	NM OIL CONSERVATION ARTESIA DISTRICT			
Form 3160-3 (June 2015) UNITED STATE	OCT 3 2 2019	FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018		
DEPARTMENT OF THE I	NTERIOR	5. Lease Serial No.		
BUREAU OF LAND MAN		NMLC0061497		
APPLICATION FOR PERMIT TO D	6. If Indian, Allotee or Tribe	Name		
		7. If Unit or CA Agreement,	Name and No	
	EENTER	The Chine of CALAGROUNDER		
	ther	8. Lease Name and Well No		
1c. Type of Completion: Hydraulic Fracturing S	ingle Zone ✓ Multiple Zone (FULLER-13/24WAIRFEL		
2. Name of Operator MEWBOURNE OIL COMPANY	N	9 APLAWEII No. // 30-0,15-	46418	
3a. Address PO Box 5270 Hobbs NM 88240		10/Field and Pool, of Explo PURPLE SAGE WOLFCA		
4. Location of Well (Report location clearly and in accordance		11. Sec., T. R. M. of Blk. an		
At surface NESE / 2250 FSL / 270 FEL / LAT 32.0413	015 / LONG -103.9300949	SEC 131 T265 / R29E / N	MP	
At proposed prod. zone SESE / 330 FSL / 330 FEL / LA	T 32.0213914 / LONG -103.9302757			
 Distance in miles and direction from nearest town or post of 25 miles 		12. County or Parish EDDY	13. State NM	
15. Distance from proposed* location to nearest property or lease line, ft. (Also to mearest drig. unit line, if any)	16. No of acres in lease 17. Spacin 640 (240	g,Unit dedicated to this well		
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Proposed Depth 20/BLM/I 10644 feet./ 18079 feet FED: NM	BIA Bond No. in file 1693		
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 3043 feet	22. Approximate date work will start* 01/16/2019	23. Estimated duration 60 days		
	24. Attachments			
The following, completed in accordance with the requirements o (as applicable)		ydraulic Fracturing rule per 4	43 CFR 3162.3-3	
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest Syster SUPO must be filed with the appropriate Forest Service Office 	 4. Bond to cover the operations Item 20 above). 5. Operator certification. 6. Such other site specific inform BLM. 			
25. Signature (Electronic Submission)	Name (Printed/Typed) Bradley Bishop / Ph: (575)393-590	5 Date	/2018	
Title (Regulatory (I		
Approved by (Signature) (Electronic Submission)	Name (Printed/Typed) Cody Layton / Ph: (575)234-5959	Date 10/18	12010	
(Electronic/Submission)	Office		2019	
Assistant Field Manager Lands & Minerals	CARLSBAD			
Application approval does not warfant or certify that the applica applicant to conduct operations thereon. Conditions of approval, if any, are attached.	nt holds legal or equitable title to those rights i	n the subject lease which we	uld entitle the	
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, 1 of the United States any false, fictitious or fraudulent statements	nake it a crime for any person knowingly and or representations as to any matter within its j	willfully to make to any depa urisdiction.	artment or agency	
	·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

(Continued on page 2)

· .

•

5

*(Instructions on page 2)

Rup 10-28-19

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	MEWBOURNE OIL COMPANY
LEASE NO.:	NMLC0061497
LOCATION:	Section 13, T.26 S., R.29 E., NMPM
COUNTY:	Eddy County, New Mexico
WELL NAME & NO.:	FULLER 13/12 W1HA FED COM 1H
SURFACE HOLE FOOTAGE:	2250'/S & 330'/E
BOTTOM HOLE FOOTAGE	330'/N & 330'/E
WELL NAME & NO.:	FULLER 13/12 W1HA FED COM 2H
SURFACE HOLE FOOTAGE:	2250'/S & 360'/E
BOTTOM HOLE FOOTAGE	330'/N & 990'/E
WELL NAME & NO.:	FULLER 13/24 W1IP FED COM 1H
SURFACE HOLE FOOTAGE:	2250'/S & 270'/E
BOTTOM HOLE FOOTAGE	330'/S & 330'/E

WELL NAME & NO.:	FULLER 13/24 W1IP FED COM 2H
SURFACE HOLE FOOTAGE:	2250'/S & 300'/E
BOTTOM HOLE FOOTAGE	330'/S & 990'/E

COA

H2S	OYes	🖸 No	
Potash	🖸 None	C Secretary	OR-111-P
Cave/Karst Potential	O Low	• Medium	O High
Cave/Karst Potential	O Critical		
Variance	O None	• Flex Hose	C Other
Wellhead	^C Conventional	• Multibowl	C Both
Other	4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	🗖 Pilot Hole
Special Requirements	🖾 Water Disposal	COM	🗖 Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

Page 1 of 11

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- Lea County
 Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

Page 4 of 11

A. CASING

- Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- <u>Wait on cement (WOC) for Potash Areas:</u> After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least <u>24</u> <u>hours</u>. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. <u>Wait on cement (WOC) for Water Basin</u>: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including

Page 6 of 11

lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 8 of 11

Hydrogen Sulfide Drilling Operations Plan Mewbourne Oil Company

1. General Requirements

Rule 118 does not apply to this well because MOC has researched this area and no high concentrations of H2S were found. MOC will have on location and working all H2S safety equipment before the Delaware formation for purposes of safety and insurance requirements.

2. Hydrogen Sulfide Training

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will have received training from a qualified instructor in the following areas prior to entering the drilling pad area of the well:

- 1. The hazards and characteristics of hydrogen sulfide gas.
- 2. The proper use of personal protective equipment and life support systems.
- 3. The proper use of hydrogen sulfide detectors, alarms, warning systems, briefing areas, evacuation procedures.
- 4. The proper techniques for first aid and rescue operations.

Additionally, supervisory personnel will be trained in the following areas:

- 1 The effects of hydrogen sulfide on metal components. If high tensile tubular systems are utilized, supervisory personnel will be trained in their special maintenance requirements.
- 2 Corrective action and shut in procedures, blowout prevention, and well control procedures while drilling a well.
- 3 The contents of the Hydrogen Sulfide Drilling Operations Plan.

There will be an initial training session prior to encountering a know hydrogen sulfide source.

The initial training session shall include a review of the site specific Hydrogen Sulfide Drilling

Operations Plan.

3. Hydrogen Sulfide Safety Equipment and Systems

All hydrogen sulfide safety equipment and systems will be installed, tested, and operational prior to drilling below the 9 5/8" intermediate casing.

1. Well Control Equipment

- A. Choke manifold with minimum of one adjustable choke/remote choke.
- B. Blowout preventers equipped with blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- C. Auxiliary equipment including annular type blowout preventer. 2. <u>Protective Equipment for Essential</u> Personnel

Thirty minute self contained work unit located in the dog house and at briefing areas.

Additionally: If H2S is encountered in concentrations less than 10 ppm, fans will be placed in work areas to prevent the accumulation of hazardous amounts of poisonous gas. If higher concentrations of H2S are detected the well will be shut in and a rotating head, mud/gas separator, remote choke and flare line with igniter will be installed.

3. <u>Hydrogen Sulfide Protection and Monitoring Equipment</u> Two portable hydrogen sulfide monitors positioned on location for optimum coverage and detection. The units shall have audible sirens to notify personnel when hydrogen sulfide levels exceed 20 PPM.

4. Visual Warning Systems

- A. Wind direction indicators as indicated on the wellsite diagram.
- B. Caution signs shall be posted on roads providing access to location. Signs shall be painted a high visibility color with lettering of sufficient size to be readable at reasonable distances from potentially contaminated areas.

4. Mud Program

The mud program has been designed to minimize the amount of hydrogen sulfide entrained in the mud system. Proper mud weight, safe drilling practices, and the use of hydrogen sulfide scavengers will minimize hazards while drilling the well.

5. Metallurgy

All tubular systems, wellheads, blowout preventers, drilling spools, kill lines, choke manifolds, and valves shall be suitable for service in a hydrogen sulfide environment when chemically treated.

Page 10 of 11

6. Communications

State & County Officials phone numbers are posted on rig floor and supervisors trailer. Communications in company vehicles and toolpushers are either two way radios or cellular phones.

7. Well Testing

ţ

Drill stem testing is not an anticipated requirement for evaluation of this well. If a drill stem test is required, it will be conducted with a minimum number of personnel in the immediate vicinity. The test will be conducted during daylight hours only.

;

1

8. Emergency Phone Numbers

Eddy County Sheriff's Office	911 or 575-887-7551
Ambulance Service	911 or 575-885-2111
Carlsbad Fire Dept	911 or 575-885-2111
Loco Hills Volunteer Fire Dept.	911 or 575-677-3266
Closest Medical Facility - Columbia Medica	l Center of Carlsbad 575-492-5000

Mewbourne Oil Company	Hobbs District Off	ice 575-393-5905
	Fax	575-397-6252
	2 nd Fax	575-393-7259
District Manager	Robin Terrell	575-390-4816
Drilling Superintendent	Frosty Lathan	575-390-4103
	Bradley Bishop	575-390-6838
Drilling Foreman	Wesley Noseff	575-441-0729

Page 11 of 11

WAFMSS

Application for Permit to Drill

APD Package Report

APD ID: 10400036359 APD Received Date: 12/05/2018 10:33 AM Operator: MEWBOURNE OIL COMPANY U.S. Department of the Interior Bureau of Land Management

Date Printed: 10/18/2019 01:44 PM

Well Status: AAPD Well Name: FULLER 13/24 W1IP FED CO Well Number: 1H

APD Package Report Contents

- Form 3160-3 : Error Generating Form
- Operator Certification Report
- Application Report
- Application Attachments
 - -- Well Plat: 1 file(s)
- Drilling Plan Report
- Drilling Plan Attachments
 - -- Blowout Prevention Choke Diagram Attachment: 2 file(s)
 - -- Blowout Prevention BOP Diagram Attachment: 2 file(s)
 - -- Casing Design Assumptions and Worksheet(s): 4 file(s)
 - -- Hydrogen sulfide drilling operations plan: 1 file(s)/
 - -- Proposed horizontal/directional/multi-lateral plan submission: 2 file(s)
 - -- Other Facets: 2 file(s)
- SUPO Report
- SUPO Attachments
 - -- Existing Road Map: 1 file(s)
 - -- New Road Map: 1 file(s)
 - -- Attach Well map: 1 file(s)
 - -- Production Facilities map: 2 file(s)
 - -- Water source and transportation map: 1 file(s)
 - -- Construction Materials source location attachment: 1 file(s)
 - -- Well Site Layout Diagram: 1 file(s)
 - -- Other SUPO Attachment: 2 file(s)
- PWD Report
- PWD Attachments
 - -- None
- Bond Report

с ·

- Bond Attachments -- None •

•

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

Operator Certification Data Report

10/18/2019

NAME: Bradley Bishor	p	Signed on: 12/05/2018	
Title: Regulatory			
Street Address:			
City:	State:	Zip:	
Phone: (575)393-5908	5		<u>٦</u>
Email address: bbishe	op@mewbourne.com		
Field Representative Name Street Address:	<u> </u>		,
City:	State:	Zip:	
Phone:			
Email address:			

WAFMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Application Data Report

APD ID: 10400036359

Operator Name: MEWBOURNE OIL COMPANY

Well Name: FULLER 13/24 W1IP FED COM

Well Type: OIL WELL

Well Number: 1H Well Work Type: Drill

Submission Date: 12/05/2018

Highlighted data reflects the most recent changes

Show Final Text

Section 1 - General Submission Date: 12/05/2018 APD ID: 10400036359 **Tie to previous NOS?** Title: Regulatory User: Bradley Bishop **BLM Office: CARLSBAD** Is the first lease penetrated for production Federal or Indian? FED Federal/Indian APD: FED Lease Acres: 640 Lease number: NMLC0061497 Allotted? Reservation: Surface access agreement in place? Federal or Indian agreement: Agreement in place? NO Agreement number: Agreement name: Keep application confidential? YES APD Operator: MEWBOURNE OIL COMPANY Permitting Agent? NO **Operator letter of designation: Operator Info** Operator Organization Name: MEWBOURNE OIL COMPANY Operator Address: PO Box 5270 Zip: 88240 **Operator PO Box: Operator City:** Hobbs State: NM Operator Phone: (575)393-5905 **Operator Internet Address:** Section 2 - Well Information Well in Master Development Plan? NO Master Development Plan name: Well in Master SUPO? NO Master SUPO name: Well in Master Drilling Plan? NO Master Drilling Plan name: Well API Number: Well Name: FULLER 13/24 W1IP FED COM Well Number: 1H Field Name: PURPLE SAGE Pool Name: LOWER 3RD Field/Pool or Exploratory? Field and Pool

WOLFCAMP GAS

BONE SPRING (HARKY)

SHALE

, ،

Well Number: 1H

.

1

Is the proposed well in an area containing other mineral resources? USEABLE WATER, NATURAL GAS, OIL

is the	e prop	osed	well i	n a He	elium	prod	uctio	n area?	N Use E	xisting W	ell Pac	I? YES	Ne	w	urface d	listurk	oance	? Y
			<mark>d:</mark> MU RIZON		E WE	LL			FULL	Die Well Pa ER 13/12 H Der of Lega	HA & IF		1 5	imb	per: 4		\sim	
Well	Work	Type	• Drill						Num	ler of Leg.	5.			$\boldsymbol{\lambda}$	\sum	X	/ ``	
	Type:										1.			/	$\langle \rangle$	>		
	ribe V									~		No. No.		``				
			APPR	AISAL						\sim			````	1	>`			
	ribe s																	
		-	n:25	Miles			Dist	ance to	nearest v	vell: 50 FJ		Dist	ance te	o le	ase line:	330 F	Ŧ	
Rese	rvoir	well s	pacin	g ass	igned	l acre			ر ر ent: 240 A	N.	\mathcal{N}	\sim						
Well									at_201811		pdf							
	•		Date:	_				$\langle \rangle$		ion: 60 DA	\sim							
							$\overline{\bigcirc}$	$\overline{//}$	<u> </u>	\sum	<i>.</i>							
	Sec	tion	3 - V	Vell	_002	ation	Tab	ole	K,	} _}								
Surve	әу Тур	be: RE	ECTA	NGUL	AR~	12		$^{\prime}$	XX	/								
Desc	ribe S	urvey	/ Туре	:		$\langle \rangle$	\swarrow	/	\searrow									
Datu	n: NA	D83		$\langle \langle \rangle$		\sim	$\langle \rangle$		Vertic	al Datum:	NAVE	88						
Surve	ey nui	nber;	<u> </u>				-7/	\sim	Refer	ence Datu	m:							
Wellbore	NS-Foot	NS Indicator	ÉW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	MD	TVD
SHL Leg #1	225 0	FSL	270	FEL	26S	29E	13	Aliquot NESE	32.04130 15	- 103.9300 949	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMLC0 061497	304 3	0	0
KOP Leg #1	265 8	FSL	330	FEL	26S	29E	13	Aliquot NESE	32.04242 37	- 103.9302 9	EDD Y	NEW MEXI CO		F	NMLC0 061497	ł	101 01	100 91
PPP Leg #1	0	FNL	330	FEL	26S	29E	24	Aliquot NENE	32.03510 87	- 103.9302 85	EDD Y		NEW MEXI CO	F	NMLC0 061581	- 761 5	130 89	106 58

Will this well produce

Operator Name: MEWBOURNE OIL COMPANY

Well Name: FULLER 13/24 W1IP FED COM

Well Number: 1H

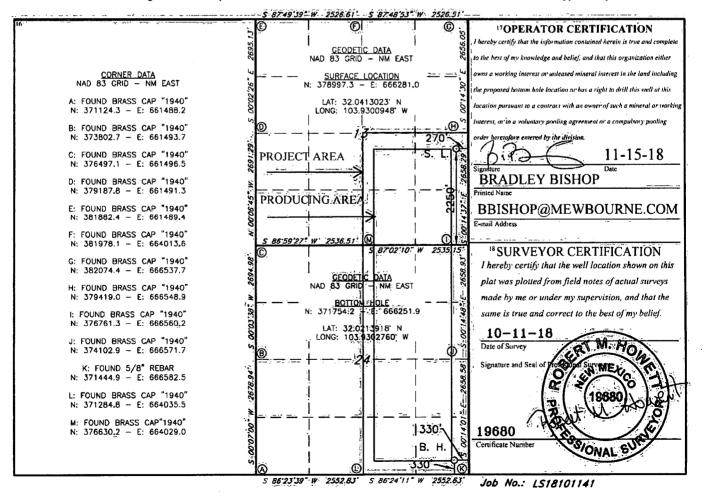
Wellbore	NS-Foot	NS Indicator	EW-Foot	EW Indicator	Twsp	Range	Section	Aliquot/Lot/Tract	Latitude	Longitude	County	State	Meridian	Lease Type	Lease Number	Elevation	DM	TVD	Will this well produce
PPP Leg #1	0	FNL	330	FEL	26S	29E	24	Aliquot NENE	32.03510 87	- 103.9302 85	EDD Y	NEW MEXI CO	NEW MEXI CO	F .	NMLC0 061581		130 89	106 58	
PPP Leg #1	0	FNL	330	FEL	26S	29E	24	Aliquot NENE	32.03510 87	- 103.9302 85	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMLC0 061581		130 89	106 58	
PPP Leg #1	232 8	FSL	330	FEL	26S	29E	13	Aliquot NESE		- 103.9302 894	EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMLC0 061497		107 50	106 10	
PPP Leg #1	232 8	FSL	330	FEL	26S	29E	13	Aliquot NESE		- 103.9302 894	EDD Y	1	NEW MEXI CO	F	NMLC0 061497		107 50	106 10	
PPP Leg #1	232 8	FSL	330	FEL	26S	29E	13	Aliquot NESE	32.04151 65		EDD Y	NEW MEXI CO	NEW MEXI CO	F	NMLC0 061497		107 50	106 10	
EXIT Leg #1	330	FSL	330	FEL	26S	29E	24	Aliquot SESE	32.02139 14	- 103.9302 757	ËDD Ý	NEW MEXI CO	NEW MEXI CO	F	NMLC0 061581		180 79	106 44	
BHL Leg #1	330	FSL	330	FEL	26S	29E	24	Aliquot SESE	32.02139 14	- 103.9302 757	EDD Y	1	NEW MEXI CO	F	NMLC0 061581		180 79	106 44	

. •

• .,

District I 1625 N. Prench Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II. 811 S., First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505


Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

AMENDED REPORT

1

3		<u> </u>	ELL L	OCATIC	N AND ACF	REAGE DEDIC	CATION PLA	T					
- "1	API Number			Pool Code									
				98220)	<u> </u>	RPLE SAC	<u>GE_WOLFC</u>	AMP				
4 Property Co	te			*****	5 Property N			v.	6 Well Number				
				FULLE	R 13/24 W	1IP FED CO	M		1H				
⁷ OGRID 1					8 Operator N	ame L COMPANY			Elevation				
1474		3016'											
					¹⁰ Surface	Location							
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet From the	East/West line	County				
I	13	26S	29E		2250	SOUTH	270	EAST	EDDY				
			"]	Bottom H	Iole Location	If Different Fr	om Surface						
UL or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County				
Р	.24	26 <u>S</u>	29E	-	330	SOUTH	330	EAST	EDDY				
12 Dedicated Acres	13 Joint	or Infill 14 (Consolidation	Code 15	Order No.								
480													

No allowable will be assigned to this completion until all interest have been consolidated or a non-standard unit has been approved by the division.

FAFMSS	Drilling Plan	Data Report
U.S. Department of the Interior BUREAU OF LAND MANAGEMENT	And and a second s	10/18/2019
APD ID: 10400036359	Submission Date: 12/05/2018	Highlighted data reflects the most
Operator Name: MEWBOURNE OIL COMPANY		recent changes
Well Name: FULLER 13/24 W1IP FED COM	Well Number: 1H	Show Final Text

Well Work Type: Drill

Section 1 - Geologic Formations

Well Type: OIL WELL

Se	ction 1 - Geologic F	ormatio	ns		<		
Formation ID	Formation Name	Elevation	True Vertical Depth	Measured Depth	Lithologies	Mineral Resources	Producing
1	UNKNOWN	3016	27	27			N
2	RUSTLER	2097	919	919	ANHYDRITE;DOLOMIT	USEABLE WATER	N
3	TOP SALT	1612	1404	1404	SALT	NONE	N
4	CASTILE	1282	1734	1734	SALT	NONE	N
5	BASE OF SALT	-55	3071	307,1	SALT	NONE	N
6	DELAWARE	-245	3261	3261		NATURAL GAS,OIL	N
7	BELL CANYON	-265	3281	3281	SANDSTONE	NATURAL GAS, OIL	N
8	CHERRY CANYON	-1548	4564	4564	SANDSTONE	NATURAL GAS,OIL	N
9	MANZANITA	-1653	4669	4669		NONE	N
10	BRUSHY CANYON	-2278	5294	5294	SANDSTONE	NATURAL GAS, OIL	Y
11	BONE SPRING	4040	7056	7056	LIMESTONE, SHALE	NATURAL GAS,OIL	N
12	BONE SPRING 1ST	-4963	7979	7979	SANDSTONE	NATURAL GAS, OIL	N
13,	BONE SPRING 2ND	-5596	8612	8612	SANDSTONE	NATURAL GAS, OIL	N
14	BONE SPRING 3RD	-6885	9901	9901	SANDSTONE	NATURAL GAS,OIL	N
15	WOLFCAMP	-7258	10274	10274	LIMESTONE,SHALE,SA NDSTONE	NATURAL GAS,OIL	Y

Section 2 - Blowout Prevention

Page 1 of 7

• • • •

Operator Name: MEWBOURNE OIL COMPANY

Well Name: FULLER 13/24 W1IP FED COM

Well Number: 1H

Pressure Rating (PSI): 5M

5

Rating Depth: 18079

Equipment: Annular, Pipe Ram, Blind Ram

Requesting Variance? YES

Variance request: A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. Anchors are not required by manufacturer. A multibowl wellhead is being used. See attached schematic.

Testing Procedure: BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested. Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

Choke Diagram Attachment:

Fuller_13_24_W1IP_Fed_Com__1H_5M_BOPE_Choke_Diagram 20190422102555.pdf

Fuller_13_24_W1IP_Fed_Com__1H_Flex_Line_Specs_20190422102556.pdf

BOP Diagram Attachment:

Fuller_13_24_W1IP_Fed_Com__1H_5M_BOPE_Schematic_20190422102618;pdf

Fuller_13_24_W1IP_Fed_Com__1H_Multi_Bowl_WH_20190422102620.pdf

		Se	ction	3 - !	Cas	ing			``	14												
					1	\geq	i'r);												
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Tóp Set MD 📏	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	ARI	N	Õ	990	0	990			990	H-40	48	ST&C	1.7	3.82	DRY	6.78	DRY	11.3 8
		12:2	9.625	NEW	API	N	0	3185	0	3185			3185	J-55	36	LT&C	1.22	2.13	DRY	3.95	DRY	4.92
		8.75	7.0	NEŴ	API	N	0	11000	0	10664			11000	P- 110	26	LT&C	1.48	1.89	DRY	2.42	DRY	2.9
4		6-12 5	4.5	NEW	API	N	10101	18079	10091	10644			7978	P- 110	13.5	LT&C	1.48	1.72	DRY	3.14	DRY	3.92

Casing Attachments

Page 2 of 7

Well Number: 1H

Casing Attachments

Casing ID: 1 String Type:SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Fuller_13_24_W1IP_Fed_Com_1H_Csg_Assumptions_20181203150500.pdf

Casing ID: 2 String Type:INTERMEDIATE Inspection Document: Spec Document: Tapered String Spec: Casing Design Assumptions and Worksheet(s): Fuller_13_24_W1IP_Fed_Com_1H_Csg_Assumptions_20181203150601.pdf Casing ID: 3 String Type:PRODUCTION Inspection Document: Spec Document: Tapered String Spec: Casing Design Assumptions and Worksheet(s):

Fuller_13_24_W1IP_Fed_Com_1H_Csg_Assumptions_20181203150714.pdf

Page 3 of 7

Well Number: 1H

Casing Attachments

۰...

Casing ID: 4

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Fuller_13_24_W1IP_Fed_Com_1H_Csg_Assumptions_20181203150837.pdf

String Type:LINER

Section	4 - Ce	emen	t j			\square	1.10			\mathbf{X}	
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	CUFI	Excess%	Cement type	Additives
SURFACE	Lead		0	797	530	2.12	12.5	1124	100	Class C	Salt, Gel, Extender, LCM
SURFACE	Tail	0	797	990	200	1.34	14.8	268	100	Class C	Retarder
INTERMEDIATE	Lead		0	2541	510	°2.12	12.5	1081	25	Class C	Salt, Gel, Extender, LCM
	Tail	11	2541	3185	200	1.34	14.8	268	25	Class C	Retarder
PRODUCTIÓN	Lead	4669	2985	3989	375	2.12	12.5	795	25	Class C	Gel, Retarder, Defoamer, Extender
PRÓDÚCTION	Tail))	3989	4669	100	1.34	14.8	134	25	Class C	Retarder
PRODUCTION	Lead	4669	4669	8553	360	2.12	12.5	763	25	Class C	Gel, Retarder, Defoamer, Extender
PRODUCTION	∕Tail		8553	1100 0	400	1.18	15.6	472	25	Class H	Retarder, Fluid Loss, Defoamer
LINER	Lead		1010 1	1807 9	320	2.97	11.2	950	25	Class C	 Salt, Gel, Fluid Loss, Retarder, Dispersant, Defoamer, Anti-Settling Agent

Page 4 of 7

Well Number: 1H

Section 5 - Circulating Medium

Mud System Type: Closed

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2;

Describe what will be on location to control well or mitigate other conditions: Lost circulation material Sweeps Mud scavengers in surface hole

Describe the mud monitoring system utilized: Pason, PVT, visual monitoring

	Circ	ulating Mediu	um Ta	able		$\Box \langle$	1		$\boldsymbol{\mathcal{I}}$	$\langle \rangle$	~
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (bs/gal)	Density (lbs/cu ft)	Gel Strength (Ibs/100 sqft)	H4	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
990	3185	SALT SATURATED	∕10 ∖	10			•				
3185	1066 4	WATER-BASED	8.6	_9.7							
1064 4	1066	ÓIL-BASED MUD	10	12							Mud wieght up to 13.0 ppg may be required for shale control. The highest mud weight needed to balance formation is expected to be 12.0 ppg.
0	´99Ò∖	SPUD MUD	8.6	8.8							
		D									

Page 5 of 7

. .

Well Number: 1H

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures: Will run GR/CNL from KOP (10101') to surface

List of open and cased hole logs run in the well:

CNL,DS,GR,MWD,MUDLOG

Coring operation description for the well: None

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 6654

Anticipated Surface Pressure: 4309.24

Anticipated Bottom Hole Temperature(F): 165

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES

Hydrogen sulfide drilling operations plan:

Fuller_13_24_W1IP_Fed_Com_1H_H2S_Plan_20181203151519.doc

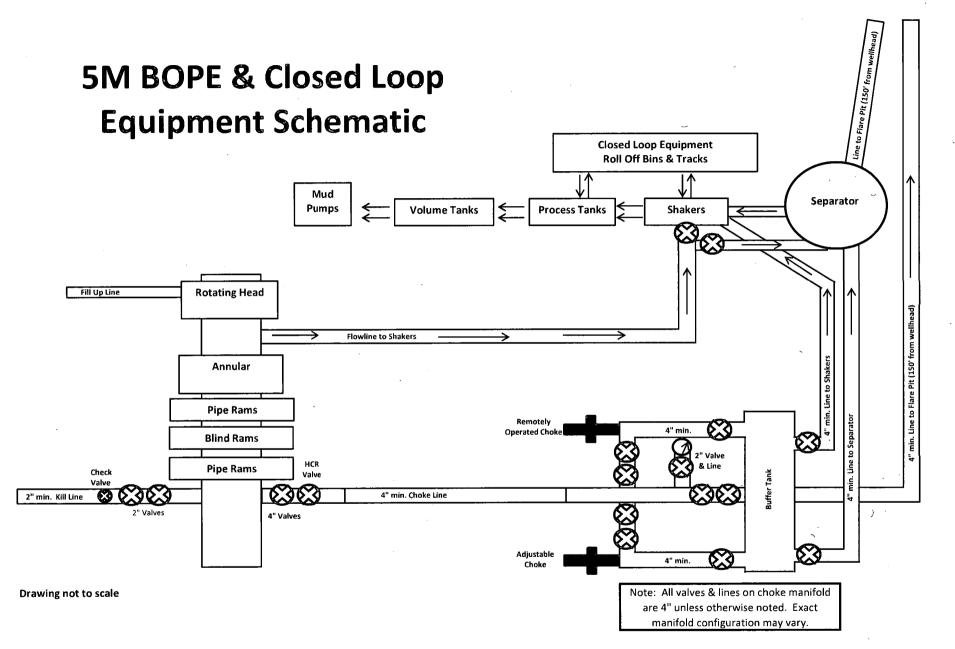
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:

Fuller_13_24_W1IP_Fed_Com_1H_Dir_Plan_20181203151552.pdf Fuller_13_24_W1IP_Fed_Com_1H_Dir_Plot_20181203151553.pdf

Other proposed operations facets description:

Other proposed operations facets attachment:


Fuller_13_24_W1IP_Fed_Com_1H_C101_20181203151609.pdf

Fuller_13_24_W1IP_Fed_Com_1H_Drlg_Program_20190422102756.pdf Other Variance attachment:

Page 6 of 7

~ .

C

ENGINEERING & SERVICES

GATES E & S NORTH AMERICA, INC. 134 44TH STREET CORPUS CHRISTI, TEXAS 78405

1.

 PHONE:
 361-887-9807

 FAX:
 361-887-0812

 EMAIL:
 Tim.Cantu@gates.com

 WEB:
 www.gates.com

Justomer R. I. AUSTIM USHABUTING Heat State: UP of the State: UP of	. г		Test Date:	4/30/2015	
Justomer Ner: : 1000070 Invoice No. : 500506 Created By: JUSTIN CROPPER Product Description: 10K3.548.0CK4.1/1610KFLGE/E LE End Fitting 1 : 4 1/16 10K FLG End Fitting 1 : 4 1/16 10K FLG End Fitting 2 : 4 1/16 10K FLG Horson Status No. : 4773-6290 Assembly Code : 136554102914D-043015-7 ID,000 PSI Test Pressure : ID,000 PSI ID Test Pressure : ID,000 PSI ID Test Pressure : ID,000 PSI ID Test Pressure : <t< th=""><th>Lustomer :</th><th>AUSTIN DISTRIBUTING</th><th></th><th></th><th></th></t<>	Lustomer :	AUSTIN DISTRIBUTING			
Product Description: 10K3.548.0CK4.1/1610KFLGE/E LE End Fitting 1: 4 1/16 10K FLG End Fitting 1: 4 1/16 10K FLG Gates Part No. : 4773-6290 Assembly Code : 136554102914D-043015-7 Test Pressure : 10,000 PS1 Test Pressure : 15,000 PS1 Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: PRODUCTION Date : 4/30/2015 Signature : 4/30/2015					
Induct Description: 4 1/16 10K FLG End Fitting 2 : 4 1/16 10K FLG Bates Part No. : 4773-6290 Assembly Code : 136554102914D-043015-7 Working Pressure : 10,000 PSI Test Pressure : 15,000 PSI Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: PRODUCTION Date : 4/30/2015 Signature : 4/30/2015					
Gates Part No. : 4773-6290 Morking Pressure : 10,000 PSI Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Quality Manager : QUALITY Production: production: bate : 4/30/2015 Signature : WWWM	Product Description:		10K3.548.0CK4.1/1610KFLGE/E		
Gates F & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: PRODUCTION Date : 4/30/2015 Jate : 4/30/2015 Signature : WWAMAN WWAN Signature : Signature : WMAMAN WWAN Signature :	End Fitting 1 :	4 1/16 10K FLG	End Fitting 2 :		
Gates E & S North America, Inc. certifies that the following hose assembly has been tested to the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi In accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: PRODUCTION Date : 4/30/2015 bate : 4/30/2015 Signature : WWWM Signature : WWWM	Sates Part No. :	4773-6290	Assembly Code :		
the Gates Oilfield Roughneck Agreement/Specification requirements and passed the 15 minute hydrostatic test per API Spec 7K/Q1, Fifth Edition, June 2010, Test pressure 9.6.7 and per Table 9 to 15,000 psi in accordance with this product number. Hose burst pressure 9.6.7.2 exceeds the minimum of 2.5 times the working pressure per Table 9. Quality Manager : QUALITY Producton: Date : J4/30/2015 Jate : Jate : J4/30/2015 Signature : Signature : Signature : Jage Algorithment Signature : J	Norking Pressure :	10,000 PSI	Test Pressure :	15,000 PSI	
Date : / 4/30/2015 Date : Signature : ////////////////////////////////////	Gates E & S No	orth America, Inc. certifies	s that the following hose	assembly has been tested to	
	hydrostatic test (per API Spec 7K/Q1, Fifth Economic API Spec 7K/Q1, Fifth Economic API Spectrum accordance with this produce with this produce the spectrum accordance with the sp	lition, June 2010, Test p .ct number. Hose burst (s and passed the 15 minute pressure 9.6.7 and per Table 9 pressure 9.6.7.2 exceeds the	
	hydrostatic test p to 15,000 psi ir Quality Manager : Date :	ber API Spec 7K/Q1, Fifth Ec n accordance with this produ minimum of 2.5 times t	dition, June 2010, Test p uct number. Hose burst he working pressure per Produciton: Date :	PRODUCTION	

Database:	Hobbs	Local Co-ordinate Reference:	Site Fuller 13/24 W1IP Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3043.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3043.0usft (Original Well Elev)
Site:	Fuller 13/24 W1IP Fed Com #1H	North Reference:	Grid
Well:	SL: 2250 FSL & 270 FEL (Sec 13)	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330 FSL & 330 FEL (Sec 24)		
Design:	Design #1		

Design Targets

Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
SL: 2250 FSL & 270 FEI - plan hits target cent - Point	0.00 er	0.00	0.0	0.0	0.0	378,997.00	666,281.00	32.0413015	-103.9300949
KOP: 2658 FSL & 330 F - plan hits target cent - Point	0.00 er	0.00	10,091.0	408.0	-62.0	379,405.00	666,219.00	32.0424237	-103,9302900
FTP: 2328 FSL & 330 Ft - plan hits target cent - Point	0.00 er	0.00	10,609.9	78.0	- 60.6	379,075.00	666,220.43	32.0415165	-103.9302894
BHL: 330 FSL & 330 FE - plan hits target cent - Point	0.00 er	0.00	10,644.0	-7,243.0	-29.0	371,754.00	666,252.00	32.0213914	-103.9302757
PPP2: 0 FNL & 330 FEL - plan hits target cent - Point	0.00 er	0.00	10,658.1	-2,253.0	-50.5	376,744.00	666,230.48	32.0351087	-103.9302850

`

2

.

.

Database: Company: Project:	Hobbs Mewbourne Oil Company Eddy County, New Mexico NAD 83	Local Co-ordinate Reference: TVD Reference: MD Reference:	Site Fuller 13/24 W1IP Fed Com #1H WELL @ 3043.0usft (Original Well Elev) WELL @ 3043.0usft (Original Well Elev)
Site:	Fuller 13/24 W1IP Fed Com #1H	North Reference:	Grid
Well:	SL: 2250 FSL & 270 FEL (Sec 13)	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330 FSL & 330 FEL (Sec 24)		
Design:	Design #1		

Planned Survey

· .

. .

,

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
14,900.0	90.16	179.75	10,653.0	-4,064.4	-42.7	4,064.5	0,00	0.00	0.00
15,000.0	90.16	179.75	10,652.7	-4,164.4	-42.3	4,164.5	0.00	0.00	0.00
15,100.0	90.16	179.75	10,652.4	-4,264.4	-41.8	4,264.5	0.00	0.00	0.00
15,200.0	90,16	179.75	10,652.1	-4,364.4	-41.4	4,364.5	0.00	0.00	0.00
15,300.0	90.16	179.75	10,651.9	-4,464.4	-41.0	4,464.5	0.00	0.00	0.00
15,400.0	90.16	179.75	10,651.6	-4,564.4	-40.6	4,564.5	0.00	0.00	0.00
15,500.0	90.16	179.75	10,651.3	-4,664.4	-40.1	4,664.5	0.00	0.00	0.00
15,600.0	90.16	179.75	10,651.0	-4,764.4	-39.7	4,764.5	0.00	0.00	0.00
15,700.0	90.16	179.75	10,650.7	-4,864.4	-39.3	4,864.5	0.00	0.00	0.00
15,800.0	90,16	179.75	10,650,4	-4,964.4	-38.8	4,964.5	0.00	0.00	0,00
15,900.0	90.16	179.75	10,650.2	-5,064.4	-38.4	5,064.5	0.00	0.00	0.00
16,000.0	90,16	179,75	10,649.9	-5,164.4	-38.0	5,164.5	0.00	0.00	0.00
16,100.0	90.16	179.75	10,649.6	-5,264.4	-37.5	5,264.5	0.00	0.00	0.00
16,200.0	90.16	179.75	10,649.3	-5,364.4	-37.1	5,364.5	0.00	0.00	0.00
16,300.0	90.16	179.75	10,649.0	-5,464.4	-36.7	5,464.5	0.00	0.00	0.00
16,400.0	90.16	179.75	10,648.7	-5,564.4	-36.2	5,564.5	0.00	0.00	0.00
16,500.0	90.16	179.75	10,648.5	-5,664,4	-35.8	5,664.5	0.00	0.00	0.00
16,600.0	90.16	179.75	10,648.2	-5,764.4	-35.4	5,764.5	0.00	0.00	0.00
16,700.0	90,16	179.75	10,647.9	-5,864.4	-34.9	5,864.5	0.00	0.00	0.00
16,800.0	90.16	179.75	10,647.6	-5,964.4	-34.5	5,964.5	0.00	0.00	0.00
16,900.0	90.16	179,75	10,647.3	-6,064.4	-34.1	6,064,5	0.00	0.00	0.00
17,000.0	90.16	179.75	10,647.0	-6,164.4	-33.7	6,164.5	0.00	0.00	0.00
17,100.0	90.16	179.75	10,646.8	-6,264.4	-33.2	6,264.5	0.00	0.00	0.00
17,200.0	90.16	179.75	10,646.5	-6,364.4	-32.8	6,364.5	0.00	0.00	0.00
17,300.0	90.16	179.75	10,646.2	-6,464.4	-32.4	6,464.4	0.00	0.00	0.00
17,400.0	90.16	179.75	10,645.9	-6,564.4	-31.9	6,564.4	0.00	0.00	0.00
17,500.0	90.16	179.75	10,645.6	-6,664.4	-31.5	6,664.4	0.00	0.00	0.00
17,600.0	90.16	179.75	10,645.4	-6,764.4	-31.1	6,764.4	0.00	0.00	0.00
17,700.0	90.16	179.75	10,645.1	-6,864.4	-30.6	6,864.4	0.00	0.00	0.00
17,800.0	90.16	179.75	10,644.8	-6,964.4	-30.2	6,964.4	0.00	0.00	0.00
17,900.0	90,16	179.75	10,644.5	-7,064.4	-29.8	7,064.4	0.00	0.00	0.00
18,000.0	90.16	179.75	10,644.2	-7,164.4	-29.3	7,164.4	0.00	0.00	0.00
18,078.6	90.16	179,75	10,644.0	-7,243.0	-29.0	7,243.1	0.00	0.00	0.00

Database:	Hobbs	Local Co-ordinate Reference:	Site Fuller 13/24 W1IP Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3043.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3043.0usft (Original Well Elev)
Site:	Fuller 13/24 W1IP Fed Com #1H	North Reference:	Grid
Well:	SL: 2250 FSL & 270 FEL (Sec 13)	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330 FSL & 330 FEL (Sec 24)		
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	
KOP: 2658	FSL & 330 FEL	(Sec 13)				, r				
10,200.0	9.95	179.75	10,190.0	399.4	-62.0	-399.1	10.00	10.00	0.00	
10,300.0	19.95	179.75	10,286.5	373.6	-61.9	-373.4	10.00	10.00	0.00	
10,400.0	29.95		10,377.1	331.5	-61.7	-331.2	10.00	10.00	0.00	
10,500.0	39.95		10,458.9	274.3	-61.4	-274.0	10.00	10.00	0.00	
			40 500 0				40.00	40.00	0.00	
10,600.0	49.95		10,529.6	203.7	-61.1	-203.5	10.00	10.00	0.00	
10,700.0	59.95		10,587.0	122.0	-60.8	-121.7	10.00	10.00	´ 0.00	
10,749.6	64.91	179.75	10,609.9	78.0	-60.6	-77.8	10.00	10.00	0,00	- ~~
a service of the serv	SL & 330 FEL (د
10,800.0	69,95		10,629.3	31.5	-60.4	-31.2	10.00	10.00	0.00	
10,900.0	79.95	179.75	10,655.2	-65.0	-60.0	65.2	10.00	10.00	0.00	
11,000.0	89.95	179.75	10,664.0	-164.5	-59.5	164.7	10.00	10.00	0.00	
	90.16		10,664.0	-166.6	-59.5	166.9	10.00	10.00	0.00	
11,002.2 11,100.0	90.16		10,664.0	-166.6	-59.5	264.7	0.00	0.00	0.00	
	90.16		10,663.4	-264.5 -364.5	-59.1	264.7 364.7	0.00	0.00	0.00	
11,200.0			10,663.2	-364.5 -464.4	-58.2	364.7 464.7	0.00	0.00	0.00	
11,300.0	90.16	1/9./0	10,003.2	-404.4	-30.2	404./	0.00			
11,400.0	90.16	179.75	10,662.9	-564.4	-57.8	564.7	0.00	0.00	0.00	
11,500.0	90.16	179.75	10,662.6	-664.4	-57.4	664.7	0.00	0.00	0.00	
11,600.0	90,16		10,662.3	-764.4	-56.9	764.7	0.00	0.00	0.00	
11,700.0	90,16	179.75	10,662.0	-864.4	-56.5	864.7	0.00	0.00	0.00	
11,800.0	90,16	179.75	10,661.7	-964.4	-56.1	964.7	0.00	0.00	0.00	
		470 75	40.004.5	4 004 4		4 00 4 7	0.00		0.00	
11,900.0	90.16		10,661.5	-1,064.4	-55.6	1,064.7	0.00	0.00	0.00	
12,000.0	90.16		10,661.2	-1,164.4	-55.2	1,164.7	0.00	0.00	0.00	
12,100.0	90.16		10,660.9	-1,264.4	-54.8	1,264.6	0.00	0.00	0.00	
12,200.0	90.16		10,660.6	-1,364.4	-54.4	1,364.6	0.00	0.00	0.00	
12,300.0	90.16	179.75	10,660.3	-1,464.4	-53.9	1,464.6	0.00	0.00	0.00	
12,400.0	90.16	179.75	10,660.0	-1,564.4	-53.5	1,564.6	0.00	0.00	0.00	
12,500.0	90,16		10,659,8	-1,664.4	-53.1	1,664.6	0.00	0.00	0.00	
12,600.0	90.16		10,659.5	-1,764.4	-52.6	1,764.6	0.00	0.00	0.00	
12,700.0	90.16		10,659.2	-1,864.4	-52.2	1,864.6	0.00	0.00	0.00	
12,800.0	90.16		10,658.9	-1,964.4	-51.8	1,964.6	0.00	0.00	0.00	
12,900.0	90.16		10,658.6	-2,064.4	-51.3	2,064.6	0.00	0.00	0.00	
13,000.0	90.16		10,658.4	-2,164.4	-50.9	2,164.6	0.00	0.00	0.00	
13,088.6	90.16		10,658.1	-2,253.0	-50.5	2,253.2	0.00	0.00	0.00	
PPP2: 0 FN	L & 330 FEL (Se	ec 24)								-
13,100.0	90.16		10,658.1	-2,264.4	-50.5	2,264.6	0.00	0.00	0.00	
13,200.0	90.16	179.75	10,657.8	-2,364.4	-50.0	2,364.6	0.00	0.00	0.00	
13,300.0	90.16	179.75	10,657.5	-2,464.4	-49.6	2,464.6	0.00	0.00	0.00	
13,400.0	90.16		10,657.2	-2,564.4	-49.2	2,464.6	0.00	0.00	0.00	
13,400.0	90.16		10,656.9	-2,564.4	-49.2	2,564.6	0.00	0.00	0.00	
13,600.0	90.16		10,656.7	-2,764.4	-48.3	2,004.0	0.00	0.00	0.00	
13,700.0	90.16		10,656.4	-2,864.4	-46.3	2,764.6	0.00	0.00	0.00	
13,700.0	90.10	110.10	10,000.4	-2,004.4						
13,800.0	90.16	179.75	10,656.1	-2,964.4	-47.5	2,964.6	0.00	0.00	0.00	
13,900.0	90.16	179.75	10,655.8	-3,064.4	-47.0	3,064.6	0.00	0.00	0.00	
14,000.0	90.16	179.75	10,655.5	-3,164.4	-46.6	3,164.6	0.00	0.00	0.00	
14,100.0	90.16	179.75	10,655.2	-3,264.4	-46.2	3,264.6	0.00	0.00	0.00	
14,200.0	90.16		10,655.0	-3,364.4	-45.7	3,364.6	0.00	0.00	0.00	
							0.00	0.00	0.00	
14,300.0	90.16		10,654.7	-3,464.4	-45.3	3,464.6	0.00	0.00	0.00	
14,400.0	90.16		10,654.4	-3,564.4	-44.9	3,564.6	0.00	0.00	0.00	
14,500.0	90.16		10,654.1	-3,664.4	-44.4	3,664.6	0.00	0.00	0.00	
14,600.0	90,16		10,653.8	-3,764.4	-44.0	3,764.6	0.00	0.00	0.00	
14,700.0	90.16	179.75	10,653.5	-3,864.4	-43.6	3,864.5	0.00	0.00	0.00	

• •

۰.

Database:	Hobbs		Local Co-ordinate Reference:	Site Fuller 13/24 W	1IP Fed Co	m #1H	
Company:	Mewbourne Oil Company		TVD Reference:	WELL @ 3043.0usf	t (Original V	∧vell Elev)	
Project:	Eddy County, New Mexico NAD 83	•	MD Reference:	WELL @ 3043.0usf	t (Original V	Nell Elev)	
Site:	Fuller 13/24 W1IP Fed Com #1H		North Reference:	Grid			· .
Well:	SL: 2250 FSL & 270 FEL (Sec 13)	-	Survey Calculation Method:	Minimum Curvature	۰. ·		
Wellbore:	BHL: 330 FSL & 330 FEL (Sec 24)						
Design:	Design #1						

Planned Survey

· .

. ·

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	*+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	.Turn Rate (°/100usft)
	5,100.0	2.65	351.36	5,095,7	183.7	-27.9	-183.6	0.00	0.00	0.00
	5,200.0	2.65	351.36	5,195.6	188.2	-28.6	-188.1	0.00	0.00	0.00
	5,200.0									
	5,300.0	2.65	351,36	5,295,5	192.8	-29.3	-192.7	0.00	0.00	0.00
	5,400.0	2.65	351.36	5,395.4	197.4	-30.0	-197.2	0.00	0.00	0.00
	5,500.0	2.65	351.36	5,495.3	201.9	-30.7	-201.8	0.00	0.00	0.00
	5,600.0	2.65	351.36	5,595.2	206.5	-31.4	-206.4	0.00	0.00	0.00
	5,700.0	2.65	351.36	5,695.1	211.1	-32.1	-210.9	0.00	, 0.00	0.00
	5,800.0	2.65	351.36	5,795.0	215.6	-32.8	-215.5	. 0.00	0.00	0.00
	5,900.0	2,65	351.36	5,894.9	220.2	-33.5	-220.1	0.00	0.00	0.00
	6,000.0	2.65	351.36	5,994.8	224.8	-34.2	-224.6	0.00	0.00	0,00
	6,100.0	2.65	351,36	6,094.7	229.3	-34.8	-229.2	0.00	0.00	0.00
	6,200.0	2.65	351,36	6,194.6	233.9	-35.5	-233.8	0.00	0.00	0,00
						-36.2	-238.3	0.00	0.00	0.00
1	6,300.0	2.65	351.36	6,29,4.5	238.5				0.00	0.00
	6,400.0	2.65	351.36	6,394.4	243.0	-36.9	-242.9	0.00		0.00
	6,500.0	2.65	351.36	6,494.2	247.6	-37.6	-247.4	0.00	0.00	
ł	6,600.0	2.65	351.36	6,594.1	252.2	-38.3	-252.0	0.00	0.00	0.00
	6,700.0	2.65	351,36	6,694.0	256.7	-39.0	-256.6	0.00	0.00	0.00
	6,800.0	2.65	351.36	6,793.9	261.3	-39.7	-261.1	0.00	0.00	0.00
	6,900.0	2.65	351,36	6,893.8	265.9	-40.4	-265.7	0.00	0.00	0.00
	7,000.0	2.65	351.36	6,993.7	270,4	-41.1	-270.3	0.00	0.00	0.00
	7,100.0	2.65	351,36	7,093,6	275.0	-41.8	-274.8	0.00	0.00	0,00
	7,200.0	2.65	351.36	7,193.5	279.6	-42.5	-279.4	0.00	0.00	0.00
							294.0	0.00	0.00	0.00
	7,300.0	2.65	351,36	7,293.4	284.1	-43.2	-284.0	0.00	0.00	
	7,400.0	2.65	351.36	7,393.3	288.7	-43.9	-288.5	0.00	0.00	× 0.00
	7,500.0	2.65	351.36	7,493.2	293.3	-44.6	-293.1	0.00	0.00	0.00
	7,600.0	2.65	351.36	7,593.1	297.8	-45.3	-297.7	0.00	0.00	0.00
	7,700.0	2.65	351.36	7,693.0	302.4	-46.0	-302.2	0.00	0.00	0.00
	7,800.0	2.65	351.36	7,792.9	307.0	-46.6	-306.8	0.00	0.00	0.00
	7,900.0	2.65	351.36	7,892.7	311.5	-47.3	-311.3	0.00	0.00	0.00
	8,000.0	2.65	351.36	7,992.6	316.1	-48.0	-315.9	0.00	0.00	0.00
	8,100.0	2.65	351.36	8,092.5	320.7	-48.7	-320.5	0.00	0.00	0.00
	8,200.0	2.65	351.36	8,192.4	325.2	-49.4	-325.0	0.00	0.00	0.00
	8,300.0	2.65	351.36	8,292.3	329.8	-50.1	-329.6	0.00	0.00	0.00
	8,400.0	2.65	351.36	8,392.2	334.4	-50.8	-334,2	0.00	0.00	0.00
	8,500.0	2.65	351.36	8,492.1	338.9	-51.5	-338.7	0.00	0.00	0.00
	8,600.0	2.65	351.36	8,592.0	343.5	-52.2	-343.3	0.00	0.00	0.00
	8,700.0	2.65	351.36	8,691.9	348.1	-52.9	-347.9	0.00	0.00	0.00
	8,800.0	2.65	351.36	8,791.8	352.6	-53.6	-352.4	0.00	0.00	0.00
	8,900.0	2.65	351.36	8,891.7	357.2	-54.3	-357.0	0.00	0.00	0.00
	9,000.0	2.65	351.36	8,991.6	361.8	-55.0	-361.5	0.00	0.00	0.00
	9,100.0	2.65	351.36	9,091.5	366.3	-55.7	-366.1	0.00	0.00	0.00
	9,200.0	2.65	351.36	9,191.4	370.9	-56.4	-370.7	0.00	0.00	0.00
	9,300.0	2.65	351.36	9,291.3	375.5	-57.1	-375.2	0.00	0.00	0.00
	9,400.0	2.65	351.36	9,391.1	380.0	-57.8	-379.8	0.00	0.00	0.00
	9,500.0	2.65	351,36	9,491.0	384.6	-58.4	-384.4	0.00	0.00	0.00
	9,600.0	2.65	351.36	9,590.9	389.2	-59.1	-388.9	0.00	0.00	0.00
ł	9,700.0	2.65	351.36	9,690.8	393.7	-59.8	-393.5	0.00	0.00	0.00
								•		0.00
	9,800.0	2.65	351.36	9,790.7	398.3	-60.5	-398.1	0.00	0.00	
1	9,900.0	2.65	351.36	9,890.6	402.9	-61.2	-402.6	0.00	0.00	0.00
	9,924.0	2.65	351,36	9,914.6	404.0	-61.4	-403.7	0.00	0.00	0.00
	10,000.0	1.51	351.36	9,990.5	406.7	-61.8	-406.4	1.50	-1.50	0.00
	10,100.0	0.01	351,36	10,090.5	408.0	-62.0	-407.7	1.50	-1.50	0.00
	10,100.5	0.00	0.00	10,091.0	408.0	-62.0	-407.7	1.50	-1.50	0.00
L					_					

Database:	Hobbs	Local Co-ordinate Reference:	Site Fuller 13/24 W1IP Fed Com #1H
Company:	Mewbourne Oil Company	TVD Reference:	WELL @ 3043.0usft (Original Well Elev)
Project:	Eddy County, New Mexico NAD 83	MD Reference:	WELL @ 3043.0usft (Original Well Elev)
Site:	Fuller 13/24 W1IP Fed Com #1H	North Reference:	Grid
Well:	SL: 2250 FSL & 270 FEL (Sec 13)	Survey Calculation Method:	Minimum Curvature
Wellbore:	BHL: 330 FSL & 330 FEL (Sec 24)	이 이 이 이 가슴을 잡지 못 줄	
Design:	Design #1		

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.00
SL: 2250 FS	L & 270 FEL (Se	c 13)							
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.00
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.00
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.00
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.00
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.00
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00	0.00
900.0	0,00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
990.0		0.00	990.0		0.0	0.0	0.00	0.00	0.00
1,000.0	0.00 0.15	351.36	1,000.0	0.0 0.0	0.0	0.0	1.50	1.50	0.00
1,100.0	1.65	351.36	1,100.0	1.6	-0.2	-1.6	1.50	1.50	0.00
1,166.5	2.65	351.36	1,166.4	4.0	-0.2	-4.0	1.50	1.50	0.00
1,200.0	2.65	351.36	1,199.9	5.6	-0.8	-5.6	0.00	0.00	0.00
1,300.0	2.65	351.36	1,299.8	10.1	-1.5	-10.1	0.00	0.00	0.00 0.00
1,400.0	2.65	351.36	1,399.7	14.7	-2.2	-14.7	0.00	0.00	0.00
1,500.0	2.65	351.36	1,499.6	19.3	-2,9	-19.2	0.00	0.00 0.00	0.00
1,600.0	2.65 2.65	351.36 351.36	1,599.5 1,699.4	23.8 28.4	-3.6 -4.3	-23.8 -28.4	0.00 0.00	0.00	0.00
1,700.0									
1,800.0	2.65	351.36	1,799.3	33.0	` - 5.0	-32.9	0.00	0.00	0.00
1,900.0	2.65	351.36	1,899.2	37.5	- 5.7	-37.5	0.00	0.00	0.00
2,000.0	2.65	351.36	1,999.0	42.1	-6.4	-42.1	0.00	0.00	0.00
2,100.0	2.65	351.36	2,098.9	46.7	-7.1	-46.6	0.00	0.00	0.00
2,200.0	2.65	351.36	2,198.8	51.2	-7.8	-51,2	0.00	0.00	0.00
2,300.0	2.65	351.36	2,298.7	55.8	-8.5	-55.8	0.00	0.00	0.00
2,400.0	2.65	351,36	2,398.6	60.4	-9.2	-60.3	0.00	0.00	0.00
2,500.0	2.65	351.36	2,498.5	64.9	-9.9	- 64.9	0.00	0.00	0.00
2,600.0	2.65	351,36	2,598.4	69.5	-10.6	-69.5	0.00	0.00	0.00
2,700.0	2.65	351.36	2,698.3	74.1	-11.3	-74.0	0.00	0.00	0,00
2,800.0	2.65	351.36	2,798.2	78.6	-11.9	-78.6	0.00	0.00	0.00
2,900.0	2.65	351.36	2,898.1	83.2	-12.6	-83.1	0.00	0.00	0.00
3,000.0	2.65	351.36	2,998.0	87.8	-13.3	-87.7	0.00	0.00	0.00
3,100.0	2.65	351.36	3,097.9	92.3	-14.0	-92.3	0.00	0.00	0.00
3,200.0	2.65	351.36	3,197.8	96.9	-14.7	-96.8	0.00	0.00	0.00
3,300.0	2.65	351.36	3,297.7	101.5	-15.4	-101.4	0.00	0.00	0.00
3,400.0	2.65	351.36	3,397.6	106.0	-16.1	-106.0	0.00	0.00	0.00
3,500.0	2.65	351.36	3,497.4	110.6	-16.8	-110.5	0.00	0.00	0.00
3,600.0	2.65	351.36	3,597.3	115.2	-17.5	-115.1	0.00	0.00	0.00
3,700.0	2.65	351.36	3,697.2	119.7	-18.2	-119.7	0.00	0.00	0.00
3,800.0	2.65	351.36	3,797.1	124.3	-18.9	-124.2	0.00	0.00	0.00
3,900.0	2.65	351.36	3,897.0	128.9	-19.6	-128.8	0.00	0.00	0.00
4,000.0	2.65	351.36	3,996.9	133.4	-20.3	-133.3	0.00	0.00	0.00
4,100.0	2.65	351.36	4,096.8	138.0	-21.0	-137.9	0.00	0.00	0.00
4,200.0	2.65	351,36	4,196.7	142.6	-21.7	-142.5	0.00	0.00	0.00
			4,296.6	147.1	-22.4	-147.0	0.00	0.00	0.00
4,300.0	2.65 2.65	351.36 351.36	4,296.6 4,396.5	147.1 151.7	-22.4 -23.1	-147.0	0.00	0.00	0.00
4,400.0 4,500.0	2.65	351.36	4,396.5 4,496.4	151.7	-23.1	-156.2	0.00	0.00	0.00
4,500.0	2.65	351.36	4,496.4 4,596.3	150.5	-23.7	-160.7	0.00	0.00	0.00
4,600.0	2.65	351.36	4,596.3	165.4	-24.4	-165.3	0.00	0.00	0.00
4,800.0	2.65	351.36	4,796.1	170.0	-25.8	-169.9	0.00	0.00	0.00
4,900.0	2.65	351.36	4,896.0	174.5	-26.5	-174.4	0.00	0.00	0.00
5,000.0	2.65	351.36	4,995.8	179.1	-27.2	-179.0	0.00	0.00	0.00

COMPASS 5000.1 Build 72

. •

۰.

		for contraction of new second reserves and the		andradianteristicana alara mendera petitika dispetitua		rdinato Dofe		ite Fuller 13/24	WILP Fed Co	m #1H	
Database:	Hobbs					rdinate Referer	영국 문장이 나는 것 같아. 제품 문	VELL @ 3043.0			
Company:	/ 11	ourne Oil Comp	•		TVD Refere						
Project:		County, New M			MD Reference: WELL @ 3043.0usft (Original Well Elev) Orth Reference: Grid						
Site:	Fuller 1	13/24 W1IP Fe	d Com #1H		North Refe						
Well:	SL: 22	50 FSL & 270 F	FEL (Sec 13)	• •	Survey Cal	culation Metho	id: N	linimum Curvat	ture	and the second	
Wellbore:	BHL: 3	30 FSL & 330	FEL (Sec 24)					· · · · · · · · · ·			
Design:	Design	ı #1	antinen er ment star startstättetter			ta esta de la companya de la company		and in the second s	and the second second second		
Project	Eddy Co	ounty, New Me	xico NAD 83				ىرىن سەرىپىيە مەدەپىي ئازىي مەدەلەل بۇتۇرۇ ئېيە			ana ang ang ang ang ang ang ang ang ang	
Map System:	US State	Plane 1983			System Datu		Me	an Sea Level			
Geo Datum:		erican Datum '	1983		-,						
Map Zone:	New Mex	rico Eastern Zo	ne								
								eep-maarine	والمراجعة والمحاوية والمحاوية والمحاوية		
Site	Fuller 13	3/24 W1IP Fed	na an ann an tha an Ann ann an Ann an Ann ann an	* ************************************	- 			alaanaani - mada tiriyo dhaday i kaadhaa naasada haraanaa ahaa ahaa ahaadhaa ahaadhaa dhadaa			
Site Position:			North	-			atitude:			32.041301	
From:	Map		Easti	ng:	666,2		.ongitude:			-103.9300949	
Position Uncertainty	:	0.0	D usft Slot I	Radius:		13-3/16 " G	Grid Converge	ence:		0.21	
Well	SL: 2250	0 FSL & 270 FE	EL (Sec 13)		مىرى مەلىرىدىنى ئەرىمەر ئەرۇش مەلىرىمەر مەرىپىرىيە مەلىرى بەرىمەر بىرىكى مەلىرىمەر بىرى بىر			an gaganaga ayaan aan si si santara sifa sa saya yaan 		ali ugan gana kana kana kana kana kana kana k	
Well Position	+N/-S	0	.0 usft N	orthing:		378,997.00 u	sft Latit	ude:		32.041301	
	+E/-W	0	.0 usft ,E	asting:		666,281.00 u	sft Lon	gitude:		-103.930094	
				ellhead Elevatio		3,043.0 u	sft Grou	und Level:		3,016.0 ust	
Position Uncertainty Wellbore	production to a barrow	0. 30 FSL & 330 I		velinead Elevado							
	BHL: 3	30 FSL & 330 I del Name	FEL (Sec 24)	lę Date	Declinati (°)		Dip A	ngle		Strength 1T) 47,728	
Wellbore	BHL: 3	30 FSL & 330 I	FEL (Sec 24)		Declinat	ion	Dip A	ngle		ηΤ)	
Wellbore	BHL: 3	30 FSL & 330 I del Name IGRF2010	FEL (Sec 24)	lę Date	Declinat	ion	Dip A	ngle		ηΤ)	
Wellbore Magnetics	BHL: 3:	30 FSL & 330 I del Name IGRF2010	F <u>EL (Sec 24)</u> Samp	le Date 11/30/2018	Declinat (°)	ion 6.82	Dip A (°	ngle		ηΤ)	
Wellbore Magnetics Design	BHL: 3:	30 FSL & 330 I del Name IGRF2010	FEL (Sec 24)	le Date 11/30/2018	Declinat	ion 6.82	Dip A	ngle		ηΤ)	
Wellbore Magnètics Dèsign Audit Notes:	BHL: 3:	30 FSL & 330 f del Name IGRF2010 #1	FEL (Sec 24) Samp Phae Depth From (T	lę Date 11/30/2018 se: PF	Declinati (°) ROTOTYPE +N/-S	ion 6.82 Tie C +E/1	Dip A (°))n Depth: W	ngle 59.77 Din	0.0 ection	ηΤ)	
Wellbore Magnetics Design Audit Notes: Version:	BHL: 3:	30 FSL & 330 f del Name IGRF2010 #1	F <u>EL (Sec 24)</u> Samp	lę Date 11/30/2018 se: PF	Declinati (°) ROTOTYPE	ion 6.82 Tie C	Dip A (°; Din Depth: W t)	ngle 59.77 Dir	0.0	ηΤ)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	BHL: 3:	30 FSL & 330 f del Name IGRF2010 #1	F <u>EL (Sec 24)</u> Samp Phae Pepth From (T (usft)	lę Date 11/30/2018 se: PF	Declinati (°) ROTOTYPE +N/-S (usft)	ion 6.82 Tie C +E/-1 (usf	Dip A (°; Din Depth: W t)	ngle 59.77 Dir	() 0.0 ection (*)	ηΤ)	
Wellbore Magnetics Design Audit Notes: Version:	BHL: 3:	30 FSL & 330 f del Name IGRF2010 #1	F <u>EL (Sec 24)</u> Samp Phae Pepth From (T (usft)	lę Date 11/30/2018 se: PF	Declinati (°) ROTOTYPE +N/-S (usft)	ion 6.82 Tie C +E/-1 (usf	Dip A (°; Din Depth: W t)	ngle 59.77 Dir	() 0.0 ection (*)	ηΤ)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section:	BHL: 3:	30 FSL & 330 f del Name IGRF2010 #1	F <u>EL (Sec 24)</u> Samp Phae Pepth From (T (usft)	lę Date 11/30/2018 se: PF	Declinati (°) ROTOTYPE +N/-S (usft)	ion 6.82 Tie C +E/- (usf 0.0 Dogleg	Dip A (°,)) Dn Depth: W t)) Build	ngle 59.77 Din 18 Turn	() 0.0 ection (*)	1T)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inclin	BHL: 3: Mor	30 FSL & 330 f del Name IGRF2010 #1 D	FEL (Sec 24) Samp Phae Depth From (T (usft) 0.0 Vertical Depth	le Date 11/30/2018 se: PF VD) +N/-S	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W	ion 6.82 Tie C +E/- (usf 0.0 Dogleg Rate	Dip A (°, Dn Depth: W t)) Build Rate	ngle 59.77 Dir 18 Turn Rate	() 0.0 ection (°) 30.23 TFO	nT) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inclin	Design 1	30 FSL & 330 f del Name IGRF2010 #1	FEL (Sec 24) Samp Phae Depth From (T (usft) 0.0 Vertical	lle Date 11/30/2018 se: PF VD)	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W	ion 6.82 Tie C +E/- (usf 0.0 Dogleg Rate	Dip A (°, Dn Depth: W t)) Build Rate	ngle 59.77 Din 18 Turn	0.0 ection (°) 30.23	ηΤ)	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Inclin (usft)	Design 1	30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°)	FEL (Sec 24) Samp Phae Pepth From (T (usft) 0.0 Vertical Depth (usft)	le Date 11/30/2018 se: PF VD) +N/-S (usft)	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft)	ion 6.82 Tie C +E/-1 (usf 0.0 Dogleg Rate (*/100usft)	Dip A (°, Dn Depth: W t)) Build Rate (°/100usft)	ngle 59.77 Dir Dir 18 Turn Rate ("/100usft)	() 0.0 ection (?) 30.23 TFO (?)	1T) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0	Design 1	30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°) 0.00	FEL (Sec 24) Samp Phae Pepth From (T (usft) 0.0 Vertical Depth (usft) 0.0	ilę Date 11/30/2018 se: PF VD) +N/-S (usft) 0.0	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0	ion 6.82 Tie C +E/-1 (usf 0.0 Dogleg Rate (*/100usft) 0.00	Dip A (°; Dn Depth: W t)) Build Rate (*/100usft) 0.00	ngle 59.77 Dir 18 Turn Rate (*/100usft) 0.00	() 0.0 ection (?) 30.23 TFO (?) 0.00	1T) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plán Sections Measured Depth Incli (usft) 0.0 990.0	((((() 0.00 0.00 0.00	30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°) 0.00 0.00	FEL (Sec 24) Samp Phae Depth From (T (usft) 0.0 Vertical Depth (usft) 0.0 990.0	lle Date 11/30/2018 se: PF VD) +N/-S (usft) 0.0 0.0	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0	ion 6.82 Tie C +E/-1 (usf 0.00 Dogleg Rate (*/100usft) 0.00 0.00	Dip A (°, Dn Depth: W t) D Build Rate (*/100usft) 0,00 0,00	ngle 59.77 Dir 18 Turn Rate (*/100usft) 0.00 0.00	() 0.0 ection (?) 30.23 TFO (?) 0.00 0.00	1T) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0 990.0 1,166.5	BHL: 3: Mor Design 1 ((((() () () () () () () (30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°) 0.00 0.00 351.36	FEL (Sec 24) Samp Pha: Pepth From (T (usft) 0.0 Vertical Depth (usft) 0.0 990.0 1,166.4	lle Date 11/30/2018 se: PF VD) +N/-S (usft) 0.0 0.0 4.0	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 -0.6	ion 6.82 Tie C +E/-1 (usf 0.0 Dogleg Rate (*/100usft) 0.00 0.00 1.50	Dip A (°, Dn Depth: W t) D Build Rate (°/100usft) 0.00 0.00 1.50	ngle 59.77 Dir 18 Turn Rate (*/100usft) 0.00 0.00 0.00	() 0.0 ection (°) 30.23 TFO (°) 0.00 0.00 351.36	1T) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0 990.0 1,166.5 9,924.0	BHL: 3: Mor Design 1 ((((() () () () () () () (30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°) 0.00 0.00 351.36 351.36	FEL (Sec 24) Samp Pha: Pepth From (T (usft) 0.0 Vertical Depth (usft) 0.0 990.0 1,166.4 9,914.6	lle Date 11/30/2018 se: PF VD) +N/-S (usft) 0.0 0.0 4.0 4.0 404.0	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 -0.6 -61.4	ion 6.82 Tie C +E/-1 (usf 0.0 Dogleg Rate (*/100usft) 0.00 0.00 1.50 0.00	Dip A (°, Dn Depth: W t) D Build Rate (°/100usft) 0.00 0.00 1.50 0.00	ngle 59.77 Dir 18 Turn Rate (*/100usft) 0.00 0.00 0.00 0.00	() 0.0 ection (°) 30.23 TFO (°) 0.00 0.00 351.36 0.00	1T) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0 990.0 1,166.5	BHL: 3: Mor Design 1 ((((() () () () () () () (30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°) 0.00 0.00 351.36	FEL (Sec 24) Samp Pha: Pepth From (T (usft) 0.0 Vertical Depth (usft) 0.0 990.0 1,166.4	lle Date 11/30/2018 se: PF VD) +N/-S (usft) 0.0 0.0 4.0	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 -0.6 -61.4 -62.0	ion 6.82 Tie C +E/-1 (usf 0.0 Dogleg Rate (*/100usft) 0.00 0.00 1.50	Dip A (°, Dn Depth: W t) D Build Rate (°/100usft) 0.00 0.00 1.50	ngle 59.77 Dir 18 Turn Rate (*/100usft) 0.00 0.00 0.00 0.00 0.00 0.00	0.0 ection (°) 30.23 TFO (°) 0.00 0.00 351.36 0.00 180.00	1T) 47,728	
Wellbore Magnetics Design Audit Notes: Version: Vertical Section: Plan Sections Measured Depth Incli (usft) 0.0 990.0 1,166.5 9,924.0	BHL: 3: Mor Design 1 ((((() () () () () () () (30 FSL & 330 f del Name IGRF2010 #1 D Azimuth (°) 0.00 0.00 351.36 351.36	FEL (Sec 24) Samp Pha: Pepth From (T (usft) 0.0 Vertical Depth (usft) 0.0 990.0 1,166.4 9,914.6	lle Date 11/30/2018 se: PF VD) +N/-S (usft) 0.0 0.0 4.0 4.0 404.0	Declinati (°) ROTOTYPE +N/-S (usft) 0.0 +E/-W (usft) 0.0 0.0 0.0 -0.6 -61.4	ion 6.82 Tie C +E/-1 (usf 0.0 Dogleg Rate (*/100usft) 0.00 0.00 1.50 0.00	Dip A (°, Dn Depth: W t) D Build Rate (°/100usft) 0.00 0.00 1.50 0.00	ngle 59.77 Dir 18 Turn Rate (*/100usft) 0.00 0.00 0.00 0.00	() 0.0 ection (°) 30.23 TFO (°) 0.00 0.00 351.36 0.00	1T) 47,728	

.

.

Mewbourne Oil Company

Eddy County, New Mexico NAD 83 Fuller 13/24 W1IP Fed Com #1H SL: 2250 FSL & 270 FEL (Sec 13) Sec 13, T26S, R29E BHL: 330 FSL & 330 FEL (Sec 24)

Plan: Design #1

Standard Planning Report

30 November, 2018

2. Casing Program

Hole Size	Casing From	Interval To	Csg. Size	Weight (lbs)	Grade	Conn.	SF Collapse	SF Burst	SF Jt Tension	SF Body Tension
17.5"	0'	990'	13.375"	48	H40	STC	1.70	3.82	6.78	11.38
12.25"	0'	3185'	9.625"	36	J55	LTC	1.22	2.13	3.95	4.92
8.75"	0' .	11000'	7"	26	HCP110	LTC	1.48	1.89	2.42	2.90
6.125"	10101'	18079'	4.5"	13.5	P110	LTC	1.48	1.72	-3.14	3.92
	I	1		BLM Min	imum Safet	ty Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

. •

۰.

2. Casing Program

Hole	Casing	Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	990'	13.375"	48	H40	STC	1.70	3.82	6.78	11.38
12.25"	0'	3185'	9.625"	36	J55	LTC	1.22	2.13	3.95	4.92
8.75"	0'	11000'	7"	26	HCP110	LTC	1.48	1.89	2.42	2.90
6.125"	10101'	18079'	4.5"	13.5	P110	LTC	1.48	1.72	3.14	3.92
	L. C.			BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
	N
Is well located within Capitan Reef?	<u> </u>
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
	<u></u>
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

2. Casing Program

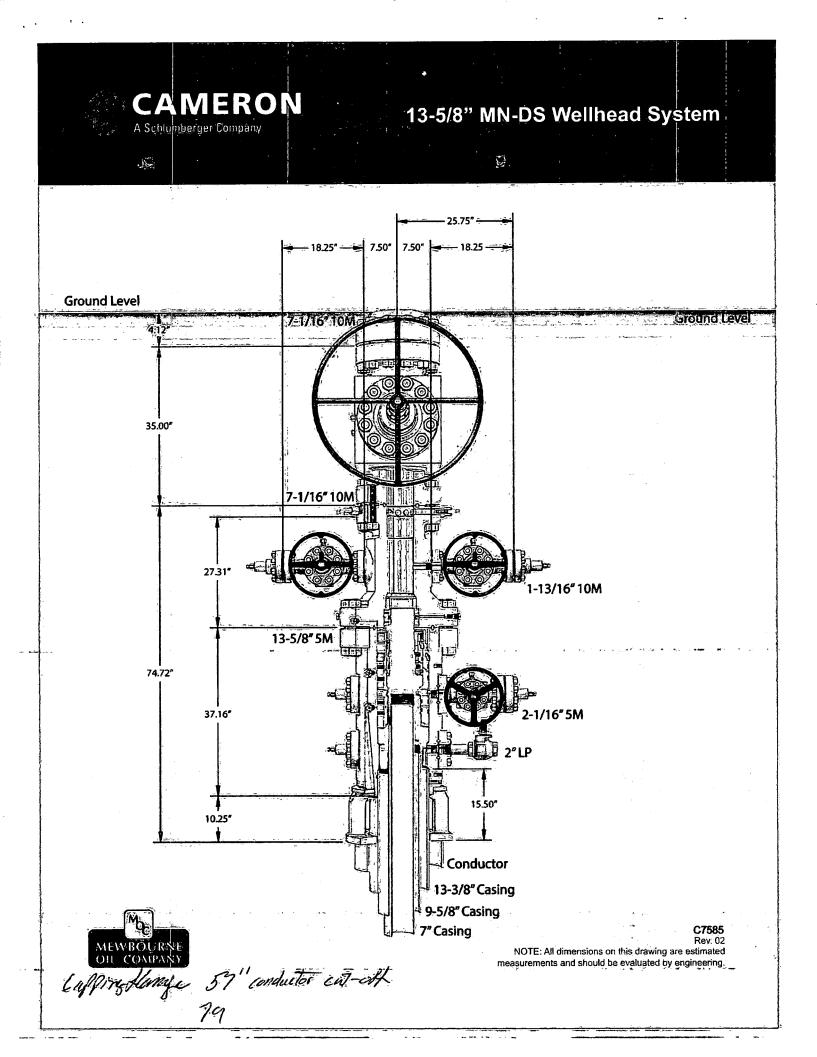
۰.

. ·

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	990'	13.375"	48	H40	STC	1.70	3.82	6.78	11.38
12.25"	0'	3185'	9.625"	36	J55	LTC	1.22	2.13	3.95	4.92
8.75"	0'	11000'	7"	26	HCP110	LTC	1.48	1.89	2.42	2.90
6.125"	10101'	18079'	4.5"	13.5	P110	LTC	1.48	1.72	3.14	3.92
		J		BLM Min	imum Safet	y Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

			Y or N
Is casing new? If used, attach certification a	s required in Onshore Order	r #1	Y
Is casing API approved? If no, attach casing	g specification sheet.		Y
Is premium or uncommon casing planned?		ation sheet.	Ν
Does the above casing design meet or excee justification (loading assumptions, casing de	ed BLM's minimum standar	ds? If not provide	Y
Will the pipe be kept at a minimum 1/3 f collapse pressure rating of the casing?	fluid filled to avoid approach	ning the	Y
Is well located within Capitan Reef?	G	*,	N
If yes, does production casing cement tie	back a minimum of 50' ab	ove the Reef?	
Is well within the designated 4 string bou			
Is well located in SOPA but not in R-111-P	10.00		N
If yes, are the first 2 strings cemented to 500' into previous casing?	surface and 3 rd string cemer	nt tied back	•
Is well located in R-111-P and SOPA?	······································		N
If yes, are the first three strings cemented	d to surface?		
Is 2 nd string set 100' to 600' below the ba			
Is well located in high Cave/Karst?			N
If yes, are there two strings cemented to	surface?		
(For 2 string wells) If yes, is there a cont	ingency casing if lost circul	ation occurs?	
Is well located in critical Cave/Karst?			N
If yes, are there three strings cemented to	o surface?		


. ,

2. Casing Program

Hole	Casing	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	990'	13.375"	48	H40	STC	1.70	3.82	6.78	11.38
12.25"	0'	3185'	9.625"	36	J55	LTC	1.22	2.13	3:95	4.92
8.75"	0'	11000'	7"	26	HCP110	LTC	1.48	1.89	2.42	2.90
6.125"	10101'	18079'	4.5"	13.5	P110	LTC	1.48	1.72	3.14	3.92
		• • • • • •		BLM Min	imum Safet	ty Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1	Y
Is casing API approved? If no, attach casing specification sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

internet i generalista de la seconda de En esta de la seconda de la

1. Geologic Formations

TVD of target	10,644'	Pilot hole depth	NA
MD at TD:	18,079'	Deepest expected fresh water:	100'

Basin

••.

• •

Formation	Depth (TVD) from KB	Water/Mineral Bearing/ Target Zone?	Hazards*
Quaternary Fill	Surface	Target Zone:	
Rustler	919	Water	
Top of Salt	1404	Water	
Castile	1734		
Base of Salt	3071		
Delaware	3261	Oil/Gas	·
Bell Canyon	3281	Oil/Gas	
Cherry Canyon	4564	Oil/Gas	
Manzanita Marker	4669		
Brushy Canyon	5294	Oil/Gas	
Bone Spring	7056	Oil/Gas	
1 st Bone Spring Sand	7979 (
2 nd Bone Spring Sand	8612	· · · ·	
3 rd Bone Spring Sand	9901		
Abo			-
Wolfcamp	10274	Target Zone	
Devonian			
Fusselman			
Ellenburger			
Granite Wash			

*H2S, water flows, loss of circulation, abnormal pressures, etc.

ſ

. .

• •

2. Casing Program

Hole	Casin	g Interval	Csg.	Weight	Grade	Conn.	SF	SF	SF Jt	SF Body
Size	From	То	Size	(lbs)			Collapse	Burst	Tension	Tension
17.5"	0'	990'	13.375"	48	H40	STC	1.70	3.82	6.78	11.38
12.25"	0'	3185'	9.625"	36	J55	LTC	1.22	2.13	3.95	4.92
8.75"	0'	11000'	7"	26	HCP110	LTC	1.48	1.89	2.42	2.90
6.125"	10101'	18079'	4.5"	13.5	P110	LTC	1.48	1.72	3.14	3.92
				BLM Min	imum Safet	ty Factor	1.125	1	1.6 Dry	1.6 Dry
						-			1.8 Wet	1.8 Wet

All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.h

	Y or N	
Is casing new? If used, attach certification as required in Onshore Order #1	Y	
Is casing API approved? If no, attach casing specification sheet.		
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N	
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y	
Will the pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y	
Is well located within Capitan Reef?	N	
If yes, does production casing cement tie back a minimum of 50' above the Reef?		
Is well within the designated 4 string boundary.		
Is well located in SOPA but not in R-111-P? If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	N	
Is well located in R-111-P and SOPA? If yes, are the first three strings cemented to surface?	N	
Is 2 nd string set 100' to 600' below the base of salt?		
Is well located in high Cave/Karst?	N	
If yes, are there two strings cemented to surface?		
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?		
Is well located in critical Cave/Karst?	N	
If yes, are there three strings cemented to surface?		

3. Cementing Program

Casing	# Sks	Wt. lb/ gal	Yld ft3/ sack	H20 gal/ sk	500# Comp. Strength (hours)	Slurry Description
Surf.	530	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8	Tail: Class C + Retarder
Inter.	510	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
	200	14.8	1.34	6.3	8 .	Tail: Class C + Retarder
Prod. Stg 1	360	12.5	2.12	11	9	Lead: Class C + Gel + Retarder + Defoamer + Extender
0 -	400	15.6	1.18	5.2	10	Tail: Class H + Retarder + Fluid Loss + Defoamer
					ECP/DV T	ool @ 4669'
Prod.	375	12.5	2.12	11	10	Lead: Class C + Salt + Gel + Extender + LCM
Stg 2	100	14.8	1.34	6.3	8	Tail: Class C + Retarder
Liner	320	11.2	2.97	18	16	Class C + Salt + Gel + Fluid Loss + Retarder + Dispersant + Defoamer + Anti-Settling Agent

A copy of cement test will be available on location at time of cement job providing pump times & compressive strengths.

Casing String	TOC	% Excess
Surface	0'	100%
Intermediate	0'	25%
Production	2985'	25%
Liner	10101'	25%

4. Pressure Control Equipment

BOP installed	Size?	System	Туре	\checkmark	Tested to:
and tested before drilling which hole?		Rated WP			
			Annula	r X	2,500#
	13-5/8" 5M		Blind Ra	ım X	
12-1/4"		5M	Pipe Ra	m X	5 000#
		Double Ram		5,000#	
			Other*		

*Specify if additional ram is utilized.

BOP/BOPE will be tested by an independent service company to 250 psi low and the high pressure indicated above per Onshore Order 2 requirements. The System may be upgraded to a higher pressure but still tested to the working pressure listed in the table above. If the system is upgraded all the components installed will be functional and tested.

Pipe rams will be operationally checked each 24 hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment will include a Kelly cock and floor safety valve (inside BOP) and choke lines and choke manifold. See attached schematics.

X	Formation integrity test will be performed per Onshore Order #2. On Exploratory wells or on that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Will be tested in accordance with Onshore Oil and Gas Order #2 III.B.1.i.				
Y	A variance is requested for the use of a flexible choke line from the BOP to Choke Manifold. See attached for specs and hydrostatic test chart.				
	N Are anchors required by manufacturer?				
Y	A multibowl wellhead is being used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.				
	Provide description here: See attached schematic.				

5. Mud Program

• ,

• •

`\

T	VD	Туре	Weight (ppg)	Viscosity	Water Loss
From	То	1			
0	990'	FW Gel	8.6-8.8	28-34	N/C
990'	3185'	Saturated Brine	10.0	28-34	N/C
3185'	10664'	Cut Brine	8.6-9.5	28-34	N/C
10664'	10644'	OBM	10.0-13.0	30-40	<10cc

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

What will be used to monitor the loss or gain	Pason/PVT/Visual Monitoring
of fluid?	

6. Logging and Testing Procedures

Logg	ing, Coring and Testing.		
X	Will run GR/CNL from KOP (10,101') to su	rface (horizontal well - vert	ical portion of
	hole). Stated logs run will be in the Comple	tion Report and submitted to	the BLM.
	No Logs are planned based on well control of	or offset log information.	
	Drill stem test? If yes, explain		
	Coring? If yes, explain		

Add	litional logs planned	Interval
X	Gamma Ray	10,101' (KOP) to TD
	Density	
	CBL	
	Mud log	
	PEX	

7. Drilling Conditions

Condition	Specify what type and where?
BH Pressure at deepest TVD	6654 psi
Abnormal Temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers in surface hole. Weighted mud for possible over-pressure in Wolfcamp formation.

Hydrogen Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered, measured values and formations will be provided to the BLM.

 H2S is present

 X
 H2S Plan attached

8. Other facets of operation

Is this a walking operation? If yes, describe. Will be pre-setting casing? If yes, describe.

)

Attachments

____ Directional Plan Other, describe