Form 3160-3	Carlsbad Field Of	FORM APPROVED
(June 2015) UNITED STATE DEPARTMENT OF THE I BUREAU OF LAND MAN APPLICATION FOR PERMIT TO D	S NTERIORA OIL CONSERVATION ARTESIA DISTRICT AGEMENT DRILL OR REEATER 6.	OMB No. 1004-0137 Expires: January 31, 2018 Lease Serial No. MNM\$54398 If Indian, Allotee or Tribe Name
1a. Type of work: ✓ DRILL R 1b. Type of Well: ✓ Oil Well Gas Well C 1c. Type of Completion: Hydraulic Fracturing ✓ S	RECEIVED 7. Diher 8. Ingle Zone Multiple Źone HO	If Unit or CA Agreement, Name and No. Lease Name and Well No. DWITZER FEDERAL COM
2. Name of Operator COG OPERATING LLC	229137	API-Well No. 30-01,5-4,5832
3a. Address 600 West Illinois Ave Midland TX 79701	(432)683-7443	JRPLE SAGE / WOLFCAMP GAS
 Location of Well (Report location clearly and in accordance At surface NENE / 1044 FNL / 620 FEL / LAT 32.2367 At proposed prod. zone NWNW / 1210 FNL / 200 FWL / 	with any State requirements.*) 791 / LONG -104.034304 / LAT 32.236484 / LONG -104.066277	Sec., T. R. M. of Blk. and Survey or Area C 12-/ T24S/ R28E / NMP
14. Distance in miles and direction from nearest town or post off 2 miles	fice*	DDY 13. State
 15. Distance from proposed* 200 feet location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any) 18. Distance from proposed location* to nearest well, drilling, completed, annlied for on this lease. ft	16. No of acres in lease 17. Spacing I 640 19. Proposed Depth 9747, feet /_19938 feet FED: NMB0	Unit dedicated to this well A Bond No. in file
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 2974 feet	22. Approximate date work will start* 23 02/01/2019 30	B. Estimated duration O days
	24. Attachments	
 The following, completed in accordance with the requirements o (as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office) 	 of Onshore Oil and Gas Order No. 1, and the Hydronic Oil and Gas Order No. 1, and the Hydronic Order No. 1, and the Hydroic Ord	raulic Fracturing rule per 43 CFR 3162.3-3 nless covered by an existing bond on file (se ion and/or plans as may be requested by the
25. Signature (Electronic Submission)	Name (Printed/Typed) Mayte Reyes / Ph: (575)748-6945	Date 11/08/2018
Regulatory Analyst		• •
Approved by (Signature) (Electronic Submission)	Name (Printed/Typed) Cody Layton / Ph: (575)234-5959	Date 02/26/2019
Title / Consistent Field Manager Lands & Minorals	Office	
Application approval does not warrant or certify that the applicat applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal or equitable title to those rights in the	he'subject lease which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, 1 of the United States any false, fictitious or fraudulent statements	make it a crime for any person knowingly and wil or representations as to any matter within its juris	Ifully to make to any department or agenc sdiction.

*(Instructions on page 2) Ruf 4-11-19.

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances-for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state-or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U(\$:C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Continued on page 3)

(Form 3160-3, page 2)

Additional Operator Remarks

Location of Well

SHL: NENE / 1044 FNL / 620 FEL / TWSP: 24S / RANGE: 28E / SECTION: 12 / LAT: 32.236791 / LONG: -104.034304 (TVD: 0 feet, MD: 0 feet)
 PPP: NENW / 1210 FNL / 2640 FWL / TWSP: 24S / RANGE: 28E / SECTION: 12 / LAT: 32.236371 / LONG: -104.040925 (TVD: 9702 feet, MD: 12350 feet)
 PPP: NENE / 1210 FNL / 330 FEL / TWSP: 24S / RANGE: 28E / SECTION: 12 / LAT: 32.236337 / LONG: -104.033365 (TVD: 5482 feet, MD: 5500 feet)
 BHL: NWNW / 1210 FNL / 200 FWL / TWSP: 24S / RANGE: 28E / SECTION: 11 / LAT: 32.236484 / LONG: -104.066277 (TVD: 9747 feet, MD: 19938 feet)

BLM Point of Contact

Name: Deborah Ham Title: Legal Landlaw Examiner Phone: 5752345965 Email: dham@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior, Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	COG Operating LLC	
WELL NAME & NO.:	Howitzer Federal Com 603H	
SURFACE HOLE FOOTAGE:	1044'/N & 620'/E	
BOTTOM HOLE FOOTAGE	1210'/N & 200'/W	
LOCATION:	Section 12, T.24 S., R.28 E., NMPM	
COUNTY:	Eddy County, New Mexico	

Potash	r None	✓ Secretary	C R-111-P
Cave/Karst Potential	CLow	Medium 📀	C High
Variance		• Flex Hose	
Wellhead	Conventional	Multibowl	
Other	□4 String Area	Capitan Reef	□WIPP

A. HYDROGEN SULFIDE

 Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13 3/8** inch surface casing shall be set at approximately **285** feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of <u>8</u> <u>hours</u> or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.

Page 1 of 8

d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9 5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above.
 - In <u>Medium Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 5 1/2 inch production casing is:
 - Cement should tie-back at least 200 feet into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).
- 2. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **3000 (3M)** psi.
- Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9 5/8 intermediate casing shoe shall be 5000 (5M) psi.

D. SPECIAL REQUIREMENT(S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all

such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be on the sign.</u>

MHH 02012019

Page 3 of 8

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Chaves and Roosevelt Counties
 Call the Roswell Field Office, 2909 West Second St., Roswell NM 88201.
 During office hours call (575) 627-0272.
 After office hours call (575)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.

Page 4 of 8

3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well – vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends; 2) until cement has been in place at least <u>24</u> hours. WOC time will be recorded in the driller's log.
- <u>Wait on cement (WOC) for Water Basin:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL
- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's
 - representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the

Page 6 of 8

plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time.
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

NAME: Mayte Reyes

Title: Regulatory Analyst

Street Address: 2208 W Main Street

City: Artesia

State: NM

State: NM

Phone: (575)748-6945

Email address: Mreyes1@concho.com

Field Representative

Representative Name: Gerald Herrera

Street Address: 2208 West Main Street

City: Artesia

Phone: (575)748-6940

Email address: gherrera@concho.com

Signed on: 11/05/2018

Operator Certification Data Report

02/26/2019

Zip: 88210

Zip: 88210

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

02/26/2019

APD ID: 10400036013

Operator Name: COG OPERATING LLC

Well Name: HOWITZER FEDERAL COM

Well Type: OIL WELL

Submission Date: 11/08/2018

The second second second

Well Number: 603H Well Work Type: Drill Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General		
APD ID: 10400036013	Tie to previous NOS?	Submission Date: 11/08/2018
BLM Office: CARLSBAD	User: Mayte Reyes	Title: Regulatory Analyst
Federal/Indian APD: FED	Is the first lease penetr	ated for production Federal or Indian? FED
Lease number: NMNM054398	Lease Acres: 80	
Surface access agreement in place?	Allotted?	Reservation:
Agreement in place? NO	Federal or Indian agree	ment:
Agreement number:		
Agreement name:		
Keep application confidential? YES		
Permitting Agent? NO	APD Operator: COG OF	PERATING LLC
Operator letter of designation:		
Operator Info		•

Operator Organization Name: COG OPERATING LLC

Operator Address: 600 West Illinois Ave

Operator PO Box:

Operator City: Midland State: TX

Operator Phone: (432)683-7443

Operator Internet Address: RODOM@CONCHO.COM

Section 2 - Well Information

Well in Master Development Plan? NO

Well in Master SUPO? NO

Well in Master Drilling Plan? NO

Well Name: HOWITZER FEDERAL COM

Field/Pool or Exploratory? Field and Pool

Master SUPO name:

Mater Development Plan name:

Zip: 79701

Master Drilling Plan name:

Field Name: PURPLE SAGE

Well Number: 603H

Well API Number:

Pool Name: WOLFCAMP GAS

Is the proposed well in an area containing other mineral resources? USEABLE WATER,OIL

Operator Name: COG OPERATING LLC Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Describe other minerals:	· · ·	
Is the proposed well in a Helium production area? N	Use Existing Well Pad? N	NO New surface disturbance?
Type of Well Pad: MULTIPLE WELL	Multiple Well Pad Name:	Number : 602H AND 603H
Well Class: HORIZONTAL	HOWITZER FEDERAL CC Number of Legs:	DM
Well Work Type: Drill	:	· .
Well Type: OIL WELL	· .	
Describe Well Type:		
Well sub-Type: EXPLORATORY (WILDCAT)		
Describe sub-type:		
Distance to town: 2 Miles Distance to ne	earest well: 920 FT E	Distance to lease line: 200 FT
Reservoir well spacing assigned acres Measurement	: 640 Acres	
Well plat: COG_Howitzer_603H_C102_20181106102	2820.pdf	
Well work start Date: 02/01/2019	Duration: 30 DAYS	

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83

Vertical Datum: NAVD88

Survey number:

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD
SHL Leg #1	104 4	FNL	620	FEL	24S	28E	12	Aliquot NENE	32.23679 1	- 104.0343 04	EDD Y	NEW MEXI CO	NEW MEXI CO	S	STATE	297 4	0	0
KOP Leg #1	104 4	FNL	620	FEL	24S	28E	12	Aliquot NENE	32.23679 1	- 104.0343 04	EDD Y	NEW MEXI CO	NEW MEXI CO	S	STATE	297 4	0	0
PPP Leg #1	121 0	FNL	330	FEL	24S	28E	12	Aliquot NENE	32.23633 7	- 104.0333 65	EDD Y	NEW MEXI CO	NEW MEXI CO	S	STATE	- 250 8	550 0	548 2

Operator Name: COG OPERATING LLC Well Name: HOWITZER FEDERAL COM

Well Number: 603H

				- N		18 I. S. 4 S.	<u>.</u>										· · · —	
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
PPP Leg #1	121 0	FNL	264 0	FWL	24S	28E	12	Aliquot NENW	32.23637 1	- 104.0409 25	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMNM 054398	- 672 8	123 50	970 2
EXIT Leg #1	121 0	FNL	330	FWL	24S	28E	11	Aliquot NWN W	32.23648 3	- 104.0658 53	EDD Y	NEW MEXI CO	NEW MEXI CO	F	FEE	- 657 8	199 37	955 2
BHL Leg #1	121 0	FNL	200	FWL	24S	28E	11	Aliquot NWN W	32.23648 4	- 104.0662 77	EDD Y	NEW MEXI CO	NEW MEXI CO	F	FEE	- 677 3	199 38	974 7

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Pressure Rating (PSI): 3M

Rating Depth: 9000

Equipment: Annular. Accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold.

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Howitzer_603H_3M_Choke_20181106093718.pdf

BOP Diagram Attachment:

COG_Howitzer_603H_3M_BOP_20181106093729.pdf

COG_Howitzer_603H_Flex_Hose_20181106093740.pdf

Pressure Rating (PSI): 5M

Rating Depth: 9747

Equipment: Annular, Blind Ram, Pipe Ram. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold **Reguesting Variance?** YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to the choke manifold. See attached for specs and hydrostatic test chart.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets.

Choke Diagram Attachment:

COG_Howitzer_603H_5M_Choke_20181106093806.pdf

BOP Diagram Attachment:

COG_Howitzer_603H_5M_BOP_20181106093817.pdf

COG_Howitzer_603H_Flex_Hose_20181106093826.pdf

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	2700	0	2700	-6999	-7974	2700	J-55	61	STC	1.28	2.94	DRY	3.61	DRY	3.61
2	INTERMED IATE	12.2 5	5.5	NEW	API	N	0	9000	0	9000	-6999	- 18749	9000	HCL -80	40	OTHER - BTC	1.32	1.16	DRY	2.63	DRY	2.63
3	PRODUCTI ON	8.5	5.5	NEW	API	N	0	19938	0	19938	-6999	- 24211	19938	P- 110	23	OTHER - BTC	2.29	2.71	DRY	3.23	DRY	3.23

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Howitzer_603H_Casing_Prog_20181106094018.pdf

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Casing Attachments

Casing ID: 2	String Type: INTERMEDIATE
Inspection Document:	

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Howitzer_603H_Casing_Prog_20181106094114.pdf

Casing ID: 3 String Type: PRODUCTION

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

COG_Howitzer_603H_Casing_Prog_20181106094207.pdf

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	2700	1420	1.75	13.5	2485	50	Class C	4% Gel
SURFACE	Tail		0	2700	250	1.34	14.8	335	50	Class C	2% CaCl2
INTERMEDIATE	Lead		0	9000	1390	2.8	11	3892	50	NeoCem	As needed
INTERMEDIATE	Tail		0	9000	300	1.1	16.4	330	50	Tail: Class H	As needed
PRODUCTION	Lead		0	1993	400	2	12.7	800	35	35:65:6 H Blend	As needed

Section 4 - Cement

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Tail		0	1993 8	3010	1.24	14.4	3732	35	50:50:2 Class H Blend	As needed

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

Describe the mud monitoring system utilized: PVT/Pason/Visual Monitoring.

				_							
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	НА	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
2700	9000	OTHER : Brine Diesel Emulsion	8.6	9.4							Brine Diesel Emulsion
0	2700	OTHER : FW Gel	8.4	8.6							FW Gel
9000	1993 7	OIL-BASED MUD	10.5	12.5							ОВМ

Circulating Medium Table

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

None planned

List of open and cased hole logs run in the well: CNL,GR

Coring operation description for the well:

None planned

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6340

Anticipated Surface Pressure: 4163.32

Anticipated Bottom Hole Temperature(F): 155

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

COG_Howitzer_603H_H2S_Schem_20181108143008.pdf COG_Howitzer_603H_H2S_SUP_20181108143016.pdf

Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

COG_Howitzer_603H_AC_Rprt_20181106095033.pdf COG_Howitzer_603H_Direct_Plan_20181106095042.pdf

Other proposed operations facets description:

Drilling Program Attached. GCP Attached.

Other proposed operations facets attachment:

COG_Howitzer_603H_Drill_Prog_20181106095052.pdf COG Howitzer 603H GCP 20181106095102.pdf

Other Variance attachment:

3M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

5M Choke Manifold Equipment (WITH MGS + CLOSED LOOP)

s de la construction de la constru La construction de la construction d	M		
	' <u>N</u>	VV	,
	Midwes	st Hose	
	& Speci	alty, Inc.	
		tic Tost Cortificate	•
Inte	rnal Hyarosta	Hose Speci	fications
General Infor		Hose Assembly Type	Choke & Kill
Customer	LATSHAW DRILLING	Cortification	API 7K/FSL LEVEL2
MWH Sales Representative	ABYGAIL LUGAN	Hose Grade	MUD
Date Assembled	3/16/2018	Hose Working Pressure	N/A
Location Assembled	0KC	Hose Volking Pressure	N/A
Sales Order #	308223	Hose ID (Inches)	3.35"
Customer Purchase Order #	412528	Hose O.D. (Inches)	5.77"
Assembly Serial # (Pick Ticket #)	454657	Armor (yes/po)	YES
Hose Assembly Length			
	The second s	111185 End	P
End A		EIIU D P2 5¥64-WB	
Stem (Part and Revision #)	R3:5X64-WB	Stem (Part and Revision #)	1770131
Stem' (Heat #)	1770131	Stem (Heat #)	RF3 5X5330
Ferrule (Part and Revision #)	RF3.5X5330	Ferrule (Part and Revision #)	60860852
Ferrule (Heat #)	60860852	Ferrule (Heot #)	41/1610K
Connection Flange Hammer Union P	ort4-1/16 10K	Connection (Part #)	171/1010K
Connection (Heat #)		Nut (Part #)	
Nut (Port #)		Nut (Heat #)	
Nut (Heat #)	N/A	Dies Used	5.75"
Dies Used		stRequirements	
Teat Dracours ()		Hose assembly was test	ed with ambient water
Test Pressure (psi)	16,000	temper	rature.
Test Pressure Hold Time (minute	10	·	
Date Tested	Teste	Tested By	
3/16/2018		7 2	FALCES

the manual state

•	Midwest & Specia	Hose Ity, Inc.	
\overline{C}	entificate of	Conformity	
Customer: LATSHAW DRILLING		Customer P.O.# 412528	
Sales Order # 368223		Date Assembled: 3/16/2018	
	Specific	adions	
Hose Assembly Type: Chok	e & Kill	Rig # N/A	· · ·
Assembly Serial # 4548	57	Hose Lot # and Date Code	N/A
Hose Working Pressure (psi) N/A		Test Pressure (psi)	10000
Hose Assembly Description:	CK5	6-SS-5K-6410K-6410K-58.00'	FT-TVM
We hereby certify that the above mat to the requirements of the purchase o	erial supplied fo order and curren	r the referenced purchase ord t industry standards.	er to be true according
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129			
Comments:			
Approved By	3	<u>Da</u> 3/19/	te /2018

.

5,000 psi BOP Schematic

Midwest Hose & Specialty, Inc. Internal Hydrostatic Test Certificate Hose Specifications General Information **Choke & Kill** LATSHAW DRILLING Hose Assembly Type Customer API 7K/FSL LEVEL2 Certification ABYGAIL LOGAN MWH Sales Representative MUD Hose Grade 3/16/2018 Date Assembled N/A Hose Working Pressure ОКС Location Assembled N/A Hose Lot # and Date Code 368223 Sales Order # 3.35" Hose I.D. (inches) 412528 Customer Purchase Order # 5.77" Hose O.D. (Inches) 454857 Assembly Serial # (Pick Ticket #) YES Armor (yes/no) 58' Hose Assembly Length Tre Partie Fittings End B End A R3.5X64-WB Stem (Part and Revision #) Stem (Part and Revision #); R3.5X64-WB 1770131 Stem (Heat #) 1770131 Stem (Heat #) RF3.5X5330 Ferrule (Part and Revision #) RF3.5X5330 Ferrule (Part and Revision #) 60860852 60860852 Ferrule (Heat #) Ferrule (Heat #) Connection (Part#) 4=1/16 10K 4-1/16 10K Connection Flange Hammer Union Part Connection (Heat #) Connection (Heat #) Nut (Part #) Nut (Part #) NUt (Heat #) NUT (Heat#) 5.75" Dies Used N/A Dies Used Hydrostatic Test Requirements Hose assembly was tested with ambient water 10,000 Test Pressure (psi) temperature. 16 Test Pressure Hold Time (minutes) Approved By Tested By Date Tested 3/16/2018 Co.

MHSI-008 Rev. 0.0 Proprietary

Midv & Spe	vest Hose ecialty, Inc.
Certificate	of Conformity
Customer: LATSHAW DRILLING	Customer P.O.# 412528
Sales Order # 368223	Date Assembled: 3/16/2018
Spec	ifications
Hose Assembly Type: Choke & Kill	Rig # N/A
Assembly Serial # 454857	Hose Lot # and Date Code N/A
Hose Working Pressure (psi) N/A	Test Pressure (psi) 10000
Hose Assembly Description:	CK56-SS-5K-6410K-6410K-58.00 FT-TVM
We hereby certify that the above material supplie to the requirements of the purchase order and cu	d for the referenced purchase order to be true according rrent industry standards.
Supplier: Midwest Hose & Specialty, Inc. 3312 S I-35 Service Rd Oklahoma City, OK 73129	
Comments:	
Approved By	Date 3/19/2018

Ň

- · · ~

ľ۲

	Casing Interval			Weight			SF		SF
Hole Size	From	То	Csg. Size	(Ibs)	Grade	Conn.	Collapse	SF Burst	Body
13.5"	0	975	10.75"	45.5	N80	BTC	5.54	1.20	23.44
9.875"	0	11750	7.625"	29.7	P110	BTC	1.29	1.11	3.11
6.75"	0	11250	5.5"	23	P110	BTC	1.95	2.04	3.25
6.75"	11250	17,212	5"	18	P110	BTC	1.95	2.04	3.25
				BLM Mi	nimum Sa	ifety Factor	1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing to mitigate collapse. Surface burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface and All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

The 5" casing will be run back 500' into the intermediate casing to ensure the coupling OD clearance is greater than .422" for the cement bond tie in.

	Ca	asing	Cog Sia	Weight	Grada	Conn	SF	SE Buret	SF
noie Size	From	Τo	Usy. Siz	lbs)	Grade	Conn.	Collapse	SF Burst	Tension
17.5"	0	875	13.375"	54.5	J55	STC	2.82	1.27	10.78
12.25"	0	4000	9.625"	40	J55	LTC	1.22	1.00	3.25
12.25"	4000	4875	9.625"	40	L80	LTC	1.21	1.45	5.73
8.75"	0	14,768	5.5"	17	P110	LTC	1.50	2.69	2.54
			B	BLM Minimun	n Safety	/Factor	1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Casin	g Interval	Con			Grada	Conn	SF	SE Buret	SF
Hole Size	From	То	039.0120		(lbs)	Graue	Conn.	Collapse	SF Buist	Tension
17.5"	0	2700	13.375"		61	J55	STC	1.28	2.94	3.61
12.25"	0	9000	9.625"		40	HCL80	BTC	1.32	1.16	2.63
8.5	0	19,938	5.5"	5.5"		P110	BTC	2.29	2.71	3.23
BLM Minimum Safety Factor								1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Casin	g Interval	Con Si	Con Simo		Grada	Conn	SF	SE Durot	SF
nole Size	From To		Usy. Size		(lbs)	Grade	Conn.	Collapse	SF DUISL	Tension
17.5"	0	2700	13.37	5"	61	J55	STC	1.28	2.94	3.61
12.25"	0	9000	9.625"		<u>4</u> 0	HCL80	BTC	1.32	1.16 ·	2.63
8.5	0	19,938	5.5"	5.5"		P110	BTC	2.29	2.71	3.23
				BLI	M Minimu	ım Safety	y Factor	1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Casin	g Interval	Cea		Weight	Grado	Conn	SF	SE Buret	SF
TIOIE SIZE	From	То	U39. 012		(lbs)	Graue	Conn.	Collapse	SP Buist	Tension
17.5"	0	2700	13.375"		61	J55	STC	1.28	· 2.94	3.61
12.25"	0	9000	9.625"		40	HCL80	BTC	1.32	1.16	2.63
8.5	0	19,938	5.5"	5.5"		P110	BTC	2.29	2.71	3.23
BLM Minimum Safety Factor								1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

COG OPERATING LLC HYDROGEN SULFIDE DRILLING OPERATIONS PLAN

1. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- a. The hazards and characteristics of hydrogen sulfide (H₂S).
- b. The proper use and maintenance of personal protective equipment and life support systems.
- c. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- d. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- a. The effects of H2S on metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- b. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- c. The contents and requirements of the H₂S Drilling Operations Plan and the Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. This plan shall be available at the well site. All personnel will be required to carry documentation that they have received the proper training.

2. <u>H₂S SAFETY EQUIPMENT AND SYSTEMS</u>

Note: All H_2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H2S. If H2S greater than 100 ppm is encountered in the gas stream we will shut in and install H2S equipment.

a. Well Control Equipment:

Flare line.

Choke manifold with remotely operated choke.

Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.

Auxiliary equipment to include: annular preventer, mud-gas separator, rotating head.

- b. Protective equipment for essential personnel: Mark II Surviveair 30-minute units located in the dog house and at briefing areas.
- c. H2S detection and monitoring equipment:

2 - portable H2S monitor positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 ppm are reached.

- d. Visual warning systems: Caution/Danger signs shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.
- e. Mud Program: The mud program has been designed to minimize the volume of H2S circulated to the surface.
- f. Metallurgy:

All drill strings, casings, tubing, wellhead, blowout preventers, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.

g. Communication:

Company vehicles equipped with cellular telephone.

COG OPERATING LLC has conducted a review to determine if an H2S contingency plan is required for the above referenced well. We were able to conclude that any potential hazardous volume would be minimal. H2S concentrations of wells in this area from surface to TD are low enough; therefore, we do not believe that an H2S contingency plan is necessary.

EMERGENCY CALL LIST

	OFFICE	MOBILE
COG OPERATING LLC OFFICE	575-748-6940	· •
SETH WILD	432-683-7443	432-528-3633
WALTER ROYE	575-748-6940	432-934-1886

EMERGENCY RESPONSE NUMBERS

	OFFICE
STATE POLICE	575-748-9718
EDDY COUNTY SHERIFF	575-746-2701
EMERGENCY MEDICAL SERVICES (AMBULANCE)	911 or 575-746-2701
EDDY COUNTY EMERGENCY MANAGEMENT (HARRY BURGESS)	575-887-9511
STATE EMERGENCY RESPONSE CENTER (SERC)	575-476-9620
CARLSBAD POLICE DEPARTMENT	575-885-2111
CARLSBAD FIRE DEPARTMENT	575-885-3125
NEW MEXICO OIL CONSERVATION DIVISION	575-748-1283
INDIAN FIRE & SAFETY	800-530-8693
HALLIBURTON SERVICES	800-844-8451

Concho Resources, Inc.

Eddy County (NAD27 NME) (Howitzer) Sec-12_T-24-S_R-28-E Howitzer Federal Com #603H

OWB Plan #1

Anticollision Report

02 November, 2018

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
L			
Reference	Plan #1	······································	

Filter type:	NO GLOBAL FILTER: Using user defined selection	n & filtering criteria	
Interpolation Method	: Stations	Error Model:	ISCWSA
Depth Range:	Unlimited	Scan Method:	Closest Approach 3D
Results Limited by:	Maximum center-center distance of 1,500.0 usft	Error Surface:	Pedal Curve
Warning Levels Evalu	lated at: 2.00 Sigma	Casing Method:	Not applied

Sur	Survey Tool Program		Date 11/02/18			
	From (usff)	To (usft)	Suney (Mellbore)		Description	
	(usit)	(usit)	Survey (wendore)	Toor Name	Description	
	0.0	9,203.0	Plan #1 (OWB)	MWD	OWSG MWD - Standard	
	9,203.0	19,937.5	Plan #1 (OWB)	MWD+IFR1+MS	MWD + IFR1 + Multi-Station Correction	

Summary				· · · ·		
Site Name Offset Well - Wellbore - Design	Reference Measured Depth	Offset Measured Depth	Dista Between Centres	nce Between Ellipses	Separation Factor	Warning
(Howitzer) Sec-12 T-24-S R-28-F	(USIT)	(usit)	(usit)	(USIT)		
Howitzer Federal Com #602H - OWB - Plan #1	1,916.6	1,916.8	30:0	14.3	1.912 CC	;
Howitzer Federal Com #602H - OWB - Plan #1	2,000.0	2,000.0	30.0	13.6	1.830 ES	SF
Howitzer Federal Com #605H - OWB - Plan #1	9,202.3	9,190.5	550.0	482.1	8.102 CC	
Howitzer Federal Com #605H - OWB - Plan #1	19,937.5	20,073.3	571.9	340.6	2.472 ES	, SF
Howitzer Federal Com #606H - OWB - Plan #1	9,202.3	9,179.2	1,100.0	1,036.4	17.294 CC	>
Howitzer Federal Com #606H - OWB - Plan #1	19,937.5	19,932.0	1,100.2	866.3	4.705 ES	, SF

Offset Design:(Howitzer) Sec-12_T-24-S_R-28-E - Howitzer Federal Com #602H - OWB - Plan #1													Offset Site Error:	0.0 usft	
Survey Pro	gram: 0-	MWD, 9359-I	MWD+IFR1	+MS							Rule Assig	ned:		Offset Well Error:	0.0 usft
Refer	rence	Measured	set	Semi M Reference	laior Axis	Higheide	* *	Offset Wellb	ore Centre	Dis	ance	Minimum	Sonaration	Marning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface	4	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (üsft)	Separation (usft)	Factor	**annig	
0.0	0.0	0.2	0.2	0.0	0.0	-0.19		30.0	-0.1	30.0		(
100.0	100.0	100.2	100.2	0.2	0.2	-0.19		30.0	-0.1	30.0	29.7	0:32	94.287		•
200.0	200.0	200.2	200.2	0.6	0.6	-0.19		30.0	-0.1	30.0	28.8	1.16	25.765		
300.0	300.0	300.2	300.2	1.0	1.0	-0.19		30.0	-0.1	30.0	28.0	2.01	14.921		
400.0	400.0	400.2	400.2	1.4	1.4	-0.19		30.0	-0.1	30.0	27.1	2.86	10.501		
500.0	500.0	500.2	500.2	1.9	1.9	-0.19		30.0	-0.1	30.0	. 26.3	3.70	8.101		
600.0	600.0	600.2	600.2	2.3	2.3	-0.19		30.0	-0.1	30.0	25.5	• 4.55	6.594		
700.0	700.0	700.2	700.2	2.7	2.7	-0.19		30.0	-0.1	30.0	24.6	5.40	- 5.560		
800.0	800.0	800.2	800.2	3.1	3.1	-0.19		30.0	-0.1	30.0	23.8	6.24	4.806		
900.0	900.0	900.2	900.2	3.5	3.5	-0.19		30.0	-0.1	30.0	22.9	7.09	4.233		
1,000.0	1,000.0	1,000.2	1,000.2	4.0	4.0	-0.19		30.0	-0.1	30.0	22.1	7.93	3,781		
1,100.0	1,100.0	1,100.2	1,100.2	4.4	4.4	-0.19		30.0	-0.1	30.0	21.2	8.78	3.417		
1,200.0	1,200.0	1,200.2	1,200.2	4.8	4.8	-0.19		30.0	-0.1	30.0	20.4	9.63	3.116		
1,300.0	1,300.0	1,300.2	1,300.2	5.2	5.2	-0.19		30.0	-0.1	30.0	19.5	10.47	2.865		
1,400.0	1,400.0	1,400.2	1,400.2	5.7	· 5.7	-0.19		30.0	-0.1	30.0	18.7	11.32	2.650		
1,500.0	1,500.0	1,500.2	1,500.2	6.1	6.1	-0.19		30.0	-0.1	30.0	17.8	12.17	2.466		
1,600.0	1,600.0	1,600.2	1,600.2	6.5	6.5	-0.19		30.0	-0.1	30.0	17.0	13.01	2.306		
1,700.0	1,700.0	1,700.2	1,700.2	6.9	6.9	-0.19		30.0	-0.1	30.0	16.1	13.86	2.165		
1,800.0	1,800.0	1,800.2	1,800.2	7.4	7.4	-0.19		30.0	-0.1	30.0	15.3	14.70	2.040		
1,900.0	1,900.0	1,900.2	1,900.2	7.8	7.8	-0.19		30.0	-0.1	30.0	14.5	15.55	1.929		
1,916.6	1,916.6	1,916.8	1,916.8	7.8	7.8	-0.19		30.0	-0.1	30.0	14.3	15.69	1.912 CC	;	
		- CC -	Min cent	re to cente	r distanc	e or cove	rge	nt point, SF	- min sep	aration fa	ctor, ES	- min ellips	se separat	on	

11/02/18 12:23:11PM

.

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Offset D	esign:(H	lowitzer) S	ec-12_T	-24-S_R-20	3-E - Ho	witzer Fed	eral Com #60	2H - OWE	8 - Plan #				Offset Site Error:	0.0 üsft
Survey Pro	gram: 0	-MWD, 9359-I	MWD+IFR1	+MS		······ ········				Rule Assig	jned:		Offset Well Error:	0.0 usft
Refer Measured	rence Vertical	Off Measured	set Vertical	Semi M Reference	lajor Axis Offset	Highside	Offset Wellb	ore Centre	Dist Between	Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(ueft)	(ueft)	Toolface	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses	Separation	Factor		••
2,000.0	2.000.0	2.000.0	2.000.0	8.2	8,2	-0,19	30.0	-0.1	30.0	13.6	16.40	1.830 ES	, SF	
2,100.0	2,100.0	2,099.6	2,099.6	8.4	8.5	-108.16	31.0	1.3	31.5	14.6	16.90	1.864		
2,200.0	2,199.8	2,198.8	2,198.7	8.5	8.6	-109,10	33.9	5.6	36.0	18.9	17.11	2.107		
2,300.0	2,299.5	2,297.8	2,297.3	8.5	8.8	-110.21	. 38.7	12.7	43.6	26.3	17.35	2.513		
2,400.0	2,398.9	2,396.9	2,395.7	8.7	9.0	-110.02	45.3	22.2	53.4	35.7	17.65	3.024		
2.500.0	2.498.4	2,496,4	2,494,4	8.8	9.3	-109.52	52.1	32.2	63 4	45.4	18.00	3.522		
2,600.0	2,597.8	2,595.9	2,593.2	8.9	9.5	-109.16	59.0	42.2	73,4	55.0	18.40	3.991		
2,700.0	2,697.3	2,695.4	2,691.9	9.1	9.8	-108.89	65.8	52.3	83.4	64.6	18.84	4.430		
2,800.0	2,796.7	2,794.9	2,790.7	9.3	10.1	-108.67	72.7	62.3	93.5	74.2	19.31	4.841	*	
2,900.0	2,896.2	2,894.4	2,889.5	9.5	10.4	-108.50	. 79.5	72.3	103.5	83.7	19.82	5.221		
3 000 0	2 995 6	2 993 9	2 988 2	9.8	10.7	-108 35	86.4	82.3	113.5	93.2	20.37	5.574		
3,100,0	3.095.1	3.093.4	3.087.0	10.0	11.0	-108.23	93.2	92.3	123.6	102.6	20.95	5.899		
3,200.0	3,194.5	3,192.9	3,185.7	10.3	11.4	-108.13	100.1	102.3	133.6	112.1	21.55	6.199		
3,300.0	3,294.0	3,292.4	3,284.5	10.6	. 11.7	-108.04	106.9	.112.3	143.6	121.5	22.18	6.475		
3,400,0	3,393.4	3,391,9	3,383.2	10,9	12.1	-107,97	113.8	122,3	153.7	130,8	22.84	6.729		
2 500 0	3 400 0	2 404 4	0 400 0	44.0	40.5	407.00		. 400.0	400 7	140.0	00.50	C 000		
3,500.0	3,492.9	3,491.4	3,482.0	11.2	12.5	-107.90	120.6	132.3	103.7	140.2	23.52	5.95Z		
3,600.0	3,592.3	3,390.0	3,500.7	11.0	12.9	-107.64	127.5	142.3	1/3./	149.5	24.21	7.175		
3,800,0	3 791 2	3 789 8	3,073,3	12.3	13.3	-107.73	141.2	162.3	193.8	168.1	25.66	7.572		
3,900.0	3,890.7	3,889.3	3,877.0	12.6	14,1	-107.70	148.0	172.3	203.8	177.4	26.41	7.718		
4,000.0	3,990.1	3,988.8	3,975.7	13.0	14.5	-107.66	154.9	182.3	213.9	186.7	27.17	7.871		
4,100.0	4,089.6	4,088.3	4,074.5	13.4	14.9	-107.62	161.8	192.3	223.9	196.0	27.95	8.012		
4,200.0	4,189.0	4,187.8	4,173.3	13.8	15.4	-107.59	168.6	202.3	233.9	205.2	28.73	8.141		
4,300.0	4,200.5	4,267.3	4,272.0	14.2	15.6	-107.56	175.5	212.3	244.0	214.4	29.55	8.372		
4,400.0	4,007.0	4,000.0	-,070.0	14.0		-107.00	102.5	LLL.U	204.0	225.7	00.04	0.072	:	
4,500.0	4,487.4	4,486.3	4,469.5	15.0	16.7	-107.51	189.2	232.3	264.0	232.9	31.16	8.474	•	
4,600.0	4,586.9	4,585.8	4,568.3	15.4	17.1	-107.48	196.0	242.3	274.1	242.1	31.99	8.569	-	
4,700.0	4,686.3	4,685.3	4,667.0	15.8	17.6	-107.46	202.9	252.4	284.1	251.3	32.82	8.656	•	
4,800.0	4,785.8	4,784.8	4,765.8	16.2	18.0	107,44	209.7	262.4	294.1	260.5	33.66	8,738		
4,900.0	4,000.2	4,004.3	4,004.0	10.7	10.5	-107.42	210.0	212.4	304.2	269.7	34.51	0.014	· ,	
5,000.0	4,984.7	4,983.8	4,963.3	17.1	18.9	-107.41	223.4	282.4	314.2	278.8	35.37	8.884		
5,100.0	5,084.1	5,083.3	5,062.0	17.5	19.4	-107.39	230.3	292.4	324.2	288.0	36.23	8.950		
5,200.0	5,183.6	5,182.8	5,160.8	18.0	19.9	-107.37	237.1	302.4	334.3	297.2	37.09	9.012		
5,300.0	5,283.0	5,282.3	5,259.5	18.4	20.3	-107.36	244.0	312.4	344.3	306.3	37.97	9.069		
5,400.0	5,382.5	5,381.8	5,358.3	. 18.8	20.8	-107.35	250.8	322.4	354.3	315.5	38.84	9.123		
5,500.0	5,481.9	5,481,3	5,457,0	19.3	21.3	-107.33	257.7	332.4	364.4	324.7	39.72	9,173		
5,600.0	5,581.4	5,580.8	5,555.8	19.7	21.7	-107.32	264.5	342.4	374.4	333.8	40.61	9.220		
5,700.0	5,680.8	5,680.2	5,654.6	20.2	22.2	-107.31	271.4	352.4	384.5	343.0	41.50	9.264		
5,800.0	5,780.3	5,779.7	5,753.3	20.6	22.7	-107.30	278.2	362.4	394.5	352.1	42.39	9.306		
5,900.0	5,879.7	5,879.2	5,852.1	21.1	23.2	-107.29	285.1	372.4	404.5	361.2	43,29	9.345		
6 000 0	5 979 2	5 978 7	5 950 8	21.5	23.6	-107 28	201 0	382 4	414.6	370 4	11 19	0 382		
6 100 0	6.078.6	6 078 2	6 049 6	21.5	20.0	-107.20	291.5	392.4	474.6	379.5	45.09	9 417	•	
6 200.0	6 178.1	6 177.7	6 148.3	22.4	24.6	-107.26	305.6	402.4	434.6	388.6	45.99	9.450		
6,300.0	6 277 5	6 277 2	6 247.1	22.9	25.1	-107.25	312:5	412.4	444 7	397.8	46.90	9.481		
6,400.0	6,377.0	6,376.7	6,345.8	23.3	25.6	-107,24	319.3	422.4	454.7	406.9	47.81	9.510		
		· 												
6,500.0	6,476.4	6,476.2	6,444.6	23.8	26.0	-107.23	326.2	432.4	464.7	416.0	48.72	9.538		
6,600.0	6,575.9	6,575.7	6,543.3	24.3	26.5	-107.23	333.0	442.5	474.8	425.1	49.64	9.564		
ъ,700.0 с соо с	6,6/5.3	0,0/5.2	0,642.1	24.7	27.0	-107.22	339.9	452.5	484.8	434.2	50,56	9.589		
0,000,0 6,000,0	0,1/4.8 6 87/ 0	0,//4,/ 6,274 0	0,740.8 6,820.6	25.2	27.5 29.0	-107.21	340.7 252 6	402.0 470.5	494.8 504 0	443.4	01.48 52.40	9.013		
0,300.0	0,074.3	0,014.2	0,009.0	20.1	20.0	-107.20	555.0	712.0	504.3	-J2.J	52.40	0.000		
7,000.0	6,973.7	6,973.7	6,938.4	26.1	28.5	-107.20	360.4	482.5	514.9	461.6	53.32	9.657		
7,100.0	7,073.2	7,073.2	7,037.1	26.6	29.0	-107.19	367.3	492.5	524.9	470.7	54.24	9.677		

11/02/18 12:23:11PM

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Company:	Concho Resources, Inc.	Local Co-ordinate Reference: «	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB .	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
L		/	

Offset De	esign:(H	owitzer) S	ec-12_T	-24-S_R-28	3-E - Ho	witzer Fede	eral Com #60	2H - OWE	3 - Plan #				Offset Site Error:	0.0 usft
Survey Proc	gram: 0-	MWD, 9359-1	MWD+IFR1	+MS						Rule Assic	ned:		 Offset Well Error:	0.0 usft
Refer Measured	ence Vertical	Off: Measured	set Vertical	Serni M Reference	lajor Axis Offset	Highside	Offset Wellb	ore Centre	Dis Between	ance Between	Minimum	Separation	Warning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
7,200.0	7,172.6	7,175.1	7,138.2	27.1	29.5	-107.19	374.2	502.6	534.9	479.7	55.19	9.693	**************************************	
7,228.1	7,200.5	7,206.3	7,169.3	27.2	29.6	-107.23	376.1	505.5	537.5	482.1	55.46	9.692		
7,300.0	7,272.1	7,286.6	7,249.3	27.5	29.9	-107.46	380.2	511.4	543.2	487.0	56.12	9.678		
7,400.0	7,371.9	7,398.5	7,360.9	27.9	30.4	-107.71	383.7	516.5	548.2	. 491.2	56.95	9.626		
7,500.0	7,471.9	7,509.6	7,472.1	28.3	30.7	-107.88	384.8	518.1	550.0	492.3	57.62	9.544		
7,528.1	7,500.0	7,537.7	7,500.2	28.3	30.7	-0,30	384.8	518.1	550.0	492.3	57.75	9.523		
7,600.0	7,571.9	7,609.6	7,572.1	28.4	30.9	-0.30	384.8	518.1	550.0	492.0	58.02	9.479		
7,700.0	7,671.9	7,709.6	7,672.1	28.6	31.1	-0.30	384.8	518.1	550.0	491.6	58.42	9.415		
7,800.0	7,771.9	7,809.6	7,772.1	28.8	31.4	-0.30	384.8	518.1	550.0	491.2	58.82	9.351		
7,900,0	7,871.9	7,909.6	7,8/2.1	28.9	31.6	-0.30	384.8	518.1	550.0	490.8	59,23	9.286		
8,000.0	7,971.9	8,009.6	7,972.1	29.1	31.0	-0.30	304.0	518,1	550.0	490.4	29,62	9.220		
8,100.0	8,071.9	8,109.6	8,072.1	29.3	32.1	-0.30	384.8	518.1	550.0	489.9	60.08	9.154		
8,200.0	8,171.9	8,209.6	8,172.1	29.4	32.3	-0.30	384.8	518.1	550.0	489.5	60.52	9.088		
8,300.0	8,271.9	8,309.6	8,272.1	29.6	32.6	-0.30	384.8	518.1	550.0	489.0	60.97	9.021	,	
8,400.0	8,371.9	8,409.6	8,372.1	29.8	32.8	-0.30	384.8	518.1	550.0	488.6	61.42	8.954		
8,500.0	8,471.9	8,509.6	8,472.1	30,0	33.1	-0.30	384,8	518.1	550,0	488,1	61.89	8,887		
8,600.0	8,571.9	8,609.6	8,572.1	30.2	33.3	-0.30	384.8	518.1	550.0	487.6	62.36	8.820		
8,700.0	8,671.9	8,709.6	8,672.1	30.4	33.6	-0.30	384.8	518,1	550.0	487.2	62.84	8.753		
8,800.0	8,771.9	8,809.6	8,772.1	30.6	33.9	-0.30	384.8	518.1	550.0	486.7	63,33	8.685		
8,900.0	8,8/1.9	8,909.6	8,872.1	30.8	34.2	-0.30	384.8	518.1	550.0	486.2	63.82	8.618		
9,000.0	8,971.9	a'00a'è	8,972.1	31.1	34.4	-0.30	384.8	518.1	550.0	485.7	64.32	8.551		
9,100.0	9,071.9	9,109.6	9,072.1	31.3	34.7	-0.30	384.8	518.1	550.0	485.2	64.83	8.483		
9,202.3	9,174.2	9,211.9	9,174.4	31.5	35.0	-0.30	384.8	518.1	550.0	484.6	65.36	8.415		
9,250.0	9,221.8	9,259.6	9,222.0	31.6	35.1	89.75	384.8	518.1	550.0	484.4	65.55	8.391		
9,272.9	9,244.7	9,282.4	9,244.9	31.6	35.2	90.00	384.8	518.1	550.0	484.4	65.61 65.66	8.383		
9,300.0	9,271.4	9,309.2	9,271.0	31.0	35.3	90.4.1	304.0	516.1	550.0	404.3	65.66	0.377		
9,350.0	9,320.3	9,358.0	9,320.5	31.5	35.3	91.47	384.8	518.1	550.2	484.5	65.69	8.375		
9,400.0	9,368.0	9,408.2	9,370.6	31.5	35.3	92.76	384.8	515.9	550.7	485.0	65.64	8.390		
9,450.0	9,414.3	9,459.5	9,421.5	31.5	35.3	94.04	384.8	509.2	551.5	485.9	65.56	8.411		
9,500.0	9,458.7	9,512.2	9,472.8	31.5	35.3	95.30	384.8	497.6	552.5	487.0	65.46	8.440		
9,550.0	9,501.0	9,000.2	9,524.2	31.5	35.3	96.54	384.9	480.9	553,8	488.5	. 65.34	8.4/6		
9,600.0	9,540.7	9,621.7	9,575.0	31.4	35.3	97.74	384.9	458.8	555.3	490.1	65.19	8,518		
9,650.0	9,577.7	9,678.6	9,624.7	31.4	35.3	98.90	385.0	431.1	557.0	492.0	65.02	8.567		
9,700.0	9,611.6	9,737.0	9,672.5	31.4	35.2	99.99	- 385,1	397.7	- 558.8	494.0	64.81	8.622		
9,750.0	9,042.2	9,790.0	9,717.8	31.4	35.2	101.00	300.2	300.0	- 560.7	490,1	64.39	0.001		
9,000.0	9,009.2	9,000.2	9,739.7	31.5	35.2	101.93	. 303.3	313.9	562.5	490.2	64.35	0.742		
9,850.0	9,692.5	9,920.9	9,797.4	31.3	35.2	102.76	385.5	263.7	564.2	500.1	64,11	8.801		
9,900.0	9,711.8	9,984.9	9,829.9	31.3	35.1	103.47	385.6	208.7	565.8	501.9	63.90	8.855		
9,950.0	9,727.0	10,050.0	9,856.5	31.3	35.1	104.06	385.8	149.3	567.1	503.4	63,73	8.899	•	
10,000.0	9,730,1	10,110.0	9,0/0.5	31.3	35,1	104.50	365.9	20.4	569.0	505.2	63.63	8 944		
10,050.0	9,744.0	10,102.7	9,009.1	51.5	35.1	104.60	300.1	20.9	200.9	505.5	63.60	0.944		
10,100.0	9,747.2	10,249.8	9,894.1	31.3	35.1	104.94	386.3	-45.9	569.2	505.6	63.67	8.940	•	
10,113.7	9,747.0	10,268.2	9,894.1	. 31.3	35.1	104.95	386.3	-64.3	569.3	505.6	63.71	8.936		
10,200.0	9,745.3	10,355.0	9,892.4	31.4	35.1	104.95	386.6	-151.1	569.3	505.4	63.85	8,915	*	
10,300.0	9,743.3	10,455.0	9,890.4	31.5	35.1	104.95	386.8	-251.1	569.3	505.2	64.09	8.882		
10,400.0	9,741.4	10,555.0	9,888.4	31.6	35.2	104.95	387.1	-351.1	569.3	504.9	64.40	8.840		
10,500.0	9,739.4	10,655.0	9,886.4	31.8	35.3	104.95	387.4	-451.1	569.3	504.5	64.78	8.788		
10,600.0	9,737.4	10,755.0	9,884.4	32.0	35.4	104.95	387.6	-551.1	569.3	504.0	65.23	8.727	•	
10,700.0	9,735.4	10,855.0	9,882.4	32.3	35.6	104.95	387.9	-651.0	569.3	503.5	65.75	8.658		
10,800.0	9,733.4	10,955.0	9,880.4	32.6	35.8	104.95	388.2	-751.0	569.3	502.9	66.34	8.581		
10,900.0	9,731.4	11,055.0	9,878.5	. 32.9	36.1	104.95	388.4	-851.0	569.3	502.3	66.99	8.497		
11,000.0	9,729.4	11,155.0	9,876.5	33.3	36.4	104.95	388.7	-951.0	569.3	501.5	67.71	8.407		
		- CC -	Min cent	re to cente	r distanc	e or coverg	gent point, SF	- min sep	paration fa	ctor, ES	 min ellip: 	se separat	ion	

11/02/18 12:23:11PM

COMPASS 5000.15 Build 88

	······································	التكاري الشقاقة الفتكر الكفارك الناقف بتبريا البراغ فتوطفته ومتعلمته ومتصلة فطر مقتنده والسرا فلنتمز التستعينية	
Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
-		J	

		second in the second	and the second second	and the second		and the second s		a company of the second s					······································	
Survey Pro Refe	gram: 0 rence	-MWD, 9359-I Off	MWD+IFR1 set	+MS Semi M	Aaior Axis		Offset Wellb	ore Centre	, Dis	Rule Assi tance	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth	Reference	Offset	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
11,100.0	9.727.5	11.255.0	9.874.5	33.7	36.7	104.95	389.0	-1.051.0	569.3	500.8	68.49	8.311		
11,200.0	9,725.5	11,355.0	9,872.5	34.1	37.1	104.95	389.2	-1,150.9	569.3	499.9	69,34	8.210		
11,300.0	9,723.5	11,455.0	9,870.5	34.6	37.5	104.95	389.5	-1,250.9	569.3	499.0	70.24	8.105		
11,400.0	9,721.5	11,555.0	9,868.5	35.1	37.9	104.95	389.7	-1,350.9	569.3	498.1	71.19	7.996		
11,500.0	9,719.5	11,655.0	9,866.5	35.6	38.4	104.95	390.0	-1,450.9	569.3	497.1	72.20	7.884		
11,600.0	9,717.5	11,755.0	9,864.6	36.2	38.9	104.95	390.3	-1,550.9	569.3	496.0	73.26	7.770		
11,700.0	9,715.5	11,855.0	9,862.6	36.7	39.5	104.95	390.5	-1,650.8	569.3	494.9	74.37	7.654		
11,800.0	9,713.6	11,955.0	9,860.6	37.3	40.0	104.95	390.8	-1,750.8	569.3	493.7	75.53	7.537		
11,900.0	9,711.6	12,055.0	9,858.6	38.0	40.6	104.95	391.1	-1,850.8	569,3	492.5	76.73	7.419		
12,000.0	9,709.6	12,155.0	9,856.6	38.6	41.2	`104.95	391.3	-1,950.8	569.3	491.3	77.97	7,301		
12,100.0	9,707.6	12,255.0	9,854.6	39.3	41.8	104.95	391.6	-2,050.8	569.3	490.0	79.26	7.182		
12,200.0	9,705.6	12,355.0	9,852.6	40.0	42.5	104.95	391.9	-2,150.7	569.3	488.7	80.58	7.064		
12,300.0	9,703.6	12,455.0	9,850.7	40.7	43.1	104.95	392.1	-2,250.7	569.3	487.3	81.94	6.947		
12,400.0	9,701.7	12,555.0	9,848.7	41.4	43.8	104.95	392.4	-2,350.7	569.3	485.9	83.34	6.831		
12,500.0	9,699.7	12,655.0	9,846.7	42.1	44.5	104.95	392.7	-2,450.7	569.3	484.5	84.77	6,716		
12,600.0	9,697.7	12,755.0	9,844.7	42.9	45.2	104.95	392.9	-2,550.7	569.3	483.0	86.23	6.602		
12,700.0	9,695.7	12,855.0	9,842.7	43.7	46.0	104.95	393.2	-2,650.6	569,3	481.5	87.72	6.490		
12,800.0	9,693.7	12,955.0	9,840.7	44.5	46.7	104.95	393.5	-2,750.6	569.3	480.0	89.24	6.379		
12,900.0	9,691.7	13,055.0	9,838.7	45.3	47.5	104.95	393.7	-2,850.6	569.3	478.5	90,78	6.270		
13,000.0	9,689.7	13,155.0	9,836.8	46.1	48.3	104.95	394.0	-2,950.6	569.3	476.9	92.36	6.164		
13,100.0	9,687.8	13,255.0	9,834.8	46.9	49.1	104.95	394.3	-3,050.6	569.3	475.3	93.95	6.059		•
13,200.0	9,685.8	13,355.0	9,832.8	47.8	49.9	104.95	394,5	-3,150.5	569.3	473.7	95,57	5,956		
13,300.0	9,683.8	13,455.0	9,830.8	48.6	50.7	104.95	394.8	-3,250.5	569.3	472.0	97.22	5.856		
13,400.0	9,681.8	13,555.0	9,828.8	49.5	51.5	104.95	395.1	-3,350.5	569.3	470.4	98.88	5.757		
13,500.0	9,679.8	13,655.0	9,826.8	50.3	52.4	104.95	395.3	-3,450.5	569.3	468.7	100.56	5.661		
13,600.0	9,677.8	13,755.0	9,824.8	51.2	53.2	104.95	395,6	-3,550.5	569.3	467.0	102.27	5.566		
13,700.0	9,675.8	13,855.0	9,822.9	52.1	54.1	104.95	395.9	-3,650.4	569.3	465.3	103.99	5.474		
13,800.0	9,673.9	13,955.0	9,820.9	53.0	54.9	104.95	396.1	-3,750.4	569.3	463.5	105.72	5.384		
13,900.0	9,671.9	14,055.0	9,818.9	53,9	55.8	104.95	396.4	-3,850.4	569,3	461.8	107.48	5.297		
14,000.0	9,669.9	14,155.0	9,816.9	54.8	56.7	104.95	396.6	-3,950.4	569.3	460.0	109.25	5.211		
14,100.0	9,667.9	14,255.0	9,814.9	55.8	57.6	104.95	396.9	-4,050.4	569.3	458.2	111.03	5.127		
14,200.0	9,665.9	14,355.0	9,812.9	56.7	58.5	104.95	397.2	-4,150.3	569.3	456.4	112.83	5.045		
14,300.0	9,663.9	14,455.0	9,810.9	57.6	59.4	104.95	397.4	-4,250.3	569,3	454.6	114,64	4.966		
14,400.0	9,661.9	14,555.0	9,809.0	58.6	60,3	104.95	397.7	-4,350.3	569.3	452.8	116.47	4.888		
14,500.0	9,660.0	14,655.0	9,807.0	59.5	61.2	104.95	398.0	-4,450.3	569.3	451.0	118.30	4.812		
14,600.0	9,658.0	14,755.0	9,805.0	60.5	62.2	104.95	398.2	-4,550.3	569.3	449.1	120.15	4.738		•
14,700.0	9,656.0	14,855.0	9,803.0	61.4	63.1	104.95	398.5	-4,650.2	569.3	447.2	122.01	4.666		
14,800.0	9,654.0	14,955.0	9,801.0	62.4	64.0	104.95	398.8	-4,750.2	569.3	445.4	123.88	4.595		
14,900.0	9,652.0	15,055.0	9,799.0	63.4	65.0	104.95	399.0	-4,850.2	569.3	443.5	125.76	4.526		
15,000.0	9,650.0	15,155.0	9,797.0	64.3	65.9	104.95	399.3	-4,950.2	569.3	441.6	127,65	4.459		
15,100.0	9,648.0	15,255.0	9,795.1	65.3	66.9	104.95	399.6	-5,050.2	569.3	439.7	129.55	4.394		
15,200.0	9,646.1	15,355.0	9,793.1	66.3	67.8	104.95	399.8	-5,150.1	569.3	437.8	131.46	4.330		
15,300.0	9,644.1	15,455.0	9,791.1	67.3	68.8	104.95	400.1	-5,250.1	569.3	435.9	133.38	4.268		
15,400.0	9,642.1	15,555.0	9,789.1	68,3	69,8	104,95	400.4	-5,350.1	569.3	434.0	135,30	4.207		
15,500.0	9,640.1	15,655.0	9,787.1	69.3	70.7	104.95	400.6	-5,450.1	569.3	· 432.0	137.24	4.148		
15,600.0	9,638.1	15,755.0	9,785.1	70.3	71.7	104.95	400.9	-5,550.1	569.3	430.1	139.18	4.090		
15,700.0	9,636.1	15,855.0	9,783.1	71.3	72.7	104.95	401.2	-5,650.0	569.3	428.1	141.12	4.034		•
15,800.0	9,634.1	15,955.0	9,781.2	72.3	73.7	104.95	401.4	-5,750.0	569.3	426.2	143.08	3.979		
15,900.0	9,632.2	16,055.0	9,779.2	73.3	74.7	104.95	401.7	-5,850.0	569.3	424.2	145.04	3.925		
16,000.0	9,630.2	16,155.0	9,777.2	74.3	75.7	104.95	402.0	-5,950.0	569.3	422.3	147.01	3.872		
16,100.0	9,628.2	16,255.0	9,775.2	75.3	76.7	104.95	402.2	-6,049.9	569.3	420.3	148.98	3.821		
16,200.0	9,626.2	16,355.0	9,773.2	76.3	77.7	104.95	402.5	-6,149.9	569.3	418.3	150.96	3.771		

11/02/18 12:23:11PM

COMPASS 5000.15 Build 88

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
	·		1

Offset Design (Howitzer) Sec-12_T-24-S_R-28-E - Howitzer Federal Com #602H - OWB - Plan #1										Offset Site Error:	0.0 usft			
Survey Prog	gram: 0	-MWD, 9359-I	WD+IFR1	+MS						Rule Assig	gned:		Offset Well Error:	0.0 usft
Refer Measured	rence Vertical	Off Measured	set Vertical	Semi N Reference	lajor Axis Offset	Highside	Offset Wellt	ore Centre	Between	tance Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth		2,,,,,,,,	Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor		
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usft)	(usft)	(usft)	(usft)	(usft)			
16,300.0	9,624.2	16,455.0	9,771.2	77.3	78.7	104.95	402.7	-6,249.9	- 569.3	416.3	152.94	3.722		
16,400.0	9,622.2	16,555.0	9,769.2	78.4	79.7	104.95	403.0	-6,349.9	569.3	414.3	154.93	3.674		
16,500.0	9,620.2	16,655.0	9,767.3	79.4	80.7	104.95	403.3	-6,449.9	569.3	412.3	156.93	3.627		
16,600.0	9,618.3	16,755.0	9,765.3	80.4	81.7	104.95	403.5	-6,549.8	569.3	* 410.3	158.93	3.582		
16,700.0	9,616.3	16,855.0	9,763.3	81.4	82.7	104.95	403.8	-6,649.8	569.3	408.3	160.93	3.537		
16,800.0	9,614.3	16,955.0	9,761.3	82.5	83.7	104.95	404.1	-6,749.8	569.3	406.3	162.94	3.494		
16,900.0	9,612.3	17,055.0	9,759.3	83.5	84.7	104.95	404.3	-6,849.8	569.3	404.3	164,96	3.451		
17,000.0	9,610.3	17,155.0	9,757.3	84.5	85.8	104.95	404.6	-6,949.8	569.3	402.3	166.98	3.409		
17,100.0	9,608.3	17,255.0	9,755.3	85.6	86.8	104.95	404.9	-7,049.7	569.3	400.3	169.00	3.368		
17,200.0	9,606.4	17,355.0	9,753.4	86.6	87.8	104.95	405.1	-7,149.7	569.3	398.2	171.03	3.328		
17,300.0	9,604.4	17,455.0	9,751.4	87.6	88.8	104.95	405.4	-7,249.7	569.3	396.2	173.06	3.289		
17,400.0	9,602.4	17,555.0	9,749.4	88.7	89.9	104.95	405.7	-7,349.7	569.3	394.2	175.09	3.251		
17,500.0	9,600.4	17,655.0	9,747.4	89.7	90.9	104.95	405.9	-7,449.7	569.3	392.1	177.13	3.214		
17,600.0	9,598.4	17,755.0	9,745.4	90.8	91.9	104.95	406.2	-7,549.6	569.3	390.1	179.17	3.177		
17,700.0	9,596.4	17,855.0	9,743.4	91.8	93.0	104.95	406.5	-7,649.6	569.3	388.0	181.22	3.141		
17,800.0	9,594.4	17,955.0	9,741.4	92.9	94.0	104.95	406.7	-7,749.6	569.3	386.0	183.26	3.106		
17,900.0	9,592.5	18,055.0	9,739,5	93.9	95.0	104.95	407.0	-7,849.6	569.3	383.9	185.32	3.072		
18,000.0	9,590.5	18,155.0	9,737.5	95.0	96.1	104.95	407.3	-7,949.6	569.3	381.9	187.37	3.038		
18,100.0	9,588.5	18,255.0	9,735.5	96.0	97.1	104.95	407.5	-8,049.5	569.3	379.8	189,43	3.005		
18,200.0	9,586.5	18,355.0	9,733.5	97.1	98.2	104.95	407.8	-8,149.5	569.3	377.8	191.49	2.973		
18,300.0	9,584.5	18,455.0	9,731.5	98.1	99.2	104.95	408.1	-8,249.5	569.3	375.7	193.55	2.941		
18,400.0	9,582.5	18,555.0	9,729.5	99.2	100.3	104.95	408.3	-8,349.5	569.3	373.6	195.62	2,910		
18,500.0	9,580.5	18,655.0	9,727.5	100.3	101.3	104.95	408.6	-8,449.5	569.3	371.6	197.68	2.880		
18,600.0	9,578.6	18,755.0	9,725.6	101.3	102.4	104.95	408.9	-8,549.4	569.3	369.5	199.75	2.850		
18,700.0	9,576.6	18,855.0	9,723.6	102.4	103.4	104.95	409.1	-8,649.4	569.3	367.4	201.83	2.821		
18,800.0	9,574.6	18,955.0	9,721.6	103.4	104.5	104.95	409.4	-8,749.4	569.3	365.4	203.90	2.792	:	
18,900.0	9,572.6	19,055.0	9,719.6	104.5	105.5	104.95	409.6	-8,849.4	569.3	363.3	205.98	2.764	•	
19,000.0	9,570.6	19,155.0	9,717.6	105.6	106.6	104.95	409.9	-8,949.4	569.3	361.2	208.06	2.736		
19,100.0	9,568.6	19,255.0	9,715.6	106.6	107.6	104.95	410.2	-9,049.3	569.3	359.1	210.14	2,709		
19,200.0	9,566.6	19,355.0	9,713.6	107.7	108.7	104.95	410.4	-9,149.3	569.3	357.0	212.23	2.682		
19,300.0	9,564.7	19,455.0	9,711.7	108.8	109.7	104.95	. 410.7	-9,249.3	569.3	354.9	214.31	2.656		
19,400.0	9,562.7	19,555.0	9,709.7	109.8	110.8	104.95	411.0	-9,349.3	569.3	352.9	216.40	2.631		
19,500.0	9,560.7	19,655.0	9,707.7	110.9	111.9	104.95	411.2	-9,449.3	569,3	350.8	218.49	2.605		
19,600.0	9,558.7	19,755.0	9,705.7	112.0	112.9	104.95	411.5	-9,549.2	569.3	348.7	220,58	2.581		
19,700.0	9,556.7	19,855.0	9,703.7	113.1	· 114.0	104.95	411.8	-9,649.2	569.3	346.6	222.68	2.556		
19,800.0	9,554.7	19,955.0	9,701.7	114.1	115.0	104.95	412.0	-9,749.2	569.3	344.5	224.77	2.533		
19,900.0	9,552.7	20,055.0	9,699.7	115.2	116.1	104.95	412.3	-9,849.2	569.3	342.4	226.87	2.509		
19,937.5	9,552.0	20,092.5	9,699.0	. 115.6	116.5	104.95	412.4	-9,886.7	569.3	341.6	227.65	2.501		

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Offset Design (Howitzer) Sec-12_T-24-S_R-28-E - Howitzer Federal Com #605H - OWB - Plan #1											Offset Site Error:	0.0 usft		
Survey Prog	gram: 0	-MWD, 9337-I	MWD+IFR1	+MS						Rule Assig	ned:		Offset Well Error:	0.0 usft
Refer Measured	rence Vertical	Off Measured	set Vertical	Semi N Reference	lajor Axis Offset	Highside	Offset Wellb	ore Centre	Dis Between	tance Between	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth	((11000)	Toolface	+N/-S	+E/-W (usft)	Centres	Ellipses	Separation	Factor		
		.(usit)				163.21	-1 079 4	325.7	1 127 5	(usit)	(usit)			
100.0	100.0	95,1	95.1	0.2	0.1	163,21	-1,079.4	325.7	1,127.5	1,127.2	0.30	3,789.981		
200.0	200.0	195.1	195.1	0.6	0.5	163.21	-1,079.4	325.7	1,127.5	1,126.3	1.13	997.649		
300.0	300.0	295.1	295.1	- 1.0	1.0	163.21	-1,079.4	325.7	1,127.5	1,125.5	1.98	570.482		
400.0	400.0	395.1	395.1	1.4	1.4	163.21	-1,079.4	325.7	1,127.5	1,124.6	2.82	399.448		
500.0	500.0	495.1	495.1	1.9	1.8	163.21	-1,079.4	325.7	1,127.5	1,123.8	3.67	307.314		
600.0	600.0	595 1	595 1	23	22	163 21	-1 079 4	325 7	1,127,5	1.123.0	4.52	249.716		
700 0	700.0	695.1	695.1	2.7	2.7	163.21	-1 079.4	325.7	1.127.5	1.122.1	5.36	210.301		
800.0	800.0	795.1	795.1	3.1	3.1	163.21	-1.079.4	325.7	1,127.5	1,121.3	6.21	181.632		
900.0	900.0	895.1	895.1	3.5	3.5	163,21	-1.079.4	325.7	1,127.5	1,120.4	7,05	159.842		
1,000.0	1,000.0	995.1	995.1	4.0	3.9	163.21	-1,079.4	325.7	1,127.5	1,119.6	7,90	142,720		
1 100 0	1 100 0	1 005 1	1 005 1			163.01	1.070.4	225.7	1 107 5	1 110 7	9.75	128 011		
1,100.0	1,100.0	1,095.1	1,095.1	4.4	4.4	163.21	-1,079.4	325.7	1 127.5	1,110.7	0.75	117 539		
1,200.0	1,200,0	1,195,1	1,195.1	4.0	. 52	163.21	-1,079.4	325.7	1,127.5	1,117.0	10 44	108.010		
1,000.0	1,000.0	1,295.1	1 305 1	5.2	5.6	163.21	-1,079.4	325.7	1 127.5	1 116 2	11.28	99 911		
1,500.0	1,500.0	1,495,1	1,495,1	6,1	6.0	163.21	-1,079,4	325.7	1,127.5	1,115.3	12,13	92.941		
					_									
1,600.0	1,600.0	1,595.1	1,595.1	6.5	6.5	163.21	-1,079.4	325.7	1,127.5	1,114.5	12.98	86.881		
1,700.0	1,700.0	1,695.1	1,695.1	6.9	6.9	163.21	-1,079.4	325.7	1,127.5	1,113.6	13.82	81.562		
1,800.0	1,800.0	1,795.1	1,795.1	7.4	7.3	163.21	-1,079.4	325.7	1,127.5	1,112.8	14.67	76.857		
1,900.0	1,900.0	1,895.1	1,895.1	7.8	1.1	163.21	-1,079.4	325.7	1,127.5	1,112.0	15.52	72.666		
2,000.0	2,000.0	1,995.1	1,995.1	8.2	8.2	163.21	-1,079.4	325.1	1,127.5	1,111.)	10.30	00.907		
2,100.0	2,100.0	2,131.4	2,131.3	8.4	8.7	55,65	-1,076.8	327.1	1,125.0	1,107.9	17.09	65.836		
2,200.0	2,199.8	2,268.9	2,268.5	8.5	9.1	55.73	-1,068.3	331.7	1,117.1	1,099.5	17.59	63,523		
2,300.0	2,299.5	2,376.6	2,375.7	8.5	9.5	55.92	-1,058.6	337.0	1,104.9	1,086.9	18.03	61.270		
2,400.0	2,398.9	2,475.8	2,474.2	8.7	9,9	55.99	-1,049.5	342.0	1,091.7	1,073.2	18.49	59.040		
2,500.0	2,498.4	2,574.9	2,572.8	8.8	10.3	56.05	-1,040.4	346.9	1,078.5	1,059.5	18.98	56.823		
2,600.0	2,597.8	2,674.0	2,671.4	8.9	10.6	56.12	-1,031.3	351.9	1,065.3	1,045.8	19.50	54.634		
2,700.0	2,697.3	2,773.1	2,770.0	9.1	11.0	56.19	-1,022.2	356.8	1,052.1	1,032.0	20.05	52.484		
2,800.0	2,796.7	2,872.2	2,868.5	9.3	11.4	56.26	-1,013.1	361.8	1,038.9	1,018.2	20.62	50.384		
2,900.0	2,896.2	2,971.3	2,967.1	9.5	11.8	56.33	-1,004.0	366.7	1,025.6	1,004.4	21.22	48.341		•
3,000.0	2,995.6	3,070.4	3,065.7	9.8	12.2	56.41	-994.9	371.7	1,012.4	990.6	21.84	46.361		
3,100.0	3,095.1	3,169.6	3,164.2	10.0	12.6	56.49	-985.8	376.6	999.2	976.7	22.48	44.448		
3,200.0	3,194.5	3,268.7	3,262.8	10.3	13.1	56.56	-976.7	381.6	986.0	962.9	23.14	42.605		
3,300.0	3,294,0	3,367.8	3,361.4	10.6	13,5	56.65	-967.6	386.5	972.8	949.0	23.82	40.834		
3,400.0	3,393.4	3,466.9	3,460.0	10.9	13.9	56.73	-958.5	391.5	959.6	935.1	24.52	39.135		
3,500.0	3,492.9	3,566.0	3,558.5	11.2	14.3	56.81	-949.4	396.4	946.4	921.2	25.23	37.506		
3.600.0	3.592.3	3.665.1	3.657.1	11.6	14.8	56,90	-940.3	401,4	933,2	907.3	25,96	35.947		
3,700.0	3,691.8	3,764,2	3,755.7	11.9	15.2	56,99	-931.2	406.3	920.0	893.3	26.70	34.457		
3,800.0	3,791.2	3,863.4	3,854.2	12.3	15.7	57.09	-922.1	411.3	906.8	879.4	27.45	33.032		
3,900.0	3,890.7	3,962.5	3,952.8	12.6	16.1	57.18	-913.0	416.2	893.6	865.4	28.22	31.671		
4,000.0	3,990.1	4,061.6	4,051.4	13.0	16.5	57.28	-903.9	421.2	880.4	851.5	28.99	30.371		
4 100 0	4 000 0	4 100 7	4 4 5 0 0	10.4	47.0	57.00	004.0	400.4	067.2	007 E	20.77	20 120		
4,100.0	4,069.6	4,100.7	4,150.0	13.4	17.0	57.30	-094.0	420.1	007.3 854.1	037.0 923.5	29.77	29.130		
4,200.0	4,109.0	4,259.8	4,248.5	13.8	17.4	57.49	-000.7	431.1	004.1	023,0 800 5	30.30	27.944		
4,300.0	4,200.0	4,300.9	4,347.1	14.2	17.9	57.59	-0/0.0	436.0	040.9 937 7	705 5	31.30	20.012		
4,400.0	4,367.9	4,400.1	4,440.7	14.0	18.8	57.71	-007.5	441.0	027.7 814.5	793.5	32.17	23.730		
4,500.0	4,407.4	4,007.Z	4,044.3	15.0	10.0	57.02	-030.4	440.9	014.3	101.0	32.30	27.030		
4,600.0	4,586.9	4,656.3	4,642.8	15.4	19.2	57.94	-849.3	450.9	801.4	767.6	33.80	23.707		
4,700.0	4,686.3	4,755.4	4,741.4	15.8	19.7	58.06	-840.2	455.8	788.2	753.6	34.63	22.762		
4,800.0	4,785.8	4,854.5	4,840.0	16.2	20.2	58.19	-831.1	460.8	775.0	739.6	35.46	21.857		
4,900.0	4,885.2	4,953.6	4,938.5	16.7	20.6	58.32	-822.0	465.7	761.9	· 725.6	36.30	20.991		
5,000.0	4,984.7	5,052.7	5,037.1	17.1	21.1	58.46	-812.9	470.7	748.7	711.6	37.14	20.161		
5,100.0	5,084.1	5,151.9	5,135.7	17.5	21.5	58.60	-803.8	475.6	735.6	697.6	37.98	19.366		
		- CC -	Min cent	re to cente	r distanc	e or coverc	ent point, SF	- min sep	aration fa	ctor, ES -	min ellips	se separatio	on	

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Offset Design (Howitzer) Sec-12_T-24-S_R-28-E - Howitzer Federal Com #605H - OWB - Plan #1 0.0 usft Offset Site Error: Survey Program: Reference 0-MWD, 9337-MWD+IFR1+MS Offset Well Error: 0.0 usft Rule Assigned: Semi Major Axis Offset Offset Wellbore Centre Distance Measured Vertical Measured Vertical Reference Offset Highside Between Between Minimum Separation Warning +N/-S +F/-W Depth Depth Depth Depth Toolface Centres Ellipses Factor Separation (usft) (usft) (usft) (usft) (usft) (usft) (usft) (usft) (usft) (°) (usft) (usft) 5.183.6 5.251.0 5,234.3 -794.7 480.6 5,200.0 18.0 22.0 58.74 18 604 722 4 683 6 38.83 5.300.0 5.283.0 5 350 1 5 332 8 18.4 22.5 58 89 -785.6 485.5 709.3 669.6 39.68 17.873 5,400.0 5,382.5 5,449.2 5,431.4 18.8 22.9 59.05 -776.5 490.5 696.2 655.6 40.54 17,171 5,500.0 5.481.9 5,548.3 5.530.0 19.3 23.4 59.21 -767.4 495.5 683.0 641.6 41.40 16.497 5,600.0 5.581.4 5.647.4 5,628,5 19.7 23.9 59,38 -758.3 500.4 669.9 627.6 42.26 15.850 5,700.0 5.680.8 5.746.5 5,727.1 20.2 24.3 59,56 -749.2 505,4 656,8 613.6 43.13 15.228 5,800,0 5,780,3 5.845.7 5.825.7 20,6 24.8 59.74 -740.1 510.3 643.7 599.7 44.00 14.629 5.900.0 5.879.7 5 944 8 5.924.3 21.1 25.3 59.93 -731.0 515.3 630.6 585.7 44.87 14.053 6,033.0 6,000.0 5,979.2 6,012.1 21.5 25.6 60.16 -723.5 519.3 618.1 572.4 45.71 13.523 6,100.0 6,078.6 6,118.6 6,097.5 22.0 26.0 -718.5 522.0 607.9 46.52 60.54 561.4 13,068 552.7 6.200.0 6.178.1 6.200.0 6.178.8 22.4 26.3 61.06 -715.9523.5 600.0 47.29 12.689 6,300.0 6,277.5 6,293.8 6.272.6 22.9 26.6 61.84 -715.2 523.8 594.4 546.3 48.07 .12.366 6.393.3 6.372.1 589.5 48.88 6,400.0 6.377.0 23.3 27.0 62.73 -715.2 523.8 540.6 12,060 6 500 0 6 476 4 6 492 7 6 471 5 23.8 27.3 63.64 -715.2 523.8 584.8 535.1 49 70 11.765 6,600.0 6,575.9 6,592.2 6,571.0 24.3 27.7 64,56 -715.2 523.8 580.2 529.7 50.53 11.482 6,700.0 6.675.3 6.691.6 6.670.4 24.7 28.1 65.50 -715.2 523.8 575.8 524.4 51.36 11.210 6,800.0 6,774.8 6,769.9 25.2 28.4 -715.2 523.8 6,791.1 66.45 571.5 519.3 52.20 10.949 6,900.0 6,874.3 6.890.5 6.869.4 25.7 28.8 67.41 -715.2 523.8 567.4 514.3 53.03 10.698 6.973.7 6,968,8 7.000.0 6.990.0 26.1 29.1 68.39 -715.2 523.8 563.4 509.5 53.88 10.457 7,100.0 7 073.2 7.089.4 7 068.3 26.6 29.5 69.38 -715.2 523.8 559.6 504.9 54.72 10.226 7,172.6 7,200.0 7,188.9 7,167.7 27.1 29.9 70.38 -715.2 523.8 556.0 500,4 55.57 10.005 7,228,1 7.200.5 7.216.8 7.195.6 27.2 30.0 70.66 -715.2 523.8 555.0 499.2 55 81 9 944 7,300.0 7,272.1 7,288.4 7,267.2 27.5 30.2 71.27 -715.2 523.8 552.9 496.5 56.40 9.802 7,400.0 7,371.9 7,388.2 7,367.0 27.9 30.6 71.84 -715.2 523.8 550.9 493.7 57.18 9.634 7.471.9 7.488.2 7.467.0 7.500.0 28.3 31.0 72.09 -715.2 523.8 550.0 492.1 57.93 9.496 7.528.1 7,500,0 7.516.3 7 495 1 28.3 31,1 179,70 -715.2 523.8 550.0 491.9 58,10 9 466 7.600.0 7,571.9 7,588.2 7.567.0 28.4 31.3 179.70 -715.2 523.8 550.0 491.5 58.49 9.404 7,700.0 7 671.9 7.688.2 7 667.0 28.6 31.7 179.70 -7152 523.8 550.0 491.0 59.03 9.317 7,800.0 7,771.9 7,788.2 7.767.0 28.8 32.1 179.70 -715.2 523.8 550.0 490.4 59.58 9.231 7,900.0 7,871.9 7,888.2 7,867.0 28.9 32.5 179.70 -715.2 523.8 550.0 489.9 60.14 9.146 7.971.9 7.988.2 7.967.0 -715.2 8.000.0 29.1 32.8 179.70 523.8 550.0 489.3 60.70 9.061 29.3 33.2 8,100.0 8,071.9 8,088.2 8,067.0 179.70 -715.2 523.8 550.0 488.7 61.27 8.977 8,171.9 8,188.2 8,167.0 29.4 33.6 179.70 -715.2 523.8 550.0 488.2 61.84 8,894 8,200,0 8.271.9 8.288.2 8.267.0 29.6 34.0 179.70 -715.2 523.8 550.0 487.6 62.42 8.811 8.300.0 8 400 0 8.371.9 8 388 2 8 367.0 29.8 34.4 179.70 -715.2 523.8 550.0 487.0 63.00 8.730 8,500.0 8,488.2 8,467.0 8,471.9 30.0 34.7 179.70 -715.2 523.8 550.0 486.4 63.59 8.649 8.571.9 8.588.2 8.568 8.600.0 8.567.0 30.2 35.1 179.70 -715.2 523.8 550.0 485.8 64.19 30.4 8.489 8,700.0 8,671.9 8,688.2 8.667.0 35.5 179.70 -715.2 523.8 550.0 485.2 64.79 8,800.0 8,771.9 8,788.2 8,767.0 30.6 35.9 179.70 -715.2 523.8 550.0 484.6 65.40 8.410 8,871.9 8,888.2 8,867.0 30.8 36.3 -715.2 523.8 550.0 484.0 8.332 8,900.0 179,70 66.01 9.000.0 8.971.9 8.988.2 8.967.0 31.1 36.7 179.70 -715.2 523.8 550.0 483.4 66.63 8.255 9,071.9 9,088.2 9,067.0 31.3 37.0 179.70 -715.2 550.0 482.8 8.179 9,100.0 523.8 67.25 9.174.2 9.190.5 9.169.3 550.0 9.202.3 31.5 37.4 179.70 -715.2523.8 482.1 67.89 8.102 CC 9,250.0 9,221.8 9,238.1 9.216.9 31.6 37.6 -90.65 -715.2 523.8 550.0 481.9 68.13 8.073 9,300.0 9,271.4 9,287.7 9,266.5 31.6 37.8 -91.30 -715.2 523.8 550.1 481.8 68.31 8.053 9 336 6 9.315.4 550.5 482.0 8.038 9 350 0 9 320 3 31.5 38.0 -92.34 -715.2 523.8 68.48 9,400.0 9,368.0 9,387.5 9,366.3 31.5 38.0 -93.62 -715.2 521.6 551.2 482.7 68.48 8.049 9,450.0 94143 9 4 3 9 7 9.418.0 31.5 38.0 -94 90 -715.2 514.7 552.1 483.7 68 44 8 067 9,500.0 9,458.7 9,470.2 502.7 8.091 9,493.3 31.5 38.0 -96.14 -715.2 553.4 485.0 68.39 9,550.0 9,501.0 9,548.3 9,522.4 31.5 38.0 -97.36 -715.1 485.4 554.8 486.5 68.32 8.121 9.600.0 9.540.7 9.604.7 9,573.9 31.4 38.0 -98.53 -715.0 462.5 556.5 488.2 68.23 8.156 9,650.0 9,577.7 9,662.6 9,624.2 31.4 38.0 -99.64 -715.0 433.9 558.2 490.1 68.10 8.197

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

Page 8

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12 T-24-S R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Offset D	offset Design:(Howitzer) Sec-12_T-24-S_R-28-E - Howitzer Federal Com #605H - OWB - Plan #1													
Survey Pro	oram: Ö	-MWD, 9337-	MWD+IFR1	+MS						Rule Assig	ned:		Offset Well Error:	0.0 usft
Refe	ence	Off	set	Semi M	Aajor Axis	111-6-114-	Offset Wellb	ore Centre	Dis	tance	Minimum	Constation	Morning	
Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(usft)	(usft)	Toolface (°)	+N/-S (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
9,700.0	9.611.6	9,722.0	9.672.6	31.4	38.0	-100.68	-714.9	399.4	560.1	492.1	67.95	8.243	······································	
9,750.0	9,642.2	9,782.9	9,718.1	31.4	· 38.0	-101.64	-714.8	359.1	561.9	494.1	67.77	8.291		
9,800.0	9,669,2	9,845.2	9,760.0	31.3	38.1	-102.51	-714.7	313.1	563.7	496.1	67.58	8,341		
9,850.0	9,692.5	9,908.7	9,797.4	31.3	38.1	-103.26	-714.5	261.7	565.3	497.9	67.39	8.389		
9,900.0	9,711.8	9,973.5	9,829.4	31.3	38.1	-103.88	-714.4	205.4	566.7	499.5	67.22	8.431		
9,950.0	9,727.0	10,039.3	9,855.2	31.3	38,1	-104.37	-714.2	145.0	567.9	500.8	67.10	8.463		
10,000.0	9,738.1	10,105.8	9,874.0	31.3	38,1	-104.72	-714.0	81.2	568.7	501.7	67.05	8.482		
10,050.0	9,744.8	10,172.8	9,885.4	31.3	38.1	-104.91	-713.9	15.2	569.2	502.1	67.08	8.485		
10,100.0	9,747.2	10,240.0	9,889.1	31.3	38.1	-104.94	-713.7	-51.9	569.2	502.0	67.20	8.471		
10,112.1	9,747.1	10,256.3	9,888.7	31.3	38.1	-104.93	-713.6	-68.2	569.2	502.0	67.24	8.465		
10,113.7	9,747.0	10,255.7	9,888.8	31.3	38,1	-104.93	-713.6	-67.6	569.2	502.0	67.24	8.466		
10,200.0	9,745.3	10,342.1	9,887.2	31.4	38.1	-104.94	-713.4	-153.9	569.2	501.8	67.44	8.441		
10,300.0	9,743.3	10,442.1	9,885.3	31.5	38.1	-104.95	-713.1	-253.9	569.3	501.5	67.73	8.405		
10,400.0	9,741.4	10,542.1	9,883.4	31.6	38.1	-104.96	-712.9	-353.9	569.3	501.2	68.10	8.360		
10,500.0	9,739.4	10,642.1	9,881.5	31.8	38.3	-104.97	-712.6	-453.8	569.3	500.8	68.53	8.307		
10,600,0	9,737.4	10,742.1	9,879.7	32.0	38.5	-104.98	-712.4	-553.8	569.3	500.3	69.03	8.248		
10,700.0	9,735.4	10,842.1	9,877.8	32.3	38.8	-104.99	-712.1	-653.8	569.4	499.8	69.60	8.181		
10,800,0	9,733.4	10,942.1	9,875.9	32.6	39.1	-105.00	-711.8	-753.8	569,4	499.2	70.23	8.107		
10,900.0	9,731.4	11,042.1	9,874.0	32.9	39.5	-105.01	-711.6	-853.8	569.4	498.5	70.93	8.028		
11,000.0	9,729.4	11,142.1	9,872.1	33.3	39.9	-105.02	-711.3	-953.8	569.5	497.8	71.69	7.944		
11,100.0	9,727.5	11,242.1	9,870.2	33.7	40.3	-105.03	-711.0	-1,053.7	569.5	497.0	72.50	7.855		
11.200.0	9.725.5	11.342.1	9,868,4	34.1	40,7	-105,04	-710.8	-1,153.7	569.5	496.1	73,37	7.762		
11,300.0	9,723,5	11,442,1	9,866.5	34.6	41.2	-105.05	-710.5	-1,253.7	. 569,5	495.2	74.30	7.665		
11,400.0	9,721.5	11,542.1	9,864.6	35.1	41.7	-105.06	-710.2	-1,353.7	⁻ 569.6	494.3	75.28	7.566		
11,500.0	9,719.5	11,642.1	9,862.7	35.6	42.2	-105.07	-710.0	-1,453.7	569.6	493.3	76.31	7.464		
11,600.0	9,717.5	11,742.1	9,860.8	36.2	42.7	-105.08	-709.7	-1,553.6	569.6	492.2	77.39	7.360		
11,700.0	9,715.5	11,842.1	9,858.9	36.7	43.3	-105.09	-709.4	-1,653.6	569.6	491.1	78.52	7.255		
11,800.0	9,713.6	11,942.1	9,857.1	37.3	43.9	-105.10	-709.2	-1,753.6	569.7	490.0	79.69	7.148		
11,900.0	9,711.6	12,042.1	9,855.2	38.0	44.5	-105,11	-708.9	-1,853.6	569.7	488.8	80,91	7.041		
12,000.0	9,709.6	12,142.1	9,853.3	38.6	45.1	-105.12	-708.6	-1,953.6	569.7	487.6	82.16	6.934		
12,100.0	9,707.6	12,242.1	9,851.4	39.3	45.7	-105.13	-708.4	-2,053.6	569.7	486.3	83.46	6.827		
12,200.0	9,705.6	12,342.1	9,849.5	40.0	46.4	-105.14	-708,1	-2,153.5	569.8	485.0	84.79	6.720		
12,300.0	9,703.6	12,442.1	9,847.7	40.7	47.0	-105.15	-707,8	-2,253.5	569.8	483.6	86.16	6.614		
12,400.0	9,701.7	12,542.1	9,845.8	41.4	47.7	-105.16	-707.6	-2,353.5	569.8	482.3	87.56	6.508		
12,500.0	9,699.7	12,642.1	9,843.9	42.1	48.4	-105.17	-707.3	-2,453.5	569.9	480.9	88.99	6.404		
12,600.0	9,697.7	12,742.1	9,842.0	42.9	49.2	-105.18	-707.0	-2,553.5	569.9	479.4	90.45	6.300		
12,700.0	9,695.7	12,842.1	9,840.1	43.7	49.9	-105.19	-706.8	-2,653.4	569.9	478.0	91.94	6.199		
12,800,0	9,693.7	12,942,1	9,838.2	44.5	50.6	-105.20	-706.5	-2,753.4	569.9	476.5	93.46	6.098		
12,900.0	9.691.7	13.042.1	9,836.4	45.3	51.4	-105.21	-706.3	-2,853.4	570.0	475.0	95.01	5.999		
13,000.0	9,689.7	13,142,1	9,834,5	46.1	52.2	-105.22	-706.0	-2,953.4	570.0	473.4	96.58	5.902		
13,100.0	9,687.8	13,242.1	9,832.6	46.9	53.0	-105.23	-705.7	-3,053.4	570.0	471.8	98.17	5.806		
13,200.0	9,685.8	13,342.1	9,830.7	47.8	53.8	-105.24	-705.5	-3,153.4	570.0	470.3	99.79	5.712		
13,300,0	9,683.8	13,442.1	9,828.8	48.6	54.6	-105.25	-705.2	-3,253.3	570.1	468.6	101.43	5.620		
13,400.0	9.681.8	13,542,1	9,826,9	49.5	- 55.4	-105.26	-704,9	-3,353,3	570.1	467.0	103.09	5.530		
13,500,0	9,679.8	13,642,1	9,825,1	50,3	56.2	-105,27	-704.7	-3,453.3	570,1	465.4	104.77	5.442		
13,600.0	9,677.8	13,742.1	9,823.2	51.2	57.1	-105.28	-704.4	-3,553.3	570.2	463.7	106.46	5.355		
13 700 0	0.675.0	12 940 4	0 804 0	ED 4	E7 0	-105 20	704 4	3 653 3	570.2	162.0	109 19	5 071 -		
13,700.0	9,075.8	13,842.1	9,621.3	52.1	57.9	-105.29	-/04.1	-3,003.3	5/0.2	402.0	100.10	5 400		
13,800.0	9,0/3.9	13,942.1	9,019.4	53.0	00.0 60.6	-105.30	-703.9	-3,133.2	570.2	400.3	111 66	5 107		
14,000.0	3,0/1.9	14,042.1	9,017.3 0,915.7	00,9 54 0	09.0 60.6	-100.01	-703.0	-0,000.2 _3 053 0	570.2	450.0	112 /0	5.028		
14,100.0	9,667.9	14,142.1	9,813.8	55.8	61.4	-105.32	-703.3	-3,933.2 -4,053.2	570.3	455.1	115.20	4.950		
14 200 0	0 666 0	14 242 4	0,811.0	56.7	62.2	-105.24	702 9	_1 153 0	570.2	152.2	116 00	4 875		
14,200.0	9,000.9	14,342.1	5,011.9	JO./		-105.34	-/ 02.0		3/0.3	HOULD	110.33	4.075		
	CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation													

Page 9

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid .
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

	Offset De	esign:(H	lowitzer) S	ec-12_T	-24-S_R-28	В-Е- Но	witzer Fed	eral Com #60	5H - OWE	3 - Plan #1	1	,		Offset Site Error:	0.0 usf
ŀ	Survey Prog	gram: 0	-MWD, 9337-0	WWD+IFR1	+MS Somi I	Anior Avia	•	Offcot Mallh	oro Contro	Die	Rule Assi	gned:		Offset Well Error:	0.0 usft
	Measured Depth	Vertical Depth	Measured Depth	Vertical Depth	Reference	Offset	Highside Toolface	+N/-S	+E/-W	Between Centres	Between Ellipses	Minimum Separation	Separation Factor	Warning	
-	(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(°)	(usπ)	(usπ)	(usft)	(usft)	(usft)			
	14,300.0	9,663.9	14,442.1	9,810.0	, 57.6	63.2	-105.35	-702.5	-4,253.2	570.3	451.5	118.80	4.801	·. ·	
	14,400.0	9,661.9	14,542.1	9,808.1	58.6	64.1	-105.36	-702.3	-4,353.1	570.4	449.8	120.61	4:729		•
	14,500.0	9,660.0	14,642.1	9,806.2	59.5	65.0	-105.37	-702.0	-4,453.1	570.4	448.0	122.44	4.658		
	14,600.0	9,658.0	14,742.1	9,804.4	60.5	65.9	-105.38	-701.7	-4,553.1	. 570.4	445.1	124.29	4.590		
	14,700.0	9,000.0	14,842.1	9,602.5	. 01.4	60.0	-105.39	-701.5	-4,053.1	570.5	444.3	126.14	4.522		
l	14,800.0	9,004.0	14,942.1	9,000.0	02.4	07.7	-105.40	-701.2	-4,755.1	570.5	44 ∠ .⊃	126.00	4,407		
	14,900.0	9,652.0	15,042.1	9,798.7	63,4	68.7	-105.41	-700,9	-4,853.0	'570.5	440.6	129.88	4.393		
ŀ	15,000.0	9,650.0	15,142.1	9,796.8	64.3	69.6	-105.42	-700.7	-4,953.0	570.5	438.8	131.76	4.330	;	
	15,100.0	9,648.0	15,242.1	9,794.9	65.3	70.6	-105.43	-700.4	-5,053.0	570.6	436.9	133.65	4.269		
	15,200.0	9,646.1	15,342.1	9,793.1	66.3	71.5	-105.44	-700.1	-5,153.0	570.6	435.0	135.55	4.209		
	15,300.0	9,644.1	15,442.1	9,791.2	67.3	72.5	-105.45	-699.9	-5,253.0	570.6	433.2	137,46	4,151		
	15 400 0	9 642 1	15 542 1	0 780 3	68 3	73 /	-105 46	-699 6	-5 353 0	570.6	121 3	130 38	4 004		
Į	15,400.0	9 640 1	15,642.1	9 787 4	69.3	74.4	-105.40	-699.4	-5,452.9	570.0	431.3	141 31	4.034		
ĺ	15,600.0	9 638 1	15 742 1	9 785 5	70.3	75.3	-105.48	-699.1	-5,552.9	570.7	427.5	143.24	3 984		
	15,000.0	9 636 1	15 842 1	9 783 7	71.3	76.3	-105 49	-698.8	-5 652 9	570.7	425.5	145.18	3 931		
	15,800.0	9,634,1	15,942.1	9,781.8	72,3	77.3	-105.50	-698.6	-5,752.9	570.8	423.6	147.13	3.879		
	15,900.0	9,632.2	16,042.1	9,779.9	73.3	78.3	-105.51	-698.3	-5,852.9	570.8	421.7	149.08	3.829		
	16,000.0	9,630.2	16,142.1	9,778.0	74.3	79.3	-105,52	-698.0	-5,952,8	570,8	419,8	151.04	3,779		
	16,100.0	9,628.2	16 242.1	9,776.1	75.3	80.2	-105.53	-697.8	-0,052,8	570,8	417.8	153,01	3.731		
	16,200.0	9,020.2	16,342.1	9,114.2	70.3	82.2	-105.54	-097.3	-6,152.0	570,9	413.9	156.96	3,637		
	10,500.0	5,024.2	10,442.1	0,772.4	11.5	02.2	,	-001.2	-0,202.0	570,5	415.5	100.00	5.007		
	16,400.0	9,622.2	16,542.1	9,770.5	78.4	83.2	-105.56	-697.0	-6,352.8	570,9	412.0	158.94	3,592		
	16,500.0	9,620.2	16,642.1	9,768.6	79.4	84.2	-105.57	-696.7	-6,452,8	570.9	410.0	160,93	3,548		
	16,600.0	9,618.3	16,742.1	9,766.7	80.4	85.2	-105.58	-696.4	-6,552.7	571.0	408.1	162.92	3.505		
	16,700.0	9,616.3	16,842.1	9,764.8	81.4	86.2	-105.59	-696.2	-6,652.7	571.0	406.1	164.92	3.462		
	16,800.0	9,614.3	16,942.1	9,762.9	82.5	87.2	-105.60	-695.9	-6,752.7	571.0	404.1	166,93	3,421		
	16.900.0	9.612.3	17.042.1	9,761,1	83.5	88.2	-105.61	-695.6	-6.852.7	571.1	402.1	168.93	3.380		
ļ	17.000.0	9.610.3	17,142.1	9.759.2	84.5	89.2	-105.62	-695.4	-6.952.7	571.1	400.1	170.95	3.341		
ł	17,100.0	9,608,3	17,242.1	9,757,3	. 85.6	90,3	-105,63	-695.1	-7,052.6	. 571.1	398.2	172.96	3,302		
	17,200.0	9,606.4	17,342.1	9,755.4	86.6	91.3	-105.64	-694.8	-7,152.6	571.1	396.2	174.98	3.264		
l	17,300.0	9,604.4	17,442.1	9,753.5	87.6	92.3	-105.65	-694.6	-7,252.6	571.2	394.2	177.01	3.227		
	17 400 0	9 602 4	17 542 1	9 751 6	88.7	93.3	-105 66	-694 3	-7 352 6	571 2	302.2	179.04	3 100		
	17,400.0	9 600 4	17,542.1	97498	89.7	94.3	-105.00	-034.3	-7,352.0	571.2	390.2	1/ 5.04	3 155		
ł	17,000.0	9 598 4	17 742 1	9747.9	90.8	95.4	-105.68	-693.8	-7 552.6	571.2	388.2	183.10	3 120		
l	17,700.0	9.596.4	17.842.1	9.746.0	91.8	96.4	-105.69	-693.5	-7.652.5	571.3	386.1	185.14	3.086		
	17,800.0	9,594.4	17,942.1	9,744.1	92.9	97.4	-105.70	-693.3	-7,752.5	571.3	384.1	187.18	3.052		
	17,900.0	9,592.5	18,042.1	9,742.2	93.9	98.4	105.71	693.0	-7,852.5	571.3	382.1	189.23	3.019		
	18,000.0	9,590.5	18,142.1	9,740.4	. 95.0	99.5	-105.72	-692.7	-7,952.5	571.4	380.1	191.28	2.987		
	18,100.0	9,588.5	18,242.1	9,738.5	96.0	100.5	-105.73	-692.5	-8,052.5	5/1.4	378.1	193.33	2.956		
	18 300 0	9,500,5	18 442 1	9,730.0	97.1	101.5	-105.74	-692.2	-8 252 4	571.5	376.0	195.30	2.925		
	10,500.0	5,004.0	10,772.1	5,104.1	50.1	102.0	-100.75	-031.5	-0,202.4	577.5	574.0	107.44	2.034		
	18,400.0	9,582.5	18,542.1	9,732.8	99.2	103.6	-105.76	-691.7	-8,352.4	571.5	372.0	199.50	2.865		
	18,500.0	9,580.5	18,642.1	9,730.9	100.3	104.7	-105.77	-691.4	-8,452.4	571.5	369.9	201.56	2.835		
	18,600.0	9,578.6	18,742.1	9,729.1	101.3	105.7	-105.78	-691.1	-8,552.4	571.5	367.9	203.63	2.807		
	18,700.0	9,576.6	18,842.1	9,727.2	102.4	106.7	-105.79	-690.9	-8,652.4	571.6	365.9	205.69	2.779		
	18,800.0	9,574.6	18,942.1	9,725.3	103.4	107.8	-105.80	-690.6	-8,752.3	571.6	363.8	207.76	2.751		
	18 900 0	9 572 6	19 042 1	9 723 4	104 5	108.8	-105.81	-690 3	-8 852 3	571 B	361.8	209 84	2 724		
1	19,000.0	9,570,6	19 142 1	9 721 5	105.6	100.0	-105.82	-690.5	-8 952 3	571.6	359 7	211 91	2 698		
1	19,100.0	9,568.6	19,242.1	9,719.6	106.6	110.9	-105.83	-689.8	-9.052.3	. 571.7	357.7	213.99	2,672		
1	19,200.0	9,566.6	19,342.1	9,717.8	107.7	112.0	-105.84	-689.5	-9,152.3	571.7	355.6	216.06	2.646		
1	19,300.0	9,564.7	19,442.1	9,715.9	108.8	113.0	-105.85	-689.3	-9,252.2	571.7	353.6	218.15	2.621		
							_						_		
ſ	19,400.0	9,562.7	19,542.1	9,714.0	109.8	114.1	-105.86	-689.0	-9,352.2	571.8	351.5	220.23	2.596		

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation

11/02/18 12:23:11PM

Page 10

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
· · · · · · · · · · · · · · · · · · ·	t	4	1

Offset D	esign:(H	owitzer) S	ec-12_T	24-S_R-2	8-E - Ho	witzer Fede	eral Com #60	5H - OWE	8 - Plan #				Offset Site Error:	0.0 usft
Survey Prog	gram: 0- rence	MWD, 9337-I Off	MWD+IFR1 set	+MS Semi M	laior Axis		Offset Wellb	ore Centre	Dist	Rule Assig	gned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	Reference (usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
19,500.0	9,560.7	19,642.1	9,712.1	110.9	115.1	-105.87	-688.7	-9,452.2	571.8	349.5	222.31	2.572		
19,600.0	9,558.7	19,742.1	9,710.2	112.0	116.2	-105.88	-688.5	-9,552.2	571.8	347.4	224.40	2.548		
19,700.0	9,556.7	19,842.1	9,708.4	113.1	117.2	-105.89	-688.2	-9,652.2	571.8	345.4	226.49	2.525		
19,800.0	9,554.7	19,942.1	9,706.5	114.1	118.3	-105.90	-687.9	-9,752.2	571.9	343.3	228.58	2.502		
19,900.0	9,552.7	20,042.1	9,704.6	115.2	119.4	-105.91	-687.7	-9,852.1	571.9	341.2	230.67	2.479	•	
19,901.0	9,552.7	20,043.1	9,704.6	115.2	119.4	-105.91	-687.7	-9,853.2	571.9	341.2	230.69	2.479		
19,937.5	9,552.0	20,073.3	9,704.0	115.6	119.7	-105.91	-687.6	-9,883.4	571.9	340.6	231.35	· 2.472 ES	SF	

the second se			
Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellb	ore OWB	Database:	EDM 5000.15 Single User Db
Reference Desig	jn: Plan #1	Offset TVD Reference:	Offset Datum
	<u> </u>		· · · · · · · · · · · · · · · · · · ·

Offset D	esign:(H	owitzer) S	ec-12_T	-24-S_R-2	8-E - Hô	witzer Fed	eral Com #60	6H - OWE	3 - Plan #'			······································	Offset Site Error:	0.0 usft
Survey Pro	gram: 0-	MWD, 9194-	MWD+IFR1	+MS			يى يەت بىرى يېشىد بەت بىر بىر ب			Rule Assi	gned:		Offset Well Error:	0.0 usft
Refe	vertical	Off Measured	set Vertical	Semi M Reference	Major Axis Offset	Highside	Offset Wellb	ore Centre	Dist Retween	tance Retween	Minimum	Senaration	Warning	
Depth	Depth	Depth	Depth	((Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor	Harming	
(usπ)	(usπ)	(usπ)	(usπ)	(usπ)	(usπ)	(")	(usit)	(usit)	(usπ)	(usπ)	(usn)	·	······	
100.0	100.0	94.2	94.2	0.0	0.0	163.63	-1,109.4	325.8	1,100.0	1 156 0	0.30	3 903 971		
200.0	200.0	194.2	194.2	0.6	0.5	163.63	-1 109.4	325.8	1 156 2	1,155.0	1 13	1 026 575		
300.0	300.0	294.2	294.2	1.0	1.0	163.63	-1,109.4	325.8	1.156.2	1.154.3	1.97	586.174		
400.0	400.0	394.2	394.2	1.4	1.4	163.63	-1,109.4	325.8	1,156.2	1,153.4	2.82	410.199		
500.0	500.0	494.2	494.2	1.9	1.8	163.63	-1,109.4	325.8	1,156.2	1,152.6	3.66	315.487		
600.0	600.0	594.2	594.2	23	22	163 63	-1 109 4	325.8	1 156 2	1 151 7	4 51	256 307		
700.0	700.0	694.2	694.2	2.7	2.7	163 63	-1 109 4	325.8	1,156.2	1 150 9	5.36	215 822		
800.0	800.0	794.2	794.2	3.1	3,1	163.63	-1,109.4	325.8	1.156.2	1.150.0	6.20	186.383		
900.0	900.0	894.2	894.2	3.5	3.5	163.63	-1.109.4	325.8	1.156.2	1.149.2	7.05	164.011		
1,000.0	1,000.0	994.2	994.2	4.0	3.9	163.63	-1,109.4	325.8	1,156.2	1,148.4	7.90	146.434		
1 100 0	1 100 0	1 094 2	1 094 2	14	4.4	163.63	-1 109 4	325.8	1 156 2	1 147 5	874	137 750		
1,100.0	1,100.0	1 194 2	1 194 2	4.4	4.8	163.63	-1,109.4	325.8	1 156 2	1 146 7	9.59	120 587		
1 300.0	1,200.0	1 294 2	1 294 2	5.2	5.2	163.63	-1 109 4	325.8	1 156 2	1 145 8	10.43	110 808		
1,000.0	1 400 0	1 394 2	.1 394 2	5.7	5.6	163.63	-1 109 4	325.8	1 156 2	1 145.0	11.45	102 496		
1,500.0	1,500.0	1,494.2	1,494.2	6.1	6.0	163.63	-1,109.4	325.8	1,156.2	1,144.1	12.13	95.344		
1,600.0	1,600.0	1,594.2	1,594.2	6.5	6.5	163.63	-1,109.4	325.8	1,156.2	1,143.3	12.97	89.125		
1,700.0	1,700.0	1,694.2	1,694.2	6.9	6.9	163.63	-1,109.4	325.8	1,156.2	1,142.4	13.82	83.667		
1,800.0	1,800.0	1,/94.2	1,794.2	7.4	7.3	163,63	-1,109.4	325.8	1,156.2	1,141.6	14.6/	78.840		
1,900.0	1,900.0	1,894.2	1,894.2	7.8	1.1	163.63	-1,109.4	325.8	1,156.2	1,140.7	15.51	74.539		
2,000.0	2,000.0	1,994.2	1,994.2	8.2	8.2	163.63	-1,109.4	325.8	1,156.2	1,139.9	16.36	70.683		
2,068.0	2,068.0	2,046.9	2,046.9	8.4	8.3	56.05	-1,109.6	326.1	1,156.2	1,139.5	16.67	69.372		
2,100.0	2,100.0	2,071.0	2,071.0	8.4	8.4	56.07	-1,109.9	326.5	1,156.2	1,139.4	16.80	68.803		
2,200.0	2,199.8	2,146.3	2,146.3	8.5	8.5	56.14	-1,111.7	328.8	,1,156.4	1,139.4	, 16.99	68.048		
2,300.0	2,299.5	2,221.7	2,221.5	8.5	8.6	56.27	-1,114.7	332.6	1,156.7	1,139.6	- 17.17	67.386		
2,400.0	2,398.9	2,312.3	2,311.8	8.7	8.8	56.43	-1,119.4	338.7	1,157.8	1,140.4	17.41	66.491		
2,500.0	2,498.4	2,412.3	2,411.3	8.8	9.0	56.61	-1,124.8	345.6	1,159.1	1,141.3	17.73	65.387		
2,600.0	2,597.8	2,512.2	2,510.9	8.9	9.2	56.78	-1,130.1	352.5	1,160.3	1,142.3	18.08	64.175		
2,700.0	2,697.3	2,612.1	2,610.4	9.1	9.4	56.96	-1,135.4	359.4	1,161.6	1,143.1	18.47	62.875		
2,800.0	2,796.7	2,712.1	2,710.0	9.3	, 9.7	57.13	-1,140.8	366.2	1,162.9	1,144.0	18.91	61.510		
2,900.0	2,896.2	2,812.0	2,809.5	9.5	10.0	57.31	-1,146.1	373.1	1,164.2	1,144.8	19.37	60.099		
3 000 0	2 995 6	2 911 9	2 909 1	98	10.2	57.48	-1 151 5	380.0	1 165 5	1 145 6	19.87	. 58 659		
3 100 0	3 095 1	3.011.8	3,008,6	10.0	10.2	57.66	-1,151.5	386.9	1,100.0	1 146 4	20.40	57 205		
3 200 0	3 194 5	3 111 8	3 108 2	10.3	10.8	57.83	-1 162 1	393.8	1 168 2	1 147 2	20.40	55 751		
3.300.0	3 294 0	3,211.7	3.207.7	10.6	11.2	58.00	-1.167.5	400.7	1,169.5	1.148.0	21.53	54.308		
3,400.0	3,393.4	3,311.6	3,307.3	10.9	11.5	58.17	-1,172.8	407.5	1,170.9	1,148.7	22.14	52.884		
	a /aa -	.					4 - 70 -		4 470 5		~~	F4 400		
3,500.0	3,492.9	3,411.6	3,406.8	. 11.2	11.8	58.35	-1,178.1	414.4	1,172.2	1,149.5	22.77	51,486		
3,600.0	3,592.3	3,511.5	3,506.4	11.6	12.2	58.52	-1,183.5	421.3	1,173.6	1,150.2	23.42	50.121		
3,700.0	3,691.8	3,611.4	3,605.9	11.9	12.5	58.69	-1,188.8	428.2	1,175.0	1,150.9	24.08	48.791		
3,800.0	3,791.2	3,711,3	3,705.5	12.3	12.9	58,86	-1,194.2	435.1	1,176.4	1,151.6	24.77	47.500		
3,900.0	3,690.7	3,011,3	3,603,0	12.0	13.3	59.05	-1,199.5	442.0	1,177.0	1,152.5	25,47	40,250		
4,000.0	3,990.1	3,911.2	3,904.6	13.0	13.7	59.20	-1,204.8	448.9	1,179.2	1,153.0	26.18	45.042		
4,100.0	4,089.6	4,011.1	4,004.1	13.4	14.0	59.37	-1,210.2	455.7	1,180.6	1,153.7	26.91	43.877		
4,200.0	4,189.0	4,111.1	4,103.7	13.8	14.4	59,54	-1,215.5	462.6	1,182.1	1,154.4	27.65	42.753		
4,300.0	4,288.5	4,211.0	4,203.2	. 14.2	14.8	59.71	-1,220.9	469.5	1,183.5	1,155.1	28.40	41.672		
4,400.0	4,387.9	4,310.9	4,302.7	14.6	15.2	59.88	-1,226.2	476.4	1,185.0	1,155.8	29.16	40.632		
4,500.0	4,487.4	4,410.8	4,402.3	15.0	15.6	60.04	-1.231.5	483.3	1,186.4	1,156.5	29.94	39.631		
4,600,0	4,586.9	4,510.8	4,501.8	15.4	16.0	60.04	-1 236 9	490.2	1,187 9	1,157.2	30.72	38,670		
4,700.0	4.686.3	4,610.7	4,601.4	15.8	16.5	60.38	-1 242.2	497.0	1,189.4	1,157.9	31.51	37,747		
4,800.0	4,785.8	4,710.6	4,700.9	16.2	16.9	60.55	-1.247.6	503.9	1,190.9	1,158.6	32.31	36,860		
4,900:0	4,885.2	4,810.6	4,800.5	16.7	17.3	60.71	-1,252.9	510.8	1,192.4	1,159.3	33.12	36.008	•	
F 000 0	4 00 4 7	10105	4 000 0			00.00	4 050 5	c + 7 -	1 100 0	4 400 0	~~~~~	25 400		
5,000.0	4,984.7	4,910.5	4,900.0	17.1	17.7	60.88	-1,258.2	517.7	1,193.9	1,160.0	33.93	35,189		
		CC -	Min cent	re to cente	er distand	e or cover	gent point, SF	- min sep	paration fa	ctor, ES	- min ellip	se separat	ion	

п				
	Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
	Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
	Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
	Site Error:	0.0 usft	North Reference:	Grid
	Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
	Well Error:	0.0 usft	Output errors are at	2.00 sigma
	Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
	Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
		1		

Survey Fragment: Convol. 1914;40:00:10:11:10:10:10:10:10:10:10:10:10:10	Offset D	esign:(H	iowitzer) S	ec-12_1	-24-5_R-2	o-⊑- H0	witzer Fede	erai Com #60		5 - Man #	I			Offset Site Error:	0.0 usft
Unit of the second se	Survey Pro	gram: 0	-MWD, 9194-	MWD+IFR1	+MS	••••••••••••••••••••••••••••••••••••••		0#			Rule Assi	gned:		Offset Well Error:	0.0 usft
Partin Organ Depth Testace 4H-34 Ef-VV total Cent total Bitter Sectation Felor 20200 5.93.6 5.93.6 5.93.7 1.93.7 1.93.7 1.93.2 5.93.6 5.93.6 5.93.6 5.93.7 1.93.7 1.93.2 5.93.7 1.14.9 1.44.4 3.64.0 3.24.7 5.93.0 5.93.5 5.93.7 1.84.9 1.44.2 3.44.4 3.64.0 3.24.7 5.90.0 5.93.5 5.97.5 5.97.7 1.86.9 1.93.2 5.93.7 1.11.3 1.13.7 1.13.7 1.13.7 3.13.8 3.93.1 5.90.0 5.98.4 5.57.6 1.97 1.93.6 5.93.2 5.93.7 1.18.9 1.11.8 1.13.9 3.13.7 5.90.0 5.98.4 5.97.5 2.02 2.04 4.04.0 2.93.7 1.14.8 1.11.8 1.11.9 1.11.9 1.11.9 3.13.7 5.90.0 5.97.2 5.99.1 2.08.2 5.97.7 1.1.25.0 5.97.2 <th>Refei Measured</th> <th>rence Vertical</th> <th>Off Measured</th> <th>set Vertical</th> <th>Semi M Reference</th> <th>Major Axis Offset</th> <th>Highside</th> <th>Offset Wellb</th> <th>ore Centre</th> <th>Dis Between</th> <th>tance Between</th> <th>Minimum</th> <th>Separation</th> <th>Warning</th> <th></th>	Refei Measured	rence Vertical	Off Measured	set Vertical	Semi M Reference	Major Axis Offset	Highside	Offset Wellb	ore Centre	Dis Between	tance Between	Minimum	Separation	Warning	
Store Fight Fight <th< th=""><th>Depth (usft)</th><th>Depth (usft)</th><th>Depth (usft)</th><th>Depth (usft)</th><th>(ueft)</th><th>(usft)</th><th>Toolface</th><th>+N/-S. (usft)</th><th>+E/-W (usft)</th><th>Centres (usft)</th><th>Ellipses (usft)</th><th>Separation (usft)</th><th>Factor</th><th></th><th></th></th<>	Depth (usft)	Depth (usft)	Depth (usft)	Depth (usft)	(ueft)	(usft)	Toolface	+N/-S. (usft)	+E/-W (usft)	Centres (usft)	Ellipses (usft)	Separation (usft)	Factor		
Sizes Sizes <td< td=""><td>5.100.0</td><td>5.084.1</td><td>5.053.9</td><td>5.043.1</td><td>17.5</td><td>18.3</td><td>61.22</td><td>-1,263.9</td><td>524.9</td><td>1,193.7</td><td>1,158.8</td><td>34.90</td><td>34.207</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></td<>	5.100.0	5.084.1	5.053.9	5.043.1	17.5	18.3	61.22	-1,263.9	524.9	1,193.7	1,158.8	34.90	34.207	· · · · · · · · · · · · · · · · · · ·	
5.200 6.280.0 6.277.2 114.4 19.0 1.02.19 1.02.52 578.7 1.148.4 3.44.9 3.24.44 3.24.94 5.600 5.84.14 5.64.96 5.76.7 1.189.1 1.12.52 52.07 1.177.5 1.137.3 3.78 3.05.98 5.600 5.84.14 5.64.65 1.77 1.138.1 3.78 3.22.11 5.000 5.77.5 5.77.5 5.77.5 5.77.5 5.77.5 1.158.1 <td< td=""><td>5,200.0</td><td>5,183.6</td><td>5,188.5</td><td>5,177.8</td><td>18.0</td><td>18.7</td><td>61.75</td><td>-1,265.2</td><td>526.7</td><td>1,189.9</td><td>1,154.1</td><td>35.76</td><td>33.275</td><td></td><td></td></td<>	5,200.0	5,183.6	5,188.5	5,177.8	18.0	18.7	61.75	-1,265.2	526.7	1,189.9	1,154.1	35.76	33.275		
5 400 5 5.825 5 6.376 6 1.88 193 82.64 -1.2862 5 5.07 1 1.153 1 3.79 3 30.98 5.800 5 5.814 5 5.868 5 5.75 5 1.07 5 1.153 1 3.79 3 30.98 5.000 5 5.814 5 5.868 5 5.75 5 2.02 2 2.00 1 1.77.0 1 1.131 5 3.79 3 30.98 5.000 5 5.77.4 5 2.06 2.02 4 4.00 1 -1.285 2 5.07 1 1.164 4 1.064 4 1.06 4	5,300.0	5,283.0	5,288.0	5,277.2	18.4	19.0	62.19	-1,265.2	526.7	1,184.9	1,148.4	36,49	32.469		
5.8000 5.8419 5.862 5.776 102 102 5.202 5.202 1.175.3 1.175.3 1.175.3 1.175.3 1.175.3 1.175.3 1.175.3 1.175.3 1.175.3 1.175.5 1.115.5 1.115.5 1.115.5 1.115.5 </td <td>5,400.0</td> <td>5,382.5</td> <td>5,387.5</td> <td>5,376.7</td> <td>18.8</td> <td>19.3</td> <td>62.64</td> <td>-1,265.2</td> <td>526.7</td> <td>1,180.1</td> <td>1,142.8</td> <td>37.24</td> <td>31.691</td> <td></td> <td></td>	5,400.0	5,382.5	5,387.5	5,376.7	18.8	19.3	62.64	-1,265.2	526.7	1,180.1	1,142.8	37.24	31.691		
6.8000 5.814 5.884 5.8750 5.2750 5.2850 5.9771 5.2850 7.1140.9 1.100.4 4.343 2.3376 6.8000 6.7781 6.1783 6.6003 6.6695 2.27 6.777 -2852 5.2677 1.102.7 1.081.0 4.637 2.5789 6.9000 6.776.0 5.23 2.31 6.623 -1.2552 5.2677 1.101.0 4.637 2.4185 6.9000 5.97	5,500.0	5,481.9	5,486.9	5,476.1	19.3	19.6	63.09	-1,265.2	526.7	1,175.3	1,137.3	37.99	30,938		
System 5,860 5,867 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 5,875 1,185 1,1185 1,116.4 41.05 2,254 6,000 6,775 6,883 6,072.8 2,21 2,14 6,567 1,125.2 5267 1,118.5 1,106.4 4,36 2,254 6,000 6,775.6 6,023.6 6,272.8 2,22 2,14 6,563 1,255.2 5267 1,148.5 1,106.4 4,54.2 2,233 6,563.1 1,255.2 5267 1,118.6 1,055.4 4,24.2 2,24 2,18 6,65.2 5267 1,118.5 1,061.0 4,54.7 2,24.6 5,65.7 1,255.2 5267 1,118.6 1,063.1 4,54.7 2,24.165 5,67.7 1,252.2 526.7 1,112.8 1,076.3 4,76.7 2,24.165 7,77.7 7,76.8 6,79.0 <td< td=""><td>5,600.0</td><td>5,581.4</td><td>5,586.4</td><td>5,575.6</td><td>19.7</td><td>19.9</td><td>63,54</td><td>-1,265.2</td><td>526.7</td><td>1,170.6</td><td>1,131.8</td><td>38.75</td><td>30.211</td><td></td><td></td></td<>	5,600.0	5,581.4	5,586.4	5,575.6	19.7	19.9	63,54	-1,265.2	526.7	1,170.6	1,131.8	38.75	30.211		
Sabol Sirab Sirab <td< td=""><td>5,700.0</td><td>5,680.8</td><td>5,685.8</td><td>5,675.0</td><td>20.2</td><td>20.2</td><td>64.00</td><td>-1,265.2</td><td>526.7</td><td>1,165.9</td><td>1,126.4</td><td>39.51</td><td>29,509</td><td></td><td></td></td<>	5,700.0	5,680.8	5,685.8	5,675.0	20.2	20.2	64.00	-1,265.2	526.7	1,165.9	1,126.4	39.51	29,509		
5.8000 5.877 5.884.7 5.874.2 5.874.2 5.874.2 5.817.4 5.884.7 5.874.2 5.11 60.8 5.757 1.185.9 1.156.9 1.567.9 </td <td>5,800.0</td> <td>5,780.3</td> <td>5,785.3</td> <td>5,774.5</td> <td>20.6</td> <td>20.5</td> <td>64.46</td> <td>-1,265.2</td> <td>526.7</td> <td>1,161.4</td> <td>1,121.1</td> <td>40.28</td> <td>28.830</td> <td></td> <td></td>	5,800.0	5,780.3	5,785.3	5,774.5	20.6	20.5	64.46	-1,265.2	526.7	1,161.4	1,121.1	40.28	28.830		
6.000 5.97.2 5.97.4 21.5 21.1 65.39 1.265.2 526.7 1.14.25 1.110.5 42.64 28.84 6.000 6.078.5 6.081.5 6.072.8 22.0 21.4 6.51.7 1.265.2 526.7 1.14.35 1.105.5 42.64 28.937 6.000 6.077.5 6.323.5 6.271.7 22.8 22.1 66.26 -1.365.2 526.7 1.14.35 1.105.5 42.69 6.000 6.075.6 6.560.6 6.570.1 24.3 22.1 66.26 -1.255.2 526.7 1.12.7 1.061.0 46.67 24.165 6.000 6.77.5 6.580.6 6.570.0 22.2 23.6 62.77 -1.265.2 526.7 1.12.7 1.061.0 41.67 24.165 6.000 6.77.4 6.778.6 6.880.3 6.680.3 52.7 24.1 67.77 1.265.2 526.7 1.12.7 1.067.1 44.8 23.967 7.0000 6.772.1 6.776.7 7.96	5,900.0	5,879.7	5,884.7	5,873.9	21.1	20.8	64.93	-1,265.2	526.7	1,156.9	1,115.8	41.06	28.174		
6,000 6,078 6,085 6,072.8 220 21.4 6,57 1,285.2 567 1,141.1 1,105.4 43.45 26.397 6,200 6,377.5 6,325.2 6,271.7 22.3 22.4 6,682 1,255.2 566.7 1,133.5 1,305.5 44.23 25.14 6,000 6,377.0 6,322.0 6,371.2 22.3 22.4 6,682 1,355.2 2,667 1,133.5 1,305.7 4,585.2 24.64 24.69 24.69 6,000 6,377.6 5,860.5 6,571.1 24.3 6,877 1,265.2 526.7 1,112.8 1,075.3 47.48 23.667 6,000 6,774.8 6,779.8 6,799.7 25.2 24.4 69.77 1,265.2 526.7 1,116.4 1,067.2 49.44 22.270 7,000 7,072.7 7,076.7 1,065.8 5,057 1,105.9 1,054.2 51.64 21.415 7,200.0 7,175.6 7,166.8 27.1 25.1 71.426	6,000.0	5,979.2	5,984.2	5,973.4	21.5	21.1	65.39	-1,265.2	526.7	1,152.5	1,110.6	41.85	27.540		
6.2000 6.1781 6.1813 6.1723 2.24 9.18 6.634 -1.2652 5.627 1.1439 1.0044 44.33 25.766 6.000 6.3770 6.2825 6.277 1.3367 1.0055 4.564 25.214 6.000 6.575.3 6.580.9 6.7701 2.43 62.3 -1.265.2 52.67 1.1336 1.065.3 4.566 2.4680 6.000 6.575.3 6.580.9 6.7701 2.43 63.77 -1.265.2 52.67 1.1223 1.065.3 4.4667 2.4165 6.000 6.574.4 6.778 6.786.0 5.787 4.245.2 52.67 1.122.8 1.002.1 4.677 2.2701 7.0000 6.872.3 6.887.3 1.244 7.071 -1.265.2 52.67 1.112.8 1.002.1 4.143 2.2701 7.0000 7.073.1 7.066.3 2.41 64.77 2.2711 7.771 -1.265.2 52.67 1.105.3 1.064.2 4.24 2.1637	6,100.0	6,078.6	6,083.6	6,072.8	22.0	21.4	65.87	-1,265.2	526.7	1,148.1	1,105.5	42.64	26.928		
6.3000 6.277.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.227.5 6.257.5 6.580.9 6.577.6 2.43.2 2.21.6 6.28.7 1.137.6 1.085.7 4.45.8 2.24.6 6.0000 6.575.8 6.696.5 2.47.7 2.34 6.87.7 1.265.2 5.267.7 1.127.7 1.081.1 4.43.3 2.216 6.0000 6.575.8 6.696.5 2.47.7 2.34 68.77 1.265.2 5.267.7 1.102.8 1.078.4 4.43.4 2.217.1 7.0000 7.077.8 7.0687.3 0.697.4 2.65.7 1.102.8 1.069.4 0.697.2 2.217.1 7.0000 7.177.8 7.066.8 2.17 2.51 7.128 1.102.8 1.069.1 0.642.2 5.144 2.141.5 7.2281 7.200.7 7.147.7 7.966.8	6,200.0	6,178.1	6,183.1	6,172.3	22.4	21.8	66.34	-1,265.2	526.7	1,143.9	1,100.4	43.43	26.337		
6.400 8.377 6.320 6.371 2.33 2.24 67.30 1.265.2 526.7 1.135.6 1.090.6 45.04 25.214 6.500 9.575.9 6.560.9 6.570.1 2.43 23.1 662.2 1.265.2 526.7 1.127.7 1.081.0 46.67 24.165 6.000 6.675.3 6.680.3 6.666.5 2.47 23.4 66.77 1.265.2 526.7 1.120.1 1.071.4 4.313 23.166 6.000 6.673.3 6.686.5 2.57 2.41 66.77 1.265.2 526.7 1.112.4 1.067.2 49.14 22.270 7.0000 6.073.3 7.076.7 7.066.8 2.71 2.161 1.128.2 526.7 1.108.4 1.063.1 518.4 2.1415 7.2200 7.726.7 7.166.8 2.71 2.55 7.171.4 1.265.2 526.7 1.100.4 1.063.1 518.4 2.1415 7.2000 7.714 7.668.7 2.66.7 7.100.5 1.	6,300.0	6,277.5	6,282.5	6,271.7	22,9	22.1	66.82	-1,265.2	526.7	1,139.7	1,095.5	44.23	25.766		
6.5000 6.476.4 6.481.4 6.476.4 6.481.4 6.476.4 6.481.4 6.476.4 6.481.4 6.476.4 6.481.4 6.476.4 6.481.4 6.477.4 6.779.8 6.570.1 2.33 2.31 6.628 7.125.2 5.267.7 1.127.8 1.076.3 47.48 2.346 6,000.0 6.774.8 6.779.8 6.780.7 6.385.5 2.57.7 1.126.5 5.267.7 1.127.8 1.076.3 47.48 2.346 7,000.0 6.673.7 6.587.7 6.586.5 2.57.7 1.126.5 5.267.7 1.128.4 1.062.8 49.847 2.270 7,000.0 7.075.7 7.056.4 2.48 7.027.1 1.265.2 5.267.7 1.108.3 1.068.4 2.141.5 7,000.0 7.057.7 7.986.1 2.26.5 7.143 1.265.2 5.667.1 1.100.4 1.064.5 5.148 2.141.5 7,220.1 7.277.7 7.386.1 2.26.3 7.67.9 7.165.2 5.667.1 1.100.4 1.044.5 5.148	6,400.0	6,377.0	6,382.0	6,371.2	23.3	22.4	67.30	-1,265.2	526.7	1,135.6	1,090.6	45.04	25.214		
6.6000 6.575.9 6.580.9 6.570.1 24.3 23.1 66.28 -1.265.2 526.7 1.127.8 1.076.3 47.48 23.467 6,0000 6.675.3 6.680.3 6.6665 24.7 23.4 68.77 -1.265.2 526.7 1.123.8 1.076.3 47.48 23.166 6,0000 6.674.3 6.679.2 6.686.5 25.7 24.1 66.77 -1.265.2 526.7 1.116.4 1.087.2 49.14 22.720 7,0000 6.977.2 7.776.7 7.067.4 26.6 24.8 70.71 -1.265.2 526.7 1.105.9 1.054.5 516.4 2.1415 7,2000 7.771.6 7.776.7 7.866.1 24.8 70.70 -1.265.2 526.7 1.100.9 1.0445.9 54.14 2.032 7,2000 7.771.9 7.746.9 7.466.1 28.3 26.2 71.71 -1.265.2 526.7 1.100.0 1.0445.9 54.14 20.333 7,2000 7.757.9 7.766.9 <td>6,500.0</td> <td>6,476.4</td> <td>6,481.4</td> <td>6,470.6</td> <td>23.8</td> <td>22.7</td> <td>67.79</td> <td>-1,265.2</td> <td>526.7</td> <td>1,131.6</td> <td>1,085.7</td> <td>45.85</td> <td>24.680</td> <td></td> <td></td>	6,500.0	6,476.4	6,481.4	6,470.6	23.8	22.7	67.79	-1,265.2	526.7	1,131.6	1,085.7	45.85	24.680		
57000 6,5753 6,6973 6,6973 6,6973 6,7978 6,7786 6,7786 6,7786 6,7786 6,7786 6,7786 6,7786 6,7786 6,7786 6,7786 25,2 23,8 69,27 -1,2652 526,7 1,1164 1,057,2 4,814 22,720 7,0000 6,973,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 6,987,7 1,2652 526,7 1,1164 1,057,2 48,14 22,271 7,0000 7,077,6 7,177,6 7,176,6 7,176,6 7,177,6 7,176,7 7,177,6 7,176,7 7,177,6 7,177,6 7,176,7 7,177,6 7,176,7 7,176,7 7,177,7 7,277,1 7,266,1 22,8 7,199 1,265,2 526,7 1,100,1 1,045,1 53,4 20,44 20,303 7,2001 7,471,9 7,476,9 7,465,1 28,3 178,70 -1,265,2 526,7 1,100,0 1,045,0 55,00 19,899	6,600.0	6,575.9	6,580.9	6,570.1	24.3	23.1	68.28	-1,265.2	526.7	1,127.7	1,081.0	46.67	24.165		
6,000 6,7748 6,7758 6,7758 6,7758 6,8759 252 22.88 6927 -1,2652 556.7 1,1164 1,067.8 4931 22.721 7,000 6,973.7 6,976.7 6,987.9 25.1 24.4 70.27 -1,265.2 556.7 1,1164 1,067.8 49.97 22.271 7,000 7,075.1 7,076.1 2,66.2 24.4 70.27 -1,265.2 556.7 1,105.9 1,058.5 50.80 21.835 7,2000 7,726.5 7,144.7 27.2 52.5 7,14 -1,265.2 556.7 1.102.8 1,054.2 51.64 21.4415 7,2000 7,727.6 7,466.1 27.9 25.5 7,171 -1,265.2 526.7 1.102.8 1,054.1 53.94 20.393 7,5000 7,376.9 7,466.1 28.3 26.3 177.0 -1,265.2 526.7 1.100.0 1,045.5 54.44 20.393 7,5000 7,376.9 7,466.1 28.4 26.6 179.70 -2,652.2 526.7 1.1000 1,045.5 55.44 2	6,700.0	6,675.3	6,680.3	6,669.5	24.7	23.4	68.77	-1,265.2	526.7	1,123.8	1,076.3	47.48	23.667		
6 800.0 6474.3 6472.3 6487.2 6487.2 6487.2 6487.3 6487.2 256.7 1112.8 1062.3 491.4 22.720 7.000.0 7,073.2 7,076.1 7,067.4 266 24.8 70.76 -1,265.2 556.7 1112.8 1062.3 491.4 22.720 7.000.0 7,172.6 7,176.7 6,667.9 24.8 70.76 -1,265.2 556.7 1110.9 1054.2 51.64 21.415 7.228.1 7.000.7 7,277.1 7,266.3 27.2 22.2 71.44 -1,265.2 556.7 1100.9 1064.2 53.46 21024 7,400.0 7,317.1 7,366.3 27.9 25.5 71.71 1,265.2 556.7 1100.0 10.45.7 53.44 20.393 7,500.0 7,471.9 7,465.1 28.3 26.2 72.10 -1,265.2 556.7 1100.0 10.45.5 54.48 20.390 7,500.0 7,471.9 7,46.9 7,466.1 28.8 27.9 1,265.2 556.7 1100.0 10.45.5 54.48 20.390 <	6,800.0	6,774.8	6,779.8	6,769.0	25,2	23.8	69.27	-1,265.2	526.7	1,120.1	1,071.8	48.31	23,186		
7.0000 6.9737 6.9787 6.9787 6.9787 6.9787 2.878 2.44 70.27 -1.2652 526.7 1.108.3 1.069.5 50.80 21.336 7.0000 7.072.6 7.076.1 7.067.7 7.068.8 27.1 2.51 7.125.2 526.7 1.106.3 1.069.5 50.80 21.336 7.2000 7.272.6 7.777.6 7.166.8 27.1 2.51 7.12.2 52.67 1.104.9 1.035.1 51.64 21.415 7.2000 7.272.1 7.277.1 7.266.3 27.5 2.55 7.114.3 1.265.2 526.7 1.104.9 1.054.1 53.84 20.393 7.5000 7.476.9 7.466.1 28.3 26.2 7.10 -1.265.2 526.7 1.100.1 1.045.1 53.34 20.393 3.7 7.5000 7.471.9 7.476.9 7.466.1 28.3 26.3 179.70 -1.265.2 526.7 1.100.0 1.045.5 54.48 20.190 7.5000 7.471.9 7.476.9 7.666.1 28.8 27.7 179.70 -1.265.2	6,900.0	6,874.3	6,879.2	6,868.5	25.7	24.1	69.77	-1,265.2	526.7	1,116.4	1,067.2	49.14	22.720		
7,100.0 7,073.2 7,078.1 7,067.4 26.6 24.8 70.78 -1,265.2 526.7 1,109.3 1,058.5 50.80 21836 7,200.0 7,172.6 7,177.6 7,176.6 27.1 25.1 71.129 -1,265.2 526.7 1,104.9 1,053.1 51.84 21.300 7,200.0 7,277.1 7,266.3 27.5 25.5 71.47 -1,265.2 526.7 1,100.9 1,047.7 53.22 20.667 7,500.0 7,476.9 7,466.1 28.3 26.2 72.10 -1,265.2 526.7 1,100.0 1,045.5 54.44 20.139 7,600.0 7,471.9 7,476.9 7,466.1 28.4 26.8 179.70 -1,265.2 526.7 1,100.0 1,045.5 54.44 20.139 7,600.0 7,671.9 7,776.9 7,766.1 28.46 26.9 179.70 -1,265.2 526.7 1,100.0 1,045.5 55.43 19.809 7,900.741.9 7,776.9 7,766.1 28.48 27.3 179.70 -1,265.2 526.7 1,100.0 1,043.5 56.01	7,000.0	6,973.7	6,978.7	6,967.9	26.1	24.4	70.27	-1,265.2	526.7	1,112.8	1,062.8	49.97	22.271		
7,200.0 7,172.8 7,172.6 7,166.8 27.1 25.1 7,12.9 -1,265.2 526.7 1,105.9 1,054.2 51.84 21.415 7,200.5 7,205.5 7,194.7 27.2 25.2 71.43 -1,265.2 526.7 1,102.9 1,080.4 52.46 21.004 7,400.0 7,371.9 7,376.9 7,366.1 27.9 25.8 71.19 -1,265.2 526.7 1,100.9 1,047.7 53.22 20.687 7,600.0 7,576.9 7,466.1 28.4 26.6 179.70 -1,265.2 526.7 1,100.0 1,045.5 54.48 20.199 7,600.0 7,571.9 7,766.1 28.4 26.6 179.70 -1,265.2 526.7 1,100.0 1,045.5 54.48 20.199 7,600.0 7,571.9 7,766.1 28.6 27.3 179.70 -1,265.2 526.7 1,100.0 1,045.5 55.43 19.809 7,600.0 7,571.9 7,766.1 28.8 27.7 1,70.7 -1,265.2 526.7 1,100.0 1,043.9 56.11 19.429	7,100.0	7,073.2	7,078.1	7,067.4	26.6	24.8	70.78	-1,265.2	526.7	1,109.3	1,058.5	50.80	21.836		
7.281, 7.2005 7.194.7 27.2 25.2 714.3 -1.265.2 526.7 1,104.9 1053.1 51.88 21.300 7.300.0 7.371.9 7.376.9 7.366.1 27.9 25.5 71.11 -1.265.2 526.7 1,100.9 1,047.7 53.22 20.687 7.500.0 7.471.9 7.476.9 7.466.1 28.3 26.2 72.10 -1.265.2 526.7 1,100.0 1,045.9 54.11 20.328 7.600.0 7.571.9 7.576.9 7.666.1 28.4 26.4 173.70 -1.265.2 526.7 1,100.0 1,045.9 54.11 20.328 7.600.0 7.571.9 7.756.9 7.666.1 28.4 28.3 173.70 -1.265.2 526.7 1,100.0 1,045.9 55.03 19.999 7.600.0 7.671.9 7.766.9 7.666.1 28.4 27.7 173.70 -1.265.2 526.7 1,100.0 1,045.4 56.07 19.899 7.800.0 7.671.9 7.766.9 7.666.1 29.4 179.70 -1.265.2 526.7 1,100.0 1,045.4	7,200.0	7,172.6	7,177.6	7,166.8	27.1	25.1	71.29	-1,265.2	526,7	1,105.9	1,054.2	51.64	21,415		
7.300.0 7.272.1 7.276.3 27.5 25.5 71.71 -1.265.2 526.7 1.102.8 1.050.4 52.42 21.024 7.400.0 7.471.9 7.476.9 7.466.1 22.3 26.2 72.10 -1.265.2 526.7 1.100.1 1.045.1 53.94 20.383 7.528.1 7.500.0 7.560.5 7.494.2 28.3 26.3 179.70 -1.265.2 526.7 1.100.0 1.045.5 54.44 20.383 7.000.0 7.571.9 7.766.1 28.4 26.6 179.70 -1.265.2 526.7 1.100.0 1.045.5 54.44 20.180 7.000.0 7.671.9 7.766.1 28.8 27.3 179.70 -1.265.2 526.7 1.100.0 1.044.5 55.53 18.809 7.900.0 7.971.9 7.766.1 28.4 179.70 -1.265.2 526.7 1.100.0 1.044.5 55.61 19.424 8.000.0 7.971.9 7.765.9 7.666.1 29.4 179.70 -1.265.2 526.7 1.100.0 1.044.5 55.61 19.424	7,228.1	7,200.5	7,205.5	7,194.7	27.2	25.2	71.43	-1,265.2	526.7	1,104.9	1,053.1	51.88	21,300		
7,000 7,371.9 7,376.9 7,366.1 27.9 28.8 71.98 -1,265.2 52.67 1,100.1 1,047.7 53.22 20.667 7,5000 7,6700 7,471.9 7,476.9 7,666.1 28.3 26.3 179.70 -1,265.2 526.7 1,100.1 1,045.1 53.94 20.393 7,5000 7,571.9 7,576.9 7,566.1 28.4 26.6 179.70 -1,265.2 526.7 1,100.1 1,045.5 54.41 20.398 7,6000 7,571.9 7,776.9 7,766.1 28.8 27.3 179.70 -1,265.2 526.7 1,100.0 1,044.5 55.53 19.809 7,6000 7,971.9 7,776.9 7,661 28.9 27.7 179.70 -1,265.2 526.7 1,100.0 1,044.5 55.53 19.809 7,6000 7,971.9 7,976.9 7,966.1 29.1 28.0 179.70 -1,265.2 526.7 1,100.0 1,044.5 55.53 19.809 7,6000 8,711.9 8,76.9 8,966.1 29.2 179.70 -1,265.2 526.7	7,300.0	7,272.1	7,277.1	7,266.3	27.5	25.5	71.71	-1,265.2	526.7	1,102.8	1,050.4	52.46	21.024		
7,5000 7,471.9 7,476.9 7,466.1 28.3 26.2 72.10 -1,265.2 526.7 1,100.1 1,046.1 63.94 20.393 7,558.1 7,5000 7,574.9 7,576 7,566 7,666.1 28.4 26.3 179.70 -1,265.2 526.7 1,100.0 1,045.9 54.41 20.130 7,0000 7,671.9 7,766.9 7,666.1 28.6 28.9 179.70 -1,265.2 526.7 1,100.0 1,045.0 55.53 19.809 7,0000 7,971.9 7,776.9 7,766.1 28.8 27.7 179.70 -1,265.2 526.7 1,100.0 1,043.4 56.61 19.432 8,0000 7,971.9 7,776.9 7,766.1 28.4 179.70 -1,265.2 526.7 1,100.0 1,043.4 56.61 19.432 8,0000 8,711.9 8,776.9 8,666.1 29.4 179.70 -1,265.2 526.7 1,100.0 1,043.4 56.61 19.432 8,0000 8,711.9 8,776.9 8,666.1 30.0 29.9 179.70 -1,265.2 5	7,400.0	7,371.9	7,376.9	7,366.1	27.9	25.8	71.98	-1,265.2	526.7	1,100.9	1,047.7	53.22	20.687		
7,528.1 7,500.0 7,566.0 7,494.2 28.3 26.3 179.70 -1,265.2 526.7 1,100.0 1,045.9 54.41 20.328 7,600.0 7,571.9 7,676.9 7,666.1 28.6 26.6 179.70 -1,265.2 526.7 1,100.0 1,045.0 55.00 13.999 7,600.0 7,771.9 7,76.9 7,666.1 28.8 27.3 179.70 -1,265.2 526.7 1,100.0 1,045.9 56.07 19.600 8,000.0 7,971.9 7,76.9 7,666.1 29.3 28.4 179.70 -1,265.2 526.7 1,100.0 1,043.9 56.07 19.620 8,000.0 8,071.9 8,766.9 8,66.1 29.3 28.4 179.70 -1,265.2 526.7 1,100.0 1,042.9 57.16 13.245 8,200.0 8,71.9 8,76.9 8,366.1 29.4 28.8 179.70 -1,265.2 526.7 1,100.0 1,042.9 57.16 13.245 8,200.0 8,471.9 8,476.9 8,466.1 30.0 29.9 179.70 -1,265.2	7,500.0	7,471.9	7,476.9	7,466.1	28.3	26.2	72.10	-1,265.2	526.7	1,100.1	1,046.1	53.94	20.393	;	
7.6000 7.5719 7.5769 7.5661 28.6 179.70 -1.2652 526.7 1.100.0 1.045.5 54.48 20.190 7.700.0 7.771.9 7.776.9 7.766.1 28.8 26.9 179.70 -1.265.2 526.7 1.100.0 1.045.5 55.53 19.999 7.9000 7.871.9 7.776.9 7.766.1 28.8 27.7 179.70 -1.265.2 526.7 1.100.0 1.043.3 56.07 19.620 8.000.0 7.971.9 7.776.9 7.966.1 29.1 28.0 179.70 -1.265.2 526.7 1.100.0 1.043.4 56.11 19.432 8.000.0 8.071.9 8.176.9 8.066.1 29.3 28.4 179.70 -1.265.2 526.7 1.100.0 1.042.9 57.16 19.245 8.200.0 8.174.9 8.176.9 8.66.1 29.4 28.1 179.70 -1.265.2 526.7 1.100.0 1.041.2 58.44 18.694 . 8.400.0 8.371.9 8.376.9 8.66.1 30.0 29.9 179.70 -1.265.2 526.7<	7,528.1	7,500.0	7,505.0	7,494.2	28.3	26.3	179.70	-1,265.2	526.7	1,100.0	1,045.9	54.11	20.328	•	
7,700.0 7,671.9 7,676.9 7,666.1 28.6 179.70 -1,265.2 526.7 1,100.0 1,044.5 555.3 198.09 7,800.0 7,771.9 7,776.9 7,666.1 28.8 27.3 179.70 -1,265.2 526.7 1,100.0 1,044.5 555.3 198.09 8,000.0 7,971.9 7,976.9 7,966.1 29.1 28.0 179.70 -1,265.2 526.7 1,100.0 1,043.4 56.61 19.432 8,000.0 7,971.9 7,976.9 7,966.1 29.1 28.4 179.70 -1,265.2 526.7 1,100.0 1,043.4 56.61 19.432 8,000.0 8,071.9 8,176.9 8,166.1 29.4 28.8 179.70 -1,265.2 526.7 1,100.0 1,042.3 57.71 19.060 8,000.0 8,271.9 8,276.9 8,266.1 29.8 29.5 179.70 -1,265.2 526.7 1,100.0 1,041.7 58.28 18.876 8,000.0 8,71.9 8,476.9 8,666.1 30.0 29.2 526.7 1,100.0 1,040.6	7,600.0	7,571.9	7,576.9	7,566.1	28.4	26.6	179.70	-1,265.2	526.7	1,100.0	1,045.5	54.48	20.190		
7,800.0 7,771.9 7,776.9 7,766.1 28.8 27.3 179.70 -1,265.2 526.7 1,100.0 1,044.5 555.3 19.809 7,900.0 7,871.9 7,376.9 7,966.1 28.9 27.7 179.70 -1,265.2 526.7 1,100.0 1,043.9 56.07 19.620 8,000.0 7,971.9 7,976.9 7,966.1 29.1 28.0 179.70 -1,265.2 526.7 1,100.0 1,043.4 56.61 19.432 8,000.0 8,717.9 8,176.9 8,066.1 29.3 28.4 179.70 -1,265.2 526.7 1,100.0 1,041.7 58.28 18.876 8,400.0 8,71.9 8,776.9 8,266.1 29.6 29.1 179.70 -1,265.2 526.7 1,100.0 1,041.7 58.28 18.876 8,400.0 8,471.9 8,476.9 8,466.1 30.0 29.9 179.70 -1,265.2 526.7 1,100.0 1,040.6 59.42 18.513 8,600.0 8,671.9 8,676.9 8,666.1 30.4 30.6 179.70 -1,265.2	7,700.0	7,671.9	7,676.9	7,666.1	28.6	26.9	179.70	-1,265.2	526.7	1,100.0	1,045.0	55.00	19.999		
7,900.0 7,876.9 7,876.9 7,866.1 28.9 27.7 179.70 -1,265.2 526.7 1,100.0 1,043.9 56.07 19.620 8,000.0 7,971.9 7,976.9 7,966.1 29.3 28.4 179.70 -1,265.2 526.7 1,100.0 1,042.9 57.16 19.245 8,200.0 8,171.9 8,176.9 8,166.1 29.4 28.8 179.70 -1,265.2 526.7 1,100.0 1,042.3 57.71 19.060 8,300.0 8,271.9 8,276.9 8,266.1 29.6 29.1 179.70 -1,265.2 526.7 1,100.0 1,041.2 58.84 18.876 8,400.0 8,371.9 8,376.9 8,466.1 30.0 29.9 179.70 -1,265.2 526.7 1,100.0 1,041.2 58.84 18.674 8,500.0 8,671.9 8,676.9 8,666.1 30.4 30.6 179.70 -1,265.2 526.7 1,100.0 1,034.0 60.58 18.157 8,600.0 8,671.9 8,676.9 8,666.1 30.8 31.4 179.70 -1,265.2	7,800.0	7,771.9	7,776.9	7,766.1	28.8	27.3	179.70	-1,265.2	526.7	1,100.0	1,044.5	55.53	19.809		
8,000,0 7,971.9 7,976.9 7,966.1 29.1 28.0 179.70 -1,265.2 526.7 1,100,0 1,043.4 56.61 19.432 8,100,0 8,071.9 8,176.9 8,166.1 29.3 28.4 179.70 -1,265.2 526.7 1,100,0 1,042.9 57.16 19.245 8,000,0 8,271.9 8,176.9 8,166.1 29.6 29.1 179.70 -1,265.2 526.7 1,100,0 1,042.9 57.17 19.060 8,000,0 8,371.9 8,376.9 8,366.1 29.8 29.5 179.70 -1,265.2 526.7 1,100,0 1,041.7 58.28 18.876 8,000,0 8,571.9 8,576.9 8,666.1 30.0 29.9 179.70 -1,265.2 526.7 1,100,0 1,040.0 60.00 18.334 8,700,0 8,676.9 8,666.1 30.6 310.0 179.70 -1,265.2 526.7 1,100,0 1,038.4 61.17 17.982 8,000,0 8,771.9 8,766.9 8,666.1 30.6 31.4 179.70 -1,265.2 526.7	7,900.0	7,871.9	7,876.9	7,866.1	28.9	27.7	179.70	-1,265.2	526.7	1,100.0	1,043.9	56.07	19.620		
8,100.0 8,071.9 8,076.9 8,066.1 29.3 28.4 179.70 -1,265.2 526.7 1,100.0 1,042.9 57.16 19.245 8,200.0 8,171.9 8,176.9 8,266.1 29.4 28.8 179.70 -1,265.2 526.7 1,100.0 1,042.9 57.11 19.060 8,400.0 8,371.9 8,376.9 8,366.1 29.8 29.5 179.70 -1,265.2 526.7 1,100.0 1,041.7 58.28 18.876 8,400.0 8,371.9 8,376.9 8,466.1 30.0 29.9 179.70 -1,265.2 526.7 1,100.0 1,041.6 59.42 18.513 8,600.0 8,571.9 8,566.1 30.4 30.6 179.70 -1,265.2 526.7 1,100.0 1,034.6 6.554.2 18.157 8,600.0 8,571.9 8,766.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,038.6 61.17 17.982 8,000.0 8,71.9 8,76.9 8,666.1 30.8 31.4 179.70 -1,265.2 526.7 1,100.0 <	8,000.0	7,971.9	7,976.9	7,966.1	29.1	28.0	179.70	-1,265.2	526.7	1,100.0	1,043.4	56.61	19.432		
8,200.0 8,176.9 8,166.1 29.4 28.8 179.70 -1,265.2 52.67 1,100.0 1,041.7 58.28 18.876 8,300.0 8,271.9 8,276.9 8,266.1 29.8 29.5 179.70 -1,265.2 52.67 1,100.0 1,041.7 58.28 18.876 8,400.0 8,371.9 8,376.9 8,366.1 30.0 29.9 179.70 -1,265.2 52.67 1,100.0 1,041.7 58.28 18.513 8,500.0 8,471.9 8,476.9 8,666.1 30.4 30.6 179.70 -1,265.2 52.67 1,100.0 1,040.6 59.42 18.513 8,600.0 8,771.9 8,776.9 8,666.1 30.4 30.6 179.70 -1,265.2 52.67 1,100.0 1,038.8 61.17 17.982 8,900.0 8,871.9 8,676.9 8,666.1 30.8 31.4 179.70 -1,265.2 52.67 1,100.0 1,038.8 61.17 17.982 9,000.0 8,971.9 8,76.9 8,666.1 31.8 179.70 -1,265.2 52.67 1,100.0	8,100.0	8,071.9	8,076.9	8,066.1	29.3	28.4	179.70	-1,265.2	526.7	1,100.0	1,042.9	57.16	19.245		
8,300.0 8,271.9 8,276.9 8,266.1 29.6 29.1 179.70 -1,265.2 526.7 1,100.0 1,041.7 58.28 18.76 8,400.0 8,371.9 8,376.9 8,366.1 29.8 29.5 179.70 -1,265.2 526.7 1,100.0 1,041.2 58.84 18.694 8,500.0 8,471.9 8,476.9 8,466.1 30.0 29.9 179.70 -1,265.2 526.7 1,100.0 1,040.6 59.42 18.513 8,600.0 8,671.9 8,76.9 8,666.1 30.6 179.70 -1,265.2 526.7 1,100.0 1,040.0 60.00 18.334 8,000.0 8,671.9 8,76.9 8,666.1 30.6 179.70 -1,265.2 526.7 1,100.0 1,038.8 61.17 17.982 8,800.0 8,771.9 8,776.9 8,666.1 30.8 31.4 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,000.0 8,971.9 8,976.9 8,966.1 31.1 31.8 179.70 -1,265.2 526.7 1,100.0	8,200.0	8,171.9	8,176.9	8,166.1	29.4	28.8	179.70	-1,265.2	526.7	1,100.0	1,042.3	57.71	19.060		
8,400.0 8,371.9 8,376.9 8,366.1 29.8 29.5 179.70 -1,265.2 526.7 1,100.0 1,041.2 58.84 18.694 8,500.0 8,471.9 8,476.9 8,466.1 30.0 29.9 179.70 -1,265.2 526.7 1,100.0 1,040.6 59.42 18.513 8,600.0 8,571.9 8,576.9 8,666.1 30.4 30.6 179.70 -1,265.2 526.7 1,100.0 1,039.4 60.58 18.157 8,600.0 8,771.9 8,776.9 8,766.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,038.8 61.17 17.962 8,900.0 8,871.9 8,766.9 8,666.1 30.8 31.4 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,000.0 8,971.9 8,976.9 8,966.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.0 62.98 17.466 9,000.0 9,071.9 9,076.4 31.3 32.5 179.70 -1,265.2 526.7 <	8,300.0	8,271.9	8,276.9	8,266.1	29.6	29.1	179.70	-1,265.2	526.7	1,100.0	1,041.7	58.28	18.876		
8,500.0 8,471.9 8,476.9 8,466.1 30.0 29.9 179.70 -1,265.2 526.7 1,100.0 1,040.6 59.42 18.513 8,600.0 8,571.9 8,576.9 8,566.1 30.2 30.2 179.70 -1,265.2 526.7 1,100.0 1,040.0 60.00 18.334 8,700.0 8,671.9 8,766.9 8,666.1 30.4 30.6 179.70 -1,265.2 526.7 1,100.0 1,038.4 60.58 18.157 8,800.0 8,771.9 8,766.9 8,666.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,038.8 61.17 17.982 8,900.0 8,971.9 8,766.9 8,866.1 30.8 31.4 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,000.0 9,071.9 9,066.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.466 9,020.3 9,071.9 9,066.1 31.6 32.6 -90.57 -1,265.2 526.7 1,100.0 <	8,400.0	8,371.9	8,376.9	8,366.1	29,8	29.5	179.70	-1,265.2	526.7	1,100.0	1,041.2	58.84	18.694	•	
8,600.0 8,571.9 8,576.9 8,566.1 30.2 30.2 179.70 -1,265.2 526.7 1,100.0 1,039.4 60.58 18.137 8,700.0 8,671.9 8,776.9 8,666.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,039.4 60.58 18.157 8,800.0 8,771.9 8,776.9 8,766.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,038.8 61.17 17.982 8,900.0 8,871.9 8,976.9 8,966.1 31.1 31.8 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,000.0 8,971.9 9,976.9 9,066.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.0 62.98 17.466 9,202.3 9,174.2 9,179.2 9,168.4 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.4 63.61 17.294 CC 9,250.0 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.57 -1,265.2	8,500.0	8,471.9	8,476.9	8,466.1	30.0	29.9	179.70	-1,265.2	526.7	1,100.0	1,040.6	59.42	18.513		
8,700.0 8,671.9 8,676.9 8,666.1 30.4 30.6 179.70 -1,265.2 526.7 1,100.0 1,039.4 60.58 18.157 8,800.0 8,771.9 8,776.9 8,766.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,038.8 61.17 17.982 8,900.0 8,871.9 8,976.9 8,966.1 31.1 31.8 179.70 -1,265.2 526.7 1,100.0 1,038.2 61.77 17.808 9,000.0 8,971.9 8,976.9 8,966.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.0 62.98 17.466 9,100.0 9,071.9 9,076.9 9,066.1 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.4 63.61 17.294 CC 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.61 17.272 9,300.0 9,271.4 9,278.3 9,317.3 31.5 32.6 -90.62 -1,265.2 510.8	8,600.0	8,571.9	8,576.9	8,566.1	30.2	30.2	179.70	-1,265.2	526.7	1,100.0	1,040.0	60.00	18.334		
8,800.0 8,771.9 8,766.9 8,766.1 30.6 31.0 179.70 -1,265.2 526.7 1,100.0 1,038.8 61.17 17.982 8,900.0 8,871.9 8,876.9 8,866.1 30.8 31.4 179.70 -1,265.2 526.7 1,100.0 1,038.2 61.77 17.808 9,000.0 8,971.9 8,976.9 8,966.1 31.1 31.8 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,000.0 9,071.9 9,076.9 9,066.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,202.3 9,174.2 9,179.2 9,168.4 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.4 63.61 17.294 CC 9,250.0 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.61 17.271 9,300.0 9,320.3 9,329.3 9,317.3 31.5 32.6 -90.62 -1,265.2	8,700.0	8,671.9	8,676.9	8,666.1	30.4	30.6	179.70	-1,265.2	526.7	1,100.0	1,039.4	60.58	18.157		
8,900.0 8,871.9 8,876.9 8,866.1 30.8 31.4 179.70 -1,265.2 526.7 1,100.0 1,038.2 61.77 17.808 9,000.0 8,971.9 8,976.9 8,966.1 31.1 31.8 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,100.0 9,076.9 9,066.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.0 62.98 17.466 9,202.3 9,174.2 9,179.2 9,168.4 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.3 63.61 17.294 CC 9,202.3 9,174.2 9,274.4 9,216.6 31.6 32.6 -90.50 -1,265.2 525.7 1,100.0 1,036.3 63.61 17.294 CC 9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.69 17.271 9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6	8,800.0	8,771.9	8,776.9	8,766.1	30.6	31.0	179.70	-1,265.2	526.7	1,100.0	1,038.8	61.17	17.982		
9,000.0 8,971.9 8,976.9 8,966.1 31.1 31.8 179.70 -1,265.2 526.7 1,100.0 1,037.6 62.37 17.636 9,100.0 9,076.9 9,066.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.0 62.98 17.466 9,202.3 9,174.2 9,179.2 9,168.4 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.4 63.61 17.294 CC 9,250.0 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.50 -1,265.2 525.7 1,100.0 1,036.3 63.71 17.262 9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.62 -1,265.2 520.5 1,100.0 1,036.3 63.69 17.271 9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.64 17.277 9,450.0 9,414.3 9,460.0 31.5 32.6 -90.73 -1,265.1 478.1 1,100.1	8,900.0	8,871.9	8,876.9	8,866.1	30,8	31.4	179.70	-1,265.2	526.7	1,100.0	1,038.2	61.77	17.808		
9,100.0 9,071.9 9,076.9 9,066.1 31.3 32.1 179.70 -1,265.2 526.7 1,100.0 1,037.0 62.98 17.466 9,202.3 9,174.2 9,179.2 9,168.4 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.4 63.61 17.294 CC 9,250.0 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.50 -1,265.2 525.7 1,100.0 1,036.3 63.72 17.262 9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.61 17.271 9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.67 17.277 9,450.0 9,414.3 9,460.0 31.5 32.6 -90.73 -1,265.1 476.1 1,100.1 1,036.4 63.64 17.293 9,550.0 9,501.0 9,548.7 9,482.9 9,460.0 31.5 32.6 -90.81 -1,264.9	9,000.0	8.971.9	8.976.9	8.966.1	31.1	31.8	179.70	-1.265.2	526.7	1,100.0	1,037.6	62.37	17,636		
9,202.3 9,174.2 9,179.2 9,168.4 31.5 32.5 179.70 -1,265.2 526.7 1,100.0 1,036.4 63.61 17.294 CC 9,250.0 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.50 -1,265.2 525.7 1,100.0 1,036.3 63.72 17.262 9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.71 17.262 9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.62 -1,265.2 520.5 1,100.0 1,036.3 63.69 17.271 9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.64 17.277 9,450.0 9,414.3 9,460.0 31.5 32.6 -90.73 -1,265.1 478.1 1,100.1 1,036.4 63.61 17.293 9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6	9,100.0	9,071.9	9,076,9	9,066.1	31.3	32.1	179.70	-1,265.2	526.7	1,100.0	1,037.0	62.98	17.466		
9,250.0 9,221.8 9,227.4 9,216.6 31.6 32.6 -90.50 -1,265.2 525.7 1,100.0 1,036.3 63.72 17.262 9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.71 17.262 9,350.0 9,320.3 9,329.3 9,317.3 31.5 32.6 -90.62 -1,265.2 510.8 1,100.0 1,036.3 63.69 17.271 9,400.0 9,366.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.67 17.277 9,450.0 9,414.3 9,460.0 31.5 32.6 -90.73 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.285 9,500.0 9,458.7 9,482.9 9,460.0 31.5 32.6 -90.81 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.293 9,550.0 9,501.0 9,545.7 9,545.1 31.4 32.6 -90.81 -1,264.9 397.9 <	9,202.3	9,174.2	9,179.2	9,168.4	31.5	32.5	179.70	-1,265.2	526.7	1,100.0	1,036.4	63.61	17.294 CC	:	
9,300.0 9,271.4 9,278.3 9,267.2 31.6 32.6 -90.57 -1,265.2 520.5 1,100.0 1,036.3 63.71 17.266 9,350.0 9,320.3 9,329.3 9,317.3 31.5 32.6 -90.62 -1,265.2 510.8 1,100.0 1,036.3 63.69 17.271 9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.67 17.277 9,450.0 9,414.3 9,431.6 9,414.1 31.5 32.6 -90.73 -1,265.0 455.4 1,100.1 1,036.4 63.64 17.285 9,500.0 9,458.7 9,482.9 9,460.0 31.5 32.6 -90.77 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.293 9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6 1,100.1 1,036.5 63.58 17.301 9,600.0 9,540.7 9,545.7 9,545.1 31.4 32.6 -90.84 -1,264.9	9,250.0	9,221.8	9,227.4	9,216.6	31.6	32.6	-90.50	-1,265.2	525.7	1,100.0	1,036.3	63.72	17.262		
9,350.0 9,320.3 9,329.3 9,317.3 31.5 32.6 -90.62 -1,265.2 510.8 1,100.0 1,036.3 63.69 17.271 9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.67 17.277 9,450.0 9,414.3 9,431.6 9,414.1 31.5 32.6 -90.73 -1,265.1 478.1 1,100.1 1,036.4 63.64 17.285 9,500.0 9,458.7 9,482.9 9,460.0 31.5 32.6 -90.77 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.293 9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6 1,100.1 1,036.5 63.58 17.301 9,600.0 9,540.7 9,545.7 9,545.1 31.4 32.6 -90.84 -1,264.9 397.9 1,100.1 1,036.5 63.55 17.310	9,300.0	9,271.4	9,278.3	9,267.2	31.6	32.6	-90.57	-1,265.2	520.5	1,100.0	1,036.3	63.71	17.266		
9,400.0 9,368.0 9,380.4 9,366.4 31.5 32.6 -90.68 -1,265.1 496.6 1,100.1 1,036.4 63.67 17.277 9,450.0 9,414.3 9,431.6 9,414.1 31.5 32.6 -90.73 -1,265.1 478.1 1,100.1 1,036.4 63.64 17.285 9,500.0 9,458.7 9,460.0 31.5 32.6 -90.77 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.293 9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6 1,100.1 1,036.5 63.58 17.301 9,600.0 9,540.7 9,585.7 9,545.1 31.4 32.6 -90.84 -1,264.9 397.9 1,100.1 1,036.5 63.55 17.310	9,350.0	9,320.3	9,329.3	9.317.3	31.5	32.6	-90.62	-1,265.2	510.8	1,100.0	1.036.3	63 69	17,271		
9,450.0 9,414.3 9,414.1 31.5 32.6 -90.73 -1,265.1 478.1 1,100.1 1,036.4 63.64 17.285 9,500.0 9,458.7 9,460.0 31.5 32.6 -90.77 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.293 9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6 1,100.1 1,036.5 63.58 17.301 9,600.0 9,540.7 9,545.7 9,545.1 31.4 32.6 -90.84 -1,264.9 397.9 1,100.1 1,036.5 63.55 17.310	9,400.0	9,368.0	9,380.4	9.366.4	31.5	32.0	-90.68	-1 265 1	496.6	1,100.1	1.036 4	63 67	17.277		
9,500.0 9,458.7 9,460.0 31.5 32.6 -90.77 -1,265.0 455.4 1,100.1 1,036.5 63.61 17.293 9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6 1,100.1 1,036.5 63.58 17.301 9,600.0 9,540.7 9,545.7 9,545.1 31.4 32.6 -90.84 -1,264.9 397.9 1,100.1 1,036.5 63.55 17.310	9,450.0	9,414.3	9,431.6	9,414,1	31.5	32.6	-90.73	-1 265.1	478.1	1,100.1	1.036.4	63.64	17,285		
9,550.0 9,501.0 9,534.2 9,503.8 31.5 32.6 -90.81 -1,264.9 428.6 1,100.1 1,036.5 63.58 17.301 9,600.0 9,540.7 9,585.7 9,545.1 31.4 32.6 -90.84 -1,264.9 397.9 1,100.1 1,036.5 63.55 17.310	9,500.0	9,458.7	9,482.9	9,460.0	31.5	32.6	-90.77	-1,265.0	455.4	1,100.1	1,036.5	63.61	17.293		
9,600.0 9,540.7 9,585.7 9,545.1 31.4 32.6 -90.84 -1,264.9 397.9 1,100.1 1,036.5 63.55 17.310	9,550.0	9,501.0	9,534.2	9,503.8	31.5	32.6	-90.81	-1,264.9	428.6	1,100.1	1,036.5	63.58	17.301		
CC - Min centre to center distance or covergent point SE - min separation factor. ES - min ellinse separation	9,600.0	9,540.7	9,585.7	9,545.1	31.4	32.6	-90.84	-1,264.9	397.9	1,100.1	1,036.5	63.55	17.310		
		-,		Min cent	re to cento	r distanc		Int noint CE	- min een	aration fo		- min elling	e senarati	on	

11/02/18 12:23:11PM

COMPASS 5000.15 Build 88

Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Offset De	esign: ^{((H}	lowitzer) S	ec-12_T-	24-S_R-28	8-E - Ho	witzer Fed	eral Com #60	6H - OWE	3 - Plan #1				Offset Site Error:	0.0 usft
Survey Proc	aram: 0	-MWD, 9194-I	WD+IFR1	+MS						Rule Assic	ined:		Offset Well Error:	0.0 usft
Refer	ence	Off	set	Semi N	lajor Axis	Higheido	Offset Wellt	ore Centre	Dist	tance	Minimum	Separation	Warning	
Depth	Depth	Depth	Depth	Releijence	Unset	Toolface	+N/-S	+E/-W	Centres	Ellipses	Separation	Factor	wanting	
(usft)	(usft)	(usft)	(usft)	(usft)	(usft)	(*)	(usft)	(usft)	(usft)	(usft)	usft)			
9,650.0	9,577.7	9,637.1	9,583.5	31.4	32.6	-90.86	-1,264.8	363.7	1,100.1	1,036.6	63.53	17.317		
9,700.0	9,611.6	9,688.6	9,618.6	31.4	32.6	-90.88	-1,264.7	326.1	1,100.1	1,036.6	63.51	17.323		
9,750.0	9,642.2	9,740.1	9,650.3	31.4	32.6	-90,89	-1,264.6	285.5	1,100.1	1,036.6	63.49	17.326		
9,800.0	9,669.2	9,791.7	9,678.2	31.3	32.6	-90.89	-1,264.5	242.2	1,100.1	1,036.6	63.49	17.327		
9,850.0	9,692.5	9,843.2	9,702.2	31.3	32.6	-90.89	-1,264.3	196.6	1,100.1	1,036.6	63.50	17.324		
9,900.0	9,711.8	9,894.7	9,721.9	31,3	32.6	-90.88	-1,264.2	149,0	1,100.1	1,036,6	63.53	17.316		
9,950.0	9,727.0	9,946.2	9,737.2	31,3	32.7	-90.86	· -1,264.1	99.8	1,100.1	1,036.5	63.57	17.304		
10,000.0	9,738.1	9,997.7	9,748.1	31.3	32.7	-90.84	-1,263.9	49.5	1,100.1	1,036.5	63.64	17.287		
10,050.0	9,744.8	10,049.1	9,754.4	31.3	32.7	-90.81	-1,263.8	-1.5	1,100.1	1,036.4	63.72	17.265		
10,100.0	9,747.2	10,100.5	9,756.1	31.3	32,8	-90,77	-1,263.7	-52.8	1,100.1	1,036.3	63.81	. 17.239		
10,113.2	9,747.1	10,113.8	9,755.9	31.3	32.8	-90.76	-1,263.6	-66.1	1,100.1	1,036.2	63.84	17.231		
10 112 7	0 747 0	10 11 4 2	0.755.0	24.2	27.0	00.76	1 262 6	66 G	1 100 1	1 026 0	62.04	17 001		
10,113.7	9,747.0	10,114.3	9,750.9	31.3	32.0	-90.76	-1,263.6	-00.0	1,100.1	1,036.2	64.06	17.231		
10,200.0	9,743.3	10,200.0	9,754.2	31.4	32.5	-90.76	-1,203.4	-132.9	1 100.1	1,036.0	64.00	17.174		
10,000.0	9 741 4	10,000.0	9 750 2	31.6	33.3	-90.76	-1,203.1	-252.5	1 100.1	1,035.3	64.37	16 985		
10,500,0	9,739.4	10,500,6	9,748.2	31.8	33.6	-90 76	-1 262 6	-452.8	1 100 1	1 034 9	65.24	16 863		
	-1		-1=					102.0	.,	1,00	00.2 /	10.000		
10,600.0	9,737.4	10,600.6	9,746.2	32.0	33.9	-90.76	-1,262.4	-552.8	1,100.1	1,034.3	65.78	16.725		
10,700.0	9,735.4	10,700.6	9,744.2	32,3	34.2	-90.76	-1,262.1	-652.8	1,100.1	1,033.7	66.39	16.571		
10,800.0	9,733.4	10,800,6	9,742.2	32.6	34.6	-90.76	-1,261.8	-752.8	1,100.1	1,033.0	67.06	16.404		
10,900.0	9,731.4	10,900.6	9,740.3	32.9	35.0	-90.76	-1,261.6	-852.7	1,100.1	1,032.3	67.81	16.223		
11,000.0	9,729.4	11,000.6	9,738.3	33.3	35.4	-90.76	-1,261.3	-952.7	1,100.1	1,031.5	68.62	16.032		
11,100.0	9 727 5	11,100.6	9,736,3	33.7	35.9	-90.76	-1.261.0	-1.052.7	1,100,1	1.030.6	69 49	15.831		
11,200.0	9,725,5	11,200.6	9,734,3	34.1	36,4	-90,76	-1.260.8	-1,152.7	1,100,1	1,029.7	70.42	15.621	<u>.</u>	
11,300.0	9,723.5	11,300.6	9,732.3	34.6	36.9	-90.76	-1,260.5	-1,252.7	-1,100.1	1,028.7	71.41	15.405		
11,400.0	9,721.5	11,400.6	9,730.3	35.1	37.4	-90.76	-1,260.2	-1,352.6	1,100.1	1,027.6	72.46	15.183		
11,500.0	9,719.5	11,500.6	9,728.3	35.6	38.0	-90.76	-1,260.0	-1,452.6	1,100.1	1,026.5	73.55	14.957		•
						~~~*								
11,600.0	9,/1/.5	11,600.6	9,726.4	36.2	38.6	-90.76	-1,259.7	-1,552.6	1,100.1	1,025.4	74.70	14.727		
11,700.0	9,713.5	11,700.6	9,724.4	30.7	39.2	-90.76	-1,259.4	-1,002.0	1,100.1	1,024.2	75.90	14.495		
11,800.0	9,713.0	11 900.0	9,722.4	38.0	40.5	-90.76	-1,259.2	-1,752.0	1 100.1	1 023.0	78.42	14.201		
12 000 0	9 709 6	12 000 6	97184	38.6	41.2	-90.76	-1 258 7	-1 952 5	1 100 1	1 020 4	79 75	13 794		
12,000.0	0,700.0	12,000.0	0,710.1	00.0			.,	1,002.0	1,100.1					
12,100.0	9,707.6	12,100.6	9,716.4	39.3	41.9	-90.76	-1,258.4	-2,052.5	1,100.1	1,019.0	81.12	13.562		•
12,200.0	9,705.6	12,200.6	9,714.5	40.0	42.6	-90,76	-1,258.1	-2,152.5	1,100.1	1,017.6	82.52	13.331		
12,300.0	9,703.6	12,300.6	9,712.5	40.7	43.3	-90.76	-1,257.9	-2,252.5	1,100.1	1,016.1	83.96	13.103		
12,400.0	9,701.7	12,400.6	9,710.5	41.4	44.0	-90.76	-1,257.6	-2,352.4	1,100.1	1,014.7	85.44	12.876		
12,500.0	9,699.7	12,500.6	9,708.5	42.1	44.8	-90.76	-1,257.3	-2,452.4	1,100.1	1,013.2	86.94	12.653		
12,600.0	9.697.7	12,600.6	9,706.5	42.9	45.6	-90.76	-1,257.1	-2,552,4	1,100.1	1,011.6	88.48	12,434		
12,700.0	9,695.7	12,700.6	9,704.5	43.7	46.4	-90.76	-1,256.8	-2,652.4	1,100.1	1,010.1	90.04	.12.218		
12,800.0	9,693.7	12,800.6	9,702.5	44.5	47.2	-90.76	-1,256.5	-2,752.4	1,100.1	1,008.5	91.64	12.005		
12,900.0	9,691.7	12,900.6	9,700.6	45.3	48.0	-90.76	-1,256.3	-2,852.3	1,100.1	1;006.9	93.26	11.797		
13,000.0	9,689.7	13,000.6	9,698.6	46.1	48.8	-90.76	-1,256.0	-2,952.3	1,100.1	1,005.2	94.90	- 11.592		
	0.007.0	10 100 0	0.000.0	10.0	10.7		1 055 7	0.050.0		4 000 5	00.57	44.000		
13,100.0	9,087.8	13,100.6	9,090.0	46.9	49.7 EO E	-90.76	-1,255.7	-3,052.3	1,100.1	1,003.5	90.5/ 09.26	11.392		
13,200.0	3,000.8	13,200.0	3,034.0 0,607.6	47.8	5U.5	-30.70	-1,200.0	-3,102.3	1,100.1	1,001.9	30.20 00.07	11.190		
13,300.0	9,691,9	13 400 6	9,092.0 9,690.6	40.0 40.5	52.2	-90.76	-1,200.2	-3,252.3	1 100.1	998.4	101 70	10.817		
13,500.0	9 679 8	13 500.6	9 688 6	50.3	53.1	-90.76	-1 254 7	-3,452.2	1,100.1	996 7	103 45	10.634		
, 0,000.0	2,075.0	,10,000.0	0,000.0	50.5	55.1	30.70 N	1,207.1	0,-102.2	1,100.1	000.7		10.004		
13,600.0	9,677.8	13,600.6	9,686.7	51.2	54.0	-90.76	-1,254.4	-3,552.2	1,100.1	994.9	105.22	10,456		
13,700.0	9,675.8	13,700.6	9,684.7	52.1	54.9	-90.76	-1,254.2	-3,652.2	1,100.1	993.1	107.00	10.281		
13,800,0	9,673.9	13,800.6	9,682.7	53.0	55.8	-90.76	-1,253.9	-3,752.2	1,100.1	991.3	108.80	10.111		
13,900.0	9,671.9	13,900.6	9,680.7	53.9	56.7	-90.76	-1,253.6	-3,852.1	1,100.1	989.5	110.62	9.945		
14,000.0	9,669.9	14,000.6	9,678.7	54.8	57.6	-90.76	-1,253.4	-3,952.1	1,100.1	987.7	112.45	9.783		
14,100.0	9,667.9	14,100.6	9,676.7	55.8	58.5	-90.76	-1,253,1	-4,052.1	1,100.1	985.8	114.30	9.625		

11/02/18 12:23:11PM

CC - Min centre to center distance or covergent point, SF - min separation factor, ES - min ellipse separation Page 14 COMP





	Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
	Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
	Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
	Site Error:	0.0 usft	North Reference:	Grid
	Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
	Well Error:	0.0 usft	Output errors are at	2.00 sigma
	Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
1	Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
	-		]	

Offset De	esign:(	lowitzer) S	ec-12_T	-24-S_R-2	8-E - Ho	witzer Fed	eral Com #60	06H - OWE	3 - Plan #	1			Offset Site Error:	0.0 usft
Survey Pro	gram: 0	-MWD, 9194-	MWD+IFR1	+MS	·····				· _·	Rule Assi	gned:		Offset Well Error:	0.0 usft
Refer Measured	rence Vertical	Off Measured	set Vertical	Serni M Reference	najor Axis Offset	Highside	Uffset Wellb	ore Centre	Dis Between	tance Between	Minimum	Separation	Warning	
Depth	Depth (usff)	Depth (ueft)	Depth (usft)	(ueft)	(usft)	Toolface	+N/-S (usft)	+E/-W (usft)	Centres	Ellipses (usft)	Separation (usft)	Factor		i.
14 200 0	9 665 9	14,200.6	9.674.8	56.7	59.5	-90.76	-1 252 8	-4,152,1	1,100.1	984.0	116.16	9,471	**************************************	
14,200.0	9,663.9	14,300.6	9,672.8	57.6	60.4	-90.76	-1,252.6	-4,252.1	1,100.1	982.1	118.03	9.321		
14,400.0	9,661.9	14,400.6	9,670.8	58.6	61.4	-90.76	-1,252.3	-4,352.0	1,100.1	980.2	119.92	9,174		
14,500.0	9,660.0	14,500.6	9,668.8	59.5	62.3	-90.76	-1,252.0	-4,452.0	1,100.1	978.3	121.81	9.031		
14,600.0	9,658.0	14,600.6	9,666.8	60.5	63.3	-90,76	-1,251.8	-4,552.0	1,100.1	976.4	123.72	8.892		
14,700.0	9,656.0	14,700.6	9,664.8	61.4	64.2	-90.76	-1,251.5	-4,652.0	1,100.1	974.5	125.64	8.756		
14,800.0	9,654.0	14,800.6	9,662.8	62.4	65.2	-90.76	-1,251.3	-4,752.0	1,100,1	972.6	127.57	8,624		
14,900.0	9,652.0	14,900.6	9,660.9	63.4	66.2	-90.76	-1,251.0	-4,851.9	1,100.1	970.6	129.50	8.495		
15,000.0	9,650.0	15,000.6	9,658.9	64.3	67.1	-90.76	-1,250.7	-4,951.9	1,100.1	968.7	131.45	8.369		
15,100.0	9,648.0	15,100.6	9,656.9	65.3	68.1	-90.76	-1,250.5	-5,051.9	1,100,1	966.7	133.41	8.247		
15,200.0	9,646.1	15,200.6	9,654.9	66.3	69.1	-90.76	-1,250.2	-5,151.9	1,100.1	964.8	135.37	8.127		
15,300.0	9,644.1	15,300.6	9,652.9	67.3	70.1	-90.76	-1,249.9	-5,251.9	1,100.1	962.8	137.34	8.010		
15,400.0	9,642.1	15,400.6	9,650.9	68.3	71.1	-90.76	-1,249.7	-5,351.8	1,100.1	960.8	139.32	7.896		
15,500.0	9,640.1	15,500.6	9,649.0	69.3	72.1	-90.76	-1,249.4	-5,451.8	1,100.1	958.8	141.31	7.785		
15,600.0	9,638.1	15,600.6	9,647.0	70.3	73.1	-90.76	-1,249.1	-5,551.8	1,100.1	956.8	143.30	·7.677		
15,700.0	9,636.1	15,700.6	9,645.0	71.3	74.1	-90.76	-1,248.9	-5,651.8	1,100.1	954.8	145.31	7.571		
15,800.0	9,634.1	15,800.6	9,643.0	72.3	75.1	-90.76	-1,248.6	-5,751.8	1,100.1	952.8	147.31	7.468		
15,900.0	9,632.2	15,900.6	9,641.0	73.3	76.1	-90,76	-1,248.4	-5,851.7	1,100.1	950.8	149.33	7.367		
16,000.0	9,630.2	16,000.6	9,639.0	74.3	77.1	-90.76	-1,248.1	-5,951.7	1,100.1	948.8	151.35	7.269		
16,100.0	9,628.2	16,100.6	9,637.0	75.3	78.1	-90.76	-1,247.8	-6,051.7	1,100.1	946.8	153.37	7.173		
16,200.0	9,626.2	16,200.6	9,635.1	76.3	79.1	-90.76	-1,247.6	-6,151.7	1,100.1	944.7	155.40	7.079		
16,300.0	9,624.2	16,300.6	9,633.1	77.3	80.1	-90.76	-1,247.3	-6,251.7	1,100.1	942.7	157.44	6.988		
16,400.0	9,622.2	16,400.6	9,631.1	78.4	81.1	-90.76	-1,247.0	-6,351.6	1,100.1	940.7	159.48	6.898		
16,500.0	9,620.2	16,500.6	9,629.1	79.4	82.2	-90.76	-1,246.8	-6,451.6	1,100.1	938.6	161.53	6.811		
16,600.0	9,618.3	16,600.6	9,627.1	80.4	83.2	-90.76	-1,246.5	-6,551.6	1,100.1	936.6	163.58	6.725		
16,700.0	9,616.3	16,700.6	9,625.1	81.4	84.2	-90,76	-1,246,2	-6,651.6	1,100.2	934.5	165.64	6.642		
16,800.0	9,614.3	16,800.6	9,623.1	82.5	85.2	-90.76	-1,246.0	-6,751.6	1,100.2	932.5	167.70	6.560		
16,900.0	9,612.3	16,900.6	9,621.2	83.5	86.3	-90.76	-1,245.7	-6,851.5	1,100.2	930.4	169.76	6.480		
17,000.0	9,610.3	17,000.6	9,619.2	84.5	87.3	-90.76	-1,245.4	-6,951.5	1,100.2	928.3	171.83	6.402		
17,100.0	9,608.3	17,100.6	9,617.2	85.6	88.3	-90.76	-1,245.2	-7,051,5	1,100.2	926.2	173.91	6.326		
17,200.0	9,606.4	17,200.6	9,615.2	86.6	89.4	-90.76	-1,244.9	-7,151.5	1,100.2	924.2	175.98	6.252		
17,300.0	9,604.4	17,300.6	9,613.2	87.6	90.4	-90.76	-1,244.7	-7,251.5	1,100.2	922.1	178.06	6.178		
17,400.0	9,602.4	17,400.6	9,611.2	88.7	91.5	-90.76	-1,244.4	-7,351.4	1,100.2	920.0	180.15	6.107		
17,500.0	9,600.4	17,500.6	9,609.3	89.7	. 92.5	-90.76	-1,244.1	-7,451.4	1,100.2	917.9	182.23	6.037		
17,600.0	9,598.4	17,600.6	9,607.3	90.8	93.5	-90.76	-1,243.9	-7,551.4	1,100.2	915.8	184.32	5.969		•
17,700.0	9,596.4	17,700.6	9,605.3	91.8	94.6	-90.76	-1,243.6	-7,651.4	1,100.2	913.7	186.42	5.902		
17,800.0	9,594.4	17,800.6	9,603.3	92.9	95,6	-90,76	-1,243,3	-7,751,4	1,100.2	911.6	188.52	5.836		
17,900.0	9,592.5	17,900.6	9,601.3	93.9	96.7	-90.76	-1,243.1	-7,851.3	1,100.2	909.5	190.62	5.772		
18,000.0	9,590.5	18,000.6	9,599.3	95.0	97.7	-90.76	-1,242.8	-7,951.3	1,100.2	907.4	192.72	5.709		
18,100.0	9,588.5	18,100.6	9,597.3	96.0	98.8	-90.76	-1,242.5	-8,051.3	1,100.2	905.3	194.82	5.647		
18,200.0	9,586.5	18,200.6	9,595.4	97,1	99,8	-90,76	-1,242.3	-8,151.3	1,100.2	903.2	196.93	5.587		
18,300.0	9,584.5	18,300.6	9,593.4	98,1	100.9	-90.76	-1,242.0	-8,251.3	1,100.2	901.1	199.04	5.527		
18,400.0	9,582.5	18,400.6	9,591.4	99.2	102.0	-90.76	-1,241.7	-8,351.2	1,100.2	899.0	201.16	5.469		
18,500.0	9,580.5	18,500.6	9,589.4	100.3	103.0	-90.76	-1,241.5	-8,451.2	1,100.2	896.9	203.27	5,412		
18,600.0	9,578.6	18,600.6	9,587.4	101.3	104.1	-90.76	-1,241.2	-8,551.2	1,100.2	894.8	205.39	5.356		
18,700.0	9,576.6	18,700.6	9,585.4	102.4	105.1	-90.76	-1,241.0	-8,651.2	1,100.2	892.7	207.51	5.302		
18,800.0	9,574.6	18,800.6	9,583.4	103.4	106.2	-90.76	-1,240.7	-8,751.1	1,100.2	890.5	209.63	5.248		
18,900.0	9,572.6	18,900.6	9,581.5	104.5	107.2	-90.76	-1,240.4	-8,851.1	1,100.2	888.4	211.76	5.195		
19,000.0	9,570.6	19,000.6	9,579.5	105.6	108.3	-90.76	-1,240.2	-8,951.1	1,100.2	886.3	213.89	5.144		
19,100.0	9,568.6	19,100.6	9,577.5	106.6	109.4	-90.76	-1,239.9	-9,051.1	1,100.2	884.2	216.02	5.093		
19,200.0	9,566.6	19,200.6	9,575.5	107.7	110.4	-90.76	-1,239.6	-9,151.1	1,100.2	882.0	218.15	5.043		
19,300.0	9,564.7	19,300.6	9,573.5	108.8	111.5	-90.76	-1,239.4	-9,251.0	1,100.2	879.9	220.28	4.994		
		- CC	Min cent	re to cente	r distanc	e or cover	pent point. SF	- min ser	aration fa	actor, ES	- min ellip	se separat	ion	

11/02/18 12:23:11PM

COMPASS 5000.15 Build 88





r			
Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB ·	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Offset D	Design:(Howitzer) Sec-12_T-24-S_R-28-E - Howitzer Federal Com #606H - OWB - Plan #1									Offset Site Error:	0.0 usft			
Survey Pro	gram: 0-	MWD, 9194-	MWD+IFR1	+MS	Anior Avia		Offenst Wellb	ara Cantra	Die	Rule Assig	jned:		Offset Well Error:	0.0 usft
Measured Depth (usft)	Vertical Depth (usft)	Measured Depth (usft)	Vertical Depth (usft)	(usft)	Offset (usft)	Highside Toolface (°)	+N/-S (usft)	+E/-W (usft)	Between Centres (usft)	Between Ellipses (usft)	Minimum Separation (usft)	Separation Factor	Warning	
19,400.0	9,562.7	19,400.6	9,571.5	109.8	112.6	-90.76	-1,239.1	-9,351.0	1,100.2	877.8	222.41	4.947		
19,500.0	9,560.7	19,500.6	9,569.6	110.9	113.6	-90.76	-1,238.8	-9,451.0	1,100.2	875.6	224.55	4.899		
19,600.0	9,558.7	19,600.6	9,567.6	112.0	114.7	-90.76	-1,238.6	-9,551.0	1,100.2	873.5	226.69	4.853		
19,700.0	9,556.7	19,700.6	9,565.6	113.1	115.8	-90.76	-1,238,3	-9,651.0	1,100.2	871.4	228.83	4.808		
19,800.0	9,554.7	19,800.6	9,563,6	114.1	116.8	-90,76	-1,238.0	-9,750.9	1,100.2	869.2	230.97	4.763		
19,900.0	9,552.7	19,900.6	9,561.6	115.2	117.9	-90.76	-1,237.8	-9,850.9	1,100.2	867.1	233.12	4.719		
19,901.7	9,552.7	19,902.3	9,561.6	115.2	117.9	-90.76	-1,237.8	-9,852.7	1,100.2	867.0	233.15	4.719		
19,937.5	9,552.0	19,932.0	9,561.0	115.6	118.3	-90.76	-1,237.7	-9,882.3	1,100.2	866.3	233.86	4.705 ES,	SF	

11/02/18 12:23:11PM





Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum

Reference Depths are relative to KB @ 2999.4usft (Latshaw 44) Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: Howitzer Federal Com #603H Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30^o Grid Convergence at Surface is: 0.16°







		,	······································
Company:	Concho Resources, Inc.	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Project:	Eddy County (NAD27 NME)	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Reference Site:	(Howitzer) Sec-12_T-24-S_R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site Error:	0.0 usft	North Reference:	Grid
Reference Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0 usft	Output errors are at	2.00 sigma
Reference Wellbore	OWB .	Database:	EDM 5000.15 Single User Db
Reference Design:	Plan #1	Offset TVD Reference:	Offset Datum
ivercrence beargin.		Oliset I VD Reference.	

Reference Depths are relative to KB @ 2999.4usft (Latshaw 44) Offset Depths are relative to Offset Datum Central Meridian is 104° 20' 0.000 W Coordinates are relative to: Howitzer Federal Com #603H Coordinate System is US State Plane 1927 (Exact solution), New Mexico East 30 Grid Convergence at Surface is: 0.16°





## **Concho Resources, Inc.**

Eddy County (NAD27 NME) (Howitzer) Sec-12_T-24-S_R-28-E Howitzer Federal Com #603H

OWB

Plan: Plan #1

# **Standard Planning Report**

02 November, 2018





#### Intrepid Planning Report



Database:	EDM 5000	.15 Single Use	r Db	Local Co	ordinate Re	ference:	Well Ho	witzer Feder	al Com #60	3H
Company:	Concho Re	esources, Inc.		TVD Refe	rence:	ş.	KB @ 2	2999.4usft (La	itshaw 44)	
Project:	Eddy Cour	ity (NAD27 NM	IE)	MD Refer	ence:	999.4usft (La	tshaw 44)			
Site:	(Howitzer)	Sec-12_T-24-8	S_R-28-E	North Re	ference:		Grid			
Well:	Howitzer F	ederal Com #6	603H	Survey C	alculation M	ethod:	Minimu	m Curvature		
Wellbore:	OWB								•	-
Design:	Plan #1	-			· .	<u> </u>				
Project	Eddy Count	y (NAD27 NM	E)						·····	
Map System:	US State Pla	ne 1927 (Exac	t solution)	System Da	itum:		Mean Se	a Level		
Geo Datum:	NAD 1927 (N	IADCON CON	US)	-						
Map Zone:	New Mexico	East 3001								
0:4-						- <b>i</b>				
Site		Sec-12_1-24-5	_ <u>R-28-E</u>							
Site Position:	Maria		Northing:	448,8	38.70 usft	Latitude:				32° 14' 1.022 N
From:	Мар		Easting:	592,9	36.40 ustt	Longitude	:		10	1° 1' 57.970 W
Position Uncertai	nty:	0.0 usft	Slot Radius:		13-3/16 "	Grid Conv	ergence	:	·	0.16 °
Well	Howitzer Fe	deral Com #60	)3H							
Well Position	+N/-S	1,109,4 usft	Northina:		449,948,10	usft L	atitude:		3	2° 14' 12.010 N
	+E/-W	-325.8 usft	Easting:		592 610 60	usft L	ongitude	<b>.</b> .		04° 2' 1 727 W
Position Uncortai	intv		Wellbead E	levation:	,-		round L	ovel:		2 974 4 usft
		0.0 031							. <u> </u>	
Wellbore	OWB									]
Magnetics	Model N	ame	Sample Date	Declina . (°)	tion	Dip	Angle (°)		Field Stren (nT)	gth
	IG	RF2015	10/31/18		7.02		5	9.98	47,758.77	209852
Design	Plan #1									
Audit Notes:										
Version:			Phase:	PLAN	Tie	On Depth	:	0.0		
Vertical Section:	······	Depth F	rom (TVD)	+N/-S	+E,	-W		Direction		· · ·
		(u	isft)	(usft)	(us	sft)	.' 	, (°)		
•		C	0.0	0.0	. 0.	.0	•	269.20		
Plan Survey Tool	Program	Date 11/02	2/18		×		·	•		······································
Depth From	Depth To		· · · · ·	· · · · ·		a	<b>'</b> 4			•
(usft)	(usft)	Survey (Well	lbore)	Tool Name	• • •	Remark	Ś 👘	*		
1 0.0	9,203.0	Plan #1 (OW	B)	MWD		· · · · · · · · · · · · · · · · · · ·				·····
				OWSG MWD	- Standard					
2 9,203.0	19,937.5	Plan #1 (OW	B)	MWD+IFR1+	MS					
2 9,203.0	19,937.5	Plan #1 (OW	B)	MWD+IFR1+ MWD + IFR1	MS + Multi-Stati	or				



#### Intrepid Planning Report



Database: Company:	EDM 5000.15 Single User Db Concho Resources Inc	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H	
Project: Site:	Eddy County (NAD27 NME) (Howitzer) Sec-12 T-24-S R-28-E	MD Reference:	KB @ 2999.4usft (Latshaw 44) Grid	
Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature	
vvenbore: Design:	Plan #1			

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,300.0	6.00	107.60	2,299.5	-4.7	15.0	2.00	2.00	0.00 ·	107.60	
7,228.1	6.00	107.60	7,200.5	-160.5	506.0	0.00	0.00	0.00	0.00	
7,528.1	0.00	0.00	7,500.0	-165.2	521.0	2.00	-2.00	0.00	180.00	
9,202.3	0.00	0.00	9,174.2	-165.2	521.0	0.00	0.00	0.00	0.00	
10,113.7	<b>91.14</b>	270.15	9,747.0	-163.7	-63.4	10.00	10.00	-9.86	270.15	
19.937.5	91,14	270.15	9,552.0	-137.6	-9,885.2	0.00	0.00	0.00	0.00 PBH	HL (Howitzer Fe




Database:	EDM 5000.15 Single User Db	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Company:	Concho Resources, Inc.	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Project:	Eddy County (NAD27 NME)	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site:	(Howitzer) Sec-12_T-24-S_R-28-E	North Reference:	Grid
Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB .	•	
Design:	Plan #1	A Contraction of the second	

Planned Survey	

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
	100.0	0.00	0.00	100.0	0.0	0.0	. 0.0	0.00	0.00	0.00
	200.0	0.00	0.00	200.0	0.0	. 0.0	0.0	0.00	0.00	0.00
	300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
	400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
l I	500.0	0.00	0.00	500.0	0.0	0.0	- 00	0.00	. 0.00	0.00
	600.0	0.00	0.00	0.000	0.0	0.0	0.0	0.00	0.00	0.00
	700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
	800.0	. 0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
	900.0	0.00	0.00	900.0	0.0	· 0.0	0.0	0.00	0.00	0.00
1	1 000 0	0.00	0.00	1 000 0	0.0	( 0.0	0.0	0.00	. 0.00	0.00
•	1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	.0,00
	1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00
1	1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1	1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
	1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
•	1,900.0	0.00	0.00	1,900.0	0.0	0.0	. 0.0	0.00	0.00	0.00
	2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
	NUDGE - B	Build 2.00								e .
	2,100.0	2.00	107.60	2,100.0	-0.5	1.7	-1.7	2.00	2.00	0.00
	2,200.0	4.00	107.60	2,199.8	-2.1	6.7	-6.6	2.00	2.00	0.00
	2,300.0	6.00	107.60	2,299.5	-4.7	15.0	-14.9	2.00	2.00	0.00
	HOLD - 492	28.1 at 2300.0	MD		1					
	2,400.0	6.00	107.60	2,398.9	-7.9	24.9	-24.8	0.00	0.00	0.00
	2.500.0	6.00	107.60	2.498.4	-11.1	34.9	-34.7	0.00	0.00	0.00
	2,600.0	6.00	107.60	2,597.8	-14.2	44.9	-44.6	0.00	0.00	0.00
	2,700.0	6.00	107.60	2,697.3	-17.4	54.8	-54.6	0.00	0.00	0.00
	2,800.0	6.00	107.60	2,796,7	-20.5	64.8	-64.5	0.00	0.00	0.00
	2,900.0	6.00	107.60	2,896.2	-23.7	74.7	-74.4	0.00	0.00	0.00
	3 000 0	6.00	107 60	2 995 6	-26.9	84.7	-84 3	0.00	0.00	0.00
	3 100 0	6.00	107.60	3 095 1	-30.0	94.7	-94.2	0.00	0.00	0.00
1.	3,200.0	6.00	107.60	3 194 5	-33.2	104.6	-104 2	0.00	0.00	0.00
	3,300.0	6.00	107.60	3,294.0	-36.3	114.6	-114.1	0.00	0.00	0.00
	3,400.0	6.00	107.60	3,393.4	-39.5	124.6	-124.0	0.00	0.00	0.00
	3 500 0	6.00	107 60	3 492 9	-42 7 ·	134 5	-133 9	0.00	0.00	0.00
	3 600 0	6.00	107.60	3 592 3	-45.8	144 5	-143.8	0.00	0.00	0.00
1	3 700 0	6.00	107.60	3 691 8	-49.0	154.5	-153.8	0.00	0.00	0.00
ł	3,800,0	6.00	107.60	3 791 2	-52.1	164.4	-163.7	0.00	0.00	0.00
	3,900.0	6.00	107.60	3,890.7	-55.3	174.4	-173.6	0.00	0.00	0.00
	4 000 0	6.00	107.60	3 000 1	-58 5	18 <i>4 A</i>	-183 5	0.00	0.00	0.00
	4 100 0	0.00	107.00	1 080 F	-50.5	104.4	_103.5	0.00	0.00	0.00
	4 200 0	6.00 6.00	107.00	4,000.0	-01,0 	204.2	_203.4	0.00	0.00	0.00
	4 300 0	0.00 A DO	107.00	4 288 5	-04.0	204.3	-203.4	0.00	0.00	0.00
	4,400.0	6.00	107.60	4,387.9	-07.9 -71.1	214.2	-213.3	0.00	0.00	0.00
ł	4 500 0	6.00	107.60	A A97 A	74.3			0.00	0.00	0.00
	4,000.0	6.00	107.00	4,401.4	-14.3	234.2	-200.1	0.00	0.00	0.00
	4,000.0	0.00	107.00	4,000.9	-//.4	244.1	-243.0	0.00	0.00	0.00
	4,700.0	0.00	107.00	4,000.3	-00.0	204.1	-200.0	× 0.00	0.00	0.00
	4,800.0	0.00	107.00	4,/00.0	-03./	204.1	-202.9	0.00	0.00	0.00
	<u>,</u> 4,900.0	6.00	107.60	4,000.2	-00.9	274.0	-212.0		0.00	0.00
	5,000.0	6.00	107.60	4,984.7	-90.1	284.0	-282.7	0.00	0.00	0.00
	5,100.0	6.00	107.60	5,084.1	-93.2	294.0	-292.6	0.00	0.00	0.00





Database:	EDM 5000.15 Single User Db	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Company:	Concho Resources, Inc.	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Project:	Eddy County (NAD27 NME)	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site:	(Howitzer) Sec-12_T-24-S_R-28-E	North Reference:	Grid
Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	Plan #1	· · · · · · · · · · · · · · · · · · ·	

#### Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	5,200.0	6.00	107.60	5,183.6	-96.4	303.9	-302.6	0.00	0.00	0.00
	5,300.0	6.00	107.60	5,283.0	-99.5	313.9	-312.5	0.00	0.00	0.00
	5,400.0	6.00	107.60	5,382.5	-102.7	323.9	-322.4	0.00	0.00	• 0.00
	5,500.0	6.00	107.60	5,481.9	-105.9	333.8	-332.3	0.00	0.00	0.00
	5,600.0	6.00	107.60	5,581.4	-109.0	343.8	-342.2	0.00	0.00	0.00
	5,700.0	6.00	107.60	5,680.8	-112.2	353.7	-352.1	0.00	0.00	0.00
	5,800.0	6.00	107.60	5,780.3	-115.3	363.7	-362.1	0.00	0.00	0.00
	5,900.0	6.00	107.60	5,879.7	-118.5	373.7	-372.0	0.00	0.00	0.00
	6,000.0	6.00	107.60 [·]	5,979.2	-121.7	383.6	-381.9	0.00	0.00	0.00
	6,100.0	6.00	107.60	6,078.6	-124.8	393.6	-391.8	0.00	0.00	0.00
	6,200.0	6.00	107.60	6,178.1	-128.0	403.6	-401.7	0.00	0.00	0.00
	6,300.0	6.00	107.60	6,277.5	-131.1	413.5	-411.7	0.00	0.00	0.00
	6,400.0	6.00	107.60	6,377.0	-134.3	423.5	-421.6	0.00	0.00	0.00
	6,500.0	6.00	107.60	6,476.4	-137.5	433.5	-431.5	0.00	0.00	0.00
	6,600.0	6.00	107.60	6,575.9	-140.6	443.4	-441.4	0.00	0.00	0.00
	6,700.0	6.00	107.60	6,675.3	-143.8	453.4	-451.3	0.00	0.00	0.00
	6,800.0	6.00	107.60	6,774.8	-146.9	403.3	-401.3	0.00	0.00	0.00
	0,900.0	0.00	107.00	0,074.3	-150.1	475.5	-471.2	0.00	0.00	0.00
	7,000.0	6.00	107.60	6,973.7	-153.3	483.3	-481.1	0.00	0.00	0.00
	7,100.0	6.00	107.60	7,073.2	-150.4	493.2	-491.0	0.00	0.00	0.00
	7,200.0	6.00	107.60	7,172.0	-159.6	505.2	-500.9	0.00	0.00	0.00
	DBOD 20	0.00	107.00	7,200.5	-100.5	500.0	-565.7	0.00	0.00	0.00
	7.300.0	4.56	107.60	7.272.1	-162.5	512.3	-510.0	2.00	-2.00	0.00
	7 400 0	2 56	107.60	7 371 9	-164 3	518.2	-515 9	2.00	-2.00	0.00
	7,500.0	0.56	107.60	7 471 9	-165.2	520.8	-518.5	2.00	-2.00	0.00
	7.528.1	0.00	0.00	7.500.0	-165.2	521.0	-518.6	2.00	-2.00	0.00
l	HOLD - 167	74.2 at 7528.1.	MD	.,						۵
	7.600.0	0.00	0.00	7,571.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	7,700.0	0.00	0.00	7,671.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	7,800.0	0.00	0.00	7,771.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	7,900.0	0.00	0.00	7,871.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,000.0	0.00	0.00	7,971.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,100.0	0.00	0.00	8,071.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,200.0	0.00	0.00	8,171.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,300.0	0.00	0.00	8,271.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,400.0	0.00	0.00	8,371.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,500.0	0.00	0.00	8,471.9	-165.2	521.0	-518.6	• 0.00	0.00	0.00
	8,600.0	0.00	0.00	8,571.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,700.0	0.00	0.00	8,671.9	-165.2	521.0	~518.6	0.00	0.00	0.00
	8,800.0	0.00	0.00	8,771.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	8,900.0	0.00	0.00	8,871.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	9,000.0	0.00	0.00	8,971.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	9,100.0	0.00	. 0.00	9,071.9	-165.2	521.0	-518.6	0.00	0.00	0.00
	9,202.3	0.00	0.00	9,174.2	-165.2	521.0	-518.6	0.00	0.00	0.00
	KOP - DLS	10.00 1FO 27	0.15							
	9,250.0	4.77	270.15	9,221.8	-165.2	519.0	-516.6	10.00	10.00	0.00
	9,300.0	9.77	270.15	9,271.4	-165.2	512.7	-510.3	10.00	10.00	0.00
	9,350.0	14.//	270.15	9,320.3	-165.2	502.0	-499.7	10.00	10.00	0.00
	9,400.0	19.77	270.15	9,300.0	-100.1	401.2	-404.0 _/65.0	10.00	10.00	0.00
	9,400.0	, 24.77	210.10	J,414.J	-100.1	400.2	-400.9	10.00	10.00	0.00
	9,500.0	29./7	2/0.15	9,458.7	-165.0	445.3	-443.0	10.00	10.00	0.00
	9,000.0	34.//	270.15	9,501.0	-104.9	418.7	-410.3	10.00	10.00	0.00





Database: Company: Project: Site: Well: Wellbore: Design:	EDM 5000.1 Concho Res Eddy County (Howitzer) S Howitzer Feo OWB Plan #1	EDM 5000.15 Single User Db Concho Resources, Inc. Eddy County (NAD27 NME) (Howitzer) Sec-12_T-24-S_R-28-E Howitzer Federal Com #603H OWB Plan #1			I Co-ordinate Reference: Reference: h Reference: ey Calculation	Reference: n Method:	Well Howit KB @ 2999 KB @ 2999 Grid Minimum C	Well Howitzer Federal Com #603H KB @ 2999.4usft (Latshaw 44) KB @ 2999.4usft (Latshaw 44) Grid Minimum Curvature		
Planned Survey	•		·····							
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
9,600.0	39.77	270.15	9,540.7	-164.9	388.4	-386.1	10.00	10.00	0.00	
9,650.0	44.//	270.15	9,577.7	-164.8	354.8	-352.4	10.00	10.00	0.00	
5,700.0	45.11	270.15	9,011.0	-104.7	510,1	-313.7	10.00	10.00	0.00	
9,750.0	54.77	270.15	9,642.2	-164.6	278.5	-276.2	10.00	10.00	0.00	
9,000.0	59.77 64.77	270.15	9,009.2	-104.5	230.5 102.2	-234.2	10.00	10.00	0.00	
9,000.0	69.77	270.15	9,092.5	-164.2	146 1	-143.8	10.00	10.00	0.00	
9,950.0	74.77	270.15	9,727.0	-164.1	98.5	-96.2	10.00	10.00	0.00	
10,000,0	70 77	270 15	0 739 1	-164.0	4 D N	_17 5	10.00	10.00	0.00	
10.050.0	84.77	270.15	9,730.1	-163.8	49.0	-47.5	10.00	10.00	0.00	
10,100.0	89.77	270.15	9,747.2	-163.7	-49.7	52.0	10.00	10.00	0.00	
10,113.7	91.14	270.15	9,747.0	-163.7	-63.4	65.6	10.00	10.00	0.00	
EOC - 9823	.8 hold at 101	13.7 MD								
10,200.0	91.14	270.15	9,745.3	-163.4	-149.7	151.9	0.00	0.00	0.00	
10,300.0	91.14	270.15	9,743.3	-163.2	-249.7	251.9	0.00	0.00	0.00	
10,400.0	91.14	270.15	9,741.4	-162.9	-349.6	351.9	0.00	0.00	0.00	
10,500.0	91.14	270.15	9,739.4	-162.6	-449.6	451.8	0.00	0.00	0.00	
10,600.0	91.14 01.14	270.15	9,/3/.4	-162.4	-549.6	551.8	0.00	0.00	0.00	
10,700.0	01.14	270.15	5,755.4	-102.1	-043.0	-051.0	0.00	0.00	0.00	
10,800.0	91.14	270.15	9,733.4	-161.8	-/49.6	/51.7	0.00	0.00	0.00	
11,900.0	91.14	270.15	9,731.4	-161.3	-049.5	001.7 951.7	0.00	0.00	0.00	
11,100.0	91.14	270.15	9.727.5	-161.0	-1.049.5	1.051.6	0.00	0.00	0.00	
11,200.0	91.14	270.15	9,725.5	-160.8	-1,149.5	1,151.6	0.00	0.00	0.00	
11.300.0	91.14	270.15	9,723.5	-160.5	-1 249 5	1 251 6	0.00	0.00	0.00	
11,400.0	91.14	270.15	9,721.5	-160.2	-1,349.4	1,351.5	0.00	0.00	0.00	
11,500.0	91.14	270.15	9,719.5	-160.0	-1,449.4	1,451.5	0.00	0.00	0.00	
11,600.0	91.14	270.15	9,717.5	-159.7	-1,549.4	1,551.5	0.00	0.00	0.00	
11,700.0	91.14	270.15	9,715.5	-159.5	-1,649.4	1,651.4	0.00	0.00	0.00	
11,800,0	91.14	270.15	9,713.6	-159.2	-1,749.4	1,751.4	0.00	0.00	0.00	
11,900.0	91.14	270.15	9,711.6	-158.9	-1,849.3	1,851.4	0.00	0.00	0.00	
12,000.0	91.14	270.15	9,709.6 9,707 F	-158./	-1,949.3	1,951.3	· 0.00	0.00	0.00	
12.200.0	91.14	270.15	9.705.6	-158.1	-2,049.3	2.151.3	0.00	0.00	0.00	
12 300 0	Q1 1/	270 15	9 703 6	_167.0	-2 2/0 2	2 251 2	0.00	0.00	0.00	
12,400.0	91.14	270.15	9.701.7	-157.6	-2.349.2	2.351.2	0.00	0.00	0.00	
12,500.0	91.14	27.0.15	9,699.7	-157.3	-2,449.2	2,451.2	0.00	0.00	0.00	
12,600.0	91.14	270.15	9,697.7	-157.1	-2,549.2	2,551.1	0.00	0.00	0.00	
12,700.0	91.14	270.15	9,695.7	-156.8	-2,649.2	2,651.1	0.00	0.00	0.00	
12,800.0	91.14	270.15	9,693.7	-156.5	-2,749.2	2,751.1	0.00	0.00	0.00	
12,900.0	91.14	270.15	9,691.7	-156.3	-2,849.1	2,851.0	0.00	0.00	,0.00	
13,000.0	91.14	270.15	9,689.7	-156.0	-2,949.1	2,951.0	0.00	0.00	0.00	
13,100.0	91.14 Q1 1 <i>1</i>	270.15 270.15	9,007.0 0 685 8	-100./	-3,049.1	3,051.0	0.00	0.00	0.00	
10,200.0	01.14	210.10	9,000.0	-100.0	0,140.1	0,100.0	0.00	0.00	0.00	
13,300.0	91.14	270.15	9,683.8	-155.2	-3,249.1	3,250.9	0.00	0.00	0.00	
13,400.0	91.14 Q1 1 <i>1</i>	270.15	3,001.0 9,679,8	-154.9	-3,349.0	3,350.9 3,450.8	0.00	0.00	0.00	
13,600.0	91.14	270.15	9.677.8	-154.4	-3,549.0	3,550.8	0.00	0.00	0.00	
13,700.0	91.14	270.15	9,675.8	-154.1	-3,649.0	3,650.8	0.00	0.00	0.00	
13 800 0	Q1 1 <i>1</i>	270 15	9 673 0	-153 0	-3 749 0	3 750 7	n nn	0.00	. 0.00	
13,900.0	91 14	270.15	9 671 9	-153.6	-3 848 9	3.850.7	0.00	0.00	0.00	
14,000.0	91.14	270.15	9,669.9	-153.4	-3,948.9	3,950.7	0.00	0.00	0.00	
14,100.0	91.14	270.15	9,667.9	-153.1	-4,048.9	4,050.6	0.00	0.00	0.00	
14,200.0	91.14	270.15	9,665.9	-152.8	<u>-4,148.9</u>	4,150.6	0.00	0.00	0.00	





Database:	EDM 5000.15 Single User Db	Local Co-ordinate Reference:	Well Howitzer Federal Com #603H
Company:	Concho Resources, Inc.	TVD Reference:	KB @ 2999.4usft (Latshaw 44)
Project:	Eddy County (NAD27 NME)	MD Reference:	KB @ 2999.4usft (Latshaw 44)
Site:	(Howitzer) Sec-12_T-24-S_R-28-E	North Reference:	Grid
Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	Plan #1		

Planned Survey

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
	14 300 0	Q1 14	270 15	9 663 9	-152.6	-4 248 9	4 250 6	0.00	0.00	0.00
	14 400 0	01 14	270.15	0,661.0	-152.3	-1 348 8	4 350 5	0.00	0.00	0.00
	14,400.0	91.14	270.15	9,001.9	-152.5	-4,040.0	4,000.0	0.00	0.00	0.00
	14,500.0	91.14	270.15	9,660.0	-152.0	-4,446.6	4,450.5	0.00	0.00	0.00
	14,600.0	91.14	270.15	9,658.0	-151.8	-4,548.8	4,550.5	0.00	0.00	0.00
	14,700.0	91.14	270.15	9,656.0	-151.5	-4,648.8	4,650.4	0.00	0.00	0.00
	14,800.0	91.14	270.15	9,654.0	-151.2	-4,748.8	4,750.4	0.00	0.00	0.00
	14,900.0	91.14	270.15	9,652.0	-151.0	-4,848.7	4,850.4	0.00	0.00	0.00
	15,000.0	91.14	270.15	9,650.0	-150.7	-4,948.7	4,950.3	0.00	0.00	0.00
	15,100.0	91.14	270.15	9,648.0	-150.4	-5,048.7	5,050.3	0.00	0.00	0.00
	15,200.0	91.14	270.15	9,646.1	-150.2	-5,148.7	5,150.3	0.00	0.00	0.00
	15,300.0	91.14	270.15	9,644.1	-149.9	-5,248.7	5,250.2	0.00	0.00	0.00
	15,400.0	91.14	270.15	9,642.1	-149.6	-5,348.6	5,350.2	0.00	0.00	0.00
	15,500.0	91.14	270.15	9,640,1	-149.4	-5.448.6	5,450.2	0.00	0.00	0.00
}	15,600,0	91 14	270 15	9 638 1	-149.1	-5 548 6	5,550.1	0.00	0.00	0.00
	15,700.0	91.14	270.15	9,636.1	-148.8	-5,648.6	5,650.1	0.00	0.00	0.00
	15 800 0	91 14	270 15	9 634 1	-148.6	-5 748 6	5 750 1	0.00	0.00	0.00
	15,000.0	01.14	270.15	0,034.1	149.3	5 949 5	5,750.1	0.00	0.00	0.00
1	15,900.0	91.14	270.15	9,032.2	-140.5	-5,040.5	5,050.0	0.00	0.00	0.00
	16,000.0	91.14	270.15	9,630.2	-148.0	-5,946.5	5,950.0	0.00	0.00	0.00
	16,100.0	91.14	270.15	9,628.2	-147.8	-6,048.5	6,050.0	0.00	0.00	0.00
	16,200.0	91.14	270.15	9,626.2	-147.5	-6,148.5	6,149.9	0.00	0.00	0.00
	16,300.0	91.14	270.15	9,624.2	-147.2	-6,248.5	6,249.9	0.00	0.00	0.00
	16,400.0	91.14	270.15	9,622.2	-147.0	-6,348.4	6,349.9	0.00	0.00	0.00
	16,500.0	91.14	270.15	9,620,2	-146.7	-6.448.4	6,449.8	0.00	0.00	0.00
	16 600 0	91 14	270 15	9 618 3	-146.5	-6 548 4	6.549.8	0.00	0.00	0.00
	16,700.0	91 14	270 15	9 6 1 6 3	-146.2	-6 648 4	6 649.8	0.00	0.00	0.00
	10,100.0	01.11	070.45	0,014.2	145.0	C 740 4	6,740,7	0.00	0.00	0.00
	16,800.0	91.14	270.15	9,614.3	-145.9	-0,740.4	0,749.7	0.00	0.00	0.00
	16,900.0	91.14	270.15	9,612.3	-145.7	-6,848.3	6,849.7	0.00	0.00	0.00
	17,000.0	91.14	270.15	9,610.3	-145.4	-6,948.3	6,949.7	0.00	0.00	0.00
	17,100.0	91.14	270.15	9,608.3	-145.1	-7,048.3	7,049.6	0.00	0.00	0.00
	17,200.0	91.14	270.15	9,606.4	-144.9	-7,148.3	7,149.6	0.00	0.00	0.00
	17,300.0	91.14	270.15	9,604.4	-144.6	-7,248.3	7,249.6	0.00	0.00	0.00
	17,400.0	91.14	270.15	9,602.4	-144.3	-7.348.2	7.349.5	0.00	0.00	0.00
	17 500 0	91.14	270.15	9,600,4	-144.1	-7.448.2	7,449.5	0.00	0.00	0.00
	17,600,0	91 14	270 15	9 598 4	-143.8	-7 548 2	7.549.5	0.00	0.00	0.00
	17,700.0	91.14	270.15	9,596.4	-143.5	-7,648.2	7,649.4	0.00	0.00	0.00
	17 800 0	91 14	270 15	9 594 4	-143 3	-7 748 2	7 749 4	0.00	0.00	0.00
	17,000.0	01 14	270.15	9,507,4	-143.0	-7 848 1	7 849 4	0.00	0.00	0.00
	19 000 0	01 14	270.15	0,502.5	140.0	7 0/18 1	7 040 3	0.00	0.00	0.00
	19,000.0	91.14	270.15	9,590.5	-142.7	-7,940.1	7,949.3	0.00	0.00	0.00
	18,100.0	91.14	270.15	9,000.0	-142.5	-0,040.1	0,049.3	0.00	0.00	0.00
	18,200.0	91.14	270.15	9,586.5	-142.2	-8,148.1	8,149.3	0.00	0.00	0.00
	18,300.0	91.14	270.15	9,584.5	-141.9	-8,248.1	8,249.2	0.00	0.00	0.00
	18,400.0	91.14	270.15	9,582.5	-141.7	-8,348.0	8,349.2	0.00	0.00	0.00
ĺ	18,500.0	91.14	270.15	9,580.5	-141,4	-8,448.0	8,449.2	0.00	0.00	0.00
1	18 600 0	91 14	270 15	9 578 6	-141 1	-8.548.0	8,549,1	0.00	0.00	0.00
	18,700.0	91.14	270.15	9,576.6	-140.9	-8,648.0	8,649.1	0.00	0.00	0.00
	40,000,0		070 45	0.574.0	440.0	0 740 0	0 740 4	0.00	0.00	0.00
	18,800.0	91.14	270.15	9,5/4.0	-140.6	-0,/40.0	0,749.1	0.00	0.00	0.00
	18,900.0	91.14	2/0.15	9,5/2.6	-140.4	-8,847.9	8,849.0	0.00	0.00	0.00
1	19,000.0	91.14	2/0.15	9,570.6	-140.1	-8,947.9	8,949.0	0.00	0.00	0.00
	19,100.0	91.14	270.15	9,568.6	-139.8	-9,047.9	9,049.0	0.00	0.00	0.00
	19,200.0	91.14	270.15	9,566.6	-139.6	-9,147.9	9,148.9	0.00	0.00	0.00
	19,300.0	91.14	270.15	9,564.7	-139.3	-9,247.9	9,248.9	0.00	0.00	0.00
	19,400.0	91.14	270.15	9,562.7	-139.0	-9,347.8	9,348.9	0.00	0.00	0.00
	19.500.0	91.14	270.15	9,560.7	-138.8	-9,447.8	9,448.8	0.00	0.00	0.00
	19 600 0	91.14	270.15	9,558.7	-138.5	-9,547.8	9,548.8	0.00	0.00	0.00
1				,		,	,			



# Intrepid

Planning Report



Database: Company: Project: Site: Well: Wellbore: Design:		EDM 5000.1 Concho Res Eddy Count (Howitzer) S Howitzer Fe OWB Plan #1	5 Single U ources, Ind y (NAD27 I ec-12_T-2 deral Com	ser Db c. NME) 4-S_R-28-E #603H		Local C TVD Re MD Ref North F Survey	co-ordinate ference: erence: Reference: Calculation	Reference: n Method:	Well How KB @ 29 KB @ 29 Grid Minimum	itzer Federal Com 99.4usft (Latshaw 99.4usft (Latshaw Curvature	#603H 44) 44)
Planned Sur Meas Dep (us	vey ured oth ft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/ (us	/-S .ft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft	Build Rate ) (°/100usft)	Turn Rate (°/100usft)
19, 19, 19, 19, 19, <b>TD</b> a	700.0 800.0 900.0 937.5 at <b>19937</b>	91.14 91.14 91.14 91.14 91.14	270.270.270.270.270.270.270.270.270.270.	15 9,556 15 9,554 15 9,552 15 9,552 15 9,552	.7 - .7 - .0 -	138.2 138.0 137.7 137.6	-9,647.8 -9,747.8 -9,847.7 -9,885.2	9,648.8 9,748.7 9,848.7 9,886.2	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Design Targ Target Name - hit/miss - Shape LTP (Howitze	ets [ target	Dip Angle (°)	Dip Dir. (°) 0.00	TVD (usft) 9,552.0	+N/-S (usft) -137.9	+E/-W (usft) 9,755.	Northi (usft 2 449,8	ng Ea ) (	asting usft) 82,855.40	Latitude 32° 14' 10.900 N	Longitude 104° 3' 55.310 W
- plan mi - Point PBHL (Howit - plan hit - Rectan	zer Fede s target gle (side	e -1.14 center s W60.0 H10	2.605ft at 270.15 ,179.0 D20	9,552.0 ).0)	-137.6	-9,885.	2 449,8	310.50 5	82,725.40	32° 14' 10.906 N	104° 3' 56.824 W
FTP (Howitze - plan mi - Point	er Feder sses taro	s 0.00 jet center by	0.00 94.7usft at	9,747.0 9796.3usft MI	-164.6 D (9667.3	290. TVD, -16	9 449,7 4.5 N, 239.7	783.50 5 TE)	92,901.50	32° 14' 10.373 N	104° 1' 58.345 W
Formations	Meas Dep (us	ured Ve oth D ft) (1	rtical epth usft)		Name			Lithology		Dip Dip Directior (°) (°)	
<b>.</b>	2,	96.0 96.0 558.0 768.1	96.0 F 96.0 T 2,556.0 E 2,765.0 L	Rustler OS BOS (Fletcher) MAR (Top De	laware)			<u> </u>	α, πλαθούς του του στο		

 2,821.4
 2,818.0
 BLCN

 3,687.1
 3,679.0
 CYCN

 4,914.9
 4,900.0
 BYCN

 6,457.3
 6,434.0
 Bone Sprg (BSGL)

 6,758.0
 6,733.0
 U Avalon Sh

 6,758.0
 6,733.0
 0 Avaion Sn

 7,082.8
 7,056.0
 L Avaion Sh

 7,233.6
 7,206.0
 B Avaion Sh

 7,460.1
 7,432.0
 FBSG_sand

 8,260.1
 8,232.0
 SBSG_sand

 8,584.1
 8,556.0
 SBSG_sand_Base

 9,350.8
 9,321.0
 TBSG_sand

 9,741.1
 9,637.0
 WFMP





Database: Company:	EDM 5000.15 Single User Db Concho Resources, Inc.	Local Co-ordinate Reference: TVD Reference:	Well Howitzer Federal Com #603H KB @ 2999.4usft (Latshaw 44)
Project: Site:	Eddy County (NAD27 NME) (Howitzer) Sec-12_T-24-S_R-28-E	MD Reference: North Reference:	KB @ 2999.4usft (Latshaw 44) Grid
Well:	Howitzer Federal Com #603H	Survey Calculation Method:	Minimum Curvature
Wellbore:	OWB		
Design:	Plan #1		

**Plan Annotations** 

 Measured	Vertical	Local Coordinates			
Depth (usft)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Comment	
 2,000.0	2,000.0	0.0	0.0	NUDGE - Build 2.00	
2,300.0	2,299.5	-4.7	15.0	HOLD - 4928.1 at 2300.0 MD	
7,228.1	7,200.5	-160.5	506.0	DROP2.00	
7,528.1	7,500.0	-165.2	521.0	HOLD - 1674.2 at 7528.1 MD	
9,202.3	9,174.2	-165.2	521.0	KOP - DLS 10.00 TFO 270.15	
10,113.7	9,747.0	-163.7	-63.4	EOC - 9823.8 hold at 10113.7 MD	
19,937.5	9,552.0	-137.6	-9,885.2	TD at 19937.5	



#### **1. Geologic Formations**

TVD of target	9,747'	Pilot hole depth	NA
MD at TD:	19,938'	Deepest expected fresh water:	47'

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Water	
Rustler	N/A	Water	
Top of Salt	96	Salt	
Base of Salt	2556	Salt	
Lamar	2765	Salt Water	
Bell Canyon	2818	Salt Water	
Cherry Canyon	3679	Oil/Gas	
Brushy Canyon	4900	Oil/Gas	
Bone Spring Lime	6434	Oil/Gas	
U. Avalon Shale	6733	Oil/Gas	
L. Avalon Shale	7056	Oil/Gas	
1st Bone Spring Sand	7432	Oil/Gas	
2nd Bone Spring Sand	8232	Oil/Gas	
3rd Bone Spring Sand	9321	Oil/Gas	
Wolfcamp	9637	Oil/Gas	

# 2. Casing Program

Hole Size	Ca	Casing		170	Weight	Grade	Conn	SF	SE Buret	SF
nule Size	From	То	Csy. 3	126	(lbs)	Graue	Conn.	Collapse	Si Duist	Tension
17.5"	0	2700	13.37	5"	61	J55	STC	1.28	2.94	3.61
12.25"	0	9000	9.625"		40	HCL80	втс	1.32	1.16	2.63
8.5	0	19,938	5.5"		23	P110	втс	2.29	2.71	3.23
				BLM	Minimun	n Safety	Factor	1.125	1	1.6 Dry 1.8 Wet

Intermediate casing will be kept at least 1/3 full while running casing.to mitigate collapse. Intermediate burst based on 0.7 frac gradient at the shoe with Gas Gradient 0.1 psi/ft to surface. All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Does casing meet API specifications? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	· Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching	
the collapse pressure rating of the casing?	
Is well located within Capitan Reef?	N .
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary?	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	· · · · ·
Is well located in high Cave/Karst?	N
If ves, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

:

# 3. Cementing Program

Casing	# Sks	Wt. lb/ gal	YId ft3/ sack	H ₂ 0 gal/sk	500# Comp. Strength (hours)	Slurry Description
Surf	1420	13.5	1.75	9	12	Lead: Class C + 4% Gel
Surr.	250	14.8	1.34	6.34	8	Tail: Class C + 2% CaCl2
Inter.	1390	11	2.8	19	48	Lead: NeoCem
Stage1	300	16.4	1.1	5	8	Tail: Class H
5.5 Prod	400	12.7	2	10.6	16	Lead: 35:65:6 H Blend
	3010	14.4	1.24	5.7	19	Tail: 50:50:2 Class H Blend

Volumes Subject to Observed Hole Conditions and/or Fluid Caliper Results Lab reports with the 500 psi compressive strength time for the cement will be onsite for review.

Casing String	TOC	% Excess
Surface	0'	50%
1 st Intermediate	0'	50%
Production	8,500'	35%

#### 4. Pressure Control Equipment

N	A variance is requested for the use of a diverter on the surface casing. See attached for schematic

BOP installed and tested before drilling which hole?	Size?	Min. Required WP	Ту	pe	X	Tested to:
		i	Ann	ular	х	1500 psi
12-1/4"	13-5/8"	Blind Ram 3M Pipe Ram Double Ram Other*	Blind Ram		х	204
			Ram	х		
			Double	e Ram	х	SIVI
			Other*			
•			5M Ar	nnular	х	2500 psi
8 1/2"	13-5/8"	5M	Blind	Ram	Х	
			Pipe	Ram	х	5M
			Double	e Ram	X	
			Other*			

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

	Formation integrity test will be performed per Onshore Order #2.
Y	On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.
	N Are anchors required by manufacturer?
Ν	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

### 5. Mud Program

	Depth	Tumo	Weight	Viceocity	Water Loss	
From	То	туре	(ppg)	viscosity	water Loss	
0	Surf. Shoe	FW Gel	8.4 - 8.6	28-29	N/C	
Surf csg	Int shoe	Diesel Brine Emul	8.6 - 9.4	30-40	N/C	
Int shoe	Lateral TD	OBM	10.5 - 12.5	30-40	20	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain of fluid?	PVT/Pason/	Visual Monitoring

# 6. Logging and Testing Procedures

Logging, Coring and Testing.	
Y	Will run GR/CNL from TD to surface (horizontal well – vertical portion of hole). Stated logs run will be in the Completion Report and submitted to the BLM.
Ň	Are Logs are planned based on well control or offset log information.
Ν	Drill stem test? If yes, explain.
N	Coring? If yes, explain.

Add	litional logs planned	Interval
Ν	Resistivity	Pilot Hole TD to ICP
Ν	Density	Pilot Hole TD to ICP
Y	CBL	Production casing (If cement not circulated to surface)
Υ	Mud log	Intermediate shoe to TD
N	PEX	

# AFMSS

#### U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

# SUPO Data Report

02/26/2019

Highlighted data reflects the most

recent changes

Show Final Text

# APD ID: 10400036013

**Operator Name: COG OPERATING LLC** 

Well Name: HOWITZER FEDERAL COM

Well Type: OIL WELL

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

COG_HOWITZER_603H_Ex_Rd_20181106095121.pdf

Existing Road Purpose: ACCESS

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

**Existing Road Improvement Description:** 

**Existing Road Improvement Attachment:** 

Submission Date: 11/08/2018

Well Number: 603H

Well Work Type: Drill

Row(s) Exist? NO

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? YES

New Road Map:

COG_Howitzer_603H_Rd_Plats_20181108141615.pdf

New road type: TWO-TRACK

Length: 322.9

Width (ft.): 30

Max slope (%): 33

Max grade (%): 1

Army Corp of Engineers (ACOE) permit required? NO

Feet

ACOE Permit Number(s):

New road travel width: 14

**New road access erosion control:** Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns. **New road access plan or profile prepared?** NO

New road access plan attachment:

Access road engineering design? NO

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Access surfacing type: OTHER

Access topsoil source: ONSITE

Access surfacing type description: Caliche

Access onsite topsoil source depth: 6

Offsite topsoil source description:

Onsite topsoil removal process: Blading

Access other construction information: No turnouts are planned. Re-routing access road around proposed well location.

Access miscellaneous information:

Number of access turnouts:

Access turnout map:

## Drainage Control

New road drainage crossing: OTHER

Drainage Control comments: None necessary.

Road Drainage Control Structures (DCS) description: None needed.

Road Drainage Control Structures (DCS) attachment:

## Access Additional Attachments

Additional Attachment(s):

# **Section 3 - Location of Existing Wells**

Existing Wells Map? YES

Attach Well map:

COG_Howitzer_603H_1Mile_Data_20181108141552.pdf

**Existing Wells description:** 

# Section 4 - Location of Existing and/or Proposed Production Facilities

#### Submit or defer a Proposed Production Facilities plan? SUBMIT

**Production Facilities description:** 1) A Central Tank Battery and production facilities are proposed in Section 12. T24S. R28E. Production will be sent to the proposed Howitzer Federal Com Central Tank Battery facility. A buried flow line of approximately 129.1' of 3.5" steel pipe carrying oil, gas and water under a maximum pressure of 125 psi will follow the access road to the Howitzer Federal Com Central Tank Battery location. We plan to install a 2" buried steel pipe transporting Gas Lift Gas from the Howitzer Federal Com Central Tank Battery to the dual well pad that includes the Howitzer Federal Com 602H and 603H wells. The buried Gas Lift Gas pipe of approximately 129.1' under a maximum pressure of 125 psi will be installed no further than 10' from the edge of the road.

Production Facilities map:

 $COG_How itzer_603H_Flow line_20181108141659.pdf$ 

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

COG_Howitzer_CTB_Layout_20181108141737.pdf COG_HOWITZER_603H_Layout_20181108141816.pdf

# Section 5 - Location and Types of Water Supply

# Water Source Table

Water source use type: INTERMEDIATE/PRODUCTION CASING ___ Water source type: OTHER

Describe type: Brine H2O

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: COMMERCIAL

Water source transport method: TRUCKING

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 30000

Source volume (gal): 1260000

Water source use type: STIMULATION, SURFACE CASING

Describe type: Fresh H2O

Source latitude:

Source datum:

Water source permit type: PRIVATE CONTRACT

Source land ownership: PRIVATE

Water source transport method: PIPELINE

Source transportation land ownership: PRIVATE

Water source volume (barrels): 450000

Source volume (gal): 18900000

Water source and transportation map:

COG_Howitzer_603H_Brine_H20_20181108141950.pdf COG_Howitzer_603H_Fresh_H20_20181108142002.pdf

Water source comments: Fresh water will be obtained from Santa Fe Energy, Partners water well located in Section 24. T24S. R28E. Brine water will be obtained from the Malaga I Brine station in Section 2. T21S. R25E. New water well? NO

## **New Water Well Info**

Well latitude:

Well Longitude:

Well datum:

Mall towart anulf	~
-------------------	---

oource longitude.

Source volume (acre-feet): 58.001892

Source volume (acre-feet): 3.866793

.

Water source type: OTHER

Source longitude:

Source longitude:

**Operator Name: COG OPERATING LLC** Well Name: HOWITZER FEDERAL COM Well Number: 603H Est. depth to top of aquifer(ft): Est thickness of aquifer: Aquifer comments: Aquifer documentation: Well depth (ft): Well casing type: Well casing outside diameter (in.): Well casing inside diameter (in.): New water well casing? Used casing source: Drill material: Drilling method: Grout material: Grout depth: Casing length (ft.): Casing top depth (ft.): Well Production type: **Completion Method:** Water well additional information: State appropriation permit:

Additional information attachment:

## **Section 6 - Construction Materials**

**Construction Materials description**: Caliche will be obtained from the actual well site if available. If not available onsite, caliche will be obtained from Oscar Vasquez Johnson caliche pit located in Section 1, T24S, R28E. (575) 361-3784. **Construction Materials source location attachment:** 

## Section 7 - Methods for Handling Waste

Waste type: DRILLING

Waste content description: Drilling fluids and produced oil and water during drilling and completion operations

Amount of waste: 6000 barrels

Waste disposal frequency : One Time Only

Safe containment description: All drilling waste will be stored safely and disposed of properly

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: SEWAGE

Waste content description: Human waste and gray water

Amount of waste: 250 gallons

Waste disposal frequency : Weekly

Safe containment description: Waste will be properly contained and disposed of properly at a state approved disposal facility

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

#### Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL

FACILITY Disposal type description:

Disposal location description: Trucked to an approved disposal facility

Waste type: GARBAGE

Waste content description: Garbage and trash produced during drilling and completion operations

Amount of waste: 125 pounds

Waste disposal frequency : Weekly

**Safe containment description**: Garbage and trash produced during drilling and completion operations will be collected in a trash container and disposed of properly at a state approved disposal facility **Safe containmant attachment**:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: COMMERCIAL FACILITY

Disposal type description:

Disposal location description: Trucked to an approved disposal facility

**Reserve Pit** 

Reserve pit width (ft.)

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

# **Cuttings Area**

Cuttings Area being used? NO

Are you storing cuttings on location? YES

Description of cuttings location Roll off cuttings containers on tracks

Cuttings area length (ft.)

Cuttings area depth (ft.)

Cuttings area width (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Well Name: HOWITZER FEDERAL COM

#### Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

**Ancillary Facilities attachment:** 

Comments: GCP attached.

## Section 9 - Well Site Layout

#### Well Site Layout Diagram:

COG_Howitzer_603H_Flowline_20181108142113.pdf

COG_Howitzer_603H_Prod_Facil_20181108142122.pdf

COG_Howitzer_CTB_Layout_20181108142132.pdf

COG_HOWITZER_603H_Layout_20181108142142.pdf

**Comments:** 1) A Central Tank Battery and production facilities are proposed in Section 12. T24S. R28E. Production will be sent to the proposed Howitzer Federal Com Central Tank Battery facility. A buried flow line of approximately 129.1' of 3.5" steel pipe carrying oil, gas and water under a maximum pressure of 125 psi will follow the access road to the Howitzer Federal Com Central Tank Battery location. We plan to install a 2" buried steel pipe transporting Gas Lift Gas from the Howitzer Federal Com Central Tank Battery to the dual well pad that includes the Howitzer Federal Com 602H and 603H wells. The buried Gas Lift Gas pipe of approximately 129.1' under a maximum pressure of 125 psi will be installed no further than 10' from the edge of the road.

# Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance

Multiple Well Pad Name: HOWITZER FEDERAL COM

Multiple Well Pad Number: 602H AND 603H

**Recontouring attachment:** 

**Drainage/Erosion control construction:** If needed, immediately following pad construction approximately 400' of straw waddles will be placed on the north side and on the east side of the location to reduce sediment impacts to fragile/sensitive soils.

Drainage/Erosion control reclamation: Reclaim north 80'

Well pad proposed disturbance (acres): 3.67	Well pad interim reclamation (acres): 0.01	Well pad long term disturbance (acres): 2.94
Road proposed disturbance (acres): 0.1 Powerline proposed disturbance (acres): 0 Pipeline proposed disturbance (acres): 0.04 Other proposed disturbance (acres): 0.04	Road interim reclamation (acres): 0.1 Powerline interim reclamation (acres): 0 Pipeline interim reclamation (acres): 0.04 Other interim reclamation (acres): 0.04	Road long term disturbance (acres): 0.1 Powerline long term disturbance (acres): 0 Pipeline long term disturbance (acres): 0.04 Other long term disturbance (acres): 0.04

Well Name: HOWITZER FEDERAL COM

#### Well Number: 603H

Total proposed disturbance: 3.85 Total interim reclamation: 0.19

**Total long term disturbance:** 3.12

**Disturbance Comments:** 

**Reconstruction method:** New construction of pad.

Topsoil redistribution: West 80'

Soil treatment: None

Existing Vegetation at the well pad: Shinnery Oak/Mesquite grassland

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Shinnery Oak/Mesquite grassland Existing Vegetation Community at the road attachment: Existing Vegetation Community at the pipeline: Shinnery Oak/Mesquite grassland Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: N/A Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Non native seed description:

Seedling transplant description:

Will seedlings be transplanted for this project? NO

Seedling transplant description attachment:

Will seed be harvested for use in site reclamation? NO Seed harvest description: Seed harvest description attachment:

### **Seed Management**

**Seed Table** 

Seed type:

Seed name:

Source name:

Source phone:

Seed source:

Source address:

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

Seed cultivar:

Seed use location:

PLS pounds per acre:

Proposed seeding season:

Seed Summary					
Seed Type	Pounds/Acre				

#### Seed reclamation attachment:

# **Operator Contact/Responsible Official Contact Info**

First Name: Gerald

Phone: (432)260-7399

Last Name: Herrera

Total pounds/Acre:

Email: gherrera@concho.com

Seedbed prep:

Seed BMP:

Seed method:

Existing invasive species? NO

Existing invasive species treatment description:

Existing invasive species treatment attachment:

Weed treatment plan description: N/A

Weed treatment plan attachment:

Monitoring plan description: N/A

Monitoring plan attachment:

Success standards: N/A

Pit closure description: N/A

Pit closure attachment:

COG_Howitzer_603H_Closed_Loop_20181108142459.pdf

# Section 11 - Surface Ownership

Disturbance type: WELL PAD

**Describe:** 

Surface Owner: STATE GOVERNMENT

Other surface owner description:

**BIA Local Office:** 

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

**COE Local Office:** 

DOD Local Office:

NPS Local Office:

State Local Office: STATE OF NEW MEXICO

Military Local Office:

**USFWS Local Office:** 

Other Local Office:

USFS Region:

**USFS Forest/Grassland:** 

**USFS Ranger District:** 

#### Section 12 - Other Information

Right of Way needed? NO

Use APD as ROW?

ROW Type(s):

**ROW Applications** 

SUPO Additional Information:

Use a previously conducted onsite? YES

Previous Onsite information: Onsite completed on 8/27/2018 by Rand French (COG) and Jeff Robertson (BLM).

# **Other SUPO Attachment**

COG_Howitzer_603H_Certif_20181105163212.pdf COG_Howitzer_603H_SUP_20181108142519.pdf COG_Howitzer_603H_1Mile_Data_20181108142530.pdf COG_Howitzer_603H_Brine_H20_20181108142542.pdf COG_Howitzer_603H_C102_20181108142550.pdf COG_Howitzer_603H_Closed_Loop_20181108142559.pdf COG_HOWITZER_603H_Ex_Rd_20181108142610.pdf COG_Howitzer_603H_Flowline_20181108142632.pdf COG_Howitzer_603H_Fresh_H20_20181108142637.pdf COG_Howitzer_603H_Prod_Facil_20181108142652.pdf COG_Howitzer_603H_Rd_Plats_20181108142706.pdf COG_Howitzer_CTB_Layout_20181108142720.pdf

Well Name: HOWITZER FEDERAL COM

Well Number: 603H

COG_HOWITZER_603H_Layout_20181108142731.pdf

:	•		all a second	
		120		
		Harroun		
			N.	
	NUN RD.		N N	1
	HARRO			
B. Bo				
Hallou	01		line N	
			Ň	
				06
WELL	FOOTAGE CALLS	ELEV. WO		
1 HOWITZER FED COM #602	1 1014' FNL & 620' FEL	2974.6' 18-1407		
2 HOWITZER FED COM #603	H 1044' FNL & 620' FEL	2974.4' 18-1406	i.	
3 HOWITZER FED COM #605	H 2125' FNL & 300' FEL	2963.5' 18-1408	алан (р. 1997) 1997 — Прила Прила (р. 1997) 1997 — Прила Прила (р. 1997)	and a second and the
4 HOWITZER FED COM #606	H 2155' FNL & 300' FEL	2962.6' 18-1466		and the second sec
	· ·			with the second s
		128.8' PBOPOSED		
	· ·	ROAD		
	24S	28E \F		24S 29E
		\	1	
· ·		<b>\</b>	8 2	
-	•		-	
		/////// =		
		//////////////////////////////////////		
	CIB		N	
	•			
•		1		
		020.81		07
	12	PROPOSED		01 0'
		ROAD	· · · · · · · · · · · · · · · · · · ·	PROPOSED
			2	ROAD
		. •	83	
			<b>4</b>	
			*	
				Harroun Ditch
•				. ا_ کرسند معامر رو
 · · · · · · · · · · · · · · · · · · ·				







DESCRIPTION

A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S10[•]19'03"W 1232.10 FEET FROM THE NORTHEAST CORNER; THEN S89[•]59'20"W 194.1 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES N16[•]25'56"W 1515.58 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 194.1 FEET OR 11.76 RODS IN LENGTH, CONTAINING 0.134 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.

HARCROW SURVEYING, LLC



#### DESCRIPTION

A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S35'53'29"W 1389.62 FEET FROM THE NORTHEAST CORNER; THEN S89'58'03" 128.8 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S57'10'25"E 2053.94 FEET FROM NORTH QUARTER CORNER.

SAID STRIP OF LAND BEING 128.8 FEET OR 7.81 RODS IN LENGTH, CONTAINING 0.089 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.





A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE SE/4 NE/4 OF SAID SECTION, WHICH LIES SO8'13'33"W 1351.15 FEET FROM THE NORTHEAST CORNER; THEN S89'59'46" 620.9 FEET, THEN SO8'06'47"W 220.9 FEET, THEN N89'58'38"W 98.0 FEET, TO A POINT IN THE SE/4 NE/4 OF SAID SECTION, WHICH LIES N40'46'43"E 1465.79 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 939.8 FEET OR 56.96 RODS IN LENGTH, CONTAINING 0.647 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE SE/4 NE/4.





101				
SECTION: 12	TOWNSHI	P: 24 S.	RAN	GE: 28 E.
STATE: NEW MEXICO	COUNTY:	INTY: EDDY SURVEY: N.N		N.M.P.M
W.O. # 18-1077, 1406-1	408, 1466	LEASE: H	OWITZER F	ED COM
. 0		1,000 FEET		
	<u></u>			
0 0.03250.065	0.13 Miles		1 IN = 50	0 FT
LOCATION MAP	TOPO	11/	5/2018	AM

HARCROW SURVEYING, LLC. 2314 W. MAIN ST, ARTESIA, NM 88210 PH: (575) 746-2158 FAX: (575) 746-2158 TEXAS FIRM NO. 10194089 c.harcrow@harcrowsurveying.com



	Picket Phone	A STATE OF THE STATE	Line + Agros Buch		12 1: A	20	
LEGEND HOWINZER FEDERAL COM							
		SECTION: 12	TOWNSHIP: 24 S.	RANGE: 28 E.	=	Ø.	
ø	WELL	STATE: NEW MEXICO	COUNTY: EDDY	SURVEY: N.M.P.M	Ν		
	WELLPAD	W.O. # 18-1077, 1406-	1408, 1466 LEASI	E: HOWITZER FED COM	_		
	BATTERY	0	1,000 FEE	ET	ΓŅ		
	• EXISTING ROAD • PROPOSED ROAD	0 0.03250.065	0.13 Miles	1 IN = 500 FT	Ĩ	Ĺ	
	- PROPOSED FLOWLINE	LOCATION MAP	IMACERY	111/15/2013 AM	1 22		

÷ 4





	l
Hallson	
UNRD.	
HARROC	
11917-001	
	06
	n -
WELL FOOTAGE CALLS ELEV. WO	
1 HOWITZER FED COM #602H  1014' FNL & 620' FEL  2974.6'  18-1407	
2 HOWITZER FED COM #605H 2125' ENI & 300' EEL 2974.4 18-1406	ل. التشريد المتشر
4 HOWITZER FED COM #606H 2155' FNL & 300' FEL 2962.6' 18-1466	and the second sec
	5
e de la companya de l	
ROAD 194	
24S 28E \ \ PROP	^{DSED} 24S 29E
HOWITZER	
СТВ	
	07
	UT STATE
ROAD	PROPOSED
· · · · · · · · · · · · · · · · · · ·	ROAD
83	
4	
·	
	Harrown Ditch
	8 <b></b>
LEGEND HOWITZER FEDERAL COM	
SECTION: 12 TOWNSHIP: 24 S. RANGE: 28 E.	
WELL STATE: NEW MEXICO COUNTY: EDDY SURVEY: N.M.P.M	COG OPERATING LLC
W.O. # 18-1077, 1406-1408, 1466 LEASE: HOWITZER FED COM	
BATTERY 0 1,000 FEET	HARCROW SURVEYING. LIC.
	2314 W. MAIN ST, ARTESIA, NM 88210 PH: (575) 746-2158 FAX: (575) 746-2158
PROPOSED ROAD 0 0.03250.065 0.13 Miles 1 IN = 500 FT	TEXAS FIRM NO. 10194089 Charger and Barcrowells vina com
LOCATION MAP VICINITY 11/5/2018 A.M.;	

*(* ·



	HOWITZER FED	ERAL COM #603	H 1 MILE DATA (18	3-1406)				۵۳۵۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ - ۲۰۰۵ ۱
OPERATOR	· · · · · · · · · · · · · · · · · · ·	API	SECTION TOWNS	HIP RANC	E FTG_NS NS	_CD FTG_EW EW	CD LATITUDE	LONGITUDE COMPL_STAT
C L HAY		3001502486	1 24.0S	28E	330 S	330 E	32.240593	-104.033367 Plugged
RICHARDSON & BA	SS	3001502487	2 24.05	28E	1980 S	1980 W	32.245228	-104.060384 Plugged
ALBERT SCHABEL		3001502489	11 24.0S	28E	355 N	645 E	32.238717	-104.051652 Plugged
SOUTHERN CALIFO	RNIA PETROLEUM CORP	3001502490	12 24.0S	28E	330 S	1650 E	32.225945	-104.037625 Plugged
CALVIN F TENNISO	N	3001502494	13 24.05	28E	330 N	1650 E	32.224131	-104.03762 Plugged
DEKALB AGRICULT	JRAL ASSOCIATION INC	3001502496	13 24.05	28E	330 N	2310 W	32.22413	-104.041967 Plugged
AUSTIN GAS PURCI	HASING	3001502500	13 24.0S	28E	330 N	330 E	32.224131	-104.033331 Plugged
EL CAPITAN OIL CO		3001503693	6 24.0S	29E	330 S	2310 E	32.240543	-104.022688 Plugged
TENNESSEE GAS TR	ANSMISSION	3001503694	6 24.0S	29E	330 S	2310 W	32.240554	-104.024786 Plugged
GIANT OPERATING	LLC .	3001503695	7 24.0S	29E	1650 S	. 1650 W	32.22956	-104.026909 Active
TENNECO OIL CO		3001503696	7 24.0S	29E	2310 S	2310 W	32.231369	-104.024768 Plugged
SOUTHERN CALIFO	RNIA PETROLEUM CORP	3001503697	7 24.05	29E	330 N	2310 W.	32.23874	-104.024783 Plugged
CALVIN F TENNISO	N	3001503698	7 24.0S	29E	2310 S	2310 E	32.231364	-104.022679 Plugged
GIANT OPERATING	LLC ·	3001503699	7 24.05	29E	2310 N	2310 E	32.233286	-104.02268 Plugged
GIANT OPERATING	LLC	3001503701	7 24.05	29E	2310 N	2310 W	32.233297	-104.024772 Active
GIANT OPERATING	LLC	3001503702	7 24.05	29E	990 S	330 W	32.227757	-104.031194 Active
TENNECO OIL CO		3001503703	7 24.0S	29E	330 N	2310 E	32.238729	-104.022684 Plugged
ANTWEIL MORRIS		3001503704	7 24.0S	29E	1650 S	330 W	32.229572	-104.031198 Plugged
ANTWEIL MORRIS		3001503707	18 24.0S	29E	370 N	330 W	32.224019	-104.031187 Plugged
PHILLIPS PETROLEU		3001521030	2 24.0S	28E	1980 S	. 660 W	32.245274	-104.064674 Plugged
COG OPERATING L		3001521786	11 24.05	28E	1780 S	660 W	32.230284	-104.064806 Active
BRECK OPERATING	CORP	3001522853	3 24.05	28E	1980 N	1980 E	32.248856	-104.073179 Active
MATADOR PRODU		3001523099	10 24.05	28E	660 N	2310 E	32.23809	-104.074447 Plugged
MATADOR PRODU		3001523299	10 24.05	28E	2080 S	1773 E	32.231166	-104.072712 Active
MATADOR PRODU		3001523752	14 24.05	28E	660 N	. 1980 W	32.2234/7	-104.06055 Active
TEXACO EXPLORAT	ION & PRODUCTION INC	3001523757	6 24.US	29E	1980 N	1880 W	32.248842	-104.026201 Plugged
HARVEY E YATES C		3001523779	1 24.05	28E	660 S	1980 W	32.241491	-104.043114 Plugged
DINERO OPERATIN		3001523797	10 24.05	28E	660 N	1980 W	32.238104	-104.07772 Plugged
		3001523839	12 24.05	28E	1980 5	630 W	32.23048	-104.047468 Plugged
		3001523850	11 24.05	28E	2310 5	1980 E	32.23153/	-104.055955 Active
		3001524300	12 24.05	285	1830 N	2140 W	32.234647	-104.042581 Active
BEITIS BUTAL & ST		3001524433	12 24.05	28E	467 5	467 W	32.226321	104.04/97/ Plugged
	ODUCTION COMPANY, LP	3001524945	12 24.05	. 285	660 S	990 W	32.226851	-104.04628 Plugged
		3001525320	7 24.05	295	990 N	990 E	32.236892	-104.018393 Plugged
		3001525038	7 24.05	290	660 5	2310 E	32.220828	104.042026 // Active
	LCO	2001526249	1 24.05	205	390 3	2510 W	32.2424	104.0542056 Plugged
		3001520273	2 24.03	205	2150 3	1050 E	32.243303	104.032202 Blugged
	<u> </u>	3001526767	7 24.03	295	787 J	2330 E	32.22/1/3	104.027594 Activo
		3001527045	7 24.03	296	550 N	1414 W	32.230153	-104.027054 Active
		3001529229	7 24.03	296	550 N	1650 F	32 237811	-104.020538 Active
COG OPERATING L		30015371/8	6 24.05	295	330 5	2260 W	37 240394	-104.020558 Active
	ΤΙΩΝ COMPANY	3001542660	10 24 05	29E	1733 N	200 W	37 234797	=104.024307 New (Not drilled or compl)
		3001543171	12 24 05	20L 28F	215 5	550 W	37 2254/5/	-104.047848 New (Not drilled or compl)
MEWBOURNE OIL		3001543172	12 24.05	28E	215 5	620 W	32 225465	-104.04762 New (Not drilled or compl)
	ro	3001543419	12 24.05	28E	470 S	285 W	32 226168	=104 048699 New (Not drilled or compl)
MATADOR PRODU		3001543463	<ul> <li>12 24.05</li> <li>14 24.05</li> </ul>	28E	378 N	300 F	32 223100	-104.040059 New (Not drilled or compl)
001 MATADOR PRODU	CTION COMPANY	3001543654	18 24 05	20L	716 N	380 W	37 777881	-104.031197 New (Not drilled or compl)
MATADOR PRODU	CTION COMPANY	3001543693	10 24 05	2.5C 28F	1753 N	205 F	32 234742	-104.067564 New (Not drilled or compl)
MATADOR PRODU		3001543756	14 24 05	28F	379 N	330 F	32 223854	-104.050687 New (Not drilled or compl)
MATADOR PRODU		3001543820	1 24.05	28F	661 5	661 F	32 241324	-104.034392 New (Not drilled or compl)
MATADOR PRODU	CTION COMPANY	3001543821	1 24.05	28F	691 5	661 F	32 241406	-104.034391 New (Not drilled or compl)
MATADOR PRODU	CTION COMPANY	3001543822	1 24.05	28E	631 5	662 E	32.241241	-104.034396 New (Not drilled or compl)
MATADOR PRODU	CTION COMPANY	3001543823	1 24.05	28E	721 5	661 E	32.241489	-104.03439 New (Not drilled or compl)
MATADOR PRODU	CTION COMPANY	3001543824	1 24.05	28E	601 S	662 E	32.241159	-104.034397 New (Not drilled or compl)

MEWBOURNE OIL CO	3001543845	12 24.0S	28E	270 S	200 W	32.225619	-104.048983 New (Not drilled or compl)
MEWBOURNE OIL CO	3001543846	12 24.0S	28E .	250 S	200 W	32.225564	-104.048984 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001543870	14 24.0S	28E	410 N	330 E	32.223768	-104.050686 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001543940	11 24.0S	28E	933 N	254 W	32.23699	-104.066052 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001543966	11 24.0S	28E	934 N	224 W	32.236988	-104.06615 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001543993	11 24.0S	28E	963 N	255 W	32.236908	-104.06605 New (Not drilled or compl)
MEWBOURNE OIL CO	3001544048	12 24.0S	28E	185 N	950 E	32.239	-104.035363 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544162	14 24.05	28E	429 N	330 E	32.223716	-104.050685 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544163	14 24.0S	28E	428 N	300 E	32.223717	-104.050587 New (Not drilled or compl)
ALPHA SWD OPERATING LLC	3001544237	10 24.0S	28E	1457 S	2093 E	32.229147	-104.07375 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544241	18 24.0S	29E	712 N	352 W	32.222892	-104.031288 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544242	18 24.0S	29E	- 742 N	321 W	32.222809	-104.031387 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544244	18 24.0S	29E	712 N	321 W	32.222892	-104.031389 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544245	18 24.0S	29E	742 N	290 W	32.222809	-104.031488 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544247	18 24.0S	29E	742 N	351 W	32.222809	-104.03129 New (Not drilled or compl)
BLACK RIVER WATER MANAGEMENT COMPANY, LLC	3001544514	11 24.0S	28E	1489 N	490 W	32.235461	-104.065299 New (Not drilled or compl)
MATADOR PRODUCTION COMPANY	3001544533	11 24.0S	28E	934 N	194 W	32.236988	-104.066247 New (Not drilled or compl)
BLACK RIVER WATER MANAGEMENT COMPANY, LLC	3001544571	12 24.0S	28E	1779 S	975 W	32.229762	-104.046408 New (Not drilled or compl)
•							
				•			

• •

· ·



A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S35'09'53"W 1413.88 FEET FROM THE NORTHEAST CORNER; THEN S89'57'47"W 129.1 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES N32'22'31"W 1787.87 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 129.1 FEET OR 7.82 RODS IN LENGTH, CONTAINING 0.089 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.

HARCROW SURVEYING, LLC






.

.

.







Зсолсно	Map Legend						N
Howitzer Fed Com #603H To Malaga I Brine	EEE Route						W E
Date: 11/6/2018 Billion and a legal survey deciment in the solution of the sol		0 0	).2 0.4	0.8	1.2	1.6 Miles	S



<b>Ж</b> солсно	Map Legend		N
Howitzer Fed Com #603H Water Transfer Route	Route		W
Date: 11/6/2018 Wall of the second se		0 0.075 0.15 0.3 0.45 0.6	S

# PIPELINE PLAT COG OPERATING, LLC.

A PROPOSED PIPELINE FROM THE HOWITZER FEDERAL COM #602H & #603H TO THE HOWITZER FEDERAL COM CENTRAL TANK BATTERY IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, N.M.P.M., EDDY COUNTY, NEW MEXICO.



DESCRIPTION

A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S35'09'53"W 1413.88 FEET FROM THE NORTHEAST CORNER; THEN S89'57'47"W 129.1 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES N32'22'31"W 1787.87 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 129.1 FEET OR 7.82 RODS IN LENGTH, CONTAINING 0.089 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.

BASIS OF BEARING

HARCROW SURVEYING, LLC









. .

> . .





" I further certify that COG' will comply with Rule 19.15.17 NMAC by using a Closed Loop System."

#### **OPERATOR CERTIFICATION**

I hereby certify that I, or persons under my direct supervision, have inspected the drill site and access road proposed herein; that I am familiar with the conditions that presently exist; that I have full knowledge of State and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or COG Operating LLC, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements. Executed this  $S^{++}$  day of Noter BE-, 2018.

Signed:

Printed Name: Mayte Reyes Position: Regulatory Analyst Address: 2208 W. Main Street, Artesia, NM 88210 Telephone: (575) 748-6945 E-mail: <u>mreyes1@concho.com</u> Field Representative (if not above signatory): Gerald Herrera Telephone: (432) 260-7399. E-mail: <u>gherrera@concho.com</u>

# **Surface Use & Operating Plan**

# Howitzer Federal Com #603H

- Surface Owner: COG Operating LLC,
- New Road: 322.9'
- Flow Line: Will follow road to proposed Howitzer Federal Com Central Tank Battery facility located in Section 12. T24S. R28E.
- Tank Battery Facilities: Will utilize facilities at the Howitzer Federal Com Central Tank Battery
- Well Pad: Multiple. Howitzer Federal Com 602H and 603H share a pad

## Well Site Information

- V Door: East
- Topsoil: South
- Interim Reclamation: North

# **Attachments**

- C102
- Closed Loop System
- CTB Layout
- Flowlines
- Production Facility Layout
- Brine H20
- Existing Roads
- Fresh H20

Surface Use Plan

Page 1

- 1Mile Map and Data
- Maps and Plats
- Well Site Layout

## **Notes**

(

**Onsite**: On-site was done by Rand French (COG); Jeffery Robertson (BLM); on August 27th, 2018.

1

#### SURFACE USE AND OPERATING PLAN

#### 1. Existing & Proposed Access Roads

- A. The well site survey and elevation plat for the proposed well is attached with this application. It was staked by Harcrow Surveying, Artesia, NM.
- B. All roads to the location are shown on the maps and road plats. The existing lease roads are illustrated and are adequate for travel during drilling and production operations. Upgrading existing roads prior to drilling the well will be done where necessary. The road route to the well site is depicted in well layout map. The road shown in the well layout will be used to access the well.
- C. Directions to location: See 600 x 600 plat
- D. Based on current road maintenance performed on other roads serving existing wells, we anticipate maintaining the lease roads leading to the proposed well pad at least once a year on dry conditions and twice a year in wetter conditions.

#### 2. Proposed Access Road:

The Location Verification Map shows that 322.9' of new road will be required for this location. If any road is required it will be constructed as follows:

The maximum width of the running surface will be 14'. The road will be crowned, ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 4 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.

- A. The average grade will be less than 1%.
- B. No turnouts are planned.
- C. No cattleguard, culvert, gates, low water crossings or fence cuts are necessary.
- D. Surfacing material will consist of native caliche. Caliche will be obtained from the actual well site if available. If not available onsite, caliche will be hauled from Oscar Vasquez Johnson caliche pit located in Section 1, T24S, R28E. (575) 361-3784.

Surface Use Plan

#### 3. Location of Existing Well:

The One-Mile Radius Map shows existing wells within a one-mile radius of the proposed wellbore.

#### 4. Location of Existing and/or Proposed Facilities:

- A. COG Operating LLC does not operate an oil production facility on this lease.
  - 1) A Central Tank Battery and production facilities are proposed in Section 12. T24S. R28E. Production will be sent to the proposed Howitzer Federal Com Central Tank Battery facility. A buried flow line of approximately 129.1' of 3.5" steel pipe carrying oil, gas and water under a maximum pressure of 125 psi will follow the access road to the Howitzer Federal Com Central Tank Battery location. We plan to install a 2" buried steel pipe transporting Gas Lift Gas from the Howitzer Federal Com Central Tank Battery to the dual well pad that includes the Howitzer Federal Com 602H and 603H wells. The buried Gas Lift Gas pipe of approximately 129.1' under a maximum pressure of 125 psi will be installed no further than 10' from the edge of the road.
  - 2) The tank battery and facilities including all flow lines and piping will be installed according to API specifications.
  - 3) Any additional caliche will be obtained from the actual well site. If caliche does not exist or is not plentiful from the well site, the caliche will be hauled from Oscar Vasquez Johnson caliche pit located in Section 1, T24S, R28E. (575) 361-3784. Any additional construction materials will be purchased from contractors.
  - 4) It will be necessary to run electric power if this well is productive. Power will be provided by Xcel Energy and they will submit a separate plan and ROW for service to the well location.
  - 5) If the well is productive, rehabilitation plans will include the following:
  - The original topsoil from the well site will be returned to the location, and the site will be re-contoured as close as possible to the original site.

#### 5. Location and Type of Water Supply:

The well will be drilled with combination brine and fresh water mud system as outlined in the drilling program. Fresh water will be obtained from Santa Fe Energy, Partners water well located in Section 24. T24S. R28E. Brine water will be obtained from the Malaga I Brine station in Section 2. T21S. R25E., or if necessary commercial water stations in the area and hauled to location by transport truck over the existing and proposed access roads shown in road maps. If a commercial fresh water source is nearby, fast line may be laid along existing road ROW's and fresh water pumped to the well. No water well will be drilled on the location.

#### 6. Source of Construction Materials and Location "Turn-Over" Procedure:

Obtaining caliche: One primary way of obtaining caliche to build locations and roads will be by "turning over" the location. This means, caliche will be obtained from the actual well site. Amount will vary for each pad. The procedure below has been approved by BLM personnel:

- A. The top 6 inches of topsoil is pushed off and stockpiled along the side of the location.
- B. An approximate 160' X 160' area is used within the proposed well site to remove caliche.
- C. Subsoil is removed and stockpiled within the surveyed well pad.
- D. When caliche is found, material will be stock piled within the pad site to build the location and road.
- E. Then subsoil is pushed back in the hole and caliche is spread accordingly across entire location and road.
- F. Once well is drilled, the stock piled top soil will be used for interim reclamation and spread along areas where caliche is picked up and the location size is reduced.
- G. Neither caliche, nor subsoil will be stock piled outside of the well pad. Topsoil will be stockpiled along the edge of the pad as depicted in the Well Site Layout or survey plat.

In the event that no caliche is found onsite, the caliche will be hauled from Oscar Vasquez Johnson caliche pit located in Section 1, T24S, R28E. (575) 361-3784.

#### 7. Methods of Handling Water Disposal:

- A. The well will be drilled utilizing a closed loop mud system. Drill cuttings will be held in roll-off style mud boxes and taken to R360's disposal site.
- B. Drilling fluids will be contained in steel mud pits.
- C. Water produced from the well during completion will be held temporarily in steel tanks and then taken to an NMOCD approved commercial disposal facility..
- D. It is anticipated that the disposal of produced water will be trucked to the Willow 17
   State SWD #1 Section 17, T25S, R28E., or Apple 5 State SWD #1 Section 5, T26S, R28E.
- E. Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved landfill. No toxic waste or hazardous chemicals will be produced by this operation.
- F. Human waste and grey water will need to be properly contained and disposed of. Proper disposal and elimination of waste and grey water may include but are not limited to portable septic systems and/or portable waste gathering systems (i.e. portable toilets).
- G. After the rig is moved out and the well is either completed or abandoned, all waste materials will be cleaned up within 30 days. In the event of a dry hole only a dry hole marker will remain.

#### 8. Ancillary Facilities:

No airstrip, campsite or other facilities will be built as a result of the operation on this well.

#### 9. Well Site Layout:

- A. The drill pad layout, with elevations staked by Harcrow Surveying, is shown in the Elevation Plat. Dimensions of the pad and pits are shown on the Rig Layout. V door direction is East. Topsoil, if available, will be stockpiled per BLM specifications. Because the pad is almost level no major cuts will be required.
- B. The Rig Layout Closed-Loop exhibit shows the proposed orientation of closed loop system and access road. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations.

#### 10. Plans for Restoration of the Surface:

A. Interim Reclamation will take place after the well has been completed. The pad will be downsized by reclaiming the areas not needed for production operations. The portions of the pad that are not needed for production operations will be re-contoured to its original state as much as possible. The caliche that is removed will be reused to either build another pad site or for road repairs within the lease. The stockpiled topsoil will then be spread out reclaimed area and reseeded with a BLM approved seed mixture. In the event that the well must be worked over or maintained, it may be necessary to drive, park, and/or operate machinery on reclaimed land. This area will be repaired or reclaimed after work is complete.

#### 11. Sedimentation and Erosion Control

Immediately following construction approximately 400' of straw waddles will be placed on the north side and east side of the location, to reduce sediment impacts to fragile/sensitive soils.

B. Final Reclamation: Upon plugging and abandoning the well all caliche for well pad and lease road will be removed and surface will be recountoured to reflect its surroundings as much as possible. Caliche will be recycled for road repair or reused for another well pad within the lease. If any topsoil remains, it will be spread out and the area will be reserved with a BLM approved mixture and re-vegetated as per BLM orders. When required by BLM, the well pad site will be restored to match pre-construction grades.

#### 12. Surface Ownership:

- A. The surface is owned by the State of New Mexico. The surface is multiple uses with the primary uses of the region for grazing of livestock and the production of oil and gas. The surface owner was notified before staking this well.
- B. The proposed road routes and surface location will be restored as directed by the BLM.

#### 13. Other Information:

- A. The area around the well site is grassland and the topsoil is sandy. The vegetation is moderately sparse with native prairie grasses, some mesquite and shinnery oak. No wildlife was observed but it is likely that mule deer, rabbits, coyotes and rodents traverse the area.
- B. There is no permanent or live water in the immediate area.

- C. There are no dwellings within 2 miles of this location.
- D. If needed, a Cultural Resources Examination is being prepared by Lone Mountain Archaeological Services, Inc., 2625 Pennsylvania NE, Suite 2000, Albuquerque, NM 87110, Office 505-881-0011 and the results will be forwarded to your office in the near future. Otherwise, COG will be participating in the Permian Basin MOA Program.

#### 14. Bond Coverage:

Bond Coverage is Statewide Bonds # NMB000740 and NMB000215

#### 14. Lessee's and Operator's Representative:

The COG Operating LLC representative responsible for assuring compliance with the surface use plan is as follows:

Seth Wild Drilling Superintendent COG Operating LLC One Concho Center 600 W Illinois Ave Midland, TX 79701 (432) 221-0414 (office) (432) 525-3633(cell) Ray Peterson Drilling Manager COG Operating LLC One Concho Center 600 W Illinois Ave Midland, TX 79701 Phone (432) 685-4304 (office) (432) 818-2254 (business)



<b></b>	HOWITZER FED	ERAL COM #603H	1 MILE DATA (18	-1406)					
	OPERATOR	API S	ECTION TOWNSI	HIP RANGE	FTG_NS NS_C	D FTG_EW EW_CD	LATITUDE	LONGITUDE	COMPL_STAT
	C L HAY	3001502486	1 24.05	28E	330 S	330 E	32.240593	-104.033367	Plugged
	RICHARDSON & BASS	3001502487	2 24.0S	28E	1980 S	1980 W	32.245228	-104.060384	Plugged
	ALBERT SCHABEL	3001502489	11 24. <b>0</b> \$	28E	355 N.	645 E	32.238717	-104.051652	Plugged
	SOUTHERN CALIFORNIA PETROLEUM CORP	3001502490	12 24.05	28E	330 S	1650 E	32.225945	-104.037625	Plugged
	CALVIN F TENNISON	3001502494	13 24.05	28E	330 N	1650 E	32.224131	-104.03762	Plugged
	DEKALB AGRICULTURAL ASSOCIATION INC	3001502496	13 24.05	28E	330 N	2310 W	32.22413	-104.041967	Plugged
	AUSTIN GAS PURCHASING	3001502500	13 24.05	28E	330 N	330 E	32.224131	-104.033331	Plugged
		3001503693	6 24.05	29E	330 S	2310 E	32.240543	-104.022688	Plugged
	TENNESSEE GAS TRANSMISSION	3001503694	6 24 05	29F	330 5	2310 W	32,240554	-104.024786	Plugged
		3001503695	7 24 05	29F	1650 5	1650 W	32,22956	-104 026909	Active
		3001503696	7 24 05	29F	2310 5	2310 W	32 231369	-104.024768	Plugged
	SOLITHERN CALLEORNIA PETROLEUM CORP	3001503697	7 24 05	29F	330 N	2310 W	32,23874	-104.024783	Plugged
		3001503698	7 24 05	29F	2310 5	2310 F	32 231364	-104 022679	Plugged
		3001503699	7 24.05	29F	2310 N	2310 E	32 233286	-104 02268	Plugged
		3001503701	7 24 05	296	2310 N	2310 W	32 233297	-104 024772	Active
		3001503701	7 24.05	295	990 5	330 W	32 227757	-104 031194	Active
		3001503702	7 24.05	296	330 N	2310 F	32 238729	-104.022684	Plugged
		2001502704	7 24.05	200	1650 S	330 W/	32,230,23	-104 031198	Plugged
		2001502707	19 24.05	200	270 N	330 W/	32 22/019	-104.031190	Plugged
		2001503707	2 24.03	296	1980 \$	550 W	32 24013	-104.051187	Plugged
		2001521030	11 24.03	200	1780 5	660 W	32.245274	-104.004074	Active
		2001521760	2 24.03	200	1080 N	1090 F	32.230284	-104.004800	Active
		2001522633	10 24.03	200	1980 N	1980 C	22 22000	104.073173	Plugged
		2001522099	10 24.03	200	2000 5	1772 6	22.23003	-104.0744447	Active
		3001523299	10 24.05	285	2080 S	1775 E	52.251100	104.072712	Active
		3001523752	14 24.05	200	1080 N	1980 W	32.2234/7	104.00033	Rugged
	TEXACUEXPLORATION & PRODUCTION INC	3001523757	6 24.05	295	1980 N	1880 W	32.240042	104.020201	Rlugged
	HARVEY E YATES CU	3001523779	1 24.05	285	660 N	1980 W	32.241491	104.043114	Plugged
		3001523797	10 24.05	205	1020 5	1980 W	32.230104	-104.07772	Plugged
		2001523859	12 24.03	205	1960 3	1090 F	22.23040	104.047408	Active
		2001525850	11 24.05	205	2310 J	1980 L	32.231337	104.033333	Active
		3001524300	12 24.05	205	1630 N	2140 W	32.234047	104.042381	Bluggod
	BETTIS BOYAL & STOVALL	3001524433	12 24.05	285	467 5	467 W	32.220321	104.04/9//	Plugged
	DEVON ENERGY PRODUCTION COMPANY, LP	3001524945	12 24.05	285	660 S	990 W	32.220031	104.04020	Riugged
	EASTLAND OIL CO	3001525320	7 24.05	295	990 N	990 E	32.230032	104.010333	Activo
		3001525658	7 24.05	295	000 5	2310 E	22.220626	-104.022077	Bluggod
	DEVON ENERGY PRODUCTION COMPANY, LP	3001526249	1 24.03	200	390.3	2310 W	32.2424	104.042030	Activo
	KAISER-FRANCIS OIL CO	3001526279	2 24.05	28E	2130 3	1050 E	32.243363	-104.034888	Rhaged
	D'S HARROUN	3001526707	7 24.05	295	787 3	2550 E	32.22/1/9	-104.023392	Astivo
	MEWBOURNE UIL CO	3001520805	7 24.05	290	554 N	1414 W	32.230153	104.027034	Rhuggod
	DUMINION OKLAHOMA TEXAS EXPL. & PROD INC	3001527045	7 24.03	295	550 N	350 W	32.230130	104.023072	Activo
		3001529229	7 24.05	296	220 5	1050 E	22.23/011	104.020556	Now (Not drilled or compl)
•		3001537148	6 24.03	290	35U 3	2200 W	32.240394	104.024907	New (Not drilled or compl)
		3001542660	10 24.05	285	2155 (N	204 E	32.234/3/	-104.00730	New (Not drilled or compl)
	MEWBOURNE OIL CO	3001543171	12 24.05	205	215 3	550 W	32.223400	104.047646	New (Not drilled or compl)
		2001545172	12 24.05	200	215 5	020 W	32.223403	104.04702	New (Not drilled or compl)
		3001543419	12 24.05	200	470 S	265 W	32.220100	104.046055	New (Not drilled or compl)*
001		3001543463	14 24.05	285	3/8 N	300 E	32.223855	-104.05059	New (Not drilled or compl)
001		3001543034	10 24.03	270	1752 N	205 F	3) 72/7/7	-104.05115/	New (Not drilled or compl)
		2001242093	14 24.03	205	270 N	200 E	37 773851	-104.007.004	New (Not drilled or compl)
		3001243/30	1 24.05	200	5/5 N	550 E	27 7/1274	-104.000007	New (Not drilled or compl)
		3001343820	1 24.05	200	601 0	661 E	37 2/1/04	-104.034392	New (Not drilled or compl)
•		3001343821	1 24.05	200	621 C	667 E	32.241400	-104.034391	New (Not drilled or compl)
		3001343622	1 24.03	205	721 5	661 E	27 7/1/20	-104.034330	New (Not drilled or compl)
		3001343023	1 24.03	200	601 5	667 E	32.241403	-104 024207	New (Not drilled or compl)
	MATADON FRODUCTION COMPANY	5001343024	1 24.03	ZOL	001.2	002 L	35.547733	104.004001	(not armed or compt)

J,

2

``

							•		
MEWBOURNE OIL CO	3001543845	12 24.05	28E	270 S	200 W -	32:225619	-104.048983	New (Not drilled or co	(lamo
MEWBOURNE OIL CO	3001543846	12 24.05	28E	250 S	200 W	32.225564	-104.048984	New (Not drilled or co	(lamc
MATADOR PRODUCTION COMPANY	3001543870	14 24.05	28E	410 N	330 E	32.223768	-104.050686	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001543940	11 24.0S	28E	933 N	254 W	32.23699	-104.066052	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001543966	11 24.0S	28E	934 N	224 W	-32.236988	-104.06615	New (Not drilled or co	(lamo
MATADOR PRODUCTION COMPANY	3001543993	11 24.0S -	28E	963 N	255 W	32.236908	-104.06605	New (Not drilled or co	(lamo
MEWBOURNE OIL CO	3001544048	12 24.0S	28E	185 N	950 E	32.239	-104.035363	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544162	14 24.0S	28E ·	429 N	330 E	32.223716	-104.050685	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544163	14 24.0S	28E	428 N	300 E	32.223717	-104.050587	New (Not drilled or co	ompl)
ALPHA SWD OPERATING LLC	3001544237	10 24.0S	28E	1457 S	2093 E	32.229147	-104.07375	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544241	18 24.0S	29E	712 N	352 W '	32.222892	-104.031288	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544242	18 24.0S	29E	742 N	321 W	32.222809	-104.031387	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544244	18 24.05	29E	712 N	321 W	32.222892	-104.031389	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544245	18 24.0S	29E	742 N	290 W	32.222809	-104.031488	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544247	18 24.0S	29E	[^] 742 N	351 W	32.222809	-104.03129	New (Not drilled or co	ompl)
BLACK RIVER WATER MANAGEMENT COMPANY, LLC	3001544514	11 24.0S	28E	1489 N	490 W	32.235461	-104.065299	New (Not drilled or co	ompl)
MATADOR PRODUCTION COMPANY	3001544533	. 11 24.0S	28E	934 N	194 W	32.236988	-104.066247	New (Not drilled or co	ompl)
BLACK RIVER WATER MANAGEMENT COMPANY, LLC	3001544571	12 24.0S	28E	1779 S	975 W	32.229762	-104.046408	New (Not drilled or co	ompl)
			•						
								•	
		,							
		,						•	
		c						• •	
		,						•	
		, `							
• • •		•			•				
					• • •				
			·		•		·		
		• • •					·		
									•
	· ·				•		·		•
	· ·						·		•
	· ·				•				•
									•
					•				•
	· ·								•

. . . .

. . .



Сомсно	Map Legend		N
Howitzer Fed Com #603H To Malaga I Brine	errea Route		W
Date: 11/6/2018 VII) set va Averse - dave den Author: Whytini- McDonald Second		0 0.2 0.4 0.8 1.2 1.6	Ś

NM OIL CONSERVATION ARTESIA DISTRICT State of New Mexico 1825 M. PREVICE DR. HOBESS, NU 88240 Energy, Minerals & Natural Resources Department Form C-102 DISTRICT II 811 S. FIRST ST., ARTESIA, NM 88210 Phone: (878) 748-1283 Pak: (878) 748-9720 OIL CONSERVATION DIVISION Revised August 1, 2011 1220 SOUTH ST. FRANCIS DR. RECENTED one copy to appropriate **District Office** DISTRICT III 1000 RIO BRAZOS RD., AZTEC, NM 87410 Phone: (505) 334-6170 Fax: (505) 334-6170 Santa Fe. New Mexico 87505 □ AMENDED REPORT 1220 S. ST. FRANCIS DR., SANTA FR. NR 67505 Phone: (505) 478-3460 Fax: (506) 478-3462 WELL LOCATION AND ACREAGE DEDICATION PLAT Pool Code 98220 API Number Pool Name Purple sage; Wolfcamp **Property** Code Property Name Well Number HOWITZER FEDERAL COM 603H OGRID No. 229137 **Operator** Name Elevation COG OPERATING, LLC 2974.4 Surface Location Section Range Township Feet from the North/South line Lot Idn Feet from the East/West line County 24-S 12 28-E 1044 NORTH 620 EAST EDDY Bottom Hole Location If Different From Surface Section Township Range Lot Idn Feet from the North/South line Feet from the East/West line County 11 24-S 28-E 1210 NORTH 200 WEST EDDY Joint or Infill **Consolidation** Code Order No. OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION OPERATOR CERTIFICATION I bereby certify that the information I bereby certify that the information berein is true and complete to the best of my knowledge and belief, and that this organisation alther owns a working interest or unleased minarel interest in the lead including the proposed bolican hole location or has a right to drill this well at this location pursuant to a contract with an owner of such minerel or working interest, or to a voluntary pooling arreement or a compulsory pooling order heretafare entered by the division STATE Y=451053.9 N LEASE X-ING LEASE X-ING X=634408.7 E LAT.=.32.236371* LONG.=104.040925 AT.=32,236391 LONG. = 104.045 Ve ø

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED

DISTRICT I

DISTRICT IV

30-015

UL or lot No.

А

UL or lot No.

D

**Dedicated** Acres

640





NMAC by using a Closed Loop System."

WELL 1 HOWITZER FED COM # 2 HOWITZER FED COM # 3 HOWITZER FED COM # 4 HOWITZER FED COM #	O1 FOOTAGE CALLS FOOTAGE CALLS FO	ELEV. WO 2974.6' 18-1407 2962.6' 18-1408 2962.6' 18-1466		06
	24S HOWITZER CTB	28E PROPOSED ROAD 28E 939.8' PROPOSED ROAD	8 1 2	24S 29E 07 81.8' PROPOSED
<b>LEGEND</b> • WELL WELLPAD BATTERY EXISTING ROAD PROPOSED ROAD	HOWITZ SECTION: 12 STATE: NEW MEXICO W.O. # 18-1077, 1406-140	ZER FEDERAL COM TOWNSHIP: 24 S. COUNTY: EDDY 8, 1466 LEASE: HO 1,000 FEET	RANGE: 28 E. SURVEY: N.M.P.M DWITZER FED COM	Herrour Diten Herrour Diten COG OPERATING, LLC 2314 W. MAIN ST, ARTESIA, NM 88210 PH: JST 746-2158 FAX: (575) 746-2158 TEXAS FIRM NO. 10194089

11/5/2018

 PROPOSED ROAD
 PROPOSED FLOWLINE
 LOCATION MAP 0 0.03250.065 0.13 Miles VICINITY

PH: (575) 746-2158 FAX: (575) 746-215 TEXAS FIRM NO. 10194089 c.harcrow@harcrowsurveying.com 





#### DESCRIPTION

A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S35'09'53"W 1413.88 FEET FROM THE NORTHEAST CORNER; THEN S89'57'47"W 129.1 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES N32'22'31"W 1787.87 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 129.1 FEET OR 7.82 RODS IN LENGTH, CONTAINING 0.089 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.









<b>Ж</b> СОNСНО	Map Legend						N N
Howitzer Fed Com #603H Water Transfer Route	Essential Route				· ·		W E
Date: 11/6/2018 W3 INTRA NUMER AND THE STATE OF		÷	0 0.075 0.15	0.3	0.45	0.6 Miles	S







#### DESCRIPTION

A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S10[•]19'03"W 1232.10 FEET FROM THE NORTHEAST CORNER; THEN S89[•]59'20"W 194.1 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES N16[•]25'56"W 1515.58 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 194.1 FEET OR 11.76 RODS IN LENGTH, CONTAINING 0.134 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.

BASIS OF REARING

HARCROW SURVEYING, LLC


A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY. COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S35'53'29"W 1389.62 FEET FROM THE NORTHEAST CORNER; THEN S89'58'03" 128.8 FEET, TO A POINT IN THE NE/4 NE/4 OF SAID SECTION, WHICH LIES S57'10'25"E 2053.94 FEET FROM NORTH QUARTER CORNER.

SAID STRIP OF LAND BEING 128.8 FEET OR 7.81 RODS IN LENGTH, CONTAINING 0.089 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE NE/4 NE/4.

HARCROW SURVEYING, LLC



DESCRIPTION

A STRIP OF LAND 30.0 FEET WIDE CROSSING STATE OF NEW MEXICO LAND IN SECTION 12, TOWNSHIP 24 SOUTH, RANGE 28 EAST, NMPM, EDDY COUNTY, NEW MEXICO AND BEING 15.0 FEET RIGHT AND 15.0 FEET LEFT OF THE FOLLOWING DESCRIBED CENTERLINE SURVEY:

BEGINNING AT A POINT IN THE SE/4 NE/4 OF SAID SECTION, WHICH LIES \$08*13'33"W 1351.15 FEET FROM THE NORTHEAST CORNER; THEN S89'59'46" 620.9 FEET, THEN S08'06'47"W 220.9 FEET, THEN N89'58'38"W 98.0 FEET, TO A POINT IN THE SE/4 NE/4 OF SAID SECTION, WHICH LIES N40'46'43"E 1465.79 FEET FROM EAST QUARTER CORNER.

SAID STRIP OF LAND BEING 939.8 FEET OR 56.96 RODS IN LENGTH, CONTAINING 0.647 ACRES MORE OR LESS AND BEING LOCATED ENTIRELY IN THE SE/4 NE/4.



BASIS OF BEARING



PROPOSED ROAD **PROPOSED FLOWLINE** 

0 0.03250.065 1 IN = 500 FT 0.13 Miles LOCATION MAP ΤΟΡΟ 11/5/2018 A.M

HARCROW SURVEYING, LLC. 2314 W. MAIN ST, ARTESIA, NM 88210 H: (575) 746-2158 FAX: (575) 746-2158 TEXAS FIRM NO. 10194089 c.harcrow@harcrowsurveying.com



	A PARTIE AND A PARTY OF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WE I THE ROAD APPARE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 4	576757 1.0 6 6 V 3
LEGEND		HOWINZER FEDERAL COM				
		SECTION: 12	TOWNSHIP: 24 S.	RANGE: 28 E.	11	
o	WELL	STATE: NEW MEXICO	COUNTY: EDDY	SURVEY: N.M.P.M	N	COC OPERATING LLC
	WELLPAD	W.O. # 18-1077, 1406-14	08, 1466 LEASE:	HOWITZER FED COM		COG OPERATING, LLC
	BATTERY	0	1,000 FEET		Ņ	HARCROW SURVEYING LIC
	EXISTING ROAD					2314 W. MAIN ST, ARTESIA, NM 88210
	PROPOSED ROAD	0 0.03250.065	0.13 Miles	1 IN = 500 FT		PH: (575) 746-2158 FAX: (575) 746-2158 TEXAS FIRM NO. 10194089
	PROPOSED FLOWLINE	LOCATION MAP	IMACERY 1	11//5//2018 A.M.	]	c.harcrow@harcrowsurveying.com



 STATE OF NM	
 IIC DI M	



c.harcrow@harcrowsurvevina.com

Harrown Ro	HARROUN RD. <b>01</b>	darroun Ba		06
WELL 1 HOWITZER FED COM #	FOOTAGE CALLS 602H 1014' FNL & 620' FEL	ELEV. WO 2974.6' 18-1407		
2 HOWITZER FED COM # 3 HOWITZER FED COM #	603H 1044' FNL & 620' FEL 605H 2125' FNL & 300' FEL	2974.4' 18-1406 2963.5' 18-1408		and the second s
	24S HOWITZER CTB	128.8' PROPOSED ROAD 28E 939.8' PROPOSED ROAD PROPOSED ROAD	1944 PROPOS ROAD	07 81.8' PROPOSED ROAD Herrourn Ditch
	HOWIT SECTION: 12	TOWNSHIP: 24 S.	RANGE: 28 E.	<i>≫, сопсно</i>
WELLPAD	STATE: NEW MEXICO W.O. # 18-1077, 1406-140	COUNTY: EDDY 8, 1466 LEASE: H	SURVEY: N.M.P.M OWITZER FED COM	COG OPERATING, LLC
EXISTING ROAD PROPOSED ROAD PROPOSED FLOWLINE	0 L	- 1,000 FEET	1 IN = 500 FT 5/2018 A M	HARCROW SURVEYING, LLC. 2314 W. MAIN ST, ARTESIA, NM 88210 PH: (575) 746-2158 FAX: (575) 746-2158 TEXAS FIRM NO. 10194089 c.harcrow@harcrowsurveying.com





U.S. Department of the Interior BUREAU OF LAND MANAGEMENT.

#### **Section 1 - General**

Would you like to address long-term produced water disposal? NO

PWD Data Report

**PWD** disturbance (acres):

02/26/2019

### **Section 2 - Lined Pits**

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

## **Section 3 - Unlined Pits**

#### Would you like to utilize Unlined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD** surface owner:

Unlined pit PWD on or off channel:

Unlined pit PWD discharge volume (bbl/day):

Unlined pit specifications:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Unlined pit precipitated solids disposal schedule:

Unlined pit precipitated solids disposal schedule attachment:

Unlined pit reclamation description:

Unlined pit reclamation attachment:

Unlined pit Monitor description:

**Unlined pit Monitor attachment:** 

Do you propose to put the produced water to beneficial use?

Beneficial use user confirmation:

Estimated depth of the shallowest aquifer (feet):

Does the produced water have an annual average Total Dissolved Solids (TDS) concentration equal to or less than that of the existing water to be protected?

TDS lab results:

Geologic and hydrologic evidence:

State authorization:

**Unlined Produced Water Pit Estimated percolation:** 

Unlined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Unlined pit bond number:

Unlined pit bond amount:

Additional bond information attachment:

**Section 4 - Injection** 

Would you like to utilize Injection PWD options? NO

Produced Water Disposal (PWD) Location:

**PWD surface owner:** 

Injection PWD discharge volume (bbl/dav):

#### **PWD disturbance (acres):**

PWD disturbance (acres):

Injection well type:

Injection well number:

Assigned injection well API number?

Injection well new surface disturbance (acres):

Minerals protection information:

**Mineral protection attachment:** 

**Underground Injection Control (UIC) Permit?** 

**UIC Permit attachment:** 

#### Section 5 - Surface Discharge

Would you like to utilize Surface Discharge PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Surface discharge PWD discharge volume (bbl/day):

Surface Discharge NPDES Permit?

Surface Discharge NPDES Permit attachment:

Surface Discharge site facilities information:

Surface discharge site facilities map:

#### Section 6 - Other

Would you like to utilize Other PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

Other PWD discharge volume (bbl/day):

Other PWD type description:

Other PWD type attachment:

Have other regulatory requirements been met?

Other regulatory requirements attachment:

Injection well name:

#### Injection well API number:

PWD disturbance (acres):

**PWD** disturbance (acres):

# AFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

## **Bond Information**

Federal/Indian APD: FED BLM Bond number: NMB000215 BIA Bond number: Do you have a reclamation bond? NO Is the reclamation bond a rider under the BLM bond? Is the reclamation bond BLM or Forest Service? BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

**Reclamation bond number:** 

**Reclamation bond amount:** 

Reclamation bond rider amount:

Additional reclamation bond information attachment:

## Bond Info Data Report