642		
14,700 00	B,417.09	14,530.97	8,411.60	200 32	197 44	-89.78	-58 79	7,770 73	1,418.90	1,023 89	395.00	3 592		
14,800.00	8,418.26	14,630 97	8,412 78	203 01	200 17	-89 78	-58 62	7,870.72	1,41907	1,018 60	400.47	3 544		
14,900.00	8,419 44	14,730 97	8,413.97	205 71	202 91	-89 78	-58 46	7,970.71	1,419.23	1.013.30	405 93	3 496		
15,000.00	8,420 61	14,830 97	8,415 15	208 40	205.64	-89 78	-58 29	8,070.70	1,419.40	1,008.00	411 40	3 450		
15,100.00 15,200.00	8,421 78 8,422.95	14,930.97 15,030 97	8,416 33 8,417,51	211 10 213 80	208.37 211 11	-89 78 -89 78	-58.13 -57.96	8,170 70 8,270.69	1,419 57 1,419 74	1,002.70 997 40	4 16.86 422.33	3 405 3.362		
15,300 00	8,424.13	15,130.97	8,418.69	216.50	213.85	-69.78	-57 60	8,370.68	1,419 90	992.10	427 60	3 3 19		
15,400 00	8,425.30	15,230.97	8,41987	219.20	216.58	-89.78	-57.64	8,470.67	1,420 07	986 80	433.27	3.278		
15,500 00	8,426.47	15,330.97	8,421 05	221.90	219 32	-89 78	-57.47	8 570 67	1,420 24	981 49	438 74	3 237		
5,600.00	8,427 65	15,430.97	8,422 23	224.61	222.06	-89.78	-57.31	8.670.66	1,420.41	976 19	444 22	3 198		
5,700 00	8,428.82	15,530.97	8,423.41	227.31	224 7 9	-89 78	-57.14	8,770.65	1,420.57	970 88	449 69	3.159		
5,800.00	8,429.99	15,630.97	8,424 59	230 02	227 53	-89.78	-56.98	8,870.65	1,420.74	965 58	455 16	3.121		
5,900.00	8,431.16	15,730 97	8,425.77	232.73	230 27	-89.78	-56.81	8,970 64	1,420 91	960 27	460 64	3.085		
16,000.00	8.432.34	15,830.97	8,426.95	235.44	233.01	-89.78	-56.65	9,070 63	1,421 08	954.95	466 12	3.049		
6,100 00	8,433.51	15,930 97	8,428.13	238.15	235 75	-89.78	-56 48	9.170 62	1,421.24	949 65	471 59	3.014		
8,200 00	8,434.68	16,030 97	8,429 32	240.86	238 49	-89 78	-56.32	9,270 62	1,421,41	944.34	477.07	2.979		
6,300 00	8,435.86	16,130.97	8,430.50	243 57	241 23	-89 79	-56 15	9,370.61	1,421.58	939 02	482.55	2 946		

10/11/2017 12:44:10PM

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

CL&F Operating LLC Company: Project: Eddy County, NM (NAD 83) **Reference Site:** Sec 5, T20S, R30E Site Error: 0.00 ft Reference Well: Crazy Horse 4H Well Error: 0.00 ft Reference Wellbore Wellbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference; Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Offset De Survey Prog	-		1205, R30	e · Crazy i	Horse 3H	- Welibore #	ri - Pian #1						Offset Site Error:	0.00
Refer		Offs	et	Semi Major	Aris				Dist				Offset Well Error:	0 00
Measured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbo	e Centre	Between	Between	Minlmum	Separation		
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor	Warning	
(ft)	(ft)	(fi)	(作)	(11)	(ft)	(†)	(ft)	(ft)	(ft)	(ft)	(ft)			
16,400.00	8,437.03	16,230.97	8,431.68	246 29	243.97	-89.79	-55.99	9,470,60	1,421,75	933,71	488.03	2.913		
16,500.00	8,438.20	16,330.97	8,432.86	249.00	246.71	89.79	-55 82	9,570,59	1,421.91	928,40	493.51	2.881		
16,600.00	8,439,37	16,430.97	8,434.04	251.72	249 48	-89.79	-55.66	9,670.59	1,422.08	923.08	499.00	2.850		
16,700.00	8,440.55	16,530,97	8,435.22	254.43	252.20	-89.79	-55.49	9,770.58	1,422 25	917.77	504.48	2.819		
16,800.00	8,441.72	16,630.97	8,436.40	257.15	254.94	-89,79	-55.33	9,870.57	1,422.42	912.45	509,96	2.789		
16,900.00	8.442.89	16,730.97	8,437.58	259,87	257.68	-89.79	•55.16	9,970,57	1,422.58	907.14	\$15,45	2.760		
17,000.00	8,444.07	16,830 97	8.438.76	262.59	260.43	-89.79	-55.00	10,070.56	1,422.75	901.82	520.93	2.731		
17,100.00	8,445.24	16,930.97	8,439,94	265 31	263,17	-89,79	-54.83	10,170 55	1,422.92	896.50	526.42	2.703		
17,200.00	8,446.41	17,030.97	8,441.12	268.03	265.91	-89 79	-54.67	10.270.54	1,423.09	891,18	531.90	2.675		
17,300.00	8,447.58	17,130.97	8,442 30	270.75	268.66	-89.79	-54.51	10,370 54	1,423.25	885.86	537 39	2.648		
17,400.00	8,448.76	17,230 97	8,443.49	273.47	271.40	-89.79	-54.34	10,470.53	1,423 42	880 54	542.88	2.622		
17,500.00	8,449.93	17,330.97	8,444.67	276.20	274,15	-89.79	-54.18	10,570 52	1,423 59	875.22	548.37	2.596		
17,600,00	8,451.10	17,430.97	8,445.85	278.92	276 89	-89.79	-54 01	10,670.52	1,423 76	869 90	553.85	2.571		
17,700.00	8,452.28	17.530 97	8,447 03	281.64	279.64	-89.79	-53.85	10,770.51	1,423.92	864.58	559.34	2.548		
17,800.00	8,453,45	17,630.97	8,448.21	284.37	282.38	-89.79	-53 68	10,870.50	1,424.09	859.26	564 83	2 521		
17,900.00	8.454.62	17,730.97	8,449.39	287.09	285.13	-89.79	-53.52	10,970 49	1,424 26	853.94	570.32	2.497		
18,000.00	8,455.79	17,830.97	8,450.57	289 82	287.87	-69,79	-53.35	11,070 49	1,424 43	848 61	575.81	2.474		
18,100.00	8,456.97	17,930.96	8 451.75	292 55	290.62	-89.79	-53 19	11,170.48	1,424.59	843.29	581.30	2.451		
18,200.00	8,458.14	18,030.96	8,452.93	295 28	293.37	-89.79	-53 02	11,270.47	1,424 76	837 96	586.80	2.428		
18,300.00	8,459.31	18.130.96	8,454.11	298.00	296 11	-89.79	-52 86	11.370.46	1,424 93	832 64	592.29	2.406		
18,400 00	8,460 49	18,230,96	8,455.29	300 73	298 86	-89.79	-52.69	11,470 46	1,425.10	827.31	597.78	2.384		
18,500 00	8,461 66	18,330.96	8,456 47	303.46	301.61	-89.79	-52.53	11.570 45	1,425.26	821.99	603.27	2.363		
18,600 00	8,462 83	18,430.96	8,457.66	306.19	304.35	-89.79	-52 38	11,670,44	1,425.43	816.66	608.77	2.342		
18,700.00	8,464.00	18,530.96	8,458.84	308 92	307.10	-89.79	-52.20	11,770,44	1,425.60	811.34	614,26	2.321		
18,800.00	8,485.18	18,630.96	8,460.02	311.65	309.85	-89,79	-52.03	11,870,43	1,425.77	806.01	619.75	2.301		
18,900.00	8,466.35	18,730 96	8,461.20	314.38	312.60	-89.79	-51.87	11,970.42	1,425.93	800.68	625.25	2.281		
19,000.00	8,467.52	18,830 96	8,462.38	317.12	315.34	-89.79	-51.71	12,070.41	1,426.10	795.36	630.74	2,261		
19,100.00	8,468.70	18,930.96	8,463 56	319 85	318.09	-89.79	-51.54	12,170.41	1,426.27	790 03	636 24	2.242		
19,200.00	6,469.87	19,030 96	8,464.74	322 58	320 84	-89 80	-51.38	12,270.40	1 428 44	784.70	641.74	2.223		
19,296.44	8,471.00	19,127.41	8,465.88	325 22	323 49	-89 80	-51,22	12,366 84	1,426.60	779.56	647.04	2.205		

10/11/2017 12:44:10PM

Anticollision Report

CL&F Operating LLC Company: Project: Eddy County, NM (NAD 83) Reference Site: Sec 5, T20S, R30E 0.00 ft Site Error: Reference Well: Crazy Horse 4H 0.00 ft Well Error: Reference Wellbore Weilbore #1 Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

iurvey Progr	ram: 0-M	WD						•	1 #1					0.00
Refera	ence	Offs		Semi Major					Dist	Ince			Offset Well Error:	0.00
leasured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (R)	Reference	Offset (ft)	Highside Toolface {`}	Offset Wellbor +N/-S {R}	e Centre +E/-W (ft)	Between Centres (ft)	Between Ellipses (ft)	Ninimum Separation (R)	Separation Factor	Warning	
0.00	0.00	0.00	0.00	0.00	0.00	10.35		43.83						
100.00	100.00	95.00	95.00	0.08	0.00	10.35	239.89 239.89	43.83	243.91 243.86	243.69	0.17	1.428.051		
200.00	200.00	195.00	195.00	0.31	0.30	10.35	239.89	43.83	243.86	243.25	0.17	397.422		
300.00	300.00	295.00	295.00	0.53	0.53	10.35	239.89	43 83	243.86	243.20	1.06	229,379		
400.00	400 00	395.00	395.00	0.76	0.75	10.35	239,89	43.83	243.85	242.35	1.51	161.213		
500.00	500.00	495.00	495.00	0.98	0.98	10.35	239.89	43.83	243.86	241.90	1.96	124.280		
600.00	600.00	595.00	595 00	1.21	1.20	10.35	239 89	43.83	243.66	241.45	2.41	101.115		
700.00	700.00	695.00	695.00	1.43	1 43	10.35	239.89	43.83	243.86	241.00	2.86	85.229		
800.00	800.00	795.00	795.00	1.66	1.65	10.35	239,89	43.83	243.86	240 55	3.31	73.657		
900.00	900.00	895.00	895.00	188	1.88	10.35	239.89	43.83	243.86	240 10	3,76	64.851		
1,000.00	1,000.00	995.00	995.00	2.11	2.10	10,35	239.89	43.83	243.86	239.65	4,21	57.926		
1,100.00	1,100.00	1,095 00	1,095.00	2.33	2.33	10.35	239.89	43 83	243.86	239.20	4.66	52.338		
1,200.00	1,200.00	1,195.00	1,195.00	2.56	2.55	10.35	239.89	43.83	243.86	238,75	5.11	47.733		
1,300.00	1,300.00	1,295.00	1,295 00	2.78	2.78	10.35	239.89	43.83	243.86	238.30	5.56	43.872		
1,400.00 1,500.00	1,400.00 1,500.00	1,395.00 1,495.00	1,395.00 1,495.00	3.01 3.23	3.00 3 23	10.35 10.35	239.89 239.89	43.83 43.83	243.86 243.86	237.85 237.41	6.01 6.46	40.590 37.764		
1,600.00	1,600 00	1,595.00	1,595.00	3 46	3.45	10.35	239.89	43.83	243.86	236.96	691	35 306		
1,700.00	1,700.00	1,695.00	1,695.00	3.68	3.68	10.35	239,89	43.83	243 86	236.51	7.36	33.149		
1,800.00	1,800.00	1,795.00	1,795.00	3.91	3.90	10.35	239.89	43.83	243 86	236.06	7.81	31.240		
1,900.00	1,900.00	1,895.00	1,895.00	4.13	4.13	10.35	239.89	43 83	243 86	235.61	8.26	29.539		
2,000,00	2,000.00	1,995.00	1,995.00	4.35	4.35	10 35	239.89	43.83	243.86	235.16	8.71	28 013		
2,100.00	2,100.00	2,095 00	2,095 00	4.58	4.58	10.35	239.89	43.83	243.86	234,71	9.15	26.638		
2,200.00	2,200.00	2,195.00	2,195.00	4.80	4.80	10.35	239.89	43 83	243.86	234.26	9.60	25.391		
2,300.00	2,300.00	2,295.00	2,295.00	5.03	5.02	10,35	239.69	43.83	243 86	233.81	10.05	24.256		
2,400.00	2,400.00	2,395.00	2,395.00	5.25	5 25	10.35	239.89	43.83	243.86	233.36	10.50	23.218		
2,500.00	2,500.00	2,495.00	2,495.00	5.48	5,47	10.35	239.89	43.83	243.86	232.91	10.95	22.265		
2,600.00	2,600.00	2,595.00	2,595.00	5.70	5,70	10.35	239.89	43 83	243.86	232.46	11.40	21.387		
2,700 00	2,700.00	2,695.00	2,695.00	5.93	5.92	10.35	239.89	43.83	243.86	232.01	11.85	20.576		
2,800.00	2,800.00	2,795.00	2,795.00	6.15	8.15	10.35	239.89	43.83	243 86	231.56	12.30	19.624		
2,900 00	2,900.00	2,895.00	2,895.00	6.38	6.37	10.35	239.89	43.83	243 86	231.11	12.75	19.125		
3,000.00	3,000.00	2,995.00	2,995.00	6.60	6.60	10.35	239.89	43.83	243.86	230.86	13 20	18,474		
3,100.00	3,100.00	3,095.00	3,095.00	6.83	6.82	10.35	239.89	43.83	243 86	230.21	13.65	17.865 CC		
3,200.00	3,200.00	3,193.70	3,193.69	7.05	7.03	10.63	239.89	45.04	244.09	230,00	14.08	17.330 ES		
3,300.00	3,300.00	3,291.97	3,291.85	7.28	7,23	11.68	239.89	49.58	244.98	230.48	14.50	16.890		
3,400.00	3,400.00	3,389.82	3,369.38	7.50	7,43	13.47	239.89	57.45	246.74	231.81	14,92	16.532		
3,500.00	3,500,00	3,497.02	3,485.94	7.73	7.64	15.95	239 89	68.55	249 66	234.31	15.35	16.269		
3,580.00	3,580.00	3,564.17	3,562.27	7,91	7.81	18,38	239 89	79.69	253.10	237.42	15.68	16.140		
3,600 00	3,600 00	3,583.36	3,581.22	7,95	7.86	-94,92	239 89	82.78	254 15	238,35	15.80	16.087		
3,700.00	3,699.96	3,681,41	3,677.79	8 13	8.09	-91.80	239.89	99.68	260.42	244.21	16 2 1	16.062		
3,800.00	3,799.78	3,780.65	3,775.53	8.32	B.34	-89.48	239.89	116.92	267.40	250.75	16.64	16.066		
3,900.00	3,899.34	3,880.18	3,873.55	8 52	8.60	-87 99	239.89	134.20	274.61	257.52	17.09	16.070		
3,980.00	3,978.70	3,959.93	3,952 09	8.68	8.81	-87.37	239.89	148.05	280.36	262.90	17.46	16.061		
4,000.00	3,998.51	3,979.88	3,971.73	8.72	8,87	-87,30	239.89	151.51	28179	264,24	17.55	16.056		
4,100 00	4,097.53	4,079.61	4,069.95	8.94	9.15	-86.97	239.89	168 83	288.94	270.91	18.03	16.026		
4,200.00	4,196.56	4,179.34	4,168.16	9.16	9.43	-86.65	239.89	186 15	296.09	277.57	18.52	15.985		
4,300.00	4,295.59	4,279.07	4,266 38	9.39	9.73	-86,35	239.89	203.47	303.26	284.23	19.03	15.936		
4,390.00	4,374.81	4,358 86	4,344.95	9.58	9.97	-86.12	239.89	217.32	308.99	289.55	19 44	15.892		
4,400.00	4,394.60	4,378.80	4,364.59	962	10 03	86.05	239.89	220.79	310.42	290.88	19.55	15.881		
4,500.00	4,493.26	4,478 55	4,462.82	9.87	10.33	-66.06	239,89	238.11	317.43	297,35	20.09	15.602		
4,600.00 4,700,00	4,591.28 4,688.55	4,578.22 4,677.69	4,560.98 4,658.94	10.15 10.45	10.64 10.96	-88 72 -87.93	239.89 239.89	255.41 272.69	324.24 330.96	303.57 309.69	20.66	15.693 15.557		
	-,000.00		1,000.04	10.45	10.90	-07.85	233.03	2/2.09	220.90	203.09	21,27	15.557		

10/11/2017 12:44:10PM

. . . .

COMPASS 5000.1 Build 74

ţ

Anticollision Report

Company: CL&F Operating LLC Project: Eddy County, NM (NAD 83) Reference Site: Sec 5, T20S, R30E Site Error: 0.00 ft Crazy Horse 4H Reference Well: Well Error: 0.00 ft **Reference Wellbore** Wellbore #1 Plan #1 Reference Design:

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Inter Des	ram: 0-M	wn											A #	<u> </u>
irvey Prog Refer		WD Offs:	et	Semi Major	Axis				Dista	Ince			Offset Well Error:	00
easured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellborn	Centre	Сал Ветжеел	Between	Minimum	Separation	Wassing	
Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	(11)	(n)	Toolface (")	+N/-S (ft)	+E/-W (R)	Centres (ft)	Ellipses (ft)	Separation (ft)	Factor	Warning	
4,900.00 5,000.00	4,880 38 4,974 69	4,875.56 4,973 7 1	4,853.80 4,950 48	¥1,15 11.57	11.60 11.92	-91.68	239.89 239 89	307.05	345 16	322.53	22.63	15.251		
5,100.00	4,974 89	4,97371 5,071.19	4,950 46 5,046.46	12.05	12 25	-94 52 -97 51	239.89	324 09 341.02	353.32 362.76	329.94 338.60	23.38 24.16	15,114 15 014		
5,200.00	5,159 56	5,167,86	5,141.67	12 58	12.57	-100 79	239.89	357.80	373.94	348.97	24.10	14.974		
5,300.00	5,249.89	5,263.62	5,235 97	13 17	12 90	-104.26	239.89	374.43	387.34	361.55	25 80	15 014		
5,400.00	5,338 67	5,358 35	5,329.26	13 84	13.22	107.86	239 89	390 88	403.43	376.81	26.62	15.155		
5,500 00	5,425.79	5,451 94	5,421 42	14.59	13.55	-111 45	239.69	407.13	422.60	395.17	27.42	15.411		
5,538.04	5,458 76	5,485 36	5,454.34	14 87	13.66	-112.77	239.89	412.94	430.33	402.63	27.70	15.533		
5,600.00	5,511,51	5,544.53	5,512.61	15 40	13.87	-115.25	239.89	423.21	444.90	416 69	28,21	15.770		
5,700.00	5,597 12	5,637.03	5,603.71	16.26	14.19	-118.65	239.89	439 28	469.29	440.31	28.98	16.194		
5,800 00	5,682.73	5,729 54	5,694.81	17.14	14.51	-122.10	239.89	455.34	495.39	465.6B	29 72	16.670		
6,900.00	5,768 34	5,822 05	5,785.91	18.05	14.84	-125.04	239 89	471.40	522.96	492.52	30.43	17.184		
3,000.00	5,853.94	5,914.56	5,877.02	19.98	15 17	-127 71	239 89	487 47	551.76	520.63	31.13	17.725		
5,100.00	5,939 55	8,007.06	5,968.12	19.93	15 50	-130.12	239.89	503.53	581.61	549 80	31.81	18.284		
6,200.00	6,025.16	8,099.57	6,059.22	20.90	15 83	-132,31	239.89	519.59	612.37	579 89	32.48	18.855		
5,300.00	6,110.77	6,192.08	6,150.32	21.88	16.16	-134.29	239 89	535.65	643 90	610.76	33,14	19.431		
3,400.00	6,196.38	8,284.59	6,241.42	22 88	18.49	-136.10	239.89	551.72	676.09	642 30	33.79	20.008		
6,500.00	6,281,98	6,377.09	6,332.53	23.88	16.83	-137 74	239.89	567 79	708 85	674,41	34.44	20.582		
6,600.00	6,367.59	6,469 60	6.423 63	24 90	17.16	-139 25	239.89	583.85	742 12	707 03	35.09	21.151		
6,700.00	6,453.20	8,582.11	6.514.73	25 92	17.50	-140 63	239.89	599 91	775 B1	740 08	35 73	21.713		
6,800.00	6,538.81	6,654 62	6,605.83	26 95	17.84	-141 90	239.89	615 98	809.88	773.51	36.37	22.265		
6,900 00	6,624 41	6,747 12	6,696.93	27.99	18.17	-143.07	239 89	632 04	844 29	807.27	37.02	22.808		
7,000.00	6,710.02	6,839.63	6,788.04	29 03	18.51	-144 15	239 89	648.10	878.99	641.33	37.66	23.339		
7,100.00	6,795.63	6,932,14	6,879,14	30 08	18 85	-145 15	239 89	664,17	913.96	875.65	38,31	23.859		
7,200.00	6,881.24	7,024.64	6,970.24	31.13	19.19	-146.07	239 89	680.23	949 15	910.20	38 95	24.366		
7,300 00	6,966 85	7,117.15	7,061.34	32 19	19.53	-146.94	239 89	696.30	984 55	944.95	39 60	24.861		
7.400 00	7.052 45	7,209 66	7,152 44	33 25	19.88	-147.74	239 89	712.36	1,020.14	979.89	40 25	25.344		
7,500 00	7,138.06	7,302.17	7,243.55	34.32	20 22	- 148 49	239 89	728.42	1,055 89	1,014.99	40 90	25.814		
7,600 00	7,223 67	7,378.73	7,319.08	35 39	20.47	-149 11	239 89	740 91	1,092.41	1,050 89	41 52	26.313		
7,700 00	7,309 28	9,340.52	8,372 25	36,46	38.88	-171.95	-599.51	1,524.70	1,071 57	1,033 47	38 10	26.122		
7,800 00	7,394 89	9,383 02	8,372 41	37 53	39.57	+174.57	-637.12	1,544 50	984 10	945.65	38 46	25.591		
7,900 00	7,480 49	9,424 06	8,372.57	3861	40.22	-177.53	-673.84	1,562.81	897 36	858.22	39.14	22.925		
8,000 00	7,568.10	9,483 67	8,372.72	39.69	40 85	179.16	-709.66	1,579 74	811 70	771.39	40.30	20.140		
8,100.00	7,651.71	9,501.91	8,372 86	40 77	41.45	175 49	-744.55	1,595 36	727.59	685 53	42 06	17 299		
8,200.00	7,737.32	9,538,60	8,373 00	41.85	42 02	171.48	-778 51	1,609.78	645.79	601.24	44.54	14.498		
8,300.00	7,822 93	9,574.39	8,373 14	42.93	42 57	167.15	-811 53	1,623 06	567 41	51964	47,77	11.877		
8,400.00	7,908,53	9,608.74	6,373 27	44.02	43 09	162.57	-843.62	1,635 30	494 24	442 52	51.72	9.556		
8,500 00	7,994 14	9,641.87	8,373.39	45,11	43.59	157.79	-874 79	1,646 55	429 10	372.84	56.27	7.626		
8,594 14	8,074 73	9,672 00	8,373 51	46.13	44.04	153 18	-903 29	1,656 31	379 02	318 10	60.92	6 222		
8,600.00	8.079.73	9,673 85	8.373 51	46 20	44 07	153.08	-905,05	1,656.89	376.40	315 35	81.05	6 165		
8,650 00	8,121.08	9,690 59	8,373.58	46.80	44.32	151,82	-920,95	1,662 11	358 84	296 48	62.38	5.753		
8,700.00	8,159.82	9,708 78	8,373 65	47 48	44.59	149 87	-938.29	1,667.61	350 59	286 51	64.08	5.471		
8,717 14	8,172.45	9,715 31	8,373.67	47.75	44.68	149 05	-944,52	1,669 55	350.01	285 24	64 78	5.403		
8,750 00	8 195.67	9,728.17	8 373.72	48.26	44.86	147 27	-958.82	1,673 30	352.11	285.86	66.26	5 3 1 4		
8,800 00	8,228.35	9,748 49	8,373 80	49 11	45.16	144 00	-975.31	1,679 06	363.03	294.04	68 98	5.263 SF	;	
8,850.00	8,257,62	9,769.49	8,373 88	50 03	45.46	140 03	-996.51	1,684 79	382.25	309 92	72 34	5.284		
8,900.00	8,283.25	9,790.92	8,373.96	51 03	45 77	135 31	-1.017.20	1,690 41	408.33	331.98	76 36	5 348		
8,950.00	8,305.05	9,812,55	8,374.04	52.08	46.08	129 81	-1,038.13	1,695 85	439 76	358.78	80.98	5.431		
9,000.00	8,322 84	9,834,16	8,374.12	53 18	46 37	123 50	-1.059 10	1,701 04	475.19	389.17	85 02	5.524		
9,050.00	8,336.51	9,855.54	8,374.20	54 33	46.67	118 42	-1,079 91	1,705.95	513 52	422.37	91.15	5.634		
9,100.00	B,345 93	9,876 51	8,374.28	55 49	46.96	108.68	-1,100 38	1.710.54	553 89	457 99	95 89	5 776		
9,150.00	8,351 05	9,900 00	8,374 36	56 68	47.29	100 38	-1,123 38							

10/11/2017 12:44:10PM

- -

-

Anticollision Report

Company: CL&F Operating LLC Project: Eddy County, NM (NAD 83) **Reference Site:** Sec 5, T20S, R30E Site Error: 0.00 ft Reference Well: Crazy Horse 4H Well Error: 0.00 ft Wellbore #1 Reference Wellbore Reference Design: Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db

Offset Datum

ffset De rvey Prog	-		120S. R30	DE - Solution	n Fed 1H	-Planned C(DG - Wellbore	#1 - Desigi	n #1				Offset Site Error: Offset Well Error:	0.00
Refer	rence	Offs	et	Semi Major	Aris				Dist	ince			Onset Hen Erfor:	
easured Depth (ft)	Vertical Depth (ft)	Measured Depth (ft)	Vertical Depth (ft)	Roference (R)	Offset (ft)	Highside Tootlace (*)	Offset Wellbor +N/-S (ft)	a Centra +E/-W (ft)	Between Centres (ft)	Between Eliipses (ft)	Minimum Separation (ft)	Separation Factor	Warning	
9,176.98	8,352 00	9,900.00	8,374 36	57 32	47 29	96 10	-1,123 36	1,715.40	618 57	517 41	101.16	6.115		
9,200.00	8,352 27	9,916 63	8,374 43	57.87	47 51	95.83	-1,139 68	1,718.68	638.17	536 28	101.89	6 264		
9,300.00	8,353.46	9,954.10	8,374 57	60 26	48 01	95 30	-1,176 50	1,725.54	724.18	61952	104 66	6 9 1 9		
9,460 00	8,354.65	10,000 00	8,374.73	62 69	48.63	94 76	-1,221 79	1,732.96	811.27	703.73	107 53	7 544		
9,500.00	8,355.83	10,022.09	8,374.82	65 14	48 90	94 54	-1,243 65	1,736 14	899 03	788 66	110.17	8 16 1		
9,600 00	8,357.02	10,052.99	8,374.93	67 61	49 30	94.25	-1,274 29	1,740.16	987 68	674 79	112 90	8 749		
9,700 00	8,358.21	10,100.00	8,375.10	70.10	49,90	93 88	-1,321 01	1,745 33	1,077.30	961.53	115.77	9 305		
9,800 00	8,359.39	10,100.00	8,375.10	72 60	49.90	93 88	-1,321.01	1,745 33	1 167.16	1,048.89	118.28	9 868		
9,900.00	8,360.58	10,135.20	8,375.23	75 13	50 33	93 64	1,356 07	1,748,45	1,257,74	1,136 69	121.05	10 390		
0,000.00	8,361.77	10,159 55	8,375.31	77 67	50 62	93 49	-1,380.36	1,750 23	1,348 93	1,225,18	123 75	10 900		
0,041 98	8,362.27	10,169.37	8,375 35	78.73	50 74	93.43	-1,390,16	1,750 86	1,387 36	1,262 47	124 89	11 108		
0,100.00	8,362.96	10,200.00	8,375.46	80.22	51 12	93 43	-1,420 74	1,752.50	1,441 04	1,314.95	126 09	11 428		
0,200 00	8,354.15	10,200.00	8,375.46	82.78	51 12	93.79	-1,420 74	1,752 50	1,534 38	1,408.69	127.69	12.016		
0,300.00	8,365.34	10,200 00	8,375.46	85.35	51.12	94 26	-1,420 74	1,752.50	1,629.60	1,500.45	129.15	12.618		
0,400 00	8,366.54	10,233 52	8,375.58	87.93	51 50	94 53	-1,454 23	1,753,73	1,725 65	1,595.03	130.63	13 211		
0,500 00	8,367 74	10,245 41	8 375.62	90 51	51.64	95 13	+1,466 13	1,754 03	1,822 96	1,691.15	131 81	13 830		
0,600.00	8,368.94	10,255.00	8,375.65	93 08	51 75	96 00	-1,475 71	1,754 22	1,921 12	1,788 35	132.77	14 470		
0,700.00	8,370.13	10,262,44	8,375.68	95.65	51.84	97 37	-1,483 15	1,754 33	2,019 95	1,886.54	133 41	15 141		
0,800 00	8,371.33	10,288 01	8,375.76	98 20	52 12	99 00	-1,506.72	1,754 48	2,119 48	1,985 69	133 77	15.844		
0,900.00	8,372.51	10 286.01	8,375.76	100 74	52.12	103 60	-1,506.72	1,754 48	2,219 09	2,086 62	132 47	18.752		
,000 000,	8,373 69	10.286.01	8,375 76	103 25	52.12	118 45	-1,508.72	1,754 48	2,318 97	2,197.49	121 47	19.090		
,041.83	8,374 16	10,286.01	8,375 76	104 30	52 12	139.55	-1,508.72	1,754 48	2,360 78	2,266.77	94 01	25 112		
,100.00	8,374 87	10,286 01	8,375 76	105 75	52 12	139 55	-1,506 72	1,754.48	2,418 95	2,323.89	95 06	25.448		
200.00	8,376 04	10,285.01	8,375.76	108 27	52 12	139 55	-1,506.72	1.754.48	2,518.93	2,422.07	96 85	26 007		
1,300.00	8,377 21	10,286 01	8,375.76	110 79	52 12	139 55	1,506,72	1 754.48	2,618.91	2,520.26	98 66	26 545		
1,400.00	0,378.38	10,286 01	8,375 76	113 33	52 12	139.55	-1,506 72	1,754.48	2,718.90	2,618 43	100 47	27.063		
1,500.00	8,379.56	10,286 01	8,375.76	115 87	52 12	139 55	-1,506 72	1,754.48	2,818.89	2,71661	102 28	27 562		
1,600.00	8,380.73	10,286 01	8,375 76	118 42	52 12	139 55	-1,506 72	1,754 48	2,918.87	2,814 78	104 09	28 042		
1,700.00	8,381.90	10,286 01	8,375.76	120 99	52 12	139 55	-1,506 72	1,754.48	3,018 86	2,912 95	105,91	28.505		
1,800 00	8,383.08	10,286 01	B,375 76	123.56	52.12	139 55	-1,506 72	1,754,48	3,118.85	3,011.12	107 73	28.952		
,900 00	8,384.25	10.286 01	8,375.76	128.14	52.12	139 55	-1,506 72	1,754 48	3,218 84	3,109 29	109 55	29 383		
2,000.00	8,385.42	10,286 01	8,375.76	128 73	52 12	139 55	-1,506 72	1,754 48	3,318.83	3,207.46	111 37	29 799		
2,100.00	8,386.59	10,286 01	8,375 76	131 32	52 12	139 55	1,506 72	1,754 48	3,418.82	3,305 62	113 20	30 201		
200 00	8,387.77	10,285.01	8,375 76	133.92	52 12	139.55	-1,506.72	1,754 48	3,518.81	3,403.78	115 03	30 590		
2,300 00	8,388.94	10,286.01	8,375.76	136 53	52.12	139 55	-1,506.72	1,754 48	3,618,81	3,501.94	116.86	30 967		
400 00	6,390.11	10,286 01	8,375.76	139 14	52.12	139 55	-1,506 72	1,754 48	3,718.60	3,600 10	118 69	31 331		
,500 00	8,391.29	10,286 01	8 375.76	141 76	52.12	139 55	-1,506 72	1.754 48	3,818.79	3,698 26	120,53	31 683		
.600 00	8,392.46	10,286 01	8,375 76	144 38	52.12	139 55	-1,506 72	1,754 48	3,918 78	3,796.42	122 37	32 025		
.700 00	8.393 63	10,285 01	8,375.76	147 01	52.12	139 55	-1,506 72	1,754 48	4,018 78	3,894.57	124 20	32.356		
.800 00	8,394.80	10,285.01	8 375 78	149 64	52 12	139 55	-1,506 72	1,754,48	4 118 77	3,992.73	126 04	32 677		
900 00	8 395 98	10,288 01	8,375 76	152.28	52 12	139 55	-1,506 72	1,754 48	4,218 77	4,090 88	127 89	32 989		
000 000	8,397 15	10 286 01	8,375 76	154 92	52 12	139 55	-1,506 72	1,754 48	4,318 76	4,189.03	129.73	33.291		
100 00	8,398.32	10 286 01	8,375 76	157.57	52 12	139 55	-1,506.72	1,754 48	4 4 18 76	4,287 18	131.57	33.584		
200.00	8,399.50	10 286.01	8,375 76	160.22	52.12	139 55	-1,506 72	1,754.48	4,518 75	4,385.33	133.42	33.869		
300 00	8,400 67	10,285.01	8,375 76	182.87	52 12	139 55	-1,506,72	1,754 48	4,618.75	4 483 48	135.26	34 146		
,400.00	8,401.84	10,286 01	8,375 76	165 53	52 12	139 55	-1,506.72	1,754 48	4,718 74	4,581 63	137 11	34 416		
500 00	8,403 02	10,286 01	8,375 76	168.19	52 12	139 55	-1,506 72	1,754.48	4,818.74	4,679 78	138 96	34.675		
600.00	8,404 19	10,286 01	8,375.76	170 85	52 12	139 55	-1,508 72	1 754.48	4,918.73	4,777.92	140 81	34 932		
700 00	8,405 36	10,286 01	8,375 76	173 52	52.12	139 55	-1,506 72	1 754 48	5,018 73	4,876 07	142 66	35.180		
800.008	8,406.53	10,285 01	8,375.76	176 19	52 12	139 55	-1,506 72	1 754.48	5,118.72	4,974 22	144 51	35 422		
900 00	8,407 71	10,286 01	8,375 76	178 86	52 12	139 55	-1.506 72	1,754-48	5.218 72	5,072.36	146 35	35.657		
000 00	8,408 88	10,286 01	8,375 76	181.54	52 12	139 55	-1,506 72	1,754 48	5,318 72	5,170 50	148 21	35.886		

10/11/2017 12:44:10PM

Anticollision Report

Company: CL&F Operating LLC Project: Eddy County, NM (NAD 83) **Reference Site:** Sec 5, T20S, R30E Site Error: 0.00 ft Reference Well: Crazy Horse 4H Well Error: 0.00 ft Reference Wellbore Wellbore #1 **Reference Design:** Plan #1

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

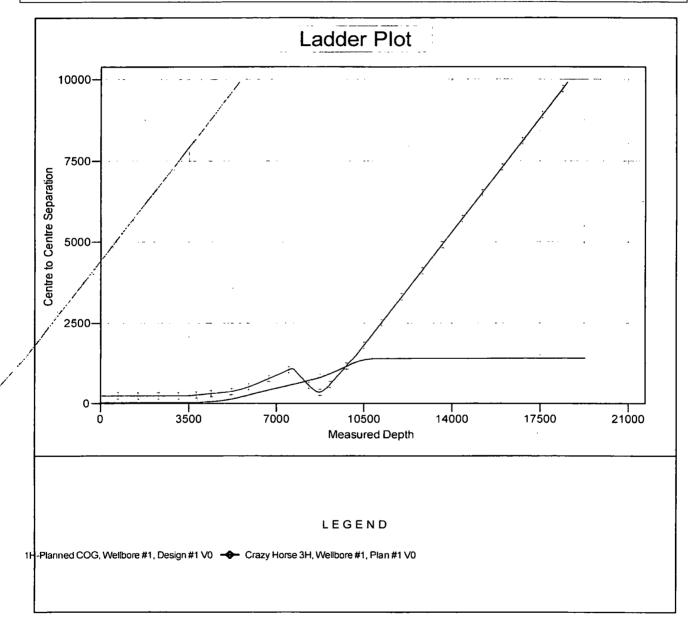
Offset De	-	Sec 5,	1205, R30	E - Solution	h Fed 1H	-Planned CC	DG - Wellbore	#1 - Design	n #1				Offset Site Error:	0.00
urvey Prog Refe		WD Offs	at	Semi Major	Axis				Disu				Offset Well Error:	0 00
leasured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbor	e Centre	Between	Between	Minimum	Separation	1	
Depth	Depth	Depth	Depth			Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor	Warning	
(ft)	(ft)	(n)	(ft)	(ft)	(fit)	(*)	(ft)	(11)	(ft)	(n)	(ft)			
14,100.00	8,410.05	10,286.01	8,375.76	184 21	52.12	139.55	-1,506.72	1,754.48	5,418.71	5,268 65				
14,200.00	8,411,23	10,286.01	8,375 76	186 89	52.12	139.55	-1,506.72	1,754.48			150.07	36.109		
14,300.00	8,412,40	10.286.01	8,375.76	189.57	52.12	139.55			5,518.71	5,366.79	151.92	36.326		
14,400.00	B,413.57	10.286.01	8,375.76	192 26	52.12		-1,506.72	1,754.48	5,618,71	5,464.93	153.78	36 538		
14,500 00	8,414,74	10,286 01	8,375 76	192 20	52.12	139.55	-1,506.72	1,754.48	5718.70	5,583.07	155.63	36,745		
14,600.00	8,415.92	10,286,01	8,375.76	194,94		139.55	-1,506.72	1,754.48	5,818.70	5,661 21	157.49	36.947		
14,000.00	0,4 (0.82	10,200,01	0.3/3/10	197.03	52.12	139.55	-1,506.72	1,754,48	5,918.70	5,759 35	159.34	37,144		
14,700 00	8,417.09	10,286.01	8,375.76	200.32	52.12	139.55	-1,508.72	1,754 48	6,018.69	5,857 49	161.20	37.337		
14,800.00	8,418.26	10,286 01	8,375,76	203.01	52.12	139,55	-1,506 72	1,754.48	6,118.69	5,955 63	161.20			
14,900.00	8,419,44	10,266 01	8,375.76	205.71	52.12	139.55	-1,506.72	1,754.48	6,218.69			37.524		
15,000.00	8,420.61	10,286.01	8,375,76	208.40	52.12	139,55	-1,506.72	1,754.48		6,053.77	164.92	37 708		
15,100,00	8,421,78	10,286 01	8,375 76	211,10	52 12	139.55	+1,506.72	1,754.48	6.318.69	6.151.91	166.78	37.887		
			2,0.0.0	2		103,00	-1,500.72	1,704.40	6,41868	6.250 05	168 64	38.062		
15,200.00	B,422.95	10,288 01	8 375 76	213 80	52 12	139,55	-1.506.72	1,754 48	6,518.68	6,348 19	170.50	38.234		
15,300.00	8,424.13	10,285.01	8,375.76	216.50	52.12	139.55	-1,506.72	1,754 48	6,618.68	6,446.32	172.36	38,401		
15,400.00	8,425.30	10,286.01	8,375.76	219.20	52.12	139.55	1,506.72	1,754 48	6,718.68	6,544.46	172.30	38.565		
15.500.00	8,426.47	10,286.01	8,375.76	221 90	52.12	139.55	-1,506.72	1,754.48	6,818 67	6,642.60	174.22	38 725		
15,600.00	8,427.65	10,288.01	8,375.76	224.61	52.12	139 55	-1,506.72	1,754.48	6,918.67	6,740.73	177,94	38.882		
									0,010.01	0,140.75	177,04	30.032		
15,700.00	8,428.82	10,286.01	8,375.76	227 31	52.12	139.55	-1,506.72	1,754.48	7,018 67	6,838.87	179.80	39.035		
15,800.00	8,429.99	10,285.01	8,375.76	230.02	52,12	139 55	-1,506.72	1,754.48	7,118.67	6,937.00	181 66	39.186		
15,900.00	8,431.16	10,286.01	8,375.76	232.73	52 12	139.55	-1.506.72	1,754,48	7,218.67	7,035 14	183.53	39.333		
16,000.00	8,432.34	10,286.01	8,375 76	235 44	52.12	139 55	-1.506.72	1,754,48	7,318 66	7,133.27	185 39	39.477		
16,100 00	8,433.51	10,286.01	8,375 76	238.15	52.12	139 55	-1,506.72	1,754 48	7,418 66	7,231.41	187.25	39.618		
									·					
16,200.00	8,434.68	10,286.01	8,375.76	240 86	52.12	139.55	-1,506 72	1,754,48	7,518.68	7,329.54	189.12	39.756		
16,300.00	8,435.86	10,286.01	8.375 76	243.57	52.12	139.55	1,506 72	1,754.48	7,618.66	7,427.68	190.98	39.892		
18,400.00	8,437.03	10,286.01	8,375.76	246.29	52.12	139 55	1,506 72	1,754.48	7,71866	7,525.81	192 85	40.025		
16,500.00	8,438.20	10,288,01	8,375.76	249.00	52.12	139.55	-1,506 72	1,754.48	7,818.66	7,623.94	194.71	40.155		
16,600.00	8,439.37	10,286.01	8,375.76	251.72	52.12	139.55	-1,506 72	1,754 48	7,918.65	7,722.08	196.58	40.283		
16,700,00	8,440.55	10,286.01	8,375.76	254 43	52.12	139 55	-1.506.72	1,754.48	8,018.65	7,820 21	198.44	40.408		
16.800.00	8,441.72	10,286.01	8,375 76	257 15	52.12	139 55	-1,506.72	1.754.48	8,118.65	7,918 34	200.31	40.531		
16,900.00	8,442.89	10,286 01	8,375 76	259.87	52.12	139.55	-1.506.72	1,754.48	8,218.65	8,016 48	202.17	40.651		
17,000 00	8,444.07	10,286.01	8,375.76	262 59	52.12	139 55	-1,506.72	1,754 48	8,318.65	8,114 61	204.04	40.770		
17,100.00	8,445.24	10,286 01	8,375 76	265.31	52.12	139 55	1,506,72	1,754.48	8,418.65	8,212.74	205.91	40.886		
7,200.00	8,446 41	10,286 01	8,375.76	268.02	E2 12	120 66	1 600 70							
7,300.00	8,447.58	10,286 01	8.375.76	268.03 270.75	52.12 52.12	139.55	-1,506.72	1,754 48	8,518.65	8,310.87	207.77	41.000		
7,400.00	8,447.58 8,448.76	10,286 01	8.375.76	270.75		139.55	-1.506.72	1,754.48	8,618.64	8,409.00	209.64	41,112		
7,500.00	8,449,93	10,286.01	8,375,76	273.47 276.20	52 12 52.12	139 55	-1,506.72	1.754.48	8,718.64	8,507.14	211.51	41 222		
7,600.00	8,451.10	10,286.01	8,375.76	278.92	52.12 52.12	139.55	-1,506.72	1,754 48	8,81864	8,605.27	213.37	41.329		
.,000.00	0,401.10	10,200.01	3,3/3.10	210.02	32.12	139.55	-1,506 72	1,754 48	8,918.64	8,703.40	215.24	41.435		
7,700.00	8,452.28	10,286.01	8 375.76	281.64	52.12	139,55	-1,506.72	1,754 48	9,018 64	8,801.53	217 11	41.540		
7,800.00	8,453 45	10,286 01	8.375.76	284 37	52.12	139.55	-1,505.72	1,754 45	9,018 64	8,801.53	217 11 218.98	41.540		
7,900.00	8,454 62	10.286.01	8,375.76	287.09	52.12	139 55	-1,506.72	1,754.48	9,218,64	8,997.79		41.642		
8.000.00	8,455 79	10,286,01	8,375.76	289 82	52.12	139 55	1,506.72	1,754.48	9,218.64	9,095,92	220.85	41.742		
8,100 00	8,456 97	10,286 01	8,375.76	292.55	52.12	139.55	-1,506.72	1,754 48	9,318 63	9,095.92	222.71	41.841		
			-,	L.J.J.J.	JE 16	198.99	-1,300,72	1,134 48	9,910.03	9,194.05	224.58	41.938		
8,200 00	8,458 14	10,286 01	8,375 76	295 28	52.12	139 55	-1,508.72	1,754.48	9,518 63	9,292.18	226 45	42.034		
8,300.00	8,459.31	10,286 01	8.375.76	298.00	52 12	139 55	-1,506.72	1,754.48	9,618 63	9,390 31	228.32	42.128		
8,400.00	8,460.49	10,286 01	8,375.76	300 73	52.12	139 55	-1,506 72	1,754.48	9,718.63	9,488.44	220.32			
8,500.00	8,461.66	10,285.01	8,375.76	303 46	52 12	139 55	-1,506 72	1,754,48	9,818 63	9,468.44 9,586.57		42.220		
8,600 00	8,462.83	10,285 01	8,375 76	306.19	52.12	139 55	-1,506.72				232.06	42.311		
			2,0.0.0		52.12	135 33	•1,000.72	1,754.48	9,918 63	9,684.70	233.93	42.400		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

-

·· -

- .


Anticollision Report

CL&F Operating LLC Company: Eddy County, NM (NAD 83) Project: **Reference Site:** Sec 5, T20S, R30E 0.00 ft Site Error: Crazy Horse 4H Reference Well: Well Error: 0.00 ft Weilbore #1 **Reference Wellbore** Reference Design: Plan #1

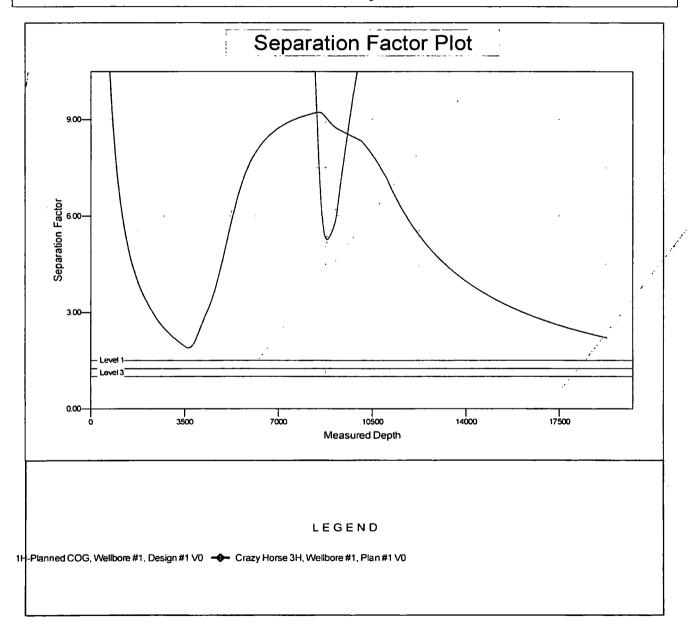
Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference: Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Reference Depths are relative to KB=25' @ 3272.00ft Offset Depths are relative to Offset Datum Central Meridian is -104.333334 Coordinates are relative to: Crazy Horse 4H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.18°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Anticollision Report

Company: CL&F Operating LLC Project: **Reference Site:** 0.00 ft Site Error: Reference Well: 0.00.8 Well Error: Reference Wellbore Wellbore #1 Plan #1 Reference Design:


Eddy County, NM (NAD 83) Sec 5, T20S, R30E Crazy Horse 4H

Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method: Output errors are at Database: Offset TVD Reference:

Well Crazy Horse 4H KB=25' @ 3272.00ft KB=25' @ 3272.00ft Grid Minimum Curvature 2.00 sigma EDM 5000.1 Multi User Db Offset Datum

Reference Depths are relative to KB=25' @ 3272.00ft Offset Depths are relative to Offset Datum Central Meridian is -104.333334

Coordinates are relative to: Crazy Horse 4H Coordinate System is US State Plane 1983, New Mexico Eastern Zone Grid Convergence at Surface is: 0.18°

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

Drilling Program

1. ESTIMATED TOPS

Formation Name	TVD	MD	Bearing
Quaternary caliche	000′	000'	water
Rustler anhydrite	200′	200'	N/A
Top salt	460′	460'	N/A
Tansill sandstone	1560′	1560′	N/A
Yates sandstone	1777′	1777'	N/A
Seven Rivers gypsum	2076'	2076'	N/A
Capitan Reef limestone	2169′	2169′	water
Delaware sandstone	3532'	3532'	hydrocarbons
Bone Spring carbonate	6270′	6488′	hydrocarbons
1 st Bone Spring sandstone	7487'	7901′	hydrocarbons
(КОР	8080′	8600'	hydrocarbons)
2nd Bone Spring sandstone (& goal)	8350′	9176′	hydrocarbons
TD	8471'	19296′	hydrocarbons

2. NOTABLE ZONES

Second Bone Spring sand is the goal. Closest water well (CP 00644 POD2) is 5389' southeast. Water bearing strata were found from 68' to 285' in the 285' deep well.

3. PRESSURE CONTROL

A 10,000' 2,000 psi and 5,000 psi BOPE system will be used below surface casing to TD. See attached BOP, choke manifold, co-flex hose, and speed head diagrams.

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

A Variance is requested from the BLM for the use of a diverter on the 26" section. A Variance is requested from the BLM for the use of a 20" 3M Annular on the 17 1/2" and 12 1/4" sections.

BOP Installed on this size hole	Section Depth	MW Anticipated	Size	Min Required WP	Device Closure Type (not sequence)	Application	Tested To
					Annular		· · · ·
					Ram		100%
26"	321'	9	None	None	Ram		Diverter
20	521		None	None	Double Pipe &	1	Assy - No
		1			Blind		Test Used
					Other - Diverter	x	
					Annular	X	
					Ram		50% of
17.5"	1680'	10	20"	2M	Ram	1	2000 psi
17.5	1000	10	20	2101	Double Pipe &		component
					Blind		WP
					Other		
					Annular	X	
					Ram		50% of
12.25"	3480'	8.4	20"	2M	Ram		2000 psi
12.25	5480	0.4	20	2101	Double Pipe &	1	component
					Blind		WP
					Other		
					Annular	x	70% of WP
	04741710				Ram		
8.75" x 8.5"	8471' TVD 19,296'	9.5	13.625"	5M	Ram	1	100% of
0.75 x 0.5	19,296 MD	5.5	13.023		Double Pipe &		5000 psi
					Blind	x	component WP
				ſ	Other		VVF

Independent service company will test BOP / BOPE to 250 psi low and the high pressure as listed above. System may be upgraded to a higher pressure, but still tested at % listed for component WP as listed above.

If the system is upgraded, all the components for that section will be functional and tested.

Pipe rams will be functionally checked each 24-hour period. Blind rams will be operationally checked on each TOH.

These checks will be noted on the IADC records onsite.

Other BOPE accessories will include a kelly cock, floor safety valve, inside BOP, choke manifold, and lines.

PERMITS WEST, INC.

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

See attached BOPE schematics.

Formation integrity test will be performed per Onshore Order # 2. On exploratory wells, or on that portion of any well approved for a 5M BOPE sytem or greater, a pressure integrity test of each casing shoe shall be performed. All will be tested in accordance with Onshore oil and Gas Order # 2 III.1.i.

A Variance is requested from BLM for the use of a flexible choke line from the BOP to the choke manifold. See attached specifications and hydrostatic test chart.

A Multibowl wellhead (may) be used. The BOP will be tested per Onshore order # 2 after installation on the 1st Intermediate casing (13 3/8" @ 1815') which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken, the system must be tested. <u>Should a conventional wellhead be used, testing provisions will apply to each section as components are set.</u>

4. CASING & CEMENT

Hole Size	Interval	Casing Size	Weight (lbs)	Grade	Joint	MW	SF Collapse	SF Burst	SF Joint Tension	SF Body Tension	
36"	0' - 80'	30" cond.	157.5	H40	Weld	FW	NA	NA	NA	NA	
26"	0' - 350' TVD	20" surface	94	J55	втс	9.00	3.46	11.14	46.40	49.00	
17.5"	0' - 1680' TVD	13.375" inter. 1	54.5	J55	втс	10.00	1.29	2.75	9.90	9.30	
12.25"	0' - 3480' TVD	9.625" inter. 2	40	J55	LTC	8.40	1.6	1.93	3.73	4.52	
8.75" x 8.5"	0' - 8471' TVD 0' - 19296' MD	5.5" product.	20	P110	Atlas BK	9.50	3.00	1.20	2.20	2.10	
· · ·	· · · · · · · · · · · · · · · · · · ·					·				1.6 Dry	
	BLM Minimum Safety Factor 1.125 1.000 1.8 Wet										
	All casing str	ings will be	tested in a	accordan	ce with (Onshore	Oil & Gas C	Order # 2	III.B.1.h		
Sierra I	lamilton standar	ds used for	all SF calc	ulations.	Collapse	e 1.3, Bur	st 1.2, Tens	sion Jt 1.8	3, Tension I	Body 2.0	
	Assumed .70 FG and 100% evacuation of Gas @ .11 GR										

All casing will be API and new. See attached casing assumption worksheet.

:

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

Special Conditions	
Is casing new? If used, attach certification as required in Onshore Order # 1.	Y
Does Casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not, provide justification (loading assumptions, casing design criteria).	Y
Will intermediate pipe be kept at least 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is the well located within the Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y
Is well within the designated 4 string boundary?	Y
Is the well located in SOPA but not R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3rd string cement tied back 500' into previous casing?	
Is the well located in R-111-P and SOPA?	Y
If yes, are the first three strings cemented to surface?	Y
Is 2nd string set 100' to 600' below base of salt?	Y
Is well located in high Cave / Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is the well located in critical Cave / Karst?	N
If yes, are there three strings cemented to surface?	

TOC for all casing will be surface.

Casing	Depth	Lead Tail	Sacks	Density ppg	Yield	Volume cu ft	H2O gal/sack	Excess OH	500# Comp Strength (hours)	Blend
30" conduct.	80'		A/R					A/R	_	Redi Mix
20"	321'	Lead	800	14.8	1.34	1072	6.3	100%	7.01	Class C & 2% PF01 (CACl2)
surface		Tail	None					100%		

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

13.375" inter. 1	1680'	Lead	1200	13.5	1.75	2100	8.9	100%	7.47	Class C & 4% PF120 (Gel) & 1% PF01 (CACl2) & 3# PF42 (Koalseal) & 1/8# PF29 (Cellophane)
		Tail	200	14.8	1.33	266	6.3	100%	4.01	Class C & 1% PF01 (CACl2)
		Lead Stg 1	350	12.6	2.05	717	15.36	50%	11.3	Class C 35/65 Poz & 5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
0.625#		Tail Stg 1	200	14.8	1.32	264	6.3	50%	5.45	Class C & .2% PF13 (Retarder)
9.625" inter. 2	3480'									
		Lead Stg 2	220	12.6	2.05	451	15.36	50%	16.5	Class C 35/65 Poz & 5% PF44 (Salt) & 6% PF20 (Gel) & 3# PF42 (Kolseal) & .4# PF45 (Defoam) & 1/8# PF29 (Cellophane)
		Tail Stg 2	200	14.8	1.32	264	6.3	50%	5.9	Class C & .2% PF13 (Retarder)

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

product.DescriptionClass H 50/50 Poz & 5% PF44 (Salt) & 2% PF20 (Gel) & .3% FL & .1% PF20 (Gel) & .3% FL & .1% PF20 (Gel) & .3% FL & .1% PF813 (Retarder) & .2% PF65 (Dispersant) & .3% PF606 (Fluid Loss)DV Tool depth(s) will be adjusted based on hole conditions. ECP usage will be determined as per hole conditions at the time.Class H 50/50 Poz & 5% PF44 (Salt) & 2% PF20 (Gel) & .3% FL & .1% PF813 (Retarder) & .3% PF606 (Fluid Loss)DV Tool depth(s) will be adjusted based on hole conditions. ECP usage will be determined as per hole conditions at the time.Cement volumes will be adjusted per fluid caliper or other device if ran, percentage excess may increase.DV tool (if required) will be positioned 50 - 100' below 13.375" casing. Expect set depth 1730 - 1780' Lab reports with the 500 psi compressive strength times for all slurries will be onsite.	5.5"	19296'	Lead	890	11.9	2.47	2198	13.84	25%	62.79	Class H 50/50 Poz & 5% PF44 (Salt) & 10% PF20 (Gel) & .2% PF153 (Anti-settle) & .4# PF45 (Defoam) & 3# PF42 (Koalseal) & 1/8# PF29 (Cellophane)
at the time. Cement volumes will be adjusted per fluid caliper or other device if ran, percentage excess may increase. DV tool (if required) will be positioned 50 - 100' below 13.375" casing. Expect set depth 1730 - 1780'	product.		Tail	2470	14.2	1.31	3236	5.96	25%	23.45	Poz & 5% PF44 (Salt) & 2% PF20 (Gel) & .3% FL & .1% PF813 (Retarder) & .2% PF65 (Dispersant) & .3% PF606
Cement volumes will be adjusted per fluid caliper or other device if ran, percentage excess may increase. DV tool (if required) will be positioned 50 - 100' below 13.375" casing. Expect set depth 1730 - 1780'			ll be ad	usted ba	ased on ho	le cond	itions. ECP	usage will	be deter	mined as p	er hole conditions
DV tool (if required) will be positioned 50 - 100' below 13.375" casing. Expect set depth 1730 - 1780'			ll ha adi	ucted or	r fluid col	iner or (ther devic	e if ran er	rcentage		viocrease
					- • • • •		-				· · · · · · · · · · · · · · · · · · ·
Lad redorts with the SUU osi compressive strength times for all slurries will be onsite.											

Bow spring centralizers will be run on every second joint of the surface casing. Bow spring centralizers will be run on every third joint of the intermediate casing strings. Bow spring centralizers will be run on every fourth joint of the vertical portion of the production casing. Positive centralizers will be run on every second joint of the curve and horizontal portions of the production casing.

5. MUD PROGRAM

Sufficient mud materials to maintain mud properties and meet minimum lost circulation (e. g., cedar bark) and weight increase (e. g., barite, bentonite)

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

requirements will be on site at all times. A Pason, or similar, system will be used to monitor fluid loss or gain. A closed loop system will be used.

Туре	Interval (MD)	lb/gal	Viscosity	Fluid Loss
fresh water	0' - 321'	8.4 - 9.0	29 - 40	NC
brine water	321' - 1680'	10.0 - 10.1	29 - 32	NC
fresh water	1680' - 3480'	8.4 - 8.7	28 - 32	NC
cut brine	3480' - 19296'	8.4 - 9.5	29 - 36	NC

6. CORES, TESTS, & LOGS

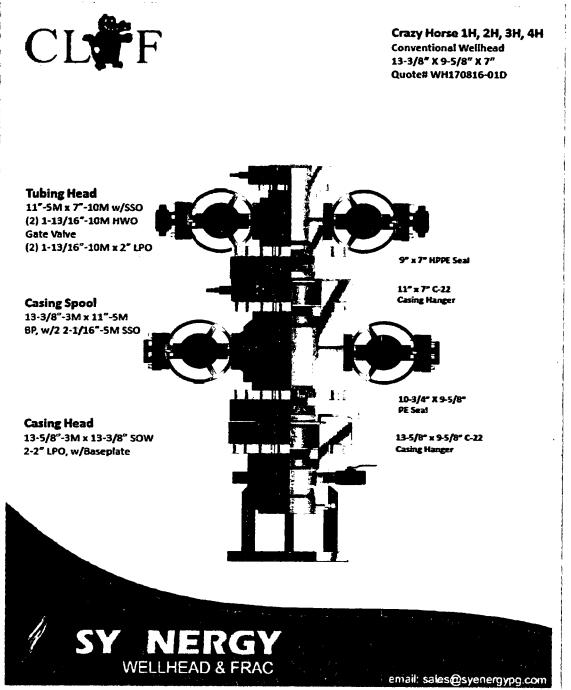
No core or drill stem test is planned. Mud logging program will be used from $\approx 3300'$ to TD. No open hole log is planned at this time. A gyro may be used from surface to first intermediate casing shoe if warranted. GR/MWD will be used from 80' to TD. Completion CBL may be run in vertical to free fall depth of curve 40°±.

7. DOWN HOLE CONDITIONS

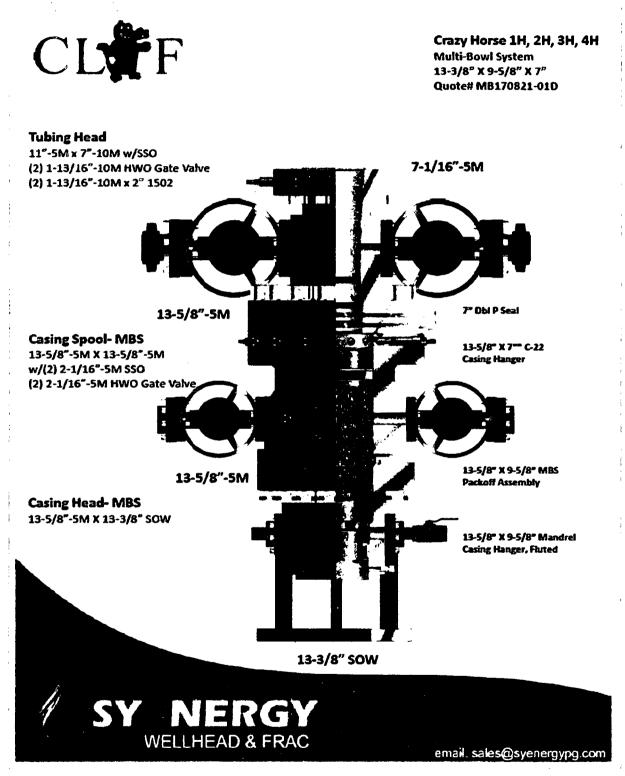
Maximum expected bottom hole pressure is \approx 4216 psi. Expected bottom hole temperature is \approx 140° F. Water flows, lost circulation, and abnormally high pressures are possible from the Sevens Rivers to TD.

H2S is potentially present from the Seven Rivers to TD. H2S monitors will be installed before drilling out of the surface casing. If H2S is detected in concentrations >100 ppm, then CL & F will comply with Onshore Order 6. If H2S is encountered, then CL & F will provide measured values and formations to BLM.

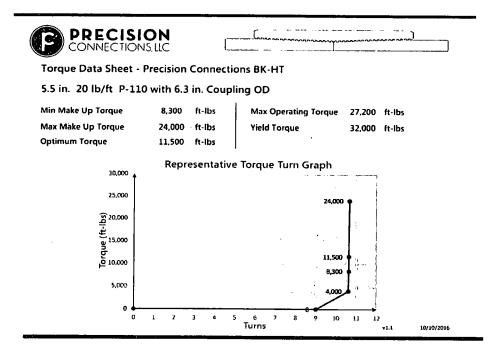
DRILL PLAN PAGE 8


CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

8. OTHER INFORMATION


Anticipated spud date is upon approval. It is expected it will take \approx 3 months to drill and complete the well.

Wellhead Conventional


Wellhead Multibowl

Production Tree

CLFF Crazy Horse 1H, 2H, 3H, 4H **Production Tree** 2-9/16"-5M Quote# WH170816-01D Upper Tree Assembly 2-9/16" (FE) A5P-EN 7-1/16"-10M X 2-9/16"-5M, DD TC1A-EN HGR 7-1/16"-10M X 2-7/8" 8Rd EUE Top, w/ 2-7/8" 8Rd EUE Btm, DD Gate Valve, 2-9/16"-5M, DD Run Tee, 2-9/16"-5M x 2-1/16"-5M, DD Gate Valve, 2-1/16"-5M, DD Wing Adjustable Choke 2-1/16-5M FE X FE, DD, WEECO 2-1/16"-5M x 2" 1502, DD TC1A-EN Hanger 7-1/16"-10M X 2-7/8" EUE Top w/ 2-7/8" 8Rd EUE Bottom, DD SY NERGY WELLHEAD & FRAC email. sales@syenergypg.com

					··
Precision Connections	вк-нт				1
5.5 in. 20 lb/ft P-110 v	with 6.3	in. Coup	oling OD		
Pipe Body			Connection		
Nominal OD	5.500	inches	Coupling OD	6.300	inches
Nominal Weight	20.00	lb/ft	Coupling Length	8.250	inches
Wall Thickness	0.361	inches	Make Up Loss	4.125	inches
Plain End Weight	19.81	lb/ft	Critical Section Area	8.456	in²
Drift	4.653	inches	Internal Pressure Rating	100%	
Nominal ID	4.778	inches	External Pressure Rating	100%	
Grade	P-110		Tension Efficiency	100%	
Min Yield	110,000	lbf/in²	Connection Strength	641	kips
Min Tensile	125,000	lbf/in²	Compression Efficiency	100%	
Critical Section Area	5.828	in'	Uniaxial Bend Rating	80.0	° / 100 ft
Pipe Body Yield Strength	641	kips	Min Make Up Torque	8,300	ft-lbs
Min Internal Yield Pressure	12,640	psi	Yield Torque	32,000	ft-lbs
Collapse Pressure	11,100	psi			v
This documentation contains confidential and propriet from Precision Connections, LLC, and such documentat	ary information not ion and information	to be reproduced o Is provided to you	r divulged in whole or in part to anyone outside of your com upon such conditions of confidensisiny.	v1.1 pany without prior v	10/10/201 written authorizatio

1 5 216 P218 BR Can section strage

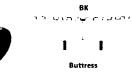
Precision Connections BK

Semi Premium Connection

Designed Primarily for High Torque Frac Strings

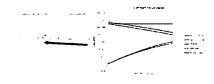
 Better Buttress Sealing Modified buttress thread for tighter thread sealing and pin nose seal stabilization.

Advanced Relief Groove ensures more threads are engaged for maximum sealing. The thicker midpoint cross sectional area provides additional coupling strength.


BK Relief Groove

and the Land Add

Dark areas indicate unengaged thread regions First Generation Relief Groove


Strength Pin Nose to Pin Nose contact for high torque revistance, higher pressure ratings, higher bending basis and higher structural compressive loading. Smooth Premium Bore with no I-Area to get hung up on.

High RPM Fatigue Resistance from Low Stress Runout Threads The BK uses the field proven buttress thread with low stress runout threads to extend the time it can be rotated through a dogleg at high RPM.

I

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

APD ID: 10400026854

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Type: OIL WELL

SUPO Data Report 08/24/2018 1.00 Submission Date: 02/02/2018

Row(s) Exist? NO

Well Number: 4H Well Work Type: Drill Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CH_4H_Road_Map_20180202124351.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2	- New or Recon	structed Access Roads	
Will new roads be need	ded? YES		
New Road Map:			
CH_4H_New_Road_Ma	p_20180202124414.j	odf	
New road type: RESOU	JRCE		
Length: 113	Feet	Width (ft.): 30	
Max slope (%) : 0		Max grade (%): 1	
Army Corp of Engineers (ACOE) permit required? NO			
ACOE Permit Number(s):			
New road travel width: 14			
New road access erosion control: Crowned and ditched			
New road access plan or profile prepared? NO			
New road access plan attachment:			
Access road engineering design? NO			
Access road engineering design attachment:			

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Access surfacing type: OTHER Access topsoil source: ONSITE Access surfacing type description: Caliche Access onsite topsoil source depth: 6 Offsite topsoil source description: Onsite topsoil removal process: Grader Access other construction information: Access miscellaneous information: Number of access turnouts:

Access turnout map:

Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: Crowned and ditched

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CH_4H_Well_Map_20180202124437.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: A 400' x 400' tank battery will be built on the northeast side of the pad. Southeast corner of the battery will be rounded off to avoid a fence. Gas pipeline and power line plans have not been finalized. **Production Facilities map:**

CH_4H_Production_Facilities_20180202124516.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Operator Name: CL&F RESOURCES	LP	
Well Name: CRAZY HORSE 0304 FE	COM	Well Number: 4H
Water source use type: DUST CON INTERMEDIATE/PRODUCTION CAS CASING		Water source type: GW WELL SURFACE
Describe type:		Source longitude:
Source latitude:		
Source datum:		
Water source permit type: WATER	WELL	
Source land ownership: PRIVATE		
Water source transport method: The second se	RUCKING	
Source transportation land owners	hip: PRIVATE	
Water source volume (barrels): 250	000	Source volume (acre-feet): 3.2223275
Source volume (gal): 1050000		
Nater source and transportation map		
CH_4H_Water_Source_Map_20180202		
Vater source comments:		
New water well? NO		
New Water Well Ir	nfo	
Well latitude:	Well Longitude:	Well datum:
Well target aquifer:		
Est. depth to top of aquifer(ft):	Est thi	ckness of aquifer:
Aquifer comments:		
Aquifer documentation:		
Well depth (ft):	Well cas	ing type:
Well casing outside diameter (in.):	Well cas	ing inside diameter (in.):
New water well casing?	Used cas	sing source:
Drilling method:	Drill mat	erial:
Grout material:	Grout de	pth:
Casing length (ft.):	Casing to	op depth (ft.):
Well Production type:	Complet	ion Method:
Water well additional information:		
State appropriation permit:		
Additional information attachment:		

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Section 6 - Construction Materials

Construction Materials description: COG and NM One Call (811) will be notified before construction starts. COG has 1 approved well on the north side of the pad and a second well staked. An un-energized overhead power line will be moved to the west side of the pad and reserved for future use. Top 6" of soil and brush will be stockpiled west of the pad. Pipe racks will be to the south. A closed loop drilling system will be used. Caliche will be hauled from existing Constructors, Inc. pit on private land in NWNE 34-21s-27e. Tank battery will be built overlapping the northeast side of the well pad. Top 6" of soil and brush will be stockpiled east of the battery and west of the fence. North edge of battery is the border with State land. There will be no construction on State land.

Construction Materials source location attachment:

CH_4H_Construction_Methods_20180202124738.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Cuttings, mud, salts, and other chemicals

Amount of waste: 2000 barrels

Waste disposal frequency : Daily

Safe containment description: Steel tanks

Safe containmant attachment:

Waste disposal type: BURIAL ONSITE Disposal location ownership: PRIVATE

Disposal type description:

Disposal location description: R360's state approved (NM1-6-0) disposal site at Halfway, NM

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Steel tanks on pad

Operator Name: CL&F RESOURCES LP Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Cuttings area length (ft.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CH_4H_Well_Site_Layout_20180202125035.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: CRAZY HORSE

Multiple Well Pad Number: 3H

Recontouring attachment:

CH_4H_Recontour_Plat_20180202125049.pdf

CH_4H_Interim_Reclamation_Diagram_20180202125056.pdf

Drainage/Erosion control construction: Crowned and ditched

Drainage/Erosion control reclamation: Harrowed on the contour

Well pad proposed disturbance (acres): 5.7	Well pad interim reclamation (acres): 0.57	Well pad long term disturbance (acres): 5.13
Road proposed disturbance (acres): 0.08	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0.08
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powerline long term disturbance
(acres): 0 Pipeline proposed disturbance	Binaling interim realemation (acres): ()	(acres): 0 Pipeline long term disturbance
(acres): 0	Other interim reclamation (acres): 0	(acres): 0
Other proposed disturbance (acres): 3.67	Total interim reclamation: 0.57	Other long term disturbance (acres): 3.67

Cuttings area width (ft.) Cuttings area volume (cu. yd.) Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Total proposed disturbance: 9.45

Total long term disturbance: 8.88

Disturbance Comments: There will be a 75' x 250' overlap between pad & battery = 0.43 acre therefore making the true short-term disturbance acres 9.45 acres. The equation above does not allow for this calculation.

Reconstruction method: Interim reclamation will shrink the well pad 9% by removing caliche and reclaiming the south 50', leaving 5.74 acres for 2 CL & F wells and 2 COG wells, truck turn arounds for two CL & F and COG. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas. Disturbed areas will be seeded in accordance with BLM requirements.

Topsoil redistribution: Enough stockpiled topsoil will be retained to cover the remainder of the pad and battery when the wells are plugged. Once the last well is plugged, then the remainder of the pad, battery, and new road will be similarly reclaimed. Noxious weeds will be controlled.

Soil treatment: None

Existing Vegetation at the well pad:

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road:

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline:

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances:

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO

Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Operator Name: CL&F RES Well Name: CRAZY HORSE		Well Number: 4H
Seed type:	-	Seed source:
Seed name:		
Source name:		Source address:
Source phone:		
Seed cultivar:		
Seed use location:		
PLS pounds per acre:		Proposed seeding season:
Seed S	ummary	Total pounds/Acre:
Seed Type	Pounds/Acre	
Operator Contact/ First Name: Phone:	Responsible Offi	cial Contact Info Last Name: Email:
Seedbed prep:		
Seed BMP:		
Seed method:		
Existing invasive species?	10	
Existing invasive species tre	eatment description:	
Existing invasive species treatment attachment:		
Weed treatment plan description: To BLM standards		
Weed treatment plan attach	ment:	
Monitoring plan description:	: To BLM standards	
Monitoring plan attachment:		
Success standards: To BLM satisfaction		
Pit closure description: None	e	
Pit closure attachment:		

Section 11 - Surface Ownership

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

Well Number: 4H

Disturbance type: NEW ACCESS ROAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland: USFS Ranger I)istrict:

Disturbance type: WELL PAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

.

Operator Name: CL&F RESOURCES LP

Well Name: CRAZY HORSE 0304 FED COM

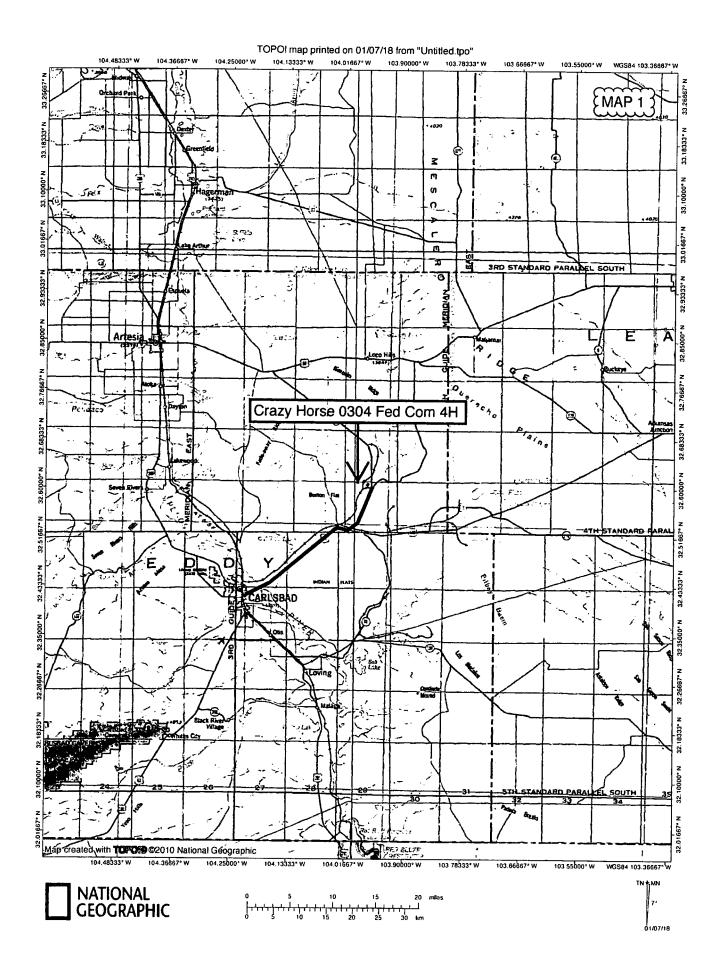
Well Number: 4H

Disturbance type: EXISTING ACCESS ROAD **Describe:** Surface Owner: BUREAU OF LAND MANAGEMENT Other surface owner description: **BIA Local Office: BOR Local Office: COE Local Office: DOD Local Office: NPS Local Office: State Local Office:** Military Local Office: **USFWS Local Office:** Other Local Office: **USFS Region: USFS** Forest/Grassland: **USFS Ranger District:**

Section 12 - Other Information

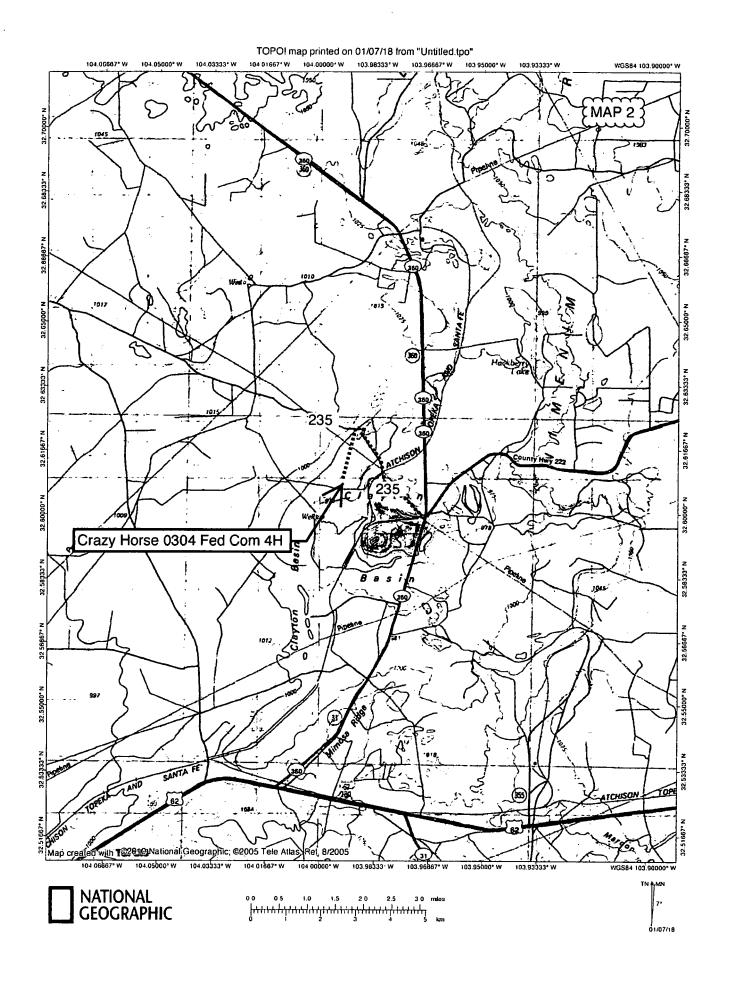
Right of Way needed? NO ROW Type(s): Use APD as ROW?

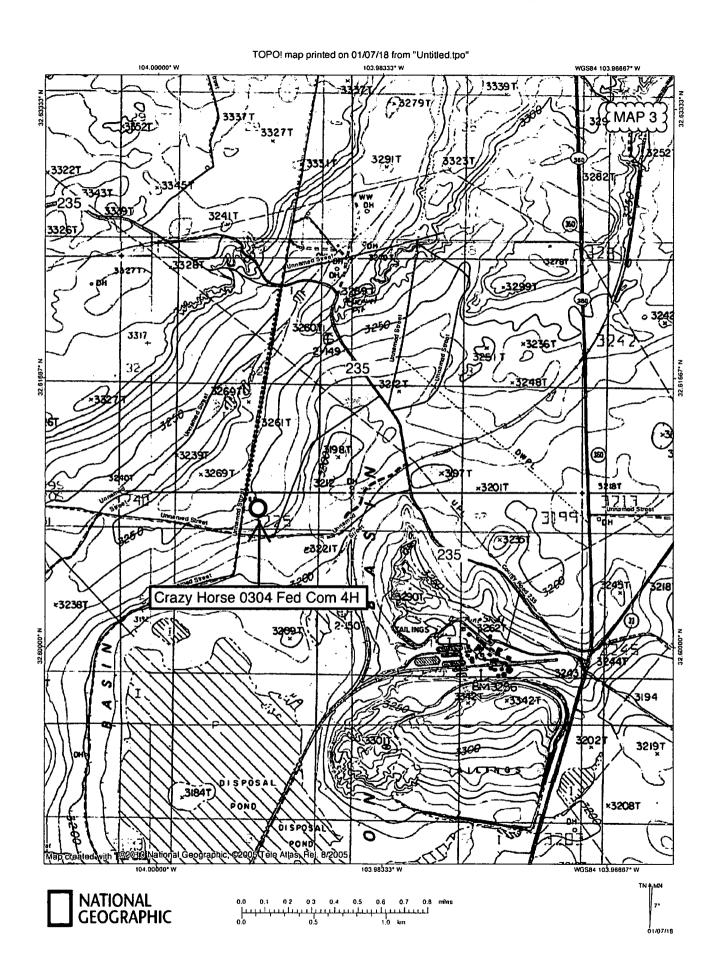
ROW Applications

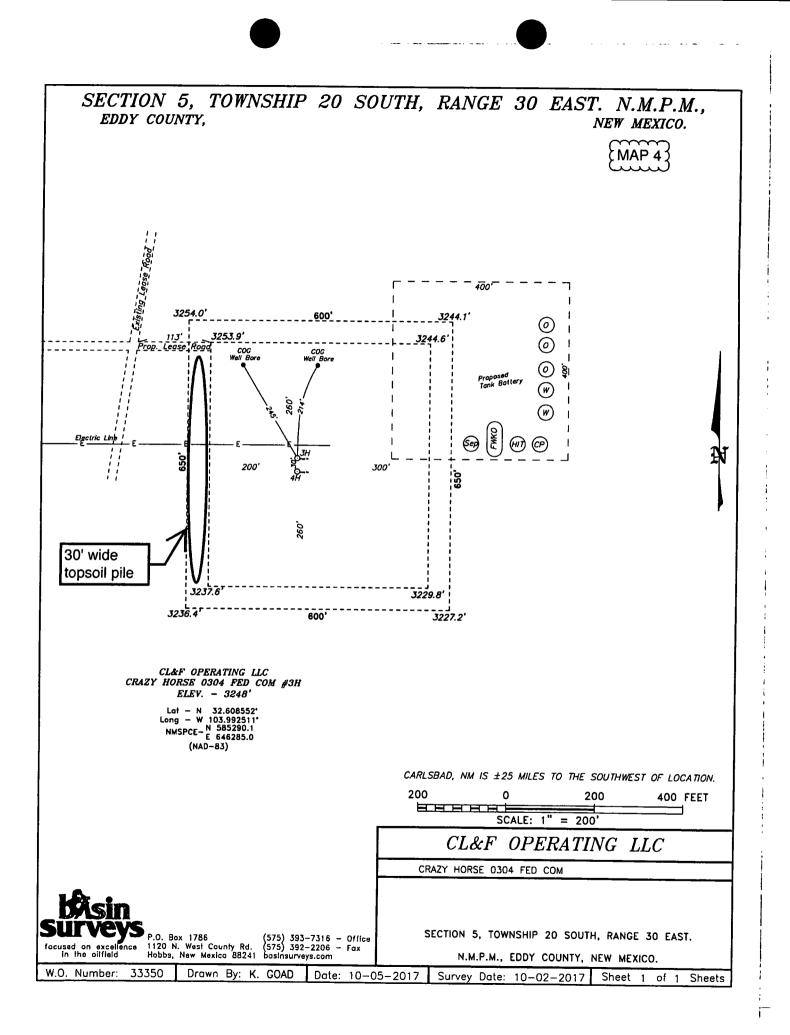

SUPO Additional Information:

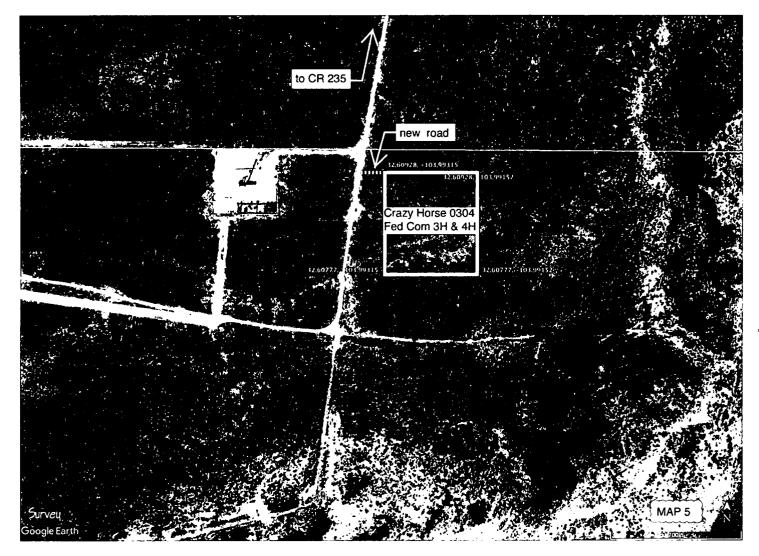
Use a previously conducted onsite? YES

Previous Onsite information: On-site inspection was held with Jim Rutley, Bobby Ballard, Jim Goodbar, Chelsie Dugan, and June Hernandez (all BLM) on September 26, 2017.

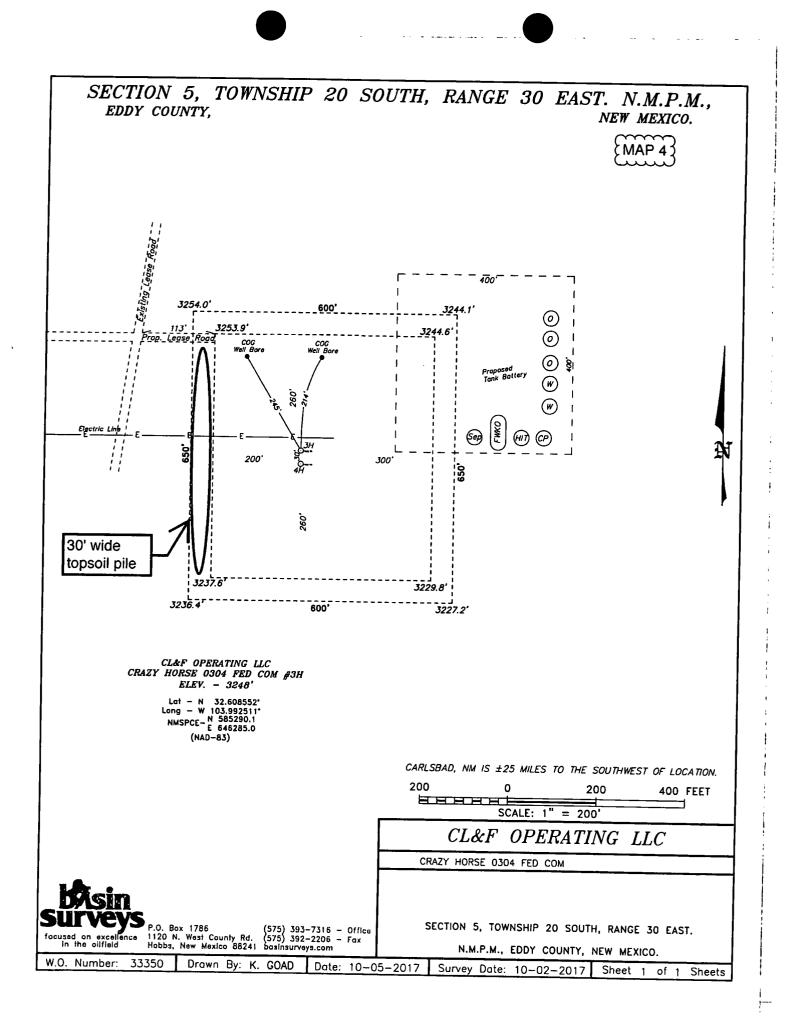

Other SUPO Attachment

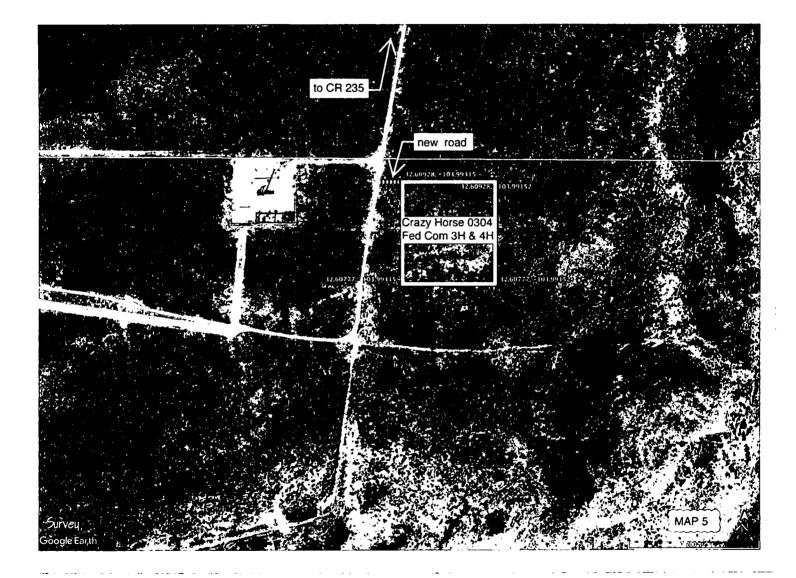

CH_4H_General_SUPO_20180202125703.pdf

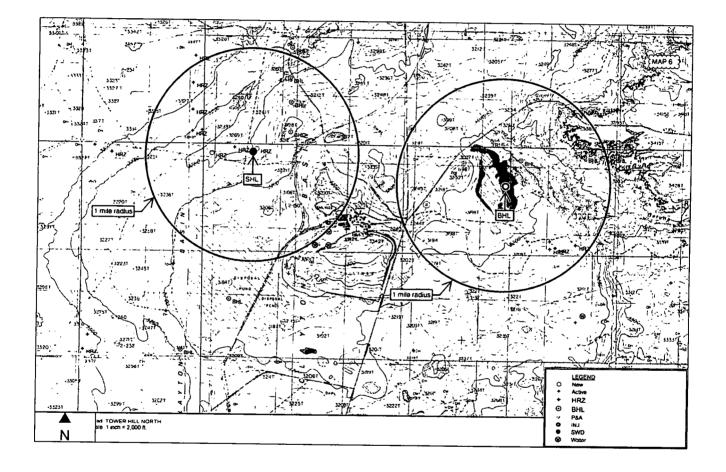



.....

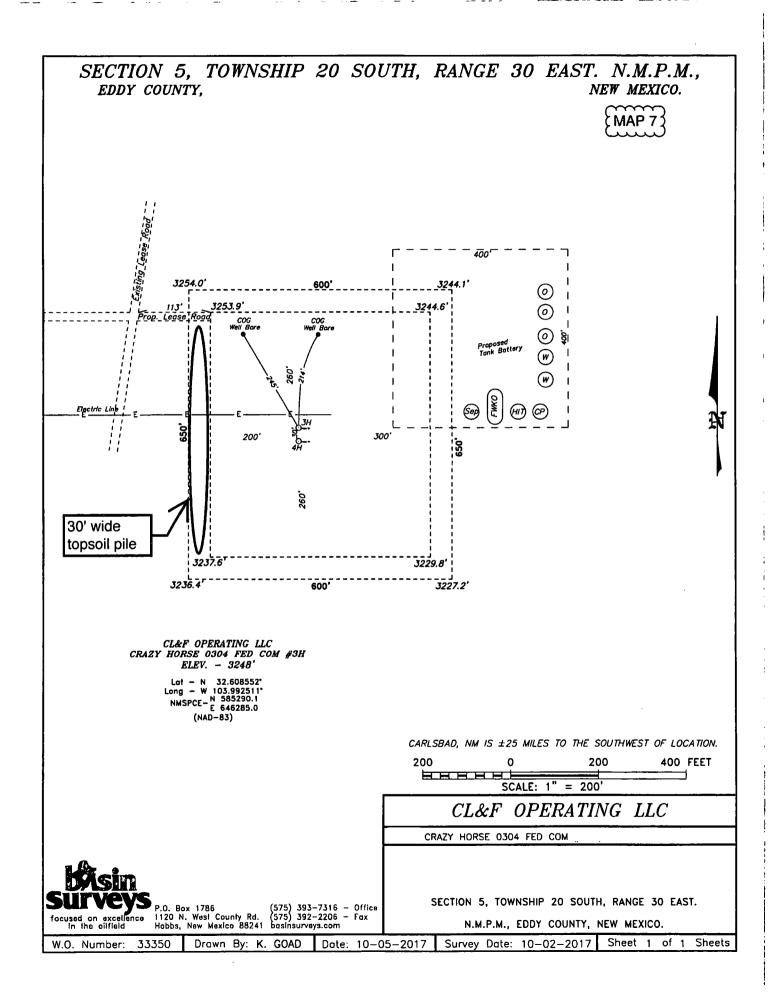
. . . .

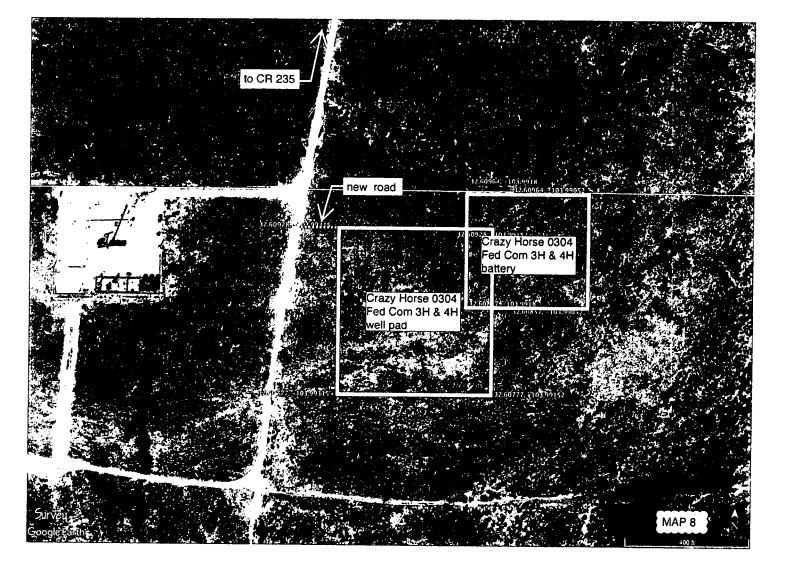


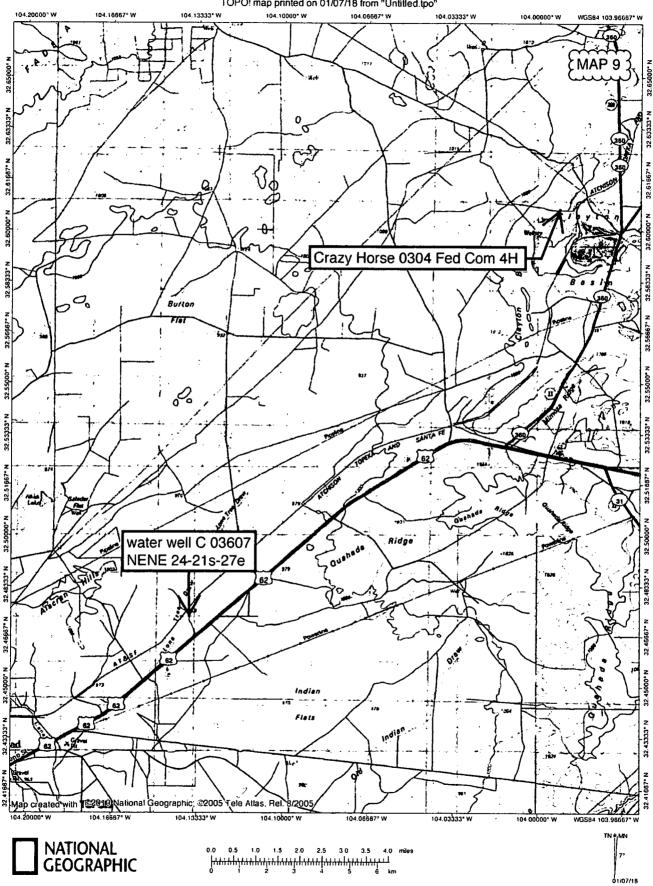


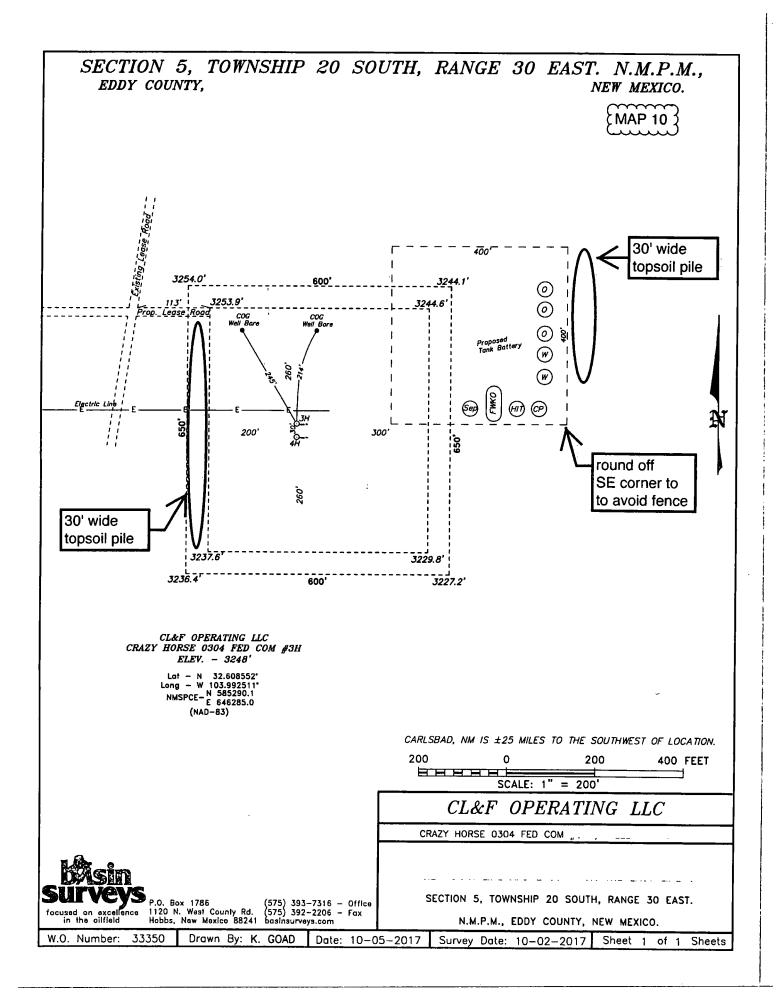


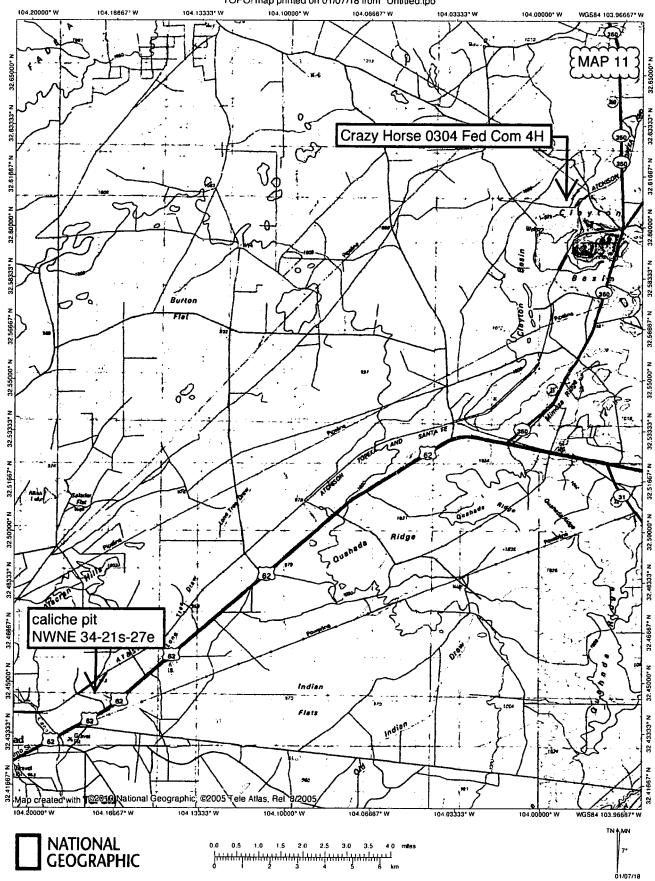
· · · · · · · ·

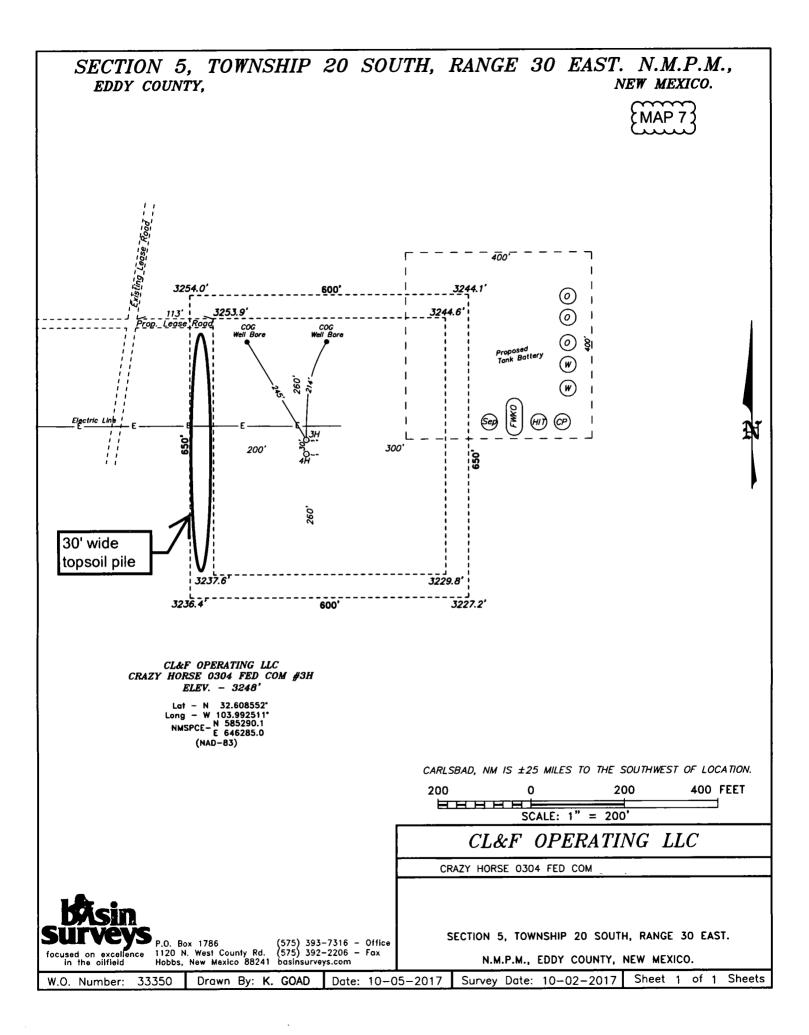

_

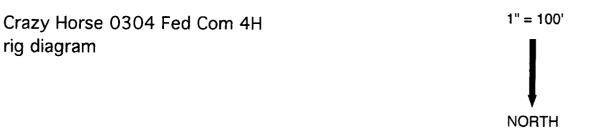


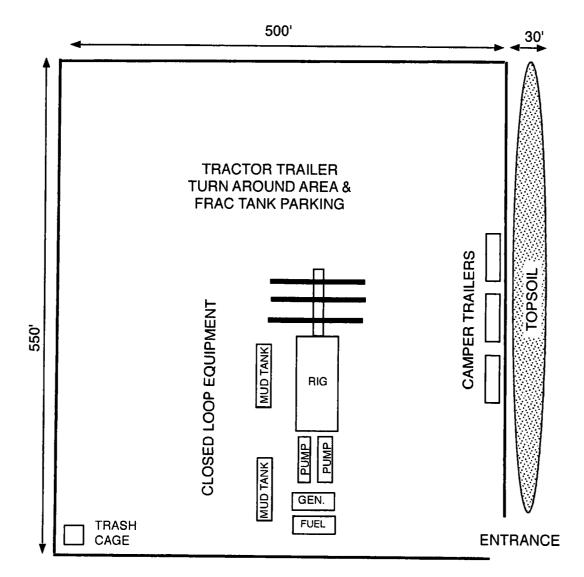


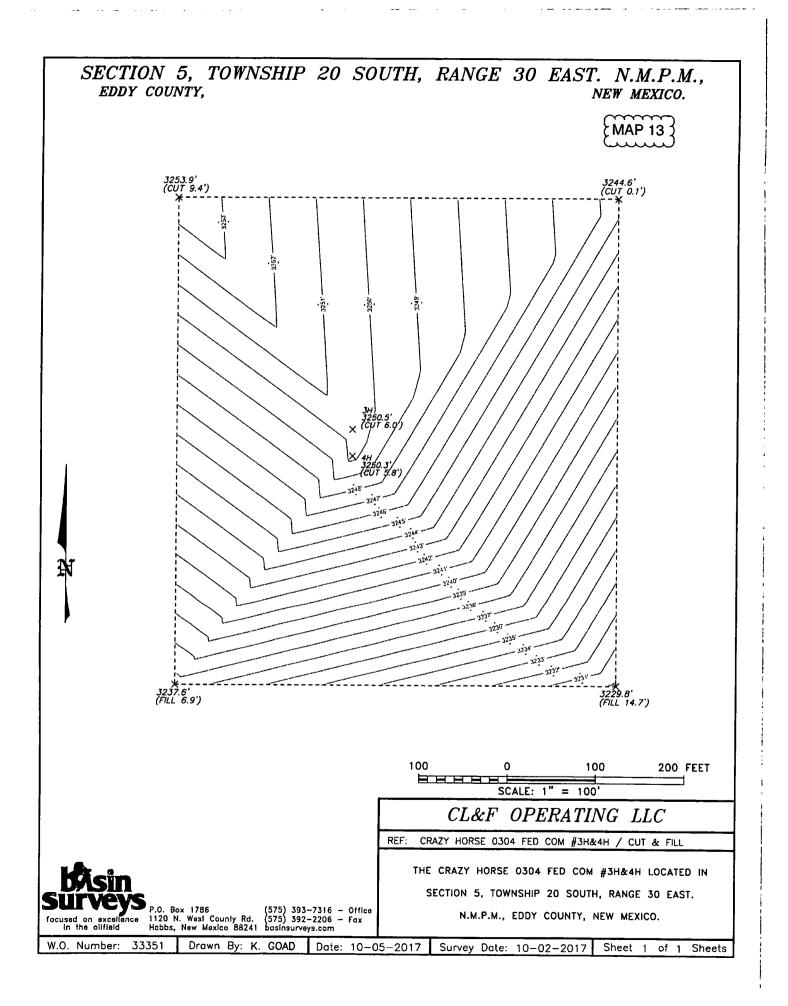

•

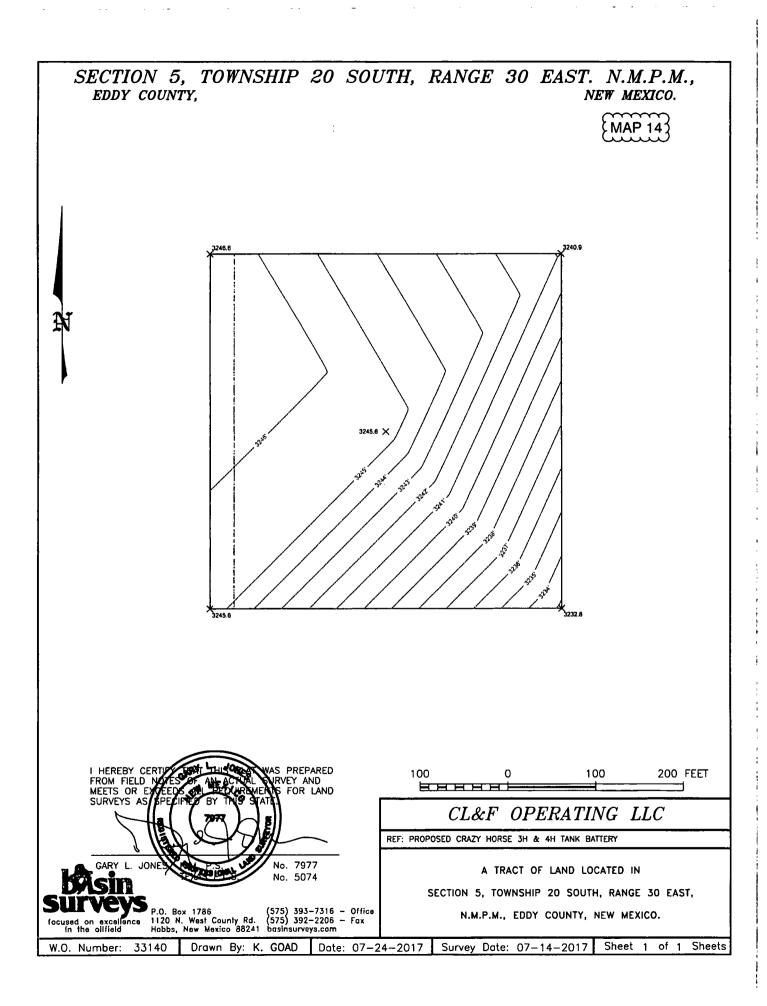


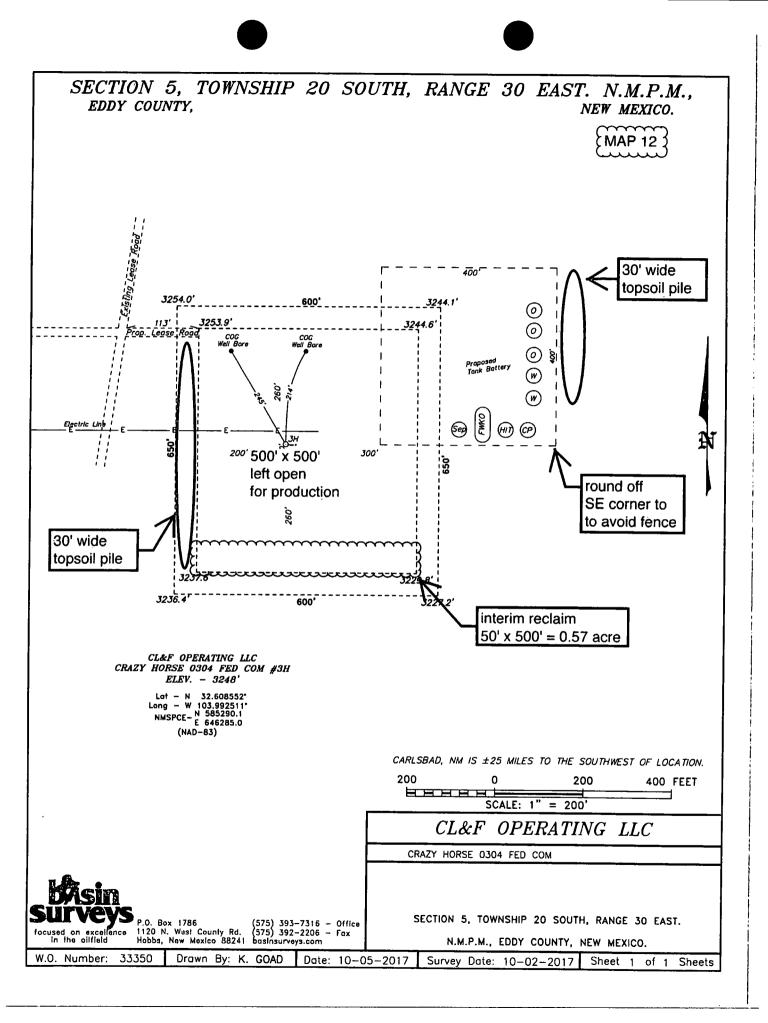



TOPO! map printed on 01/07/18 from "Untitled.tpo"




TOPO! map printed on 01/07/18 from "Untitled.tpo"





CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

Surface Use Plan

1. <u>ROAD DIRECTIONS & DESCRIPTIONS</u> (See MAPS 1 – 5)

From the junction of US 285 and US 62/180 in Carlsbad... Go NE 15.6 miles on paved US 62/180 to the equivalent of Mile Post 50.7 Then turn left and go North 5.7 miles on paved NM 360 Then turn left and go NW 2.3 miles on caliche County Road 235 Then turn left and go SSW 0.9 miles on a caliche road Then turn left and go East 113' on a proposed road to the proposed pad

Non-county roads will be maintained as needed to Gold Book standards. This includes pulling ditches, preserving the crown, and cleaning culverts. This will be done at least once a year, and more often as needed. Caliche will be hauled from Constructors, Inc. existing pit on private land in NWNE 34-21s-27e.

2. <u>ROAD TO BE BUILT OR UPGRADED</u> (See MAPS 4 & 5)

One hundred thirteen feet of new resource road will be built. The new road will be crowned and ditched, have a 14' wide driving surface, and be surfaced with caliche. Maximum disturbed width = 30'. Maximum grade = 1%. Maximum cut or fill = 1'. No upgrade, culvert, cattle guard, or vehicle turn out is needed.

3. EXISTING WELLS (See MAP 6)

Existing oil, gas, water, and P & A wells are within a mile. No disposal or injection well is within a mile.

PROVIDING PERMITS for LAND USERS

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

4. PROPOSED PRODUCTION FACILITIES (See MAPS 7 & 8)

A 400' x 400' tank battery will be built on the northeast side of the pad. Southeast corner of the battery will be rounded off to avoid a fence. Gas pipeline and power line plans have not been finalized.

5. WATER SUPPLY (See MAP 9)

Water will be trucked from a private water well (C 03607) on private land in NENE 24-21s-27e.

6. <u>CONSTRUCTION MATERIALS & METHODS</u> (see MAPS 10 & 11)

COG and NM One Call (811) will be notified before construction starts. COG has 1 approved well on the north side of the pad and a second well staked. An unenergized overhead power line will be moved to the west side of the pad and reserved for future use. Top \approx 6" of soil and brush will be stockpiled west of the pad. Pipe racks will be to the south. A closed loop drilling system will be used. Caliche will be hauled from existing Constructors, Inc. pit on private land in NWNE 34-21s-27e.

Tank battery will be built overlapping the northeast side of the well pad. Top ≈ 6 " of soil and brush will be stockpiled east of the battery and west of the fence. North edge of battery is the border with State land. There will be no construction on State land.

7. WASTE DISPOSAL

All trash will be placed in a portable trash cage. It will be hauled to the Eddy County landfill. There will be no trash burning. Contents (drill cuttings, mud, salts, and other chemicals) of the mud tanks will be hauled to R360's state

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

approved (NM1-6-0) disposal site at Halfway. Human waste will be disposed of in chemical toilets and hauled to the Carlsbad wastewater treatment plant.

8. ANCILLARY FACILITIES

There will be no airstrip or camp. Camper trailers will be on location for the company man, tool pusher, or mud logger.

9. WELL SITE LAYOUT

See Rig Diagram for depictions of the well pad, trash cage, access onto the location, parking, living facilities, and rig orientation.

10. <u>RECLAMATION</u> (See MAPS 12 - 14)

Interim reclamation will shrink the well pad $\approx 9\%$ by removing caliche and reclaiming the south 50', leaving 5.74 acres for 2 CL & F wells and 2 COG wells, truck turn arounds for two CL & F and COG. Disturbed areas will be contoured to match pre-construction grades. Soil and brush will be evenly spread over disturbed areas. Disturbed areas will be seeded in accordance with BLM requirements. Enough stockpiled topsoil will be retained to cover the remainder of the pad and battery when the wells are plugged. Once the last well is plugged, then the remainder of the pad, battery, and new road will be similarly reclaimed. Noxious weeds will be controlled.

11. SURFACE OWNER

All construction will be on BLM. Land use:

PROVIDING PERMITS for LAND USERS

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

> + 30' x 113' road = 0.08 acre + 500' x 550' pad = 6.13 acres <u>+ 400' x 400' battery = 3.67 acres</u> - <u>75' x 250' overlap between pad & battery = 0.43 acre</u> short term = 9.45 acres

short term = 9.45 acres - 50' x 500' interim reclamation on well pad = 0.57 acre 8.88 acres long term (0.08 ac. road + 8.80 pad & battery)

12. OTHER INFORMATION

On-site inspection was held with Jim Rutley, Bobby Ballard, Jim Goodbar, Chelsie Dugan, and June Hernandez (all BLM) on September 26, 2017.

CL & F Operating LLC Crazy Horse 0304 Fed Com 4H SHL 430' FNL & 2135' FEL Sec. 5 BHL 1927' FNL & 330' FEL Sec. 3 T. 20 S., R. 30 E., Eddy County, NM

CERTIFICATION

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U. S. C. 1001 for the filing of false statements. Executed this <u>29th</u> day of <u>January, 2018</u>.

Brian Wood, Consultant Permits West, Inc. 37 Verano Loop, Santa Fe, NM 87508 (505) 466-8120 FAX: (505) 466-9682

Cellular: (505) 699-2276

Field representative will be: Allison Johnson CL & F Operating LLC 16945 Northchase Dr., Suite 500 Houston TX 77060 Phone: (281) 873-3013 FAX: (281) 872-4398

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

, Would you like to utilize Lined Pit PWD options? NO Produced Water Disposal (PWD) Location: PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number: Lined pit bond amount: Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection PWD discharge volume (bbl/day):

Injection well mineral owner:

PWD disturbance (acres):

PWD disturbance (acres):

Injection well type: Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: **Underground Injection Control (UIC) Permit? UIC Permit attachment:**

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location: **PWD disturbance (acres): PWD surface owner:** Surface discharge PWD discharge volume (bbl/day): Surface Discharge NPDES Permit? Surface Discharge NPDES Permit attachment: Surface Discharge site facilities information: Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: **PWD surface owner:** Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment: Have other regulatory requirements been met? Other regulatory requirements attachment:

PWD disturbance (acres):

Injection well name: Injection well API number:

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NMB001314

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

08/24/2018

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: