Form 3160-5 (June 2015) DE B	OMB N	APPROVED O. 1004-0137 anuary 31, 2018							
Do not use thi	NOTICES AND REPO is form for proposals to	drill or to re	-enter an		NMNM16348 6. If Indian, Allottee or Tribe Name				
abandoned we	abandoned well. Use form 3160-3 (APD) for such proposals. SUBMIT IN TRIPLICATE - Other instructions of page 25 TESIA DISTRICT								
SUBMIT IN	TRIPLICATE - Other ins	tructions on	ARTESIA D	SERVATION	19 If Unit or CA/Agre	ement, Name and/or No.			
1. Type of Well			MAR 11	2019	8. Well Name and No. LUSITANO 27-34	FED COM 734H			
Oil Well Gas Well Ott Ott Ott Ott	Contact:	LINDA GOO	-	2013	9. API Well No.	·····			
DEVON ÉNERGY PRODUCT 3a. Address	ION CONERMENt: linda.good		RECE		30-015-45636-0				
6488 SEVEN RIVERS HIGHV ARTESIA, NM 88210		Ph: 405-55	. (include area code) 2-6558			-ŴOLFĆAMP (GAS)			
4. Location of Well (Footage, Sec., 7)			11. County or Parish,				
Sec 27 T25S R31E NWNE 23 32.107910 N Lat, 103.763496					EDDY COUNT	Υ, NM			
12. CHECK THE AI	PPROPRIATE BOX(ES)	TO INDICA	TE NATURE O	F NOTICE,	REPORT, OR OTI	IER DATA			
TYPE OF SUBMISSION			TYPE OF	FACTION					
X Notice of Intent	🗖 Acidize	🗖 Dee	pen	Product	ion (Start/Resume)	Water Shut-Off			
Subsequent Report	Alter Casing		raulic Fracturing	C Reclam		Well Integrity			
☐ Final Abandonment Notice	 Casing Repair Change Plans 	—	Construction gand Abandon	C Tempor	nplete 🛛 Other Drarily Abandon Drilling Oper				
	Convert to Injection	🖸 Plug		Water I	•				
determined that the site is ready for f Devon Energy Production Co. the Drilling Plan: These changes are being mad design has been updated.	, LP respectfully request								
The following changes have b	een made:								
Intermediate Casing:			Cai	asda(i Field O	ffice			
The Primary Casing Program A variance is requested to have	has been revised to inclu ve the option to drill 9-7/8	de 10-5/8" ho " hole size.	le size.	OCI) Artesia				
14. I hereby certify that the foregoing is	true and correct. Electronic Submission # For DEVON ENERG mitted to AFMSS for proc	Y PRODUCTIO	N COMPAN, sen	t to the Carls	sbad				
Name (Printed/Typed) LINDA GO	DOD		Title REGUL	ATORY SP	ECIALIST				
Signature (Electronic S	Submission)		Date 02/11/2	019		<u></u>			
	THIS SPACE FO	DR FEDER/	L OR STATE	OFFICE U	SE				
Approved By LONG VO Conditions of approval, if any, are attache certify that the applicant holds legal or equivalent the applicant to condu-	uitable title to those rights in the	not warrant or e subject lease	TitlePETROLE		EER	Date 02/23/201			
Title 18 U.S.C. Section 1001 and Title 43 States any false, fictitious or fraudulent	U.S.C. Section 1212, make it a	crime for any post to any matter w	rson knowingly and		ake to any department or	agency of the United			
(Instructions on page 2) ** BLM REV	ISED ** BLM REVISEI	D ** BLM RI	EVISED ** BLN	I REVISE	D ** BLM REVISE	D **			

fur.	3	-22	-19
	-		1 1.

Additional data for EC transaction #454075 that would not fit on the form

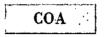
32. Additional remarks, continued

The Primary Casing Design has been revised to include 8-5/8" 32# P110 Tec-Lock Wedge

Intermediate Casing Shoe Depth has been moved to the 3rd Bone Spring Lime at 10,500' TVD

Production Casing:

The Primary casing string will consist of 5-1/2" 20# P110EC VAM-TOP HT and 5-1/2" 20# P-110EC DWC/C-IS PLUS


Intermediate & Production Cement

The cement volumes have been updated according to the changes detailed above.

Attachments

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	DEVON ENERGY PRODUCTION COMPANY LP
LEASE NO.:	NMNM125635
WELL NAME & NO.:	LUSITANO 27-34 FED COM 734H
SURFACE HOLE FOOTAGE:	23'/N & 1904'/E
BOTTOM HOLE FOOTAGE	20'/S & 2310'/E
LOCATION:	SECTION 27, T25S, R31E, NMPM
COUNTY:	EDDY

H2S	C Yes	r No	
Potash	✤ None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	Medium	
Variance	C None	Flex Hose	C Other
Wellhead	Conventional		🙆 Both
Other	□ □ 4 String Area	Capitan Reef	F WIPP
Other	Fluid Filled	Cement Squeeze	☐ Pilot Hole
Special Requirements	✓ Water Disposal	COM	□ Unit

All Previous COAs Still Apply.

A. CASING

Primary Casing Design:

- 1. The 13-3/8 inch surface casing shall be set at approximately 927 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that

string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.
 Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
- In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

Operator is <u>Approved</u> for option to drill change intermediate 1 hole size to 9.875" with connection change to TLW.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Cement excess is less than 25%, more cement might be required.

Alternate Casing Design:

- 4. The 13-3/8 inch surface casing shall be set at approximately 927 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - f. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - h. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

5. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. <u>Operator must run</u> <u>a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.</u>

- 6. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification. Cement excess is less than 25%, more cement might be required.

B. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 10,000 (10M) psi. Variance is approved to use a 5000 (5M) Annular which shall be tested to 5000 (5M) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

C. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)
 - Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

🔀 Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

1. Geologic Formations

TVD of target	12092	Pilot hole depth	N/A
MD at TD:	22381	Deepest expected fresh water:	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Rustler	912		
Salado	1177		
Base of Salt	4277		
Delaware	4297		
L Brushy Canyon	8022		
Bone Spring	8247		
Leonard 'A'	8362		
Leonard 'B'	8762		
Leonard 'C'	9012		
1st BSPG Sand	9292		
2nd BSPG Lime	9692		
2nd BSPG Sand	9997		
L 2nd BSPG Sand	10317		
3rd BSPG Lime	10382		
3rd BSPG Sand	11182		
Wolfcamp	11647		· · ·
Wolfcamp 100	11807		

*H2S, water flows, loss of circulation, abnormal pressures, etc.

Hole	Casing	Interval	Csg.	Wt.		G '	Min SF	Min SF	Min SF	
Size	From	То	Size	(PPF)	Grade	Conn	Collapse	Burst	Tension	
17.5"	0	98427	13.375"	48	H-40	STC	1.125	1.25	1.6	
10.625"	0	10500	8.625"	32	P110E C	Tec-Lock Wedge	1.125	1.25	1.6	VANT
7.875"	0	TD	5.5"	² 1 ₀ 6	P110	VAMTOP HT x DWC/CIS Plus	1.125	1.25	1.6	50 K
				BLM	I Minimur	n Safety Factor	1.125	1.00	1.6 Dry 1.8 Wet] pwc/i

2. Casing Program (Primary Design)

70=10500

10= 22382 10= 12092

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
 - KOP: MD=11553.27
- Int 1 casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.
- Option to drill change intermediate 1 hole size to 9.875; (8.625" connection will change from BIC to TLW)
- Common to run 8.525" TLW connection for intermediate P
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.

Devon - Internal

• Variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing. No losses are expected in subsequent hole section.

	Hole Casing Interval		Hole Casing Interval Csg.	Casing Interval		Hole Casing Interval	Wt.	Grade	Comm	Min SF	Min SF	Min SF				
	Size	Size From To		Size	(PPF)	Graue	Conn	Collapse	Burst	Tension						
	17.5"	0	931 937	13.375"	48	H-40	STC	1.125	1.25	1.6						
	10.625"	0	5000	9 6152	20	DUOEC	BTC	1.125	1.05	1.6						
9= 12097	9.875"	5000	12433	8.625"	8.025	8.025	8.025	8.025	8.025	8.625" 32	32	P110EC	VAM FJL	1.125	1.25	1.6
np = 13382 rp = 12097	7.875"	0	TD	5.5"	20	P110	BTC	1.125	1.25	1.6						
. •				<u></u>	BLM	Minimum S	Safety Factor	1.125	1.00	1.6 Dry 1.8 Wet						

Casing Program (Alternate Design)

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h Must have table for contingency casing
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- Int 1 casing shoe will be selected based on drilling data / gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- Variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing. No losses are expected in subsequent hole section.

	Y or N		
Is casing new? If used, attach certification as required in Onshore Order #1	Y		
Does casing meet API specifications? If no, attach casing specification sheet.			
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N		
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y		
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y		
Is well located within Capitan Reef?	N		
If yes, does production casing cement tie back a minimum of 50' above the Reef?			
Is well within the designated 4 string boundary.			
Is well located in SOPA but not in R-111-P?	N		
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?			
<u></u>			
Is well located in R-111-P and SOPA?	N		
If yes, are the first three strings cemented to surface?	1		
Is 2 nd string set 100' to 600' below the base of salt?			
Is well located in high Cave/Karst?	N		

Gevon - Internal

If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	·
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Casing	# Sks	тос	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description
Surface	752	Surf	13.2	1.33	Lead: Class C Cement + additives
T . 1	1152	Surf	9	1.85	Lead: Class C Cement + additives
Int 1	831	4000' above shoe	13.2	1.33	Tail: Class H / C + additives
	590	Surf	9	1.85	1 st stage Lead: Class C Cement + additives
Int 1 Two Stage	55	500' above shoe	13.2	1.33	1 st stage Tail: Class H / C + additives
w DV @ ~4500	600	Surf	9	1.85	2 st stage Lead: Class C Cement + additives
	55	500' above DV	13.2	1.33	2 st stage Tail: Class H / C + additives
	As Needed	Surf	13.2	1.33	Squeeze Lead: Class C Cement + additives
Int 1 Intermediate Squeeze	1152	Surf	9	· 1.85	Lead: Class C Cement + additives
Squeeze	Squeeze 4000' 13.2 1.33		Tail: Class H / C + additives		
Production	860	500' tieback	13.2	1.33	Lead: Class H / C + additives

3. Cementing Program (Primary Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

3 Drilling Plan

Devon - Internal

Cementing P		····	Wt.	Yld	
Casing	#Sks	TOC	(lb/gal)	(ft3/sack)	Slurry Description
Surface	775	Surf	13.2	1.33	Lead: Class C Cement + additives
	1340	Surf	9	3.31	Lead: Class C Cement + additives
Int 1	834	4000' above shoe	13.2	1.33	Tail: Class H / C + additives
	670	Surf	9	3.31	1 st stage Lead: Class C Cement + additives
Int 1 Two Stage	55	500' above shoe	13.2	1.33	1 st stage Tail: Class H / C + additives
w DV @ ~4500	625	Surf	9	3.31	2 st stage Lead: Class C Cement + additives
	55	500' above DV	13.2	1.33	2 st stage Tail: Class H / C + additives
	As Needed	Surf	13.2	1.33	Squeeze Lead: Class C Cement + additives
Int 1 Intermediate Squeeze	1340	Surf	9	3.31	Lead: Class C Cement + additives
Squeeze	834	4000' above shoe	13.2	1.33	Tail: Class H / C + additives
Production	1237	500' tieback	13.2	1.33	Lead: Class H / C + additives

Cementing Program (Alternate Design)

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	T	уре	~	Tested to:
			An	nular	X	50% of rated working pressure
Int 1	13-5/8"	5M	Blin	d Ram	X	
11 11 I	13-5/8	5111	Pip	e Ram		534
			Dout	le Ram	X	5M
			Other*			
	13-5/8"	10M	Annular (5M)		X	100% of rated working pressure
			Blind Ram		X	
Production			Pipe Ram Double Ram			
					X	10M
			Other *			
			An	nular		
			Blin	d Ram		
			Pip	e Ram		
			Doub	le Ram		
			Other *			
		or the use of a to run a 5M a				ng. See attached for schematic.

4. Pressure Control Equipment (Three String Design)

5. Mud Program (3 String Design)

Depth		ar.	Weight	¥.79	
From	To	Туре	(ppg)	Vis	Water Loss
0	937	FW Gel	8.5 - 9	28-34	N/C
937	12433	DBE / Cut Brine	9 - 10	28-34	N/C
12433	TD	OBM	10-10.5	28-34	N/C

.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring
i what will be used to monitor the loss of gain of huld.	

6. Logging and Testing Procedures

	ing, Coring and Testing.
x	Will run GR/CNL fromTD to surface (horizontal well - vertical portion of hole). Stated logs
	run will be in the Completion Report and submitted to the BLM.
	No Logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain

Coring? If yes,	0 V m 0 1 m	
	ехнияни	

Addi	tional logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	6602 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydi	Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is		
detec	detected in concentrations greater than 100 ppm, the operator will comply with the provisions of		
Onsh	Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations		
will	will be provided to the BLM.		
Ν	H2S is present		
Y	H2S Plan attached		

8. Other facets of operation

Is this a walking operation? Potentially

- 1. If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2. The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3. The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1. Spudder rig will move in and drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.
- 2. After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- 3. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5. Spudder rig operations is expected to take 4-5 days per well on a multi well pad.

6 Drilling Plan

Lusitano 27-34 Fed Com 734H

- 6. The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7. Drilling operations will be performed with the drilling rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

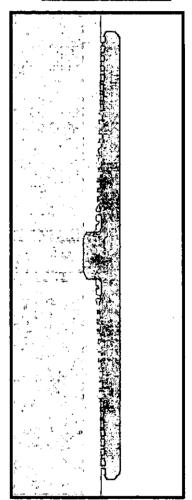
Attachments

<u>x</u> Directional Plan

____ Other, describe

7 Drilling Plan

Decon - Internal


Technical Specifications

Connection Type: DWC/C-IS PLUS Casing standard Weight (Wall): 20.00 lb/ft (0.361 in)

Grade: VST P110 EC

VAM USA 4424 W. Sam Houston Pkwy. Suite 150 Houston, TX 77041 Phone: 713-479-3200 Fax: 713-479-3234 E-mail: <u>VAMUSAsales@vam-usa.com</u>

VST P110 EC 125,000 135.000

Pipe Dimensions

Minimum Yield Strength (psi) Minimum Ultimate Strength (psi)

Material

Grade

5.500Nominal Pipe Body O.D. (in)4.778Nominal Pipe Body I.D.(in)0.361Nominal Wall Thickness (in)20.00Nominal Weight (lbs/ft)19.83Plain End Weight (lbs/ft)5.828Nominal Pipe Body Area (sq in)

Pipe Body Performance Properties

- 729,000 Minimum Pipe Body Yield Strength (lbs)
- 12,090 Minimum Collapse Pressure (psi)
- 14,360 Minimum Internal Yield Pressure (psi)
- 13,100 Hydrostatic Test Pressure (psi)

Connection Dimensions

- 6,300 Connection O.D. (in)
- 4.778 Connection I.D. (in)
- 4.653 Connection Drift Diameter (in)
- 4.13 Make-up Loss (in)
- 5.828 Critical Area (sq in)
- 100.0 Joint Efficiency (%)

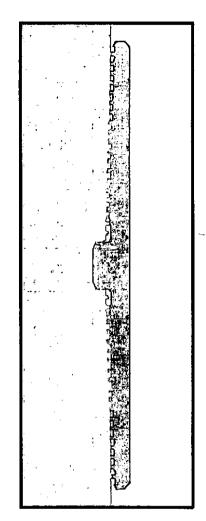
Connection Performance Properties

- 729,000 Joint Strength (lbs)
- 26,040 Reference String Length (ft) 1.4 Design Factor
- 728,000 API Joint Strength (lbs)
- 729,000 Compression Rating (lbs)
- 12,090 API Collapse Pressure Rating (psi)
- 14,360 API Internal Pressure Resistance (psi)
- 104.2 Maximum Uniaxial Bend Rating [degrees/100 ft]

Appoximated Field End Torque Values

- 16,600 Minimum Final Torque (ft-lbs)
- 19,100 Maximum Final Torque (ft-lbs)
- 21,600 Connection Yield Torque (ft-lbs)

For detailed information on performance properties, refer to DWC Connection Data Notes on following page(s).


Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

DWC Connection Data Notes:

- 1. DWC connections are available with a seal ring (SR) option.
- 2. All standard DWC/C connections are interchangeable for a give pipe OD. DWC connections are interchangeable with DWC/C-SR connections of the same OD and wall.
- 3. Connection performance properties are based on nominal pipe body and connection dimensions.
- DWC connection internal and external pressure resistance is calculated using the API rating for buttress connections. API Internal pressure resistance is calculated from formulas 31, 32, and 35 in the API Bulletin 5C3.
- 5. DWC joint strength is the minimum pipe body yield strength multiplied by the connection critical area.
- 6. API joint strength is for reference only. It is calculated from formulas 42 and 43 in the API Bulletin 5C3.
- 7. Bending efficiency is equal to the compression efficiency.
- 8. The torque values listed are recommended. The actual torque required may be affected by field conditions such as temperature, thread compound, speed of make-up, weather conditions, etc.
- 9. Connection yield torque is not to be exceeded.
- Reference string length is calculated by dividing the joint strength by both the nominal weight in air and a design factor (DF) of 1.4. These values are offered for reference only and do not include load factors such as bending, buoyancy, temperature, load dynamics, etc.
- DWC connections will accommodate API standard drift diameters.

Connection specifications within the control of VAM USA were correct as of the date printed. Specifications are subject to change without notice. Certain connection specifications are dependent on the mechanical properties of the pipe. Mechanical properties of mill proprietary pipe grades were obtained from mill publications and are subject to change. Properties of mill proprietary grades should be confirmed with the mill. Users are advised to obtain current connection specifications and verify pipe mechanical properties for each application.

All information is provided by VAM USA or its affiliates at user's sole risk, without liability for loss, damage or injury resulting from the use thereof; and on an "AS IS" basis without warranty or representation of any kind, whether express or implied, including without limitation any warranty of merchantability, fitness for purpose or completeness. This document and its contents are subject to change without notice. In no event shall VAM USA or its affiliates be responsible for any indirect, special, incidental, punitive, exemplary or consequential loss or damage (including without limitation, loss of use, loss of bargain, loss of revenue, profit or anticipated profit) however caused or arising, and whether such losses or damages were foreseeable or VAM USA or its affiliates was advised of the possibility of such damages.

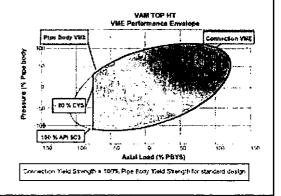
2/6/2015

Connection Data Sheet

0D 5 1/2 in.	Weight 20,00 lb/ft	E.	Grade. P110 EC	Connection VAM® TOP HT

PIPE PROPERTI	ESa a Page -
Nominal OD	5.500 in.
Nominal ID	4.778 in.
Nominal Cross Section Area	5.828 sqin.
Grade Type	High Yield
Min. Yield Strength	125 ksi
Max. Yield Strength	140 ksi
Min, Ultimate Tensile Strength	135 ksi

CONNECTION PRO	PERTIES
Connection Type	Premium T&C
Connection OD (nom)	6.071 in.
Connection ID (nom)	4.715 in.
Make-up Loss	4.382 in.
Coupling Length	10.748 in.
Critical Cross Section	5.828 sqin.
Tension Efficiency	100 % of pipe
Compression Efficiency	80 % of pipe
Internal Pressure Efficiency	100 % of pipe
External Pressure Efficiency	100 % of pipe


CONNECTION PERFORMANCES				
Tensile Yield Strength	729 klb			
Compression Resistance	583 klb			
Internal Yield Pressure	14360 psi			
External pressure resistance	12090 psi			
Max. bending with sealability	30 °/100 ft			
Max. Load on Coupling Face	388 klb			

TORQUEVALUES		
Min. Make-up torque	10850	ft.lb
Opti. Make-up torque	11950	ft.lb
Max, Make-up torque	13050	ft.lb
Field Liner Max	15900	ft.lb
Mill and Licensees Torque - Min	15900	ft.ĺb
Mill and Licensees Torque - Max	17500	ft.lb

VAM® TOP HT (High Torque) is a T&C connection based on the main features of the VAM® TOP connection.

This connection provides reinforced torque capability for liners and where High Torque is anticipated due to string rotation during running operations (torque rotating liner while running, rotating casing when cementing). It has been tested as per ISO13679 CAL IV requirements.

VAM TOP HT is interchangeable with VAM TOP product line with the exception of 4 $1/2^{\prime\prime}$ size.

. Do you need help on this product? - Remember no one knows VAM $^{f \otimes}$ like VAM

canada@vamfieldservice.com usa@vamfieldservice.com mexico@vamfieldservice.com .brazil@vamfieldservice.com uk@vamfieldservice.com dubai@vamfieldservice.com higeria@vamfieldservice.com angola@vamfieldservice.com

an againm tana ana ana ana ana ana ana

china@vamfieldservice.com baku@vamfieldservice.com singapore@vamfieldservice.com australia@vamfieldservice.com

Over 140 VAM® Specialists available worldwide 24/7 for Rig Site Assistance

TEC-LOCK WEDGE

8.625" 32.00 LB/FT (.352" Wall) BORUSAN MANNESMANNP110 HSCY

Pipe Body Data

Nominal OD:	8.625	in	
Nominal Wall:	.352	in	
Nominal Weight:	32.00	lb/ft	
Plain End Weight:	31.13	lb/ft	
Material Grade:	P110 HSCY		
Mill/Specification:	BORUSAN MANNESMANN		
Yield Strength:	125,000	psi	
Tensile Strength:	125,000	psi	
Nominal ID:	7.921	in	
API Drift Diameter:	7.796	in	
Special Drift Diameter:	7.875	in	
RBW:	87.5 %		
Body Yield:	1,144,000	ibf	
Burst:	8,930	psi	
Collapse:	4,230	psi	

Connection Data

Standard OD:	9.000	in	
Pin Bored ID:	7.921	in	
Critical Section Area:	8.61433	in²	
Tensile Efficiency:	94.2 %		
Compressive Efficiency:	100.0 %		
Longitudinal Yield Strength:	1,077,000	lbf	
Compressive Limit:	1,144,000	lbf	
Internal Pressure Rating:	8,930	psi	
External Pressure Rating:	4,230	psi	
Maximum Bend:	62.6	*/100	

Operational Data

Minimum Makeup Torque:	29,900	ft*lbf
Optimum Makeup Torque:	37,375	ft*lbf
Maximum Makeup Torque:	80,900	ft*lbf
Minimum Yield:	89,900	ft*lbf
Makeup Loss:	5.97	in

Notes

Operational Torque is equivalent to the Maximum Make-Up Torque.

Generated on 9/18/2018 1:14:29 PM Please visit http://www.huntingplc.com for the latest technical information.