		NGI OIL CONSERVATI Artesia district	ION		
Form 3160-3 (June 2015)	ł	MAR 1 9 2019	FORM A OMB No. Expires: Jan	РРROVED , 1004-0137 шагу 31, 2018	
DEPARTMENT OF THE IN BUREAU OF LAND MANA	, NTEF NGEN	NIOR RECEIVED	5. Lease Serial No. NMNM0001165		
APPLICATION FOR PERMIT TO D	RILL	OR REENTER	6. If Indian, Allotee of	or Tribe Name	
				<u> </u>	
1a. Type of work: DRILL RE	EENTI	ER	7. If Unit or CA Agre	comont, Name and No.	
1b. Type of Well: Oil Well Gas Well Ot	her	_	8. Lease Name and V	Vell No.	
Ic. Type of Completion: Hydraulic Fracturing	ngle Z	one Multiple Zone	GLOCK 17/16 83D	A FEDERAL COM	
			^{2H} 325,	169	
2. Name of Operator MEWBOURNE OIL COMPANY		14744	9. API-Well No. 30 - 0	15-45794	
3a. Address PO Box 5270 Hobbs NM 88240	3b. P (575)	hone No. (include area code)	10, Field and Pool, o BONE SPRING / G	ETTY BONE SPRING	
4. Location of Well (Report location clearly and in accordance w	vith an	ny State requirements.*)	11. Sec., T. R. M. or	Blk. and Survey or Area	
At surface NENE / 800 FNL / 600 FEL / LAT 32.57856	97 / L	ONG -104.1077371	SEC 18 / T205 / R2	29E / NMP	
At proposed prod. zone NENE / 600 FNL / 100 FEL / LAT	Г 32.5	790965 / LONG -104.0717842			
14. Distance in miles and direction from nearest town or post offi 7 miles	ce*		12. County or Parish EDDY	13. Statc NM	
15. Distance from proposed* location to nearest property or lease line, ft.	16. N 2494	No of acres in lease - 17. Spaci 441 160	ig Unit dedicated to th	is well	
18. Distance from proposed location*	19. F	Proposed Depth 20,/BLM	/BIA Bond No. in filc	· _ · · · · · · · · · ·	
to nearest well, drilling, completed, 50 feet applied for, on this lease, ft.	9120 feet / 19918 feet FED: NM1693				
21. Elevations (Show whether DF, KDB, RT, GL, etc.)	22.1	Approximate date work will start*	23. Estimated duration	n	
3265 feet	08/2	<u>4/2018</u>) jv	60 days		
(<u></u>)	24.	. Attachments			
The following, completed in accordance with the requirements of (as applicable)	f Onsh	ore.Oil and Gas Order No. 1, and the I	Iydraulic Fracturing r	ale per 43 CFR 3162.3-3	
 Well plat certified by a registered surveyor. A Drilling Plan. 		4. Bond to cover the operation Item 20 above).	ns unless covered by an	existing bond on file (see	
 A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office 	m Lan).>	ds, the 5. Operator certification. 6. Such other site specific info BLM.	mation and/or plans as	may be requested by the	
25. Signature (Electronic Submission)		Name (Printed/Typed) Bradley Bishop / Ph: (575)393-59	05	Date 08/29/2018	
Title Regulatory					
Approved by (Signature) (Electronic Submission)		Name (Printed/Typed) Cody Layton / Ph: (575)234-5959		Date 02/28/2019	
Title Assistant, Field Manager Lands & Minerals		Office CARLSBAD			
Application approval does not warrant or certify that the applican applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt hold	ls legal or equitable title to those rights	in the subject lease w	hich would entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, n of the United States any false, fictitious or fraudulent statements	nake it or rep	t a crime for any person knowingly and resentations as to any matter within its	i willfully to make to a jurisdiction.	any department or agency	

•

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- Variance for the operator to use a diverter is approved.
- 2. The minimum required fill of cement behind the 13-3/8 inch 1st intermediate casing is:

Cement to surface. If cement does not circulate see B.1.a, c-d above.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst.

- In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- Special Capitan Reef requirements. If lost circulation (50% or greater) occurs below the Base of the Salt, the operator shall do the following:
 (Use this for 3 string wells in the Capitan Reef, if 4 string well ensure FW based mud used across the capitan interval)
 - Switch to fresh water mud to protect the Capitan Reef and use fresh water mud until setting the intermediate casing. The appropriate BLM office is to be notified for a PET to witness the switch to fresh water.
 - Daily drilling reports from the Base of the Salt to the setting of the intermediate casing are to be submitted to the BLM CFO engineering staff via e-mail by 0800 hours each morning. Any lost circulation encountered is to be recorded on these drilling reports. The daily drilling report should show mud volume per shift/tour. Failure to submit these reports will result in an Incidence of Non-Compliance being issued for failure to comply with the Conditions of Approval. If not already planned, the operator shall run a caliper survey for the intermediate well bore and submit to the appropriate BLM office.
- 3. The minimum required fill of cement behind the 9-5/8 inch 2^{nd} intermediate casing is:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

Page 2 of 8

CLASS H CEMENT WILL BE USE FOR THE PRODUCTION CASING AND LINER

- 4. The minimum required fill of cement behind the 7 inch production casing is:
 - Cement should tie-back at 1767(1283ft) feet (which is 50ft above the Capitan Reef) into the previous casing. Operator shall provide method of verification.
- 5. The minimum required fill of cement behind the 4-1/2 inch production casing is:
 - Cement should tie-back **100 feet** into the previous casing. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
 - 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 2nd intermediate casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

Page 3 of 8

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).

t

- b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.

Page 4 of 8

- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log.
- 3. <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

1

- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be

Page 5 of 8

tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.

- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

1

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
- e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.

Page 6 of 8

- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
 - e. The results of the test shall be reported to the appropriate BLM office.
 - f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.

Page 7 of 8

h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

ZS 021519

Page 8 of 8

ŗ

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	MEWBOURNE OIL COMPANY
LEASE NO.:	NMNM0001165
WELL NAME & NO.:	GLOCK 17 16 B3DA FEDERAL COM 2H
SURFACE HOLE FOOTAGE:	800'/N & 600'/E
BOTTOM HOLE FOOTAGE	600'/N & 100'/E
LOCATION:	SECTION 18, T20S, R29E, NMPM
COUNTY:	EDDY

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

🗌 General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
🔀 Special Requirements
Hydrology
Cave/Karst
Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
Production (Post Drilling)
Well Structures & Facilities
Interim Reclamation
Final Abandonment & Reclamation

Page 1 of 14

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 2 of 14

V. SPECIAL REQUIREMENT(S)

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production:

Construction:

.

General Construction:

- No blasting
- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave passages, or voids are penetrated during construction, and no additional construction shall occur until clearance has been issued by the Authorized Officer.
- All linear surface disturbance activities will avoid sinkholes and other karst features to lessen the possibility of encountering near surface voids during construction, minimize changes to runoff, and prevent untimely leaks and spills from entering the karst drainage system.
- All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

Pad Construction:

- The pad will be constructed and leveled by adding the necessary fill and caliche no blasting.
- The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.
- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g., caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised (i.e. an access road crossing the berm cannot be lower than the berm height).

Page 3 of 14

• Following a rain event, all fluids will vacuumed off of the pad and hauled offsite and disposed at a proper disposal facility.

Tank Battery Construction:

- The pad will be constructed and leveled by adding the necessary fill and caliche no blasting.
- All tank battery locations and facilities will be lined and bermed.
- The liner should be at least 20 mil in thickness and installed with a 4 oz. felt backing, or equivalent, to prevent tears or punctures.
- Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.

Road Construction:

- Turnout ditches and drainage leadoffs will not be constructed in such a manner as to alter the natural flow of water into or out of cave or karst features.
- Special restoration stipulations or realignment may be required if subsurface features are discovered during construction.

Buried Pipeline/Cable Construction:

• Rerouting of the buried line(s) may be required if a subsurface void is encountered during construction to minimize the potential subsidence/collapse of the feature(s) as well as the possibility of leaks/spills entering the karst drainage system.

Powerline Construction:

- Smaller powerlines will be routed around sinkholes and other karst features to avoid or lessen the possibility of encountering near surface voids and to minimize changes to runoff or possible leaks and spills from entering karst systems.
- Larger powerlines will adjust their pole spacing to avoid cave and karst features.
- Special restoration stipulations or realignment may be required if subsurface voids are encountered.

Surface Flowlines Installation:

• Flowlines will be routed around sinkholes and other karst features to minimize the possibility of leaks/spills from entering the karst drainage system.

Leak Detection System:

- A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing electronic sensors to alarm when a leak is present.
- A leak detection plan will be submitted to BLM that incorporates an automatic shut off system (see below) to minimize the effects of an undesirable event that could negatively sensitive cave/karst resources.

Page 4 of 14

• Well heads, pipelines (surface and buried), storage tanks, and all supporting equipment should be monitored regularly after installation to promptly identify and fix leaks.

Automatic Shut-off Systems:

• Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and groundwater concerns:

Closed Loop System:

- A closed loop system using steel tanks will be utilized during drilling no pits
- All fluids and cuttings will be hauled off-site and disposed of properly at an authorized site

Rotary Drilling with Fresh Water:

• Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

• The kick off point for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

- ALL lost circulation zones between surface and the base of the cave occurrence zone will be logged and reported in the drilling report.
- If a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cave-bearing zone, regardless of the type of drilling machinery used, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

- Additional plugging conditions of approval may be required upon well abandonment in high and medium karst potential occurrence zones.
- The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

• The operator will perform annual pressure monitoring on all casing annuli and reported in a sundry notice.

Page 5 of 14

If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Hydrology:

The entire well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. The compacted berm shall be constructed at a minimum of 12 inches with impermeable mineral material (e.g. caliche). Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion. Stockpiling of topsoil is required. The top soil shall be stockpiled in an appropriate location to prevent loss of soil due to water or wind erosion and not used for berming or erosion control. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

A leak detection plan will be submitted to the BLM Carlsbad Field Office for approval prior to pipeline installation. The method could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Page 6 of 14

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PITS)

Page 7 of 14

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Page 8 of 14

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\frac{400'}{4\%}$ + 100' = 200' lead-off ditch interval

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 9 of 14

Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

۱

Page 10 of 14

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. <u>Use a maximum netting mesh size of 1 ½ inches.</u>

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

ł

Containment Structures

Page 11 of 14

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, <u>Shale Green</u> from the BLM Standard Environmental Color Chart (CC-001: June 2008).

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.

Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

Page 12 of 14

After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Seed Mixture 1 for Loamy Sites

Holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed shall be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed shall be either certified or registered seed. The seed container shall be tagged in accordance with State law(s) and available for inspection by the Authorized Officer.

Seed shall be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture shall be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). Holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed shall be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre shall be doubled. The seeding shall be repeated until a satisfactory stand is established as determined by the Authorized Officer. Evaluation of growth may not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Bradley Bishop		Signed on: 08/29/2018
Title: Regulatory		
Street Address: PO Box	5270	
City: Hobbs	State: NM	Zip: 88240
Phone: (575)393-5905		
Email address: bbishop(@mewbourne.com	
Field Represe	ntative	
Representative Name	:	
Street Address:		
City:	State:	Zip:
Phone:		
Email address:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

ALL FILL

APD ID: 10400030498

Operator Name: MEWBOURNE OIL COMPANY

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Type: OIL WELL

Submission Date: 08/29/2018 Well Number: 2H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

~ ~ ~ ~

Section 1 - General		
APD ID: 10400030498	Tie to previous NOS?	Submission Date: 08/29/2018
BLM Office: CARLSBAD	User: Bradley Bishop	Title: Regulatory
Federal/Indian APD: FED	Is the first lease penetra	ted for production Federal or Indian? FED
Lease number: NMNM0001165	Lease Acres: 2494.41	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agreen	nent:
Agreement number:		
Agreement name:		
Keep application confidential? YES		
Permitting Agent? NO	APD Operator: MEWBOU	URNE OIL COMPANY
Operator letter of designation:	Glock17_16B3DAFedCom2H_oper	ratorletterofdesignation_20180523083600.pdf

Operator Info

Operator Organization Name: MEWBOURNE OIL COMPANY

Operator Address: PO Box 5270

Operator PO Box:

Operator City: Hobbs State: NM

Operator Phone: (575)393-5905

.

.

.. .

Operator Internet Address:

Section 2 - Well Information

. . .

 Well in Master Development Plan? NO
 Mater Development Plan name:

 Well in Master SUPO? NO
 Master SUPO name:

 Well in Master Drilling Plan? NO
 Master Drilling Plan name:

 Well Name: GLOCK 17/16 B3DA FEDERAL COM
 Well Number: 2H
 Well API Number:

 Field/Pool or Exploratory? Field and Pool
 Field Name: BONE SPRING
 Pool Name: GETTY BONE SPRING

Zip: 88240

A 110C 101 5

Operator Name: MEWBOURNE OIL COMPANY Well Name: GLOCK 17/16 B3DA FEDERAL COM

•

.

Well Number: 2H

Describe other minerals:					
Is the proposed well in a Helium produc	ction area? N	Use Existing Well Pad? I	NO New surface disturbance?		
Type of Well Pad: SINGLE WELL		Multiple Well Pad Name:	Number:		
Well Class: HORIZONTAL		Number of Legs:			
Well Work Type: Drill					
Well Type: OIL WELL					
Describe Well Type:					
Well sub-Type: APPRAISAL					
Describe sub-type:					
Distance to town: 7 Miles	Distance to ne	arest well: 50 FT	Distance to lease line: 150 FT		
Reservoir well spacing assigned acres	Measurement	: 160 Acres			
Well plat: GLOCK1716B3DAFEDERA	LCOM2H_WE	LLPLAT_20180829152546.	pdf		
Well work start Date: 08/24/2018		Duration: 60 DAYS			

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	VS-Foot	VS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	Ш	DVT
SHL Leg #1	800	FNL	600	FEL	205	29E	18	Aliquot NENE	32.57856 97	- 104.1077 371	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 000116 5	326 5	0	0
KOP Leg #1	600	FNL	600	FEL	20S	29E	18	Aliquot NENE	32.57911 12	- 104.1077 39	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 000116 5	- 530 2	857 0	856 7
PPP Leg #1	600	FNL	100	FWL	20S	29E	17	Aliquot NWN W	32.57911 06	- 104.1054 632	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 000116 5	- 578 1	954 4	904 6

Operator Name: MEWBOURNE OIL COMPANY Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

•

۰.

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	600	FNL	0	FWL	20S	29E	16	Aliquot NWN W	32.57910 46	- 104.0886 107	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 055477 1	. 581 8	147 35	908 3
EXIT Leg #1	600	FNL	100	FEL	205	29E	16	Aliquot NENE	32.57909 65	- 104.0717 842	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 055477 1	- 585 5	199 18	912 0
BHL Leg #1	600	FNL	100	FEL	20S	29E	16	Aliquot NENE	32.57909 65	- 104.0717 842	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 055477 1	- 585 5	199 18	912 0

United States Department of the Interior Bureau of Land Management Carlsbad Field Office 620 E Greene Street Carlsbad, New Mexico 88201-1287

Statement Accepting Responsibility for Operations

Operator Name:	Mewbourne Oil Company
Street or Box:	P.O. Box 5270
City, State:	Hobbs, New Mexico
Zip Code:	88241

.

.

The undersigned accepts all applicable terms, conditions, stipulations, and restrictions concerning operations conducted of the leased land or portion thereof, as described below.

Lease Number:	NMNM 0001165, NMNM 0554771
Legal Description of Land:	Section 18, T20S, R29E, Eddy County, New Mexico. Location @ 800 FNL & 600 FEL
Formation (if applicable):	Bone Spring
Bond Coverage:	\$150,000
BLM Bond File:	NM1693 nationwide, NMB000919

Fradly C. Brilip

Authorized Signature:_

Name: Bradley Bishop Title: Regulatory Manager

Date: <u>5-23-18</u>

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

1

APD ID: 10400030498

Submission Date: 08/29/2018

Operator Name: MEWBOURNE OIL COMPANY

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Type: OIL WELL

Well Number: 2H

Well Work Type: Drill

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Geologic Formations

Formation	Formation Name	Elevation	True Vertical	Measured	Lithologies	Mineral Resources	Producing Formation
1	UNKNOWN	3265	27	27	Lindiogios	NONE	No
2	TOP SALT	2896	420	420	SALT	NONE	No
3	BASE OF SALT	2522	794	794	SALT	NONE	No
4	YATES	2305	1011	1011	SANDSTONE	NATURAL GAS,OIL	No
5	CAPITAN REEF	2089	1227	1227	LIMESTONE,DOLOMIT E	USEABLE WATER	No
6	DELAWARE	58	3258	3258	LIMESTONE	NATURAL GAS,OIL	No
7	BONE SPRING	-2416	5732	5732	LIMESTONE, SHALE	NATURAL GAS,OIL	No
8	BONE SPRING 1ST	-3495	6811	6811	SANDSTONE	NATURAL GAS,OIL	No
9	BONE SPRING 2ND	-4152	7468	7468	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 3RD	-5421	8737	8737		NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

ressure Rating (PSI): 5M

Rating Depth: 19918

quipment: Annular, Pipe Ram, Blind Ram

tequesting Variance? YES

'ariance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. Anchors re not required by manufacturer. A variance is also requested for the use of a multi-bowl wellhead. See attached chematics.

esting Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure idicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the vorking pressure listed in the table above. If the system is upgraded all the components installed will be functional and sted. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out f the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly and choke lines and choke manifold.

Operator Name: MEWBOURNE OIL COMPANY

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Choke Diagram Attachment:

Glock_17_16_B3DA_Fed_Com_2H_5M_BOPE_Choke_Diagram_20180829140604.pdf

BOP Diagram Attachment:

Glock_17_16_B3DA_Fed_Com_2H_5M_BOPE_Schematic_20180829140628.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	26	20.0	NEW	API	N	0	375	0	375			375	J-55	94	BUTT	3.03	12.3	DRY	39.7 7	DRY	41.8 9
2	INTERMED IATE	17.5	13.375	NEW	API	N	0	950	0	950			950	H-40	48	STC	1.56	3.5	DRY	7.06	DRY	11.8 6
3	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3050	0	3050			3050	J-55	36	LTC	1.45	2.52	DRY	4.13	DRY	5.14
4	PRODUCTI ON	8.75	7.0	NEW	API	N	0	9315	0	9044			9315	P- 110	26	LTC	1.39	2.23	DRY	2.64	DRY	3.43
5	LINER	6.12 5	4.5	NEW	API	N	8570	19918	8567	9120			11348	Р- 110	13.5	LTC	2.25	2.62	DRY	2.75	DRY	2.21

Casing Attachments

Casing ID: 1

String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Glock_17_16_B3DA_Fed_Com_2H_Csg_Assumptions_20180829140945.doc

Operator Name: MEWBOURNE OIL COMPANY Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Casing Attachmo	ents
Casing ID:	2 String Type: INTERMEDIATE
Inspection D	ocument:
Spec Docum	ent:
Tapered Stri	ng Spec:
Casing Desig	gn Assumptions and Worksheet(s):
Glock_	17_16_B3DA_Fed_Com_2H_Csg_Assumptions_20180829141049.doc
Casing ID:	3 String Type: INTERMEDIATE
Inspection D	ocument:
Spec Docum	ient:
Tapered Stri	ng Spec:
Casing Desig	gn Assumptions and Worksheet(s):
Glock_	17_16_B3DA_Fed_Com_2H_Csg_Assumptions_20180829141155.doc
Casing ID: Inspection D	4 String Type: PRODUCTION
Spec Docum	ient:
Tapered Stri	ng Spec:
Casing Desig	gn Assumptions and Worksheet(s):
Glock_	17_16_B3DA_Fed_Com_2H_Csg_Assumptions_20180829141303.doc

Operator Name: MEWBOURNE OIL COMPANY **Well Name:** GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Casing Attachments

Casing ID: 5 String Type:LINER

Inspection Document:

.

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Glock_17_16_B3DA_Fed_Com_2H_Csg_Assumptions_20180829141437.doc

Section	4 - Ce	emen	t								
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	286	410	2.12	12.5	869	100	Class C	Gel, Salt, LCM, Extender
SURFACE	Tail		286	375	200	1.34	14.8	268	100	Class C	Retarder
NTERMEDIATE	Lead	1200	0	610	135	2.12	12.5	286	25	Class C	Salt, Gel, Extender, LCM
NTERMEDIATE	Tail		610	1200	200	1.34	14.8	268	25	Class C	Retarder
NTERMEDIATE	Lead		0	689	340	2,12	12.5	721	25	Class C	Salt, Gel, Extender, LCM
NTERMEDIATE	Tail		689	950	200	1.34	14.8	268	25	Class C	Retarder
NTERMEDIATE	Lead	1200	1200	2365	220	2.12	12.5	466	25	Class C	Salt, Gel, Extender, LCM
NTERMEDIATE	Tail		2365	3050	200	1.34	14.8	268	25	Class C	Retarder
RODUCTION	Lead	3250	1175	2365	135	2.12	12.5	286	25	Class C	Gel, Retarder, Defoamer, Extender
RODUCTION	Tail		2365	3250	100	1.34	14.8	134	25	Class C	Retarder
RODUCTION	Lead	3250	3250	6803	320	2.12	12.5	678	25	Class C	Gel, Retarder, Defoamer, and Extender

Operator Name: MEWBOURNE OIL COMPANY

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
RODUCTION	Tail		6803	9315	400	1.18	15.6	472	25	Class H	Retarder, Fluid Loss, Defoamer
.INER	Lead		8570	1991 8	450	2.97	11.2	1337	25	Class H	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-Settling Agent

Section 5 - Circulating Medium

iud System Type: Closed

Vill an air or gas system be Used? NO

escription of the equipment for the circulating system in accordance with Onshore Order #2:

liagram of the equipment for the circulating system in accordance with Onshore Order #2:

rescribe what will be on location to control well or mitigate other conditions: Lost circulation material Sweeps Mud cavengers in surface hole

٦

escribe the mud monitoring system utilized: Visual monitoring

	Circ	ulating Mediu	um Ta	able							
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gei Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	375	SPUD MUD	8.6	8.8		-					
375	950	SALT SATURATED	10	10	:				·		
950	9120	WATER-BASED MUD	8.6	10	***						

Operator Name: MEWBOURNE OIL COMPANY

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Section 6 - Test, Logging, Coring

ist of production tests including testing procedures, equipment and safety measures:

vill run GR/CNL from KOP (8570') to surface

ist of open and cased hole logs run in the well:

NL,DS,GR,MWD,MUDLOG

oring operation description for the well:

lone

Section 7 - Pressure

Inticipated Bottom Hole Pressure: 4742

Anticipated Surface Pressure: 2959.78

Inticipated Bottom Hole Temperature(F): 150

nticipated abnormal pressures, temperatures, or potential geologic hazards? NO

escribe:

iontingency Plans geoharzards description:

contingency Plans geohazards attachment:

lydrogen Sulfide drilling operations plan required? YES

lydrogen sulfide drilling operations plan:

Glock_17_16_B3DA_Fed_Com_2H_H2S_Plan_20180829143619.pdf

Section 8 - Other Information

roposed horizontal/directional/multi-lateral plan submission:

Glock_17_16_B3DA_Fed_Com_2H_Dir_Plan_20180829143646.pdf Glock_17_16_B3DA_Fed_Com_2H_Dir_Plot_20180829143647.pdf Ither proposed operations facets description:

Ither proposed operations facets attachment:

Glock_17_16_B3DA_Fed_Com_2H_Drlg_Program_20180829143701.doc Glock_17_16_B3DA_Fed_Com_2H_Flex_Line_Specs_20180829143716.pdf Glock_17_16_B3DA_Fed_Com_2H_Multi_Bowl_WH_20180829143720.pdf Glock_17_16_B3DA_Fed_Com_2H_C101_20180829145408.pdf

Ither Variance attachment:

Drawing not to scale

.

Ŧ	·		,		
					•
e.	ENGINEERING				
	& SERVICES				
ES E & S NOR	TH AMERICA, INC.		•	PHONE: 361-887-9807	
44 in Sikeei Pus Christi	. TEXAS 78405			EMAIL: Tim.Cantu@gate	s.com
				WEB: www.gates.com	
			·		
10K C	EMENTING AS	SSEMBLY PR	LESSURE TE	ST CERTIFICATE	
tomer :	AUSTIN DISTRIB	KATING T	est Date:	4/30/2015	
tomer Ref. :	4060578	H	lose Serial No.; Imated Bc	D-043015-7	
Dice No. :		·	reaced by:		
		40/3 24	8 OCK4 1/1610VELCE	/F 1 6	─┤│
duct Description:	L	1063.54	0.VUNT. 1/ 1010NFLOC/		
Fitting 1 :	4 1/16 10K F	ĩG E	ind Fitting 2 :	4 1/16 10K FLG]
es Part No. :	4773-6290) A	ssembly Code :	L36554102914D-043015-7	<u> </u>
		I IT	lest Pressure :	15,000 PSI	14 1
rking Pressure :	10,000 PS		he following ho	se assembly has been teste	ed to
iting Pressure : Gates E & S I the Gates Oil ydrostatic test to 15,000 psi	10,000 PS North America, In field Roughneck Ag t per API Spec 7K/Q in accordance with minimum of 2	ic. certifies that t reement/Specific 21, Fifth Edition, . this product nun 2.5 times the wor	he following host ation requireme June 2010, Test nber. Hose burst rking pressure p	se assembly has been teste nts and passed the 15 min pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds ter Table 9.	ed to ute ble 9 the
rking Pressure : Gates E & S f the Gates Oil ydrostatic test to 15,000 psi	10,000 PS North America, In field Roughneck Ag t per API Spec 7K/Q In accordance with minimum of 2	ic. certifies that t reement/Specific 21, Fifth Edition, . this product nun 2.5 times the wor	he following ho ation requireme June 2010, Test nber. Hose burs rking pressure p	se assembly has been teste nts and passed the 15 min pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds er Table 9.	ed to ute ble 9 the
rking Pressure : Sates E & S I the Gates Oil ydrostatic test to 15,000 psi	10,000 PS North America, In field Roughneck Ag t per API Spec 7K/Q in accordance with minimum of 2	ic. certifies that t reement/Specific 21, Fifth Edition, . this product nun 2.5 times the wor	he following ho ation requireme June 2010, Test nber. Hose burs rking pressure p	se assembly has been teste nts and passed the 15 min pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9.	ed to ute ble 9 the
ing Pressure : Sates E & S I the Gates Oil ydrostatic test to 15,000 psi allity Manager :	10,000 PS North America, In field Roughneck Ag t per API Spec 7K/Q In accordance with minimum of 2 QUALITY 4/30/200	re. certifies that t reement/Specific)1, Fifth Edition, this product nun 2.5 times the wor	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date :	se assembly has been teste nts and passed the 15 min pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds er Table 9. PRODUCTION	ed to ute ble 9 the
Aking Pressure : Gates E & S I the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	rc. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor 15	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9. PRODUCTION 4/30/2018	ed to ute ble 9 the
Aking Pressure : Sates E & S I the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 minut pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds er Table 9. PRODUCTION 4/30/2018	ed to ute ble 9 the
Aking Pressure : Sates E & S I the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	rec. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor 15	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds per Table 9. PRODUCTION 4/30/2018 FormPTC-01	ed to ute ble 9 the
Aking Pressure : Gates E & S M the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	rc. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor 15 15 15 15	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9. PRODUCTION 4/30/2016 FormPTC-01	ed to ute ble 9 the
Ality Manager : te : nature :	10,000 PS	rec. certifies that t reement/Specific 21, Fifth Edition, . this product nun 2.5 times the wor	he following ho: ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 minuts pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds per Table 9. PRODUCTION 4/30/2015 Form.PTC - 01	ed to ute ble 9 the 1 Rev.0 2
Aking Pressure : Gates E & S M the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	rc. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9. PRODUCTION 4/30/2016 FormCPIC-01 FormCPIC-01	ed to ute ble 9 the
Allity Manager : te : nature :	10,000 PS	reement/Specific 21, Fifth Edition, . this product nun 2.5 times the wor	he following ho: ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds per Table 9. PRODUCTION 4/30/2019 FormPTC - 01 FormPTC - 01	ed to ute ble 9 the 1 Rev.D 2
Aking Pressure : Gates E & S I the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	rc. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9. PRODUCTION 4/30/2016 FornCPIC-01	ed to ute ble 9 the 1 Rev.0 2
Aking Pressure : Sates E & S I the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	ID,000 PS	reement/Specific 21, Fifth Edition, . this product num 2.5 times the wor	he following ho: ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds per Table 9. PRODUCTION 4/30/2015 Forn.PTC - 01 Forn.PTC - 01	ed to ute ble 9 the 1 Rev.D 2
Ality Manager : te : nature :	10,000 PS	rc. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor	he following ho ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9. PRODUCTION 4/30/2016 FornCPIC-01 FornCPIC-01	ed to ute ble 9 the 1 Rev.0 2
rking Pressure : Sates E & S I the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : Inature :	10,000 PS	reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 minus pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds per Table 9. PRODUCTION 4/30/2018 FormPTC - 01 FormPTC - 01	ed to ute ble 9 the 1 Rev.D 2
rking Pressure : Gates E & S P the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	10,000 PS	rc. certifies that t reement/Specific 21, Fifth Edition, this product nun 2.5 times the wor	he following ho ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds the Table 9. PRODUCTION 4/30/2016 FornCPIC-01 FornCPIC-01	ed to ute ble 9 the 1 Rev.0 2
Aking Pressure : Gates E & S I the Gates Oil ydrostatic tesh to 15,000 psi ality Manager : te : nature :	ID,000 PS	Y	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 minus pressure 9.6.7 and per Ta t pressure 9.6.7.2 exceeds per Table 9. PRODUCTION 4/30/2019 FormPTC - 01 FormPTC - 01	ed to ute ble 9 the I Rev.D 2
Aking Pressure : Sates E & S P the Gates Oil ydrostatic test to 15,000 psi ality Manager : te : nature :	ID,000 PS	reement/Specific 21, Fifth Edition, . this product num 2.5 times the wor	he following hos ation requireme June 2010, Test nber. Hose burs rking pressure p Produciton: Date : Signature :	se assembly has been teste ints and passed the 15 mini- pressure 9.6.7 and per Ta- t pressure 9.6.7.2 exceeds per Table 9.	ed to ute ble 9 the 1 Rev.D 2

۱ .

•

•

Drawing not to scale

				•
Anna.	>	ENGINEFRING 8 SERVICES		
ES E & S NOR 44TH STREET	TH AM	ERICA, INC.	• • •	PHONE: 361-887-9807 FAX: 361-887-0812
PUS CHRISTI	, TEXA	S 78 <u>4</u> 05		WEB: www.gates.com
10K C	EME	NTING ASSEMBLY	PRESSURE 1	TEST CERTIFICATE
				disapate l
stomer :	 		Test Date:	4/30/2015
stomer Ref. :		500506	riose Senai NO.: Created By:	JUSTIN CROPPER
VILE 11U, .	L			
duct Description:		1	0K3.548.0CK4.1/1610KFLC	ie/e le
		A 1/16 10K D.C	End Sittles 7 1	4 1/15 10K FLG
d Fitting 1 :		4 1/10 10K FLG	Eno ritting 2 ;	136554102914D-043015-7
tes Part No. :		10.000 PSt	Test Pressure :	15,000 PSI
Catas E.S. C.I		Amorica The cortifier I	bat the following h	oce accembly has been tested to
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi	North Ifield R it per <i>i</i> i in acc	America, Inc. certifies to oughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the	hat the following h ecification requirem ion, June 2010, Te t number. Hose bu	nose assembly has been tested to ments and passed the 15 minute ist pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the oper Table 9.
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi	North ifield R it per <i>i</i> i in acc	America, Inc. certifies to coughneck Agreement/Spa API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the	that the following h ecification requirem ion, June 2010, Te t number. Hose bu e working pressure	nose assembly has been tested to ments and passed the 15 minute est pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the per Table 9.
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi	North Ifield R It per <i>i</i> I in acc	America, Inc. certifies to coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Production:	PRODUCTION
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager :	North Ifield R it per / i in acc	America, Inc. certifies (coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edil cordance with this produce minimum of 2.5 times the QUALITY	that the following h ecification requirem tion, June 2010, Te t number. Hose bu working pressure Producton: Date :	PRODUCTION
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield R It per / I in acc	America, Inc. certifies to coughneck Agreement/Spin PI Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/3072015	Produciton: bate : Signature :	PRODUCTION
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield R I per A I in acc	America, Inc. certifies (coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edil cordance with this produce minimum of 2.5 times the QUALITY 4/3072015 4/3072015	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Producton: Date : Signature :	PRODUCTION
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield F it per J i in acc	America, Inc. certifies to coughneck Agreement/Spin PI Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/30/2015	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure working pressure Producton: Date : Signature :	PRODUCTION A/30/2016 Promute - 01 Rev.02
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield R it per A i in acc	America, Inc. certifies to coughneck Agreement/Spin PI Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/3072015	hat the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Produciton: bate : Signature :	PRODUCTION A/30/2016 Form-PTC - 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield R I in acc	America, Inc. certifies to coughneck Agreement/Spin API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/3af2015 4/3af2015	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Producton: Date : Signature :	PRODUCTION 4/30/2016 Form-PTC - 01 Rev.D2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield R I in acc	America, Inc. certifies (coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edil cordance with this produce minimum of 2.5 times the QUALITY 4/3072015 4/3072015	hat the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Produciton: Date : Signature :	PRODUCTION A/30/2016 Propriet - 01 Rev.D2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield F i in acc	America, Inc. certifies to coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/30/2015	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Producton: Date : Signature :	PRODUCTION A/30/2016 Form PTC - 01 Rev.D 2 PROFUCTION PRODUCTION PRODUCTION A/30/2016 PRODUCTION PRODUCTION A/30/2016 Form PTC - 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield F i in acc	America, Inc. certifies to coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/30/2015	hat the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Produciton: Date : Signature :	PRODUCTION A/30/2016 Form PTC - 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield R I in acc	America, Inc. certifies (coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edil cordance with this produce minimum of 2.5 times the QUALITY 4/3972015 4/3072015	hat the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Produciton: bate : Signature :	PRODUCTION PRODUCTION 4/30/2016 FormPTC- 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield F i in acc	America, Inc. certifies to coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/30/2015	hat the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Producton: Date : Signature :	PRODUCTION A/30/2016 Form-PTC - 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ate : gnature :	North Ifield F i in acc	America, Inc. certifies to soughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/3af2015 4/3af2015	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Producton: Date : Signature :	PRODUCTION A/30/2016 PRODUCTION A/30/2016 Form PTC - 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi uality Manager : ite : gnature :	North Ifield F I in acc	America, Inc. certifies to coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/3072015 4/3072015	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Produciton: Date : Signature :	nose assembly has been tested to ments and passed the 15 minute ast pressure 9.6.7 and per Table 9 rst pressure 9.6.7.2 exceeds the per Table 9. PRODUCTION 4/30/2016 Form PTC - 01 Rev.D 2
Gates E & S I the Gates Oil hydrostatic tes to 15,000 psi lality Manager : ite : gnature :	North Ifield F i in acc	America, Inc. certifies (coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edil cordance with this produce minimum of 2.5 times the QUALITY 4/30/2015 August Conference August Co	Produciton: Date : Signature :	PRODUCTION PRODUCTION 4/30/2018 FormPTC-01 Rev.D 2
Sates E & S I the Gates Oil ydrostatic tes to 15,000 psi ality Manager : te : inature :	North Ifield F i in acc	America, Inc. certifies (coughneck Agreement/Spi API Spec 7K/Q1, Fifth Edit cordance with this product minimum of 2.5 times the QUALITY 4/30/2015	hat the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Producton: Date : Signature :	PRODUCTION A/30/2016 Form PTC - 01 Rev.D 2
ality Manager : nature :	North ifield F i in acc	America, Inc. certifies (soughneck Agreement/Spa API Spec 7K/Q1, Fifth Edil cordance with this produce minimum of 2.5 times the Algorizo15 Algorizo15 Algorizo15 Algorizo15	that the following h ecification requirem tion, June 2010, Te t number. Hose bu e working pressure Produciton: Date : Signature :	PRODUCTION 4/30/2016 Form PTC - 01 Rev.D 2
iates E & S I the Gates Oil /drostatic tes to 15,000 psi lity Manager : 9 : Nature :	North Ifield R I in acc	America, Inc. certifies (coughneck Agreement/Space) API Spec 7K/Q1, Fifth Edit cordance with this produce minimum of 2.5 times the QUALITY 4/3072015 August Office August Office Augus	that the following h ecification requirem ton, June 2010, Te t number. Hose bu e working pressure Produciton: bate : Signature :	PRODUCTION PRODUCTION 4/30/2016 FormPTC-01 Rev.D2

13-5/8" MN-DS Wellhead System

.

CAMERON

13-5/8" MN-DS Wellhead System

•

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)		· ·	Collapse	Burst	Tension	Tension
26"	0	375	20"	94#	J55	BTC	3.03	12.30	39.77	41.99
17.5"	0'	950'	13.375"	48	H40	STC	1.56	3.50	7.06	11.86
12.25"	0'	3050'	9.625"	36	J55	LTC	1.45	2.52	4.13	5.14
8.75"	0'	9315'	7"	26	P110	LTC	1.39	2.23	2.64	3.43
6.125"	8570'	19918'	4.5"	13.5	P110	LTC	2.25	2.62	2.75	2.21
В	LM Mini	mum Safe	ty 1.125	1	1.6 Di	ry 1.6 I	Dry			
		Fact	or		1.8 W	et 1.8 V	Vet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	<u>Y</u>
If yes, does production casing cement tie back a minimum of 50' above the Reef?	<u>Y</u>
Is well within the designated 4 string boundary.	Y
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2^{nd} string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	<u>Y</u>
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	<u> </u>
If yes, are there three strings cemented to surface?	

41

.

.

•

2. Casing Program

t

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
26"	0	375	20"	94#	J55	BTC	3.03	12.30	39.77	41.99
17.5"	0'	950'	13.375"	48	H40	STC	1.56	3.50	7.06	11.86
12.25"	0'	3050'	9.625"	36	J55	LTC	1.45	2.52	4.13	5.14
8.75"	0'	9315'	7"	26	P110	LTC	1.39	2.23	2.64	3.43
6.125"	8570'	19918'	4.5"	13.5	P110	LTC	2.25	2.62	2.75	2.21
В	LM Mini	mum Safe	ty 1.125	1	1.6 D	ry 1.6 I	Dry			
		Fact	or		1.8 W	et 1.8 V	Vet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
collapse pressure rading of the cashing.	
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y
Is well within the designated 4 string boundary.	Y
	N
Is well located in SOPA but not in R-111-P?	IN
If yes, are the first 2 strings cemented to surface and 3 th string cement field back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
	· · · · · · · · · · · · · · · · · · ·
Is well located in high Cave/Karst?	<u>Y</u>
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	l N
Is well located in critical Cave/Karst?	
If yes, are three strings cemented to surface?	

.

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
26"	0	375	20"	94#	J55	BTC	3.03	12.30	39.77	41.99
17.5"	0'	950'	13.375"	48	H40	STC	1.56	3.50	7.06	11.86
12.25"	0'	3050'	9.625"	36	J55	LTC	1.45	2.52	4.13	5.14
8.75"	0'	9315'	7"	26	P110	LTC	1.39	2.23	2.64	3.43
6.125"	8570'	19918'	4.5"	13.5	P110	LTC	2.25	2.62	2.75	2.21
В	LM Mini	mum Safe	ty 1.125	1	1.6 Dr	y 1.6 I	Dry			
		Facto	or		1.8 W	et 1.8 V	Vet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
	v
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y
Is well within the designated 4 string boundary.	Y
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes are the first three strings cemented to surface?	
Is 2^{nd} string set 100' to 600' below the base of salt?	
	Ļ
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	1
Is well located in critical Cave/Karst?	
If yes, are there three strings cemented to surface?	

•

,

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
26"	0	375	20"	94#	J55	BTC	3.03	12.30	39.77	41.99
17.5"	0'	950'	13.375"	48	H40	STC	1.56	3.50	7.06	11.86
12.25"	0'	3050'	9.625"	36	J55	LTC	1.45	2.52	4.13	5.14
8.75"	0'	9315'	7"	26	P110	LTC	1.39	2.23	2.64	3.43
6.125"	8570'	19918'	4.5"	13.5	P110	LTC	2.25	2.62	2.75	2.21
В	LM Mini	mum Safe	ty 1.125	1	1.6 Di	ry 1.6 E	Dry			
		Facto	or		1.8 W	et 1.8 V	Vet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reel?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y
Is well within the designated 4 string boundary.	Y
Is well located in SOPA but not in R-111-P?	<u>N</u>
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	[
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
	s +
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	<u>N</u>
If yes, are there three strings cemented to surface?	

ł

2

ł

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
26"	0	375	20"	94#	J55	BTC	3.03	12.30	39.77	41.99
17.5"	0'	950'	13.375"	48	H40	STC	1.56	3.50	7.06	11.86
12.25"	0'	3050'	9.625"	36	J55	LTC	1.45	2.52	4.13	5.14
8 75"	0'	9315'	7"	26	P110	LTC	1.39	2.23	2.64	3.43
6.125"	8570'	19918'	4.5"	13.5	P110	LTC	2.25	2.62	2.75	2.21
B	LM Mini	mum Safe Fact	ty 1.125	1	1.6 D	ry 1.6 I Vet 1.8 V	Dry Wet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	Y
If ves does production casing cement tie back a minimum of 50' above the Reef?	Y
Is well within the designated 4 string boundary.	Y
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are three strings cemented to surface?	

!

,

ł

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- 1 The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- 3 The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

- 1. Well Control Equipment
 - A. Choke manifold with minimum of one adjustable choke/remote choke.
 - B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
 - C. Auxiliary equipment including annular type blowout preventer.
- 2. Protective Equipment for Essential Personnel

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. Hydrogen Sulfide Protection and Monitoring Equipment

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. Visual Warning Systems

A. Wind direction indicators as indicated on the wellsite diagram.

B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office911 or 575-887-7551Ambulance Service911 or 575-885-2111Carlsbad Fire Dept911 or 575-885-2111Loco Hills Volunteer Fire Dept.911 or 575-677-3266Closest Medical Facility - Columbia Medical Center of Carlsbad575-492-5000

Mewbourne Oil Company	Hobbs District Office	575-393-5905
	Fax	575-397-6252
	2 nd Fax	575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Glock 17/16 B3DA Fed Com #2H SL: 800' FNL & 600' FEL (18) Secs. 17 & 16, T20S, R29E BHL: 600' FNL & 100' FEL (16)

Plan: Design #1

Standard Planning Report

28 August, 2018

julis, investi in di Detebases	l Lobb					and and a Ball					
Company:	Mewh	ourne Oil Con	npany		Local Co-	TVD Beference:			Site Glock 17/16 B3DA Fed Com #2H		
Project:	Eddy	County, New I	Mexico NAD 8:	3	MD Refer	rence:		WELL @ 3292. WELL @ 3292	Oust (Original Dust (Original	Well Elev)	
Site:	Glock	17/16 B3DA	Fed Com #2H	-	North Ref	erence:		Grid	ousit (Original		
Well:	SL: 80	0° FNL & 600	' FEL (18)		Survey Ca	alculation Met	hod:	Minimum Curva	ature		
Wellbore:	BHL:	600' FNL & 10	0' FEL (16)				¢			- 1	
Design:	Desig	n #1	• •				1				
C			AL		**	-			·····		
Project	Eddy C	ounty, New N	lexico NAD 83		2 T. J. J. T. T.		n an the second se				
Map System:	US State	e Plane 1983			System Dat	tum:	Me	an Sea Level			
Geo Datum:	North An	nerican Datum	n 1983								
Map Zone:	New Me	kico Eastern 2	lone							:	
Site	Glock	7/16 B3DA F	ed Com #2H	, . <u>.</u>						n an	
Site Position:			Norti	ning:	574	,288.00 usft	Latitude:			32.5785697	
From:	Map)	East	ng:	610	,827.00 usft	Longitude:			-104.1077371	
Position Uncertai	nty:	0	.0 usft Siot	Radius:		13-3/16 "	Grid Converg	ence:		0.12 *	
Well	SL: 800	' FNL & 600' F	EL (18)		·····				<u></u>		
			0.0.00							20 5785007	
wen Position	+N/-S		0.0 usit N	ortning:		0/4,200.00				32.3/8309/	
	+E/-VV			asung:		010,827.00	Jusit Lon	igitude:		-104.1077371	
Position Uncertal	nty		0.0 usft V	ellhead Eleva	tion:	3,292.0) usit Gra	und Level:		3,265.0 Usit	
Wellbore	BHL: 6	00' FNL & 10	0' FEL (16)	-							
Magnetics	Mo	del Name	Samp	le Date	Declina	tion	Dip A	ngle	Field	Strength	
					(*)			າ	(nT)	
<u></u>		IGRF2010)	8/28/2018	·	6.97		60.24		48,054	
Design	Design	#1							<u> </u>	<u> </u>	
Audit Notes:											
Version:			Dha	a.	PROTOTVPE	ти	o On Denth-		0.0		
Veraion.			r na				e on Depai.		0.0		
Vertical Section:		I	Depth From (1	VD)	+N/-S	+	E/-W	Di	rection		
			(usft)		(usft)	(L	isti)		(°)		
			0.0		0.0		0.0		88.88		
Plan Sections	······································			*		· · · · · · · ·	· · · · ·		· · · · · · · · · · · · · · · · · · ·		
Measured			Vertical			Doaleg	Build	Turn			
Depth Ir	nclination	Azimuth	Depth	+N/-S	+É/-W	Rate	Rate	Rete	TFO		
(usft)	(ግ	(*)	(usft)	(usft)	(usft)	(°/100usft)	(*/100usft)	(*/100usfi)	(*)	Target	
	0.00	-			~ ~	-		A			
2 405 0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00		
3,125.0	0.00	250.74	3,123.0	0.0	0.0	0.00	0.00	0.00	0.00		
J,200,9	2.13	359.71	3,200.9	2.6	0.0	1.50	1.50	0.00	333./1		
0,420.7 0 570 6	2.13	309.11	0,423.1	194.4	-1.0	0.00	0.00	0.00	10.00		
0,070.0	0.00	0.00	0,100,0	197.0	-1.0	1.00	-1.50	0.00	100.00		
10.010.0	09,03 09,03	05,50	5,044.0 0 400 0	197.9	472.0	12.01	12.01	0.00	09.90	BHI - 600' ENI: 8 100'	
13,310.2	09.09	05.50	5,120.0	217.0	11,074.0	0.00	0.00	0.00	0.00	DITE. 000 FILL & 100	

٠

ł

Database:	Hobbs	Local Co-ordinate Reference:	Site Glock 17/16 B3DA Fed Com #2H	
Company:	Mewbourne Oll Company	TVD Reference:	WELL @ 3292.0usft (Original Well Elev)	
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3292.0usft (Original Well Elev)	
Site:	Glock 17/16 B3DA Fed Com #2H	North Reference:	Grid	
Well:	SL: 800' FNL & 600' FEL (18)	Survey Calculation Method:	Minimum Curvature	
Wellbore:	BHL: 600' FNL & 100' FEL (16)			
Design:	Design #1			,

್ನು ತೆಲ್ಲಿ ಬಿಡುವರೆ ಸಿಲ್ಲಿ ಬಿಡುವರೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆಗೆ ಬಿಡುವರೆ

Planned Survey

i

(mm) (mm) <th< th=""><th></th><th>Measured Depth</th><th>Inclination</th><th>Azimuth</th><th>Vertical Depth</th><th>+N/-S</th><th>+E/-W</th><th>Vertical Section</th><th>Dogleg Rate</th><th>Build Rate</th><th>Turn Rate</th></th<>		Measured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
0.0 0.00 0.00 0.0 0.0 0.00 0.00 0.00 SLE 007.0L 6007 0.00 0.00 0.0 0.0 0.0 0.0 0.00 <t< th=""><th></th><th>(usft)</th><th>(°)</th><th>(*)</th><th>(usft)</th><th>(usft)</th><th>(usft)</th><th>(usft)</th><th>(°/100usft)</th><th>(°/100usft)</th><th>(°/100usft)</th></t<>		(usft)	(°)	(*)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
SL: B00' FNL & 600' FEL (16) 100.0 0.00		0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
100.0 0.00 100.0 0.0 0.00 0.00 0.00 300.0 0.00 0.00 300.0 0.0 0.00		SL: 800' FNL	& 600' FEL (18)								
200.0 0.00 200.0 0.0 0.0 0.00 0.00 0.00 460.0 0.00 0.00 400.0 0.0 0.0 0.00 0.00 0.00 560.0 0.00 0.00 600.0 0.0 0.00		100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0 0.00 300.0 0.0 0.0 0.0 0.00 0.00 560.0 0.00 0.00 560.0 0.00 0		200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0 0.00 400.0 0.0 0.0 0.00 0.00 0.00 500.0 0.00 0.00 500.0 0.0 0.00 0		300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
State Jack Jack <t< td=""><td></td><td>400.0</td><td>0.00</td><td>0.00</td><td>400.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>		400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0 0.00 0.00 500.0 0.00 <		100.0	0.00	0.00	100.0	010					
660.0 0.00 0.00 700.0 0.00 0.00 0.00 0.00 0.00 860.0 0.00 0.00 900.0 0.00 <t< td=""><td></td><td>500.0</td><td>0.00</td><td>0.00</td><td>500.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>		500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0 0.00 <t< td=""><td></td><td>600.0</td><td>0.00</td><td>0.00</td><td>600.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>		600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0 0.00 <t< td=""><td></td><td>700.0</td><td>0.00</td><td>0.00</td><td>700.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.00</td><td>0.00</td><td>0.00</td></t<>		700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0 0.00 0.00 1.00.0 0.00		800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
1000 0.00 0.00 1.000.0 0.00		900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
11000 0.00 0.00 1.000 0.00 0.00 0.00 0.00 12000 0.00 0.00 1.300.0 0.00		1 000 0	0.00	0.00	1.000.0	0.0	0.0	0.0	0.00	0.00	0.00
12000 0.00 0.00 12000 0.00 <		1 100 0	0.00	0.00	1 100.0	0.0	0.0	0.0	0.00	0.00	0.00
1 000 0.00 1,300.0 0.00		1 200 0	0.00	0.00	1 200 0	0.0	0.0	0.0	0.00	0.00	0.00
1,400.0 0.00 1,400.0 0.0 0.0 0.0 0.00 0.00 0.00 1,600.0 0.00 0.00 1,600.0 0.00		1 300.0	0.00	0.00	1 300 0	0.0	0.0	0.0	0.00	0.00	0.00
1,000,0 0,00 1,000,0 0,00		1 400 0	0.00	0.00	1 400 0	0.0	0.0	0.0	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,100.0	0.00								0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0 0.00 1,700.0 0.0 0.00		1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0 0.00 1,800.0 0.00 1,800.0 0.00		1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,900.0 0.00 0.00 1,900.0 0.00 0.00 0.00 0.00 0.00 2,000.0 0.00 0.00 2,000.0 0.0 0.0 0.00		1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0 0.00 0.00 2,000.0 0.0 0.0 0.00 0.00 0.00 2,100.0 0.00 0.00 2,200.0 0.00		1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00
2,100.0 0.00 2,100.0 0.00		2 000 0	0.00	0.00	2 000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0 0.00 2,200.0 0.0 0.0 0.0 0.00 0.00 0.00 2,300.0 0.00 0.00 2,300.0 0.00		2 100 0	0.00	0.00	2 100 0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0 0.00 0.00 2,300.0 0.00		2 200 0	0.00	0.00	2 200 0	0.0	0.0	0.0	0.00	0.00	0.00
2,000,0 0,00 0,00 2,400,0 0,00		2 300 0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000 0,00 0,00 1,000 0,00 <		2,000.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0 0.00 0.00 2,500.0 0.00 0.00 0.00 0.00 0.00 2,600.0 0.00 0.00 2,700.0 0.00 0.00 0.00 0.00 0.00 2,600.0 0.00 0.00 2,700.0 0.0 0.0 0.00 0.00 0.00 0.00 2,600.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2,600.0 0.00 <		2,400.0	0.00	0.00	2,	••••					
2,600.0 0.00 0.00 2,600.0 0.0 0.0 0.00 0.00 0.00 2,700.0 0.00 0.00 2,700.0 0.0 0.0 0.00 0.00 0.00 2,800.0 0.00 0.00 2,800.0 0.0 0.0 0.00 0.00 0.00 2,900.0 0.00 0.00 2,900.0 0.0 0.0 0.00 0.00 0.00 3,000.0 0.00 0.00 3,000.0 0.0 0.0 0.00 0.00 0.00 0.00 3,100.0 0.00 0.00 3,125.0 0.00		2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0 0.00 0.00 2,700.0 0.0 0.0 0.00 0.00 0.00 2,800.0 0.00 0.00 2,900.0 0.0 0.0 0.00 0.00 0.00 3,000.0 0.00 0.00 3,000.0 0.0 0.0 0.0 0.00 0.00 0.00 3,000.0 0.00 0.00 3,000.0 0.0 0.0 0.0 0.00 0.00 0.00 3,100.0 0.00 0.00 3,100.0 0.0 0.0 0.00 0		2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2,700.0	0.00	0.00	2,700.0	0.0	0.0	0.0	0.00	0.00	0.00
2,900.0 0.00 0.00 2,900.0 0.0 0.0 0.0 0.00 0.00 0.00 3,000.0 0.00 3,000.0 0.0 0.0 0.0 0.00		2,800.0	0.00	0.00	2,800.0	0.0	0.0	0.0	0.00	0.00	0.00
3,000.0 0.00 0.00 3,000.0 0.0 0.0 0.0 0.00		2,900.0	0.00	0.00	2,900.0	0.0	0.0	0.0	0.00	0.00	0.00
3,100.0 0,00 0,00 3,100.0 0,00		3 000 0	0.00	0.00	3 000.0	0.0	0.0	0.0	0.00	0.00	0.00
3,125.0 0.00 0.00 3,125.0 0.0 0.0 0.00		3,100.0	0.00	0.00	3,100.0	0.0	0.0	0.0	0.00	0.00	0.00
3,200. 1,13 359.71 3,200. 0.7 0.0 0.0 1.50 1.50 0.00 3,266.9 2.13 359.71 3,266.9 2.6 0.0 0.0 1.50 1.50 0.00 3,300.0 2.13 359.71 3,299.9 3.9 0.0 0.1 0.00 0.00 0.00 3,400.0 2.13 359.71 3,499.8 11.3 -0.1 0.22 0.00 0.00 0.00 3,600.0 2.13 359.71 3,599.7 15.0 -0.1 0.2 0.00 0.00 0.00 3,600.0 2.13 359.71 3,599.7 15.0 -0.1 0.3 0.00 0.00 0.00 3,600.0 2.13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,900.0 2.13 359.71 3,699.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71		3,125.0	0.00	0.00	3,125.0	0.0	0.0	0.0	0.00	0.00	0.00
3,266.9 2.13 359.71 3,266.9 2.6 0.0 0.0 1.50 1.50 0.00 3,300.0 2.13 359.71 3,299.9 3.9 0.0 0.1 0.00 0.00 0.00 3,400.0 2.13 359.71 3,399.9 7.6 0.0 0.1 0.00 0.00 0.00 3,600.0 2.13 359.71 3,499.8 11.3 -0.1 0.2 0.00 0.00 0.00 3,600.0 2.13 359.71 3,699.7 18.7 -0.1 0.2 0.00 0.00 0.00 3,800.0 2.13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2.13 359.71 3,699.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71		3,200,0	1.13	359.71	3,200.0	0.7	0.0	0.0	1.50	1.50	0.00
3,300.0 2.13 359.71 3,299.9 3.9 0.0 0.1 0.00 0.00 0.00 3,400.0 2.13 359.71 3,399.9 7.6 0.0 0.1 0.00 0.00 0.00 3,500.0 2.13 359.71 3,499.8 11.3 -0.1 0.2 0.00 0.00 0.00 3,600.0 2.13 359.71 3,599.7 15.0 -0.1 0.2 0.00 0.00 0.00 3,700.0 2.13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2.13 359.71 3,699.5 26.2 -0.1 0.3 0.00 0.00 0.00 3,900.0 2.13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71 4,999.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,100.0 2.13 359.71		3,266.9	2.13	359.71	3.266.9	2.6	0.0	0.0	1.50	1.50	0.00
3,300.0 2,13 359.71 3,299.9 3.9 0.0 0.1 0.00 0.00 0.00 3,400.0 2,13 359.71 3,399.9 7.6 0.0 0.1 0.00 0.00 0.00 3,500.0 2,13 359.71 3,499.8 11.3 -0.1 0.2 0.00 0.00 0.00 3,600.0 2,13 359.71 3,599.7 15.0 -0.1 0.2 0.00 0.00 0.00 3,700.0 2,13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2,13 359.71 3,699.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2,13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2,13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2,13 359.71 4,099.3 41.0 -0.2 0.6 0.00 0.00 0.00										0.00	0.00
3,400.0 2.13 359.71 3,399.9 7.6 0.0 0.1 0.00 0.00 0.00 3,500.0 2.13 359.71 3,499.8 11.3 -0.1 0.2 0.00 0.00 0.00 3,600.0 2.13 359.71 3,699.7 15.0 -0.1 0.2 0.00 0.00 0.00 3,700.0 2.13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2.13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,900.0 2.13 359.71 3,699.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2.13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.6 0.00 0.00 0.00		3,300.0	2.13	359.71	3,299.9	3.9	0.0	0.1	0.00	0.00	0.00
3,500.0 2.13 359,71 3,499.8 11.3 -0.1 0.2 0.00 0.00 0.00 3,600.0 2.13 359,71 3,599.7 15.0 -0.1 0.2 0.00 0.00 0.00 3,700.0 2.13 359,71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2.13 359,71 3,799.6 22.4 -0.1 0.3 0.00 0.00 0.00 3,900.0 2.13 359,71 3,899.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2.13 359,71 3,899.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2.13 359,71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359,71 4,199.3 37.3 -0.2 0.6 0.00 0.00 0.00 4,300.0 2.13 359,71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00		3,400.0	2.13	359.71	3,399.9	7,6	0.0	0.1	0.00	0.00	0.00
3,000.0 2,13 359.71 3,599.7 15.0 -0.1 0.2 0.00 0.00 0.00 3,700.0 2,13 359.71 3,699.7 18.7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2,13 359.71 3,799.6 22.4 -0.1 0.3 0.00 0.00 0.00 3,900.0 2,13 359.71 3,899.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2,13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2,13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,300.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00		3,500.0	2.13	359.71	3,499.8	11.3	-0.1	0.2	0.00	0.00	0.00
3,700.0 2,13 359,71 3,699,7 18,7 -0.1 0.3 0.00 0.00 0.00 3,800.0 2,13 359,71 3,799,6 22,4 -0.1 0.3 0.00 0.00 0.00 3,900.0 2,13 359,71 3,899,5 26,2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2,13 359,71 3,999,5 29,9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2,13 359,71 4,099,4 33,6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2,13 359,71 4,199,3 37,3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2,13 359,71 4,299,3 41,0 -0.2 0.6 0.00 0.00 0.00 4,300.0 2,13 359,71 4,399,2 44,7 -0.2 0.6 0.00 0.00 0.00 4,400.0 2,13 359,71 4,699,0 52,2 -0.3 0.8 0.00 0.00 0.00		3,600.0	2,13	359.71	3,599.7	15.0	-0.1	0.2	0.00	0.00	0.00
3,800.0 2.13 359.71 3,799.6 22.4 -0.1 0.3 0.00 0.00 0.00 3,900.0 2.13 359.71 3,899.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2.13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 52.2 -0.3 0.8 0.00 0.00 0.00		3,700.0	2,13	359.71	3,699.7	18.7	-0,1	0.3	0.00	0.00	0.00
3,900.0 2.13 359.71 3,899.5 26.2 -0.1 0.4 0.00 0.00 0.00 4,000.0 2.13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2.13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2.13 359.71 4,199.3 37.3 -0.2 0.6 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,400.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,600.0 2.13 359.71 4,999.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00		3,800.0	2.13	359.71	3,799.6	22.4	-0.1	0.3	0.00	0.00	0.00
4,000.0 2.13 359.71 3,999.5 29.9 -0.2 0.4 0.00 0.00 0.00 4,100.0 2.13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,400.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,499.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00		3,900.0	2.13	359.71	3,899.5	26.2	-0.1	0.4	0.00	0.00	0.00
4,100.0 2,13 359.71 4,099.4 33.6 -0.2 0.5 0.00 0.00 0.00 4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,400.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,700.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,798.9 59.6 -0.3 0.9 0.00 0.00 0.00		4,000.0	2.13	359.71	3,999.5	29.9	-0.2	0.4	0.00	0.00	0.00
4,200.0 2.13 359.71 4,199.3 37.3 -0.2 0.5 0.00 0.00 0.00 4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,400.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,700.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,698.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,800.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00		4,100.0	2.13	359.71	4,099.4	33.6	-0.2	0.5	0.00	0.00	0.00
4,300.0 2.13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 4,400.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,600.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,698.8 63.3 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 4		4,200.0	2.13	359.71	4,199.3	37.3	-0.2	0.5	0.00	0.00	0.00
4,300.0 2,13 359.71 4,299.3 41.0 -0.2 0.6 0.00 0.00 0.00 4,400.0 2,13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2,13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2,13 359.71 4,599.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,600.0 2,13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,700.0 2.13 359.71 4,699.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,800.0 2.13 359.71 4,888.8 63.3 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,888.8 63.3 -0.3 0.9 0.00 0.00 0.00 5,000.0 2.13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00 0.00									0.00	0.00	0.00
4,400.0 2.13 359.71 4,399.2 44.7 -0.2 0.6 0.00 0.00 0.00 4,500.0 2.13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2.13 359.71 4,599.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,700.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,699.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00 0.00 5,000.0 2.13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00 0.00		4,300.0	2.13	359.71	4,299.3	41.0	-0.2	0.6	0.00	0.00	0.00
4,500.0 2,13 359.71 4,499.1 48.4 -0.2 0.7 0.00 0.00 0.00 4,600.0 2,13 359.71 4,599.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,700.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,798.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 5,000.0 2.13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00 0.00		4,400.0	2.13	359.71	4,399.2	44.7	-0.2	0.6	0.00	0.00	0.00
4,600.0 2.13 359.71 4,599.0 52.2 -0.3 0.8 0.00 0.00 0.00 4,700.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,798.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 5,000.0 2.13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00 0.00		4,500.0	2.13	359.71	4,499.1	48.4	-0.2	0.7	0.00	0.00	0.00
4,700.0 2.13 359.71 4,699.0 55.9 -0.3 0.8 0.00 0.00 0.00 4,800.0 2.13 359.71 4,798.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,900.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 5,000.0 2.13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00 0.00		4,600.0	2.13	359.71	4,599.0	52.2	-0.3	0.8	0.00	0.00	0.00
4,800.0 2,13 359.71 4,798.9 59.6 -0.3 0.9 0.00 0.00 0.00 4,900.0 2,13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 5,000.0 2,13 359.71 4,898.8 67.0 -0.3 1.0 0.00 0.00		4,700.0	2.13	359.71	4,699.0	55.9	-0.3	0.8	0.00	0.00	0.00
4,900.0 2.13 359.71 4,898.8 63.3 -0.3 0.9 0.00 0.00 0.00 5,000.0 2.13 359.71 4,998.8 67.0 -0.3 1.0 0.00 0.00 0.00		4,800.0	2.13	359.71	4,798.9	59.6	-0.3	0.9	0.00	0.00	0.00
5,000.0 2,13 359,71 4,998,8 67.0 -0.3 1.0 0.00 0.00 0.00		4,900.0	2.13	359.71	4,898.8	63.3	-0.3	0.9	0.00	0.00	0.00
		5,000.0	2.13	359.71	4,998.8	67.0	-0.3	1.0	0.00	0.00	0.00

,

	الالتيان المحجور الم	ta in the second se	
Database:	Hobbs	Local Co-ordinate Reference:	Site Glock 17/16 B3DA Fed Com #2H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3292.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3292.0usft (Original Well Elev)
Site:	Glock 17/16 B3DA Fed Com #2H	North Reference:	Grid
Well:	SL: 800' FNL & 600' FEL (18)	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 600' FNL & 100' FEL (16)		r
Design:	Design #1	a mana a sa a sa s	· · · · · · · ·

Planned Survey

Measured Depth (usft)	inclination (°)	Azimuth (*)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate ("/100usft)	Bulld Rate (°/100usft)	Turn Rate (°/100usft)
E 100	0 213	350 71	5 098 7	70.7	-0.4	1.0	0.00	0.00	0.00
5,100.	0 213	359.71	5,198.6	74.4	-0.4	1.1	0.00	0.00	0.00
0,200.			5,000.0	70.0			0.00	0.00	0.00
5,300.	0 2.13	359.71	5,298.6	78.2	-0.4	1.1	0.00	0.00	0.00
5,400.	0 2.13	359.71	5,398.5	81.9	-0.4	1.2	0.00	0.00	0.00
5,500.	0 2.13	359.71	5,498.4	85.0	-0.4	1.2	0.00	0.00	0.00
5,600.	.0 2.13	359.71	5,598.4	89.3	-0.5	1.3	0.00	0.00	0.00
5,700.	.0 2.13	359.71	5,698.3	93.0	-0.5	1.4	0.00	0.00	0.00
5,800.	.0 2.13	359.71	5,798.2	96.7	-0.5	1.4	0.00	0.00	0.00
5,900.	.0 2.13	359.71	5,898.2	100.4	-0.5	1.5	0.00	0.00	0.00
6,000.	.0 2.13	359.71	5,998.1	104.2	-0.5	1.5	0.00	0.00	0.00
6,100.	.0 2.13	359.71	6,098.0	107.9	-0.5	1.0	0.00	0.00	0.00
6,200.	.0 2.13	359.71	6,197.9	111.6	-0.6	1.6	0.00	0.00	0.00
6,300.	.0 2.13	359.71	6,297.9	115.3	-0.6	1.7	0.00	0.00	0.00
6,400.	.0 2.13	359.71	6,397.8	119.0	-0.6	1.7	0.00	0.00	0.00
6,500.	.0 2.13	359.71	6,497.7	122.7	-0.6	1.8	0.00	0.00	0.00
6,600.	.0 2.13	359.71	6,597.7	126.4	-0.6	1.8	0.00	0.00	0.00
6,700	.0 2.13	359.71	6,697.6	130.2	-0.7	1.9	0.00	0.00	0.00
6,800	.0 2.13	359.71	6,797.5	133.9	-0,7	1.9	0.00	0.00	0.00
6,900	.0 2.13	359.71	6,897.5	137.6	-0.7	2.0	0.00	0.00	0.00
7,000	.0 2.13	359.71	6,997.4	141.3	-0.7	2.1	0.00	0.00	0.00
7,100	.0 2.13	359.71	7,097.3	145.0	-0.7	2,1	0.00	0.00	0.00
7,200	.0 2.13	359.71	7,197.3	148.7	-0.8	2.2	0.00	0.00	0.00
7.300	.0 2.13	359.71	7,297.2	152.4	-0.8	2.2	0.00	0.00	0.00
7.400	.0 2.13	359.71	7,397.1	156.2	-0.8	2.3	0.00	0.00	0.00
7,500	.0 2.13	359.71	7,497.0	159.9	-0.8	2.3	0.00	0.00	0.00
7,600	.0 2.13	359.71	7,597.0	163.6	-0.8	2,4	0.00	0.00	0.00
7,700	.0 2.13	359.71	7,698.9	167.3	-0.8	2,4	0.00	0.00	0.00
7.800	.0 2.13	359.71	7,796.8	171.0	-0.9	2.5	0.00	0.00	0.00
7,900	.0 2.13	359.71	7,896.8	174.7	-0. 9	2.5	0.00	0.00	0.00
8.000	.0 2.13	359.71	7,996.7	178.4	-0.9	2.6	0.00	0.00	0.00
8,100	.0 2.13	359.71	8,096.6	182.2	-0.9	2.6	0.00	0.00	0.00
8,200	.0 2.13	359.71	8,196.6	185.9	-0.9	2.7	0.00	0.00	0.00
8.300	.0 2.13	359.71	8,296.5	189.6	-1.0	2.8	0.00	0.00	0.00
8,400	.0 2.13	359.71	8,396.4	193.3	-1.0	2.8	0.00	0.00	0.00
8,428	.7 2.13	359.71	8,425.1	194.4	-1.0	2.8	0.00	0.00	0.00
8,500).0 1.06	359.71	8,496.4	196.3	-1.0	2.9	1.50	-1.50	0.00
8,570	0.00	0.00	8,567.0	197.0	-1.0	2.9	1.50	-1.50	0.00
KOP @ 8	3567								
8 600	0 3.53	89.90	8,596.4	197.0	-0.1	3.8	12.01	12.01	0.00
8 700	10 15.54	89.90	8,694.8	197.0	16.4	20.3	12.01	12.01	0.00
8,800	1.0 27.55	89.90	8,787.6	197.1	53.1	56.9	12.01	12.01	0.00
8,900	0.0 39.56	89.90	8,870.8	197.2	108.3	112.1	12.01	12.01	0.00
9,000	0.0 51.57	89.90	8,940.7	197.3	179.5	183.4	12.01	12.01	0.00
9.100	0.0 63.58	89.90	8,994.2	197.5	263.8	267.6	12.01	12.01	0.00
9,200	0.0 75.60	89.90	9,029.0	197.6	357.4	361.2	12.01	12.01	0.00
9,300	0 87.61	89.90	9,043.6	197.8	456.1	459.9	12.01	12.01	0.00
0,000 Q 316	6.5 89.59	89.90	9.044.0	197. 9	472.6	476.4	12.01	12.01	0.00
9,400).0 89.59	89.90	9,044.6	198.0	556.1	559.9	0.00	0.00	0.00
0,400	0 89.59	89.90	9.045.3	198.2	656.1	659.8	0.00	0.00	0.00
9,543	3.9 89.59	89.90	9,045.6	198.3	700.0	703.7	0.00	0.00	0.00
FTP: 600	0' FNL & 100' FWL ((17)	•						
9.60	0.0 89.59	. ,	9,046.0	198.4	756.1	759.8	0.00	0.00	0.00
9.700	0.0 89.59	89.90	9,046.7	198.5	856.1	859.8	0.00	0.00	0.00
9,800	0.0 89.59	89.90	9,047.5	198.7	956.1	959.8	0.00	0.00	0.00

- . .

Database: Company: Project: Site:	Hobbs Mewbourne Oll Company Eddy County, New Mexico NAD 83 Glock 17/16 B3DA Fed Com #2H	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Site Glock 17/16 B3DA Fed Com #2H WELL @ 3292.0usft (Original Well Elev) WELL @ 3292.0usft (Original Well Elev) Grid Minimum Curvature
Well: Wellbore: Design:	SL: 800' FNL & 600' FEL (16) BHL: 600' FNL & 100' FEL (16) Design #1	Survey Calculation method.	

. .

Planned Survey

-

м	easured Depth	Inclination	Azimuth	Vertical Depth	+N/-S	+E/-W	Vertical Section	Dogleg Rate	Build Rate	Turn Rate
	(usft)	(")	(*)	(usft)	(usft)	(usft)	(usft)	(*/100usft)	(°/100usft)	("/100usft)
	9,900.0	89.59	89.90	9,048.2	198.9	1,056.1	1,059.8	0.00	0.00	0.00
	10.000.0	89.59	89.90	9,048.9	199.1	1,155.1	1,159.8	0.00	0.00	0.00
	10,100.0	89.59	89.90	9,049.6	199.3	1,256.1	1,259.7	0.00	0.00	0.00
	10.200.0	89.59	89.90	9,050.3	199.5	1,356.1	1,359.7	0.00	0.00	0.00
	10,300.0	89.59	89.90	9,051.1	199.6	1,456.1	1,459.7	0.00	0.00	0.00
	10,400.0	89,59	89.90	9,051.8	199.8	1,556.1	1,559.7	0.00	0.00	0.00
	10,500.0	89.59	89.90	9,052.5	200.0	1,656.1	1,659.7	0.00	0.00	0.00
	10,600.0	89.59	89.90	9,053.2	200.2	1,756.1	1,759.6	0.00	0.00	0.00
	10,700.0	89.59	89.90	9,053.9	200.4	1,856.1	1,859.6	0.00	0.00	0.00
	10,800.0	89.59	89.90	9,054.6	200.5	1,956.1	1,959.6	0.00	0.00	0.00
	10,900.0	89.59	89.90	9,055.4	200.7	2,056.1	2,059.6	0.00	0.00	0.00
	11,000.0	89.59	89.90	9,056.1	200.9	2,156.0	2,159.6	0.00	0.00	0.00
	11,100.0	89.59	89.90	9,056.8	201.1	2,256.0	2,259.6	0.00	0.00	0.00
	11,200.0	89.59	89.90	9,057.5	201.3	2,356.0	2,359.5	0.00	0.00	0.00
	11,300.0	89.59	89.90	9,058.2	201.4	2,456.0	2,459.5	0.00	0.00	0.00
	11,400.0	89.59	89.90	9,058.9	201.6	2,556.0	2,559.5	0.00	0.00	0.00
	11,500.0	89.59	89.90	9,059.7	201.8	2,656.0	2,659.5	0.00	0.00	0.00
	11,600.0	89.59	89,90	9,060.4	202.0	2,756.0	2,759.5	0.00	0.00	0.00
	11,700.0	89.59	89.90	9,061.1	202.2	2,856.0	2,859.4	0.00	0.00	0.00
	11,800.0	89.59	89.90	9,061.8	202.3	2,956.0	2,959.4	0.00	0.00	0.00
	11,900.0	89.59	89.90	9,062.5	202.5	3,056.0	3,059.4	0.00	0.00	0.00
	12,000.0	89.59	89.90	9,063.2	202.7	3,156.0	3,159.4	0.00	0.00	0.00
	12,100.0	89.59	89.90	9,064.0	202.9	3,256.0	3,259.4	0.00	0.00	0.00
	12,200.0	89.59	89.90	9,064.7	203.1	3,356.0	3,359.4	0.00	0.00	0.00
	12,300.0	89.59	89.90	9,065.4	203.2	3,456.0	3,459.3	0.00	0.00	0.00
	12,400.0	89.59	89.90	9,066.1	203.4	3,556.0	3,559.3	0.00	0.00	0.00
	12,500.0	89.59	89.90	9,066.8	203.6	3,656.0	3,659.3	0.00	0.00	0.00
	12,600.0	89.59	89.90	9,067.5	203.8	3,756.0	3,759.3	0.00	0.00	0.00
	12,700.0	89.59	89.90	9,068.3	204.0	3,856.0	3,859.3	0.00	0.00	0.00
	12,800.0	89.59	89.90	9,069.0	204.1	3,956.0	3,959.2	0.00	0.00	0.00
	12.900.0	89.59	89.90	9,069.7	204.3	4,056.0	4,059.2	0.00	0.00	0.00
	13.000.0	89.59	89.90	9,070.4	204.5	4,156.0	4,159.2	0.00	0.00	0.00
	13,100.0	89.59	89.90	9,071.1	204.7	4,256.0	4,259.2	0.00	0.00	0.00
	13,200.0	89.59	89.90	9,071.8	204.9	4,356.0	4,359.2	0.00	0.00	0.00
	13,300.0	89.59	89.90	9,072.6	205.0	4,456.0	4,459.1	0.00	0.00	0.00
	13,400.0	89.59	89.90	9,073.3	205.2	4,556.0	4,559.1	0.00	0.00	0.00
	13,500.0	89.59	89.90	9,074.0	205.4	4,656.0	4,659.1	0.00	0.00	0.00
	13,600.0	89.59	89.90	9,074.7	205.6	4,756.0	4,759.1	0.00	0.00	0.00
	13,700.0	89.59	89.90	9,075.4	205.8	4,856.0	4,859.1	0.00	0.00	0.00
	13,800.0	89.59	89.90	9,076.1	206.0	4.956.0	4,959.1	0.00	0.00	0.00
1	13,900.0	89.59	89.90	9,076.9	206.1	5,056.0	5,059.0	0.00	0.00	0.00
	14,000.0	89.59	89.90	9,077.6	206.3	5,156.0	5,159.0	0.00	0.00	0.00
Ì	14,100.0	89.59	89.90	9,078.3	206.5	5,256.0	5,259.0	0.00	0.00	0.00
	14.200.0	89.59	89.90	9,079.0	206.7	5,356.0	5,359.0	0.00	0.00	0.00
	14,300.0	89.59	89.90	9,079.7	206.9	5,456.0	5,459.0	0.00	0.00	0.00
ļ	14,400.0	89.59	89.90	9,080.4	207.0	5,556.0	5,558. 9	0.00	0.00	0.00
	14,500.0	89.59	89.90	9,081.2	207.2	5,656.0	5,658.9	0.00	0.00	0.00
	14,600.0	89.59	89.90	9.081.9	207.4	5,756.0	5,758.9	0.00	0.00	0.00
	14 700 0	89 59	89.90	9,082.6	207.6	5,855.9	5,858.9	0.00	0.00	0.00
1	14 735 1	89.59	89.90	9.082.8	207.6	5,891.0	5,893.9	0.00	0.00	0.00
	PPP1 (Sec.	17-16)	00.00	-,						
	44,000,0		80.00	0 082 3	207 B	5 955 9	5.958.9	0.00	0.00	0.00
	14,800.0	69.59	69.90 B0.00	0,003.3 0 A24 A	207.5	6 055 9	6.058.9	0.00	0.00	0.00
L	14,900.0	89.59	09.90	0,004.0	2.01.0		-100010			

ì

.

.

-	· · · ·	· • • • • • • • • • • • • • • • • • • •	9 I
Database:	Hobbs	Local Co-ordinate Reference:	Site Glock 17/16 B3DA Fed Com #2H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3292.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3292.0usft (Original Well Elev)
Site:	Glock 17/16 B3DA Fed Com #2H	North Reference:	Grid
Well:	SL: 800' FNL & 600' FEL (18)	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 600' FNL & 100' FEL (16)		•
Design:	Design #1		·

Planned Survey

٠

measu <i>red</i> Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	veruca: Section	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(*/100usft)	(°/100usfi
15,000.0	89.59	89.90	9,084.7	208.1	6,155.9	6,158.8	0.00	0.00	0.4
15,100.0	89.59	89.90	9.085.5	208.3	6,255.9	6,258.8	0.00	0.00	0.4
15,200.0	89.59	89.90	9,086.2	208.5	6,355.9	6,358.8	0.00	0.00	0.
15.300.0	89.59	89.90	9.086.9	208.7	6.455.9	6.458.8	0.00	0.00	0.
15 400 0	89.59	89.90	9.087.6	208.8	6.555.9	6.558.8	0.00	0.00	0.
15 500 0	89.59	89.90	9 088 3	209.0	6 655 9	6 658 7	0.00	0.00	0.
15,600.0	89.59	89.90	9,089,0	209.2	6 755 9	6 758 7	0.00	0.00	0
15,700.0	89.59	89.90	9,089.8	209.4	6,855.9	6,858.7	0.00	0.00	0.
15 800 D	80.50	80 00	9 090 5	209.6	6 955 9	6 958 7	0.00	0.00	0.
15 900.0	80.50	89.00	9,000.0	200.0	7 055 9	7 058 7	0.00	0.00	0
16,000.0	90.59	80.00	0,001.0	200.1	7 155 0	7 158 7	0.00	0.00	0
10,000.0	09.09	89.90	9,091.9	209.9	7,755.9	7 259 6	0.00	0.00	0. 0
16,100.0	89.59	89.90	9,092.0	210.3	7,355.9	7,358.6	0.00	0.00	0.
16 200 0	80.50	80.00	0.004.1	210.5	7 455 0	7 458 6	0.00	0.00	0
16,300.0 16,400.0	69.09 89.50	89.90 89.90	9,094.1 9 NQ4 R	210.5 210.5	7,455.9	7,400.0	0.00	0.00	0.
16,500.0	RQ 50	89.00	9 095 5	210.8	7,655.9	7,658,6	0.00	0.00	0
16 600 0	89.59	89.90	9,000.0	211.0	7 755 9	7 758 5	0.00	0.00	0
16,700.0	89,59	89.90	9,096.9	211.2	7,855.9	7,858.5	0.00	0.00	Ō
16 800 0	89 59	89 90	9 097 6	211 4	7 955 9	7 958 5	0.00	0.00	0
16,000.0	80.50	80.00	9,007.0	211.4	8 055 9	8 058 5	0.00	0.00	ň
17,000.0	09.09	09.90	9,090.4	211.5	9 165 0	8 158 5	0.00	0.00	ň
17,000.0	09.39	09.90	9,099.1	211.7	8,155.9	8,150.5	0.00	0.00	0
17,100.0	89.59	89.90	9,100.5	211.3	8.355.9	8.358.4	0.00	0.00	0
47,200.0	80.50	80.00	0 101 2	242.2	9 465 0	P 459 4	0.00	0.00	0
17,300.0	09.39 80.50	89.90	9,101.2	212.5	8 555 9	8 558 4	0.00	0.00	0
17 500.0	80.50	80.00	9 102 7	212.0	8 655 9	8 658 4	0.00	0.00	0
17,500.0	89.59	80.00	9 103 4	212.0	8 755 9	8 758 4	0.00	0.00	Ō
17,300.0	89.59	89.90	9,104,1	212.0	8,855.9	8,858.3	0.00	0.00	0 0
17 800 0	80.50	80 00	9 104 8	213.2	8 955 9	8 958 3	0.00	0.00	0
17,000.0	80.50	89.00	0,104.0	213.4	9,055,9	9 058 3	0.00	0.00	Ő
19,000.0	80.50	80.00	0 106 2	213.4	9,000.0	9 158 3	0.00	0.00	ő
18,000.0	09.39	80.00	9,100.2	213.3	9,133.9	0.259.3	0.00	0.00	0
18,100.0	69.59 89.59	89.90	9,107.0	213.7	9.355.9	9,358.2	0.00	0.00	0
10,200.0	80.50	80.00	0.108.4	214.1	0 455 P	0 459 2	0.00	0.00	0
18,300.0	89.59	89.90	9,108.4	214.1	9,400.0	9,430.2	0.00	0.00	0
18,400.0	69.59	69.90	9,109.1	214.5	9,555.0	9,330.2	0.00	0.00	0
18,500.0	89.59	89.90	9,109.8	214.4	9,000.0	9,000.2	0.00	0.00	0
18,600.0	89.59	89.90	9,110.6	214.0	9,755.8	9,750.2	0.00	0.00	0
40,000.0	00.09	00.00	0,111.0	213.0	0.055.0	0.059.4	0.00	0.00	-
18,800.0	89.59	89.90	9,112.0	215.0	9,900,8 10 055 P	9,930.1	0.00	0.00	0
18,900.0	89.59	89.90	9,112.7	213.2	10,000.0	10,030.1	0.00	0.00	0
19,000.0	89.59	89.90	9,113.4	210.3	10,133.0	10,130,1	0.00	0.00	
19,100.0	89.39	89.90	9,114.1	213.3	10,255.8	10,230.1	0.00	0.00	0
19,200.0	69.39	03.30	3,114.3	4 1 J. f	10,000,0	10,000.1	0.00	0.00	~
19,300.0	89.59	89.90	9,115.6	215.9	10,455.8	10,458.0	0.00	0.00	0
19,400.0	89.59	89.90	9,116.3	216.1	10,555.8	10,558.0	0.00	0.00	
19,500.0	89.59	89.90	9,117.0	216.2	10,655.8	10,658.0	0.00	0.00	U O
19,600.0	89.59	89.90	9,117.7	216.4	10,755.8	10,758.0	U.U0 n nn	0.00	U 0
19,700.0	69.59	69.90	9,110.4	210.0	10,000.0	10,000.0	0.00	0.00	-
19,800.0	89.59	89.90	9,119.2	216.8	10,955.8	10,958.0	0.00	0.00	
19,900.0	89.59	89.90	9,119.9	217.0	11,055.8	11,057.9	0.00	0.00	U 7
19.918.2	89.59	89.90	9,120.0	217.0	11,074.0	11,076.1	0.00	0.00	U

.

.

-

,

•

4 · • · · · · · ·	2. When the second sec second second sec				ೆ. ಮೇಲಗು ಮಾಡಿ ಮಾಡಿ ಗಾಡ		പ്രം പ്രം പ്രം സെസ് പ്രം സംസംസം പ്രം സംസംസം പ്രം പ്രം പ്രം പ്രം സംസംസം പ്രം പ്രം പ്രം പ്രം പ്രം പ്രം പ്രം പ്ര			
Database: Company:	Hobbs Mewbourne C)Il Company			Local Co-or TVD Referen	dinate Referenco: nce:	Site Glock 1 WELL @ 32	7/16 B3DA Fed Com 92.0usft (Original We	#2H f] Elev)	
Project:	Eddy County,	New Mexico	NAD 83		MD Referen	ce:	WELL @ 3292.0usft (Original Well Elev)			
Site:	Glock 17/16 E	33DA Fed Co	m #2H		North Refer	enco:	Grid		1	
Well:	SL: 800' FNL	& 600' FEL (18)		Survey Calc	ulation Method:	Minimum Cu	irvature		
Wellbore:	BHL: 600' FN	L & 100' FEL	(16)		I.					
Design:	Design #1	- 75 - 4	·	e traces t mag						
Design Targets				· · · · · · · · · · · ·	······			- ,- · · -		
Target Name									1	
- hit/miss target - Shape	Dip Angle (*)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude	
SL: 800' FNL & 600' FEL - plan hits target cer - Point	. 0.00 nter	0.00	0.0	0.0	0.0	574,288.00	610,827.00	32.5785697	-104.1077371	
KOP @ 8567 - plan hils target cei - Point	0.00 nter	0.00	8,567.0	197.0	-1.0	574,485.00	610,826.00	32.5791112	-104.1077390	
FTP: 600' FNL & 100' FN - plan hits target cer - Point	i 0.00 nter	0.00	9,045.6	198.3	700.0	574,486.27	611,527.00	32.5791106	-104.1054632	
PPP1 (Sec. 17-16) - plan hits target cer - Point	0.00 nter	0.00	9,082.8	207.6	5,891.0	574,495.64	616,718.00	32.5791046	-104.0886107	
BHL: 600' FNL & 100' Fi - plan hits target cer - Point	E 0.00 nter	0.00	9,120.0	217.0	11,074.0	574,505.00	621,901.00	32.5790965	-104.0717842	

,

,

1

1. Geologic Formations

.

.

TVD of target	9120'	Pilot hole depth	NA
MD at TD:	19918'	Deepest expected fresh water:	50'

Basin			
Formation	Depth (TVD)	Water/Mineral Bearing/	Hazards*
· · · · · · · · · · · · · · · · · · ·	from KB	Target Zone?	
Quaternary Fill	Surface		
Rustler			
Top Salt	420	<u>,</u>	
Base Salt	794	· · · · · · · · · · · · · · · · · · ·	
Yates	1011		
Capitan	1227		······································
Queen			·····
Delaware	3258	Oil/Gas	
Lamar		Oil/Gas	
Bell Canyon		Oil/Gas	
Cherry Canyon		Oil/Gas	
Manzanita Marker			
Brushy Canyon		Oil/Gas	
Bone Spring	5732	Oil/Gas	
1 st Bone Spring Sand	6811	Oil/Gas	
2 nd Bone Spring Sand	7468	Oil/Gas	
3 rd Bone Spring Sand	8737	Target Zone	
Abo			
Wolfcamp			<u> </u>
Devonian		· · · · · · · · · · · · · · · · · · ·	
Fusselman			
Ellenburger			
Granite Wash			

*H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)		· · ·	Collapse	Burst	Tension	Tension
26"	0	375	20"	94#	J55	BTC	3.03	12.30	39.77	41.99
17.5"	0'	950'	13.375"	48	H40	STC	1.56	3.50	7.06	11.86
12.25"	0'	3050'	9.625"	36	J55	LTC	1.45	2.52	4.13	5.14
8.75"	0'	9315'	7"	26	P110	LTC	1.39	2.23	2.64	3.43
6.125"	8570'	19918'	4.5"	13.5	P110 ⁻	LTC	2.25	2.62	2.75	2.21
В	LM Mini	mum Safe	ty 1.125	1	1.6 Dr	y 1.6 E	Dry			
		Facto	or	1	1.8 W	et 1.8 V	Vet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	Y
If yes, does production casing cement tie back a minimum of 50' above the Reef?	Y
Is well within the designated 4 string boundary.	Y
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	

Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt.	Yld	H ₂ 0	500#	Slurry Description	
-		lb/	ft3/	gal/	Comp.		
		gal	sack	sk	Strength		
					(hours)		
Conf	410	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
Surf.	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
T	340	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
Inter. i	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Inter, 2 135 12.5 2.12 11 10 Lead: Class C + Salt + Gel + Extender + L		Lead: Class C + Salt + Gel + Extender + LCM					
Stg.1	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
					ECP/DV T	'ool @ 1200'	
Inter. 2	220	12.5	2.12	11	10	Lcad: Class C + Salt + Gel + Extender + LCM	
Stg. 2	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
D	135	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer +	
Prod.		I				Extender	
Stg 1	100	14.8	1.34	6.3	8	Tail: Class C + Retarder	
					ECP/DV I	'ool @ 3250'	
Drad	320	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer +	
rrod.						Extender	
Stg 2	400	15.6	1.18	5.2	10	Tail: Class H + Retarder, Fluid Loss, Defoamer	
T :	450	11.2	2.97	18	16	Class C + Salt + Gel + Fluid Loss + Retarder +	
Liner			l			Dispersant + Defoamer + Anti-Settling Agent	

A copy of cement test will be available on location at time of cement job providing pump times, compressive strengths, etc.

Casing String	TOC	% Excess	
Surface	0'	100%	
Intermediate 1	0'	25%	
Intermediate 2	0'	25%	
Production	1175'	25%	
Liner	8570'	25%	

4. Pressure Control Equipment

N Variance: None

BOP installed and tested before drilling which hole?	Size?	System Rated WP	Ĩ	уре		Tested to:
			An	nular	X	2500#
		5M	Blind Ram		X	
12 1/4"	13 5/8"		Pipe Ram		X	5000#
			Double Ram			3000#
			Other*			

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	Formation integrity test will be performed per Onshore Order #2.
	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or
	greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in
	greater, a product integrity test of this of B

•

	accordance with Onshore Oil and Gas Order #2 III.B.1.i.						
	A variance is requested for the use of a flexible choke line from the BOP to Choke						
Y	Manifold. See attached for specs and hydrostatic test chart.						
	N Are anchors required by manufacturer?						
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.						
	Provide description here: See attached schematic.						

5. Mud Program

Depth	epth (TVD) Type W		Weight (ppg)	Viscosity	Water Loss
From	То	e (·	с с	
0'	375'	FW Gcl	8.6-8.8	28-34	N/C
375'	950'	Saturated Brine	10.0	28-34	N/C
950'	3050'	FW Gel	8.6-8.8	28-34	N/C
3050'	9120'	Cut Brine	8.8-10.0	28-34	N/C

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	Pason/PVT/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.					
X	Will run GR/CNL from KOP (8570') to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.					
	No Logs are planned based on well control or offset log information.					
	Drill stem test? If yes, explain					
	Coring? If yes, explain					

		- ,	
	Tankanaral		· ·
Additional long planned	Interval		1
Auditional logo plainte	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		- *

X	Gamma Ray	8570' (KOP) to TD
	Density	
	CBL	
	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?	
BH Pressure at deepest TVD	4742 psi	
Abnormal Temperature	. No	

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole. Weighted mud for possible over-pressure in Wolfcamp formation.

Hyd	rogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S
is de	tected in concentrations greater than 100 ppm, the operator will comply with the provisions
of O	nshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and
form	nations will be provided to the BLM.
-	H2S is present
X	H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments

`

____ Directional Plan ____ Other, describe

ł
WEB: www.gates.com 10K CEMENTING ASSEMBLY PRESSURE TEST CERTIFICATE atomer ref.: 4/30/2015 dood Serial No.: 04/30/2015 10K CEMENTING Test Data:: 4/30/2015 04/30/2015 10605/78 Test Data:: 4/30/2015 JUSTIM CROPPER Note No :: 4/30/2015 JUSTIM CROPPER Note No :: 4/30/2015 JUSTIM CROPPER Note No :: 4/1/16 10K FLG Advector Fitting 2 :: 4/1/36 10K FLG Advector Fitting 2 :: Advector	TES E & S NORT	ENGINEERING S GERVICES		Pi Fi Ei	HONE: 361-887-9807 AX: 361-887-0812 MAIL: <i>Tim.Cantu@gates.con</i>	3
Oustomer : AUSTIN DISTRIBUTING Test Date: 4730/2015 Oustomer Ref. : 4060578 Devision Ref. Devision Ref. Invoice No. : 500506 Created By: JUSTIN CROPPER Product Description: 10K3.548.0CK4.1/A510KFLGE/E LE Devision Ref. End Fitting 1 : 41/16 10K FLG End Fitting 2 : 41/16 10K FLG Gates Part No. : 4773-6290 Assembly Code : 136554102914/D-043015-7 Working Pressure : 10,000 PSI Test Pressure : 136554102914/D-043015-7 Gates E & S North America, Inc. certifies that the following hose assembly has been tested to Uhe Gates Olifield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7.12 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: PRODUCTION Quality Manager : QUALITY Producton: PRODUCTION Signature : 41/30/24016 Signature : Producton:	10K C	EMENTING AS	SEMBLY PRE	SSURE TES	VEB: www.gates.com	
Product Description: 10K3.548.0CX4.1/1610XFLGE/E LE End Fitting 1: 4 1/16 10X FLG Gates Part No. : 4773-6290 Working Pressure : 10,000 PSI End Fitting 2: 1365541029140-043015-7 Understand State 15,000 PSI Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9 Quality Manager : QUALITY Producton: Producton: Quality Manager : QUALITY Producton: Producton: Base : 4/30/2016 Signature : QUALITY	Customer : Customer Ref. : Invoice No. :	AUSTIN DISTRIB 4060578 500505	UTING Test Hos Crea	: Date: e Serial No,: ated By:	4/30/2015 D-043015-7 JUSTIN CROPPER	
Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: Date : 4/30/2016 Date : Signature : Signature : Signature :	Product Description: End Fitting 1 : Gates Part No. : Working Pressure :	4 1/16 10K F 4773-6290 10,000 PS	10K3.548.0 2.G End) Asso I Tes	DCK4.1/1610KFLGE/E L Fitting 2 : embly Code : t Pressure :	E <u>4 1/16 10K FLG</u> L36554102914D-043015-7 15,000 PSI	
Quality Manager : Date : Date : Signature : QUALITY Production: Date : Signature : PRODUCTION Date : Date : Signature : Production: Date : Signature : Production: Date : Signature : Production Date : Signature : Production Signature : Production Signat	Gates E & S the Gates Oi hydrostatic tes to 15,000 psi	North America, In field Roughneck Ag t per API Spec 7K/C in accordance with minimum of 1	ic. certifies that the reement/Specificat 21, Fifth Edition, Ju this product numb 2.5 times the work	e following hose tion requirement ine 2010, Test p ber. Hose burst p Ing pressure per	assembly has been tested to and passed the 15 minute pressure 9.6.7 and per Table 9 pressure 9.6.7.2 exceeds the Table 9.	
	Quality Manager : Date : Signature :	QUALIT 4/30720 (////////////////////////////////////	Y /: Pri 15 / Da 16 / St	oduciton: ate ; gnature :	PRODUCTION 4/30/2018 Form PTC - 01 Rev.0	2
				•	States Marine Hanne Marine Hanne	

CAMERON A Sobiomberger Company

13-5/8" MN-DS Wellhead System

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

SUPO Data Report 03/01/2019

APD ID: 10400030498

Operator Name: MEWBOURNE OIL COMPANY

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Type: OIL WELL

Well Number: 2H Well Work Type: Drill

Submission Date: 08/29/2018

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Glock17_16B3DAFedCom2H_existingroadmap_20180523090917.pdf

Existing Road Purpose: ACCESS, FLUID TRANSPORT

Row(s) Exist? NO

10

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 ·	New or Recon	structed Access Roads	_
Vill new roads be need	ed? YES		
lew Road Map:			
Glock17_16B3DAFedCo	m2H_newroadmap_2	20180523090947.pdf	
lew road type: RESOU	RCE		
ength: 1097.68	Feet	Width (ft.): 30	
lax slope (%): 3		Max grade (%): 3	
Army Corp of Engineer	s (ACOE) permit red	quired? NO	
COE Permit Number(s):		
lew road travel width:	14		
lew road access erosi	on control: None		
lew road access plan	or profile prepared?	NO	
lew road access plan	attachment:		
Access road engineeri	n g design? NO		

Operator Name: MEWBOURNE OIL COMPANY
Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Access surfacing type: OTHER	
Access topsoil source: OFFSITE	
Access surfacing type description: Caliche	
Access onsite topsoil source depth:	
Offsite topsoil source description: Topsoil will b	e on edge of lease road.
Onsite topsoil removal process:	
Access other construction information: None	
Access miscellaneous information: None	
Number of access turnouts: 1 Ac	cess turnout map:
Drainage Control	
New road drainage crossing: OTHER	

Drainage Control comments: None

Road Drainage Control Structures (DCS) description: None

Road Drainage Control Structures (DCS) attachment:

Access Additional Attachments

Additional Attachment(s):

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Glock17_16B3DAFedCom2H_existingwellmap_20180523091048.pdf

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: production facility will be on the east side of location & will be 50' x 430'.

Production Facilities map:

Glock17_16B3DAFedCom2H_productionfacilitymap_20190117151812.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Operator Name: MEWBOURNE OIL CO	OMPANY		
Well Name: GLOCK 17/16 B3DA FEDE	RAL COM	Well Number: 2H	
Water source use type: DUST CON INTERMEDIATE/PRODUCTION CAS CASING Describe type:	TROL, ING, STIMULATION,	Water source type: IRRIGATION SURFACE Source longitude: -104.0547	
Source latitude: 32.56288		-	
Source datum: NAD83			
Water source permit type: WATER	WELL		
Source land ownership: FEDERAL			
Water source transport method: TR	RUCKING		
Source transportation land owners	hip: COMMERCIAL		
Water source volume (barrels): 194	0	Source volume (acre-feet): 0.2500526	
Source volume (gal): 81480			
Water source and transportation map Glock17_16B3DAFedCom2H_watersour	: rceandtransmap_201	80523091230.pdf	
Water source comments:			
New water well? NO			
New Water Well Ir	nfo		
Well latitude:	Well Longitude:	Well datum:	
Weil target aquifer:			
Est. depth to top of aquifer(ft):	Est th	ickness of aquifer:	
Aquifer comments:			
Aquifer documentation:			
Well depth (ft):	Well ca	sing type:	
Well casing outside diameter (in.):	Well ca	sing inside diameter (in.):	
New water well casing?	Used ca	Used casing source:	
Drilling method:	Drill ma	Drill material:	
Grout material:	Grout d	Grout depth:	
Casing length (ft.):	Casing	top depth (ft.):	
Well Production type:	Comple	ation Method:	
Water well additional information:			
State appropriation permit:			
Additional information attachment:			

•

٠

.

.

.

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Section 6 - Construction Materials

Construction Materials description: Caliche - both sources shown on one map.

Construction Materials source location attachment:

Glock17_16B3DAFedCom2H_calichesourceandtransmap_20180523091606.pdf

Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drill cuttings

Amount of waste: 940 barrels

Waste disposal frequency : One Time Only

Safe containment description: Drill cuttings will be properly contained in steel tanks (20 yard roll off bins.)

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY Disposal type description:

Disposal location description: NMOCD approved waste disposal locations are CRI or Lea Land, both facilities are located on HWY 62/180, Sec. 27 T20S R32E.

Waste type: SEWAGE

Waste content description: Human waste & grey water

Amount of waste: 1500 gallons

Waste disposal frequency : Weekly

Safe containment description: 2,000 gallon plastic container

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: City of Carlsbad Water Treatment facility

 Waste type: GARBAGE

 Waste content description: Garbage & trash

 Amount of waste: 1500
 pounds

 Waste disposal frequency : One Time Only

 Safe containment description: Enclosed trash trailer

 Safe containmant attachment:

 Waste disposal type: HAUL TO COMMERCIAL

 Disp
 al location ownership: PRIVATE

Operator Name: MEWBOURNE OIL COMPANY **Well Name:** GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

FACILITY

Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Reserve Pit

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.) Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Cuttings area depth (ft.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Section 9 - Well Site Layout

Well Site Layout Diagram:

Glock17_16B3DAFedCom2H_wellsitelayout_20180523091630.pdf

Comments:

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: Multiple Well Pad Number:

Recontouring attachment:

Drainage/Erosion control construction: None

Drainage/Erosion control reclamation: None

Well pad proposed disturbance (acres): 3.95	Well pad interim reclamation (acres): 0.775	Well pad long term disturbance (acres): 3.175
Road proposed disturbance (acres):	Road interim reclamation (acres): 0	Road long term disturbance (acres): 0
Powerline proposed disturbance	Powerline interim reclamation (acres):	Powerline long term disturbance (acres): 0
(acres): 0 Pipeline proposed disturbance	Pipeline interim reclamation (acres): 0	Pipeline long term disturbance (acres): 0
(acres): 0 Other proposed disturbance (acres): 0	Other interim reclamation (acres): 0	Other long term disturbance (acres): 0
Total proposed disturbance: 4.706	Total interim reclamation: 0.775	Total long term disturbance: 3.175

Disturbance Comments: In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging. **Reconstruction method:** The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used.

Soil treatment: NA

Existing Vegetation at the well pad: Various brush & grasses

Existing Vegetation at the well pad attachment:

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Existing Vegetation Community at the pipeline: NA Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: NA Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

S dling transplant description attachment:

Will seed be harvested for use in site reclamation? NO Seed harvest description:

Seed harvest description attachment:

Seed Management

Seed Table

Seed type:

Seed name:

Source name:

Source phone:

Seed cultivar:

Seed use location:

PLS pounds per acre:

Seed Summary		
Seed Type	Pounds/Acre	

.

Proposed seeding season:

Total pounds/Acre:

Seed source:

Source address:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Bradley

Last Name: Bishop

Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

Seedbed prep: Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.
 BMP: To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used.

Seed method: drilling or broadcasting seed over entire reclaimed area.

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

W d treatment plan description: NA

W treatment plan attachment:

onitoring plan description: vii. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion and invasive/noxious weeds are controlled. Monitoring plan attachment:

Success standards: regrowth within 1 full growing season of reclamation.

Pit closure description: NA

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: BUREAU OF LAND MANAGEMENT

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

litary Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Operator Name: MEWBOURNE OIL COMPANY	
Well Name: GLOCK 17/16 B3DA FEDERAL COM	Well Number: 2H
Disturbance type: WELL PAD	
Describe:	
Surface Owner: BUREAU OF LAND MANAGEMENT	
Other surface owner description:	
BIA Local Office:	
BOR Local Office:	
COE Local Office:	
DOD Local Office:	
NPS Local Office:	
State Local Office:	
ilitary Local Office:	
USFWS Local Office:	
Other Local Office:	
USFS Region:	
USFS Forest/Grassland:	USFS Ranger District:
Fee Owner: Scott Branson	Fee Owner Address: 1501 Mountain Shadow Dr. Carlsbad,
Phone: (575)885-2066	NM 88220 Email:
Surface use plan certification: NO	
Surface use plan certification document:	
Surface access agreement or bond: Agreeme	ent
Surface Access Agreement Need description	n: SUA in place
Surface Access Bond BLM or Forest Service	::
BLM Surface Access Bond number:	

. .

.

,

USFS Surface access bond number:

• ·

÷

Section 12 - Other Information

Operator Name: MEWBOURNE OIL COMPANY
Well Name: GLOCK 17/16 B3DA FEDERAL COM

Well Number: 2H

SUPO Additional Information: NONE

Use a previously conducted onsite? YES

Previous Onsite Information: APR 05 2018 Met w/RRC Surveying & staked location @ 435' FNL & 140' FWL, Sec 17, T20S, R29E, Eddy Co. NM. Location was unacceptable due to Xcel electric line & to accommodate additional well. Original location was staked w/small pad & there is no additional spacing due to electric lines, fencing, & several buried lines. Restaked location @ 800' FNL & 600' FEL, Sec 18, T20S, R29E, Eddy Co. NM. (Elevation @ 3265'). Location will be 400' x 450'. Topsoil will be stockpiled to the N 30' wide. Approx 1800' of new road will be required to access this location from SW corner heading S to lease rd. Battery to the E. Reclaim 60' N&W. Location is in PA. Location will require BLM onsite. Lat.: 32.57856977, Long.: -104.10773579 NAD83.

Other SUPO Attachment

Glock17_16B3DAFedCom2H_interimreclamationdiagram_20180523091831.pdf Glock17_16B3DAFedCom2H_gascaptureplan_20180523091842.pdf

EXISTING WELL MAP - GLOCK 17/16 B3DA FEDERAL COM #2H Sec 18 T20S, R29E, Eddy County, NM

800 FNL & 600 FEL

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO **Produced Water Disposal (PWD) Location:** PWD surface owner: Lined pit PWD on or off channel: Lined pit PWD discharge volume (bbl/day): Lined pit specifications: Pit liner description: Pit liner manufacturers information: Precipitated solids disposal: Decribe precipitated solids disposal: Precipitated solids disposal permit: Lined pit precipitated solids disposal schedule: Lined pit precipitated solids disposal schedule attachment: Lined pit reclamation description: Lined pit reclamation attachment: Leak detection system description: Leak detection system attachment: Lined pit Monitor description: Lined pit Monitor attachment: Lined pit: do you have a reclamation bond for the pit? Is the reclamation bond a rider under the BLM bond? Lined pit bond number:

PWD disturbance (acres):

Section 3 - Unlined Pits

Id you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined plt reclamation attachment:

Unlined pit Monitor description:

Unlined pit Monitor attachment:

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

D the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

Unlined Produced Water Pit Estimated percolation:

Unlined pit: do you have a reclamation bond for the pit?

is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond Information attachment:

Section 4 - Injection

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

PWD sui a ier:

in a construction of the construction of the left of the second second

PWD disturbance (acres):

PWD disturbance (acres):

í.

Injection well type:

.

,

Injection well number: Assigned injection well API number? Injection well new surface disturbance (acres): Minerals protection information: Mineral protection attachment: Underground Injection Control (UIC) Permit? UIC Permit attachment:

Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location: PWD surface owner: Other PWD discharge volume (bbl/day): Other PWD type description: Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

PWD disturbance (acres):

PWD disturbance (acres):

:

Injection well name:

Injection well API number:

U.S. Department of the interior BUREAU OF LAND MANAGEMENT

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM1693

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Bond Info Data Report

03/01/2019

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: