Form 3160-3 (June 2015)

MAY 2 2 2019

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

UNITED STATES

UNITED STATES DEPARTMENT OF THE INTI BUREAU OF LAND MANAGI APPLICATION FOR PERMIT TO DRIL 1a. Type of work: DRILL REEN 1b. Type of Well: Hydraulic Fracturing Single	EMENT LL OR REENTER ITER	5. Lease Serial No. NMNM036975 6. If Indian, Allotee or Tribe Name 7. If Unit or CA Agreement, Name and No. 8. Lease Name and Well No. KANSAS 21/28 WOLM FED COM
2. Name of Operator MEWBOURNE OIL COMPANY		2H 32568 9/APJ-Well No. 30-0/5-460/6
	Phone No. (include area code) 75)393-5905	10. Field and Pool, of Exploratory WOLFCAMPY PURPLE SAGE WOLFCAM
4. Location of Well (Report location clearly and in accordance with At surface SWNW / 2635 FNL / 360 FWL / LAT 32.203332 At proposed prod. zone SWSW / 330 FSL / 400 FWL / LAT 3	29 / LONG -104.1000422	11. Sec., T. R. M. of Blk. and Survey or Area SEC 21/ T24S/ R28E / NMP
14. Distance in miles and direction from nearest town or post office* 3 miles		12. County or Parish 13. State NM
15. Distance from proposed* location to nearest property or lease line, ft. (Also to nearest drig, unit line, if any)	// // \	g,Unit dedicated to this well
to nearest well drilling completed	Proposed Depth 20/BLM/I 57 feet /_16988 feet FED: NM	BIA Bond No. in file 1693
7.	Approximate date work will start*	23. Estimated duration 60 days
	4. Attachments	
The following, completed in accordance with the requirements of Ons (as applicable)	shore Oil and Gas Order No. 1, and the H	ydraulic Fracturing rule per 43 CFR 3162.3-3
1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest System La SUPO must be filed with the appropriate Forest Service Office).	Item 20 above). 5. Operator certification. 6. Such other site specific inform	s unless covered by an existing bond on file (see mation and/or plans as may be requested by the
25. Signature	BLM. Name (Printed/Typed)	Date
(Electronic Submission)	Bradley Bishop / Ph: (575)393-5908	5 12/07/2016
Regulatory		
Approved by (Signature) (Electronic Submission)	Name (<i>Printed/Typed</i>) . Cody Layton / Ph: (575)234-5959	Date 05/17/2019
Title (() () () () () () () () ()	Office CARLSBAD	
Application approval does not warrant or certify that the applicant holapplicant to conduct operations thereon. Conditions of approval, if any, are attached.	lds legal or equitable title to those rights in	n the subject lease which would entitle the
Fitle 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make of the United States any false, fictitious or fraudulent statements or rep	it a crime for any person knowingly and v presentations as to any matter within its ju	willfully to make to any department or agency urisdiction.
	MONG	

Approval Date: 05/17/2019 Res 5-22-9

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances-for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state-or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land-involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

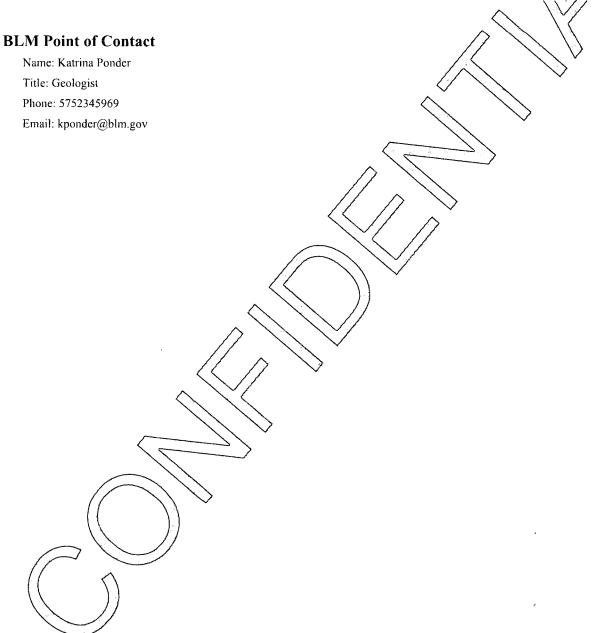
ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

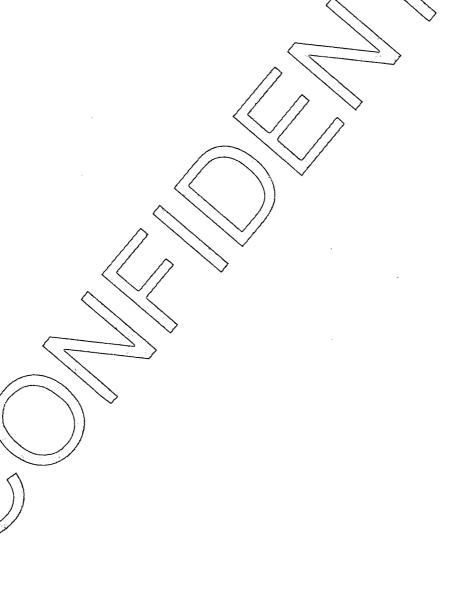
BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.


Additional Operator Remarks

Location of Well

1. SHL: SWNW / 2635 FNL / 360 FWL / TWSP: 24S / RANGE: 28E / SECTION: 21 / LAT: 32.2033329 / LONG: -104.1000422 (TVD: 27-feet, MD: 27 feet)

PPP: NWSW / 2341 FSL / 400 FWL / TWSP: 24S / RANGE: 28E / SECTION: 21 / LAT: 32.2023265 / LONG: -104.0999067 (-TVD: 9457-feet, MD: 9530 feet)


BHL: SWSW / 330 FSL / 400 FWL / TWSP: 24S / RANGE: 28E / SECTION: 28 / LAT: 32.1821053 / LONG: -104.0999828 (TVD: 9457 feet, MD: 16988 feet)

(Form 3160-3, page 3)

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: | Mewbourne Oil Company

LEASE NO.: | NMNM-36975

WELL NAME & NO.: Kansas 28 W2PA Federal 1H

SURFACE HOLE FOOTAGE: 0185' FSL & 0490' FEL BOTTOM HOLE FOOTAGE 0330' FNL & 0440' FEL

LOCATION: | Section 28, T. 24 S., R 28 E., NMPM

COUNTY: County, New Mexico

DRILLING

In the interest of resource development, submission of additional well gas capture development plan information is deferred but may be required by the BLM Authorized Officer at a later date.

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

☐ Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1 Although Hydrogen Sulfide has not been reported in the area, it is always a potential hazard. If Hydrogen Sulfide is encountered, report measured amounts and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval. If the drilling rig is removed without approval an Incident of Non-Compliance will be written and will be a "Major" violation.

- 3. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works is located, this does not include the dog house or stairway area.
- 4. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

B. CASING

Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Wait on cement (WOC) for Water Basin:

After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Page 2 of 7

A MINIMUM OF TWO CASING STRINGS CEMENTED TO SURFACE IS REQUIRED IN HIGH CAVE/KARST AREAS. THE CEMENT MUST BE IN A SOLID SHEATH. THEREFORE, ONE INCH OPERATIONS ARE NOT SUFFICIENT TO PROTECT CAVE KARST RESOURCES. A CASING DESIGN THAT HAS A ONE INCH JOB PERFORMED DOES NOT COUNT AS A SOLID SHEATH. IF THE PRIMARY CEMENT JOB ON THE SURFACE CASING DOES NOT CIRCULATE, THEN THE NEXT TWO CASING STRINGS MUST BE CEMENTED TO SURFACE.

- 1. The 13-3/8 inch surface casing shall be set at approximately 420 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface. If salt is encountered, set casing at least 25 feet above the salt.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry.
 - c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
 - d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst. Excess calculates to 24% Additional cement may be required.

Formation below the 9-5/8" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe (not the mud weight required to

prevent dissolving the salt formation) and the mud weight for the bottom of the hole. Report results to BLM office.

Centralizers required through the curve and a minimum of one every other joint.

7" casing shall be kept fluid filled while running into hole to meet BLM minimum collapse requirements.

3. The minimum required fill of cement behind the 7 inch production casing is:

shall provide method of verification.

Cement should tie-back at least 200 feet into previous casing string.	. Operator

Formation below the 7" shoe to be tested according to Onshore Order 2.III.B.1.i. Test to be done as a mud equivalency test using the mud weight necessary for the pore pressure of the formation below the shoe and the mud weight for the bottom of the hole. Report results to BLM office.

4. The minimum required fill of cement behind the 4-1/2 inch production Liner is:

Г	_	Cement as	proposed.	Operator	shall	provide	method	of	verification	on
ı		Coment as	proposed.	Operator	Jiiaii	provide	method	O1	vermeati	911

5. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API 53.
- 2. Variance approved to use flex line from BOP to choke manifold. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor. If the BLM inspector questions the

- straightness of the hose, a BLM engineer will be contacted and will review in the field or via picture supplied by inspector to determine if changes are required (operator shall expect delays if this occurs).
- 3. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be psi.
 - a. For surface casing only: If the BOP/BOPE is to be tested against casing, the wait on cement (WOC) time for that casing is to be met (see WOC statement at start of casing section). Independent service company required.
- 4. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the 9-5/8 intermediate casing shoe shall be psi. 5M system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 5. The appropriate BLM office shall be notified a minimum of hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - a. The tests shall be done by an independent service company utilizing a test plug **not** a **cup** or **J-packer**. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
 - b. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall

have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- c. The results of the test shall be reported to the appropriate BLM office.
- d. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- e. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- f. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the **Wolfcamp** formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

D. **DRILLING MUD**

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the **Wolfcamp** formation, and shall be used until production casing is run and cemented.

E. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

F. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 6 of 7

Page 7 of 7

Approval Date: 05/17/2019

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filling of false statements.

NAME: Bradlev Bisho)Ď	Signed on: 11/17/2016

Title: Regulatory

Street Address: PO Box 5270

City: Hobbs State: NM Zip: 88240

Phone: (575)393-5905

Email address: bbishop@mewbourne.com

Field Representative

Representative Name	:	
Street Address:		
City:	State:	Zlp:
Phone:		
Email address:		

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400008156

Submission Date: 12/07/2016

Highlighted data reflects the most

recent changes

Well Name: KANSAS 21/28 W0LM FED COM

Operator Name: MEWBOURNE OIL COMPANY

Well Number: 2H

Show Final Text

Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - General

APD ID:

10400008156

Tie to previous NOS?

Submission Date: 12/07/2016

BLM Office: CARLSBAD

User: Bradley Bishop

Title: Regulatory

Federal/Indian APD: FED

Is the first lease penetrated for production Federal or Indian? FED

Lease number: NMNM036975

Lease Acres: 920

Surface access agreement in place?

Allotted?

Reservation:

Agreement in place? NO

Federal or Indian agreement:

Agreement number:

Agreement name:

Keep application confidential? YES

Permitting Agent? NO

APD Operator: MEWBOURNE OIL COMPANY

Operator letter of designation:

Kansas21_28W0LMFedCom2H_operatorletterofdesignation_20180510141556.pdf

Operator Info

Operator Organization Name: MEWBOURNE OIL COMPANY

Operator Address: PO Box 5270

Zip: 88240

Operator PO Box:

Operator City: Hobbs

State: NM

Operator Phone: (575)393-5905

Operator Internet Address:

Section 2 - Well Information

Well in Master Development Plan? NO

Master Development Plan name:

Well in Master SUPO? NO

Master SUPO name:

Well in Master Drilling Plan? NO

Master Drilling Plan name:

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Well API Number:

Field/Pool or Exploratory? Field and Pool

Field Name: WOLFCAMP

Pool Name: PURPLE SAGE

WOLFCAMP GAS

le the proposed well in an area containing other mineral resources? LISEARI E WATER NATIONAL GAS OIL

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Describe other minerals:

Is the proposed well in a Helium production area? N Use Existing Well Pad? NO New surface disturbance?

Type of Well Pad: MULTIPLE WELL

Multiple Well Pad Name: Number: 2

Well Class: HORIZONTAL KANSAS 21/28 W0LM & W2LM

Number of Legs:

Well Work Type: Drill

Well Type: CONVENTIONAL GAS WELL

Describe Well Type:

Well sub-Type: APPRAISAL

Describe sub-type:

Distance to town: 3 Miles Distance to nearest well: 1895 FT Distance to lease line: 185 FT

Reservoir well spacing assigned acres Measurement: 320 Acres

Well plat: Kansas21_28W0LMFedCom2H_wellplat_20180510141755.pdf

Section 3 - Well Location Table

Survey Type: RECTANGULAR

Describe Survey Type:

Datum: NAD83 Vertical Datum: NAVD88

Survey number:

		,		,		,												
	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	ΔVT
SHL L'eg #1	263 5	FNL	360	FWL	24S	28E	21	Aliquot SWN W	32.20333 29	- 104.1000 422	EDD Y	1	NEW MEXI CO	F	NMNM 036975	303 1	27	27
KOP Leg #1	263 5	FNL	400	FWL	24S	28E	21	Aliquot SWN W	32.20333 26	- 104.0999 129	l	1	NEW MEXI CO	F	NMNM 036975	- 596 2	899 3	899 3
PPP Leg #1	234 1	FSL	400	FWL	248	28E	21	Aliquot NWS W	32.20232 65	- 104.0999 067		NEW MEXI CO	NEW MEXI CO		NMNM 036975	- 642 6	953 0	945 7

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	dΛΤ
EXIT Leg #1	330	FSL	400	FWL	24S	28E	28	Aliquot SWS W	32.18210 53	- 104.0997 828	EDD Y	NEW MEXI CO	145	F	NMNM 036975	- 642 6	169 88	945 7
BHL Leg #1	330	FSL	400	FWL	24S	28E	28	Aliquot SWS W	32.18210 53	- 104.0997 828	EDD Y	MEXI	NEW MEXI CO	F	NMNM 036975	- 642 6	169 88	945 7

United States Department of the Interior Bureau of Land Management Carlsbad Field Office 620 E Greene Street Carlsbad, New Mexico 88201-1287

Statement Accepting Responsibility for Operations

Operator Name:

Mewbourne Oil Company

Street or Box:

P.O. Box 5270

City, State:

Hobbs, New Mexico

Zip Code:

88241

The undersigned accepts all applicable terms, conditions, stipulations, and restrictions concerning operations conducted of the leased land or portion thereof, as described below.

Lease Number:

NMNM 036975

Legal Description of Land:

Section 21, T24S, R28E, Eddy County, New Mexico.

Location @ 2635 FNL & 360 FWL

Formation (if applicable):

Wolfcamp

Bond Coverage:

\$150,000

BLM Bond File:

NM1693 nationwide, NMB000919

Authorized Signature:

Name: Bradley Bishop Title: Regulatory Manager

Date: <u>5-8-18</u>

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Drilling Plan Data Report

05/20/2019

APD ID: 10400008156

Submission Date: 12/07/2016

Highlighted data reflects the most

recent changes

Well Name: KANSAS 21/28 W0LM FED COM

Operator Name: MEWBOURNE OIL COMPANY

Well Number: 2H

Show Final Text

Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - Geologic Formations

ormation ID	Commetica Name	Florestion	True Vertical			NA:	Producing
1	Formation Name UNKNOWN	Elevation		Depth	Lithologies	Mineral Resources	
'	UNKNOWN	3031	27	27		NONE	No
2	CASTILE	1951	1080	1080	SALT	NONE	No
3	LAMAR	516	2515	2515	LIMESTONE	NATURAL GAS,OIL	No
4	BELL CANYON	486	2545	2545	SANDSTONE	NATURAL GAS,OIL	No
5	CHERRY CANYON	-354	3385	3385	SANDSTONE	NATURAL GAS,OIL	No
6	MANZANITA	-464	3495	3495	LIMESTONE	NATURAL GAS,OIL	No
7	BRUSHY CANYON	-1579	4610	4610	SANDSTONE	NATURAL GAS,OIL	No
8	BONE SPRING LIME	-3159	6190	6190	LIMESTONE, SHALE	NATURAL GAS,OIL	No
9	BONE SPRING 1ST	-4059	7090	7090	SANDSTONE	NATURAL GAS,OIL	No
10	BONE SPRING 2ND	-4919	7950	7950	SANDSTONE	NATURAL GAS,OIL	No
11	BONE SPRING 3RD	-5969	9000	9000	SANDSTONE	NATURAL GAS,OIL	No
1,2	WOLFCAMP	-6339	9370	9370	LIMESTONE,SHALE,SA NDSTONE	NATURAL GAS,OIL	Yes

Section 2 - Blowout Prevention

ressure Rating (PSI): 5M

Rating Depth: 16988

quipment: Annular, Pipe Ram, Blind Ram

equesting Variance? YES

'ariance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. A multi-bowl rellhead is being used. See attached schematic

esting Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure idicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

ested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out f the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly ock and floor safety valve (inside BOP) and choke lines and choke manifold.

Choke Diagram Attachment:

Kansas_21_28_W0LM_Fed_2H_5M_BOPE_Choke_Diagram_20180427151850.pdf

Kansas_21_28_W0LM_Fed_2H_Flex_Line_Specs 20180427151851.pdf

BOP Diagram Attachment:

Kansas_21_28_W0LM_Fed_2H_5M_BOPE_Schematic_20180427151907.pdf

Kansas_21_28_W0LM_Fed_2H_Multi_Bowl_WH_20180427151908.pdf

Section 3 - Casing

Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	425	0	425	3058		425	H-40	48	STC	3.48	7.83	DRY	15.7 8	DRY	26.5 2
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	2440	0	2440	3058		2440	J-55	36	LTC	1.59	2.77	DRY	5.16	DRY	6.42
	PRODUCTI ON	8.75	7.0	NEW	API	N	0	9580	0	9443	3058		9580	P- 110	26	LTC	1.67	2.13	DRY	2.62	DRY	3.33
4	LINER	6.12 5	4.5	NEW	API	N	8993	16988	8993	9470			7995	P- 110	13.5	LTC	1.81	2.1	DRY	3.13	DRY	3.91

Casing Attachments

Casing Attachments
Casing ID: 1 String Type: SURFACE
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Kansas_21_28_W0LM_Fed_2H_Csg_Assumptions_20180427151953.pdf
Casing ID: 2 String Type:INTERMEDIATE
Inspection Document:
Spec Document:
opec Document.
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Kansas_21_28_W0LM_Fed_2H_Csg_Assumptions_20180427152021.pdf
Nansas_21_25_W6EW_1 64_211_659_A55amptions_20106427152621.pdf
Casing ID: 3 String Type: PRODUCTION
Inspection Document:
Spec Document:
Tapered String Spec:
Casing Design Assumptions and Worksheet(s):
Kansas_21_28_W0LM_Fed_2H_Csg_Assumptions_20180427152032.pdf

Well Number: 2H

Operator Name: MEWBOURNE OIL COMPANY

Well Name: KANSAS 21/28 W0LM FED COM

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Casing Attachments

Casing ID: 4

String Type:LINER

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

 $Kansas_21_28_W0LM_Fed_2H_Csg_Assumptions_20180427152108.pdf$

Section 4 - Cement

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	240	155	2.12	12.5	329	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail		240	425	200	1.34	14.8	268	100	Class C	Retarder
NTERMEDIATE	Lead		0	1800	345	2.12	12.5	731	25	Class C	Salt, Gel, Extender, LCM
NTERMEDIATE	Tail		1800	2440	200	1.34	14.8	268	25	Class C	Retarder
'RODUCTION	Lead	3495	2240	2860	60	2.12	12.5	127	25	Class C	Gel, Retarder, Defoamer, Extender
PODUCTION	Tail		2860	3495	100	1.34	14.8	134	25	Class C	Retarder
'RODUCTION	Lead	3495	3495	7083	320	2.12	12.5	678	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	Tail		7083	9580	400	1.18	15.6	472	25	Class H	Retarder, Fluid Loss, Defoamer
INER	Lead		8993	1698 8	320	2.97	11.2	678	25	Class C	Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-Settling Agent

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Section 5 - Circulating Medium

Jud System Type: Closed

Vill an air or gas system be Used? NO

escription of the equipment for the circulating system in accordance with Onshore Order #2:

iagram of the equipment for the circulating system in accordance with Onshore Order #2:

escribe what will be on location to control well or mitigate other conditions: Lost circulation material Sweeps Mud cavengers in surface hole

rescribe the mud monitoring system utilized: Pason/PVT/Visual Monitoring

Circulating Medium Table

Top Depth	Bottom Depth	Mud Type	Min Weight (lbs/gal)	Max Weight (lbs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Н	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
0	425	SPUD MUD	8.6	8.8							
425	2440	SALT SATURATED	10	10							
2440	8993	WATER-BASED MUD	8.6	9.7							
8993	9470	OIL-BASED MUD	10	12							

Section 6 - Test, Logging, Coring

ist of production tests including testing procedures, equipment and safety measures:

Vill run GR/CNL from KOP (8993') to surface

ist of open and cased hole logs run in the well:

:NL,DS,GR,MWD,MUDLOG

oring operation description for the well:

lone

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Section 7 - Pressure

inticipated Bottom Hole Pressure: 5909

Anticipated Surface Pressure: 3828.46

Inticipated Bottom Hole Temperature(F): 165

inticipated abnormal pressures, temperatures, or potential geologic hazards? NO

escribe:

ontingency Plans geoharzards description:

ontingency Plans geohazards attachment:

lydrogen Sulfide drilling operations plan required? YES

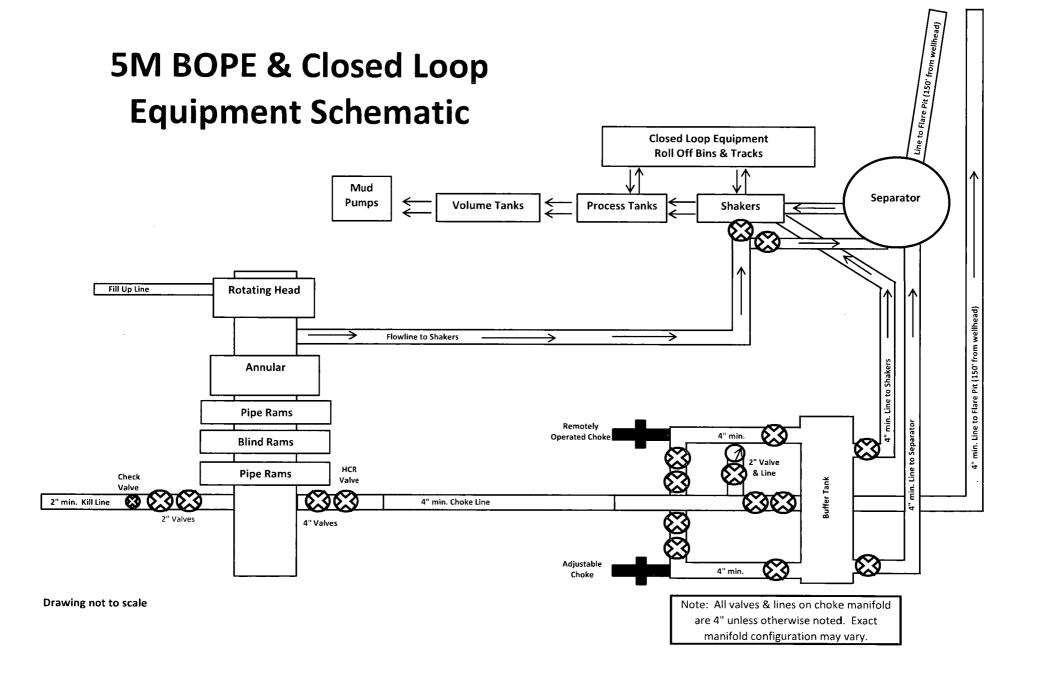
lydrogen sulfide drilling operations plan:

Kansas_21_28_W0LM_Fed_2H_H2S_Plan_20180427152317.pdf

Section 8 - Other Information

roposed horizontal/directional/multi-lateral plan submission:

Kansas_21_28_W0LM_Fed_2H_Dir_Plot_20180427152337.pdf


Kansas_21_28_W0LM_Fed_2H_Dir_Plan_20180427152338.pdf

Ither proposed operations facets description:

ither proposed operations facets attachment:

Kansas_21_28_W0LM_Fed_2H_Drlg_Program_20180427152351.doc

Ither Variance attachment:

GATES E & S NORTH AMERICA, INC.

134 44TH STREET

CORPUS CHRISTI, TEXAS 78405

PHONE: 361-887-9807

FAX: 361-887-0812

EMAIL: Tim.Cantu@gates.com

WEB: www.gates.com

10K CEMENTING ASSEMBLY PRESSURE TEST CERTIFICATE

		•		
Customer :	AUSTIN DISTRIBUTING	Test Date:	4/30/2015	Ť
Customer Ref. :	4060578	Hose Serial No.:	D-043015-7	Ţ
Invoice No. :	500506	Created By:	JUSTIN CROPPER	Ţ
Product Description:		10K3.548.0CK4.1/1610KFLGE/E	LE	1
End Ellison I .	4 1/16 10K FLG	End Fitting 2 :	4 1/16 10K FLG	<u> </u>
End Fitting 1:		⊣ ' }	L36554102914D-043015-7	\dagger
Gates Part No. :	4773-6290	Assembly Code :		4
Working Pressure :	10,000 PSI	Test Pressure :	15,000 PSI	4

Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9.

Quality Manager:

Date:

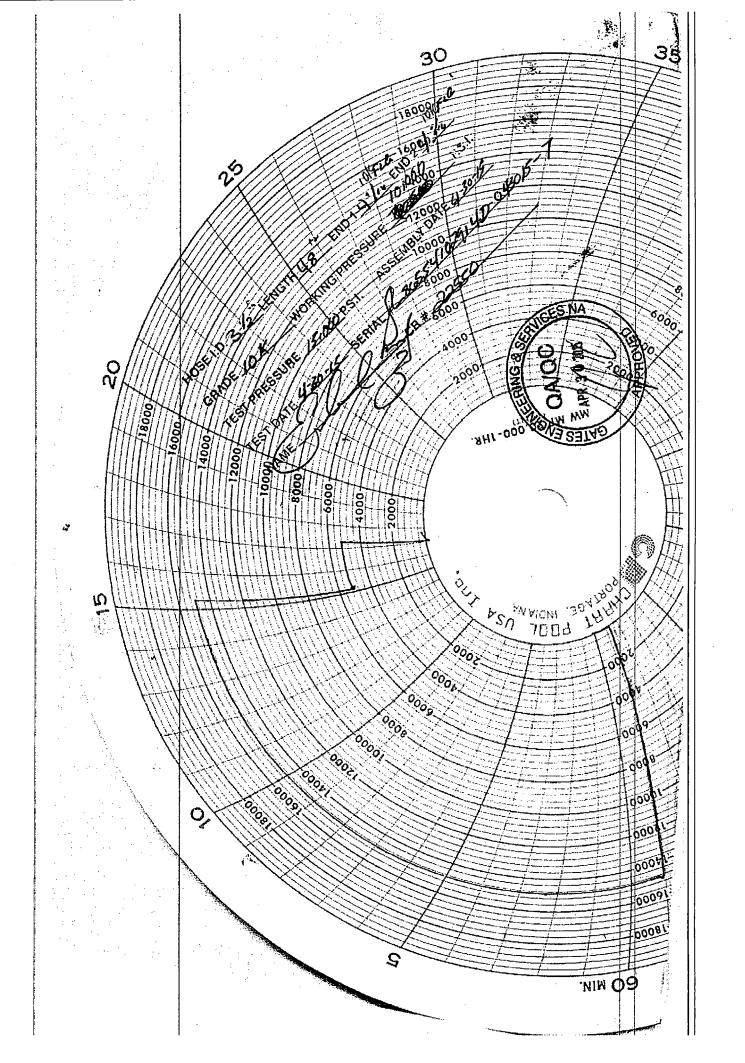
Signature:

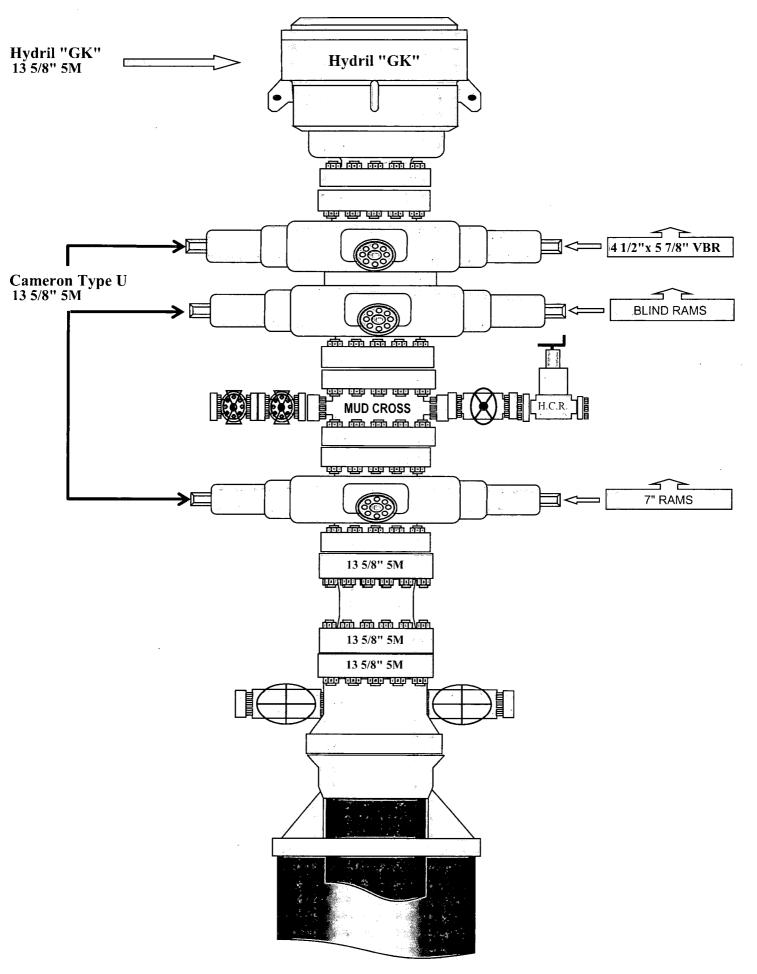
QUALITY /

4/30/2015

Produciton:

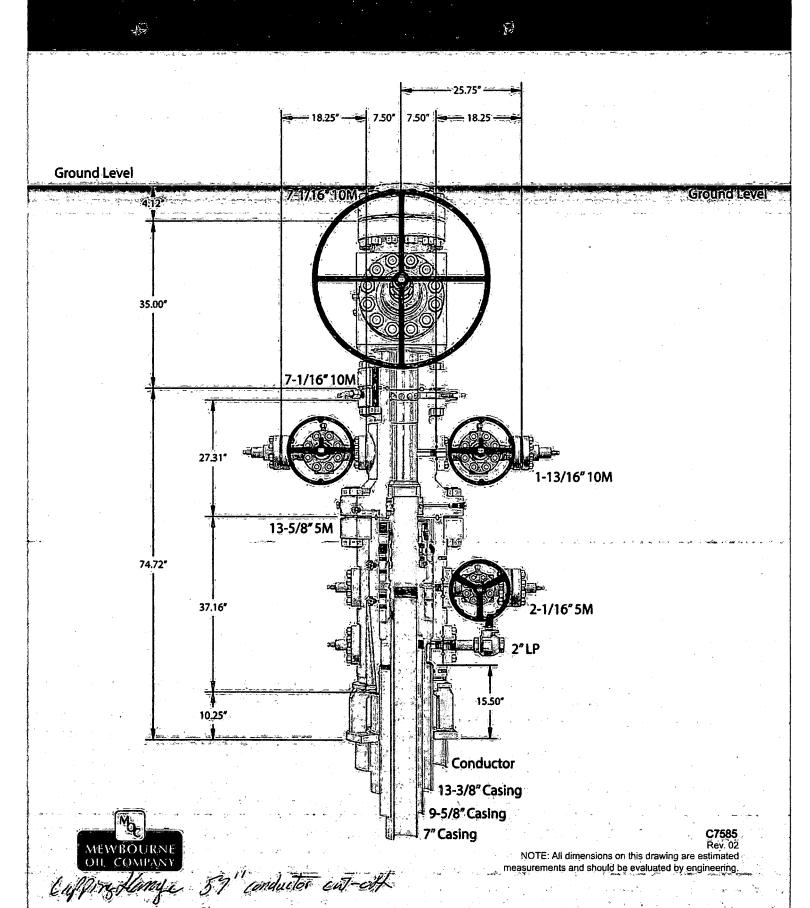
Date:


Signature :


PRODUCTION

. 4/30/2018

Form PTC - 01 Rev.D 2



13-5/8" MN-DS Wellhead System

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Casing Program

Hole	Casing Interval		Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)		Anti-Service	Collapse	Burst	Tension	Tension
17.5"	0'	425'	13.375"	48	H40	STC	3.48	7.83	15.78	26.52
12.25"	0'	2440'	9.625"	36	J55	LTC	1.59	2.77	5.16	6.42
8.75"	0'	9580'	7"	26	HCP110	LTC	1.67	2.13	2.62	3.33
6.125"	8993'	16,988'	4.5"	13.5	P110	LTC	1.81	2.10	3.13	3.91
			BLM Minimum Safety Factor				1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N					
Is casing new? If used, attach certification as required in Onshore Order #1	Y					
Is casing API approved? If no, attach casing specification sheet.	Y					
Is premium or uncommon casing planned? If yes attach casing specification sheet.						
Does the above casing design meet or exceed BLM's minimum standards? If not provide						
justification (loading assumptions, casing design criteria).						
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y					
collapse pressure rating of the casing?						
Company of the control of the contro						
Is well located within Capitan Reef?	N					
If yes, does production casing cement tie back a minimum of 50' above the Reef?						
Is well within the designated 4 string boundary.						
	A					
Is well located in SOPA but not in R-111-P?	N					
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back						
500' into previous casing?						
Is well located in R-111-P and SOPA?	N					
If yes, are the first three strings cemented to surface?						
Is 2 nd string set 100' to 600' below the base of salt?						
Is well located in high Cave/Karst?	Y					
If yes, are there two strings cemented to surface?	Y					
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?						
Is well located in critical Cave/Karst?	N					
If yes, are there three strings cemented to surface?						

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	425'	13.375"	48	H40	STC	3.48	7.83	15.78	26.52
12.25"	0'	2440'	9.625"	36	J55	LTC	1.59	2.77	5.16	6.42
8.75"	0'	9580'	7"	26	HCP110	LTC	1.67	2.13	2.62	3.33
6.125"	8993'	16,988'	4.5"	13.5	P110	LTC	1.81	2.10	3.13	3.91
			BLM Minimum Safety Factor				1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the	Y
collapse pressure rating of the casing?	
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	1
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Y
	-
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	Constant of the Constant
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Casing Program

Hole	Casing Interval		Csg.	sg. Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	To	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	425'	13.375"	48	H40	STC	3.48	7.83	15.78	26.52
12.25"	0'	2440'	9.625"	36	J55	LTC	1.59	2.77	5.16	6.42
8.75"	0'	9580'	7"	26	HCP110	LTC	1.67	2.13	2.62	3.33
6.125"	8993'	16,988'	4.5"	13.5	P110	LTC	1.81	2.10	3.13	3.91
			BLM Minimum Safety Factor				1.125	1	1.6 Dry	1.6 Dry
								:	1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide	Y
justification (loading assumptions, casing design criteria).	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
	3 3 3
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back	
500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	<u> </u>

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Casing Program

Hole	Casing Interval		Csg.	Weight	Grade	Conn.	SF	SF ·	SF Jt	SF Body
Size	From	To .	Size	(lbs)	Sept to the second		Collapse	Burst	Tension	Tension
17.5"	0'	425'	13.375"	48	H40	STC	3.48	7.83	15.78	26.52
12.25"	0'	2440'	9.625"	36	J55	LTC	1.59	2.77	5.16	6.42
8.75"	0'	9580'	7"	26	HCP110	LTC	1.67	2.13	2.62	3.33
6.125"	8993'	16,988'	4.5"	13.5	P110	LTC	1.81	2.10	3.13	3.91
			BLM Minimum Safety Factor				1.125	1	1.6 Dry	1.6 Dry
									1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N					
Is casing new? If used, attach certification as required in Onshore Order #1	Y					
Is casing API approved? If no, attach casing specification sheet.						
Is premium or uncommon casing planned? If yes attach casing specification sheet.						
Does the above casing design meet or exceed BLM's minimum standards? If not provide						
justification (loading assumptions, casing design criteria).						
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y					
Is well located within Capitan Reef?	N					
If yes, does production casing cement tie back a minimum of 50' above the Reef?						
Is well within the designated 4 string boundary.						
Is well located in SOPA but not in R-111-P?	N					
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?						
Is well located in R-111-P and SOPA?	N					
If yes, are the first three strings cemented to surface?						
Is 2 nd string set 100' to 600' below the base of salt?						
Is well located in high Cave/Karst?	Y					
If yes, are there two strings cemented to surface?	Y					
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?						
Is well located in critical Cave/Karst?	N					
If yes, are there three strings cemented to surface?	1					

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source. The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate easing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer.
- 2. <u>Protective Equipment for Essential Personnel</u>

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u>

Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. <u>Visual Warning Systems</u>

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

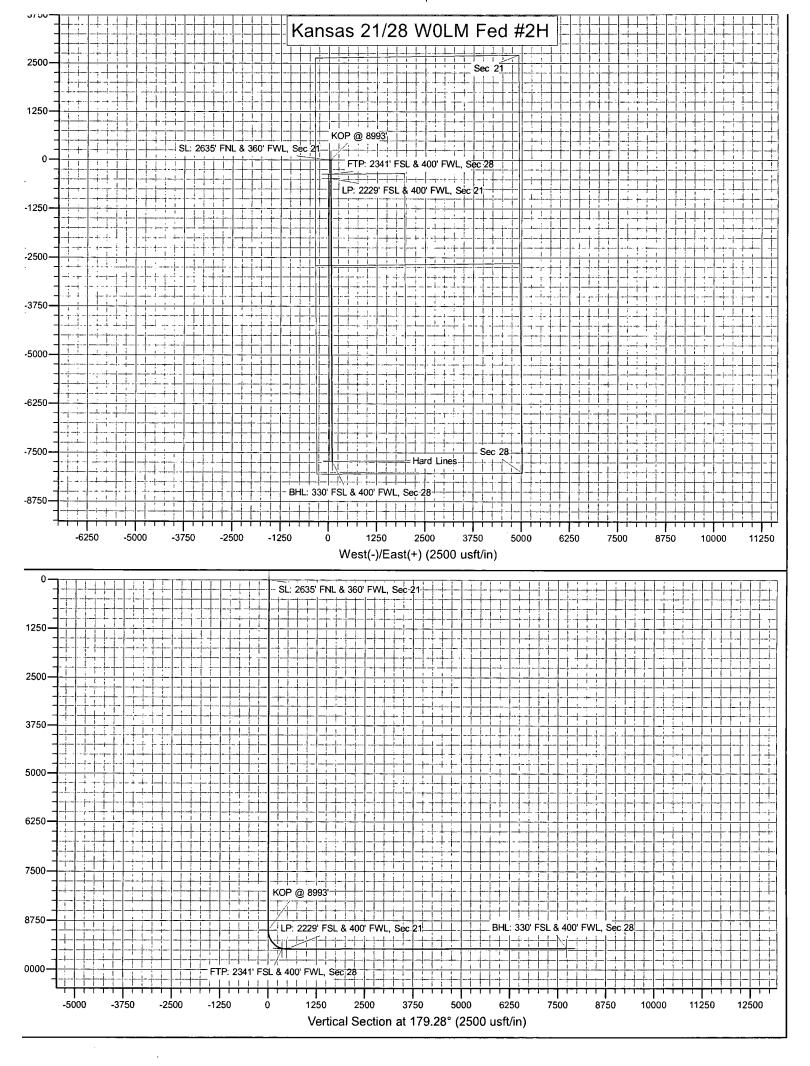
The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.


7. Well Testing

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medical Center	of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Office	575-393-5905
	Fax	575-397-6252
	2 nd Fax	575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

MAY 2 2 2019

DISTRICT II-ARTESIA O.C.D

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Kansas 21/28 W0LM Fed #2H

Sec 21, T24S, R28E

SL: 2635' FNL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Plan: Design #1

Standard Planning Report

27 April, 2018

Planning Report

Database: Company: Hobbs

Mewbourne Oil Company

Project: Site:

Eddy County, New Mexico NAD 83 Kansas 21/28 W0LM Fed #2H

Well: Sec 21, T24S, R28E BHL: 330' FSL & 400' FWL, Sec 28 Wellbore:

Design: Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Site Kansas 21/28 W0LM Fed #2H

WELL @ 3058.0usft (Original Well Elev) WELL @ 3058.0usft (Original Well Elev)

Minimum Curvature

Project

Eddy County, New Mexico NAD 83

Kansas 21/28 W0LM Fed #2H

Map System: Geo Datum:

US State Plane 1983 North American Datum 1983 System Datum:

Mean Sea Level

Map Zone:

New Mexico Eastern Zone

Site Site Position:

Мар

+N/-S

+E/-W

Design #1

Northing: Easting:

437,785.00 usft 613,495.00 usft

Latitude: Longitude:

32.2033329 -104.1000422

Position Uncertainty:

0.0 usft Slot Radius:

13-3/16 "

Grid Convergence:

0.12 °

Well **Well Position**

From:

Sec 21, T24S, R28E

0.0 usft 0.0 usft

Northing: Easting:

4/26/2018

437,785.00 usft 613,495.00 usft Latitude: Longitude:

32.2033329 -104.1000422

Position Uncertainty

0.0 usft Wellhead Elevation: 3,058.0 usft

Ground Level:

3,031.0 usft

Wellbore

BHL: 330' FSL & 400' FWL, Sec 28

Model Name

IGRF2010

Sample Date

Declination (°) 6.98 Dip Angle (°)

Field Strength (nT)

47,866

Design Audit Notes:

Magnetics

Version:

Phase:

PROTOTYPE

Tie On Depth:

0.0

59.91

Vertical Section:

Depth From (TVD) (usft) 0.0

+N/-S

(usft)

0.0

+E/-W

(usft)

0.0

Direction

(°) 179.28

Plan Sections										
· · · · · · · · · · · · · · · · · · ·	ination	Azimuth	Vertical Depth	+N/-S	+E/-W	Dogleg Rate	Build Rate	Turn Rate	TFO	eren er
(usft)	(°) -	25.5 (7) (1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	(°)	Target
0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.00	0.00	0.00	0.00	
2,523.6	0.35	90.00	2,523.6	0.0	0.1	1.50	1.50	0.00	90.00	
8,969.0	0.35	90.00	8,968.9	0.0	39.9	0.00	0.00	0.00	0.00	
8,992.7	0.00	0.00	8,992.5	0.0	40.0	1.50	-1.50	0.00	180.00	KOP @ 8993'
9,743.5	90.10	179.58	9,470.0	-478.3	43.5	12.00	12.00	0.00	179.58	
16,987.4	90.10	179.58	9,457.0	-7,722.0	97.0	0.00	0.00	0.00	0.00	BHL: 330' FSL & 400'

Database: Company:

Site:

Design:

Hobbs

Mewbourne Oil Company

Eddy County, New Mexico NAD 83

Project: Kansas 21/28 W0LM Fed #2H

Design #1

Sec 21, T24S, R28E

Well: BHL: 330' FSL & 400' FWL, Sec 28 Wellbore:

Local Co-ordinate Reference:

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

Site Kansas 21/28 W0LM Fed #2H

WELL @ 3058.0usft (Original Well Elev) WELL @ 3058.0usft (Original Well Elev)

	77			77.
Dian	nad	811	~	w

Measured			Vertical			Vertical	Dogleg	Build	Turn	
Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00	
SL: 2635' FN	IL & 360' FWL, Se	c 21			,- **					
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00	
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00	•
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00	
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00	
500.0	0.00	0.00	500.0							
				0.0	0.0	0.0	0.00	0.00	0.00	
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00	
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00	
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,800.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00	
1,900.0	0.00	0.00	1,900.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,000.0	0.00	0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,100.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,300.0	0.00	0.00	2,300.0							
2,400.0	0.00	0.00	2,400.0	0.0 0.0	0.0 0.0	0.0 0.0	0.00 0.00	0.00 0.00	0.00 0.00	
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00	
2,523.6	0.35	90.00	2,523.6	0.0	0.1	0.0	1.50	1.50	0.00	
2,600.0	0.35	90.00	2,600.0	0.0	0.5	0.0	0.00	0.00	0.00	
2,700.0	0.35	90.00	2,700.0	0.0	1.2	0.0	0.00	0.00	0.00	
2,800.0	0.35	90.00	2,800.0	0.0	1.8	0.0	0.00	0.00	0.00	
2,900.0	0.35	90.00	2,900.0	0.0	2.4	0.0	0.00	0.00	0.00	
3,000.0	0.35	90.00	3,000.0	0.0	3.0	0.0	0.00	0.00	0.00	
3,100.0	0.35	90.00	3,100.0	0.0	3.6	0.0	0.00	0.00	0.00	
3,200.0	0.35									
3,300.0	0.35	90.00 90.00	3,200.0 3,300.0	0.0 0.0	4.3 4.9	0.1	0.00 0.00	0.00	0.00	
			•			0.1		0.00	0.00	
3,400.0	0.35	90.00	3,400.0	0.0	5.5	0.1	0.00	0.00	0.00	
3,500.0	0.35	90.00	3,500.0	0.0	6.1	0.1	0.00	0.00	0.00	
3,600.0	0.35	90.00	3,600.0	0.0	6.7	0.1	0.00	0.00	0.00	
3,700.0	0.35	90.00	3,700.0	0.0	7.3	0.1	0.00	0.00	0.00	
3,800.0	0.35	90.00	3,800.0	0.0	8.0	0.1	0.00	0.00	0.00	
3,900.0	0.35	90.00	3,900.0	0.0	8.6	0.1	0.00	0.00	0.00	
4,000.0	0.35	90.00	4,000.0	0.0	9.2	0.1	0.00	0.00	0.00	
4,100.0	0.35	90.00	4,100.0	0.0	9.8	0.1	0.00	0.00	0.00	
4,200.0	0.35	90.00	4,200.0	0.0	10.4	0.1	0.00	0.00	0.00	
4,200.0	0.35	90.00	4,200.0	0.0	11.1	0.1	0.00	0.00	0.00	
4,400.0	0.35	90.00	4,400.0	0.0	11.7	0.1	0.00	0.00	0.00	
4,500.0	0.35	90.00	4,500.0	0.0	12.3	0.2	0.00	0.00	0.00	
4,600.0	0.35	90.00	4,600.0	0.0	12.9	0.2	0.00	0.00	0.00	
4,700.0	0.35	90.00	4,700.0	0.0	13.5	0.2	0.00	0.00	0.00	
4,800.0	0.35	90.00	4,800.0	0.0	14.1	0.2	0.00	0.00	0.00	
4,900.0	0.35	90.00	4,900.0	0.0	14.8	0.2	0.00	0.00	0.00	
5,000.0	0.35	90.00	5,000.0	0.0	15.4	0.2	0.00	0.00	0.00	
5,100.0	0.35	90.00	5,100.0	0.0	16.0	0.2	0.00	0.00	0.00	

Database:

Hobbs

HODDS

Company: Mewbourne Oil Company
Project: Eddy County, New Mexico

Site:

Eddy County, New Mexico NAD 83 Kansas 21/28 W0LM Fed #2H

Sec 21, T24S, R28E

Wellbore: Design:

Well:

BHL: 330' FSL & 400' FWL, Sec 28

Design #1

Local Co-ordinate Reference:

TVD Reference:

North Reference:

Survey Calculation Method:

Site Kansas 21/28 W0LM Fed #2H

WELL @ 3058.0usft (Original Well Elev) WELL @ 3058.0usft (Original Well Elev)

Grid

anned Survey									
Measured		8	Vertical			Vertical	Dogleg	Build	Turn
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W.	O 41 .	Rate	Rate	Rate
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
5,200.0	0.35	90.00	5,199.9	0.0	16.6	0.2	0.00	0.00	0.00
5,300.0	0.35	90.00	5,299.9	0.0	17.2	0.2	0.00	0.00	0.00
5,400.0	0.35	90.00	5,399.9	0.0	17.9	0.2	0.00	0.00	0.00
5,500.0	0.35	90.00	5,499.9	0.0	18.5	0.2	0.00	0.00	0.00
5,600.0	0.35	90.00	5,499.9	0.0	19.1		0.00	0.00	
5,700.0	0.35	90.00	5,599.9 5,699.9	0.0		0.2	0.00		0.00
5,800.0	0.35	90.00	5,699.9 5,799.9	0.0	19.7 20.3	0.2 0.3	0.00	0.00 0.00	0.00 0.00
5,900.0	0.35	90.00	5,899.9	0.0	21.0	0.3	0.00	0.00	0.00
6,000.0	0.35	90.00	5,999.9	0.0	21.6	0.3	0.00	0.00	0.00
6,100.0	0.35	90.00	6,099.9	0.0	22.2	0.3	0.00	0.00	0.00
6,200.0	0.35	90.00	6,199.9	0.0	22.8	0.3	0.00	0.00	0.00
6,300.0	0.35	90.00	6,299.9	0.0	23.4	0.3	0.00	0.00	0.00
6,400.0	0.35	90.00	6,399.9	0.0	24.0	0.3	0.00	0.00	0.00
6,500.0	0.35	90.00	6,499.9	0.0	24.0 24.7	0.3	0.00	0.00	0.00
6,600.0	0.35	90.00	6,599.9	0.0	24.7 25.3	0.3	0.00	0.00	0.00
6,700.0	0.35	90.00	•						
6,800.0	0.35	90.00	6,699.9 6,799.9	0.0 0.0	25.9 26.5	0.3	0.00	0.00	0.00
	0.35	90.00	0,799.9	0.0	26.5	0.3	0.00	0.00	0.00
6,900.0	0.35	90.00	6,899.9	0.0	27.1	0.3	0.00	0.00	0.00
7,000.0	0.35	90.00	6,999.9	0.0	27.8	0.3	0.00	0.00	0.00
7,100.0	0.35	90.00	7,099.9	0.0	28.4	0.4	0.00	0.00	0.00
7,200.0	0.35	90.00	7,199.9	0.0	29.0	0.4	0.00	0.00	0.00
7,300.0	0.35	90.00	7,299.9	0.0	29.6	0.4	0.00	0.00	0.00
7 400 0			7,000,0	0.0	00.0	0.4			
7,400.0	0.35	90.00	7,399.9	0.0	30.2	0.4	0.00	0.00	0.00
7,500.0	0.35	90.00	7,499.9	0.0	30.8	0.4	0.00	0.00	0.00
7,600.0	0.35	90.00	7,599.9	0.0	31.5	0.4	0.00	0.00	0.00
7,700.0	0.35	90.00	7,699.9	0.0	32.1	0.4	0.00	0.00	0.00
7,800.0	0.35	90.00	7,799.9	0.0	32.7	0.4	0.00	0.00	0.00
7,900.0	0.35	90.00	7,899.9	0.0	33.3	0.4	0.00	0.00	0.00
8,000.0	0.35	90.00	7,999.9	0.0	33.9	0.4	0.00	0.00	0.00
8,100.0	0.35	90.00	8,099.9	0.0	34.6	0.4	0.00	0.00	0.00
8,200.0	0.35	90.00	8,199.9	0.0	35.2	0.4	0.00	0.00	0.00
8,300.0	0.35	90.00	8,299.9	0.0	35.8	0.4	0.00	0.00	0.00
			•						
8,400.0	0.35	90.00	8,399.9	0.0	36.4	0.5	0.00	0.00	0.00
8,500.0	0.35	90.00	8,499.9	0.0	37.0	0.5	0.00	0.00	0.00
8,600.0	0.35	90.00	8,599.9	0.0	37.6	0.5	0.00	0.00	0.00
8,700.0	0.35 0.35	90.00	8,699.9	0.0	38.3	0.5	0.00	0.00	0.00
8,800.0	0.35	90.00	8,799.9	0.0	38.9	0.5	0.00	0.00	0.00
8,900.0	0.35	90.00	8,899.9	0.0	39.5	0.5	0.00	0.00	0.00
8,969.0	0.35	90.00	8,968.9	0.0	39.9	0.5	0.00	0.00	0.00
8,992.7	0.00	0.00	8,992.5	0.0	40.0	0.5	1.50	-1.50	0.00
KOP @ 8993	3'								
9,000.0	0.88	179.58	8,999.9	-0.1	40,0	0.6	12.00	12.00	0.00
9,100.0	12.88	179.58	9,099.0	-12.0	40.1	12.5	12.00	12.00	0.00
•									
9,200.0	24.88	179.58	9,193.4	-44.3	40.3	44.8	12.00	12.00	0.00
9,300.0	36.88	179.58	9,279.1	-95.5	40.7	96.0	12.00	12.00	0.00
9,400.0	48.88	179.58	9,352.2	-163.5	41.2	164.0	12.00	12.00	0.00
9,500.0	60.88	179.58	9,409.7	-245.1	41.8	245.6	12.00	12.00	0.00
9,600.0	72.88	179.58	9,448.8	-336.9	42.5	337.4	12.00	12.00	0.00
9,630.1	76.50	179.58	9,456.8	-366.0	42.7	366.5	12.00	12.00	0.00
The state of the second commence of the second		man a constant of the second of the second	3,430.0	-300.0	46.1	300.3	12.00	12,00	
	SL & 400' FWL,		0.400.4			455.4			
9,700.0	84.88	179.58	9,468.1	-434.8	43.2	435.4	12.00	12.00	0.00
9,743.5	90.10	179.58	9,470.0	-4 78.3	43.5	478.8	12.00	12.00	0.00

Database: Company: Hobbs

Mewbourne Oil Company

Project: Eddy County, New Mexico NAD 83 Site: Kansas 21/28 W0LM Fed #2H Well:

Sec 21, T24S, R28E

Wellbore: Design:

BHL: 330' FSL & 400' FWL, Sec 28

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Site Kansas 21/28 W0LM Fed #2H

WELL @ 3058.0usft (Original Well Elev) WELL @ 3058.0usft (Original Well Elev)

Grid

Planned	

Planned Survey											
Measured Depth	: : : : : : : : : : : : : : : : : : :	A	Vertical Depth		, j	Vertical Section	Dogleg Rate	Build	Turn	+1	
(usft)	Inclination (°)	Azimuth (°)	(usft)	+N/-S (usft)	+E/-W (usft)	(usft)	(°/100usft)	Rate (°/100usft)	Rate (°/100usft)		
9,800.0	90.10	179.58	9,469.9	-534.8	43.9	535.3	0.00	0.00	0.00		
9,900.0	90.10	179.58	9,469.7	-634.8	44.7	635.3	0.00	0.00	0.00		
10,000.0	90.10	179.58	9,469.5	-734.8	45.4	735.3	0.00	0.00	0.00		
10,100.0	90.10	179.58	9,469.4	-834.8	46.2	835.3	0.00	0.00	0.00		
10,200.0	90.10	179.58	9,469.2	-934.8	46.9	935.3	0.00	0.00	0.00		
10,300.0	90.10	179.58	9,469.0	-1,034.8	47.6	1,035.3	0.00	0.00	0.00		
10,400.0	90.10	179.58	9,468.8	-1,134.8	48.4	1,135.3	0.00	0.00	0.00		
10,500.0	90.10	179.58	9,468.6	-1,234.8	49.1	1,235.3	0.00	0.00	0.00		
10,600.0	90.10	179.58	9,468.5	-1,334.8	49.9	1,335.3	0.00	0.00	0.00		
10,700.0	90.10	179.58	9,468.3	-1,434.8	50.6	1,435.3	0.00	0.00	0.00		
10,800.0	90.10	179.58	9,468.1	-1,534.8	51.3	1,535.3	0.00	0.00	0.00		
10,900.0	90.10	179.58	9,467.9	-1,634.8	52.1	1,635.3	0.00	0.00	0.00		
11,000.0	90.10	179.58	9,467.7	-1,734.8	52.8	1,735.3	0.00	0.00	0.00		
11,100.0	90.10	179.58	9,467.6	-1,834.8	53.5	1,835.3	0.00	0.00	0.00		
11,200.0	90.10	179.58	9,467.4	-1,934.7	54.3	1,935.3	0.00	0.00	0.00		
11,300.0	90.10	179.58	9,467.2	-2,034.7	55.0	2,035.3	0.00	0.00	0.00		
11,400.0	90.10	179.58	9,467.0	-2,134.7	55.8	2,135.3	0.00	0.00	0.00		
11,500.0	90.10	179.58	9,466.8	-2,234.7	56.5	2,235.3	0.00	0.00	0.00		
11,600.0	90.10	179.58	9,466.7	-2,334,7	57.2	2,335.3	0.00	0.00	0.00		
11,700.0	90.10	179.58	9,466.5	-2,434.7	58.0	2,435.3	0.00	0.00	0.00		
11,800.0	90.10	179.58	9,466.3	-2,534.7	58.7	2,535.3	0.00	0.00	0.00		
11,900.0	90.10	179.58	9,466.1	-2,634.7	59.4	2,635.3	0.00	0.00	0.00		
12,000.0	90.10	179.58	9.466.0	-2,734.7	60.2	2,735.3	0.00	0.00	0.00		
12,100.0	90.10	179.58	9,465.8	-2,834.7	60.9	2,735.3	0.00	0.00	0.00		
12,200.0	90.10	179.58	9,465.6	-2,934.7	61.7	2,935.3	0.00	0.00	0.00		
12,300.0	90.10	179.58	9,465.4	-3,034.7	62.4	3,035.3	0.00	0.00	0.00		
12,400.0	90.10	179.58	9,465.2	-3,134.7	63.1	3,135.3	0.00	0.00	0.00		
12,500.0	90.10	179.58	9,465.1	-3,234.7	63.9	3,235.3	0.00	0.00	0.00		
12,600.0	90.10	179.58	9,464.9	-3,334.7	64.6	3,335.3	0.00	0.00	0.00		
12,700.0	90.10	179.58	9,464.7	-3,434.7	65.4	3,435.3	0.00	0.00	0.00		
12,800.0	90.10	179.58	9,464.5	-3,534.7	66.1	3,535.3	0.00	0.00	0.00		
12,900.0	90.10	179.58	9,464.3	-3,634.7	66.8	3,635.3	0.00	0.00	0.00		
13,000.0	90.10	179.58	9,464.2	-3,734.7	67.6	3,735.3	0.00	0.00	0.00		
13,100.0	90.10	179.58	9,464.0	-3,834.7	68.3	3,835.2	0.00	0.00	0.00		
13,200.0	90.10	179.58	9,463.8	-3,934.7	69.0	3,935.2	0.00	0.00	0.00		
13,300.0	90.10	179.58	9,463.6	-4,034.7	69.8	4,035.2	0.00	0.00	0.00		
13,400.0	90.10	179.58	9,463.4	-4,134.7	70.5	4,135.2	0.00	0.00	0.00		
13,500.0	90.10	179.58	9,463.3	-4,234.7	71.3	4,235.2	0.00	0.00	0.00		
13,600.0	90.10	179.58	9,463.1	-4,334.7	72.0	4,335.2	0.00	0.00	0.00		
13,700.0	90.10	179.58	9,462.9	-4,434.7	72.7	4,435.2	0.00	0.00	0.00		
13,800.0	90.10	179.58	9,462.7	-4,534.7	73.5	4,535.2	0.00	0.00	0.00		
13,900.0	90.10	179.58	9,462.5	-4,634.7	74.2	4,635.2	0.00	0.00	0.00		
14,000.0	90.10	179.58	9,462.4	-4,734.7	74.9	4,735.2	0.00	0.00	0.00		
14,100.0	90.10	179.58	9,462.2	-4,834.7	75.7	4,835.2	0.00	0.00	0.00		
14,200.0	90.10	179.58	9,462.0	-4,934.7	76.4	4,935.2	0.00	0.00	0.00		
14,300.0	90.10	179.58	9,461.8	-5,034.7	77.2	5,035.2	0.00	0.00	0.00		
14,400.0	90.10	179.58	9,461.6	-5,134.7	77.9	5,135.2	0.00	0.00	0.00		
14,500.0	90.10	179.58	9,461.5	-5,234.7	78.6	5,235.2	0.00	0.00	0.00		
14,600.0	90.10	179.58	9,461.3	-5,334.7	79.4	5,335.2	0.00	0.00	0.00		
14,700.0	90.10	179.58	9,461.1	-5,434.6	80.1	5,435.2	0.00	0.00	0.00		
14,800.0	90.10	179.58	9,460.9	-5,534.6	80.9	5,535.2	0.00	0.00	0.00		
14,900.0	90.10	179.58	9,460.7	-5,634.6	81.6	5,635.2	0.00	0.00	0.00		
15,000.0	90.10	179.58	9,460.6	-5,734.6	82.3	5,735.2	0.00	0.00	0.00		
15,100.0	90.10	179.58	9,460.4	-5,734.6 -5,834.6	83.1	5,735.2 5,835.2	0.00	0.00	0.00		

Database: Company: Hobbs

Mewbourne Oil Company

Project: Site: Eddy County, New Mexico NAD 83 Kansas 21/28 W0LM Fed #2H

Sec 21, T24S, R28E

Wellbore: Design:

Well:

BHL: 330' FSL & 400' FWL, Sec 28

Design #1

Local Co-ordinate Reference:

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Site Kansas 21/28 W0LM Fed #2H

WELL @ 3058.0usft (Original Well Elev)
WELL @ 3058.0usft (Original Well Elev)

Grid

anned Survey		. j.	the state of the s		in a second		A The second				
Measur	èd			Vertical		* .	Vertical	Dogleg	Build	Turn	
Depth	Inclina	tion	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate	
(usft)	, (°)	7.	(°)	(usft)	`. (usft) · · `.	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)	Ç+.
15,20	0.0	90.10	179.58	9,460.2	-5,934.6	83.8	5,935.2	0.00	0.00	0.00	
15,30	0.00	90.10	179.58	9,460.0	-6,034.6	84.5	6,035.2	0.00	0.00	0.00	
15,40	0.00	90.10	179.58	9,459.8	-6,134.6	85.3	6,135.2	0.00	0.00	0.00	
15,50	0.00	90.10	179.58	9,459.7	-6,234.6	86.0	6,235.2	0.00	0.00	0.00	
15,60	0.00	90.10	179.58	9,459.5	-6,334.6	86.8	6,335.2	0.00	0.00	0.00	
15,70	0.00	90.10	179.58	9,459.3	-6,434.6	87.5	6,435.2	0.00	0.00	0.00	
15,80	0.00	90.10	179.58	9,459.1	-6,534.6	88.2	6,535.2	0.00	0.00	0.00	
15,90	0.00	90.10	179.58	9,459.0	-6,634.6	89.0	6,635.2	0.00	0.00	0.00	
16,00	0.00	90.10	179.58	9,458.8	-6,734.6	89.7	6,735.2	0.00	0.00	0.00	
16,10	0.00	90.10	179.58	9,458.6	-6,834.6	90.4	6,835.2	0.00	0.00	0.00	
16,20	0.0	90.10	179.58	9,458.4	-6,934.6	91.2	6,935.2	0.00	0.00	0.00	
16,30	0.0	90.10	179.58	9,458.2	-7,034.6	91.9	7,035.2	0.00	0.00	0.00	
16,40	0.00	90.10	179.58	9,458.1	-7,134.6	92.7	7,135.2	0.00	0.00	0.00	
16,50	0.0	90.10	179.58	9,457.9	-7,234.6	93.4	7,235.2	0.00	0.00	0.00	
16,60	0.00	90.10	179.58	9,457.7	-7,334.6	94.1	7,335.2	0.00	0.00	0.00	
16,70	0.00	90.10	179.58	9,457.5	-7,434.6	94.9	7,435.2	0.00	0.00	0.00	
16,80	0.0	90.10	179.58	9,457.3	-7,534.6	95.6	7,535.2	0.00	0.00	0.00	
16,90	0.00	90.10	179.58	9,457.2	-7,634.6	96.4	7,635.2	0.00	0.00	0.00	
16,98	37.4	90.10	179.58	9,457.0	-7,722.0	97.0	7,722.6	0.00	0.00	0.00	

Design Targets										
Target Name - hit/miss target	Dip A	-	Dip Dir.	TVD	+N/-S	+E/-W	Northing	Easting		
- Shape	(°)) <u> </u>	(°)	(usft)	(usft)	(usft)	(usft)	(usft)	Latitude	Longitude
SL: 2635' FNL & 360' FV - plan hits target cer - Point		0.00	0.00	0.0	0.0	0.0	437,785.00	613,495.00	32.2033329	-104.1000422
KOP @ 8993' - plan hits target cer - Point	nter	0.00	0.00	8,992.5	0.0	40.0	437,785.00	613,535.00	32.2033326	-104.0999129
FTP: 2341' FSL & 400' F - plan hits target cer - Point		0.00	0.00	9,456.8	-366.0	42.7	437,419.00	613,537.71	32.2023265	-104.0999067
BHL: 330' FSL & 400' F\ - plan hits target cer - Point		0.00	0.00	9,457.0	-7,722.0	97.0	430,063.00	613,592.00	32.1821053	-104.0997828
LP: 2229' FSL & 400' FV - plan hits target cer - Point		0.00	0.00	9,470.0	-478.3	43.5	437,306.70	613,538.50	32.2020178	-104.0999049

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

1. Geologic Formations

TVD of target	9470'	Pilot hole depth	NA
MD at TD:	16,988'	Deepest expected fresh water:	50'

Basin

Formation ·	Depth (TVD)	Water/Mineral Bearing/	Hazards*
	from KB	Target Zone?	
Quaternary Fill	Surface		
Rustler	·	_	
Top of Salt			
Castile	1080	· ·	
Base of Salt			
Yates			
Capitan			
Lamar	2515	Oil	
Bell Canyon	2545		
Cherry Canyon	3385		
Manzanita Marker	3495		
Brushy Canyon	4610		
Bone Spring	6190	Oil/Gas	
1 st Bone Spring Sand	7090		
2 nd Bone Spring Sand	7950		
3 rd Bone Spring Sand	9000		
Abo			
Wolfcamp	9370	Target Zone	
Devonian			
Ellenburger			
Granite Wash			

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

2. Casing Program

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)		* * * .	Collapse	Burst	Tension	Tension
17.5"	0'	425'	13.375"	48	H40	STC	3.48	7.83	15.78	26.52
12.25"	0'	2440'	9.625"	36	J55	LTC	1.59	2.77	5.16	6.42
8.75"	0'	9580'	7"	26	HCP110	LTC	1.67	2.13	2.62	3.33
6.125"	8993'	16,988'	4.5"	13.5	P110	LTC	1.81	2.10	3.13	3.91
	BLM Mini	mum Safety F	Factor 1.	125	1 1	.6 Dry	1.6 Dry	-		
					1	.8 Wet	1.8 Wet			

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

Must have table for contingency casing

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
	** .
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	11
Is 2 nd string set 100' to 600' below the base of salt?	
	y 10.244
Is well located in high Cave/Karst?	Y
If yes, are there two strings cemented to surface?	Y
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program

Casing	# Sks	Wt.	Yld	H ₂ 0	500#	Slurry Description	
		lb/	ft3/	gal/	Comp.		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		gal	sack	sk	Strength		
					(hours)		
Surf.	155	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Inter.	345	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Prod.	320	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer +	
Stg 1						Extender	
	400	15.6	1.18	5.2	10	Tail: Class H + Retarder + Fluid Loss + Defoamer	
					ECP/DV T	'ool @ 3495'	
Prod.	60	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM	
Stg 2	100	14.8	1.34	6.3	8	Tail: Class C + Retarder	
Liner	320	11.2	2.97	18	16	Class C + Salt + Gel + Fluid Loss + Retarder +	
						Dispersant + Defoamer + Anti-Settling Agent	

A copy of cement test will be available on location at time of cement job providing pump times & compressive strengths.

Casing String	TOC	% Excess
Surface	0'	100%
Intermediate	0'	25%
Production	2240'	25%
Liner	8993'	25%

Mewbourne Oil Company, Kansas 21/28 W0LM Fed #2H Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

4. Pressure Control Equipment

N	Variance: None	

BOP installed and tested before drilling which hole?	Size?	System Rated WP	Туре		Tested to:
	13-5/8"	3-5/8" 5M	Annular	X	2500#
			Blind Ram	X	
12-1/4"			Pipe Ram	X	5000#
			Double Ram		5000#
			Other*		

^{*}Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X Formation integrity test will be performed per Onshore Order #2.
On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.

Mewbourne Oil Company, Kansas 21/28 W0LM Fed #2H Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.			
	N Are anchors required by manufacturer?			
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.			
	Provide description here: See attached schematic.			

5. Mud Program

T	VD	Type	Weight (ppg)	Viscosity	Water Loss	
From	To					
0	425'	FW Gel	8.6-8.8	28-34	N/C	
425'	2440'	Saturated Brine	10.0	28-34	N/C	
2440'	8993'	Cut Brine	8.6-9.5	28-34	N/C	
8993'	9470'	OBM	10.0-12.0	30-40	<10cc	

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	Pason/PVT/Visual Monitoring
of fluid?	_

6. Logging and Testing Procedures

Logg	Logging, Coring and Testing.				
X	Will run GR/CNL from KOP (8993') to surface (horizontal well – vertical portion of				
	hole). Stated logs run will be in the Completion Report and submitted to the BLM.				
	No Logs are planned based on well control or offset log information.				
	Drill stem test? If yes, explain				
	Coring? If yes, explain				

Addi	tional logs planned	Interval
X	Gamma Ray	8993' (KOP) to TD
	Density	

Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

CBL	
Mud log	
PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	5909 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole. Weighted mud for possible over-pressure in Wolfcamp formation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

10111	matters will be provided to the BEM.				
	H2S is present				
X	H2S Plan attached				

8. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

Attachments

Mewbourne Oil Company, Kansas 21/28 W0LM Fed #2H Sec 21, T24S, R28E

SL: 2635' FSL & 360' FWL, Sec 21 BHL: 330' FSL & 400' FWL, Sec 28

Directional Plan		
	Other, describe	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

SUPO Data Report

05/20/2019

APD ID: 10400008156

Submission Date: 12/07/2016

Highlighted data reflects the most

recent changes

Well Name: KANSAS 21/28 W0LM FED COM

Operator Name: MEWBOURNE OIL COMPANY

Well Number: 2H

Show Final Text

Well Type: CONVENTIONAL GAS WELL

Well Work Type: Drill

Section 1 - Existing Roads

Will existing roads be used? YES

Existing Road Map:

Kansas21_28W0LMFedCom2H_existingroadmap 20180510141928.pdf

Existing Road Purpose: ACCESS,FLUID TRANSPORT

Row(s) Exist? NO

ROW ID(s)

ID:

Do the existing roads need to be improved? NO

Existing Road Improvement Description:

Existing Road Improvement Attachment:

Section 2 - New or Reconstructed Access Roads

Will new roads be needed? NO

Section 3 - Location of Existing Wells

Existing Wells Map? YES

Attach Well map:

Kansas21 28W0LMFedCom2H existingwellmap 20180510142011.pdf

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Existing Wells description:

Section 4 - Location of Existing and/or Proposed Production Facilities

Submit or defer a Proposed Production Facilities plan? SUBMIT

Production Facilities description: a. All permanent, lasting more than 6 months, above ground structures including but not limited to pumpjacks, storage tanks, pipeline risers, meter housing, etc. that are not subject to safety requirements will be painted a non-reflective paint color that blends in with the surrounding landscape. The paint color will be one of the colors from the BLM Standard Environmental Colors chart selected by the BLM authorized officer. b. All proposed production facilities that are located on the well pad will be strategically placed to allow for maximum interim reclamation, recontouring, and revegetation of the well location. c. Production from the proposed well will be located on the East edge of location. d. If any plans change regarding the production facility or other infrastructure (pipeline, electric line, etc.), we will submit a sundry notice or right of way (if applicable) prior to installation of construction. e. An electric line will be applied for through a sundry notice or BLM right of way at a later date.

Production Facilities map:

Kansas21 28W0LMFedCom2H productionfacilitymap 20180510142037.pdf

Section 5 - Location and Types of Water Supply

Water Source Table

Water source use type: DUST CONTROL,

Water source type: IRRIGATION

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type:

Source longitude: -104.04341

Source latitude: 32.193806

Source datum: NAD83

Water source permit type: WATER WELL

Source land ownership: PRIVATE

Water source transport method: TRUCKING

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 2152 Source volume (acre-feet): 0.27737793

Source volume (gal): 90384

Water source use type: DUST CONTROL, Water source type: IRRIGATION

INTERMEDIATE/PRODUCTION CASING, STIMULATION, SURFACE

CASING

Describe type: Source longitude: -104,04341

Source latitude: 32.193806

Source datum: NAD83

Water source permit type: WATER WELL

Source land ownership: FEDERAL

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Water source transport method: TRUCKING

Source transportation land ownership: COMMERCIAL

Water source volume (barrels): 2152

Source volume (acre-feet): 0.27737793

Source volume (gal): 90384

Water source and transportation map:

Kansas21_28W0LMFedCom2H_watersourceandtransmap_20180510142054.pdf

Water source comments: Both sources shown on one map.

New water well? NO

New Water Well Info

Well latitude:

Well Longitude:

Well datum:

Well target aquifer:

Est. depth to top of aquifer(ft):

Est thickness of aquifer:

Aquifer comments:

Aquifer documentation:

Well depth (ft):

Well casing type:

Well casing outside diameter (in.):

Well casing inside diameter (in.):

New water well casing?

Used casing source:

Drilling method:

Drill material:

Grout material:

Grout depth:

Casing length (ft.):

Casing top depth (ft.):

Well Production type:

Completion Method:

Water well additional information:

State appropriation permit:

Additional information attachment:

Section 6 - Construction Materials

Construction Materials description: Caliche

Construction Materials source location attachment:

Kansas21_28W0LMFedCom2H_calichesourceandtransmap 20180510142119.pdf

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Section 7 - Methods for Handling Waste

Waste type: SEWAGE

Waste content description: Human waste & grey water

Amount of waste: 1500

gallons

Waste disposal frequency: Weekly

Safe containment description: 2,000 gallon plastic container

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: City of Carlsbad Water Treatment facility

Waste type: GARBAGE

Waste content description: Garbage & trash

Amount of waste: 1500 pounds

Waste disposal frequency: One Time Only

Safe containment description: Enclosed trash trailer

Safe containmant attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: Waste Management facility in Carlsbad.

Waste type: DRILLING

Waste content description: Drill cuttings

Amount of waste: 940 barrels

Waste disposal frequency: One Time Only

Safe containment description: Drill cuttings will be properly contained in steel tanks (20 yard roll off bins.)

Safe containment attachment:

Waste disposal type: HAUL TO COMMERCIAL Disposal location ownership: PRIVATE

FACILITY

Disposal type description:

Disposal location description: NMOCD approved waste disposal locations are CRI or Lea Land, both facilities are located

on HWY 62/180, Sec. 27 T20S R32E.

Reserve Pit

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Reserve Pit being used? NO

Temporary disposal of produced water into reserve pit?

Reserve pit length (ft.)

Reserve pit width (ft.)

Reserve pit depth (ft.)

Reserve pit volume (cu. yd.)

Is at least 50% of the reserve pit in cut?

Reserve pit liner

Reserve pit liner specifications and installation description

Cuttings Area

Cuttings Area being used? NO

Are you storing cuttings on location? NO

Description of cuttings location

Cuttings area length (ft.)

Cuttings area width (ft.)

Cuttings area depth (ft.)

Cuttings area volume (cu. yd.)

Is at least 50% of the cuttings area in cut?

WCuttings area liner

Cuttings area liner specifications and installation description

Section 8 - Ancillary Facilities

Are you requesting any Ancillary Facilities?: NO

Ancillary Facilities attachment:

Comments:

Section 9 - Well Site Layout

Well Site Layout Diagram:

Kansas21_28W0LMFedCom2H wellsitelayout 20180510142140.pdf

Comments:

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Section 10 - Plans for Surface Reclamation

Type of disturbance: New Surface Disturbance Multiple Well Pad Name: KANSAS 21/28 W0LM & W2LM

Multiple Well Pad Number: 2

Recontouring attachment:

Drainage/Erosion control construction: None

Drainage/Erosion control reclamation: None

Wellpad long term disturbance (acres): 5.92 Wellpad short term disturbance (acres): 1.53

Access road long term disturbance (acres): 4.39 Access road short term disturbance (acres): 0

Pipeline long term disturbance (acres): 0 Pipeline short term disturbance (acres): 0

Other long term disturbance (acres): 0 Other short term disturbance (acres): 0

Total long term disturbance: 10.31 Total short term disturbance: 1.53

Disturbance Comments: In areas to be heavily disturbed, the top 6 inches of soil material, will be stripped and stockpiled on the perimeter of the well location to keep topsoil viable, and to make redistribution of topsoil more efficient during interim reclamation. Stockpiled topsoil should include vegetative material. Topsoil will be clearly segregated and stored separately from subsoils. Contaminated soil will not be stockpiled, but properly treated and handled prior to topsoil salvaging. **Reconstruction method:** The areas planned for interim reclamation will then be recontoured to the original contour if feasible, or if not feasible, to an interim contour that blends with the surrounding topography as much as possible. Where applicable, the fill material of the well pad will be backfilled into the cut to bring the area back to the original contour. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the above ratios during interim reclamation.

Topsoil redistribution: Topsoil will be evenly respread and aggressively revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used.

Soil treatment: NA

Existing Vegetation at the well pad: Various brush & grasses

Existing Vegetation at the well pad attachment:

Existing Vegetation Community at the road: Various brush & grasses

Existing Vegetation Community at the road attachment:

Existing Vegetation Community at the pipeline: NA

Existing Vegetation Community at the pipeline attachment:

Existing Vegetation Community at other disturbances: NA

Existing Vegetation Community at other disturbances attachment:

Non native seed used? NO

Operator Name: MEWBOURNE OIL COMPANY Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H Non native seed description: Seedling transplant description: Will seedlings be transplanted for this project? NO Seedling transplant description attachment: Will seed be harvested for use in site reclamation? NO Seed harvest description: Seed harvest description attachment: **Seed Management** Seed Table Seed type: Seed source: Seed name: Source name: Source address: Source phone: Seed cultivar: Seed use location: PLS pounds per acre: Proposed seeding season:

Seed Summary
Seed Type Pounds/Acre

Total pounds/Acre:

Seed reclamation attachment:

Operator Contact/Responsible Official Contact Info

First Name: Bradley

Last Name: Bishop

Phone: (575)393-5905

Email: bbishop@mewbourne.com

Seedbed prep: Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.

Seed BMP: To seed the area, the proper BLM seed mixture, free of noxious weeds, will be used.

Seed method: drilling or broadcasting seed over entire reclaimed area.

Existing invasive species? NO

Existing invasive species treatment description:

Well Name: KANSAS 21/28 W0LM FED COM Well Number: 2H

Weed treatment plan description: NA

Weed treatment plan attachment:

Monitoring plan description: vii. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion and invasive/noxious weeds are controlled.

Monitoring plan attachment:

Success standards: regrowth within 1 full growing season of reclamation.

Pit closure description: NA

Pit closure attachment:

Section 11 - Surface Ownership

Disturbance type: NEW ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Fee Owner: Pecos Valley Artesian Conservation

District

Phone: (575)622-7000

Fee Owner Address: PO Box 1346 Roswell NM 88202

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: SUA in place

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Disturbance type: EXISTING ACCESS ROAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Fee Owner: Pecos Valley Artesian Convservation

District

Phone: (575)622-7000

Fee Owner Address: PO Box 1346 Roswell NM 88202

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: SUA in place

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Disturbance type: WELL PAD

Describe:

Surface Owner: PRIVATE OWNERSHIP

Other surface owner description:

BIA Local Office:

BOR Local Office:

COE Local Office:

DOD Local Office:

NPS Local Office:

State Local Office:

Military Local Office:

USFWS Local Office:

Other Local Office:

USFS Region:

USFS Forest/Grassland:

USFS Ranger District:

Well Name: KANSAS 21/28 W0LM FED COM

Well Number: 2H

Fee Owner: Pecos Valley Artesian Conservation

District

Phone: (575)622-7000

Fee Owner Address: PO Box 1346 Roswell NM 88202

Email:

Surface use plan certification: NO

Surface use plan certification document:

Surface access agreement or bond: Agreement

Surface Access Agreement Need description: SUA in place

Surface Access Bond BLM or Forest Service:

BLM Surface Access Bond number:

USFS Surface access bond number:

Section 12 - Other Information

Right of Way needed? NO

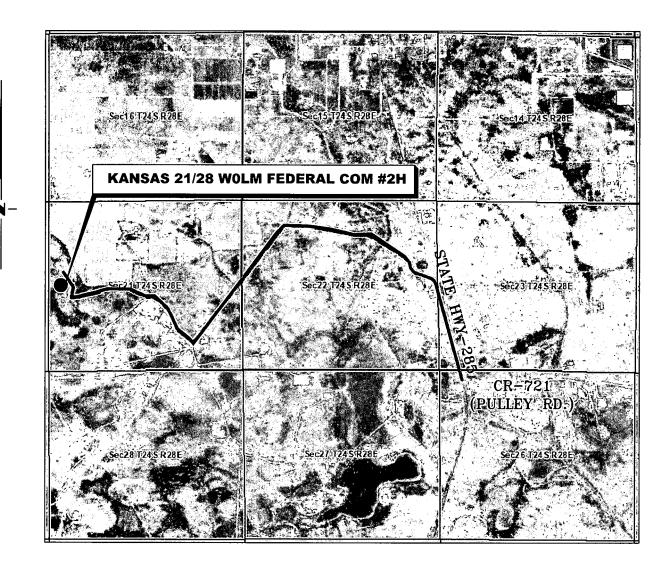
Use APD as ROW?

ROW Type(s):

ROW Applications

SUPO Additional Information: NONE

Use a previously conducted onsite? YES


Previous Onsite information: APR 06 2018 Met with RRC Surveying & staked location @ 2635' FNL & 360' FWL, Sec 21 T24S R28E, Eddy Co NM. This appears to be a drillable location. Elevation @ 3037'. Kansas 21/28 W2LM Fed #1H staked 30' West, Creedence 21/16 W0ED State Com #2H & Creedence 21/16 W0ED State Com #1H staked 200' North. Requires SUA with Pecos Valley Artesian Conservation District & BLM onsite for approval

Other SUPO Attachment

Kansas21_28W0LMFedCom2H_gascaptureplan_20180510142505.pdf
Kansas21_28W0LMFedCom2H_interimreclamationdiagram 20180510142522.pdf

VICINITY MAP

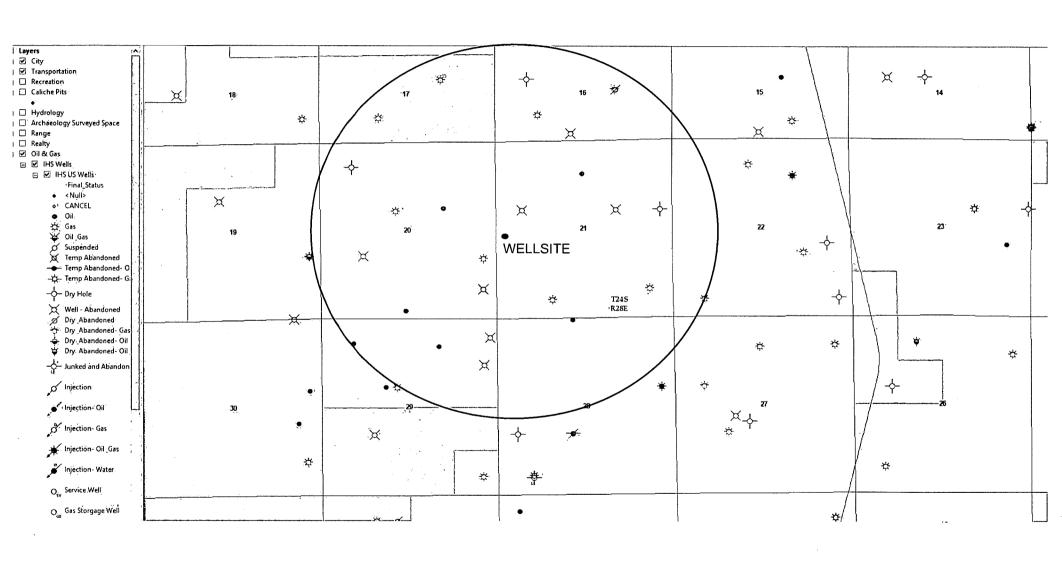
NOT TO SCALE

SECTION 21, TWP. 24 SOUTH, RGE. 28 EAST, N. M. P. M., EDDY COUNTY, NEW MEXICO

OPERATOR: Mewbourne Oil Company
LEASE: Kansas 21/28 WOLM Federal Com
ELEVATION: 2635' FNL & 360' FWL
ELEVATION: 3031'

WELL NO.: 2H

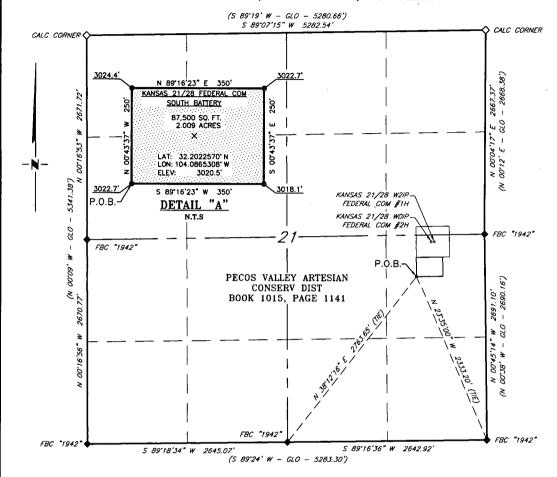
Copyright 2016 - All Rights Reserved


NO. REVISION DATE JOB NO.: LS1804444 DWG. NO.: 1804444VM

308 W. BROADWAY ST., HOBBS, NM 88240 (575) 964-8200

SCALE: N. T. S. DATE: 4-05-2018 SURVEYED BY: ML/TF DRAWN BY: LPS APPROVED BY: RMH SHEET: 1 OF 1

EXISTING WELL MAP KANSAS 21/28 WOLM FEDERAL COM WELL #2H



MEWBOURNE OIL COMPANY

SURVEY FOR THE PROPOSED KANSAS 21/28 FEDERAL COM WELL LOCATIONS SOUTH BATTERY

SECTION 21, T24S, R28E

N. M. P. M., EDDY COUNTY, NEW MEXICO

DESCRIPTION

A tract of land situated within the Southeast quarter of Section 21, Township 24 South, Range 28 East, N. M. P. M., Eddy County, New Mexico, across the lands of Pecos Valley Artesian Conserv. Dist., according to a deed filed for record in Book 1015, Page 1141, of the Deed Records of Eddy County, New Mexico, and being more particularly described by metes and bounds as follows:

BEGINNING at a point, which bears, N 38'12'16" E, 2,763.65 feet from a brass cap, stamped "1942", found for the South quarter corner of Section 21, and bears, N 23'35'00" W, 2,333.20 feet from a brass cap, stamped "1942", found for the Southeast corner of Section 21;

Thence N 00'43'37" W, 250 feet, to a point;

Thence N 89*16'23" E, 350 feet, to a point;

Thence S 00°43'37" E, 250 feet, to a point;

Thence S 89°16'23" W, 350 feet, to the Point of Beginning.

Said tract of land contains 87,500 square feet or 2.009 acres, more or less, and is allocated by forties as: M. HOUR

SCALE: 1" = 1000" 500' 1000' NE 1/4 SE 1/4

87,500 Sq. Ft.

2.009 Acres

BEARINGS ARE GRID NAD 83 NM EAST DISTANCES ARE HORIZ. GROUND.

LEGEND

RECORD DATA - GLO

FOUND MONUMENT AS NOTED

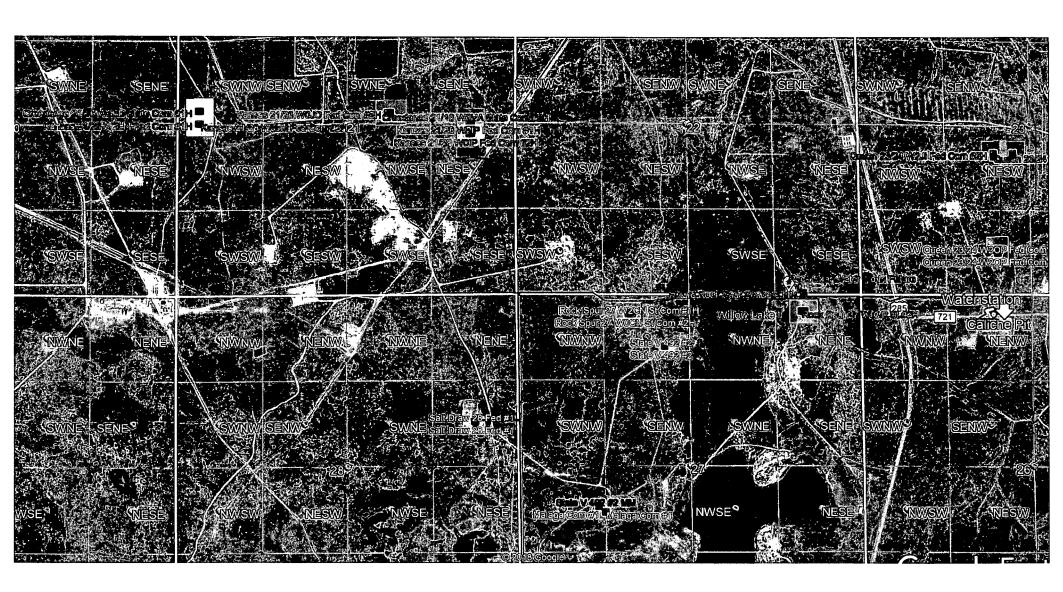
P.O.B. POINT OF BEGINNING

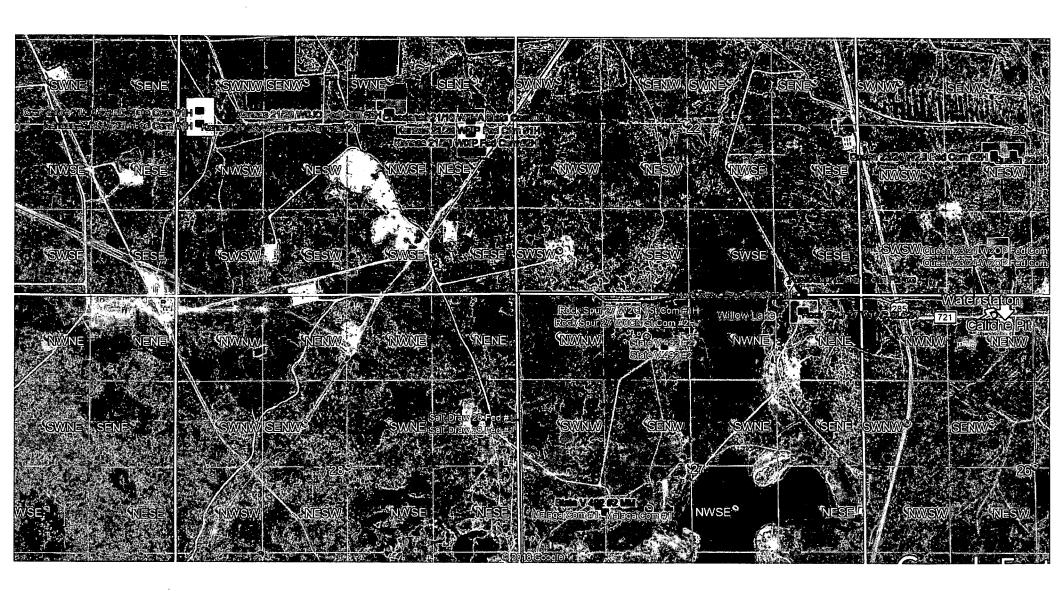
I, R. M. Howett, a N. M. Professional Surveyor, hereby certify that I prepared this plat from an actual survey made on the ground under my direct supervision, said survey and plat meet the Min. Stds. for Land Surveying in the State of N. M. and are true and correct to the best of my knowledge and belief.

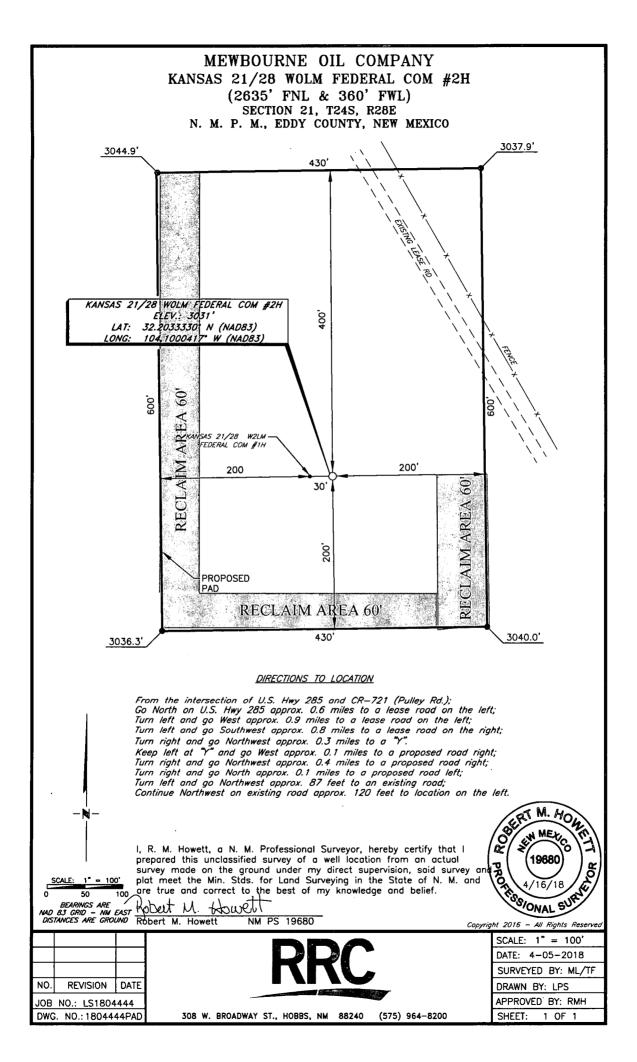
Hobert M. 46 wett Robert M. Howett NM PS 19680

3/7/18 3/7/18 SUR 3/7/18 Copyright 2017 -

SEN METO


OBERT .


REVISION DATE JOB NO.: LS1802254 DWG. NO.: 1802254BT


308 W. BROADWAY ST., HOBBS, NM 88240 (575) 964-8200

SCALE: 1'' = 1000DATE: 02-23-2018 SURVEYED BY: ML/TF DRAWN BY: AIAC APPROVED BY: RMH SHEET: 1 OF 1

MEWBOURNE OIL COMPANY KANSAS 21/28 WOLM FEDERAL COM #2H (2635' FNL & 360' FWL) SECTION 21, T24S, R28E N. M. P. M., EDDY COUNTY, NEW MEXICO 3037.9' 3044.9 430 KANSAS 21/28 WOLM FEDERAL COM #2H FLEV: 3031 ğ LAT: 32.2033330° N (NAD83) 104.1000417° W (NAD83) 90 KANSAS 21/28 W2LM FEDERAL COM #1H 200' 200 30 PROPOSED PAD 430' 3040.0 <u>30</u>36.3' DIRECTIONS TO LOCATION From the intersection of U.S. Hwy 285 and CR-721 (Pulley Rd.); Go North on U.S. Hwy 285 approx. 0.6 miles to a lease road on the left; Turn left and go West approx. 0.9 miles to a lease road on the left; Turn left and go Southwest approx. 0.8 miles to a lease road on the right; Turn right and go Northwest approx. 0.3 miles to a "Y". Keep left at "Y" and go West approx. 0.1 miles to a proposed road right; Turn right and go Northwest approx. 0.4 miles to a proposed road right; Turn right and go Northwest approx. 0.1 miles to a proposed road left; Turn left and go Northwest approx. 87 feet to an existing road; Continue Northwest on existing road approx. 120 feet to location on the left. A STATE OF THE STA I, R. M. Howett, a N. M. Professional Surveyor, hereby certify that I PROTESSIONAL AIL F prepared this unclassified survey of a well location from an actual survey made on the ground under my direct supervision, said survey and plat meet the Min. Stds. for Land Surveying in the State of N. M. and are true and correct to the best of my knowledge and belief. 50 100 DISTANCES ARE GROUND ROBERT M. HOWELL NM NM PS 19680 Copyright 2016 - All Rights Reser SCALE: 1" = 100 DATE: 4-05-2018 SURVEYED BY: ML/TF REVISION DATE DRAWN BY: LPS JOB NO.: LS1804444 APPROVED BY: RMH DWG. NO.: 1804444PAD 308 W. BROADWAY ST., HOBBS, NM 88240 (575) 964-8200 SHEET: 1 OF 1

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Section 1 - General

Would you like to address long-term produced water disposal? NO

Section 2 - Lined Pits

Would you like to utilize Lined Pit PWD options? NO

Produced Water Disposal (PWD) Location:

PWD surface owner:

PWD disturbance (acres):

Lined pit PWD on or off channel:

Lined pit PWD discharge volume (bbl/day):

Lined pit specifications:

Pit liner description:

Pit liner manufacturers information:

Precipitated solids disposal:

Decribe precipitated solids disposal:

Precipitated solids disposal permit:

Lined pit precipitated solids disposal schedule:

Lined pit precipitated solids disposal schedule attachment:

Lined pit reclamation description:

Lined pit reclamation attachment:

Leak detection system description:

Leak detection system attachment:

Lined pit Monitor description:

Lined pit Monitor attachment:

Lined pit: do you have a reclamation bond for the pit?

Is the reclamation bond a rider under the BLM bond?

Lined pit bond number:

Section 3 - Unlined Pits

Would you like to utilize Unlined Pit PWD options? NO

,	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Unlined pit PWD on or off channel:	
Unlined pit PWD discharge volume (bbl/day):	
Unlined pit specifications:	
Precipitated solids disposal:	
Decribe precipitated solids disposal:	•
Precipitated solids disposal permit:	
Unlined pit precipitated solids disposal schedule:	
Unlined pit precipitated solids disposal schedule attachmen	nt:
Unlined pit reclamation description:	
Unlined pit reclamation attachment:	
Unlined pit Monitor description:	
Unlined pit Monitor attachment:	
Do you propose to put the produced water to beneficial use	?
Beneficial use user confirmation:	
Estimated depth of the shallowest aquifer (feet):	
Does the produced water have an annual average Total Dist	solved Solids (TDS) concentration equal to or less than
TDS lab results:	
Geologic and hydrologic evidence:	
State authorization:	
Unlined Produced Water Pit Estimated percolation:	
Unlined pit: do you have a reclamation bond for the pit?	
Is the reclamation bond a rider under the BLM bond?	
Unlined pit bond number:	
Unlined pit bond amount:	
Additional bond information attachment:	
Section 4 - Injection	
Would you like to utilize Injection PWD options? NO	

PWD disturbance (acres):

Injection PWD discharge volume (hhl/day):

Produced Water Disposal (PWD) Location:

PWD surface owner:

Injection well type:	
Injection well number:	Injection well name:
Assigned injection well API number?	Injection well API number:
Injection well new surface disturbance (acres):	
Minerals protection information:	
Mineral protection attachment:	
Underground Injection Control (UIC) Permit?	
UIC Permit attachment:	
Section 5 - Surface Discharge	
Would you like to utilize Surface Discharge PWD options?	NO
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Surface discharge PWD discharge volume (bbl/day):	
Surface Discharge NPDES Permit?	
Surface Discharge NPDES Permit attachment:	
Surface Discharge site facilities information:	
Surface discharge site facilities map:	
Section 6 - Other	
Would you like to utilize Other PWD options? NO	
Produced Water Disposal (PWD) Location:	
PWD surface owner:	PWD disturbance (acres):
Other PWD discharge volume (bbl/day):	
Other PWD type description:	
Other PWD type attachment:	
Have other regulatory requirements been met?	

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Bond Info Data Report

Bond Information

Federal/Indian APD: FED

BLM Bond number: NM1693

BIA Bond number:

Do you have a reclamation bond? NO

Is the reclamation bond a rider under the BLM bond?

Is the reclamation bond BLM or Forest Service?

BLM reclamation bond number:

Forest Service reclamation bond number:

Forest Service reclamation bond attachment:

Reclamation bond number:

Reclamation bond amount:

Reclamation bond rider amount:

Additional reclamation bond information attachment: