Form 3160-3 (June 2015)

JAN 3 0 2019

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

UNITED STATE	S				.,,
DEPARTMENT OF THE I	NTE RIS		O.C.D.	5. Lease Serial No.	
BUREAU OF LAND MAN		_		NMNM013233	
APPLICATION FOR PERMIT TO D	RILL OR	REENTER		6. If Indian, Allotee or Trib	e Name
	EENTER			7. If Unit or CA Agreemen	t, Name and No.
	Other -			8. Lease Name and Well N	0.
1c. Type of Completion: Hydraulic Fracturing S	ingle Zone	Multiple Zone		CB HAYS 10 3 FED COM	VI 005
				3H 324924	/
2. Name of Operator CHEVRON USA INCORPORATED		432		9. API Well No. 30-0/5-4	
3a. Address 6301 Deauville Blvd. Midland TX 79706	3b. Phone N (432)687-7	No. <i>(include area cod</i> 1866	e)	10. Field and Pool, or Expl PURPLE-SAGE WOLFC	
4. Location of Well (Report location clearly and in accordance	with any State	requirements.*)	-	11. Sec., T. R. M. or Blk. a	nd Survey or Area
At surface NENE / 520 FNL / 1280 FEL / LAT 32.3113	357 / LONG -	104.07079		SEC 15 / T23S / R28E / I	MMP
At proposed prod. zone NENE / 100 FNL / 330 FEL / LA	T 32.341683	3 / LONG -104.0675	592		
14. Distance in miles and direction from nearest town or post of 2.1 miles	fice*			12. County or Parish EDDY	13. State NM
15. Distance from proposed*	16. No of a	cres in lease	17. Spacii	ng Unit dedicated to this wel	
location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	400.45		640		
18. Distance from proposed location*	19. Propose	ed Depth	20. BLM/	BIA Bond No. in file	
to nearest well, drilling, completed, applied for, on this lease, ft.	9565 feet /	20206 feet	FED: CA	0329	
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22. Approx	imate date work will	start*	23. Estimated duration	
2992 feet	11/05/2019			146 days	
	24. Attac	chments			
The following, completed in accordance with the requirements of (as applicable)	f Onshore Oil	and Gas Order No. 1	, and the H	lydraulic Fracturing rule per	43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover th Item 20 above).	e operation	s unless covered by an existing	ng bond on file (see
B. A Surface Use Plan (if the location is on National Forest Syste SUPO must be filed with the appropriate Forest Service Office		Operator certific Such other site sp BLM.		mation and/or plans as may be	requested by the
25. Signature (Electronic Submission)		(Printed/Typed) McConnell / Ph: (4	32)687-73	Date 07/02	2/2018
Title Permitting Specialist					
Approved by (Signature) (Electronic Submission)		: (Printed/Typed) Layton / Ph: (575)2	34-5959	Date 01/24	/2019
Title	Office				
Assistant Field Manager Lands & Minerals		.SBAD			
Application approval does not warrant or certify that the applical applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal	or equitable title to th	ose rights	in the subject lease which wo	ould entitle the
	noko it a asiss	o for any name !	nimals: *		
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, r of the United States any false, fictitious or fraudulent statements	or representat	ions as to any matter	wingly and within its j	withfully to make to any dep urisdiction.	artment or agency
		<u> </u>			

Rw 1-31-19 pproval Date: 01/24/2019

*(Instructions on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks

Location of Well

1. SHL: NENE / 520 FNL / 1280 FEL / TWSP: 23S / RANGE: 28E / SECTION: 15 / LAT: 32.311357 / LONG: -104.07079 (TVD: 0 feet, MD: 0 feet)

PPP: SESE / 0 FSL / 330 FEL / TWSP: 23S / RANGE: 28E / SECTION: 3 / LAT: 32.327313 / LONG: -104.067721 (TVD: 0 feet, MD: 0 feet)

PPP: SESE / 330 FSL / 330 FEL / TWSP: 23S / RANGE: 28E / SECTION: 10 / LAT: 32.313732 / LONG: -104.067721 (TVD: 0 feet, MD: 0 feet)

BHL: NENE / 100 FNL / 330 FEL / TWSP: 23S / RANGE: 28E / SECTION: 3 / LAT: 32.341683 / LONG: -104.067592 (TVD: 9565 feet, MD: 20206 feet)

BLM Point of Contact

Name: Priscilla Perez

Title: Legal Instruments Examiner

Phone: 5752345934 Email: pperez@blm.gov

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

(Form 3160-3, page 4)

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: CHEVRON USA INC.

LEASE NO.: | NMNM013233

WELL NAME & NO.: | 3H- CB HAYS 10-3 FED COM 005

SURFACE HOLE FOOTAGE: 520'/N & 1280'/E BOTTOM HOLE FOOTAGE 100'/N & 330'/E

LOCATION: Section. 15.,T23S.,R.28E., NMP COUNTY: EDDY County, New Mexico

COA

H2S	CYes	© No	
Potash	€ None	Secretary	C R-111-P
Cave/Karst Potential	C Low	Medium	C High
Variance	None	• Flex Hose	Other
Wellhead	Conventional	Multibowl	C Both
Other	☐4 String Area	Capitan Reef	WIPP

A. Hydrogen Sulfide

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The 13-3/8 inch surface casing shall be set at approximately 450 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job. Excess calculates to -6% additional cement might be required.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of **8** hours or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off
 the DV tool, contact the appropriate BLM office before proceeding with
 second stage cement job. Excess calculates to 8% additional cement
 might be required.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office. Excess calculates to 8% - additional cement might be required.
- 3. The minimum required fill of cement behind the 7-5/8 inch intermediate liner is:
 - Cement should tie-back 100 feet into the previous casing. Operator shall provide method of verification. Excess calculates to 4% additional cement might be required.
- 4. The minimum required fill of cement behind the 5 1/2 X 5 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

Option 2:

Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5,000 (5M) psi.

- a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.

In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - ☑ Eddy CountyCall the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log (one log per well pad is acceptable) run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

Page 5 of 8

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug. The results of the test shall be reported to the appropriate BLM office.
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - f. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes. This test shall be performed prior to the test at full stack pressure.
 - g. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

Page 7 of 8

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Waste Minimization Plan (WMP)

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

Page 8 of 8

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:
LEASE NO.:
NMNM013233
WELL NAME & NO.:
SURFACE HOLE FOOTAGE:
BOTTOM HOLE FOOTAGE
LOCATION:
COUNTY:
COUNTY:
CHEVRON USA INC.
NMNM013233
3H- CB HAYS 10-3 FED COM 005
520'/N & 1280'/E
100'/N & 330'/E
Section. 15.,T23S.,R.28E., NMP
EDDY County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
Special Requirements
Cave/Karst
Watershed
☐ Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Declaration

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 12

V. SPECIAL REQUIREMENT(S)

Cave Karst

Construction Mitigation

In order to mitigate the impacts from construction activities on cave and karst resources, the following Conditions of Approval will apply to this APD:

- In the event that any underground voids are encountered during construction activities, construction activities will be halted and the BLM will be notified immediately.
- No Blasting to prevent geologic structure instabilities.
- Pad Berming to minimize effects of any spilled contaminates.

Drilling Mitigation

Federal regulations and standard Conditions of Approval applied to all APDs require that adequate measures are taken to prevent contamination to the environment. Due to the extreme sensitivity of the cave and karst resources in this project area, the following additional Conditions of Approval will be added to this APD.

To prevent cave and karst resource contamination the following will be required.

Closed Mud System Using Steel Tanks with All Fluids and Cuttings Hauled Off.

- Rotary drilling with fresh water where cave or karst features are expected to prevent contamination of freshwater aquifers.
- Directional Drilling allowed after at least 100 feet below the cave occurrence zone to prevent additional impacts resulting from directional drilling.
- Lost Circulation zones logged and reported in the drilling report so BLM can assess the situation and work with the operator on corrective actions.
- Additional drilling, casing, and cementing procedures to protect cave zones and fresh water aquifers. See Drilling COAs.

Production Mitigation

In order to mitigate the impacts from production activities and due to the nature of karst terrain, the following Conditions of Approval will apply to this APD:

- Tank battery liners and berms to minimize the impact resulting from leaks.
- Leak detection system to provide an early alert to operators when a leak has occurred.
- Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of line failures used in production or drilling.

Page 3 of 12

Residual and Cumulative Mitigation

- Nontoxic fluorescent dyes will be added to the drilling fluid when the hole is spudded and will be circulated to the bottom of the karst layers. This provides data as part of a long-term monitoring study.
- Annual pressure monitoring will be performed by the operator. If the test results indicate a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Plugging and Abandonment Mitigation

<u>Abandonment Cementing</u>: Upon well abandonment in high cave karst areas additional plugging conditions of approval may be required. The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Watershed

- The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The berm shall be maintained through the life of the well and after interim reclamation has been completed.
- Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 5 of 12

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

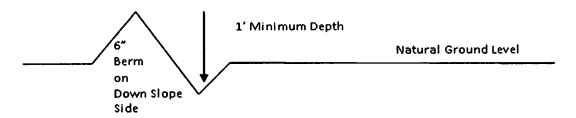
Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts


Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope:
$$\frac{400'}{494}$$
 + 100' = 200' lead-off ditch interval

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Construction Steps

- 1. Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road
- 4. Revegetate slopes

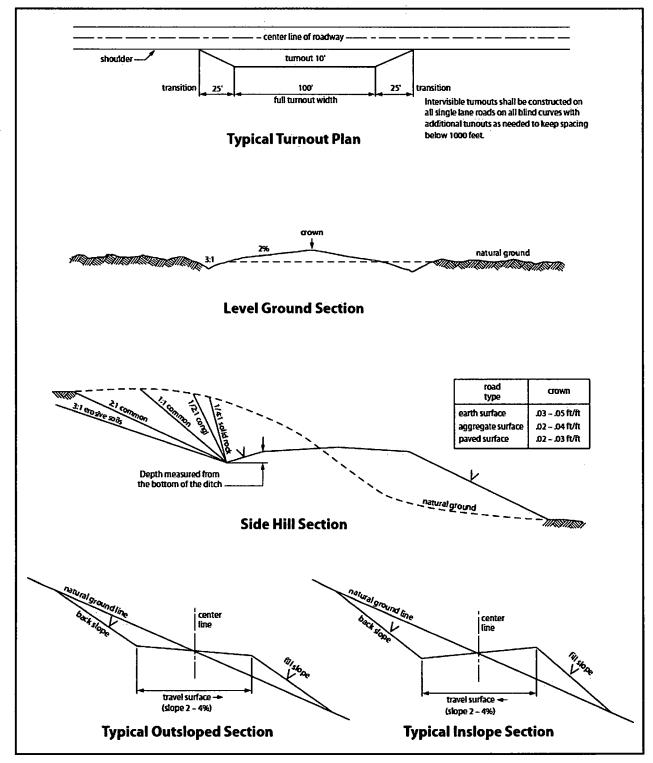


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 9 of 12

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, **Shale Green** from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 10 of 12

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Page 11 of 12

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

^{*}Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Kayla McConne	All	Signed on: 06/21/2018
Title: Permitting Specia	list	
Street Address: 6301	Deauville Blvd	
City: Midland	State: TX	Zip: 79706
Phone: (432)687-7375		
Email address: kaylam	cconnell@chevron.com	
Field Repres	entative	
Representative Nam	e:	
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT Application Data Report

APD ID: 10400031507 Submission Date: 07/02/2018

Operator Name: CHEVRON USA INCORPORATED

Well Name: CB HAYS 10 3 FED COM 005

Well Type: OIL WELL Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General

APD ID: 10400031507 Tie to previous NOS?

Submission Date: 07/02/2018

BLM Office: CARLSBAD

User: Kayla McConnell

Title: Permitting Specialist

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM013233

Lease Acres: 400.45

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? NO

Permitting Agent? NO

APD Operator: CHEVRON USA INCORPORATED

Well Number: 3H

Operator letter of designation:

Operator Info

Operator Organization Name: CHEVRON USA INCORPORATED

Operator Address: 6301 Deauville Blvd.

Zip: 79706

Operator PO Box:

Operator City: Midland

State: TX

Operator Phone: (432)687-7866

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Mater Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: PURPLE-SAGE

Pool Name:

WOLFCAMP GAS

Is the proposed well in an area containing other mineral resources? USEABLE WATER

Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: CB Number: 1H, 2H, 3H

HAYS 10 3 FED COM 005 Well Class: HORIZONTAL

Number of Legs: 1

Well Work Type: Drill Well Type: OIL WELL **Describe Well Type:** Well sub-Type: INFILL Describe sub-type:

Distance to town: 2.1 Miles Distance to nearest well: 135 FT Distance to lease line: 100 FT

Reservoir well spacing assigned acres Measurement: 640 Acres

Well plat: CB_HAYS_10_3_FED_COM_005_3H_C102__20180702094003.pdf

Well work start Date: 11/05/2019 **Duration: 146 DAYS**

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	ΟVT
SHL Leg #1	520	FNL	128 0	FEL	238	28E	15	Aliquot NENE	32.31135 7	- 104.0707 9	EDD Y	NEW MEXI CO		s	STATE	299 2	0	0
KOP Leg #1	520	FNL	128 0	FEL	238	28E	15	Aliquot NENE	32.31135 7	- 104.0707 9	EDD Y	1	NEW MEXI CO	S	STATE	299 2	0	0
PPP Leg #1	330	FSL	330	FEL	238	28E	10	Aliquot SESE	32.31373 2	- 104.0677 21	EDD Y	MEXI	NEW MEXI CO	S	STATE	299 2	0	0

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	DVT
PPP Leg #1	0	FSL	330	FEL	23S	28E	3	Aliquot SESE	32.32731 3	- 104.0677 21	EDD Y		NEW MEXI CO		NMNM 013233	299 2	0	0
EXIT Leg #1	330	ŔΝL	330	FEL	23S	28E	3	Aliquot NENE	32.34105 1	- 104.0676 05	EDD Y	NEW MEXI CO	—		NMNM 016331	299 2	0	0
BHL Leg #1	100	FNL	330	FEL	235	28E	3	Aliquot` NENE	32.34168 3	- 104.0675 92	EDD Y		NEW MEXI CO		NMNM 016331	- 657 3	l	956 5

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report
01/29/2019

APD ID: 10400031507

Submission Date: 07/02/2018

Highlighted data reflects the most recent changes

Operator Name: CHEVRON USA INCORPORATED

Well Number: 3H

Well Name: CB HAYS 10 3 FED COM 005

Well Type: OIL WELL

Well Work Type: Drill

Show Final Text

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	
1	RUSTLER	2823	169	169	DOLOMITE	NONE	No
2	CASTILE	1796	1027	1027	ANHYDRITE	NONE	No
3	BELL CANYON	186	2637	2637	SANDSTONE	NONE	No
4	CHERRY CANYON	-659	3482	3482	SANDSTONE	NATURAL GAS,OIL	No
5	BRUSHY CANYON	-1859	4682	4682	SANDSTONE	NATURAL GAS,OIL	No
6	BONE SPRING LIME	-3360	6183	6183	LIMESTONE,SHALE	NONE	No
7	UPPER AVALON SHALE	-3410	6233	6233	LIMESTONE, SHALE	NONE	No
8	BONE SPRING 1ST	-4534	7357	7357	SANDSTONE	NONE	No
9	BONE SPRING 2ND	-5855	8678	8678	SANDSTONE	NONE	No
10	WOLFCAMP	-6660	9483	20206	LIMESTONE, SHALE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

Pressure Rating (PSI): 5M

Rating Depth: 9565

Equipment: Will have a minimum of a 5000 psi dg stack for drill out below intermediate casing (Wolfcamp is not exposed until drillout of the intermediate casing). Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place.

Requesting Variance? YES

Variance request: Chevron requests a variance to use a FMC UH2 Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after comenting surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal. Chevron requests a variance to use a CoFlex Choke hose with a metal protective covering that will be utilized between the BOP and Choke manifold (see attached specs)

Testing Procedure: Stack will be tested as specified in the attached testing requirements, upon NU and not to exceed 30 days. Test BOP from 250 psi to 5000 psi in Ram and 250 psi to 3500 psi in annular. BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. A full Page 1 of 7

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

BOP test will be performed unless approval from the BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs). BOP test will be conducted by a third party.

Choke Diagram Attachment:

5K_Choke_Manifold_Schematic_20180620071231.pdf

Choke_Hose_Specs_20180702101128.pdf

CB_HAYS_10_3_005_Wellhead_Schematic_20180702101147.pdf

CoFlex_Hose_Variance_20181107083958.pdf

BOP Diagram Attachment:

5K_BOPE_Diagram___Testing__20181107084032.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	450	0	450			450	J-55	54.5	STC	6.97	1.43	DRY	2.77	DRY	1.7
2	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	6300	0	6300			6300	L-80	43.5	LTC	2.32	1.85	DRY	2.32	DRY	2.27
3	INTERMED IATE	8.5	7.625	NEW	API	N	6000	9000	6000	9000			3000	P- 110		OTHER - TSH513	3	2.81	DRY	3.4	DRY	2.56
1	PRODUCTI ON	6.62 5	5.5	NEW	API	N	0	20206	0	20206			20206	P- 110	20	OTHER - txp	1.52	1.11	DRY	1.21	DRY	2

Casing Attachments

Operator Name: CHEVRON USA INCORPORATED Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H **Casing Attachments** Casing ID: 1 String Type: SURFACE **Inspection Document: Spec Document: Tapered String Spec:** Prod_Casing_Specs_20180516145204.pdf Casing Design Assumptions and Worksheet(s): CB_HAYS_10_3_FED_COM_005_3H_9_PT_PLAN__20180702103114.pdf Casing ID: 2 String Type: INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:** Casing Design Assumptions and Worksheet(s): 9.625_Intermediate_Casing_Specs_20181115065905.pdf Casing ID: 3 **String Type:**INTERMEDIATE **Inspection Document: Spec Document: Tapered String Spec:**

Casing Design Assumptions and Worksheet(s):

7.625_29.7lb_P_110IC_Casing_Specs __20181115070012.pdf

Page 3 of 7

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

Casing Attachments

Casing ID: 4

String Type:PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Prod_Casing_Specs_20181115071544.pdf

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	450	257	1.33	14.8	61	10	CLASS C	Class C, Accelerator

INTERMEDIATE	Lead	2600	0	1600	218	2.57	11.9	100	10	CLASS C	50/50 Poz, Class C, Salt, Retarder, Defoamer, Stability Control
INTERMEDIATE	Tail		1600	2600	258	1.33	14.8	61	10	CLASS C	Class C, Retarder
INTERMEDIATE	Lead		2600	5300	362	2.57	11.9	166	10	CLASS C	50/50 Poz, Class C, Salt, Retarder, Defoamer, Stability Control
INTERMEDIATE	Tail		5300	6300	258	1.33	14.8	61	10	CLASS C	Class C, Retarder, Dispersant
PRODUCTION	Lead	1922 1	0	8000	744	2.47	11.9	327	10	Class C	50/50 Poz, Class C, Salt, Retarder, Defoamer, Stability Control
PRODUCTION	Tail		8000	1922 1	940	1.34	14.8	224	10	Class C	Class C, Fluid Loss, Retarder, Defoamer
INTERMEDIATE	Lead		6000	9000	193	1.34	14.8	46	10	Class C	Class C, Retarder, Defoamer, Fluid Loss

Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H

String Type	Lead/Tail	Stage Tool Depth	Тор МБ	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		1920 6	2020 6	57	2.19	15	22	10		Class H, Fluid Loss, Retarder, Defoamer, Calcium Carbonate

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical portatoilet and then hauled to an approved sanitary landfill. All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

Describe the mud monitoring system utilized: A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH. Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect volume changes indicating loss or gain of circulating fluid volume in compliance with Onshore Order # 2. A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions dictate.

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	РН	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
9000	2020 6	OIL-BASED MUD	9.5	13							
6300	9000	SALT SATURATED	8.8	10							
0	450	SPUD MUD	8.3	8.7		•					
450	6300	SALT SATURATED	8.8	10							

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Drill stem tests are not planned.

The logging program will be as follows:

Type: Mudlogs Logs: 2 Man Mudlog Interval: Int Csg to TD Timing: Drillout of Csg Vendor: TBD Type: LWD Logs: MDW Gamma Interval: Int & Prod Hole Timing: While Drilling Vendor: TBD

List of open and cased hole logs run in the well:

GR,MWD,MUDLOG

Coring operation description for the well:

Conventional whole core samples are not planned, a directional survey will be run and logs will be submitted.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6878

Anticipated Surface Pressure: 4773.7

Anticipated Bottom Hole Temperature(F): 150

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

H2S_Summary_20180621082132.pdf

Section 8 - Other Information

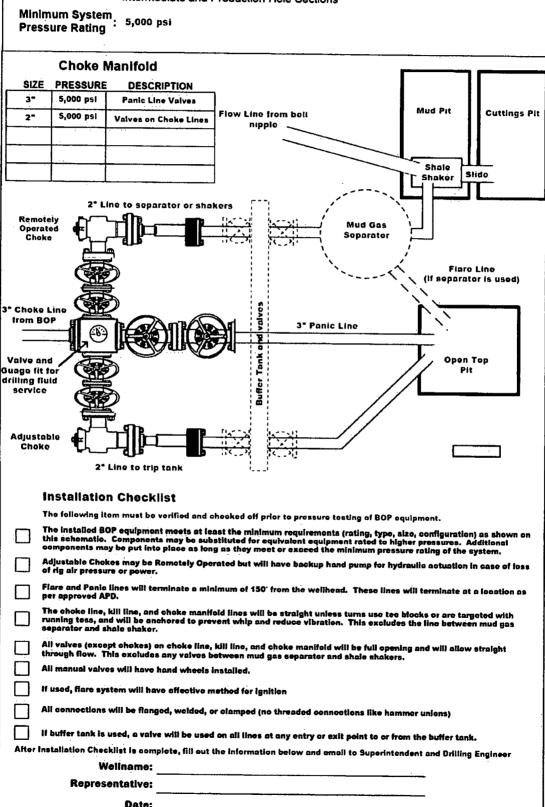
Proposed horizontal/directional/multi-lateral plan submission:

Rig Layout CB 20180621144514.pdf

CB_HAYS_10_3_FED_COM_005_3H_Wellpath_20180702103059.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:


CB_HAYS_10_3_FED_COM_005_GCP_20181115065617.PDF

Other Variance attachment:

CHOKE MANIFOLD SCHEMATIC

Minimum Requirements

OPERATION: Intermediate and Production Hole Sections

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

meer	nai riyarosta	tic Test Certificate	•			
General inform	nation	Hose Specifications				
Customer	PATTERSON UTI	Hose Assembly Type	Choke & Kill			
MWH Sales Representative	ABYGAIL LOGAN	Certification	API 7K/FSL LEVEL2			
Date Assembled	1/11/2018	Hose Grade	RED			
Location Assembled	ОКС	Hose Working Pressure	10000			
Sales Order#	356503	Hose Lot # and Date Code	12860-09/17			
Customer Purchase Order #	PO43901 RIG 257	Hose I.D. (Inches)	3.0"			
Assembly Serial # (Pick Ticket #)	441774-1	Hose O.D. (Inches)	5.36"			
Hose Assembly Length	60'	Armor (yes/no)	NO			
·	Fitt	ings				
End A		End B				
Stem (Part and Revision #)	R3.0X64AWB	Stem (Part and Revision #)	R3.0X64AWB			
Stem (Heat #)	MM17710	Stem (Heat #)	MM17710			
Ferrule (Part and Revision #)	RF3.0X5125	Ferrule (Part and Revision #)	RF3.0X5125			
Ferrule (Heot #)	60864472	Ferrule (Heat #)	60864472			
Connection . Flange Hammer Union Part	4-1/16 10K	Connection (Part #)	4-1/16 10K			
Connection (Heat #)		Connection (Heat #)				
Nut (Part #)		Nut (Part#)				
Nut (Heat#)		Nut (Heat #)				
Dies Used	5.37"	Dies Used	5.37"			
	Hydrostatic Tes	st Requirements				
	45.000	Hose assembly was teste	d with ambient water			
Test Pressure (psi)	15,000	mose assembly was teste	a mitti attibietit matei			

Midwest Hose & Specialty, Inc.

	Certificate	e of Conformity				
Customer: PATTERSON	UTI	Customer P.O.# PO43901 RIG 257				
Sales Order # 356503		Date Assembled: 1/11/2018				
	Spe	cifications				
Hose Assembly Type:	Choke & Kill	Rig # 257				
Assembly Serial #	441774-1	Hose Lot # and Date Code 12860-09/17				
Hose Working Pressure (psi)	10000	Test Pressure (psi) 15000				
Hose Assembly Description:	CKR	ED48-10K-6410K-6410K-60.00' FT-W/LIFTERS				

We hereby certify that the above material supplied for the referenced purchase order to be true according to the requirements of the purchase order and current industry standards.

Supplier:

Midwest Hose & Specialty, Inc.

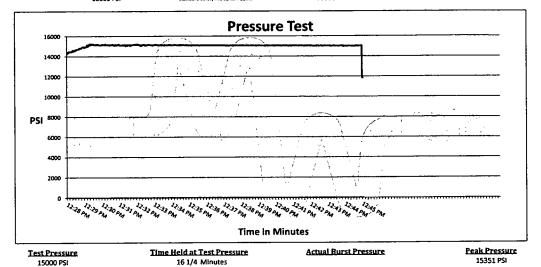
3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
JR463	1/11/2018

January 11, 2018



Internal Hydrostatic Test Graph

Customer: Patterson

Pick Ticket #: 441774

Hose Spe	<u>cifications</u>	<u>Veri</u>	fication
Hose Type	Length	Type of Fitting	Coupling Method
C&K	60'	4 1/16 10K	Swage .
LD.	Q.D.	Die Size	Final O.D.
3"	4.84*	5.37*	S.37"
Working Pressure	Burst Pressure	Hose Serial #	Hose Assembly Serial #
10000 PSI	Standard Safety Multiplier Applies	12860	441774-1

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Zach Tillmo

Approved By: James Hawkins

Midwest Hose & Specialty, Inc.

Internal Hydrostatic Test Certificate

General Inform		tic Test Certificat Hose Spec		
				
Customer	PATTERSON UTI	Hose Assembly Type	Choke & Kill	
MWH Sales Representative	ABYGAIL LOGAN	Certification	API 7K/FSL LEVEL	
Date Assembled	1/11/2018	Hose Grade	RED	
Location Assembled	OKC	Hose Working Pressure	10000	
Sales Order #	356503	Hose Lot # and Date Code	12860-09/17	
Customer Purchase Order #	PO43901 RIG 257	Hose I.D. (Inches)	3.0"	
Assembly Serial # (Pick Ticket #)	441774-2	Hose O.D. (Inches)	5.36"	
Hose Assembly Length	15'	Armor (yes/no)	NO	
	Fitt	ings		
End A		End B		
Stem (Part and Revision #)	R3.0X64AWB	Stem (Part and Revision #)	R3.0X64AWB	
Stem (Heat #)	MM17710	Stem (Heat #)	MM17710	
Ferrule (Part and Revision #)	R3.0X5125	Ferrule (Part and Revision #)	R3.0X5125	
Ferrule (Heat #)	60864472	Ferrule (Heat #)	60864472	
Connection . Flange Hammer Union Part	4-1/16 10K	Connection (Part #)	4-1/16 10K	
Connection (Heat #)		Connection (Heat #)		
Nut (Part #)		Nut (Part#)		
Nut (Heat#)		Nut (Heat #)		
Dies Used	5.37"	Dies Used	5.37"	
	Hydrostatic Tes	st Requirements		
Test Pressure (psi)	15,000	Hose assembly was test	ed with ambient water	
Test Pressure Hold Time (minutes)	15 1/2	temper	ature.	

1/11/2018

	Certificate	of Conformity			
Customer: PATTERSON UT	ΓI	Customer P.O.# PO43901 RIG 257			
Sales Order # 356503		Date Assembled: 1/11/2018			
	Speci	ifications			
Hose Assembly Type:	Choke & Kill	Rig # 257			
Assembly Serial # 441774-2		Hose Lot # and Date Code 12860-09/17			
Hose Working Pressure (psi)	10000	Test Pressure (psi) 15000			
Hose Assembly Description:	CKRE)48-10K-6410-6410K-15.00' FT-W/LIFTERS			
Hose Assembly Description:	CKRE	ED48-10K-6410-6410K-15.00' FT-W/LIFTERS			

Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd

Oklahoma City, OK 73129

Comments:

Approved By	Date
J744-65	1/11/2018

Internal Hydrostatic Test Graph

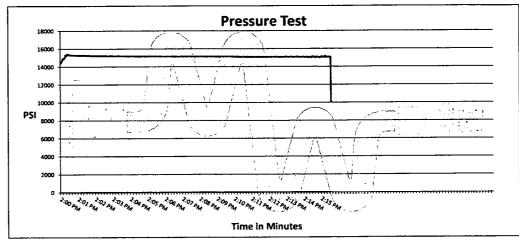
January 11,2018

Customer: Patterson

Pick Ticket #: 441774

Verification

Hose Specifications


10000 PSI

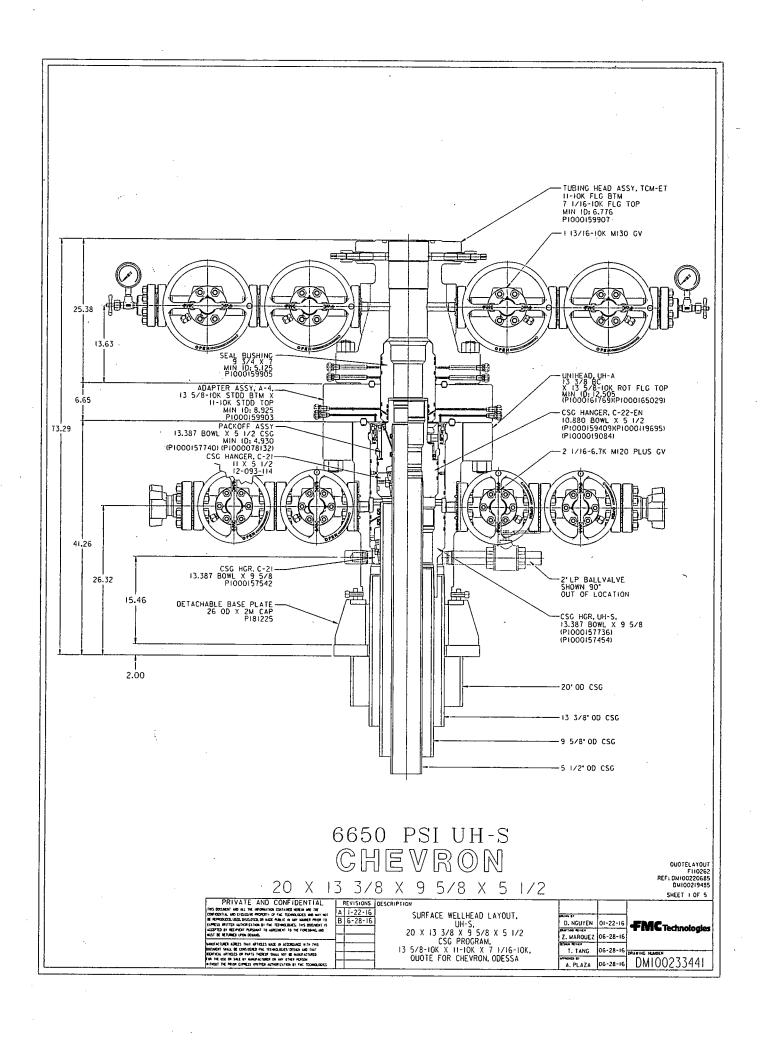
4 1/16 10K Die Size 5.37* Hose Serial # 12860

Type of Fitting

Coupling Method
Swage
Final O.D.
5.37"

Hose Assembly Serial # 441774-2

Test Pressure 15000 PSI Time Held at Test Pressure 15 2/4 Minutes **Actual Burst Pressure**


Peak Pressure 15498 PSI

Comments: Hose assembly pressure tested with water at ambient temperature.

Tested By: Zach Tillma

Approved By: James Hawkins

TRADED

Delaware Basin Changes to APD for Federal Well

CHEVRON CONTACT:

MARKQUALE FIELDS
DRILLING ENGINEER
1400 SMITH ST.
HOUSTON, TX 77002

DESK: HOU140/43RD FLOOR

CELL: 281-844-9091

EMAIL: MARKQUALEFIELDS@CHEVRON.COM

Summary of Changes to MPD Submission

BOP Equipment – CoFlex Hose (Section 3 of 9 Point Drilling Plan in MPD)

BOP Equipment – CoFlex Hose

Summary: Variance to use a CoFlex hose between BOP and choke manifold not requested in original submittal.

As Defined in MPD:	As Planned on Well:
Variance to use CoFlex hose not requested.	Chevron requests a variance to use a CoFlex hose with a metal protective covering that will be utilized between the BOP and Choke manifold. Please refer to the attached testing and specification documents.

BOPE Testing

Minimum Requirements

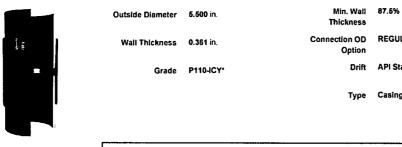
Closing Unit and Accumulator Checkilst
The following item must be performed, verified, and checked off at least once per well prior to lowhigh
pressure testing of 80P equipment. This must be rapeated after 6 months on the same well.

with introgen gas any. Tested procharge pressures must tell within the range below. Bettes may be further charged with introgen gas only. Tested procharge pressures must be recorded for each individual bettle and kept on location through the end of the well. Test will be conducted prior to connecting unit to BDP stack. Acountulator working Minimum acceptable Desired precharge Maximum acceptable Minimum acceptable pressure acting operating pressure precharge pressure 1500 psi 1500 psi 1600 psi	900 pel	Accumulator will have sufficient capacity to open the hydraulically-controlled choke line valve (if used), close all rams, close the annular preventor, and rotain a minimum of 200 pel above the maximum accoptable prochargo pressure (see table above) on the closing manifold without the use of the closing pumps. This test will be performed with test pressure recorded and kapt on location through the ond of the well	Accumulater fiuld reserve; will be double the usable fluid volume of the accumulater system capacity. Fluid lovel will be maintained at manufacturer's recommendation. Usable fluid volume will be recorded. Reservice capacity will be recorded. Reserveir, fluid level will be recorded along with manufacturer's recommendation. All will be kept on location through the end of the well.	Closing unit system will have two independent power sources (not counting secumulator bottles) to closo the proventers. Power for the closing unit pumps will be available to the unit at all times so that the pumps will automatically start when the closing valve manified pressure decreases to the pre-set level. It is recommended to check that air line to accumulater pump is *ON** during each tour change.	With accumulator bottles isolated, closing unit will be capable of opening the hydroulically-operated choke line valve (if used) plus close the annular preventer on the smallest size drill pipe within 2 minutes and obtain a minimum of 200 psi above maximum acceptable precharge pressure (see table obove) on the closing manifold. Tost pressure and closing time will be recorded and kept on location through the end of the well.	nd located on the rig						the beat	nseuro is broken, Niil be recorded by a 3~		1d 5,000 psi (high).	e check valve will be		ted as part of the BOP tosting		email to Superintendent and Drilling Englnoor <u>eleng</u>	1	ı	ı
People and pressure a must fall within the range bolow. Bottles may be further charge before dead procharge pressures must be recorded for each individual bottle and kept on load. Tost will be conducted prior to connociting unit to BOP stack. Minimum acceptable Desired precharge Maximum acceptable Minimum acceptable pressure pressure pressure 1500 psi 750 psi 1000 psi 1000 psi 2000 psi	1100 psi	controlled choke line v above the maximum ac of the closing pumps. I	of the accumulator syste vid volume will be record vufacturor's recommenda	Closing unit system will have two independent power sources (not counting accumulator bottlos) to close the proventers. Power for the closing unit pumps will be available to the unit at all times so that the pumps will automatically when the closing valve manifed presure decreases to the pre-set level. It is recommended to check that air accumulator pump is "ON" during each tour chances.	pening the hydroulleally open within 2 minutes or open the closing maniful of the well.	an preventer and the choke line valve (if used) Remote controls for the BOPE system will be roadly accessible (clear path) to the driller and located on the rig floor (not in the deg house). Remote controls will be capable of cleaing all preventers.			to beginning test	•		The following liem must be porformed during the BOPE testing and then chooked off	BOPE will be pressure tested when initially installed, whenever any seal subject to test pressure is broken, following related repairs, and at a minimum of 30 days intervals. Test pressure and times will be recorded by party on a test chart and kept en location through the end of the well.	;		Valves will be tested from the working pressure side with all down stream valves open. The check valve will be held open to test the kill line valve(s)	h off,	Master controls and remote controls to the closing unit (accumulator) must be function tested as part of the BOP		l email to Superintender			
Uo must fell within the sures must be record tetod prior to connoo Desired precharge Pressure 750 psi	1000 psi	pon the hydraulically. a minimum of 200 psi licid without the use of ion through the ond of	usable fluid volumo o mdations. Usable flui rdod along with manu	i power sources (not a bble to the unit at all the eases to the pre-set b	t will be capable of op secretized size drill passure (see table above tion through the end of	ondlly accessible (ele vill be capable of clos	id IADC shoot	BOPE Test Checklist	be ekseksed off prior:	uod		orned during the BOP	tailed, whonever any 30 days intervals. To 1gh the end of the wel	•	r equipment will be tested t il (lew) and 3,500 ps! (high).	e side with all down s	with no allowable leal	sing unit (accumulato	orts and IADC sheet	nformation bolow and gorts from 2" parties.			
mon accumulator bott fested procharge pres oil. Test will be cond Minimum acceptable operating pressure 1500 psi	3000 psi	ufficient capacity to o preventor, and rotain s e) on the closing man ded and kept on focati	oir will be doubte the nufacturer's recomme luid level will be record the well.	have two independent it pumps will be availa nanfield pressure deer	isolated, closing unit naular preventer on th sptable precharge pre- rdod and kept on local OPE system will be to	ike line valve (if used) 30PE systom will be n e). Romote controls v	s in drilling reports an	BOPE T	The following item must be exected off prior to beginning test Dat 4 heur notice arior to beatinains ROPE section	ow tost plug will bo o _l	ing cloar water.	Ing item must be porfe	sted when initially instand at a minimum of kept on location thro:		ill be tested to 250 ps	n the working pressuri line valve(s)	• held for 10 minutes :	ite controls to the cloi	issures in drilling repo	complote, fill out the li	:01	9	:0:
the integer gas only. Trough the end of the warving Acoumulater working pressure rating 1500 psi	3000 psi	coumulator will have si ims, close the annular i ressure (see table abov ith test pressure record	Accumulater fiuld reserveir will be double the unable fluid volume will be maintained at manufacturer's recommendations. Usable flue to recorded. Reserveir fluid level will be recorded along with man location through the end of the well.	losing unit system will poventers. over for the elosing unit then the olosing valve menulator pump is "OP"	ith accumulator bottler i used) plus close the as i above maximum accresing time will be recester contrels for the B	an preventer and the choke line valve (if used) Remote controls for the BOPE system will be r Noor (not in the dog house). Remote controls v	Record accumulater tests in drilling reports and IADC sheet		The following item must be executed off prior to by Mill be given at least 4 hour notice aries to brothming ROPE seemen	Valvo on casing head below tost plug will be open	Test will be performed using clear water.	The follow	BOPE will be pressure tested when initially installed, whenever any st following related repairs, and at a minimum of 30 days intervals. Test party on a test chart and kept an location through the end of the well.	Test plug will be used	Annular type preventer will be tested to 250 psi (low) and	ilves will be tested fron Id open to test the kill	Each pressure test will be held for 10 minutes with no allowable leak off.	sster controls and remo	Record BOP tests and pressures in drilling reports and IADC sheet	Affor Installation Checklist is complete, fill out the information below and with anyial BOP and accumulater test sharts and reserts from 2° parties.	Wellname:	Representative:	Date:
		< E & } ·	< 3åº]			5	* 					: {	\$ 2				Affor In			

BLOWOUT PREVENTOR SCHEMATIC

Minimum Requirements

OPERATION: Intermediate and Production Hole Sections


M Pi	inimu ressu	m System re Rating	: 5,000 psi	
	SIZE	PRESSUR	Bell Nipple	7
B	13 5/1	N/A 5,000 psi	 	- <u> </u>
C	13 5/0			Flowling to Shaker
╽ᡖ	13 5/2		Pipo Ram Blind Rem	-
E	13 5/8		Mud Cross	Fill Up Line
╽╞	13 3:0	3,000 psi	mud Cross	-
╽┝	DSA			ا المسام الم
l	C-Sec	AS requir	od for each hole size	
I	B-Sec	43.8/	8" 5K x 11" 5K	1
 -	A-Sec		SOW x 13-5/8" 5K	-
╎└╴	-	<u>- I</u>		
		Kill	Line	(Constant of the Constant of t
I		PRESSURE	DESCRIPTION	Company of the compan
<u> </u>	2"	5,000 psi	Gate Valve	
<u> </u>	2-	5,000 psi	Gate Valvo	
II—	2"	5,000 psi	Check Valve	
}				
1				Kill Line 2" minimum Choke Line to Choke Manifold 3"
		Chok	e Line ॄि	
	SIZE	PRESSURE	DESCRIPTION	
	y-]	5,000 psi	Gate Valve	HCR Valve
	3-	5,000 psi	HCR Valve	
	1)) Light
IL				
<u> L</u>				
	1	The following		d checked off prior to pressure testing of BOP equipment.
	_} th	is schematic	. Components may be su	least the minimum requirements (rating, type, size, configuration) as shown on abstituted for equivalent equipment rated to higher pressures. Additional one as they meet or exceed the minimum pressure rating of the system.
	A	il valves on ti	ne kill line and choke line	will be full epening and will allow straight though flow.
		he kiil line an nd will be and	d choke line will be strai thored to prevent whip ar	ght unless turns use tee blocks or are targeted with running tess, nd reduce vibration.
] M	anual (hand v stalled on all	wheels) or automatic loci manual valves on the ch	king devices will be installed on all ram preventers. Hand wheels will also be oke line and kill line.
			installed in the closing li remain open unless accu	ine as close as pessible to the annular preventer to act as a locking device, imulator is inoperative.
	ַ מ	pper kelly co onnections in	ok valve with handle will use.	be available on rig floor along with safety valve and subs to fit all drill string
Af	ter ins	tallation Che	oklist is complete, fill out	the information below and email to Superintendent and Drilling Engineer
		u	/eliname:	
]			entative:	
1		ahi ez		
L			Date:	

| Tenaris Page 1 of 2

For the latest performance data, always visit our website: www.tenaris.com

TXP® BTC Printed on: 05/25/2017

Wall Thickness

4.778 in.

Wall Thickness	0.361 in.	Connection		COUPLING	PIPE BODY
Grade	P110-ICY	τ	rift API Standard	Body: White 1st Band: Pate Green	1st Band: White 2nd Band: Pale Green
		יַד	ype Casing	2nd Band: - 3rd Band: -	3rd Band: Pale Green 4th Band: -
PIPE BODY DAT	ΓΑ				
GEOMETRY					
Nominal OD	5.500 in.	Nominal Weight	20 lbs/ft	Drift	4.653 in

(*) Grade P110-

Plain End Weight

19.83 lbs/ft

OD Tolerance API

Nominal ID

PERFORMANCE					
Body Yield Strength	729 ×1000 (bs	Internal Yield	14360 psi	SMYS	125000 psi

0.361 in.

12100 psi Collapse

CONNECTION DATA									
GEOMETRY									
Connection OD	6,100 in.	Coupling Length	9.45 in.	Connection ID	4.766 in.				
Make-up Loss	4.204 in.	Threads per in	5	Connection OD Option	REGULAR				
PERFORMANCE									
Tension Efficiency	100 %	Joint Yield Strength	729.000 ×1000	Internal Pressure Capacity (1)	14360.000 psi				

PERFORMANCE							
100 %	Joint Yield Strength	729.000 x1000 (bs	Internal Pressure Capacity (1)	14360.000 psi			
100 %	Compression Strength	729.000 ×1000 lbs	Max. Allowable Bending	104 7100 ft			
		•	100 % Compression Strength 729.000 x1000	lbs 100 % Compression Strength 729.000 x1000 Max. Allowable Bending lbs			

12100.000 psi

MAKE-UP TORQ	UES				
Minimum	11540 ft-lbs	Optimum	12820 ft-lbs	Maximum	14100 ft-lbs
OPERATION LIN	IT TORQUES				
Operating Torque	22700 ft-lbs	Yield Torque	25250 ft-lbs		

Notes

This connection is fully interchangeable with:

TXP® BTC - 5.5 in. - 15.5 / 17 / 23 / 26 lbs/ft

[1] Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 -2007.

For the latest performance data, always visit our website: www.tenaris.com

May 22 2016

Size: 5.500 in. Wall: 0.361 in.

Weight: 20.00 lbs/ft

Grade: P110

Min. Wall Thickness: 90.0 %

Connection: TenarisXP® BTC

Casing/Tubing: CAS

Coupling Option: REGULAR

		PIPE BODY	DATA		·
		GEOME	rry		
Nominal OD	5.500 in.	Nominal Weight	20.00 lbs/ft	Standard Drift Diameter	4.653 in.
Nominal ID	4.778 in.	Wall Thickness	0.361 in.	Special Drift Diameter	N/A
Plain End Weight	19.83 lbs/ft				
		PERFORM	ANCE		-
Body Yield Strength	641 x 1000 lbs	Internal Yield	13000 psi	SMYS	110000 psi
Collapse	11100 psi				
		WARTSVR			
		NARISXP® BTC CO		ATA	
		GEOMET		T	
Connection OD	6.100 in.	Coupling Length	9.450 in.	Connection ID	4.766 in.
Critical Section Area	5.828 sq. in.	Threads per in.	5.00	Make-Up Loss	4.204 in.
		PERFORM	ANCE		
Tension Efficiency	100 %	Joint Yield Strength	641 x 1000 lbs	Internal Pressure Capacity (1)	13000 psi
Structural Compression Efficiency	100 %	Structural Compression Strength	641 x 1000 lbs	Structural Bending ⁽²⁾	92 °/100 ft
External Pressure Capacity	11100 psi				
	E	STIMATED MAKE-L	JP TORQUES ⁽	3)	
Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lb
		OPERATIONAL LIN	MIT TORQUES		····
Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		
		BLANKING DIN	MENSIONS		

Blanking Dimensions

- (1) Internal Pressure Capacity related to structural resistance only. Internal pressure leak resistance as per section 10.3 API 5C3 / ISO 10400 - 2007.
- (2) Structural rating, pure bending to yield (i.e no other loads applied)
- (3) Torque values calculated for API Modified thread compounds with Friction Factor=1. For other thread compounds please contact us at <u>licensees@oilfield.tenaris.com</u>. Torque values may be further reviewed. For additional information, please contact us at $\underline{contact\text{-}tenarishydril@tenaris.com}$

For the latest performance data, always visit our website: www.tenaris.com

June 17 2015

Size: 7.625 in. Wall: 0.375 in.

Weight: 29.70 lbs/ft

Grade: P110-IC

Min. Wall Thickness: 87.5 %

Connection: Wedge 513™ Casing/Tubing: CAS

PIPE BODY DATA

GEOMETRY								
Nominal OD	7.625 in.	Nominal Weight	29.70 lbs/ft	Standard Drift Diameter	6.750 in.			
Nominal ID	6.875 in.	Wall Thickness	0.375 in.	Special Drift Diameter	N/A			
Plain End Weight	29.06 lbs/ft							
		PERFORM	ANCE					
Body Yield Strength	940 x 1000 lbs	Internal Yield	9470 psi	SMYS	110000 psi			
Collapse	7150 psi							
WEDGE 513™ CONNECTION DATA GEOMETRY								
Connection OD	7.625 in.	Connection ID	6.800 in.	Make-Up Loss	4.420 in.			
Critical Section Area	5.125 sq. in.	Threads per in.	3.29	Huke op 2003	7.720 III.			
		PERFORM	ANCE	<u> </u>	** ***********************************			
Tension Efficiency	60.0 %	Joint Yield Strength	564 x 1000 lbs	Internal Pressure Capacity	9470 psi			
Compression Strength	707 x 1000 lbs	Compression Efficiency	75.2 %	Bending	40 °/100 ft			
External Pressure Capacity	7150 psi							
		MAKE-UP TO	RQUES					
Minimum	9000 ft-lbs	Optimum	10800 ft-lbs	Maximum (<u>*</u>)	15800 ft-lbs			
	···	OPERATIONAL LI	MIT TORQUES					
Operating Torque	47000 ft-lbs	Yield Torque	70000 ft-lbs					
		BLANKING DIN	1ENSIONS					

Blanking Dimensions

^{*} If you need to use torque values that are higher than the maximum indicated, please contact a local Tenaris technical sales representative.

CONFIDENTIAL -- TIGHT HOLE DRILLING PLAN

NGE:

1. FORMATION TOPS

The estimated tops of important geologic markers are as follows:

FORMATION	SUB-SEA TVD	TVD	MD
Castille	1917	1103	
Lamar	435	2585	
Bell	398	2622	
Cherry	-414	3434	
Brushy	-1638	4658	
Bone Spring Lime	-3140	6160	
Avalon	-3547	6567	
First Bone Spring	-4272	7292	
Second Bone Spring	-5004	8024	
Third Bone Spring	-6108	9128	
Wolfcamp A	-6443	9463	
			
Lateral TVD Wolfcamp A	-6545	9565	20185

2. ESTIMATED DEPTH OF WATER, OIL, GAS & OTHER MINERAL BEARING FORMATIONS

The estimated depths at which the top and bottom of the anticipated water, oil, gas, or other mineral bearing formations are expected to be encountered are as follows:

Substance	Formation	Depth
Deepest	450	
Water	Castille	1103
Water	Cherry Canyon	3434
Oil/Gas	Brushy Canyon	4658
Oil/Gas	First Bone Spring	7292
Oil/Gas	Second Bone Spring	8024
Oil/Gas	Third Bone Spring	9128
Oil/Gas	Wolfcamp A	9463

All shows of fresh water and minerals will be reported and protected.

3. BOP EQUIPMENT

Will have a minimum of a 5000 psi rig stack (see proposed schematic). Stack will be tested as specified in the attached testing requirements. Batch drilling of the surface, intermediate, and production will take place. A full BOP test will be performed unless approval from BLM is received otherwise. Flex choke hose will be used for all wells on the pad (see attached specs) BOP test will be conducted by a third party.

Chevron requests a variance to use a FMC UHS Multibowl wellhead, which will be run through the rig foor on surface casing. BOPE will be nippled up and tested after cementing surface casing. Subsequent tests will be performed as needed, not to exceed 30 days. The field report from FMC and BOP test information will be provided in a subsequent report at the end of the well. Please see the attached wellhead schematic. An installation manual has been placed on file with the BLM office and remains unchanged from previous submittal.

2

ONSHORE ORDER NO. 1 Chevron CB HAYS 10 3 FED COM 005 2H Eddy County, NM

PAGE:

4. CASING PROGRAM

Purpose	From	То	Hole Size	Csg Size	Weight	Grade	Thread	Condition
Surface	0'	450'	17-1/2"	13-3/8"	54.5#	J-55	STC	New
Intermediate	0'	6,300'	12-1/4"	9-5/8"	43.5#	L-80	LTC	New
Intermediate 2	6,000'	9,000'	8-1/2"	7-5/8"	29.7 #	P-110	TSH513	New
Production	0'	20,185'	6-3/4"	5-1/2"x5"	20# x 18#	P-110 x P-110IC	TXP x Wedge 521	New

SF Calculations based on the following "Worst Case" casing design:

Surface Casing:

450'

Intermediate Casing:

6,300' MD 9,000' MD

Intermediate 2 Casing: Production Casing:

20,185' MD/9,565' TVD (11,030' VS @ 90.00 deg inc)

Casing String	Min SF Burst	Min SF Collapse	Min SF Tension	Min SF Tri-Axial
Surface	1.43	6.97	2.77	1.78
Intermediate	1.85	2.32	2.27	2.32
Intermediate Liner	2.81	3.00	2.56	3.4
Production	1.11	1.52	2.00	1.21

Min SF is the smallest of a group of safety factors that include the following considerations:

	Surf	Int	Int Liner	Prod
Burst Design				
Pressure Test- Surface, Int, Prod Csg	X	X	X	X
P external: Water	j			
P internal: Test psi + next section heaviest mud in csg				
Displace to Gas- Surf Csg	X		X	
P external: Water				
P internal: Dry Gas from Next Csg Point			•	
Frac at Shoe, Gas to Surf- Int Csg		X		
P external: Water	i			
P internal: Dry Gas, 15 ppg Frac Gradient				
Stimulation (Frac) Pressures- Prod Csg				X
P external: Water	į.			İ
P internal: Max inj pressure w/ heaviest injected fluid				
Tubing leak- Prod Csg (packer at KOP)	i			X
P external: Water				
P internal: Leak just below surf, 8.7 ppg packer fluid				
Collapse Design	l			
Full Evacuation	Х	X	X	X
P external: Water gradient in cement, mud above TOC	*			
P internal: none	- 1			j
Cementing- Surf, Int, Prod Csg	X	X	X	×
P external: Wet cement]			
P internal: water				
Tension Design				
100k lb overpull	x	X	X	X

PAGE: 3

5. CEMENTING PROGRAM

Slurry	Туре	Cemnent Top	Cement Bottom	Weight	Yield	OH %Excess	Sacks	Water
<u>Surface</u>				(ppg)	(sx/cu ft)	Open Hole		gal/sk
Tail	Class C	0,	450'	14.8	1.336	4 50	1	6.423
Intermediate								
Stage 2 Lead	Class C	0'	1,600'	11.9	2.57	10		14.73
Stage 2 Tail	Class C	1,600'	2,600'	14.8	1.337	10)		6.42
DV Tool		2,6	00'					
Stage 1 Lead	Class C	2,600'	5,300'	11.9	2.57	9()	4.5	14.73
Stage 1 Tail	Class C	5,300'	6,300'	14.8	1.337	"!)		6.42
Intermediate Liner								
Tail	Class C	6,000'	9,000'	14.8	1.342	11)		6.35
Production								
Lead	Class C	0'	8,000'	11.9	2.466	10	;	14.12
Tail	Class C	8,000'	19,221'	14.8	1.341	10		6.39
Acid Soluable Tail	Class H	19,185'	20,185'	15	2.189	:kc)	i di	9.57

^{1.} Final cement volumes will be determined by caliper.

^{2.} Surface casing shall have at least one centralizer installed on each of the bottom three joints starting with the shoe joint.

^{3.} Production casing will have one horizontal type centralizer on every joint for the first 1000' from TD, then every other joint to EOB, and then every third joint to KOP. Bowspring type centralizers will be run from KOP to intermediate casing.

PAGE:

4

6. MUD PROGRAM

From	То	Туре	Weight	F. Vis	Filtrate
0'	450'	Spud Mud	8.3 - 10	32 - 34	NC - NC
450'	6,300'	Brine	8.8 - 10	50 -70	5.0 - 10
6,300'	9,000'	Brine	8.8 - 10	50 -70	5.0 - 10
9,000'	20,185'	ОВМ	9.5 - 13	50 -70	5.0 - 10

A closed system will by utilized consisting of above ground steel tanks. All wastes accumulated during drilling operations will be contained in a portable trash cage and removed from location and deposited in an approved sanitary landfill. Sanitary wastes will be contained in a chemical porta-toilet and then hauled to an approved sanitary landfill.

All fluids and cuttings will be disposed of in accordance with New Mexico Oil Conservation Division rules and regulations.

A mud test shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.

Visual mud monitoring equipment shall be in place to detect volume changes indicating loss or gain of circulating fluid volume. When abnormal pressures are anticipated -- a pit volume totalizer (PVT), stroke counter, and flow sensor will be used to detect

A weighting agent and lost circulating material (LCM) will be onsite to mitigate pressure or lost circulation as hole conditions

7. TESTING, LOGGING, AND CORING

The anticipated type and amount of testing, logging, and coring are as follows:

- a. Drill stem tests are not planned.
- b. The logging program will be as follows:

TYPE	Logs	Interval	Timing	Vendor
Mudlogs	2 man mudiog	Int Csg to TD	Drillout of Int Csg	TBD
LWD	MWD Gamma	Int CSG & Prod	While Drilling	TBD

- c. Conventional whole core samples are not planned.
- d. A Directional Survey will be run.

8. ABNORMAL PRESSURES AND HYDROGEN SULFIDE

No abnormal Pressures anticipated. Reference Attached H2S Contingency Plan.

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	80,000				psi
Maximum Yield Strength	95,000				psi
Minimum Tensile Strength	95,000				psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	9.625	10.625	10.625		in.
Wall Thickness	0.395				in.
Inside Diameter	8.835	8.835	8.835		in.
Standard Drift	8.679	8.679	8.679		in.
Alternate Drift	8.750	8.750	8.750		in.
Nominal Linear Weight, T&C	40.00				lbs/ft
Plain End Weight	38.97	-			lbs/ft
PERFORMANCE	Pipe	ETC	LTC	STC	
Minimum Collapse Pressure	3,870	3,870	3,870		psi
Minimum Internal Yield Pressure	5,750	5,750	5,750		psi
Minimum Pipe Body Yield Strength	916,000.00				lbs
Joint Strength		947	727		1000 lbs
Reference Length		15,785	12,119	-	ft
BARCOLO BANA	Pipo	376			
Make-Up Loss		4.81	4.75		in.
Minimum Make-Up Torque			5,450		ft-lbs
Maximum Make-Up Torque			9,090		ft-lbs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 10343 Sam Houston Park Dr., #120 Houston, TX 77064 1-877-893-9461'
connections@uss.com
www.usstubular.com

Training

MCBU Drilling and Completions H₂S training requirements are intended to define the minimum level of training required for employees, contractors and visitors to enter or perform work at MCBU Drilling and Completions locations that have known concentrations of H₂S.

Awareness Level

Employees and visitors to MCBU Drilling and Completions locations that have known concentrations of H₂S, who are not required to perform work in H₂S areas, will be provided with an awareness level of H₂S training prior to entering any H₂S areas. At a minimum, awareness level training will include:

- 1. Physical and chemical properties of H₂S
- 2. Health hazards of H₂S
- 3. Personal protective equipment
- 4. Information regarding potential sources of H₂S
- 5. Alarms and emergency evacuation procedures

Awareness level training will be developed and conducted by personnel who are qualified either by specific training, educational experience and/or work-related background.

Advanced Level H₂S Training

Employees and contractors required to work in areas that may contain H₂S will be provided with Advanced Level H₂S training prior to initial assignment. In addition to the Awareness Level requirements, Advanced Level H₂S training will include:

- H₂S safe work practice procedures;
- 2. Emergency contingency plan procedures;
- 3. Methods to detect the presence or release of H₂S (e.g., alarms, monitoring equipment), including hands-on training with direct reading and personal monitoring H₂S equipment.
- 4. Basic overview of respiratory protective equipment suitable for use in H₂S environments. Note: Employees who work at sites that participate in the Chevron Respirator User program will require separate respirator training as required by the MCBU Respiratory Protection Program;
- 5. Basic overview of emergency rescue techniques, first aid, CPR and medical evaluation procedures. Employees who may be required to perform "standby" duties are required to receive additional first aid and CPR training, which is not covered in the Advanced Level H₂S training;
- 6. Proficiency examination covering all course material.

Advanced H_2S training courses will be instructed by personnel who have successfully completed an appropriate H_2S train-the-trainer development course (ANSI/ASSE Z390.1-2006) or who possess significant past experience through educational or work-related background.

H₂S Training Certification

All employees and visitors will be issued an H₂S training certification card (or certificate) upon successful completion of the appropriate H₂S training course. Personnel working in an H₂S environment will carry a current H₂S training certification card as proof of having received the proper training on their person at all times

Briefing Area

A minimum of two briefing areas will be established in locations that at least one area will be upwind from the well at all times. Upon recognition of an emergency situation, all personnel should assemble at the designated upwind briefing areas for instructions.

H₂S Equipment

Respiratory Protection

- a) Six 30 minute SCBAs 2 at each briefing area and 2 in the Safety Trailer.
- b) Eight 5 minute EBAs 5 in the dog house at the rig floor, 1 at the accumulator, 1 at the shale shakers and 1 at the mud pits.

Visual Warning System

- a) One color code sign, displaying all possible conditions, will be placed at the entrance to the location with a flag displaying the current condition.
- b) Two windsocks will be on location, one on the dog house and one on the Drill Site Manager's Trailer.

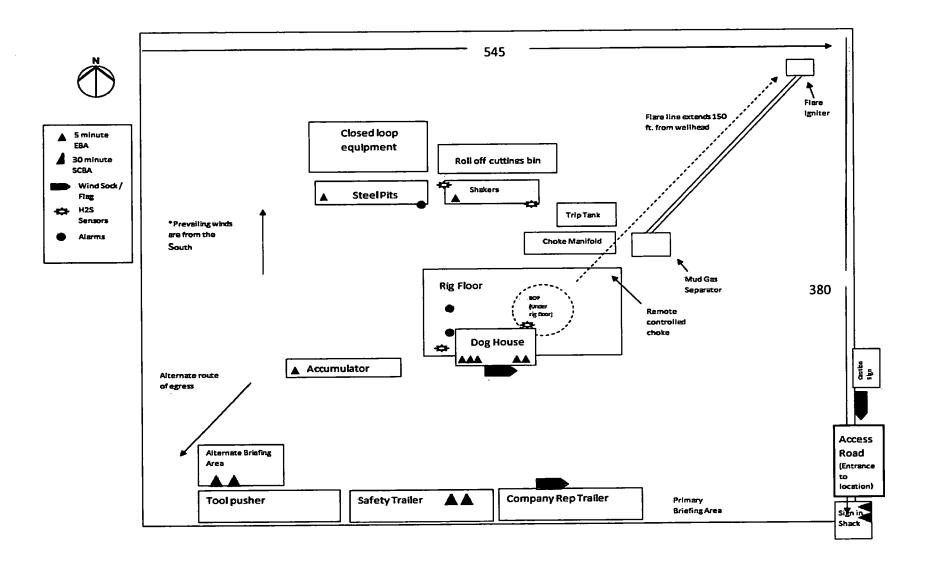
H₂S Detection and Monitoring System

- a) H₂S monitoring system (sensor head, warning light and siren) placed throughout rig.
 - Drilling Rig Locations: at a minimum, in the area of the Shale shaker, rig floor, and bell nipple.
 - Workover Rig Locations: at a minimum, in the area of the Cellar, rig floor and circulating tanks or shale shaker.

Well Control Equipment

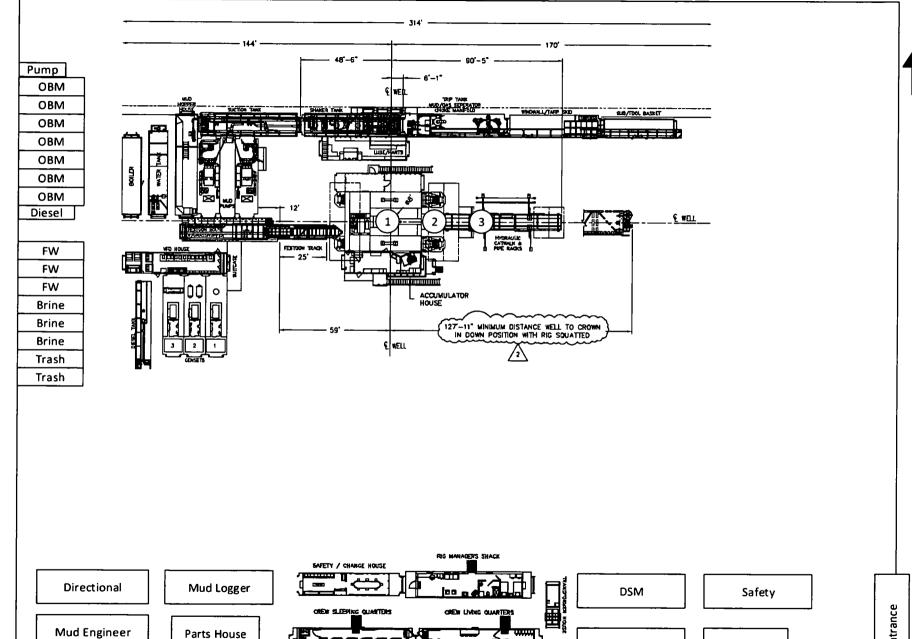
- a) Flare Line 150' from wellhead with igniter.
- b) Choke manifold with a remotely operated choke.
- c) Mud/gas separator

Mud Program


In the event of drilling, completions, workover and well servicing operations involving a hydrogen sulfide concentration of 100 ppm or greater the following shall be considered:

- 1. Use of a degasser
- 2. Use of a zinc based mud treatment
- 3. Increasing mud weight

Public Safety - Emergency Assistance


Agency	Telephone Number
Eddy County Sheriff's Department	575-887-7551
Carlsbad Fire Department	575-885-3125
Carlsbad Medical Center	575-887-4100
Eddy County Emergency Management	575-885-3581
Poison Control Center	800-222-1222

Page 4 of 4

DSM #2

Gym

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 1 of 10

REFERE	ENCE WELLPATH IDENTIFICATION			
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H	
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H	
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H	
Facility	Culebra Bluff Pkg 2 Pad 5			

REPORT SETU	PINFORMATION		
Projection System	NAD27 / TM New Mexico SP, Eastern Zone (3001), US feet	Software System	WellArchitect® 5.0
North Reference	Grid	User	Tranlam
Scale	0.999917	Report Generated	5/23/2018 at 1:44:39 PM
Convergence at slot	0.15° East	Database/Source fil	eWA_Midland/CB_NE_10_3_005_3H_Rev_B.0.xml

WELLPATH LOCATION	VELLPATH LOCATION												
	Local cod	rdinates	Grid co	ordinates	Geographic coordinates								
	North[ft]	East[ft]	Easting[US ft]	Northing[US ft]	Latitude	Longitude							
Slot Location	-1.00	100.01	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W							
Facility Reference Pt			581164.00	477045.00	32°18'40.463"N	104°04'14.227"W							
Field Reference Pt			152400.30	0.00	30°59'42.846"N	105°26'33.659"W							

WELLPATH DATUM			
Calculation method	Minimum curvature	Patterson 257 (KB) to Facility Vertical Datum	3020.00ft
Horizontal Reference Pt	Slot	Patterson 257 (KB) to Mean Sea Level	3020.00ft
Vertical Reference Pt	Patterson 257 (KB)	Patterson 257 (KB) to Ground Level at Slot (CB NE 1 005 3H)	^{0 3} 28.00ft
MD Reference Pt	Patterson 257 (KB)	Section Origin	N 0.00, E 0.00 ft
Field Vertical Reference	Mean Sea Level	Section Azimuth	0.09°

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 2 of 10

REFERE	NCE WELLPATH IDENTIFICATION		
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H
Area	Eddy County, NM	 Well	CB HAYS 10 3 FED COM 005 3H
Field	Eddy Co., NM NAD 27	 Wellbore	CB HAYS 10 3 FED COM 005 3H
Facility	Culebra Bluff Pkg 2 Pad 5		

MD [ft]	Inclination		TVD [ft]	Vert Sect [ft]	North [ft]	East [ft]	Grid East [US ft]	Grid North [US ft]	Latitude	Longitude	DLS [°/100ft]	Build Rate [°/100ft]	Turn Rate [°/100ft]	Comments
0.00	0.000		0.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
28.00	0.000		28.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	Tie On
128.00†	0.000	70.718	128.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
228.00	0.000		228.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
328.00†	0.000		328.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
428.00†	0.000		428.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
528.00	0.000		528.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
628.00†	0.000	70.718	628.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	
650.00	0.000		650.00	0.00	0.00	0.00	581264.00	477044.00	32°18'40.450"N	104°04'13.062"W	0.00	0.00	0.00	End of Tangent
728.00†	1.170		727.99	0.26	0.26	0.75	581264.75	477044.26	32°18'40.453"N	104°04'13.053'W	1.50	1.50	90.66	
828.00†	2.670		827.94	1.38	1.37	3.91	581267.91	477045.37	32°18'40.464"N	104°04'13.016"W	1.50	1.50	0.00	
928.00†	4.170	70.718	927.75	3.35	3.34	9.54	581273.54	477047.34	32°18'40.483"N	104°04'12.950"W	1.50	1.50	0.00	
028.00	5.670		1027.38	6.20	6.17	17.64	581281.64	477050.17	32°18'40.511"N	104°04'12.856''W	1.50	1.50	0.00	
128.00†	7.170		1126.75	9.91	9.86	28.19	581292.19	477053.86	32°18'40.547"N	104°04'12.733'W	1.50	1.50	0.00	
228.00†	8.670		1225.80	14.48	14.41	41.20	581305.20	477058.41	32°18'40.592"N	104°04'12.581"W	1.50	1.50	0.00	
328.00	10.170		1324.45	19.91	19.82	56.65	581320.64	477063.82	32°18'40.645"N	104°04'12.401'W	1.50	1.50	0.00	
428.00†	11.670		1422.63	26.19	26.07	74.53	581338.52	477070.07	32°18'40.706"N	104°04'12.193"W	1.50	1.50	0.00	
528.00†	13.170		1520.29	33.32	33.17	94.83	581358.82	477077.17	32°18'40.776"N	104°04'11.956''W	1.50	1.50	0.00	
628.00†	14.670		1617.35	41.30	41.12		581381.53	477085.12	32°18'40.854"N	104°04'11.691"W	1.50	1.50	0.00	
650.00	15.000		1638.62	43.17		122.85	581386.84	477086.98	32°18'40.873"N	104°04'11.629'W	1.50	1.50	0.00	End of Build
728.00†	15.000		1713.96	49.87		141.91	581405.90	477093.64	32°18'40.938"N	104°04'11.407"W	0.00	0.00	0.00	
828.00†	15.000		1810.55	58.45	58.19		581430.32	477102.19	32°18'41.022"N	104°04'11.122"W	0.00	0.00	0.00	
928.00†	15.000		1907.14	67.04		190.77	581454.75	477110.73	32°18'41.106"N	104°04'10.837'W	0.00	0.00	0.00	
028.00†	15.000		2003.74	75.62		215.20	581479.18	477119.28	32°18'41.190"N	104°04'10.552"W	0.00	0.00	0.00	
128.00†	15.000		2100.33	84.21		239.63	581503.61	477127.82	32°18'41.274"N	104°04'10.267"W	0.00	0.00	0.00	
228.00†	15.000		2196.92	92.79	92.38		581528.04	477136.37	32°18'41.358"N	104°04'09 982''W	0.00	0.00	0.00	
328.00	15.000	70.718		_101.38	100.92		581552.46	477144.92	32°18'41.442"N	104°04'09.698''W	0.00	0.00	0.00	
428.00†	15.000	70.718			109.47		581576.89	477153.46	32°18'41.526"N	104°04'09.413''W	0.00	0.00	0.00	
528.00†	15.000		2486.70	118.55			581601.32	477162.01	32°18'41.610"N	104°04'09.128''W	0.00	0.00	0.00	
628.00	15.000	70.718	2583.29	127.13	126.56	361.78	581625.75	477170.55	32°18'41.694"N	104°04'08.843"W	0.00	0.00	0.00	

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 3 of 10

REFER	ENCE WELLPATH IDENTIFICATION		
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H
Facility	Culebra Bluff Pkg 2 Pad 5		

Fig.	7/100ft] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fig.	7/100ft] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2728.00† 15.000 70.718 2679.88 135.72 135.11 386.21 581650.18 477179.10 32°18′41.778″N 104°04′08.558″W 0.00 0.00 2828.00† 15.000 70.718 2776.48 144.30 143.66 410.64 581674.60 477187.65 32°18′41.862″N 104°04′09.273″W 0.00 0.00 328.00† 15.000 70.718 2969.66 161.47 160.75 459.50 581699.03 477196.19 32°18′41.946″N 104°04′07.988″W 0.00 0.00 3128.00† 15.000 70.718 2969.66 161.47 160.75 459.50 581723.46 477204.74 32°18′42.030″N 104°04′07.703″W 0.00 0.00 3128.00† 15.000 70.718 3066.25 170.06 169.30 483.93 581747.89 477213.28 32°18′42.198″N 104°04′07.418″W 0.00 0.00 3228.00† 15.000 70.718 3162.85 178.64 177.84 508.36 581772.32 477221.83 32°18′42.198″N 104°04′07.418″W 0.00 0.00 3328.00† 15.000 70.718 3359.44 187.23 186.39 532.79 581796.74 477230.37 32°18′42.282″N 104°04′06.849″W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18′42.282″N 104°04′06.684°W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18′42.450″N 104°04′06.564″W 0.00 0.00 3628.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18′42.450″N 104°04′06.594″W 0.00 0.00 3628.00† 15.000 70.718 3649.22 212.98 212.03 606.08 581870.03 477256.01 32°18′42.588″N 104°04′05.994″W 0.00 0.00 3628.00† 15.000 70.718 3649.22 212.98 212.03 606.08 581870.03 477256.01 32°18′42.588″N 104°04′05.809″W 0.00 0.00 3628.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18′42.694″N 104°04′05.809″W 0.00 0.00 3628.00† 12.97† 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18′42.694″N 104°04′05.405.400″W 1.50 -1.50 4028.00† 14.471 70.718 3840.73 236.40 235.35 672.73 581936.67 47729.75 32°18′42.998″N 104°04′05.450″W 1.50 -1.50 4028.00† 9.971 70.718 4036.80 247.89 246.88 705.41 58198.23 47729.76 32°18′42.998″N 104°04′04.688″W 1.50 -1.50 4228.00† 6.971 70.718 4036.80 247.89 246.88 705.41 58198.23 47729.76 32°18′42.998″N 104°04′04.4688″W 1.50 -1.50 4428.00† 6.971 70.718 4036.80 247.89 246.88 705.41 581982.03 477290.76 32°18′42.998″N 104°04′04.4688″W 1.50 -1.50 4428.00† 6	0.00 0.00 0.00 0.00 0.00 0.00 0.00
2828.00† 15.000 70.718 2776.48 144.30 143.66 410.64 581674.60 477187.65 32°18'41.862"N 104°04'08.273"W 0.00 0.00 2928.00† 15.000 70.718 2873.07 152.89 152.20 435.07 581699.03 477196.19 32°18'41.946"N 104°04'07.988"W 0.00 0.00 3028.00† 15.000 70.718 2969.66 161.47 160.75 459.50 581723.46 477204.74 32°18'42.030"N 104°04'07.703"W 0.00 0.00 3128.00† 15.000 70.718 3066.25 170.06 169.30 483.93 581747.89 477213.28 32°18'42.114"N 104°04'07.418"W 0.00 0.00 3228.00† 15.000 70.718 3162.85 178.64 177.84 508.36 581772.32 477221.83 32°18'42.198"N 104°04'07.418"W 0.00 0.00 3328.00† 15.000 70.718 3259.44 187.23 186.39 532.79 581796.74 477230.37 32°18'42.282"N 104°04'06.849"W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.366"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.564"W 0.00 0.00 3692.74 15.000 70.718 3641.25 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3641.55 221.51 220.52 630.36 581894.31 477264.51 32°18'42.588"N 104°04'05.994"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.450"W 1.50 -1.50 4028.00† 19.71 70.718 3840.73 236.40 235.35 672.73 581936.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581956.23 47729.37 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 4028.00† 9.971 70.718 4037.68 247.89 246.78 705.41 581969.35 47729.07 32°18'42.825"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4037.68 247.89 246.78 705.41 581969.35 47729.76 32°18'42.825"N 104°04'04.688"W 1.50 -1.50 4428.00† 6.971 70.718 4335.84 255.86 72.55 581992.26 47729.77 32°18'42.955"N 104°04'04.688"W 1.50 -1.50 4428.00† 6.971 70.718 4335.84 255.86 72.55 581992.26 47729.75 32°18'42.955"N 104°04'04.688"W 1.50 -1.50 4428.00† 6.971 70.718 4335.84 255.86 72.55 581992.26 47729.75 32°18'42.995"N 104°04'04.688"W 1.50 -1.50 4428.00† 6.971 70.718 4335.63 266.53 250.57	0.00 0.00 0.00 0.00 0.00 0.00
2928.00† 15.000 70.718 2873.07 152.89 152.20 435.07 581699.03 477196.19 32°18'41.946"N 104°04'07.988"W 0.00 0.00 3028.00† 15.000 70.718 2969.66 161.47 160.75 459.50 581723.46 477204.74 32°18'42.030"N 104°04'07.703"W 0.00 0.00 3128.00† 15.000 70.718 3066.25 170.06 169.30 483.93 581747.89 477213.28 32°18'42.114"N 104°04'07.418"W 0.00 0.00 328.00† 15.000 70.718 3162.85 178.64 177.84 508.36 581772.32 477221.83 32°18'42.198"N 104°04'07.133"W 0.00 0.00 3328.00† 15.000 70.718 3359.44 187.23 186.39 532.79 581796.74 477230.37 32°18'42.282"N 104°04'06.849"W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.366"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3542.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.279"W 0.00 0.00 3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.588"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.588"N 104°04'05.809"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.588"N 104°04'05.711"W 1.50 -1.50 3928.00† 11.471 70.718 3938.98 242.57 241.49 690.29 581954.23 477225.01 32°18'42.850"N 104°04'05.4505.85"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477225.01 32°18'42.85"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4036.68 247.89 246.78 705.41 58196.95 477295.00 32°18'42.875"N 104°04'05.435"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 58198.03 477295.00 32°18'42.875"N 104°04'05.805"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 58198.03 477295.00 32°18'42.919"N 104°04'05.435"W 1.50 -1.50 4428.00† 6.971 70.718 4336.84 255.94 254.80 728.32 581992.26 477298.77 32°18'42.919"N 104°04'04.4688"W 1.50 -1.50 4428.00† 6.971 70.718 4336.84 255.94 254.80 728.32 581992.26 477298.77 32°18'42.919"N 104°04'04.4688"W 1.50 -1.50 4428.00† 6.971 70.718 4336.84 255.94 254.80 728.32 581992.26 477298.77 32°18'42.999"N 104°04'04.4688"W 1.50 -1.50 4428.00†	0.00 0.00 0.00 0.00 0.00 0.00
3028.00† 15.000 70.718 2969.66 161.47 160.75 459.50 581723.46 477204.74 32°18'42.030"N 104°04'07.703"W 0.00 0.00 3128.00† 15.000 70.718 3066.25 170.06 169.30 483.93 581747.89 477213.28 32°18'42.114"N 104°04'07.418"W 0.00 0.00 3228.00† 15.000 70.718 3162.85 178.64 177.84 508.36 581772.32 477221.83 32°18'42.198"N 104°04'07.43"W 0.00 0.00 3328.00† 15.000 70.718 3259.44 187.23 186.39 532.79 581767.4 477230.37 32°18'42.282"N 104°04'06.849"W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.368"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.564"W 0.00 0.00 3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3611.75 218.54 217.56 621.90 581885.84 477261.54 32°18'42.588"N 104°04'05.994"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.694"N 104°04'05.509"W 0.00 0.00 3828.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.694"N 104°04'05.571"W 1.50 -1.50 3928.00† 11.471 70.7718 3640.73 229.38 228.36 652.75 581954.23 477227.34 32°18'42.694"N 104°04'05.571"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 4028.00† 9.971 70.718 303.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.763"N 104°04'05.450"W 1.50 -1.50 4228.00† 6.971 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.763"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4335.84 255.94 254.80 728.32 581952.00 32°18'42.981"N 104°04'04.688"W 1.50 -1.50 4228.00† 6.971 70.718 4335.84 256.95 255.94 254.80 728.32 581952.00 32°18'42.981"N 104°04'04.688"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 256.95 255.94 254.80 728.32 581952.00 32°18'42.981"N 104°04'04.4885"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 256.95 255.94 254.80 728.32 581992.00 3477295.20 32°18'42.991"N 104°04'04.688"W 1.50 -1.50 4528.00† 0.971 70.71	0.00 0.00 0.00 0.00 0.00
3128.00† 15.000 70.718 3066.25 170.06 169.30 483.93 581747.89 477213.28 32°18'42.114"N 104°04'07.418"W 0.00 0.00 3228.00† 15.000 70.718 3162.85 178.64 177.84 508.36 581772.32 477221.83 32°18'42.198"N 104°04'07.133"W 0.00 0.00 3328.00† 15.000 70.718 3259.44 187.23 186.39 532.79 581796.74 477230.37 32°18'42.282"N 104°04'06.849"W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.282"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.564"W 0.00 0.00 3692.74 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3611.75 218.54 217.56 621.90 581885.84 477261.54 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.538"N 104°04'05.996"W 0.00 0.00 3728.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.617"N 104°04'05.450"W 1.50 -1.50 3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.694"N 104°04'05.012"W 1.50 -1.50 4028.00† 9.971 70.718 4037.68 247.89 246.78 705.41 581969.35 47729.37 32°18'42.875"N 104°04'05.012"W 1.50 -1.50 4228.00† 6.971 70.718 4336.85 251.22 718.10 581969.35 477299.77 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4336.84 255.94 254.80 728.32 581992.26 477298.77 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 5.471 70.718 4336.84 255.94 254.80 728.32 581992.26 477298.77 32°18'42.995"N 104°04'04.4688"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 255.94 254.80 728.32 581992.26 477298.77 32°18'42.995"N 104°04'04.4688"W 1.50 -1.50 4528.00† 3.971 70.718 4335.84 256.80 728.32 581992.26 477301.49 32°18'42.995"N 104°04'04.416"W 1.50 -1.50 4528.00† 3.971 70.718 4335.84 256.80 728.32 581992.26 477301.49 32°18'42.995"N 104°04'04.4385"W 1.50 -1.50 4528.00† 3.971 70.718 4335.84 256.80 728.32 581992.26 477301.49 32°18'42.995"N 104°04'04.4385"W 1.50 -1.50 4528.00† 3.971 70.718 4335.83 266.36	0.00 0.00 0.00 0.00
3228.00† 15.000 70.718 3162.85 178.64 177.84 508.36 581772.32 477221.83 32°18'42.198"N 104°04'07.133'W 0.00 0.00 3328.00† 15.000 70.718 3259.44 187.23 186.39 532.79 581796.74 477230.37 32°18'42.282"N 104°04'06.849'W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.366"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.279"W 0.00 0.00 3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.588"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3611.75 218.54 217.56 621.90 581885.84 477261.54 32°18'42.588"N 104°04'05.994"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.8071"W 1.50 -1.50 3928.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.83"N 104°04'05.12"W 1.50 -1.50 4028.00† 9.971 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.83"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4335.84 258.67 257.51 738.09 581090.03 477290.76 32°18'42.995"N 104°04'04.835"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 258.67 257.51 738.09 582000.03 477301.49 32°18'42.995"N 104°04'04.688"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 258.67 257.51 738.09 582000.03 477301.49 32°18'42.995"N 104°04'04.688"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 258.67 257.51 738.09 582000.03 477301.49 32°18'42.995"N 104°04'04.688"W 1.50 -1.50 4528.00† 2.471 70.718 4335.84 258.67 257.51 738.09 582000.03 477301.49 32°18'42.995"N 104°04'04.468"W 1.50 -1.50 4528.00† 0.971 70.718 4335.83 258.53 260.53 259.37 741.40 582005.33 477303.35 32°18'42.995"N 104°04'04.468"W 1.50 -1.50 4528.00† 0.971 70.718 4335.63 260.53 259.37 741.40 582005.33 477303.35 32°18'42.995"N 104°04'04.468"W 1.50 -1.50 4528.00† 0.971 70.718 4335.63 260.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.468"W 1.50 -1.50 4528.0	0.00 0.00 0.00
3328.00† 15.000 70.718 3259.44 187.23 186.39 532.79 581796.74 477230.37 32°18'42.282"N 104°04'06.849"W 0.00 0.00 3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.366"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.279"W 0.00 0.00 3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.588"N 104°04'05.809"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.711"W 1.50 -1.50 3928.00† 11.471 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4228.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.4835"W 1.50 -1.50 4228.00† 5.471 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.488"W 1.50 -1.50 4528.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50 4528.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50 4528.00† 0	0.00 0.00
3428.00† 15.000 70.718 3356.03 195.81 194.94 557.22 581821.17 477238.92 32°18'42.366"N 104°04'06.564"W 0.00 0.00 3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.279"W 0.00 0.00 3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3611.75 218.54 217.56 621.90 581885.84 477261.54 32°18'42.534"N 104°04'05.809"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.809"W 0.00 0.00 3728.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.823"N 104°04'05.217"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4228.00† 8.471 70.718 4136.77 252.35 251.22 718.10 581982.03 477290.76 32°18'42.87"N 104°04'04.858"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.4688"W 1.50 -1.50 4428.00† 5.471 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.999"N 104°04'04.438"W 1.50 -1.50 4428.00† 2.471 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.999"N 104°04'04.438"W 1.50 -1.50 4528.00† 2.471 70.718 4335.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.438"W 1.50 -1.50 4528.00† 2.471 70.718 4356.8 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.438"W 1.50 -1.50 4528.00† 2.471 70.718 4535.63 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.438"W 1.50 -1.50 4528.00† 2.471 70.718 4535.63 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.383"W 1.50 -1.50 4528.00† 2.471 70.718 4535.63 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.383"W 1.50 -1.50 4528.00† 2.471 70.718 4535.63 260.53 250.53 250.81 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50 4528.	0.00
3528.00† 15.000 70.718 3452.62 204.40 203.48 581.65 581845.60 477247.47 32°18'42.450"N 104°04'06.279"W 0.00 0.00 3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3611.75 218.54 217.56 621.90 581885.84 477261.54 32°18'42.588"N 104°04'05.809"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.711"W 1.50 -1.50 3828.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.763"N 104°04'05.217"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.688"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4428.00† 3.971 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.991"N 104°04'04.4383"W 1.50 -1.50 4528.00† 0.971 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.991"N 104°04'04.4383"W 1.50 -1.50 4528.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50 4528.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	
3628.00† 15.000 70.718 3549.22 212.98 212.03 606.08 581870.03 477256.01 32°18'42.534"N 104°04'05.994"W 0.00 0.00 3692.74 15.000 70.718 3611.75 218.54 217.56 621.90 581885.84 477261.54 32°18'42.588"N 104°04'05.809"W 0.00 0.00 3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.711"W 1.50 -1.50 3828.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.694"N 104°04'05.217"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4528.00† 0.971 70.718 4335.63 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.478"W 1.50 -1.50 4528.00† 0.971 70.718 435.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
3692.74	
3728.00† 14.471 70.718 3645.85 221.51 220.52 630.36 581894.31 477264.51 32°18'42.617"N 104°04'05.711"W 1.50 -1.50 3828.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.763"N 104°04'05.217"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.919"N 104°04'04.568"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.981"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.4383"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
3828.00† 12.971 70.718 3742.99 229.38 228.36 652.75 581916.69 477272.34 32°18'42.694"N 104°04'05.450"W 1.50 -1.50 3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.763"N 104°04'05.217"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.919"N 104°04'04.568"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.919"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.438"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00 End of Tangen
3928.00† 11.471 70.718 3840.73 236.40 235.35 672.73 581936.67 477279.33 32°18'42.763"N 104°04'05.217"W 1.50 -1.50 4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.568"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.981"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
4028.00† 9.971 70.718 3938.98 242.57 241.49 690.29 581954.23 477285.47 32°18'42.823"N 104°04'05.012"W 1.50 -1.50 4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.688"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.991"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 </td <td>0.00</td>	0.00
4128.00† 8.471 70.718 4037.68 247.89 246.78 705.41 581969.35 477290.76 32°18'42.875"N 104°04'04.835"W 1.50 -1.50 4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.568"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.998"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
4228.00† 6.971 70.718 4136.77 252.35 251.22 718.10 581982.03 477295.20 32°18'42.919"N 104°04'04.688"W 1.50 -1.50 4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.568"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.981"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
4328.00† 5.471 70.718 4236.18 255.94 254.80 728.32 581992.26 477298.77 32°18'42.954"N 104°04'04.568"W 1.50 -1.50 4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.981"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
4428.00† 3.971 70.718 4335.84 258.67 257.51 736.09 582000.03 477301.49 32°18'42.981"N 104°04'04.478"W 1.50 -1.50 4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
4528.00† 2.471 70.718 4435.68 260.53 259.37 741.40 582005.33 477303.35 32°18'42.999"N 104°04'04.416"W 1.50 -1.50 4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
4628.00† 0.971 70.718 4535.63 261.53 260.36 744.23 582008.17 477304.34 32°18'43.008"N 104°04'04.383"W 1.50 -1.50	0.00
	0.00
	0.00
4692.74 0.000 30.000 4600.37 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 1.50 -1.50	-109.23 End of Drop
4728.00† 0.000 30.000 4635.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	0.00
4828.00† 0.000 30.000 4735.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	0.00
4928.00† 0.000 30.000 4835.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	0.00
5028.00† 0.000 30.000 4935.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	0.00
5128.00† 0.000 30.000 5035.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	
5228.00† 0.000 30.000 5135.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	0.00
5328.00† 0.000 30.000 5235.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	
5428.00† 0.000 30.000 5335.63 261.71 260.54 744.75 582008.69 477304.52 32°18'43.010"N 104°04'04.377"W 0.00 0.00	0.00

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 4 of 10

REFERENCE WELLPATH IDENTIFICATION										
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H							
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H							
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H							
Facility	Culebra Bluff Pkg 2 Pad 5									

	ATH DAT						polated stati							
MD [ft]	Inclination	[°]	TVD [ft]	Vert Sect [ft]	North [ft]	East [ft]	Grid East [US ft]	Grid North [US ft]	Latitude	Longitude	DLS [°/100ft]	Build Rate [°/100ft]	Turn Rate [°/100ft]	Comments
5528.00		30.000	5435.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
5628.00†	0.000	30.000	5535.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
5728.00†		30.000	5635.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
5828.00†		30.000	5735.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	1
5928.00†		30.000	5835.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6028.00†	0.000	30.000	5935.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6128.00†	0.000	30.000	6035.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6228.00†	0.000	30.000	6135.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6328.00†		30.000	6235.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6428.00†	0.000	30.000	6335.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6528.00†	0.000	30.000	6435.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6628.00†	0.000	30.000	6535.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6728.00	0.000	30.000	6635.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6828.00†	0.000	30.000	6735.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
6928.00	0.000	30.000	6835.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	4
7028.00†	0.000	30.000	6935.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7128.00†	0.000	30.000	7035.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7228.00†	0.000	30.000	7135.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7328.00	0.000	30.000	7235.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7428.001	0.000	30.000	7335.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7528.00	0.000	30.000	7435.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04 <u>.</u> 377"W	0.00	0.00	0.00	
7628.00	0.000	30.000	7535.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7728.00†	0.000	30.000	7635.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7828.00†	0.000	30.000	7735.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
7928.00†	0.000	30.000	7835.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8028.00†	0.000	30.000	7935.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8128.00†	0.000	30.000	8035.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8228.00†	0.000	30.000	8135.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8328.00†	0.000	30.000	8235.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8428.00†	0.000	30.000	8335.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 5 of 10

REFERE	NCEWELLPATH IDENTIFICATION		
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H
Facility	Culebra Bluff Pkg 2 Pad 5		

WELLPA	VELLPATH DATA (211 stations) † = interpolated/extrapolated station													
MD [ft]	Inclination	Azimuth	TVD [ft]	Vert Sect [ft]	North [ft]	East [ft]	Grid East [US ft]	Grid North [US ft]	Latitude	Longitude	DLS [°/100ft]	Build Rate [°/100ft]	Turn Rate [°/100ft]	Comments
8528.00	0.000	30.000	8435.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8628.00	0.000	30.000	8535.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8728.00†	0.000	30.000	8635.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8828.00†	0.000	30.000	8735.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
8928.00†	0.000	30.000	8835.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	
9028.00	0.000	30.000	8935.63	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00		
9052.96	0.000	30.000	8960.59	261.71	260.54	744.75	582008.69	477304.52	32°18'43.010"N	104°04'04.377"W	0.00	0.00	0.00	End of Tangent
9128.00†	7.504	30.000	9035.41	265.96	264.79	747.20	582011.14	477308.77	32°18'43.052"N	104°04'04.348"W	10.00	10.00	39.98	
9228.00†	17.504	30.000	9132.92	284.71	283.52	758.01	582021.95	477327.49	32°18'43.237"N	104°04'04.222"W	10.00	10.00	0.00	
9328.00†	27.504	30.000	9225.19	317.84	316.62	777.13	582041.06	477360.60	32°18'43.564"N	104°04'03.998"W	10.00	10.00	0.00	
9428.00†	37.504	30.000	9309.41	364.36	363.10	803.96	582067.89	477407.07	32°18'44.024"N	104°04'03.684"W	10.00	10.00	0.00	
9528.00†	47.504	30.000	9383.04	422.85	421.54	837.70	582101.63	477465.50	32°18'44.601"N	104°04'03.289"W	10.00	10.00	0.00	
9552.96	50.000	30.000	9399.50	439.12	437.79	847.08	582111.01	477481.75	32°18'44.762"N	104°04'03.179"W	10.00	10.00	0.00	End of Build
9628.00†	55.754	23.952	9444.79	492.47	491.10	874.08	582138.01	477535.06	32°18'45.289"N	104°04'02.863"W	10.00	7.67	-8.06	
9728.00	63.810	17.082	9495.13	573.39	571.97	904.12	582168.04	477615.92	32°18'46.088"N	104°04'02.511"W	10.00	8.06	-6.87	
9828.00	72.149	11.120	9532.62	663.24	661.78	926.53	582190.45	477705.72	32°18'46.976"N	104°04'02.247"W	10.00	8.34	-5.96	
9928.00†	80.652	5.700	9556.13	759.29	757.82	940.65	582204.57	477801.75	32°18'47.926"N	104°04'02.080"W	10.00	8.50	-5.42	
10028.00			9564.94	858.64	857.15	946.03	582209.95	477901.08	32°18'48.909"N	104°04'02.014"W	10.00	8.58	-5.16	
10036.92	90.000	0.085	9565.00 ¹	867.56	866.07	946.08	582210.00	477910.00	32°18'48.997"N	104°04'02.013"W	10.00	8.60	-5.11	End of 3D Arc
10128.00	90.000	0.085		958.64	957.15	946.22	582210.13	478001.07	32°18'49.898"N	104°04'02.009"W	0.00	0.00	0.00	
10228.00							582210.28		32°18'50.888"N	104°04'02.005"W	0.00	0.00	0.00	
10328.00					1157.15	946.51	582210.43	478201.05	32°18'51.878"N	104°04'02.000"W	0.00	0.00	0.00	
10428.00			9565.00	1258.64	1257.15	946.66	582210.58	478301.05	32°18'52.867"N	104°04'01.995"W	0.00	0.00	0.00	
10528.00					1357.15		582210.72		32°18'53.857"N	104°04'01.991"W	0.00	0.00	0.00	
10628.00							582210.87		32°18'54.846"N	104°04'01.986"W	0.00		0.00	
10728.00							582211.02		32°18'55.836"N	104°04'01.982"W	0.00	0.00	0.00	
10828.001				1658.64	1657.15		582211.17	478701.01	32°18'56.825"N	104°04'01.977"W	0.00	0.00	0.00	_
10928.001							582211.31	478801.00	32°18'57.815"N	104°04'01.972"W	0.00	0.00	0.00	
11028.001							582211.46		32°18'58.804"N	104°04'01.968"W	0.00	0.00	0.00	
11128.00					1957.15			479000.98	32°18'59.794"N	104°04'01.963"W	0.00			

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 6 of 10

REFER	REFERENCE WELLPATH IDENTIFICATION									
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H							
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H	_						
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H							
Facility	Culebra Bluff Pkg 2 Pad 5									

MD	Inclination		TVD	Vert Sect	North	East	olated statio	Grid North	Latitude	Longitude	DLS	Build Rate	Turn Data	Comments
[ft]	memation [°]	[]	[ft]	[ft]	(ft)	[ft]	[US ft]	[US ft]	Latitude	Longitude	[°/100ft]	[°/100ft]	[°/100ft]	Comments
11228.00	90.000	0.085	9565.00	2058.64	2057.15	947.84	582211.76	479100.98	32°19'00.783"N	104°04'01.958''W	0.00	0.00	0.00	
11328.00	90.000	0.085	9565.00	2158.64	2157.15	947.99	582211.90	479200.97	32°19'01.773"N	104°04'01.954''W	0.00	0.00	0.00	
11428.001	90.000	0.085	9565.00	2258.64	2257.15	948.13	582212.05	479300.96	32°19'02.762"N	104°04'01.949"W	0.00	0.00	0.00	
11528.00	90.000	0.085	9565.00	2358.64	2357.15	948.28	582212.20	479400.95	32°19'03.752"N	104°04'01.945''W	0.00	0.00	0.00	
11628.00	90.000	0.085	9565.00	2458.64	2457.15	948.43	582212.35	479500.94	32°19'04.741"N	104°04'01.940"W	0.00	0.00	0.00	
11728.00	90.000	0.085	9565.00	2558.64	2557.15	948.58	582212.49	479600.93	32°19'05.731"N	104°04'01.935''W	0.00	0.00	0.00	
11828.00	90.000	0.085	9565.00	2658.64	2657.15	948.72	582212.64	479700.92	32°19'06.720"N	104°04'01.931'W	_0.00	0.00	0.00	
11928.00	90.000	0.085	9565.00	2758.64	2757.15	948.87	582212.79	479800.92	32°19'07.710"N	104°04'01.926''W	0.00	0.00	0.00	
12028.00	90.000	0.085	9565.00	2858.64	2857.15	949.02	582212.94	479900.91	32°19'08.699"N	104°04'01.922''W	0.00	0.00	0.00	
12128.001	90.000	0.085	9565.00	2958.64	2957.15	949.17	582213.08	480000.90	32°19'09.689"N	104°04'01.917''W	0.00	0.00	0.00	
12228.00		0.085	9565.00	3058.64	3057.15	949.31	582213.23	480100.89	32°19'10.678"N	104°04'01.912"W	0.00	0.00	0.00	
12328.00		0.085	9565.00		3157.15	949.46	582213.38	480200.88	32°19'11.668"N	104°04'01.908''W	0.00	0.00	0.00	
12428.00	90.000	0.085	9565.00	3258.64	3257.15	949.61	582213.53	480300.87	32°19'12.658"N	104°04'01.903"W	0.00	0.00	0.00	
12528.00		0.085	9565.00	3358.64	3357.15	949.76	582213.67	480400.86	32°19'13.647"N	104°04'01.899"W	0.00	0.00	0.00	
12628.00		0.085	9565.00	3458.64	3457.15	949.90	582213.82	480500.85	32°19'14.637"N	104°04'01.894"W	0.00	0.00	0.00	
12728.00	90.000	0.085	9565.00	3558.64	3557.15	950.05	582213.97	480600.85	32°19'15.626"N	104°04'01.889"W	0.00	0.00	0.00	
12828.00	90.000	0.085	9565.00	3658.64	3657.15	950.20	582214.12	480700.84	32°19'16.616"N	104°04'01.885"W	0.00	0.00	0.00	
12928.00	90.000	0.085	9565.00	3758.64	3757.15	950.35	582214.26	480800.83	32°19'17.605"N	104°04'01.880''W	0.00	0.00	0.00	
13028.00		0.085	9565.00	3858.64	3857.15	950.49	582214.41	480900.82	32°19'18.595"N	104°04'01.875"W	0.00	0.00	0.00	
13128.00	90.000	0.085	9565.00	3958.64	3957.15	950.64	582214.56	481000.81	32°19'19.584"N	104°04'01.871"W	0.00	0.00	0.00	
13228.00		0.085	9565.00	4058.64	4057.15	950.79	582214.71	481100.80	32°19'20.574"N	104°04'01.866''W	0.00	0.00	0.00	
13328.00	90.000	0.085	9565.00	4158.64	4157.15	950.94	582214.85	481200.79	32°19'21.563"N	104°04'01.862"W	0.00	0.00	0.00	
13428.00	90.000	0.085	9565.00	4258.64	4257.15	951.08	582215.00	481300.79	32°19'22.553"N	104°04'01.857"W	0.00	0.00	0.00	
13528.00†	90.000	0.085	9565.00	4358.64	4357.15	951.23	582215.15	481400.78	32°19'23.542"N	104°04'01.852''W	0.00	0.00	0.00	
13628.00		0.085	9565.00	4458.64	4457.15	951.38	582215.30	481500.77	32°19'24.532"N	104°04'01.848''W	0.00	0.00	0.00	
13728.00		0.085	9565.00	4558.64	4557.15	951.53	582215.44	481600.76	32°19'25.521"N	104°04'01.843"W	0.00	0.00	0.00	
13828.00	90.000	0.085	9565.00	4658.64	4657.15	951.67	582215.59	481700.75	32°19'26.511"N	104°04'01.839"W	0.00	0.00	0.00	
13928.00	90.000	0.085	9565.00	4758.64	4757.15	951.82	582215.74	481800.74	32°19'27.500"N	104°04'01.834"W	0.00	0.00	0.00	
14028.00†		0.085		4858.64	4857.15	951.97	582215.89	481900.73	32°19'28.490"N	104°04'01.829"W	0.00	0.00	0.00	
14128.00†	90.000	0.085	9565.00	4958.64	4957.15	952.12	582216.03	482000.73	32°19'29.479"N	104°04'01.825"W	0.00	0.00	0.00	

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 7 of 10

REFERE	ENCE WELLPATH IDENTIFICATION			
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H	
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H	
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H	
Facility	Culebra Bluff Pkg 2 Pad 5			

MD [ft]	Inclination [°]	្រា	TVD [ft]	Vert Sect [ft]	North [ft]	East [ft]	Grid East [US ft]	Grid North [US ft]	Latitude	Longitude	DLS [°/100ft]	Build Rate [°/100ft]	Turn Rate [°/100ft]	Comments
14228.00			9565.00	5058.64	5057.15	952.26	582216.18	482100.72	32°19'30.469"N	104°04'01.820"W	0.00	0.00	0.00	
14328.00†		0.085	9565.00	5158.64	5157.15	952.41	582216.33	482200.71	32°19'31.458"N	104°04'01.815"W	0.00	0.00	0.00	
14428.00†		0.085	9565.00	5258.64	5257.15	952.56	582216.48	482300.70	32°19'32.448"N	104°04'01.811"W	0.00	0.00	0.00	
14528.00†			9565.00	5358.64	5357.15	952.71	582216.62	482400.69	32°19'33.438"N	104°04'01.806''W	0.00	0.00	0.00	
14628.00†		0.085	9565.00	5458.64	5457.15	952.85	582216.77	482500.68	32°19'34.427"N	104°04'01.802"W	0.00	0.00	0.00	
14728.00 †		0.085	9565.00	5558.64	5557.15	953.00	582216.92	482600.67	32°19'35.417"N	104°04'01.797"W	0.00	0.00	0.00	_
14828.00†	90.000	0.085	9565.00	5658.64	5657.15	953.15	582217.07	482700.66	32°19'36.406"N	104°04'01.792"W	0.00	0.00	0.00	
14928.00†	90.000	0.085	9565.00	5758.64	5757.15	953.30	582217.21	482800.66	32°19'37.396"N	104°04'01.788"W	0.00	0.00	0.00	_
15028.00†	90.000	0.085	9565.00	5858.64	5857.15	953.44	582217.36	482900.65	32°19'38.385"N	104°04'01.783"W	0.00	0.00	0.00	
15128.00†		0.085	9565.00	5958.64	5957.15	953.59	582217.51	483000.64	32°19'39.375"N	104°04'01.779"W	0.00	0.00	0.00	
15228.00	90.000	0.085	9565.00	6058.64	6057.15	953.74	582217.66	483100.63	32°19'40.364"N	104°04'01.774"W	0.00	0.00	0.00	'
15328.00	90.000	0.085	9565.00	6158.64	6157.15	953.89	582217.80	483200.62	32°19'41.354"N	104°04'01.769''W	0.00	0.00	0.00	
15428.00†	90.000	0.085	9565.00	6258.64	6257.15	954.03	582217.95	483300.61	32°19'42.343"N	104°04'01.765"W	0.00	0.00	0.00	
15528.00†	90.000	0.085	9565.00	6358.64	6357.15	954.18	582218.10	483400.60	32°19'43.333"N	104°04'01.760"W	0.00	0.00	0.00	
15628.00†	90.000	0.085	9565.00	6458.64	6457.15	954.33	582218.25	483500.60	32°19'44.322"N	104°04'01.755"W	0.00	0.00	0.00	
15728.00†	90.000	0.085	9565.00	6558.64	6557.15	954.48	582218.39	483600.59	32°19'45.312"N	104°04'01.751"W	0.00	0.00	0.00	
15828.00†	90.000	0.085	9565.00	6658.64	6657.15	954.62	582218.54	483700.58	32°19'46.301"N	104°04'01.746"W	0.00	0.00	0.00	
15928.00	90.000	0.085	9565.00	6758.64	6757.15	954.77	582218.69	483800.57	32°19'47.291"N	104°04'01.742"W	0.00	0.00	0.00	· · · · · · · · · · · · · · · · · · ·
16028.00†	90.000	0.085	9565.00	6858.64	6857.15	954.92	582218.84	483900.56	32°19'48.280"N	104°04'01.737"W	0.00	0.00	0.00	
16128.00	90.000	0.085	9565.00	6958.64	6957.15	955.07	582218.98	484000.55	32°19'49.270"N	104°04'01.732"W	0.00	0.00	0.00	
16228.00	90.000	0.085	9565.00	7058.64	7057.15	955.21	582219.13	484100.54	32°19'50.259"N	104°04'01.728"W	0.00	0.00	0.00	
16328.00†	90.000	0.085	9565.00	7158.64	7157.15	955.36	582219.28	484200.54	32°19'51.249"N	104°04'01.723"W	0.00	0.00	0.00	
16428.00†	90.000	0.085	9565.00	7258.64	7257.15	955.51	582219.43	484300.53	32°19'52.238"N	104°04'01.719"W	0.00	0.00	0.00	
16528.00†	90.000	0.085	9565.00	7358.64	7357.15	955.66	582219.57	484400.52	32°19'53.228"N	104°04'01.714"W	0.00	0.00	0.00	
16628.00†	90.000	0.085	9565.00	7458.64	7457.15	955.80	582219.72	484500.51	32°19'54.217"N	104°04'01.709"W	0.00	0.00	0.00	
16728.00†	90.000	0.085	9565.00	7558.64	7557.15	955.95	582219.87	484600.50	32°19'55.207"N	104°04'01.705"W	0.00	0.00	0.00	
16828.00†	90.000	0.085	9565.00	7658.64	7657.15	956.10	582220.02	484700.49	32°19'56.197"N	104°04'01.700"W	0.00	0.00	0.00	
16928.00†	90.000	0.085	9565.00	7758.64	7757.15	956.25	582220.16	484800.48	32°19'57.186"N	104°04'01.695"W	0.00	0.00	0.00	
17028.00†	90.000	0.085	9565.00	7858.64	7857.15	956.39	582220.31	484900.47	32°19'58.176"N	104°04'01.691"W	0.00	0.00	0.00	
17128.00	90.000	0.085	9565.00	7958.64	7957.15	956.54	582220.46	485000.47	32°19'59.165"N	104°04'01.686"W	0.00	0.00	0.00	

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 8 of 10

REFERE	NCE WELLPATH IDENTIFICATION		
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H
Field	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H
Facility	Culebra Bluff Pkg 2 Pad 5		

WELLPA	WELLPATH DATA (211 stations) † = interpolated/extrapolated station													
MD	Inclination	Azimuth	TVD	Vert Sect	North	East	Grid East	Grid North	Latitude	Longitude	DLS	Build Rate	Turn Rate (Comments
[ft]	<u> </u>		[ft]	[ft]	[ft]	[ft]	[US ft]	[US ft]			[°/100ft]	[°/100ft]	[°/100ft]	
17228.00		0.085		8058.64	8057.15		582220.61	485100.46	32°20'00.155"N	104°04'01.682"W	0.00	0.00	0.00	
17328.00†		0.085		8158.64	8157.14	956.84	582220.75	485200.45	32°20'01.144"N	104°04'01.677"W		0.00	0.00	
17428.00†		0.085		8258.64	8257.14	956.98	582220.90	485300.44	32°20'02.134"N	104°04'01.672"W		0.00	0.00	
17528.00		0.085		8358.64	8357.14		582221.05	485400.43	32°20'03.123"N	104°04'01.668"W		0.00	0.00	
17628.001		0.085	9565.00	8458.64	8457.14	957.28	582221.20	485500.42	32°20'04.113"N	104°04'01.663"W	0.00	0.00	0.00	
17728.00	90.000	0.085	9565.00	8558.64	8557.14	957.43	582221.35	485600.41	32°20'05.102"N	104°04'01.659"W	0.00	0.00	0.00	
17828.00†	90.000	0.085	9565.00	8658.64	8657.14	957.57	582221.49	485700.41	32°20'06.092"N	104°04'01.654"W	0.00	0.00	0.00	
17928.00	90.000	0.085	9565.00	8758.64	8757.14	957.72	582221.64	485800.40	32°20'07.081"N	104°04'01.649"W	0.00	0.00	0.00	
18028.00†	90.000	0.085	9565.00	8858.64	8857.14	957.87	582221.79	485900.39	32°20'08.071"N	104°04'01.645"W	0.00	0.00	0.00	
18128.00†	90.000	0.085	9565.00	8958.64	8957.14	958.02	582221.94	486000.38	32°20'09.060"N	104°04'01.640"W	0.00	0.00	0.00	
18228.00	90.000	0.085	9565.00	9058.64	9057.14	958.16	582222.08	486100.37	32°20'10.050"N	104°04'01.635"W	0.00	0.00	0.00	
18328.00†	90.000	0.085	9565.00	9158.64	9157.14	958.31	582222.23	486200.36	32°20'11.039"N	104°04'01.631"W	0.00	0.00	0.00	
18428.00†	90.000	0.085	9565.00	9258.64	9257.14	958.46	582222.38	486300.35	32°20'12 029"N	104°04'01.626"W	0.00	0.00	0.00	
18528.00†	90.000	0.085	9565.00	9358.64	9357.14	958.61	582222.53	486400.35	32°20'13.018"N	104°04'01.622"W	0.00	0.00	0.00	
18628.00†	90.000	0.085	9565.00	9458.64	9457.14	958.75	582222.67	486500.34	32°20'14.008"N	104°04'01.617"W	0.00	0.00	0.00	
18728.00†	90.000	0.085	9565.00	9558.64	9557.14	958.90	582222.82	486600.33	32°20'14.997"N	104°04'01.612"W	0.00	0.00	0.00	
18828.00†	90.000	0.085	9565.00	9658.64	9657.14	959.05	582222.97	486700.32	32°20'15.987"N	104°04'01.608"W	0.00	0.00	0.00	
18928.00†	90.000	0.085	9565.00	9758.64	9757.14	959.20	582223.12	486800.31	32°20'16.976"N	104°04'01.603"W	0.00	0.00	0.00	
19028.00†	90.000	0.085	9565.00	9858.64	9857.14	959.34	582223.26	486900.30	32°20'17.966"N	104°04'01.599"W	0.00	0.00	0.00	
19128.00	90.000	0.085	9565.00	9958.64	9957.14	959.49	582223.41	487000.29	32°20'18.955"N	104°04'01.594"W	0.00	0.00	0.00	
19228.00†	90,000	0.085	9565.00	10058.64	10057.14	959.64	582223.56	487100.28	32°20'19.945"N	104°04'01.589"W	0.00	0.00	0.00	
19328.00†	90.000	0.085	9565.00	10158.64	10157.14	959.79	582223.71	487200.28	32°20'20.935"N	104°04'01.585"W	0.00	0.00	0.00	
19428.00†	90.000	0.085	9565.00	10258.64	10257.14	959.93	582223.85	487300.27	32°20'21.924"N	104°04'01.580"W	0.00	0.00	0.00	
19528.00†	90.000	0.085	9565.00	10358.64	10357.14	960.08	582224.00	487400.26	32°20'22.914"N	104°04'01.575"W	0.00	0.00	0.00	
19628.00†	90.000	0.085	9565.00	10458.64	10457.14	960.23	582224.15	487500.25	32°20'23.903"N	104°04'01.571"W	0.00	0.00	0.00	
19728.00†	90.000	0.085	9565.00	10558.64	10557.14	960.38	582224.30	487600.24	32°20'24.893"N	104°04'01.566"W		0.00	0.00	
19828.00†	90.000	0.085	9565.00	10658.64	10657.14	960.52	582224.44	487700.23	32°20'25.882"N	104°04'01.562"W	0.00	0.00	0.00	
19928.00†	90.000	0.085	9565.00	10758.64	10757.14	960.67	582224.59	487800.22	32°20'26.872"N	104°04'01.557"W	0.00	0.00	0.00	
20028.00†	90.000	0.085	9565.00	10858.64	10857.14	960.82	582224.74	487900.22	32°20'27.861"N	104°04'01.552"W	0.00	0.00	0.00	
20128.00†	90.000	0.085	9565.00	10958.64	10957.14	960.97	582224.89	488000.21	32°20'28.851"N	104°04'01.548"W	0.00	0.00	0.00	

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 9 of 10

REFERE	REFERENCE WELLPATH IDENTIFICATION									
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H							
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H							
	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H							
Facility	Culebra Bluff Pkg 2 Pad 5									

WELLPA	TH DAT	A (211	station	ns)			-						
MD	Inclination	Azimuth	TVD	Vert Sect	North	East	Grid East	Grid North	Latitude	Longitude			Turn Rate Comments
[ft]	[°]	<u>[°]</u>	[ft]	[ft]	[ft]	[ft]	[US ft]	[US ft]			[°/100ft]	[°/100ft]	[°/100ft]
20205.80	90.000	0.085	9565.00 ²	11036.44	11034.94	961.08	582225.00	488078.00	32°20'29.621"N	104°04'01.544"W	0.00	0.00	0.00 End of Tangent

HOLE & CASING SECTIONS - Ref Wellbore: CB NE 10 3 005 3H Ref Wellpath: CB NE 10 3 005 3H Rev B.0													
String/Diameter	Start MD [ft]	End MD [ft]	Interval [ft]	Start TVD [ft]	End TVD [ft]	Start N/S [ft]	Start E/W [ft]	End N/S [ft]	End E/W [ft]				
13.375in Casing	28.00	450.00	422.00	28.00	450.00	0.00	0.00	0.00	0.00				
9.625in Casing	28.00	9092.40	9064.40	28.00	9000.00	0.00	0.00	261.72	745.43				
5.5in Casing	28.00	20205.80	20177.80	28.00	9565.00	0.00	0.00	11034.94	961.08				

TARGETS									
Name	MD [ft]	TVD [ft]	North [ft]	East [ft]	Grid East [US ft]	Grid North [US ft]	Latitude	Longitude	Shape
1) CB NE 10 3 005 3H FTP		m skistin.	6,793,351.			Polynovoronom an		4821.60202000/01	point
CB NE 10 3 005 3H LTP		9463.00	10804.92	958.08	582222.00	487848.00	32°20'27.345"N	104°04'01.586"W	point
CB NE 10 3 005 3H MP		9463.00	5807.50	884.08	582148.00	482851.00	32°19'37.896"N	104°04'02.593"W	point
2) CB NE 10 3 005 3H PBHL rev 2	20205.80	9565.00	11034.94	961.08	582225.00	488078.00	32°20'29.621"N	104°04'01.544"W	point
2) CB NE 10 3 003 3H FBHL 16V 2			·						

CB HAYS 10 3 FED COM 005 3H Rev B.0 Page 10 of 10

REFERENCE WELLPATH IDENTIFICATION						
Operator	Chevron U.S.A. Inc.	Slot	CB HAYS 10 3 FED COM 005 3H			
Area	Eddy County, NM	Well	CB HAYS 10 3 FED COM 005 3H			
	Eddy Co., NM NAD 27	Wellbore	CB HAYS 10 3 FED COM 005 3H			
Facility	Culebra Bluff Pkg 2 Pad 5					

SURVEY PRO	OGRAM - Ref	f Wellbore: CB NE 10 3 005 3H	Ref Wellpath: CB NE 10 3 005 3H Rev B.0		
Start MD [ft]	End MD [ft]	Positional Uncertainty Model	Log Name/Comment	Wellbore	
28.00	450.00	BHI NaviTrak (Axial)		CB HAYS 10 3 FED COM 005 3H	
450.00	9000.00	BHI NaviTrak (Axial)		CB HAYS 10 3 FED COM 005 3H	
9000.00	20205.80	BHI AutoTrak Curve (Axial)		CB HAYS 10 3 FED COM 005 3H	

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Department

Submit Original to Appropriate District Office

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

GAS CAPTURE PLAN	GAS	CAL	TU	RE 1	PLA	N
------------------	-----	-----	----	------	-----	---

☐ Original	Operator & OGRID No.:	CHEVRON U S A INC 4323		
☐ Amended			Date:_	07/16/2018
Reason	for Amendment:			

This Gas Capture Plan outlines actions to be taken by the Operator to reduce well/production facility flaring/venting for new completion (new drill, recomplete to new zone, re-frac) activity.

Note: A C-129 must be submitted and approved prior to exceeding 60 days allowed by Rule 19.15.18.12.A

Wells / Production Facility - CULEBRA BLUFF CTB (SECTION 15)

The wells shown in the table below will be connected to this production facility.

Well Name	API	Well Location (ULSTR)	Footages	Expected MCF/D	Flared or Vented	Comments
CB HAYS 10 3 FED COM 005 No. 1H	Pending	UL: B, SEC 15, T23S, R28E	518' FNL, 1380' FEL	2,500	0	
CB HAYS 10 3 FED COM 005 No. 2H	Pending	UL: A, SEC 15, T23S, R28E	519' FNL, 1330' FEL	2,500	0	
CB HAYS 10 3 FED COM 005 No. 3H	Pending	UL: A, SEC 15, T23S, R28E	520' FNL, 1280' FEL	2,500	0	

Gathering System and Pipeline Notification

These Culebra Bluff Hays Pad 5 wells will be connected to Chevron's Culebra Bluff CTB West (Section 15) production facility located in Sec. 15, T23S, R28E, Eddy County, New Mexico during flowback and production. Gas produced from the production facility will be dedicated to Targa Delaware LLC ("Targa") and connected to Targa's high pressure gathering system located in Eddy County, New Mexico. Produced gas will be processed initially at Sendero Carlsbad Midstream LP Processing Plant located in Sec 32, T23S, R28E of Eddy County, New Mexico and other plants operated by Targa which are connected to the high pressure gathering system until approximately 3Q 2019 when it will be routed to Targa's new Falcon Plant located in northeast Culberson County, Texas. The actual flow of the gas will be based on compression operating parameters and gathering system pressures. Chevron will periodically provide Targa a drilling, completion and estimated first production date for wells that are scheduled to be drilled in the foreseeable future. In addition, Chevron and Targa will have periodic conference calls to discuss changes to the drilling and completion schedules.

Flowback Strategy

After the fracture treatment/completion operations, wells will be routed to the permanent production facilities. Wells will have temporary sand catchers (separators) that will be installed at the well location to prevent sand from getting into the flowlines. These sand separators will be blown down periodically which will result in minimal venting of gas. Gas sales will start as soon as the wells start flowing through the production facilities unless there are operational issues with Targa's system at that time. Based on current information, it is Chevron's belief the system can take this gas upon completion of the well(s).

Safety requirements during cleanout operations from the use of underbalanced air cleanout systems may necessitate that sand and non-pipeline quality gas be vented and/or flared rather than sold on a temporary basis.

Alternatives to Reduce Flaring

Below are alternatives considered from a conceptual standpoint to reduce the amount of gas flared.

- Power Generation On Lease
 - o Only a portion of gas is consumed operating the generator, remainder of gas will be flared.
- Compressed Natural Gas On Lease
 - o Gas flared would be minimal, but might be uneconomical to operate when gas volume declines.
- NGL Removal On lease and trucked from condensate tanks
 - o Plants are expensive and uneconomical to operate when gas volume declines.
 - o Any residue gas that results in the future may be flared.

U.S. Department of the Interior **BUREAU OF LAND MANAGEMENT**

APD ID: 10400031507

Operator Name: CHEVRON USA INCORPORATED

Well Name: CB HAYS 10 3 FED COM 005

Well Type: OIL WELL

Submission Date: 07/02/2018

Well Number: 3H

Well Work Type: Drill

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

CB_HAYS_10_3_FED_COM_005_3H_EXISTING_ROAD_MAP_20180702103325.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? YES

Existing Road Improvement Description: The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use. We will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

CB HAYS 10 3 FED COM 005 3H EXISTING WELLS MAP AND DATA 20180702104546.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? DEFER

Estimated Production Facilities description: New facilities are proposed adjacent to the subject well pad in Section 15 (Central Tank Battery) and Section 9 (Compressor Station) T23S R28E.

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

INTERMEDIATE/PRODUCTION CASING, SURFACE CASING

Describe type:

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 700000

Source volume (gal): 29400000

Source volume (acre-feet): 90.22517

Water source type: GW WELL

Source longitude:

Water source and transportation map:

CB_HAYS_10_3_FED_COM_005_3H_TOPO_20180702103516.pdf

Water source comments:

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aguifer comments:

Aguifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche will be used to construct well pad and roads. Material will be purchased from Onsurez Private caliche pits in Section 14 & Section 27, T23S R28E. The proposed sources of construction material will be located and purchased by Chevron U.S.A. Inc. Notification shall be given to BLM at (575) 234-5909 at least 3 working days prior to commencing construction of access road and/or well pad.

Construction Materials source location attachment:

Section 7 - Methods for Handling Waste

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal. Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility. After drilling and completion operations, trash, chemicals, salts, frac sand and other waste material will be removed and disposed of properly at a state approved disposal facility.

Amount of waste: 200

pounds

Waste disposal frequency: Daily

Safe containment description: Drilling fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility.

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL

Disposal location ownership: STATE

FACILITY

Disposal type description:

Disposal location description: STATE APPROVED FACILITY

Reserve I	Pit
-----------	-----

Well Name: CB HAYS 10 3 FED COM 005

Well Number: 3H

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location The well will be drilled utilizing a closed loop system. Drill cutting will be properly disposed of into steel tanks and taken to an NMOCD approved disposal facility.

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

CB_HAYS_10_3_FED_COM_005_3H_Well_Plat_Cert_20180702103556.pdf

Comments: Exterior well pad dimensions are 380' x 545'. Interior well pad dimensions from point of entry (well head) of the easternmost well are listed on attached well plat. The pad will have a total of 6 wells, 3 of which penetrate BLM lands. Total disturbance area needed for construction of well pad will be 4.75 acres. Topsoil placement is on the west where interim reclamation is planned to be completed upon completion of well and evaluation of best management practices.

Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: CB HAYS 10 3 FED COM 005

Multiple Well Pad Number: 1H, 2H, 3H

Recontouring attachment:

CB_HAYS_10_3_FED_COM_005_Cut Fill_Plat_20180702103625.pdf CB HAYS 10 3 FED COM 005 RECLAMATION 20180702103633.pdf

Drainage/Erosion control construction: Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.

Drainage/Erosion control reclamation: Well pad, road, and surrounding area will be cleared of material, trash, and equipment. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be recontoured to the contour existing prior to initial construction or a contour that blends in distinguishably with the surrounding landscape. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. After all the disturbed areas have been properly prepared; the areas will be seeded with the proper BLM seed mixture (BLM #2), free of noxious weeds.

Well pad proposed disturbance

(acres): 4.75

Road proposed disturbance (acres): 0

Powerline proposed disturbance

(acres): 6.42

Pipeline proposed disturbance

(acres): 6.9

Other proposed disturbance (acres): 0

Total proposed disturbance: 18.07

Well pad interim reclamation (acres): 0 Well pad long term disturbance

(acres): 0 Road interim reclamation (acres): 0

Road long term disturbance (acres): 0

Pipeline interim reclamation (acres): 0

Other interim reclamation (acres): 0

Total interim reclamation: 0

Powerline interim reclamation (acres): Powerline long term disturbance

(acres): 6.42

Pipeline long term disturbance

(acres): 6.9

Other long term disturbance (acres): 0

Total long term disturbance: 13.32

Disturbance Comments: Enclosure fencing will be installed around open cellar to prevent livestock or large wildlife from being trapped after installation. Fencing will remain in place while no activity is present and until backfilling takes place. Reconstruction method: Within 6 months, Chevron will contact BLM Surface Management Specialists to devise the best strategies to reduce the size of the location. Current plans for interim reclamation include reducing the pad size to approximately 1.5 acres from the proposed size of 4.75 acres. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production. A plan will be submitted showing where interim reclamation will be completed in order to allow for safe operations, protection of the environment outside of drilled well, and following best management practices found in the BLM "Gold Book".

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for allweather operations including cuts & fills. To seed the area, the proper BLM seed mixture (BLM #2), free of noxious weeds, will be used.

Soil treatment: Seed the area, the proper BLM mixture free of noxious weeds will be used.

Existing Vegetation at the well pad: Mesquite, shrubs, grass

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Mesquite, shrubs, grass

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: Mesquite, shrubs, grass

Operator Name: CHEVRON USA INCORPORATED Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H **Existing Vegetation Community at the pipeline attachment:** Existing Vegetation Community at other disturbances: Mesquite, shrubs, grass **Existing Vegetation Community at other disturbances attachment:** Non native seed used? NO Non native seed description: Seedling transplant description: Will seedlings be transplanted for this project? NO Seedling transplant description attachment: Will seed be harvested for use in site reclamation? NO Seed harvest description: Seed harvest description attachment: **Seed Management Seed Table** Seed type: Seed source: Seed name: Source name: Source address: Source phone: Seed cultivar: Seed use location: PLS pounds per acre: Proposed seeding season:

Seed Summary Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Mark Last Name: Woodard

Phone: (432)687-7999 Email: MarkWoodard@chevron.com

Well Name: CB HAYS 10 3 FED COM 005	Well Number: 3H
Seedbed prep:	
Seed BMP:	
Seed method:	
Existing invasive species? NO	
Existing invasive species treatment description	on:
Existing invasive species treatment attachmen	nt:
Weed treatment plan description: Treat with BL	M seed mixture (BLM #2) free of noxious weeds.
Weed treatment plan attachment:	
Monitoring plan description: The interim reclamestablished. Monitoring plan attachment:	nation will be monitored periodically to ensure that vegetation has re-
Success standards: As per BLM requirements	
Pit closure description: None	
Pit closure attachment:	
Section 11 - Surface Ownership	
Disturbance type: WELL PAD	
Describe:	
Surface Owner: STATE GOVERNMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
A Son Carrier (August 1974), NH TVV WILL (Construct Conf. 1978, Side	
Military Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:

Well Name: CB HAYS 10 3 FED COM 005 Well Number: 3H

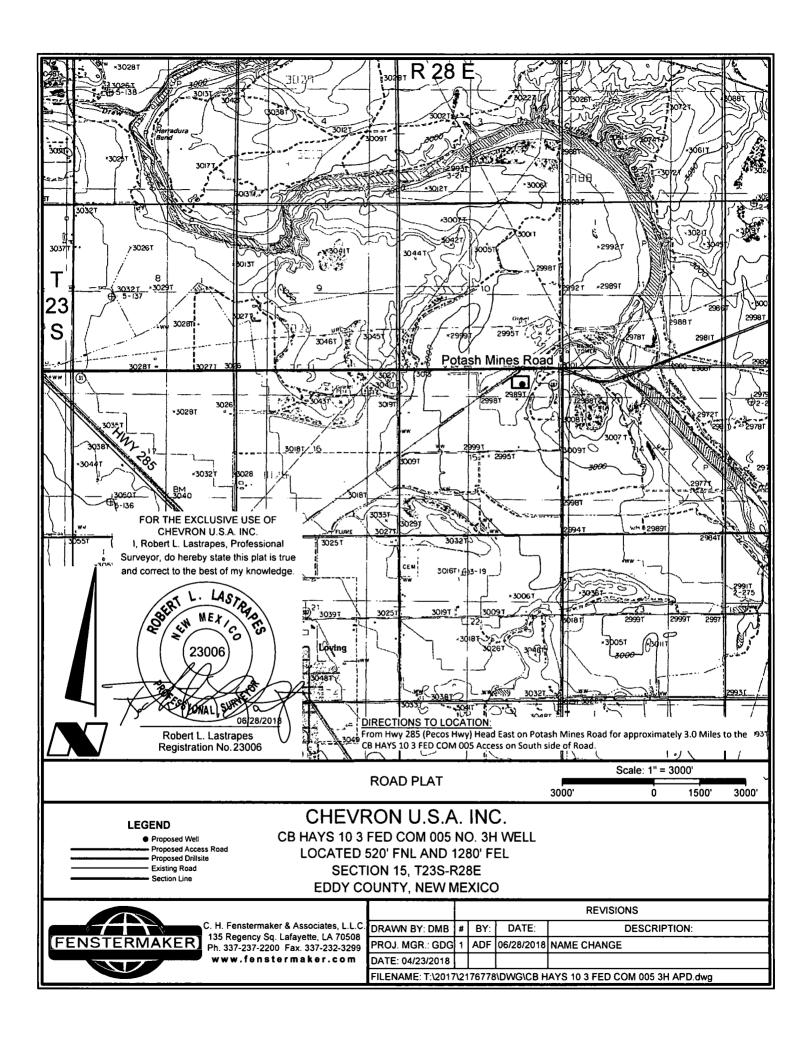
Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

ROW Applications


SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: On-site performed by BLM NRS: Paul Murphy 10/13/2017.

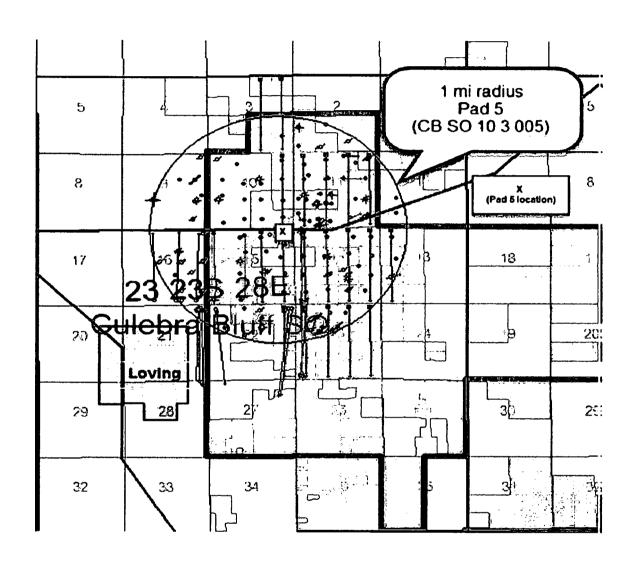
Other SUPO Attachment

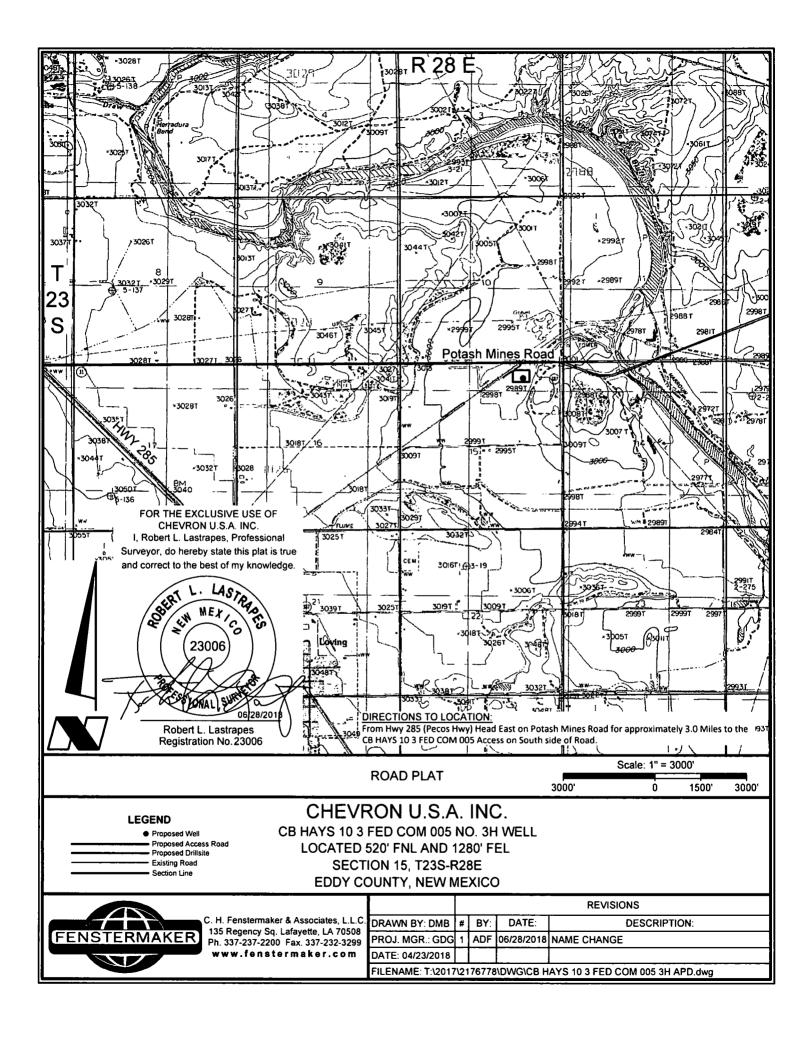
CB_HAYS_10_3_FED_COM_005_3H_SUPO_20180702104051.pdf

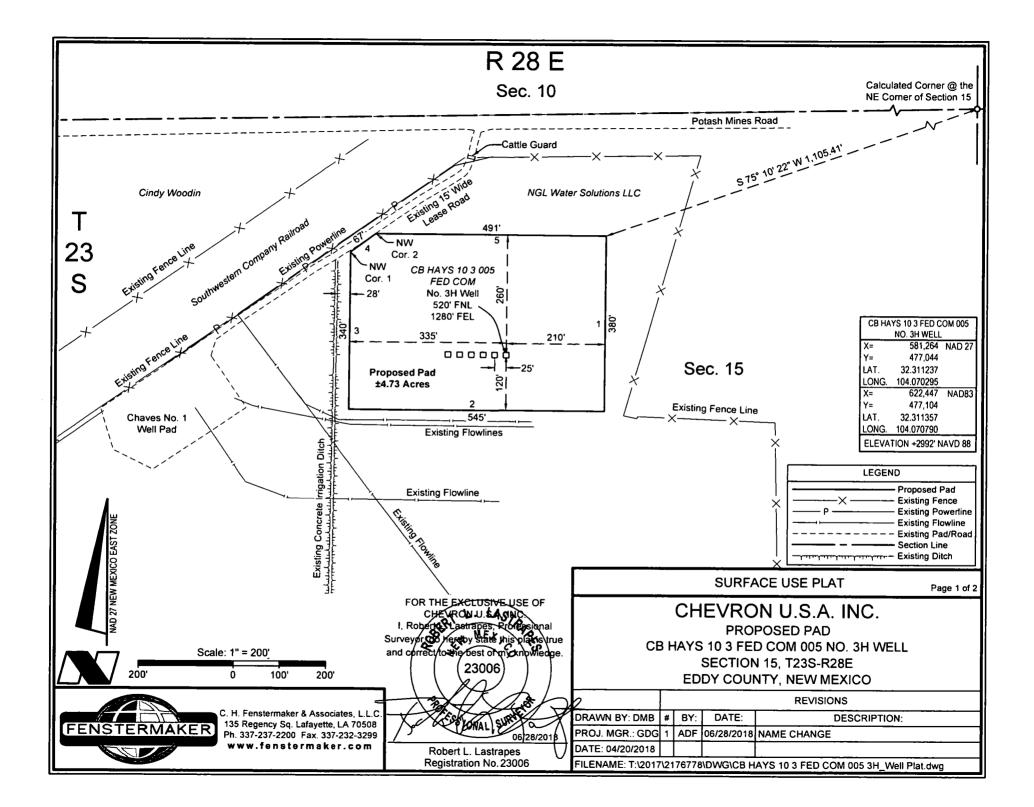
1 MILE RADIUS MAP & WELL DATA

API Well Name	Operator	SHL to SHL DistanceCB NE 10 3 005 1H
30015444060000 STRIKER 1 SWD	NGL WATER SOLUTIONS PERMIAN LLC	135
30015264470000 CHAVES	BIRD CREEK RESOURCES INCORPORATED	605
30015263220000 SIEBERT	BIRD CREEK RESOURCES INCORPORATED	880
30015267640000 EAST LOVING 'SWD'	BIRD CREEK RESOURCES INCORPORATED	1105
30015267640000 EAST LOVING 'SWD'	BIRD CREEK RESOURCES INCORPORATED	1105
30015264430000 KIDD	BENNETT R C	1225
30015264590000 PARDUE FARMS	ORYX ENERGY COMPANY	1225
30015264110000 PARDUE FARMS	ORYX ENERGY COMPANY	1450
30015264710000 WITT	HARKEN EXPLORATION COMPANY	1720
30015265760000 NYMEYER 'A'	GRAHAM ROYALTY LIMITED	1880
30015267040000 NYMEYER 'A'	GRAHAM ROYALTY LIMITED	1990
30015263300000 TELEDYNE	BIRD CREEK RESOURCES INCORPORATED	2085
30015265370000 URQUIDEZ	POGO PRODUCING COMPANY	1955
30015262770000 PARDUE 'C' 8808 JV-P	BTA OIL PRODUCERS	2310
30015264550000 LEWIS ESTATE	ORYX ENERGY COMPANY	2455
30015263290000 TRACHTA	BIRD CREEK RESOURCES INCORPORATED	2570
30015327480000 PARDUE C 8808 JVP	BTA OIL PRODUCERS	2545
30015266220000 CAVINESS-PAINE	BIRD CREEK RESOURCES INCORPORATED	2580
30015266220001 CAVINESS PAINE	CHESAPEAKE OPERATING INCORPORATED	2580
30015265630000 PARDUE FARMS	ORYX ENERGY COMPANY	2495
30015241510000 YARBRO 'A' COM	CITIES SERVICE	2600
30015241510001 YARBRO 'A' COM	OXY USA INC	2600
30015389990000 8808 JV-P PARDUE 'C'	BTA OIL PRODUCERS LLC	2650
30015236750000 NYMEYER	COQUINA OIL CORPORATION	2665
30015263210000 CAVINESS-PAYNE	BIRD CREEK RESOURCES INCORPORATED	2850
30015266270000 URQUIDEZ	POGO PRODUCING COMPANY	2910
30015263410001 PARDUE 'C' 8808 JV-P	BTA OIL PRODUCERS	3035
30015263410002 PARDUE 'C' 8808 JV-P	BTA OIL PRODUCERS	3035
30015263410000 PARDUE 'C' 8808 JV-P	BTA OIL PRODUCERS	3035
30015263410001 PARDUE 'C' 8808 JV-P	BTA OIL PRODUCERS	3035
30015263410002 PARDUE 'C' 8808 JV-P	BTA OIL PRODUCERS	3035
30015389610000 8808 JV-P PARDUE 'B'	BTA OIL PRODUCERS LLC	3010
30015265830000 8808 JV-P PARDUE 'C' 30015266630000 URQUIDEZ	BTA OIL PRODUCERS	3110
30015326710000 PARDUE C 8808 JVP	POGO PRODUCING COMPANY	3030
30015448780000 CB SO 15 22 004	BTA OIL PRODUCERS	3125
30015448770000 CB SO 15 22 004	CHEVRON U.S. A INCORPORATED	3075
30015448760000 CB SO 15 22 004	CHEVRON U S A INCORPORATED CHEVRON U S A INCORPORATED	3100
30015263260000 PARDUE 'B'8808 JV-P	BTA OIL PRODUCERS	3125
30015269050000 NEMEYER 'A'	TITAN RESOURCES I INCORPORATED	3270
30015262390000 TELEDYNE	BIRD CREEK RESOURCES INCORPORATED	3340
30015262390000 TELEDYNE	BIRD CREEK RESOURCES INCORPORATED	3400
30015263280000 TRACHTA	BIRD CREEK RESOURCES INCORPORATED	3400
30015259640000 8808 JV-P PARDUE	BTA OIL PRODUCERS	3510 3460
30015336380000 PARDUE 8 8808 JV-P	BTA OIL PRODUCERS	3525
30015261210000 CARRASCO '14'	BIRD CREEK RESOURCES INCORPORATED	3625
30015265820001 PECOS IRRIGATION CO A	CHESAPEAKE OPERATING INCORPORATED	3555
30015265820000 PECOS IRRIGATION COMPANY 'A'	ORYX ENERGY COMPANY	3555
30015227210000 CARRASCO COM	DELTA DRILLING COMPANY	3715
30015264600000 PARDUE FARMS	ORYX ENERGY COMPANY	3850
30015346210000 PARDUE B 8808 JV-P	BTA OIL PRODUCERS	3900
30015266490000 FEDERAL '10'	POGO PRODUCING COMPANY	3880
30015241060000 PECOS IRRIGATION CO	SUN EXPLORATION & PRODUCTION COMPANY	3905
30015262740000 PARDUE 'B' 8808 JV-P	BTA OIL PRODUCERS	4010
30015264480000 CAVINESS-PAINE	BIRD CREEK RESOURCES INCORPORATED	4135
30015267550000 URQUIDEZ	POGO PRODUCING COMPANY	4020
30015324930000 PARDUE 'B' 8808 JV-P	BTA OIL PRODUCERS	4130
30015238340000 URQUIDEZ COM	POGO PRODUCING COMPANY	4060
30015347310000 LOVING AIB STATE	YATES PETROLEUM CORPORATION	4225
30015378130000 LOVING AIB STATE	YATES PETROLEUM CORPORATION	4225
30015264860000 CAVINESS-PAINE	BIRD CREEK RESOURCES INCORPORATED	4360
30015264860001 CAVINESS PAINE	CHEVRON U S A INCORPORATED	4360
30015261510000 RGA	BIRD CREEK RESOURCES INCORPORATED	4510
30015233380000 GUITAR COM	DELTA DRILLING COMPANY	4540
	1	1 4340

CHEVRON U.S.A. INC
CB HAYS 10 3 FED COM 3H
NMNM 016331/NMNM 013233
SECTION 15, T235-R28E




1 MILE RADIUS MAP & WELL DATA


		<u> </u>	
30015263310000	RGA	BIRD CREEK RESOURCES INCORPORATED	4595
30015436530000	LOVING AIB STATE	YATES PETROLEUM CORPORATION	4485
30015346220000	PARDUE B 8808 JV-P	BTA OIL PRODUCERS	4580
30015024830000	CP PARDUE	WILLS NEIL	4630
30015354470000	LOVING AIB STATE	YATES PETROLEUM CORPORATION	4610
30015413900000	LOVING AIB STATE	YATES PETROLEUM CORPORATION	4610
30015413910000	LOVING AIB STATE	YATES PETROLEUM CORPORATION	4610
30015378140000	LOVING AIB STATE	YATES PETROLEUM CORPORATION	4630
30015358700000	PARDUE D 8808 JV-P	BTA OIL PRODUCERS	4730
30015440910000	EL TORO INVICTA 14	ROCKCLIFF OPERATING NEW MEXICO LLC	4815
30015440900000	EL TORO GIGANTE 23	ROCKCLIFF OPERATING NEW MEXICO LLC	4825
30015262930000	CARRASCO '14' FEE	RB OPERATING COMPANY	4920
30015262930001	CARRASCO 14	RAM ENERGY INCORPORATED	4920
30015268710000	FEDERAL '10'	POGO PRODUCING COMPANY	4820
30015401660000	HERITAGE 2 15	CHEVRON U S A INCORPORATED	4915
30015401667000	HERITAGE 2 15	CHEVRON U S A INCORPORATED	4915
30015440890000	EL TORO GIGANTE 23	ROCKCLIFF OPERATING NEW MEXICO LLC	4995
30015440890100	EL TORO GIGANTE 23	ROCKCLIFF OPERATING NEW MEXICO LLC	4995
30015440880000	EL TORO INVICTA 14	ROCKCLIFF OPERATING NEW MEXICO LLC	5005
30015244380000	NEL	POGO PRODUCING COMPANY	4900
30015346480000	NEL FEDERAL	POGO PRODUCING COMPANY	4910
30015238110000	STH CULBR BLFF UNT	DELTA DRILLING COMPANY	5045
30015238110001	SOUTH CULEBRA BLUFF :	RB OPERATING COMPANY	5045
30015238110002	SOUTH CULEBRA BLUFF	RAM ENERGY INCORPORATED	5045
30015303650000	SOUTH CULEBRA BLUFF '14'	RAM ENERGY INCORPORATED	5155
30015261820000	RGA	BIRD CREEK RESOURCES INCORPORATED	5175
30015269330000	N E L FEDERAL	POGO PRODUCING COMPANY	5060
30015267490000	PARDUE FARMS	ORYX ENERGY COMPANY	5120
30015235250000	NEL COM	POGO PRODUCING COMPANY	5130
30015235250001	NORTHEAST LOVING	POGO PRODUCING COMPANY	5130
30015235250001	NORTHEAST LOVING	POGO PRODUCING COMPANY	5130
30015264720001	ONSUREZ	RAM ENERGY INCORPORATED	. 5225
30015264720002	ONSUREZ	VANGUARD PERMIAN LIMITED LIABILITY CORP	5225
30015264720000	ONSUREZ	RB OPERATING COMPANY	5225
30015237590000	NEL FEDERAL	POGO PRODUCING COMPANY	5175
30015264060000	PARDUE 'D' 8808 JV-P FEE	BTA OIL PRODUCERS	5265

1 MILE RADIUS MAP & WELL DATA

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

NOTE:

Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

NOTE

Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance, New Mexico One Call www.nmonecall.org

PROPOSED PAD						
COURSE	BEARING	DISTANCE				
1	S 00° 18' 49" W	380.00'				
2	N 89° 41' 11" W	545.00'				
3	N 00° 18' 49" E	340.29'				
4	N 53° 49' 14" E	66.78'				
5	S 89° 41′ 11" E	491.31'				

NΜ	V PAD CORNE	R 1	N۷	V PAD CORNE	R 2
X=	580,930	NAD 27	X=	580,984	NAD 27
Y=	477,266		Y=	477,306	
LAT.	32.311849		LAT.	32.311957	
LONG.	104.071374		LONG.	104.071199	
X=	622,113	NAD83	X=	622,167	NAD83
Y=	477,326		Y=	477,365	
LAT.	32.311970		LAT.	32.312078	
LONG.	104.071869		LONG.	104.071695	
ELEVA.	TION +2993' N	IAVD 88	ELEVA	TION +2993' N	88 GVAI

N	NE PAD CORNER			SE PAD CORNER			W PAD CORN	ER
X=	581,475	NAD 27	X=	581,473	NAD 27	X=	580,928	NAD 27
Y=	477,303		Y=	476,923		Y=	476,926	
LAT.	32.311946		LAT.	32.310902		LAT.	32.310914	
LONG.	104.069609		LONG.	104.069619		LONG.	104.071383	
X=	622,658	NAD83	X≃	622,656	NAD83	X=	622,111	NAD83
Y=	477,362		Y=	476,982		Y=	476,985	:
LAT.	32.312067		LAT.	32.311023		LAT.	32.311034	
LONG.	104.070104		LONG.	104.070114		LONG.	104.071878	
ELEVATION +2992' NAVD 88			ELEVA	TION +2993' N	IAVD 88	ELEVA	TION +2992' N	AVD 88

SURFACE USE PLAT

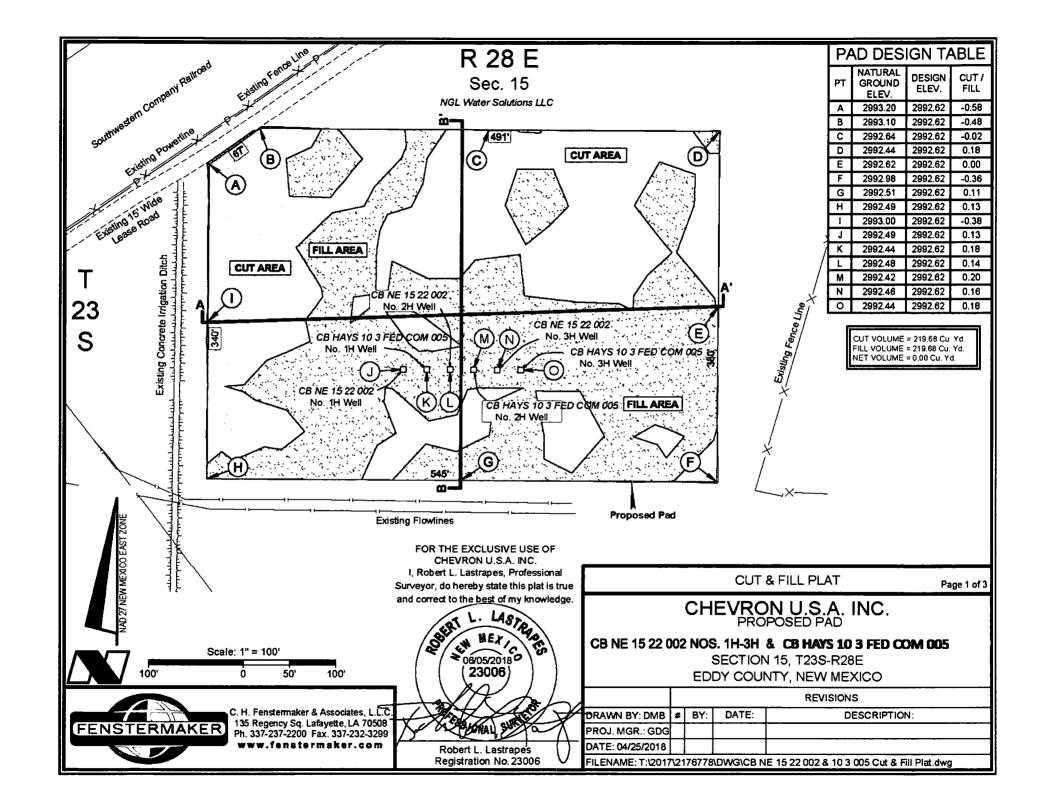
Page 2 of 2

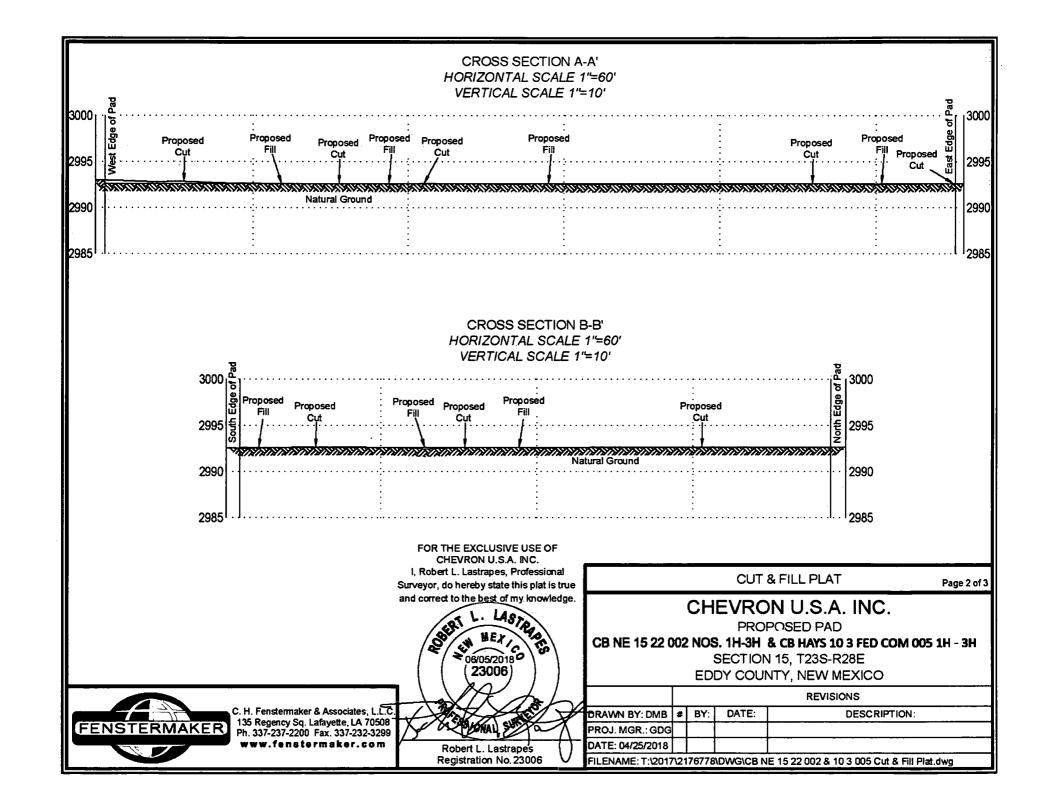
CHEVRON U.S.A. INC.

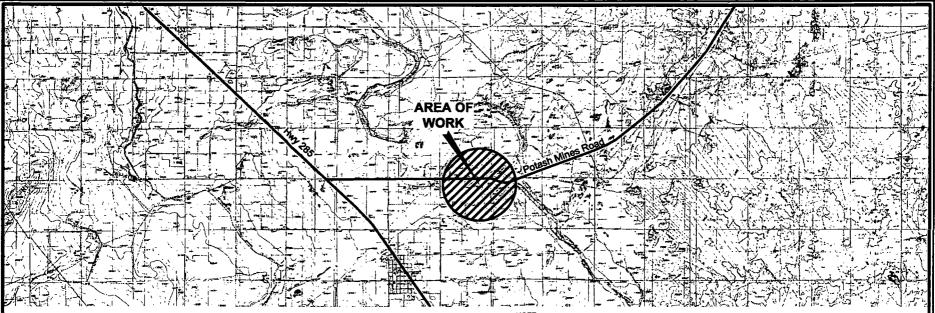
PROPOSED PAD

CB HAYS 10 3 FED COM 005 NO. 3H WELL SECTION 15, T23S-R28E

EDDY COUNTY, NEW MEXICO


FENSTERMAKER


C. H. Fenstermaker & Associates, L.L.C. 135 Regency Sq. Lafayette, LA 70508 Ph. 337-237-2200 Fax. 337-232-3299 www.fenstermaker.com Pohort I Lastranos


Robert L. Lastrapes Registration No. 23006

Surveyor of regular this place and correct to the best of program when

2		REVISIONS					
DRAWN BY: DMB	#	BY:	DATE:	DESCRIPTION:			
PROJ. MGR.: GDG	1	ADF	06/28/2018	NAME CHANGE			
DATE: 04/20/2018							
FILENAME: T:\2017\2176778\DWG\CB HAYS 10 3 FED COM 005 3H_Well Plat.dwg							

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

NOTE

- 1. Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance: New Mexico Call www.nmonecall.org.
- 2. The design pad elevation recommendation is based solely on a cut and fill (1:1 ratio) balance of the pad and does not include material required for the access roads. A detailed soil test and slope stability analysis shall be performed prior to construction to ensure proper compaction and working performance of the pad under the anticipated loadings. This material balance sheet does not constitute a foundation design and C. H. Fenstermaker & Associates, L.L.C. makes no warranty to the structural integrity of the site layout as shown. Fenstermaker also makes no recommendation or warranty about the layout relative to flood hazards, erosion control, or soil stability issues. Elevations refer to the North American Vertical Datum of 1988.
- 3.Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

Scale: 1" = 10,000' Scale: 1" = 10,000' 10,000' 10,000'

FENSTERMAKER

FOR THE EXCLUSIVE USE OF CHEVRON U.S.A. INC. I, Robert L. Lastrapes, Professional

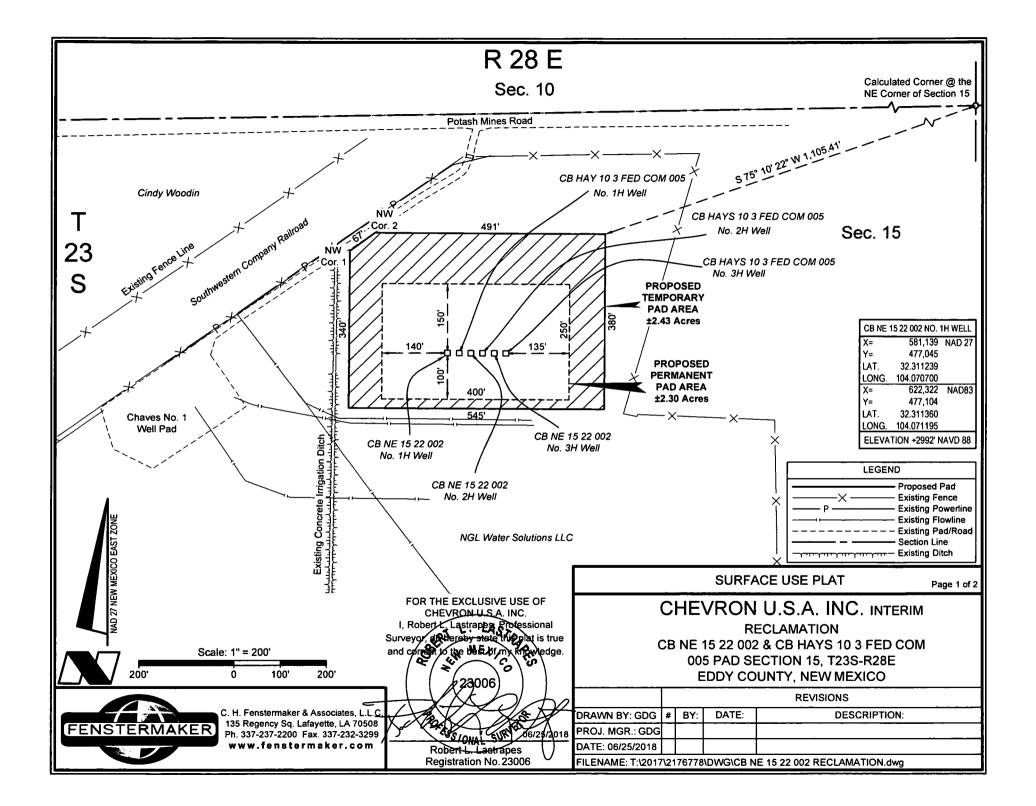
Surveyor, do hereby state this plat is true and correct to the best of my knowledge.

CUT & FILL PLAT

Page 3 of 3

CHEVRON U.S.A. INC.

PROPOSED PAD


CB NE 15 22 002 NOS. 1H-3H & CB HAYS 10 3 FED COM 1H - 3H SECTION 15, T23S-R28E

EDDY COUNTY, NEW MEXICO

		REVISIONS						
RAWN BY: DMB	#	BY:	DATE:	DESCRIPTION:				
ROJ. MGR.: GDG								
ATE: 04/25/2018								
LENAME: T:\2017\2176778\DWG\CB NE 15 22 002 & 10 3 005 Cut & Fill Plat.dwg								

C. H. Fenstermaker & Associates, L. C. 135 Regency Sq. Lafayette, LA 70508 Ph. 337-237-2200 Fax. 337-232-3299 www.fenstermaker.com

Robert L. Lastrapes Registration No. 23006

DISCLAIMER: At this time, C. H. Fenstermaker & Associates, L.L.C. has not performed nor was asked to perform any type of engineering, hydrological modeling, flood plain, or "No Rise" certification analyses, including but not limited to determining whether the project will impact flood hazards in connection with federal/FEMA, state, and/or local laws, ordinances and regulations. Accordingly, Fenstermaker makes no warranty or representation of any kind as to the foregoing issues, and persons or entities using this information shall do so at their own risk.

NOTE:

Please be advised, that while reasonable efforts are made to locate and verify pipelines and anomalies using our standard pipeline locating equipment, it is impossible to be 100 % effective. As such, we advise using caution when performing work as there is a possibility that pipelines and other hazards, such as fiber optic cables, PVC pipelines, etc. may exist undetected on site.

NOTE:

Many states maintain information centers that establish links between those who dig (excavators) and those who own and operate underground facilities (operators). It is advisable and in most states, law, for the contractor to contact the center for assistance in locating and marking underground utilities. For guidance, New Mexico One Call www.nmonecall.org

NA	V PAD CORNE	R 1	N۷	V PAD CORNE	R 2
X=	580,930	NAD 27	X=	580,984	NAD 27
Y=	477,266		Y=	477,306	
LAT.	32.311849		LAT.	32.311957	
LONG.	104.071374		LONG.	104.071199	
X=	622,113	NAD83	X=	622,167	NAD83
Y=	477,326		Y=	477,365	
LAT.	32.311970		LAT.	32.312078	
LONG.	104.071869		LONG.	104.071695	
ELEVA	TION +2993' N	IAVD 88	ELEVA	TION +2993' N	IAVD 88

N	NE PAD CORNER			SE PAD CORNER			N PAD CORN	ER
X=	581,475	NAD 27	X=	581,473	NAD 27	X=	580,928	NAD 27
Y=	477,303		Y=	476,923		Y=	476,926	
LAT.	32.311946		LAT.	32.310902		LAT.	32.310914	
LONG.	104.069609		LONG.	104.069619		LONG.	104.071383	
X=	622,658	NAD83	X=	622,656	NAD83	X=	622,111	NAD83
Y=	477,362		Y=	476,982		Y=	476,985	
LAT.	32.312067		LAT.	32.311023		LAT.	32.311034	
LONG.	104.070104		LONG.	104.070114		LONG.	104.071878	
ELEVA	TION +2992' N	IAVD 88	ELEVA	TION +2993' N	IAVD 88	ELEVA	TION +2992' N	IAVD 88

FOR THE EXCLUSIVE USE OF CHEVRON II S.A. INC.

I, Robert Lastranes, Professional Surveyor, and hereby state the post is the and consecution to the libertof, my included

23006

C. H. Fenstermaker & Associates, L.L.C. 135 Regency Sq. Lafayette, LA 70508 Ph. 337-237-2200 Fax. 337-232-3299 www.fenstermaker.com

Robert Lastrapes
Registration No. 23006

SURFACE USE PLAT

Page 2 of 2

CHEVRON U.S.A. INC. INTERIM

RECLAMATION

CB NE 15 22 002 & CB HAYS 10 3 FED COM 005 SECTION 15, T23S-R28E EDDY COUNTY, NEW MEXICO

FILENAME: T:\2017\2176778\DWG\CB NE 15 22 002 RECLAMATION.dwg

APD Surface Use Plan of Operations

Existing Roads

- The operator will improve or maintain existing roads in a condition the same as or better than before operations begin. The operator will repair pot holes, clear ditches, repair the crown, etc. All existing structures on the entire access route such as cattle guards, other range improvement projects, culverts, etc. will be properly repaired or replaced if they are damaged or have deteriorated beyond practical use. We will prevent and abate fugitive dust as needed, whether created by vehicular traffic, equipment operations, or wind events. BLM written approval will be acquired before application of surfactants, binding agents, or other dust suppression chemicals on roadways.
- Driving Directions From Loving, New Mexico. The location is approximately 2.3
 miles from the nearest town, which is Loving, New Mexico. From the intersection of
 HWY 285 (Pecos Highway) and SH 31 (Potash Mines Rd.) head east for 3 miles and
 turn right onto lease road directly east of train tracks. The location is 100 yards on
 the left down the lease road.

New or Reconstructed Access Roads - Survey plat

- There will be no new road construction for the well pad.
- Road Width: The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed 20'. The maximum width of surface disturbance shall not exceed 25'.
- Maximum Grade: 3%
- Crown Design: Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2%. The road shall conform to cross section and plans for typical road construction found in the BLM Gold Book.
- Turnouts: none needed
- Ditch Design: Ditching will be constructed on both sides of road.
- Cattle guards: none needed
- Major Cuts and Fills: 2:1 during drilling and completions. Cuts and fills taken back to 3:1 at interim.
- Type of Surfacing Material: Caliche

Location of Existing Wells

• 1-Mile radius map is attached

Location of Existing and/or Proposed Production Facilities

- Facilities: New facilities are proposed adjacent to the subject well pad in Section 15 (Central Tank Battery) and Section 9 (Compressor Station) T23S R28E.
- Pipelines: Buried pipelines will be laid from well(s) to proposed facilities.
- Powerlines: Power lines to be constructed from an XCEL Energy PME in Section 15 (along Yarbro Rd) to the Facilities.
 - o A ROW will be applied for through the BLM (if necessary).
 - o All construction activity will be confined to the approved ROW.
 - o Pipeline will run parallel to the road and will stay within approved ROW.

Location and Types of Water Supply

- Fresh water will be obtained from a private water source; the specific location of which to be provided upon request.
- A temporary 10" expanding pipe transfer line will run from pond along existing disturbance to well pad.
 - o Fresh water line will run parallel to existing disturbance and will stay within 10' of access road.
 - A BLM ROW will be applied for through the BLM by either Chevron or the water provider.

Construction Material

- Caliche will be used to construct well pad and roads. Material will be purchased from the nearest federal, state, or private permitted pit.
- 2 specific locations include:
 - o Onsurez Private caliche pits in Section 14 & Section 27, T23S R28E.
- The proposed source of construction material will be located and purchased by construction contractor.
 - o Payment shall be made by contractor prior to any removal of federal minerals material by contacting agent at (575) 234-5972.
 - Notification shall be given to BLM at (575) 234-5909 at least 3 working days prior to commencing construction of access road and/or well pad.

Methods for Handling Waste

- Drilling fluids and produced oil and water from the well during drilling and completion operations will be stored safely and disposed of properly in an NMOCD approved disposal facility.
- Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility. All trash on and around the well site will be collected for disposal.
- Human waste and grey water will be properly contained and disposed of properly at a state approved disposal facility.
- After drilling and completion operations, trash, chemicals, salts, frac sand and other
 waste material will be removed and disposed of properly at a state approved
 disposal facility.
- The well will be drilled utilizing a closed loop system. Drill cutting will be properly disposed of into steel tanks and taken to an NMOCD approved disposal facility.

Ancillary Facilities

A delivery point for gas sales is proposed adjacent to the Compressor Station in Section 9, T23S R28E.

Well Site Layout

- Surveyor Plat
 - o Exterior well pad dimensions are 380' x 545'.
 - o Interior well pad dimensions from point of entry (well head) of the easternmost well are listed on attached well plat. The pad will have a total of 6 wells, 3 of which penetrate BLM lands. Total disturbance area needed for construction of well pad will be 4.75 acres.
 - Topsoil placement is on the west where interim reclamation is planned to be completed upon completion of well and evaluation of best management practices.
 - o Cut and fill: will be minimal.

Plans for Surface Reclamation

Reclamation Objectives

- The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil; control erosion; and minimize habitat and forage loss, visual impact, and weed infestation, during the life of the well or facilities.
- The long-term objective of final reclamation is to return the land to a condition

similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources, and wildlife habitats. To ensure that the long-term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning, and vegetative productivity.

- The BLM will be notified at least 3 days prior to commencement of any reclamation procedures.
- If circumstances allow, interim reclamation and/or final reclamation actions will be completed no later than 6 months from when the final well on the location has been completed or plugged. We will gain written permission from the BLM if more time is needed.
- Reclamation will be performed by using the following procedures:

Interim Reclamation Procedures

- Within 6 months, Chevron will contact BLM Surface Management Specialists to devise the best strategies to reduce the size of the location. Current plans for interim reclamation include reducing the pad size to approximately 1.5 acres from the proposed size of 4.75 acres. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production. A plan will be submitted showing where interim reclamation will be completed in order to allow for safe operations, protection of the environment outside of drilled well, and following best management practices found in the BLM "Gold Book".
- In areas planned for interim reclamation, all the surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.
- Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BLM seed mixture (BLM #2), free of noxious weeds, will be used.
- Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.
- The interim reclamation will be monitored periodically to ensure that vegetation

has reestablished

Final Reclamation (well pad, buried pipelines, and power lines, etc.)

- Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- All surfacing material will be removed and returned to the original mineral pit or recycled to repair or build roads and well pads.
- All disturbed areas, including roads, pipelines, pads, production facilities, and
 interim reclaimed areas will be recontoured to the contour existing prior to initial
 construction or a contour that blends in distinguishably with the surrounding
 landscape. Topsoil that was spread over the interim reclamation areas will be
 stockpiled prior to recontouring. The topsoil will be redistributed evenly over the
 entire disturbed site to ensure successful revegetation.
- After all the disturbed areas have been properly prepared; the areas will be seeded with the proper BLM seed mixture (BLM #2), free of noxious weeds.
- Proper erosion control methods will be used on the entire area to control erosion, runoff and siltation of the surrounding area.

Surface Ownership

- Private Surface
 - Surface Owner NGL Water Solutions
- Nearest Post Office: Loving Post Office; 3 Miles

Other Information

- On-site performed by BLM NRS: Paul Murphy on 10/13/2017
- Cultural report attached: Complete (@BLM)
- Participating Agreement attached: N/A
- Erosion / Drainage: Drainage control system shall be constructed on the entire length of road by the use of any of the following: ditches, side hill out-sloping and in-sloping, lead-off ditches, culvert installation, or low water crossings.
- Exclosure fencing will be installed around open cellar to prevent livestock or large wildlife from being trapped after installation. Fencing will remain in place while no activity is present and until backfilling takes place.

Chevron Representatives

Primary point of contact:

Kevin Dickerson kevin.dickerson@chevron.com M- 432-250-4489

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Lined pit bond amount:

Additional bond information attachment:

PWD disturbance (acres):

Section 3 - Unlined Pits

Injection well mineral owner:

Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachment:	
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use?	
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Disso that of the existing water to be protected?	lved Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Injection PWD discharge volume (bbl/day):	

Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	
Surface Discharge NPDES Permit attachment:	
Surface Discharge site facilities information:	
Surface discharge site facilities map:	
Section 6 - Other	
Would you like to utilize Other PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Other PWD discharge volume (bbl/day):	
Other PWD type description:	
Other PWD type attachment:	
Have other regulatory requirements been met?	
Other regulatory requirements attachment:	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report 01/29/2019

Bond Information

Federal/Indian APD: FED

BLM Bond number: CA0329

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: