Form 3160-3 (June 2015)

DEC 2 6 2019

UNITED STATES DEPARTMENT OF THE INTESTANCE. BUREAU OF LAND MANAGEMENT

FORM APPROVED OMB No. 1004-0137 Expires: January 31, 2018

5. Lease Serial No. NMNM105557

APPLICATION FOR PERMIT TO DR	ILL OR I	REENTER		6. If Indian, Allote	ee or Tribe Name
				7 If Unit or CAA	greement, Name and No.
	ENTER			7. II Ollit of CAA	greement, Name and No.
1b. Type of Well: Oil Well Gas Well Oth		8. Lease Name and	d Well No.		
1c. Type of Completion: Hydraulic Fracturing Sing	gle Zone	Multiple Zone		PAPA FRITAS 2	7-22 FED COM
				711H	
				<u> </u>	67787
Name of Operator DEVON ENERGY PRODUCTION COMPANY LP				9. API Well No.	5-46572
3a. Address 333 West Sheridan Avenue Oklahoma City OK 73102 3b. Phone No. (include area co			de)	10. Field and Pool	
4. Location of Well (Report location clearly and in accordance with	th any State	requirements.*)		11. Sec., T. R. M.	or Blk. and Survey or Area
At surface NWNW / 102 FNL / 968 FWL / LAT 32.26831	1 / LONG -	103.978056		SEC 341/T23S/	R29E / NMP
At proposed prod. zone NWNW / 20 FNL / 968 FWL / LAT	32.297786	/ LONG -103.97	7994		
14. Distance in miles and direction from nearest town or post office	*	——————————————————————————————————————		12. County or Pari	ish 13. State
15. Distance from proposed*	16. No of ac	res in lease	17. Spacii	ig.Unit dedicated to	this well
location to nearest	540		640	pe ^r	
18 Distance from proposed location*	19. Proposed	Depth	20./BLM/	BIA Bond No. in fil	le
to nearest well, drilling, completed, applied for, on this lease, ft.	10200 feet.	20677 feet	FED: NN	IB000801	
	1	nate date work wil	l start*	23. Estimated dura	ation
3020 feet 1	12/14/2020			45 days	
((_^<)	24. Attacl				
The following, completed in accordance with the requirements of C (as applicable)	Onshore Oil	and Gas Order No.	1, and the I	lydraulic Fracturing	rule per 43 CFR 3162.3-3
Well plat certified by a registered surveyor. A Drilling Plan.		4. Bond to cover Item 20 above)		s unless covered by.	an existing bond on file (see
3. A Surface Use Plan (if the location is on National Forest System SUPO must be filed with the appropriate Forest Service Office).	Lands, the	 Operator certif Such other site BLM. 		mation and/or plans	as may be requested by the
25. Signature	Name	(Printed/Typed)			Date
(Electronic Submission)	Erin W	orkman / Ph: (40	5)552-7970)	06/23/2019
Title Regulatory Compliance Professional					
		Name (Printed/Typed) Cody Layton / Ph: (575)2			Date 12/20/2019
Title Assistant, Field Manager Lands & Minerals	Office CARLS				
Application approval does not warrant or certify that the applicant lapplicant to conduct operations thereon. Conditions of approval, if any, are attached.	holds legal o	r equitable title to	those rights	in the subject lease	which would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, mal of the United States any false, fictitious or fraudulent statements or					any department or agency
			1		

Approval Date: 12/20/2019

Ruf 1-9-2020

Instructions on page 2)

(Continued on page 2)

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionary drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state-or tribal regulatory agencies and from local BLM offices.

OTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT, OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agencysponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

(Form 3160-3, page 2)

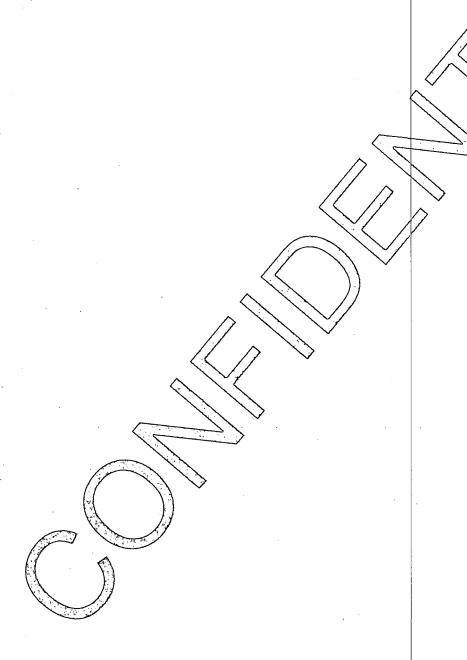
(Continued on page 3) **Approval Date: 12/20/2019**

Additional Operator Remarks

Location of Well

1. SHL: NWNW /102 FNL /968 FWL /TWSP: 23S /RANGE: 29E /SECTION: 34 /LAT: 32 268311 /LONG: -103.978056 (TVD: 0 feet, MD: 0 feet)
PPP: SWSW /100 FSL /990 FWL /TWSP: 23S /RANGE: 29E /SECTION: 27 /LAT: 32.268866 /LONG: -103.977989 (TVD: 10064 feet, MD: 10124 feet)
BHL: NWNW /20 FNL /968 FWL /TWSP: 23S /RANGE: 29E /SECTION: 22 /LAT: 32.297786 /LONG: -103.977994 (TVD: 10200 feet, MD: 20677 feet)

BLM Point of Contact


Name: Candy Vigil

Title: LIE

Phone: 5752345982 Email: cvigil@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

PECÓS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME: Devon Energy Production Company LP

LEASE NO.: | NMNM105557

WELL NAME & NO.: | Papa Fritas 27-22 Fed Com 711H

SURFACE HOLE FOOTAGE: 102'/N & 968'/W **BOTTOM HOLE FOOTAGE** 20'/N & 968'/W

LOCATION: Section 34, T.23 S., R.29 E., NMPM

COUNTY: Eddy County, New Mexico

COA

H2S	© Yes	ONo	
Potash	C None	© Secretary	© R-111-P
Cave/Karst Potential	C Low	Medium	C High
Cave/Karst Potential	Critical		
Variance	None	Flex Hose	Other
Wellhead	C Conventional	↑ Multibowl	№ Both
Other	☐4 String Area	Capitan Reef	C WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	Water Disposal	☑ COM	□ Unit

A. HYDROGEN SULFIDE

A Hydrogen Sulfide (H2S) Drilling Plan shall be activated 500 feet prior to drilling into the **Bone Springs** formation. As a result, the Hydrogen Sulfide area must meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, please provide measured values and formations to the BLM.

B. CASING

Primary Casing Design:

1. The 13-3/8 inch surface casing shall be set at approximately 500 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.

Not enough cement to reach surface for the surface casing, more sacks shall be required.

a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature

Page 1 of 11

survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.

- b. Wait on cement (WOC) time for a primary cement job will be a minimum of 24 hours in the Potash Area or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:

Option 1 (Single Stage):

Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash. Cement excess is less than 25%, more cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- a. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- b. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

- Cement excess is less than 25%, more cement might be required.
- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ❖ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Page 2 of 11

Operator has proposed to pump down 13-3/8" X 7-5/8" annulus. Operator must run a CBL from TD of the 7-5/8" casing to surface. Submit results to BLM.

- 3. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Cement excess is less than 25%, more cement might be required.

Alternate Casing Design:

4. The 13-3/8 inch surface casing shall be set at approximately 500 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.

Not enough cement to reach surface for the surface casing, more sacks shall be required.

- e. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
- f. Wait on cement (WOC) time for a primary cement job will be a minimum of **24 hours in the Potash Area** or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement)
- g. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- h. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

5. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:

Option 1 (Single Stage):

• Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Cement excess is less than 25%, more cement might be required.

Option 2:

Operator has proposed a DV tool, the depth may be adjusted as long as the cement is changed proportionally. The DV tool may be cancelled if cement circulates to surface on the first stage.

- c. First stage to DV tool: Cement to circulate. If cement does not circulate off the DV tool, contact the appropriate BLM office before proceeding with second stage cement job.
- d. Second stage above DV tool:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.

Cement excess is less than 25%, more cement might be required.

- ❖ In Medium Cave/Karst Areas if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- ❖ In <u>R111 Potash Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.

Operator has proposed to pump down 13-3/8" X 8-5/8" annulus. Operator must run a CBL from TD of the 8-5/8" casing to surface. Submit results to BLM.

Operator is approved to drill 10.625" hole instead of 9.875" for intermediate 1 with BTC connection.

- 6. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Cement excess is less than 25%, more cement might be required.

C. PRESSURE CONTROL

1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'

2.

Option 1:

- a. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
- b. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the intermediate casing shoe shall be **5000 (5M)** psi.

Option 2:

- 1. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000 (5M)** psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
 - e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

• The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases

subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.

- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. When the Communitization Agreement number is known, it shall also be on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - Eddy County
 Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822
 - ✓ Lea CountyCall the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575)393-3612
- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- 2. Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until cement has been in place at least 24 hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least 8 hours. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.
- B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.
- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not

hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).

- b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
- c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).
- d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.
- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 11 of 11

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

Papa Fritas 27-22 Fed Com 331H (Well Pad 4) 102 FNL, 943 FWL Section 34, T.23., R. 29E. 20 FNL, 330 FWL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 333H (Well Pad 3) 150 FSL, 822 FWL Section 27, T.23., R. 29E. 20 FNL, 1254 FEL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 332H (Well Pad 2) 152 FSL, 1822 FEL Section 27, T.23., R. 29E. 20 FNL, 2178 FEL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 621H (Well Pad 4) 102 FNL, 993 FWL Section 34, T.23., R. 29E. 20 FNL, 1254 FWL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 332H (Well Pad 2) 152 FSL, 1762 FEL Section 27, T.23., R. 29E. 20 FNL, 2178 FEL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 333H (Well Pad 3) 150 FSL, 762 FEL Section 27, T.23., R. 29E. 20 FNL, 330 FEL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 621H (Well Pad 4) 102 FNL, 968 FWL Section 34, T.23., R. 29E. 20 FNL, 990 FWL Section 22, T.23., R. 29E. Papa Fritas 27-22 Fed Com 333H (Well Pad 3) 150 FSL, 792 FEL Section 27, T.23., R. 29E. 20 FNL, 990 FEL Section 22, T.23., R. 29E.

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

	General Provisions
H	Permit Expiration Archaeology, Paleontology, and Historical Sites
	Noxious Weeds
\boxtimes	Special Requirements
	Range
	Cave/Karst
	Hydrology
	Potash
	Wildlife
	Construction
	Notification

Page 1 of 24

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

Page 3 of 24

V. SPECIAL REQUIREMENT(S)

Cave/Karst Surface Mitigation

The following stipulations will be applied to minimize impacts during construction, drilling and production:

Construction:

General Construction:

- No blasting
- The BLM, Carlsbad Field Office, will be informed immediately if any subsurface drainage channels, cave passages, or voids are penetrated during construction, and no additional construction shall occur until clearance has been issued by the Authorized Officer.
- All linear surface disturbance activities will avoid sinkholes and other karst features to lessen the possibility of encountering near surface voids during construction, minimize changes to runoff, and prevent untimely leaks and spills from entering the karst drainage system.
- All spills or leaks will be reported to the BLM immediately for their immediate and proper treatment.

Pad Construction:

- The pad will be constructed and leveled by adding the necessary fill and caliche

 no blasting.
- The entire perimeter of the well pad will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad.
- The compacted berm shall be constructed at a minimum of 12 inches high with impermeable mineral material (e.g., caliche).
- No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad.
- The topsoil stockpile shall be located outside the bermed well pad.
- Topsoil, either from the well pad or surrounding area, shall not be used to construct the berm.
- No storm drains, tubing or openings shall be placed in the berm.
- If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.
- The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed.
- Any access road entering the well pad shall be constructed so that the integrity of the berm height surrounding the well pad is not compromised (i.e. an access road crossing the berm cannot be lower than the berm height).

• Following a rain event, all fluids will vacuumed off of the pad and hauled offsite and disposed at a proper disposal facility.

Tank Battery Construction:

- The pad will be constructed and leveled by adding the necessary fill and caliche

 no blasting.
- All tank battery locations and facilities will be lined and bermed.
- The liner should be at least 20 mil in thickness and installed with a 4 oz. felt backing, or equivalent, to prevent tears or punctures.
- Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank.

Road Construction:

- Turnout ditches and drainage leadoffs will not be constructed in such a manner as to alter the natural flow of water into or out of cave or karst features.
- Special restoration stipulations or realignment may be required if subsurface features are discovered during construction.

Buried Pipeline/Cable Construction:

• Rerouting of the buried line(s) may be required if a subsurface void is encountered during construction to minimize the potential subsidence/collapse of the feature(s) as well as the possibility of leaks/spills entering the karst drainage system.

Powerline Construction:

- Smaller powerlines will be routed around sinkholes and other karst features to avoid or lessen the possibility of encountering near surface voids and to minimize changes to runoff or possible leaks and spills from entering karst systems.
- Larger powerlines will adjust their pole spacing to avoid cave and karst features.
- Special restoration stipulations or realignment may be required if subsurface voids are encountered.

Surface Flowlines Installation:

• Flowlines will be routed around sinkholes and other karst features to minimize the possibility of leaks/spills from entering the karst drainage system.

Leak Detection System:

- A method of detecting leaks is required. The method could incorporate gauges to measure loss, situating values and lines so they can be visually inspected, or installing electronic sensors to alarm when a leak is present.
- A leak detection plan will be submitted to BLM that incorporates an automatic shut off system (see below) to minimize the effects of an undesirable event that could negatively sensitive cave/karst resources.

Page 5 of 24

Well heads, pipelines (surface and buried), storage tanks, and all supporting
equipment should be monitored regularly after installation to promptly identify
and fix leaks.

Automatic Shut-off Systems:

• Automatic shut off, check values, or similar systems will be installed for pipelines and tanks to minimize the effects of catastrophic line failures used in production or drilling.

Cave/Karst Subsurface Mitigation

The following stipulations will be applied to protect cave/karst and groundwater concerns:

Closed Loop System:

- A closed loop system using steel tanks will be utilized during drilling no pits
- All fluids and cuttings will be hauled off-site and disposed of properly at an authorized site

Rotary Drilling with Fresh Water:

• Fresh water will be used as a circulating medium in zones where caves or karst features are expected. SEE ALSO: Drilling COAs for this well.

Directional Drilling:

• The kick off point for directional drilling will occur at least 100 feet below the bottom of the cave occurrence zone. SEE ALSO: Drilling COAs for this well.

Lost Circulation:

- ALL lost circulation zones between surface and the base of the cave occurrence zone will be logged and reported in the drilling report.
- If a void of four feet or more and circulation losses greater than 70 percent occur simultaneously while drilling in any cave-bearing zone, regardless of the type of drilling machinery used, the BLM will be notified immediately by the operator. The BLM will assess the situation and work with the operator on corrective actions to resolve the problem.

Abandonment Cementing:

- Additional plugging conditions of approval may be required upon well abandonment in high and medium karst potential occurrence zones.
- The BLM will assess the situation and work with the operator to ensure proper plugging of the wellbore.

Pressure Testing:

• The operator will perform annual pressure monitoring on all casing annuli and reported in a sundry notice.

Page 6 of 24

• If the test results indicated a casing failure has occurred, remedial action will be undertaken to correct the problem to the BLM's approval.

Hydrology:

The entire well pad(s) will be bermed to prevent oil, salt, and other chemical contaminants from leaving the well pad. The compacted berm shall be constructed at a minimum of 12 inches with impermeable mineral material (e.g. caliche). Topsoil shall not be used to construct the berm. No water flow from the uphill side(s) of the pad shall be allowed to enter the well pad. The integrity of the berm shall be maintained around the surfaced pad throughout the life of the well and around the downsized pad after interim reclamation has been completed. Any water erosion that may occur due to the construction of the well pad during the life of the well will be quickly corrected and proper measures will be taken to prevent future erosion. Stockpiling of topsoil is required. The top soil shall be stockpiled in an appropriate location to prevent loss of soil due to water or wind erosion and not used for berming or erosion control. If fluid collects within the bermed area, the fluid must be vacuumed into a safe container and disposed of properly at a state approved facility.

Tank battery locations will be lined and bermed. A 20 mil permanent liner will be installed with a 4 oz. felt backing to prevent tears or punctures. Tank battery berms must be large enough to contain 1 ½ times the content of the largest tank or 24 hour production, whichever is greater. Automatic shut off, check valves, or similar systems will be installed for tanks to minimize the effects of catastrophic line failures used in production or drilling.

When crossing ephemeral drainages the pipeline(s) will be buried to a minimum depth of 48 inches from the top of pipe to ground level. Erosion control methods such as gabions and/or rock aprons should be placed on both up and downstream sides of the pipeline crossing. In addition, curled (weed free) wood/straw fiber wattles/logs and/or silt fences should be placed on the downstream side for sediment control during construction and maintained until soils and vegetation have stabilized. Water bars should be placed within the ROW to divert and dissipate surface runoff. A pipeline access road is not permitted to cross these ephemeral drainages. Traffic should be diverted to a preexisting route. Additional seeding may be required in floodplains and drainages to restore energy dissipating vegetation.

Prior to pipeline installation/construction a leak detection plan will be developed. The method(s) could incorporate gauges to detect pressure drops, situating valves and lines so they can be visually inspected periodically or installing electronic sensors to alarm when a leak is present. The leak detection plan will incorporate an automatic shut off system that will be installed for proposed pipelines to minimize the effects of an undesirable event.

Any water erosion that may occur due to the construction of overhead electric line and during the life of the power line will be quickly corrected and proper measures will be

Page 7 of 24

taken to prevent future erosion. A power pole should not be placed in drainages, playas, wetlands, riparian areas, or floodplains and must span across the features at a distance away that would not promote further erosion.

Livestock Watering Requirement

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

Fence Requirement

Where entry is granted across a fence line, the fence must be braced and tied off on both sides of the passageway with H-braces prior to cutting. Once the work is completed, the fence will be restored to its prior condition, or better. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fence(s).

The operator must contact the allotment holder prior to construction to identify the location of the pipeline. The operator must take measures to protect the pipeline from compression or other damages. If the pipeline is damaged or compromised in any way near the proposed project as a result of oil and gas activity, the operator is responsible for repairing the pipeline immediately. The operator must notify the BLM office (575-234-5972) and the private surface landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

During construction, the proponent shall minimize disturbance to existing fences, water lines, troughs, windmills, and other improvements on public lands. The proponent is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the grazing permittee/allottee prior to disturbing any range improvement projects. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.

In May 2008, the Pecos District Special Status Species Resource Management Plan Amendment (RMPA) was approved and is being implemented. In addition to the standard practices that minimize impacts, as listed above, the following COA will apply:

• Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all power line structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. The holder without liability or expense shall make such modifications and/or additions to the United States.

Page 8 of 24

Lessees must comply with the 2012 Secretarial Potash Order. The Order is designed to manage the efficient development of oil, gas, and potash resources. Section 6 of the Order provides general provisions which must be followed to minimize conflict between the industries and ensure the safety of operations.

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (575) 234–5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall strip the top portion of the soil (root zone) from the entire well pad area and stockpile the topsoil along the edge of the well pad as depicted in the APD. The root zone is typically six (6) inches in depth. All the stockpiled topsoil will be redistributed over the interim reclamation areas. Topsoil shall not be used for berming the pad or facilities. For final reclamation, the topsoil shall be spread over the entire pad area for seeding preparation.

Other subsoil (below six inches) stockpiles must be completely segregated from the topsoil stockpile. Large rocks or subsoil clods (not evident in the surrounding terrain) must be buried within the approved area for interim and final reclamation.

C. CLOSED LOOP SYSTEM

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation. The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. EXCLOSURE FENCING (CELLARS & PIT\$)

Page 10 of 24

Exclosure Fencing

The operator will install and maintain exclosure fencing for all open well cellars to prevent access to public, livestock, and large forms of wildlife before and after drilling operations until the pit is free of fluids and the operator initiates backfilling. (For examples of exclosure fencing design, refer to BLM's Oil and Gas Gold Book, Exclosure Fence Illustrations, Figure 1, Page 18.)

G. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

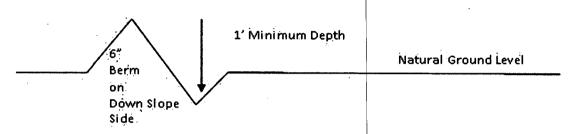
Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.


Drainage

Page 11 of 24

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and center line road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope:
$$\frac{400'}{4\%} + 100' = 200'$$
 lead-off ditch interval

Cattle guards

An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.

Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Livestock Watering Requirement

Any damage to structures that provide water to livestock throughout the life of the well, caused by operations from the well site, must be immediately corrected by the operator. The operator must notify the BLM office (575-234-5972) and the private surface

Page 12 of 24

landowner or the grazing allotment holder if any damage occurs to structures that provide water to livestock.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 13 of 24

Construction Steps

- 1. Salvage topsoil
- 3. Redistribute topsoil
- 2. Construct road 4. Revegetate slopes

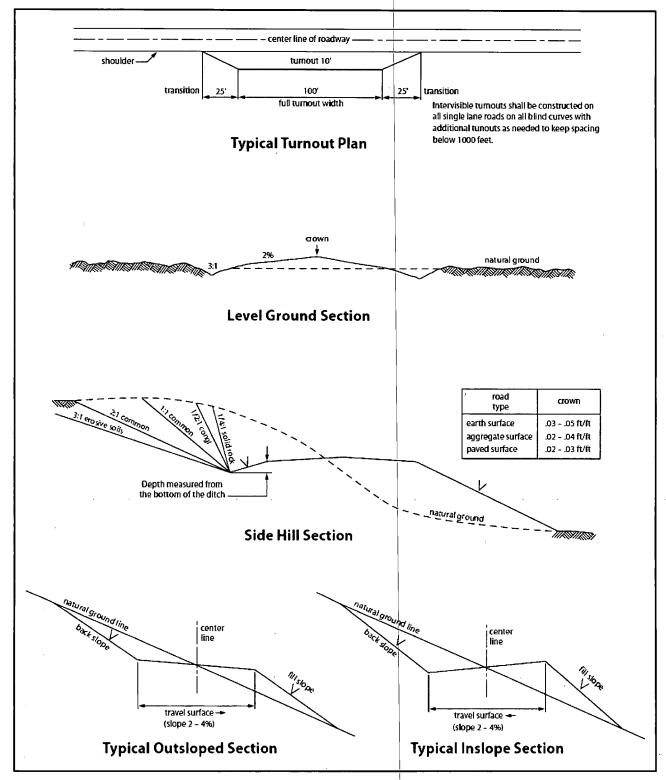


Figure 1. Cross-sections and plans for typical road sections representative of BLM resource or FS local and higher-class roads.

VII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Exclosure Netting (Open-top Tanks)

Immediately following active drilling or completion operations, the operator will take actions necessary to prevent wildlife and livestock access, including avian wildlife, to all open-topped tanks that contain or have the potential to contain salinity sufficient to cause harm to wildlife or livestock, hydrocarbons, or Resource Conservation and Recovery Act of 1976-exempt hazardous substances. At a minimum, the operator will net, screen, or cover open-topped tanks to exclude wildlife and livestock and prevent mortality. If the operator uses netting, the operator will cover and secure the open portion of the tank to prevent wildlife entry. The operator will net, screen, or cover the tanks until the operator removes the tanks from the location or the tanks no longer contain substances that could be harmful to wildlife or livestock. Use a maximum netting mesh size of 1 ½ inches. The netting must not be in contact with fluids and must not have holes or gaps.

Chemical and Fuel Secondary Containment and Exclosure Screening

The operator will prevent all hazardous, poisonous, flammable, and toxic substances from coming into contact with soil and water. At a minimum, the operator will install and maintain an impervious secondary containment system for any tank or barrel containing hazardous, poisonous, flammable, or toxic substances sufficient to contain the contents of the tank or barrel and any drips, leaks, and anticipated precipitation. The operator will dispose of fluids within the containment system that do not meet applicable state or U. S. Environmental Protection Agency livestock water standards in accordance with state law; the operator must not drain the fluids to the soil or ground. The operator will design, construct, and maintain all secondary containment systems to prevent wildlife and livestock exposure to harmful substances. At a minimum, the operator will install effective wildlife and livestock exclosure systems such as fencing, netting, expanded metal mesh, lids, and grate covers. Use a maximum netting mesh size of 1 ½ inches.

Open-Vent Exhaust Stack Exclosures

The operator will construct, modify, equip, and maintain all open-vent exhaust stacks on production equipment to prevent birds and bats from entering, and to discourage perching, roosting, and nesting. (*Recommended exclosure structures on open-vent exhaust stacks are in the shape of a cone.*) Production equipment includes, but may not be limited to, tanks, heater-treaters, separators, dehydrators, flare stacks, in-line units, and compressor mufflers.

Containment Structures

Page 15 of 24

Proposed production facilities such as storage tanks and other vessels will have a secondary containment structure that is constructed to hold the capacity of 1.5 times the largest tank, plus freeboard to account for precipitation, unless more stringent protective requirements are deemed necessary.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color, **Shale Green** from the BLM Standard Environmental Color Chart (CC-001: June 2008).

B. PIPELINES

BURIED PIPELINE STIPULATIONS

A copy of the application (Grant, APD, or Sundry Notice) and attachments, including conditions of approval, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The Holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.
- 2. The Holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of Resource Conservation and Recovery Act, 42 U.S.C.6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

Page 16 of 24

4. If, during any phase of the construction, operation, maintenance, or termination of the pipeline, any oil or other pollutant should be discharged from the pipeline system, impacting Federal lands, the control and total removal, disposal, and cleaning up of such oil or other pollutant, wherever found, shall be the responsibility of holder, regardless of fault. Upon failure of holder to control, dispose of, or clean up such discharge on or affecting Federal lands, or to repair all damages resulting therefrom, on the Federal lands, the Authorized Officer may take such measures as he deems necessary to control and clean up the discharge and restore the area, including where appropriate, the aquatic environment and fish and wildlife habitats, at the full expense of the holder. Such action by the Authorized Officer shall not relieve holder of any responsibility as provided herein.

5. All construction and maintenance activity will be confined to the authorized right-of-way.
6. The pipeline will be buried with a minimum cover of pipe and ground level. inches between the top of the
7. The maximum allowable disturbance for construction in this right-of-way will be <u>30</u> feet:
• Blading of vegetation within the right-of-way will be allowed: maximum width of blading operations will not exceed 20 feet. The trench is included in this area. (Blading is defined as the complete removal of brush and ground vegetation.)
• Clearing of brush species within the right-of-way will be allowed: maximum width of clearing operations will not exceed 30 feet. The trench and bladed area are included in this area. (Clearing is defined as the removal of brush while leaving ground vegetation (grasses, weeds, etc.) intact. Clearing is best accomplished by holding the blade 4 to 6 inches above the ground surface.)
• The remaining area of the right-of-way (if any) shall only be disturbed by compressing the vegetation. (Compressing can be caused by vehicle tires, placement of equipment, etc.)
8. The holder shall stockpile an adequate amount of topsoil where blading is allowed. The topsoil to be stripped is approximately6 inches in depth. The topsoil will be segregated from other spoil piles from trench construction. The topsoil will be evenly distributed over the bladed area for the preparation of seeding.
9. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting of the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
10. Vegetation, soil, and rocks left as a result of construction or maintenance activity will be randomly scattered on this right-of-way and will not be left in rows, piles, or berms, unless otherwise approved by the Authorized Officer. The entire right-of-way shall be recontoured to match the surrounding landscape. The backfilled soil shall be compacted and a 6 inch berm will be left over the ditch line to allow for settling back to grade.
11. In those areas where erosion control structures are required to stabilize soil conditions, the holder will install such structures as are suitable for the specific soil conditions being encountered and which are in accordance with sound resource management practices.

Page 18 of 24

	vill reseed all disturbed areas. Seents, using the following seed r			be done according to the attached
() seed mixture 1	() seed m	ixture 3
(X) seed mixture 2	() seed m	ixture 4
() seed mixture 2/LPC	() Aplom	ado Falcon Mixture
to blend with the		Th	ne paint u	ements shall be painted by the holder sed shall be color which simulates oil Color No. 5Y 4/2.
way and at all roa number, and the p	ad crossings. At a minimum, si product being transported. All	gns sig	s will stat ns and in	rigin and completion of the right-of- e the holder's name, BLM serial formation thereon will be posted in a legible condition for the life of the
maintenance as debefore maintenance pipeline route is r	ice begins. The holder will take	tho e w rm	rized Off hatever s ined nece	icer in consultation with the holder teps are necessary to ensure that the ssary during the life of the pipeline,
discovered by the immediately repo immediate area o Authorized Office determine approp holder will be res	orted to the Authorized Officer. If such discovery until written a er. An evaluation of the discoveriate actions to prevent the loss	y on H uth very s of	his beha older sha corization will be n significant and any	If, on public or Federal land shall be it suspend all operations in the to proceed is issued by the made by the Authorized Officer to at cultural or scientific values. The decision as to proper mitigation
of operations. We which includes as of weeds due to the	eed control shall be required on ssociated roads, pipeline corrido	the or a	e disturbe and adjac ault with t	become established within the areas and land where noxious weeds exist, ent land affected by the establishment he Authorized Officer for acceptable LM requirements and policies.
otherwise fenced,	, screened, or netted to prevent	liv	estock, w	in pipeline/utility trenches that are no ildlife, and humans from becoming aintain escape ramps, ladders, or

Page 19 of 24

other methods of avian and terrestrial wildlife escape in the trenches according to the following criteria:

- a. Any trench left open for eight (8) hours or less is not required to have escape ramps; however, before the trench is backfilled, the contractor/operator shall inspect the trench for wildlife, remove all trapped wildlife, and release them at least 100 yards from the trench.
- b. For trenches left open for eight (8) hours or more, earthen escape ramps (built at no more than a 30 degree slope and spaced no more than 500 feet apart) shall be placed in the trench.

C. ELECTRIC LINES

STANDARD STIPULATIONS FOR OVERHEAD ELECTRIC DISTRIBUTION LINES

A copy of the grant and attachments, including stipulations, survey plat and/or map, will be on location during construction. BLM personnel may request to you a copy of your permit during construction to ensure compliance with all stipulations.

Holder agrees to comply with the following stipulations to the satisfaction of the Authorized Officer:

- 1. The holder shall indemnify the United States against any liability for damage to life or property arising from the occupancy or use of public lands under this grant.
- 2. The holder shall comply with all applicable Federal laws and regulations existing or hereafter enacted or promulgated. In any event, the holder shall comply with the Toxic Substances Control Act of 1976 as amended, 15 USC 2601 et seq. (1982) with regards to any toxic substances that are used, generated by or stored on the right-of-way or on facilities authorized under this right-of-way grant. (See 40 CFR, Part 702-799 and especially, provisions on polychlorinated biphenyls, 40 CFR 761.1-761.193.) Additionally, any release of toxic substances (leaks, spills, etc.) in excess of the reportable quantity established by 40 CFR, Part 117 shall be reported as required by the Comprehensive Environmental Response, Compensation, and Liability Act, section 102b. A copy of any report required or requested by any Federal agency or State government as a result of a reportable release or spill of any toxic substances shall be furnished to the authorized officer concurrent with the filing of the reports to the involved Federal agency or State government.
- 3. The holder agrees to indemnify the United States against any liability arising from the release of any hazardous substance or hazardous waste (as these terms are defined in the Comprehensive Environmental Response, Compensation and Liability Act of 1980, 42 U.S.C. 9601, et seq. or the Resource Conservation and Recovery Act, 42 U.S.C. 6901, et seq.) on the Right-of-Way (unless the release or threatened release is wholly unrelated to the Right-of-Way holder's activity on the Right-of-Way), or resulting from the activity of the Right-of-Way holder on the Right-of-Way. This agreement applies without regard to whether a release is caused by the holder, its agent, or unrelated third parties.

Page 20 of 24

- 4. There will be no clearing or blading of the right-of-way unless otherwise agreed to in writing by the Authorized Officer.
- 5. Power lines shall be constructed and designed in accordance to standards outlined in "Suggested Practices for Avian Protection on Power lines: The State of the Art in 2006" Edison Electric Institute, APLIC, and the California Energy Commission 2006. The holder shall assume the burden and expense of proving that pole designs not shown in the above publication deter raptor perching, roosting, and nesting. Such proof shall be provided by a raptor expert approved by the Authorized Officer. The BLM reserves the right to require modification or additions to all powerline structures placed on this right-of-way, should they be necessary to ensure the safety of large perching birds. Such modifications and/or additions shall be made by the holder without liability or expense to the United States.

Raptor deterrence will consist of but not limited to the following: triangle perch discouragers shall be placed on each side of the cross arms and a nonconductive perching deterrence shall be placed on all vertical poles that extend past the cross arms.

- 6. The holder shall minimize disturbance to existing fences and other improvements on public lands. The holder is required to promptly repair improvements to at least their former state. Functional use of these improvements will be maintained at all times. The holder will contact the owner of any improvements prior to disturbing them. When necessary to pass through a fence line, the fence shall be braced on both sides of the passageway prior to cutting the fence. No permanent gates will be allowed unless approved by the Authorized Officer.
- 7. The BLM serial number assigned to this authorization shall be posted in a permanent, conspicuous manner where the power line crosses roads and at all serviced facilities. Numbers will be at least two inches high and will be affixed to the pole nearest the road crossing and at the facilities served.
- 8. Upon cancellation, relinquishment, or expiration of this grant, the holder shall comply with those abandonment procedures as prescribed by the Authorized Officer.
- 9. All surface structures (poles, lines, transformers, etc.) shall be removed within 180 days of abandonment, relinquishment, or termination of use of the serviced facility or facilities or within 180 days of abandonment, relinquishment, cancellation, or expiration of this grant, whichever comes first. This will not apply where the power line extends service to an active, adjoining facility or facilities.
- 10. Any cultural and/or paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on his behalf, on public or Federal land shall be immediately reported to the Authorized Officer. Holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant

cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

11. Special Stipulations:

- For reclamation remove poles, lines, transformer, etc. and dispose of properly.
- Fill in any holes from the poles removed.

VIII. INTERIM RECLAMATION

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

Within six (6) months of well completion, operators should work with BLM surface management specialists (Jim Amos: 575-234-5909) to devise the best strategies to reduce the size of the location. Interim reclamation should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

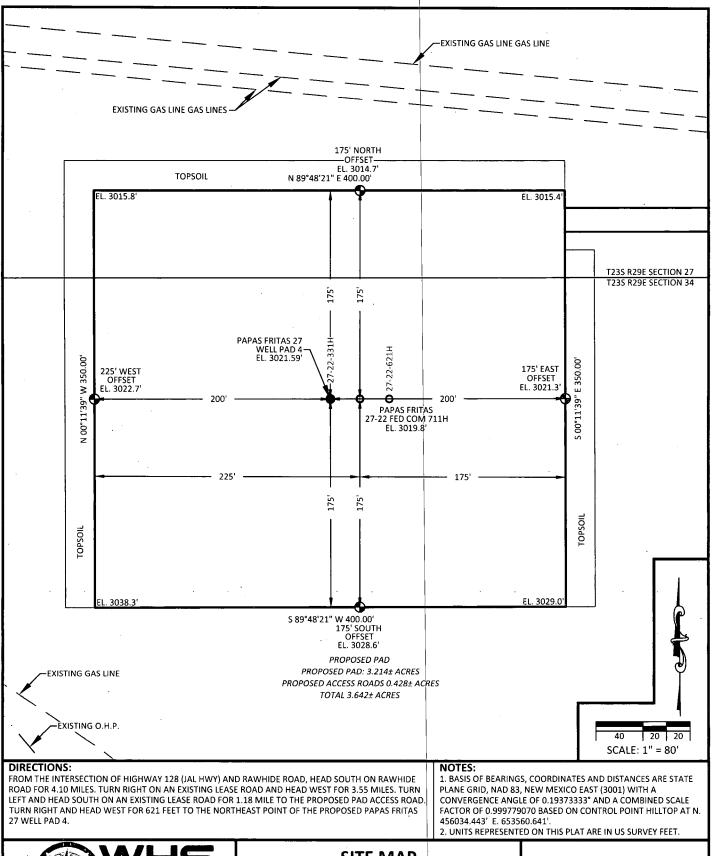
During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche that is free of contaminants may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

All disturbed areas after they have been satisfactorily prepared need to be reseeded with the seed mixture provided below.

Upon completion of interim reclamation, the operator shall submit a Sundry Notices and Reports on Wells, Subsequent Report of Reclamation (Form 3160-5).

IX. FINAL ABANDONMENT & RECLAMATION

At final abandonment, well locations, production facilities, and access roads must undergo "final" reclamation so that the character and productivity of the land are restored.


Earthwork for final reclamation must be completed within six (6) months of well plugging. All pads, pits, facility locations and roads must be reclaimed to a satisfactory revegetated, safe, and stable condition, unless an agreement is made with the landowner or BLM to keep the road and/or pad intact.

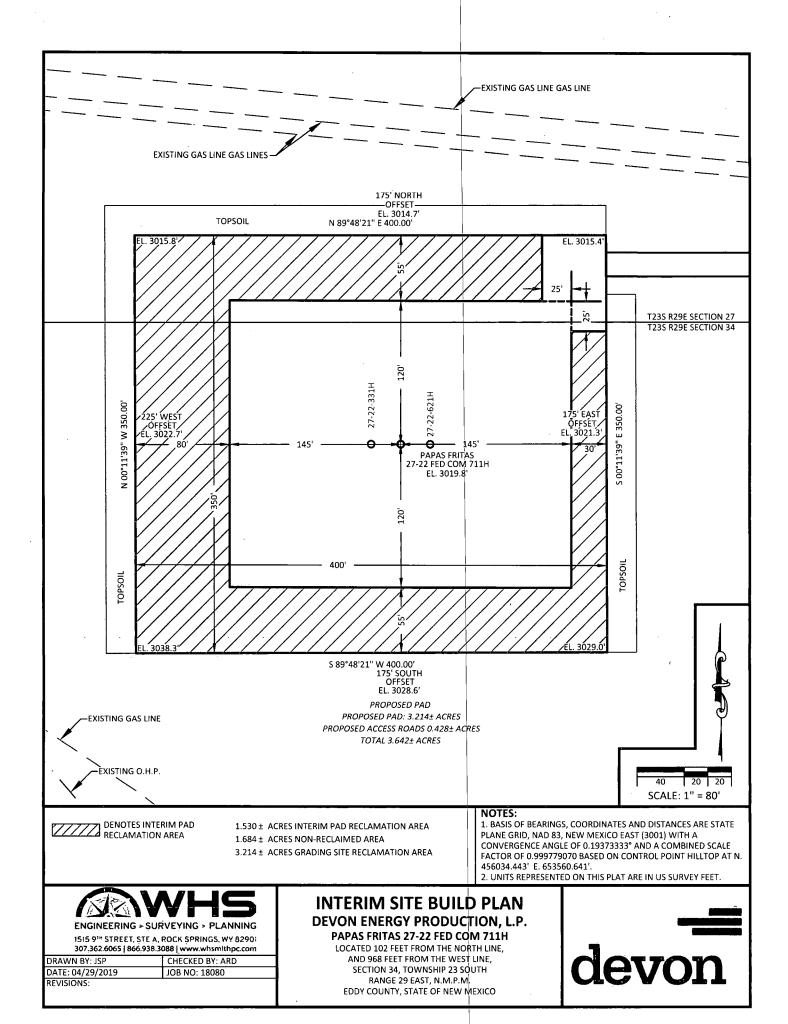
Page 22 of 24

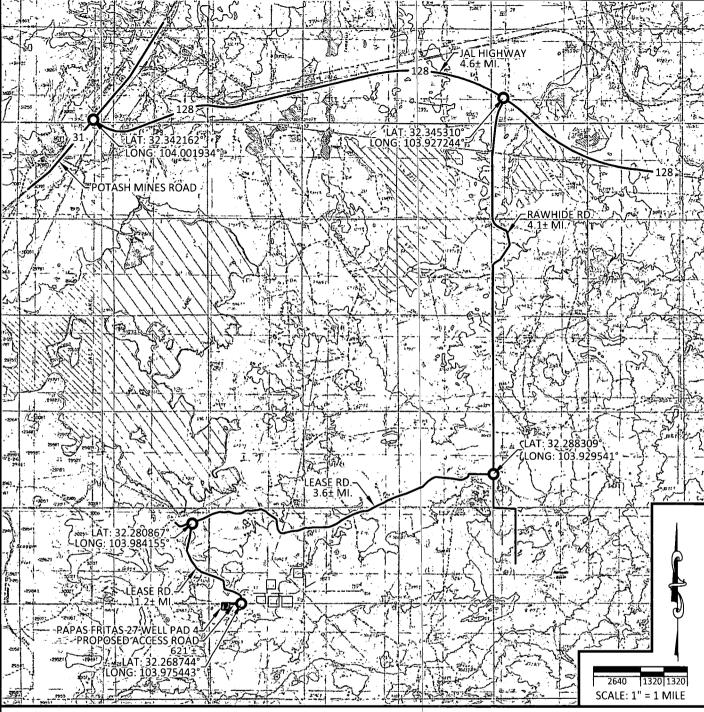
After all disturbed areas have been satisfactorily prepared, these areas need to be revegetated with the seed mixture provided below. Seeding should be accomplished by drilling on the contour whenever practical or by other approved methods. Seeding may need to be repeated until revegetation is successful, as determined by the BLM.

Operators shall contact a BLM surface protection specialist prior to surface abandonment operations for site specific objectives (Jim Amos: 575-234-5909).

Ground-level Abandoned Well Marker to avoid raptor perching: Upon the plugging and subsequent abandonment of the well, the well marker will be installed at ground level on a plate containing the pertinent information for the plugged well.

ENGINEERING - SURVEYING - PLANNING


1515 91" STREET, STE A, ROCK SPRINGS, WY 8290: 307.362.6065 | 866.938.3088 | www.whsmithpc.com


DRAWN BY: JSP CHECKED BY: ARD
DATE: 04/29/2019 JOB NO: 18080
REVISIONS:

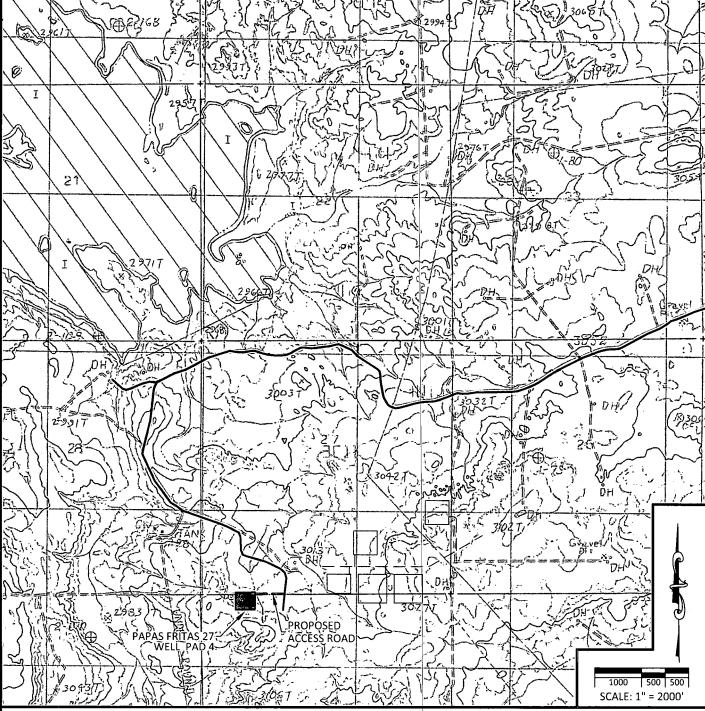
SITE MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27-22 FED COM 711H

LOCATED 102 FEET FROM THE NORTH LINE, AND 968 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.



1515 9¹" STREET, STE A, ROCK SPRINGS, WY 8290: 307.362.6065 | 866.938.3088 | www.whsmithpc.com

VICINITY MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27-22 FED COM 711H

LOCATED 102 FEET FROM THE NORTH LINE, AND 973 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641°.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.

1515 91" STREET, STE A, ROCK SPRINGS, WY 82901

307.362.6065 | 866.938.3088 | www.whsmithpc.com
DRAWN BY: KGH CHECKED BY: ARD
DATE: 03/05/2019 JOB NO: 18080
REVISIONS:

LOCATION VERIFICATION MAP DEVON ENERGY PRODUCTION, L.P.

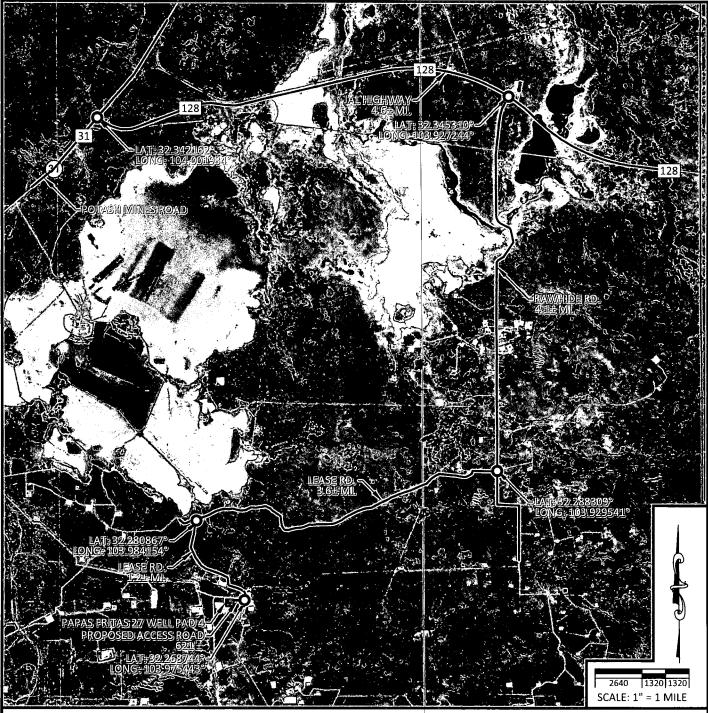
PAPAS FRITAS 27-22 FED COM 711H

LOCATED 102 FEET FROM THE NO RTH LINE, AND 973 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641°.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.



1515 91th STREET, STE A, ROCK SPRINGS, WY 8290: 307.362.6065 | 866.938.3088 | www.whsmithpc.com

AERIAL PHOTO DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27-22 FED COM 711H

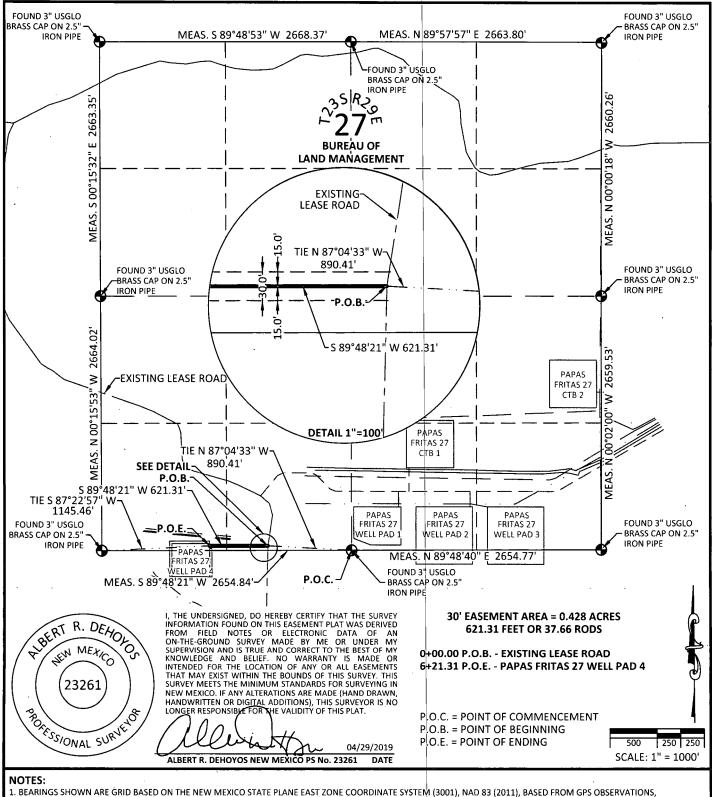
LOCATED 102 FEET FROM THE NORTH LINE, AND 973 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641°.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.

1515 91th STREET, STE A, ROCK SPRINGS, WY 8290: 307,362,6065 | 866,938,3088 | www.whsmithpc.com


DRAWN BY: KGH CHECKED BY: ARD
DATE: 03/05/2019 JOB NO: 18080
REVISIONS:

AERIAL ACCESS ROUTE MAP DEVON ENERGY PRODUCTION, L.P.

PAPAS FRITAS 27-22 FED COM 711H LOCATED 102 FEET FROM THE NORTH LINE, AND 973 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M.

EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

1515 91" STREET, STE A, ROCK SPRINGS, WY 8290: 307,362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD
DATE: 04/29/2019 JOB NO: 18080
REVISIONS:

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT

\$1/2 SW1/4 SECTION 27,

TOWNSHIP 23 SOUTH, RANGE 29 EA\$T, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

LEGAL DESCRIPTION

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the South Half (S1/2) of the Southwest Quarter (SW1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 87°04'33" West a distance of 890.41 feet to the POINT OF BEGINNING.

thence, South 89°48'21" West a distance of 621.31 feet to a point within the Southwest Quarter (SW1/4) of the Southwest Quarter (SW1/4) of said Section 27, also being the POINT OF ENDING, from which the Southwest Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 87°22'57" West a distance of 1145.46 feet.

Said centerline being 621.31 feet or 37.66 rods in length and containing 0.428 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

REAL SURVEY OF

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261 DATE

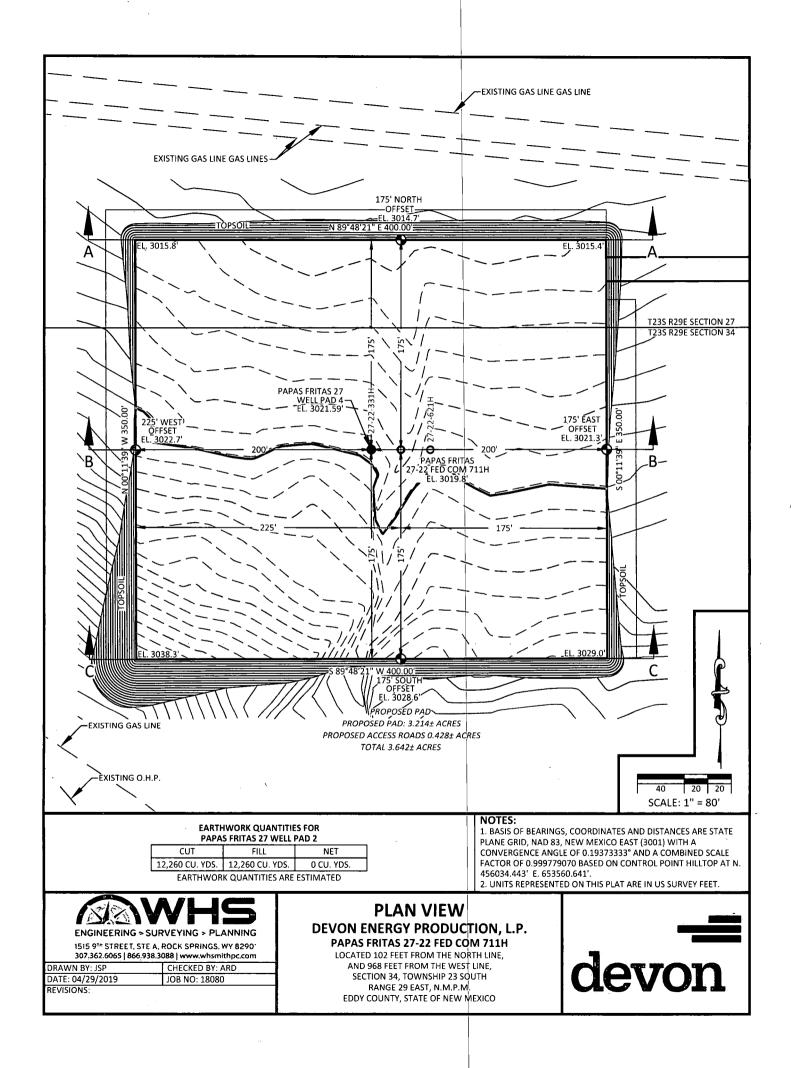
NOTES:

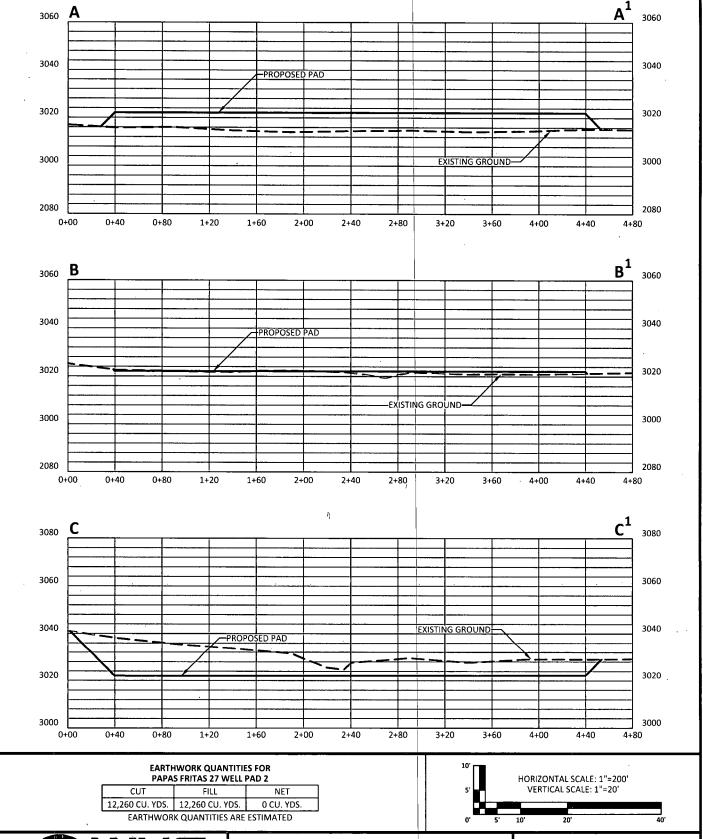
1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

1515 9" STREET, STE A, ROCK SPRINGS, WY 8290: 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD


DATE: 04/29/2019 JOB NO: 18080

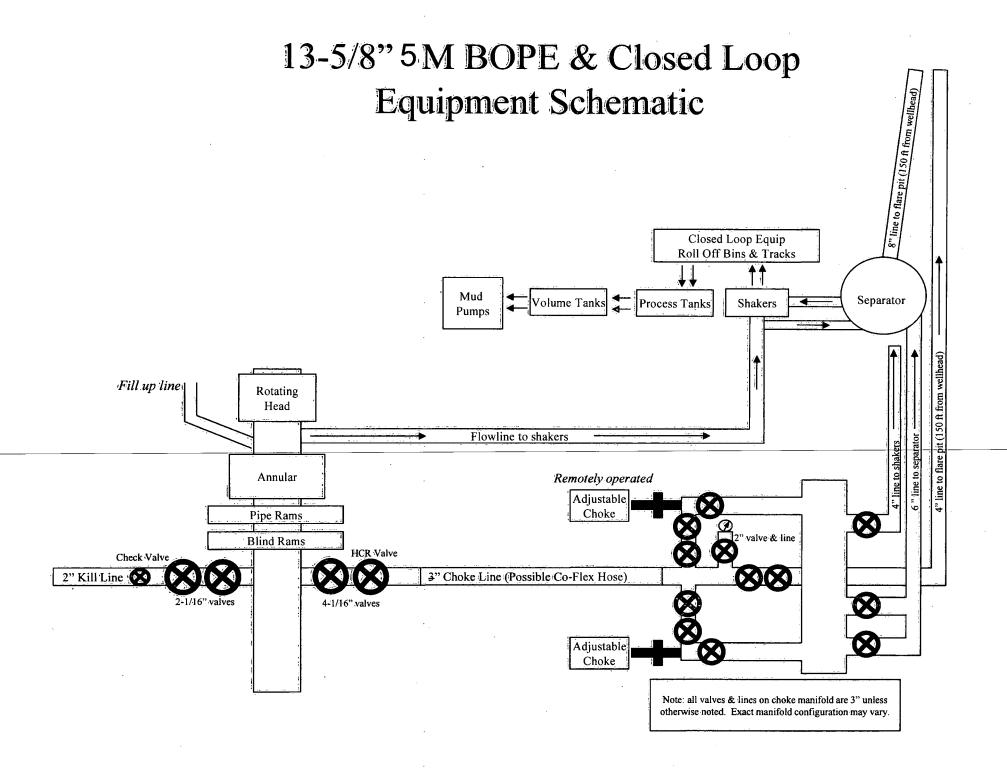

REVISIONS:

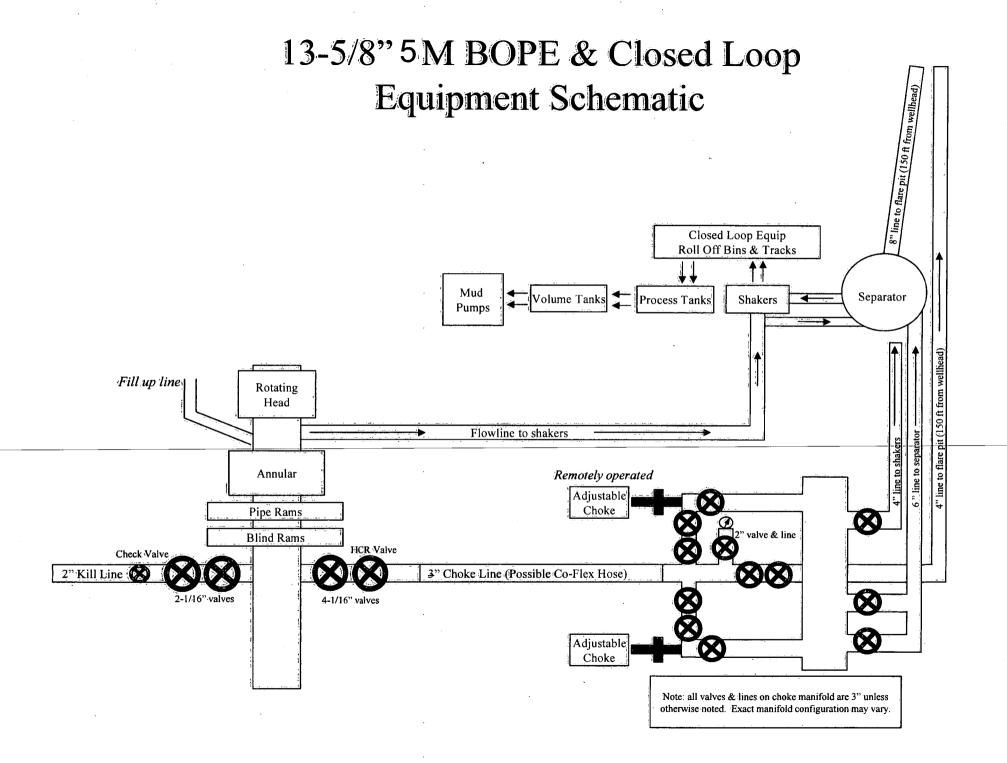
DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

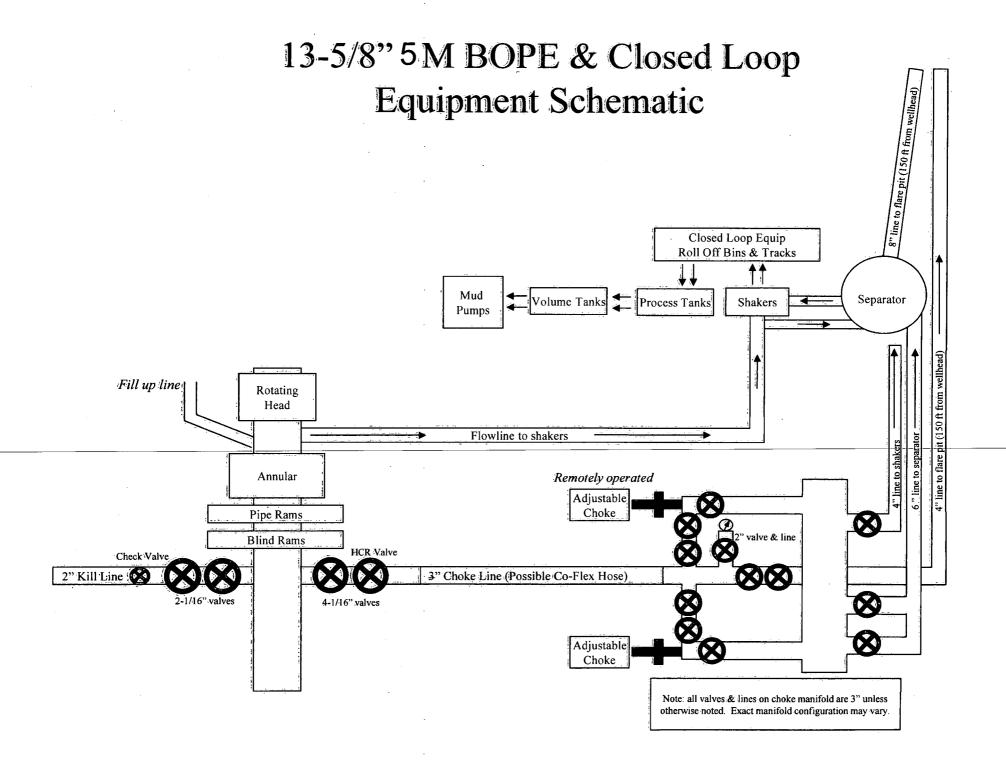
PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT \$1/2 SW1/4, SECTION 27' TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

 ENGINEERING > SURVEYING > PLANNING
 1515 9¹⁴ STREET, STE A, ROCK SPRINGS, WY 8290: 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP CHECKED BY: ARD
DATE: 04/29/2019 JOB NO: 18080
REVISIONS:


CROSS SECTIONS DEVON ENERGY PRODUCTION, L.P.


PAPAS FRITAS 27-22 FED COM 711H
LOCATED 102 FEET FROM THE NORTH LINE,


AND 968 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

Surface

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Surface Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi	
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section	
Displace to Gas	Formation Pore Pressure	Dry gas from next casing point	

Surface Casing Collapse Design			
Load Case	External Pressure	Internal Pressure	
Full Evacuation	Water gradient in cement, mud above TOC	None	
Cementing	Wet cement weight	Water (8.33ppg)	

Surface Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	3 ft/s	
Service Loads	N/A	

Casing Assumptions and Load Cases

Intermediate

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Intermediate Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Max mud weight of next hole- section plus Test psi	
Drill Ahead	Formation Pore Pressure	Max mud weight of next hole section	
Fracture @ Shoe	Formation Pore Pressure	Dry gas	

Intermediate Casing Collapse Design					
Load Case External Pressure Internal Pressure					
Full Evacuation	Water gradient in cement, mud	None			
	above TOC				
Cementing	Wet cement weight	Water (8.33ppg)			

Intermediate Casing Tension Design		
Load Case Assumptions		
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	N/A	

All casing design assumptions were ran in Stress Check to determine safety factor which meet or exceed both Devon Energy and BLM minimum requirements. All casing strings will be filled while running in hole in order to not exceed collapse rating of the pipe.

Production Casing Burst Design			
Load Case	External Pressure	Internal Pressure	
Pressure Test	Formation Pore Pressure	Fluid in hole (water or produced water) + test psi	
Tubing Leak	Formation Pore Pressure	Packer @ KOP, leak below surface 8.6 ppg packer fluid	
Stimulation	Formation Pore Pressure	Max frac pressure with heaviest frac fluid	

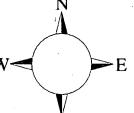
Production Casing Collapse Design				
Load Case	External Pressure	Internal Pressure		
Full Evacuation	Water gradient in cement, mud above TOC.	None		
Cementing	Wet cement weight	Water (8.33ppg)		

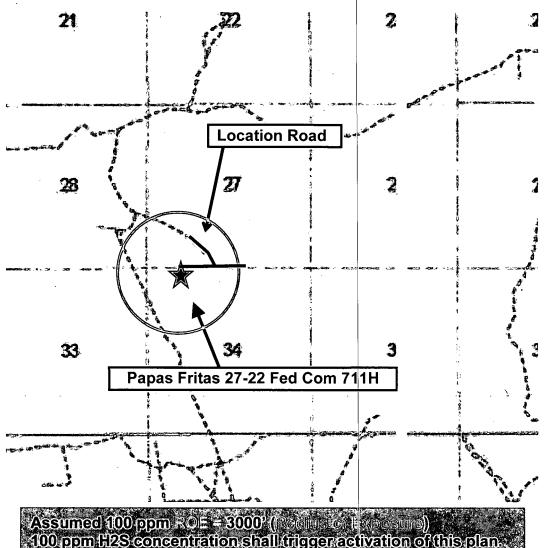
Production Casing Tension Design		
Load Case	Assumptions	
Overpull	100kips	
Runing in hole	2 ft/s	
Service Loads	N/A	

Devon Energy Center 333 West Sheridan Avenue Oklahoma City, Oklahoma 73102-5015

Hydrogen Sulfide (H₂S) Contingency Plan

For


Papas Fritas 27-22 Fed Com 711H


Sec-34 T-23S R-29E 102' FNL & 968 FWL LAT. = 32.268311' N (NAD83) LONG = 103.978056' W

Eddy County NM

Papas Fritas 27-22 Fed Com 711H

This is an open drilling site. H₂S monitoring equipment and emergency response equipment will be used within 500' of zones known to contain H₂S, including warning signs, wind indicators and H₂S monitor.

Escape

Crews shall escape upwind of escaping gas in the event of an emergency release of gas. Escape can be facilitated from the location entrance road. Crews should then block the entrance to the location from the lease road so as not to allow anyone traversing into a hazardous area. The blockade should be at a safe distance outside of the ROE.

There are no homes or buildings in or near the ROE.

Assumed 100 ppm ROE = 3000' 100 ppm H₂S concentration shall trigger activation of this plan.

Emergency Procedures

In the event of a release of gas containing H₂S, the first responder(s) must

- Isolate the area and prevent entry by other persons into the 100 ppm ROE.
- Evacuate any public places encompassed by the 100 ppm ROE.
- Be equipped with H₂S monitors and air packs in order to control the release.
- Use the "buddy system" to ensure no injuries occur during the response
- Take precautions to avoid personal injury during this operation.
- Contact operator and/or local officials to aid in operation. See list of phone numbers attached.
- Have received training in the
 - o Detection of H₂S, and
 - Measures for protection against the gas,
 - Equipment used for protection and emergency response.

Ignition of Gas Source

Should control of the well be considered lost and ignition considered, take care to protect against exposure to Sulfur Dioxide (SO₂). Intentional ignition must be coordinated with the NMOCD and local officials. Additionally the NM State Police may become involved. NM State Police shall be the Incident Command on scene of any major release. Take care to protect downwind whenever there is an ignition of the gas

Characteristics of H₂S and SO₂

Common Name	Chemical Formula	Specific Gravity	Threshold Limit	Hazardous Limit	Lethal Concentration
Hydrogen Sulfide	H ₂ S	1.189 Air = 1	10 ppm	100 ppm/hr	600 ppm
Sulfur Dioxide	SO ₂	2.21 Air = 1	2 ppm	N/A	1000 ppm

Contacting Authorities

Devon Energy Corp. personnel must liaison with local and state agencies to ensure a proper response to a major release. Additionally, the OCD must be notified of the release as soon as possible but no later than 4 hours. Agencies will ask for information such as type and volume of release, wind direction, location of release, etc. Be prepared with all information available. The following call list of essential and potential responders has been prepared for use during a release. Devon Energy Corp. Company response must be in coordination with

the State of New Mexico's 'Hazardous Materials Emergency Response Plan' (HMER)

Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE (H₂S) TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards and characteristics of hydrogen sulfide (H₂S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H₂S detectors, alarms, warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H₂S metal components. If high tensile tubulars are to be used, personnel will be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H₂S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H₂S zone (within 3 days or 500 feet) and weekly H₂S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H₂S Drilling Operations Plan and the Public Protection Plan.

II. HYDROGEN SULFIDE TRAINING

Note: All H₂S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonably expected to contain H₂S.

1. Well Control Equipment

- A. Flare line
- B. Choke manifold Remotely Operated
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit
- D. Auxiliary equipment may include if applicable: annular preventer and rotating head.
- E. Mud/Gas Separator

2. Protective equipment for essential personnel:

30-minute SCBA units located at briefing areas, as indicated on well site diagram, with escape units available in the top doghouse. As it may be difficult to communicate audibly while wearing these units, hand signals shall be utilized.

3. H₂S detection and monitoring equipment:

Portable H₂S monitors positioned on location for best coverage and response. These units have warning lights which activate when H₂S levels reach 10 ppm and audible sirens which activate at 15 ppm. Sensor locations:

- Bell nipple
- Possum Belly/Shale shaker
- Rig floor
- Choke manifold
- Cellar

Visual warning systems:

- A. Wind direction indicators as shown on well site diagram
- B. Caution/ Danger signs shall be posted on roads providing direct access to locations. Signs will be painted a high visibility yellow with black lettering of sufficient size to be reasonable distance from the immediate location. Bilingual signs will be used when appropriate.

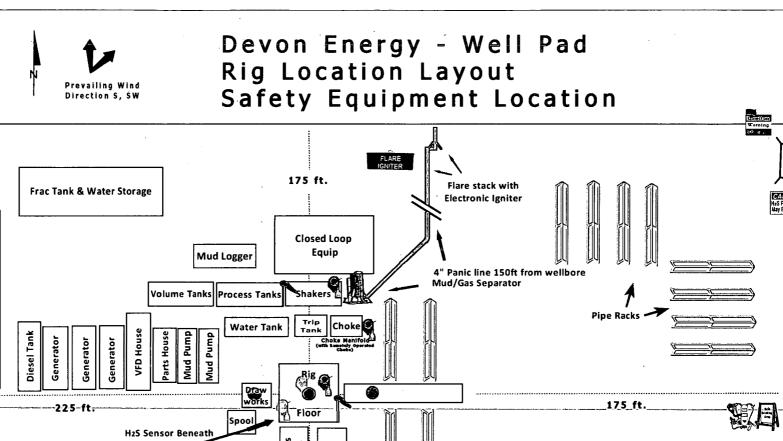
4. Mud program:

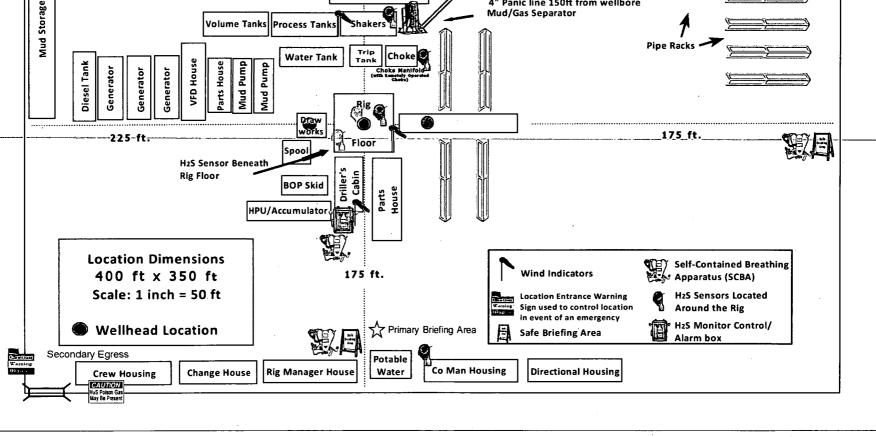
The mud program has been designed to minimize the volume of H₂S circulated to surface. Proper mud weight, safe drilling practices and the use of H₂S scavengers will minimize hazards when penetrating H₂S bearing zones.

5. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold lines, and valves shall be H₂S trim.
- B. All elastomers used for packing and seals shall be H₂S trim.

6. Communication:


- A. Company personnel have/use cellular telephones in the field.
- B. Land line (telephone) communications at Office


7. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safety and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H₂S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

Agency (Lea County (575)	Hobbs Lea County Communication Authority State Police City Police Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		405-823-4796 405-439-8129 393-3981 392-5588 397-9265 393-2515 911	
Agency (Lea County (575) (Call List Hobbs Lea County Communication Authority State Police City Police Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		393-3981 392-5588 397-9265 393-2515	
Lea County (575) (Hobbs Lea County Communication Authority State Police City Police Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		392-5588 397-9265 393-2515	
County (575) (Lea County Communication Authority State Police City Police Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		392-5588 397-9265 393-2515	
(575) ((575)	State Police City Police Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		392-5588 397-9265 393-2515	
(575) (5	State Police City Police Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		392-5588 397-9265 393-2515	
3	Sheriff's Office Ambulance Fire Department LEPC (Local Emergency Planning Commit		393-2515	
1	Ambulance Fire Department LEPC (Local Emergency Planning Commit			
I	Fire Department LEPC (Local Emergency Planning Commit		911	
ļ	LEPC (Local Emergency Planning Commit			
 		1	397-9308	
		tee)	393-2870	
	NMOCD		393-6161	
	US Bureau of Land Management		393-3612	
Eddy (Carlsbad			
	State Police		885-3137	
<u>(575)</u>	City Police	885-2		
	Sheriff's Office		887-7551	
	Ambulance		911	
Ī	Fire Department		885-3125	
Ī	LEPC (Local Emergency Planning Commit	tee)	887-3798	
	US Bureau of Land Management		887-6544	
	NM Emergency Response Commission (Sa	anta Fe)	(505) 476-9600	
	24 HR		(505) 827-9126	
-	National Emergency Response Center	-	(800) 424-8802	
	National Pollution Control Center: Direct		(703) 872-6000	
	For Oil Spills		(800) 280-7118	
	Emergency Services		(000) 200 1110	
	Wild Well Control	1	(281) 784-4700	
		915) 699-0139	(915) 563-3356	
	Halliburton	10,000 0100	(575) 746-2757	
<u> </u>	B. J. Services		(575) 746-3569	
	Native Air – Emergency Helicopter – Hobb	c (TX & NM)	(800) 642-7828	
<u> </u>	Flight For Life - Lubbock, TX	3 (TX CETAIN)	(806) 743-9911	
	Aerocare - Lubbock, TX		(806) 747-8923	
· —	Med Flight Air Amb - Albuquerque, NM		(575) 842-4433	
	Lifeguard Air Med Svc. Albuquerque, NM	8°	(800) 222-1222	
	Poison Control (24/7)	1	(575) 272-3115	
	Oil & Gas Pipeline 24 Hour Service	1	(800) 364-4366	
	NOAA – Website - www.nhc.noaa.gov	1	(000) 001 1000	
, <u> </u>	Wasana mmmmomada.gov			

Prepared in conjunction with Dave Small

WCDSC Permian NM

Eddy County (NAD 83 NM Eastern) Sec 27-T23S-R29E Papas Fritas 27-22 Fed Com 711H

Wellbore #1

Plan: Permit Plan 1

Standard Planning Report - Geographic

03 June, 2019

Planning Report - Geographic

			,	 		
Database:	EDM r5000.141_Prod US	5	Local Co-ordinate Re	ference	Well Papas Fritas 27-	22 Fed Com 711H
Company:	WCDSC Permian NM		TVD Reference:	;	RKB @ 3044.80ft	
Project:	Eddy County (NAD 83 N	M Eastern)	MD Reference:		RKB @ 3044.80ft	•
Site:	Sec 27-T23S-R29E		North Reference:		Grid	
Well:	Papas Fritas 27-22 Fed (Com 711H	Survey Calculation N	lethod:	Minimum Curvature	
Wellbore:	Wellbore #1	÷ ,				
Design:	Permit Plan 1			· · · · · · · · · · · · · · · · · · ·		
Project	Eddy County (NAD 83 NM	l Eastern)				
	US State Plane 1983		System Datum:		Mean Séa Level	
Geo Datum.	North American Datum 198	3				
Map Zone:	New Mexico Eastern Zone			1		
Site	Sec 27-T23S-R29E			<u> </u>		
Site Position:		Northing:	466,951.23 usft	1 0414		32.28323
From:	Мар	Easting:	650,153.88 usft	Latitude.		-103.98121
Position Uncertainty:			13-3/16	1	raence:	0.19
Well	Papas Fritas 27-22 Fed Co	om 711H				
Well Position	+N/-S . 0.0	Oft Northing:	461,526	.41 usft L	atitude:	32.2683 ⁻
	+E/-W 0.0	Oft Easting:	651,147	.73 usft L	ongitude:	-103.97805
Position Uncertainty	0.5	Oft Wellhead Eleva	tion:	G	round Level:	3,019.80
Wellbore	Wellbore #1	Company of the same of the sam				and an exploration and an experience of the second and the second and the second and the second and the second
Magnetics	Model Name	Sample Date	Declination (°)	Dip	Angle (°)	Field Strength (nT)
	IGRF2015	5/29/2019	6.94	1	60.01	47,724.16107148
	Permit Plan 1					man salamany hysimanian and alkalasy manasana and anasymin may alkala
Design	Permit Plan		ermenenten ar eus alteretenaan (aajaanne die angas universitysjejejejejejejejejeje			galler geringen state for the state of the s
Audit Notes: Version:		Phase:	PROTOTYPE	Tie On Depth:	0.00	
Vortical Section:	Dánt		IN/ C			
Vertical Section:	Dept	h From (TVD)	+N/-S	+E/-W	Direction	
Vertical Section:	Dept	(ft) 0.00	+N/-S (ft) 0.00	(ft)	(°) 359:91	· · · · · · · · · · · · · · · · · · ·
Vertical Section:		(ft) 0.00	(ft)	(ft)	(°)	
Plan Survey Tool Pro	gram Date 5/3	(ft)	(ft)	(ft)	(°)	
		(ft) 0.00 30/2019	(ft)	(ft)	(°)	
Plan Survey Tool Pro	gram Date 5/3	(ft) 0.00 30/2019	(ft) 0.00	(ft) 0.00	(°)	
Plan Survey Tool Pro Depth From (ft) 1 0.00	gram Date 5/3 Depth To (ft) Survey (We	(ft) 0.00 30/2019	(ft) 0.00 Tool Name MWD+HDGM	(ft) 0.00	(°)	
Plan Survey Tool Pro Depth From (ft)	gram Date 5/3 Depth To (ft) Survey (We	(ft) 0.00 30/2019	(ft) 0.00 Tool Name MWD+HDGM	(ft) 0.00	(°)	
Plan Survey Tool Pro Depth From (ft) 1 0.00 Plan Sections Measured	gram Date 5/3 Depth To (ft) Survey (We 20,676.63 Permit Plan	(ft) 0.00 30/2019	(ft) 0.00 Tool Name MWD+HDGM	(ft) 0.00	(°) 359.91 Turn	FO

0.00

0.00

-0.88

-16.43

0.00

9,627.07

10,527.07

20,676.63

0.00

0.00

90.00

90.00

0.00

0.00

359.91

359.91

0.00

9,627.07

10,200.03

10,200.03

0.00

0.00

572.96

10,722.51

0.00 0.00 10.00 0.00

0.00

0.00

10.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

359.91 PBHL - Papas Fritas 2

0.00 PBHL - Papas Fritas 2

Planning Report - Geographic

Database: EDM r5000.141_Prod US
Company: WCDSC Permian NM

WCDSC Permian NM TVD Rei
Eddy County (NAD 83 NM Eastern) MD Refe

Site: Sec 27-T23S-R29E

Well: Papas Fritas 27-22 Fed Com 711H
Wellbore: Wellbore #1

Design: Velibore #1

Permit Plan 1

Project:

Local Co-ordinate Reference

TVD Reference:
MD Reference:
North Reference:

Survey Calculation Method:

Well Papas Fritas 27-22 Fed Com 711H

RKB @ 3044.80ft RKB @ 3044.80ft .

Grid

Minimum Curvature

Planned Survey	(
Measured			Vertical			Map	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
0.00	0.00	0.00	0.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
100.00	0.00	0.00	100.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
200.00	0.00	0.00	200.00	0.00	0.00	461,526.	1	7.73 32.268311	-103.978056
300.00	0.00	0.00	300.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
400.00	0.00	0.00	400.00	0.00	0.00	461,526.			-103.978056
500.00	0.00	0.00	500.00	0.00	0.00	461,526.		7.73 32.268311	-103.978056
600.00	0.00	0.00	600.00	0.00	0.00	461,526.	i '		-103.978056
700.00	0.00	0.00	700.00	0.00	0.00	461,526.			-103.978056
800.00	0.00	0.00	800.00	0.00	0.00	461,526.			-103.978056
900.00	0.00	0.00	900.00	0.00	0.00	461,526.	· ·		-103.978056
1,000.00	0.00	0.00	1,000.00	0.00	0.00	461,526.			-103.978056
1,100.00	0.00	0.00	1,100.00	0.00	0.00	461,526.	!		-103.978056
1,200.00	0.00	0.00	1,200.00	0.00	0.00	461,526.	1		-103.978056
1,300.00	0.00	0.00	1,300.00	0.00	0.00	461,526.	1		-103.978056
1,400.00	0.00	0.00	1,400.00	0.00	0.00	461,526.	}	· ·	-103.978056
1,500.00	0.00	0.00	1,500.00	0.00	0.00	461,526.	i '		-103.978056
1,600.00 1,700.00	0.00	0.00 0.00	1,600.00	0.00	0.00	461,526.	'		-103.978056
1,800.00	0,00	0.00	1,700.00 1,800.00	0.00 0.00	0.00 0.00	461,526.	1		-103.978056
1,900.00	0.00	0.00	1,900.00	0.00	0.00	461,526.			-103.978056
2,000.00	0.00	0.00	2,000.00	0.00	0.00	461,526. 461,526.	,		-103.978056
2,100.00	0.00	0.00	2,100.00	0.00	0.00	461,526.	1		-103.978056 -103.978056
2,200.00	0.00	0.00	2,200.00	0.00	0.00	461,526.	1		-103.978056
2,300.00	0.00	0.00	2,300.00	0.00	0.00	461,526.			-103.978056
2,400.00	0.00	0.00	2,400.00	0.00	0.00	461,526.			-103.978056
2,500.00	0.00	0.00	2,500.00	0.00	0.00	461,526.			-103.978056
2,600.00	0.00	0.00	2,600.00	0.00	0.00	461,526.	,		-103.978056
2,700.00	0.00		2,700.00	-0.00	0.00	461,526.	i i		-103.978056
2,800.00	0.00	0.00	2,800.00	0.00	0.00	461,526.			-103.978056
2,900.00	0.00	0.00	2,900.00	0.00	0.00	461,526.	i ·		-103.978056
3,000.00	0.00	0.00	3,000.00	0.00	0.00	461,526.	i '		-103.978056
3,100.00	0.00	0.00	3,100.00	0.00	0.00	461,526.	i		-103.978056
3,200.00	0.00	0.00	3,200.00	0.00	0.00	461,526.			-103.978056
3,300.00	0.00	0.00	3,300.00	0.00	0.00	461,526.	41 651,14°	7.73 32.268311	-103.978056
3,400.00	0.00	0.00	3,400.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
3,500.00	0.00	0.00	3,500.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
3,600.00	0.00	0.00	3,600.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
3,700.00	0.00	0.00	3,700.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056
3,800.00	0.00	0.00	3,800.00	0.00	0.00	461,526.		7.73 - 32.268311	-103.978056
3,900.00	0.00	0.00	3,900.00	0.00	0.00	461,526.		7.73 32.268311	-103.978056
4,000.00	0.00	0.00	4,000.00	0.00	0.00	461,526.		7.73 32.268311	-103.978056
4,100.00	0.00	0.00	4,100.00	0.00	0.00	461,526.	1		-103.978056
4,200.00	0.00	0.00	4,200.00	0.00	0.00	461,526.			-103.978056
4,300.00	0.00	0.00	4,300.00	0.00	0.00	461,526.	1 .		-103.978056
4,400.00	0.00	0.00	4,400.00	0.00	0.00	461,526.	1 .		-103.978056
4,500.00	0.00	0.00	4,500.00	0.00	0.00	461,526.	· ·		-103.978056
4,600.00	0.00	0.00	4,600.00	0.00	0.00	461,526.			-103.978056
4,700.00	0.00	0.00	4,700.00	0.00	0.00	461,526.	1		-103.978056
4,800.00	0.00	0.00	4,800.00	0.00	0.00	461,526.	1		-103.978056
4,900.00	0.00	0.00	4,900.00	0.00	0.00	461,526.	1		-103.978056
5,000.00	0.00	0.00	5,000.00	0.00	0.00	461,526.	1		-103.978056
5,100.00	0.00	0.00	5,100.00	0.00	0.00	461,526.	1		-103.978056
5,200.00	0.00	. 0.00	5,200.00	0.00	0.00	461,526.	1 '	· ·	-103.978056
5,300.00	0.00	0.00	5,300.00	0.00	0.00	461,526.	41 651,14	7.73 32.268311	-103.978056

Database: Company:

EDM r5000.141 Prod US

WCDSC Permian NM

Eddy County (NAD 83 NM Eastern)

Site: Sec 27-T23S-R29E

Well: Wellbore:

Project:

Papas Fritas 27-22 Fed Com 711H

Wellbore #1

Local Co-ordinate Reference

TVD Reference: MD Reference:

North Reference:

Survey Calculation Method:

Well Papas Fritas 27-22 Fed Com 711H

RKB @ 3044.80ft RKB @ 3044.80ft

Grid

Minimum Curvature

Permit Plan 1 Design:

			14. 41. 1						
Measured			Vertical			Мар	Мар		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
5,400.00	0.00	0.00	5,400.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
5,500.00	0.00	0.00	5,500.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
5,600.00	0.00	0.00	5,600.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
5,700.00	0.00	0.00	5,700.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
5,800.00	0.00	0.00	5,800.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
5,900.00	0.00	0.00	5,900.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
6,000.00	0.00	0.00	6,000.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
6,100.00	0.00	0.00	6,100.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
6,200.00	0.00	0.00	6,200.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
6,300.00	0.00	0.00	6,300.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
6,400.00	0.00	0.00	6,400.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
6,500.00	0.00	0.00	6,500.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
6,600.00	0.00	0.00	6,600.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.978
6,700.00	0.00	0.00	6,700.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
6,800.00	0.00	0.00	6,800.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
6,900.00	0.00	0.00	6,900.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,000.00	0.00	0.00	7,000.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,100.00	0.00	0.00	7,100.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,200.00	0.00	0.00	7,200.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,300.00	0.00	0.00	7,300.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,400.00	0.00	0.00	7,400.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,500.00	0.00	0.00	7,500.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,600.00	0.00	0.00	7,600.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,700.00	0.00	0.00	7,700.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,800.00	0.00	0.00	7,800.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
7,900.00	0.00	0.00	7,900.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,000.00	0.00	0.00	8,000.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,100.00	0.00	0.00	8,100.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,200.00	0.00	0.00	8,200.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,300.00	0.00	0.00	8,300.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,400.00	0.00	0.00	8,400.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,500.00	0.00	0.00	8,500.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,600.00	0.00	0.00	8,600.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,700.00	0.00	0.00	8,700.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,800.00	0.00	0.00	8,800.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
8,900.00	0.00	0.00	8,900.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,000.00	0.00	0.00	9,000.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,100.00	0.00	0.00	9,100.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,200.00	0.00	0.00	9,200.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,300.00	0.00	0.00	9,300.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,400.00	0.00	0.00	9,400.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,500.00	0.00	0.00	9,500.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,600.00	0.00	0.00	9,600.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,627.00	0.00	0.00	9,627.00	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
	627' MD, 102'		- '		the section framework as a con-			a see see	
9,627.07	0.00	0.00	9,627.07	0.00	0.00	461,526.41	651,147.73	32.268311	-103.97
9,700.00	7.29	359.91	9,699.80	4.64	-0.01	461,531.05	651,147.73	32.268324	-103.97
9,800.00	17.29	359.91	9,797.39	25.90	-0.04	461,552.31	651,147.69	32.268382	-103.97
9,900.00	27.29	359.91	9,889.79	63.79	-0.10	461,590.20	651,147.64	32.268487	-103.97
9,974.00	34.69	359.91	9,953.19	101.87	-0.16	461,628.28	651,147.58	32.268591	-103.97
	ection @ 9974			101.01	-0.10	101,020.20	55 t ₁ 147.56	52.200001	-105.91
10,000.00	—			117.14	-0.18	461,643.55	651 147 56	32.268633	-103.97
10,000.00	37.29 47.29	359.91 359.91	9,974.22		-0.18 -0.28	461,643.55 461,710.76	651,147.56 651,147.45		-103.97
10, 100.00	41.29	338.81	10,048.10	184.35	-0.20	401,710.70	001,147.40	32.268818	-103.97

EDM r5000.141_Prod US Database: Local Co-ordinate Reference Well Papas Fritas 27-22 Fed Com 711H WCDSC Permian NM Company: RKB @ 3044.80ft TVD Reference: Eddy County (NAD 83 NM Eastern) Project: RKB @ 3044.80ft MD Reference: Sec 27-T23S-R29E Site: Grid North Reference: Papas Fritas 27-22 Fed Com 711H Well: Survey Calculation Method: Minimum Curvature Wellbore #1 Wellbore:

Permit Plan 1

Design:

Planned Survey									
Measured	*		Vertical			Map	Map		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
10,123.58	49.65	359.91	10,063.73	202.00	-0.31	461,728.41	651,147.43	32.268867	-103.978055
FTP @ 1	0124' MD, 100	' FSL, 970' F							
10,200.00	57.29	359.91	10,109.18	263.37	-0.40	461,789.78	651,147.33	32.269035	-103.978054
10,300.00	67.29	359.91	10,155.62	351.79	-0.54	461,878.20	651,147.20	32.269278	-103.978054
10,400.00	77.29	359.91	10,185.99	446.93	-0.68	461,973.34	651,147.05	32.269540	-103.978053
10,500.00	87.29	359.91	10,199.39	545.90	-0.84	462,072,31	651,146.90	32.269812	-103.978053
10,527.07	90.00	359.91	10,200.03	572.96	-0.88	462,099.37	651,146.86	32.269886	-103.978053
10,600.00	. 90.00	359.91	10,200.03	645.89	-0.99	462,172,30	651,146.74	32.270087	-103.978052
10,700.00	90.00	359.91	10,200.03	745.89	-1.14	462,272.30	651,146.59	32.270362	-103.978052
10,800.00	90.00	359.91	10,200.03	845.89	-1.30	462,372.30	651,146.44	32.270636	-103.978051
10,900.00	90.00	359.91	10,200.03	945.89	-1.45	462,472.30	651,146.29	32.270911	-103.978050
11,000.00	90.00	359.91	10,200.03	1,045.89	-1.60	462,572.30	651,146.13	32.271186	-103.978050
11,100.00	90.00	359.91	10,200.03	1,145.89	-1.76	462,672.30	651,145.98	32.271461	103.978049
11,200.00	90.00	359.91	10,200.03	1,245.89	-1.91	462,772.30	651,145.83	32.271736	-103.978049
11,300.00	90.00	359.91	10,200.03	1,345.89	-2.06	462,872.30	651,145.67	32.272011	-103.978048
11,400.00	90.00	359.91	10,200.03	1,445.89	-2.22	462,972.30	651,145.52	32.272286	-103.978048
11,500.00	90.00	359.91	10,200.03	1,545.89	-2.37	463,072.30	651,145.37	32.272561	-103.978047
11,600.00	90.00	359.91	10,200.03	1,645.89	-2.52	463,172.30	651,145.21	32.272836	-103.978046
11,700.00	90.00	359.91	10,200.03	1,745.89	-2.68	463,272.30	651,145.06	32.273110	-103.978046
11,800.00	90.00	359.91	10,200.03	1,845.89	-2.83	463,372.30	651,144.91	32.273385	-103.978045
11,900.00	90.00	359.91	10,200.03	1,945.89	-2.98	463,472.30	651,144.75	32.273660	-103.978045
12,000.00	90.00	359.91	10,200.03	2,045.89	-3.13	463,572.29	651,144.60	32.273935	-103.978044
12,100.00	90.00	359.91	10,200.03	2,145.89	-3.29	463,672.29	651,144.45	32.274210	-103.978044
12,200.00 12,300.00	90.00 90.00	359.91 359.91	10,200.03	2,245.89	-3.44	463,772.29	651,144.29	32.274485	-103.978043
12,400.00	90.00	359.91	10,200.03	2,345.89	-3.59	463,872.29	651,144.14	32.274760	-103.978042
12,500.00	90.00	359.91	10,200.03 10,200.03	2,445.89 2,545.89	-3.75 -3.90	463,972.29 464,072.29	651,143.99	32.275035	-103.978042
12,600.00	90.00	359.91	10,200.03	2,645.89	-3.90 -4.05	464,072.29	651,143.83 651,143.68	32.275310 32.275584	-103.978041 -103.978041
12,700.00	90.00	359.91	10,200.03	2,745.89	-4.21	464,272.29	651,143.53	32.275859	-103.978040
12,800.00	90.00	359.91	10,200.03	2,845.89	-4.36	464,372.29	651,143.37	32.276134	-103.978040
12,900.00	90.00	359.91	10,200.03	2,945.89	-4.51	464,472.29	651,143.22	32.276409	-103.978039
13,000.00	90.00	359.91	10,200.03	3,045.89	-4.67	464,572.29	651,143.07	32.276684	-103.978038
13,100.00	90.00	359.91	10,200.03	3,145.89	-4.82	464,672.29	651,142.91	32.276959	-103.978038
13,200.00	90.00	359.91	10,200.03	3,245.89	-4.97	464,772.29	651,142.76	32.277234	-103.978037
13,300.00	90.00	359.91	10,200.03	3,345.89	-5.13	464,872.29	651,142.61	32.277509	-103.978037
13,400.00	90.00	. 359.91	10,200.03	3,445.89	-5.28	464,972.29	651,142.45	32.277783	-103.978036
13,500.00	90.00	359.91	10,200.03	3,545.89	-5.43	465,072.29	651,142.30	32.278058	-103.978035
13,600.00	90.00	359.91	10,200.03	3,645.89	-5.59	465,172.29	651,142.15	32.278333	-103.978035
13,700.00	90.00	359.91	10,200.03	3,745.89	-5.74	465,272.29	651,141.99	32.278608	-103.978034
13,800.00	90.00	359.91	10,200.03	3,845.89	-5.89	465,372.29	651,141.84	32.278883	-103.978034
13,900.00	90.00	359.91	10,200.03	3,945.89	-6.05	465,472.29	651,141.69	32.279158	-103.978033
14,000.00	90.00	359.91	10,200.03	4,045.89	-6.20	465,572.29	651,141.54	32.279433	-103.978033
14,100.00	90.00	359.91	10,200.03	4,145.89	-6.35	465,672,29	651,141.38	32.279708	-103.978032
14,200.00	90.00	359.91	10,200.03	4,245.89	-6.51	465,772.29	651,141.23	32.279983	-103.978031
. 14,300.00	90.00	359.91	10,200.03	4,345.89	-6.66	465,872.29	651,141.08	32.280257	-103.978031
14,400.00	90.00	359.91	10,200.03	4,445.89	-6.81	465,972.29	651,140.92	32.280532	-103.978030
14,500.00	90.00	359.91	10,200,03	4,545.89	-6.97	466,072.29	651,140.77	32.280807	103.978030
14,600.00	90.00	359.91	10,200.03	4,645.89	-7.12	466,172.29	651,140.62	32.281082	-103.978029
14,700.00	90.00	359.91	10,200.03	4,745.89	-7.27	466,272.29	651,140.46	32.281357	-103.978029
14,800.00	90.00	359.91	10,200.03	4,845.89	-7.43	466,372.29	651,140.31	32.281632	-103.978028
14,900.00	90.00	359.91	10,200.03	4,945.89	-7.58	466,472.29	651,140.16	32.281907	-103.978027
15,000.00	90.00	359.91	10,200.03	5,045.89	-7.73	466,572.29	651,140.00	32.282182	-103.978027
15,100.00	90.00	359.91	10,200.03	5,145.89	-7.89	466,672.29	651,139.85	32.282456	-103.978026
15,200.00	90.00	359.91	10,200.03	5,245.88	-8.04	466,772.28	651,139.70	32.282731	-103.978026

Database: EDM r5000.141_Prod US
Company: WCDSC Permian NM

Eddy County (NAD 83 NM Eastern)

Project: Eddy County (NAD 8
Site: Sec 27-T23S-R29E

Well: Papas Fritas 27-22 Fed Com 711H.
Wellbore: Wellbore #1

Design: Permit Plan 1

Local Co-ordinate Reference

TVD Reference: MD Reference: North Reference:

Survey Calculation Method:

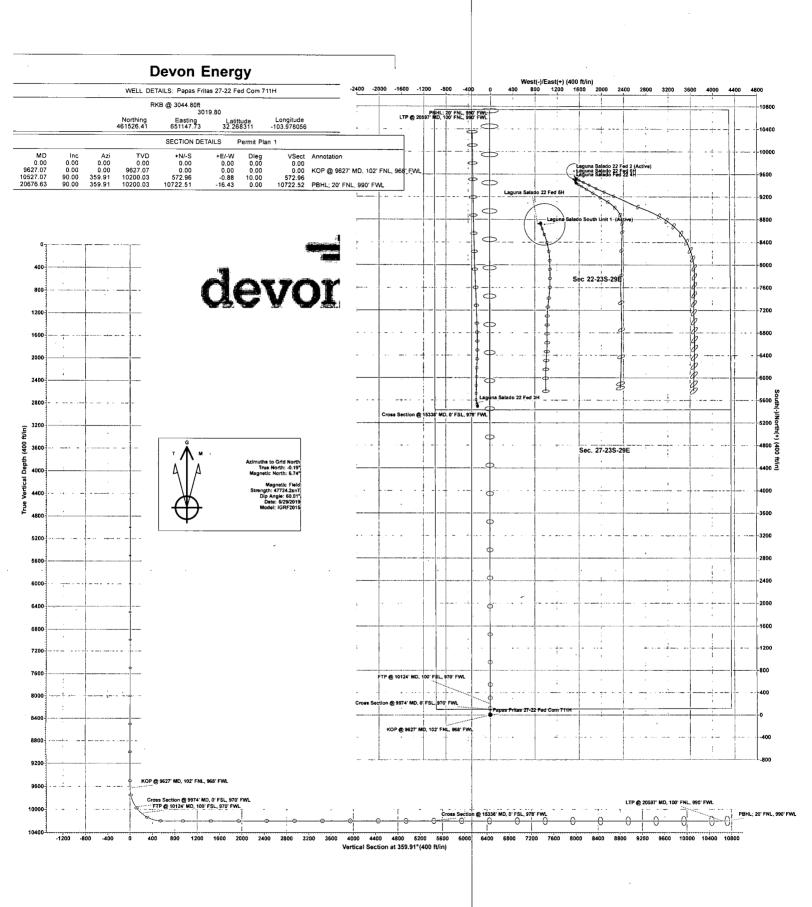
Well Papas Fritas 27-22 Fed Com 711H

RKB @ 3044.80ft RKB @ 3044.80ft

Grid

Minimum Curvature

<i>l</i> leasured			Vertical			Map :	Map		
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Northing	Easting		
(ft)	(°)	(°)	(ft)	(ft)	(ft)	(usft)	(usft)	Latitude	Longitude
15,300.00	90.00	359.91	10,200.03	5,345.88	-8.19	466,872.28	651,139.54	32.283006	-103.97
15,336.00	90.00	359.91	10,200.03	5,381.88	-8.25	466,908.28	651,139.49	32.283105	-103.97
Cross Se	ection @ 1533		. 978' FWL	No. 1 14 444 4.		المؤاد أساسا			
15,400.00	90.00	359.91	10,200.03	5,445.88	-8.34	466,972.28	651,139.39	32.283281	-103.97
15,500.00	90.00	359.91	10,200.03	5,545.88	-8.50	467,072.28	651,139.24	32.283556	-103.97
15,600.00	90.00	359.91	10,200.03	5,645.88	-8.65	467,172.28	651,139.08	32.283831	-103.97
15,700.00	90.00	359.91	10,200.03	5,745.88	-8.80	467,272.28	651,138.93	32.284106	-103.97
15,800.00	90.00	359.91	10,200.03	5,845.88	-8.96	467,372.28	651,138.78	32.284381	-103.97
15,900.00	90.00	359.91	10,200.03	5,945.88	-9.11	467,472.28	651,138.62	32.284656	-103.97
16,000.00	90.00	359.91	10,200.03	6,045.88	-9.26	467,572.28	651,138.47	32.284930	-103.97
16,100.00	90.00	359.91	10,200.03	6,145.88	-9.42	467,672.28	651,138.32	32.285205	-103.97
16,200.00	90.00	359.91	10,200.03	6,245.88	-9.57	467,772.28	651,138.16	32.285480	-103.97
16,300.00	90.00	359.91	10,200.03	6,345.88	-9.72	467,872.28	651,138.01	32.285755	-103.97
16,400.00	90.00	359.91	10,200.03	6,445.88	-9.88	467,972.28	651,137.86	32.286030	-103.97
16,500.00	90.00	359.91	10,200.03	6,545.88	-10.03	468,072.28	651,137.70	32.286305	-103.97
16,600.00	90.00	359.91	10,200.03	6,645.88	-10.18	468,172.28	651,137.55	32.286580	-103.97
16,700.00	90.00	359.91	10,200.03	6,745.88	-10.34	468,272.28	651,137.40	32.286855	-103.97
16,800.00	90.00	359.91	10,200.03	6,845.88	-10.49	468,372.28	651,137.24	32.287130	-103.97
16,900.00	90.00	359.91	10,200.03	6,945.88	-10.64	468,472.28	651,137.09	32.287404	-103.97
17,000.00	90.00	359.91	10,200.03	7,045.88	-10.80	468,572.28	651,136.94	32.287679	-103.97
17,100.00	90.00	359.91	10,200.03	7,145.88	-10.95	468,672.28	651,136.78	32.287954	-103.97
17,200.00	90.00	359.91	10,200.03	7,245.88	-11.10	468,772.28	651,136.63	32.288229	-103.97
17,300.00	90.00	359.91	10,200.03	7,345.88	-11.26	468,872.28	651,136.48	32.288504	-103.97
17,400.00	90.00	359.91	10,200.03	7,445.88	-11.41	468,972.28	651,136.33	32.288779	-103.97
17,500.00	90.00	359.91	10,200.03	7,545.88	-11.56	469,072.28	651,136.17	32.289054	-103.97
17,600.00	90.00	359.91	10,200.03	7,645.88	-11.72	469,172.28	651,136.02	32.289329	-103.97
17,700.00	90.00	359.91	10,200.03	7,745.88	11.87	469,272.28	651,135.87	32.289603	-103.9
17,800.00	90.00	359.91	10,200.03	7,845.88	-12.02	469,372.28	651,135.71	32.289878	-103.9
17,900.00	90.00	359.91	10,200.03	7,945.88	-12.18	469,472.28	651,135.56	32.290153	-103.97
18,000.00	. 90.00	359.91	10,200.03	8,045.88	-12.33	469,572.28	651,135.41	32.290428	-103.97
18,100.00	90.00	359.91	10,200.03	8,145.88	-12.48	469,672.28	651,135.25	32.290703	-103.97
18,200.00	90.00	359.91	10,200.03	8,245.88	-12.64	469,772.28	651,135.10	32.290978	-103.97
18,300.00	90.00	359.91	10,200.03	8,345.88	-12.79	469,872.28	651,134.95	32.291253	-103.97
18,400.00	90.00	359.91	10,200.03	8,445.88	-12.94	469,972.27	651,134.79	32.291528	-103.97
18,500.00	90.00	359.91	10,200.03	8,545.88	-13.09	470,072.27	651,134.64	32.291803	-103.97
18,600.00	90.00	359.91	10,200.03	8,645.88	-13.25	470,172.27	651,134.49	32.292077	-103.97
18,700.00	90.00	359.91	10,200.03	8,745,88	-13.40	470,272.27	651,134.33	32.292352	-103.97
18,800.00	90.00	359.91	10,200.03	8,845.88	-13.55	470,372.27	651,134.18	32.292627	-103.97
18,900.00	90.00	359.91	10,200.03	8,945.88	-13.71	470,472,27	651,134.03	32.292902	-103.97
19,000.00	90.00	359.91	10,200.03	9,045.88	-13.86	470,572.27	651,133.87	32.293177	-103.97
19,100.00	90.00	359.91	10,200.03	9,145.88	-14.01	470,672.27	651,133.72	32.293452	-103.97
19,200.00	90.00	359.91	10,200.03	9,245.88	-14.17	470,772.27	651,133.57	32.293727	-103.97
19,300.00		359.91	10,200.03	9,345.88	-14.32	470,872.27	651,133.41	32.294002	-103.9
19,400.00	90.00	359.91	10,200.03	9,445.88	-14.47	470,972.27	651,133.26	32.294276	-103.97
19,500.00	90.00	359.91	10,200.03	9,545.88	-14.63	471,072.27	651,133.11	32.294551	-103.97
19,600.00	90.00	359.91	10,200.03	9,645.88	-14.78	471,172.27	651,132.95	32.294826	-103.91
19,700.00	90.00	359.91	10,200.03	9,745.88	-14.93	471,272,27	651,132.80	32.295101	-103.9
19,800.00	90.00	359.91	10,200.03	9,845.88	-15.09	471,372.27	651,132.65	32.295376	-103.9
19,900.00	90.00	359.91	10,200.03	9,945.88	-15.24	471,472.27	651,132.49	32.295651	-103.91
20,000.00	90.00	359.91	10,200.03	10,045.88	-15.39	471,572.27	651,132.34	32.295926	-103.97
20,100.00	90.00	359.91	10,200.03	10,145.88	-15.55	471,672.27	651,132.19	32.296201	-103.97
20,200.00	90.00	359.91	10,200.03	10,245.88	-15.70	471,772.27	651,132.03	32.296476	-103.97
20,300.00	90.00	359.91	10,200.03	10,345.88	-15.85	471,872.27	651,131.88	32.296750	-103.97
20,400.00	90.00	359.91	10,200.03	10,445.88	-16.01	471,972.27	651,131.73	32.297025	-103.97


Planning Report - Geographic

EDM r5000.141 Prod US Database: Local Co-ordinate Reference Well Papas Fritas 27-22 Fed Com 711H WCDSC Permian NM Company: RKB @ 3044.80ft TVD Reference: Project: Eddy County (NAD 83 NM Eastern) MD Reference: RKB @ 3044.80ft Sec 27-T23S-R29E Site: North Reference: Grid Well: Papas Fritas 27-22 Fed Com 711H Minimum Curvature Survey Calculation Method: Wellbore #1 Wellbore: Permit Plan 1 Design:

Planned Survey	· . [anne anteriori de desprimentation de la completa d La completa de la co	
Measured Depth (ft)	Inclination (°)	Azimuth (°)	Vertical Depth (ft)	+N/-S (ft)	+E/-W (ft)	Map Northing (usft)	Map Easting (usft)	Latitude	Longitude .
20,500.00	90.00	359.91	10,200.03	10,545.88	-16.16	472,072.27	651,131.58	32.297300	-103.977995
20,596.63	90.00	359.91	10,200.03	10,642.51	-16.31	472,168.90	651,131.43	32.297566	-103.977995
LTP @ 2	0597' MD, 100	' FNL, 990' F	WL					وينساه بسيسه وسيساس	
20,600.00	90.00	359.91	10,200.03	10,645.88	-16.31	472,172.27	651,131.42	32.297575	-103.977995
20,676.62	90.00	359.91	10,200.03	10,722.50	-16.43	472,248.89	651,131.30	32.297786	-103.977994
PBHL; 2	0' FNL, 990' F	WL							
20,676.63	90.00	359.91	10,200.03	10,722.51	-16.43	472,248.90	651,131.30	32.297786	-103.977994

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (ft)	+N/-S (ft)	+E/-W (ft)	Northing (usft)	Easting (usft)	Latitude	Longitude
PBHL - Papas Fritas 27- - plan misses target - Point		0.00 00.03ft at 206	0.00 876.63ft MD	10,722.51 (10200.03 TV	-16.43 /D, 10722.51 f	472,248.90 N, -16.43 E)	651,131.30	32.297786	-103.977994

Plan Annotations			Anna de la companya del la companya de la companya		
Measured	Vertical		ordinates		
Depth (ft)	Depth (ft)	+N/-S (ft)	+E/-W (ft)	Comment	
9,627.00	9,627.00	0.00	0.00	KOP @ 9627' MD, 102' FNL, 968' FWL	
9,974.00	9,953.19	101.87	-0.16	Cross Section @ 9974' MD, 0' FSL, 970' FWL	
10,123.58	10,063.73	202.00	-0.31	FTP @ 10,124' MD, 100' FSL, 970' FWL	
15,336.00	. 10,200.03	5,381.88	-8.25	Cross Section @ 15336' MD, 0' FSL, 978' FWL	
20,596.63	10,200.03	10,642.51	-16.31	LTP @ 20597' MD, 100' FNL, 990' FWL	
20,676.62	10,200.03	10,722.50	-16.43	PBHL; 20' FNL, 990' FWL	

A multibowl wellhead may be used. The BOP will be tested per Onshore Order #2 after installation on the surface casing which will cover testing requirements for a maximum of 30 days. If any seal subject to test pressure is broken the system must be tested.

Devon proposes using a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be 5000 (5M) psi.

- Wellhead will be installed by wellhead representatives.
- If the welding is performed by a third party, the wellhead representative will monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- Wellhead representative will install the test plug for the initial BOP test.
- Wellhead company will install a solid steel body pack-off to completely isolate the lower head after cementing intermediate casing. After installation of the pack-off, the pack-off and the lower flange will be tested to 5M, as shown on the attached schematic. Everything above the pack-off will not have been altered whatsoever from the initial nipple up. Therefore the BOP components will not be retested at that time.
- If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head will be cut and top out operations will be conducted.
- Devon will pressure test all seals above and below the mandrel (but still above the casing) to full working pressure rating.
- Devon will test the casing to 0.22 psi/ft or 1500 psi, whichever is greater, as per Onshore Order #2.

After running the surface casing, a 13-5/8" BOP/BOPE system with a minimum rating of 5M will be installed on the wellhead system and will undergo a 250 psi low pressure test followed by a 5,000 psi high pressure test. The 5,000 psi high and 250 psi low test will cover testing requirements a maximum of 30 days, as per Onshore Order #2. If the well is not complete within 30 days of this BOP test, another full BOP test will be conducted, as per Onshore Order #2.

After running the intermediate casing with a mandrel hanger, the 13-5/8" BOP/BOPE system with a minimum rating of 5M will already be installed on the wellhead.

The pipe rams will be operated and checked each 24 hour period and each time the drill pipe is out of the hole. These tests will be logged in the daily driller's log. A 2" kill line and 3" choke line will be incorporated into the drilling spool below the ram BOP. In addition to the rams and annular preventer, additional BOP accessories include a kelly cock, floor safety valve, choke lines, and choke manifold rated at 5,000 psi WP.

Devon's proposed wellhead manufactures will be FMC Technologies, Cactus Wellhead, or Cameron.

Devon Energy APD VARIANCE DATA

OPERATOR NAME: Devon Energy

1. SUMMARY OF Variance:

Devon Energy respectfully requests approval for the following additions to the drilling plan:

1. Potential utilization of a spudder rig to pre-set surface casing.

2. Description of Operations

- 1. A spudder rig contractor may move in their rig to drill the surface hole section and pre-set surface casing on this well.
 - **a.** After drilling the surface hole section, the rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
 - **b.** Rig will utilize fresh water based mud to drill surface hole to TD.
- 2. The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 3. A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with needle valves installed on two wingvalves.
 - **a.** A means for intervention will be maintained while the drilling rig is not over the well.
- 4. The BLM will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 5. Drilling operation will be performed with the big rig. At that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - **a.** The BLM will be contacted / notified 24 hours before the big rig moves back on to the pad with the pre-set surface casing.
- **6.** Devon Energy will have supervision on the rig to ensure compliance with all BLM and NMOCD regulations and to oversee operations.
- 7. Once the rig is removed, Devon Energy will secure the wellhead area by placing a guard rail around the cellar area.

U. S. Steel Tubular Products 13.375" 48.00lbs/ft (0.330" Wall) H40

MECHANICAL PROPERTIES	Pipe	втс	LTC	STC	
Minimum Yield Strength	40,000		<u></u>		psi
Maximum Yield Strength	80,000		 -		psi
Minimum Tensile Strength	60,000		<u> </u>		psi
DIMENSIONS	Pipe	втс	LTC	STC	
Outside Diameter	13.375		-	14.375	in.
Wall Thickness	0.330		<u> </u> -		in.
Inside Diameter	12.715		ļ-	12.715	in.
Standard Drift	12.559	12.559	<u> </u>	12.559	in.
Alternate Drift			· <u> </u>		in.
Nominal Linear Weight, T&C	48.00		<u> -</u>	**	lbs/ft
Plain End Weight	46.02		<u> </u> -		lbs/ft
PERFORMANCE	Pipe	втс	LTC	STC	
Minimum Collapse Pressure	740	740	-	740	psi
Minimum Internal Yield Pressure	1,730	1,730	<u> </u>	1,730	psi
Minimum Pipe Body Yield Strength	541		<u> </u>		1,000 lbs
Joint Strength			<u> </u>	322	1,000 lbs
Reference Length			1	4,473	ft '
MAKE-UP DATA	Pipe	ВТС	LTC	STC	
Make-Up Loss			<u> </u>	3.50	in.
Minimum Make-Up Torque			<u> </u> -	2,420	ft-lbs
Maximum Make-Up Torque			<u> </u>	4,030	ft-lbs

Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

TEC-LOCK WEDGE

8.625" 32.00 LB/FT (.352" Wall) BORUSAN MANNESMANNP110 HSCY

Pipe Body Data

Nominal OD:	8.625	in
Nominal Wall:	.352	in
Nominal Weight:	32.00	lb/ft
Plain End Weight:	31.13	lb/ft
Material Grade:	P110 HSCY	
Mill/Specification:	BORUSAN MAI	NNESMANI
Yield Strength:	125,000	psi
Tensile Strength:	125,000	psi
Nominal ID:	7.921	in
API Drift Diameter:	7.796	in
Special Drift Diameter:	7.875	in
RBW:	87.5 %	
Body Yield:	1,144,000	lbf
Burst:	8,930	psi
Collapse:	4,230	psi
		j

Connection Data

Standard OD:	9.000	in
Pin Bored ID:	7.921	in
Critical Section Area:	8.61433	in²
Tensile Efficiency:	94.2 %	
Compressive Efficiency:	100.0 %	
Longitudinal Yield Strength:	1,077,000	lbf
Compressive Limit:	1,144,000	lbf
Internal Pressure Rating:	8,930	psi
External Pressure Rating:	4,230	psi
Maximum Bend:	62.6	°/100
i		

Operational Data

Minimum Makeup Torque:		ft*lbf
Optimum Makeup Torque:	37,375	ft*lbf
Maximum Makeup Torque:	80,900	ft*lbf
Minimum Yield:	89,900	ft*lbf
Makeup Loss:	5.97	in

Notes

Operational Torque is equivalent to the Maximum Make-Up Torque.

Generated on 9/18/2018 1:14:29 PM

Please visit http://www.huntingplc.com for the latest technical information.

U. S. Steel Tubular Products 5.500" 17.00lbs/ft (0.304" Wall) P110

MECHANICAL PROPERTIES	Pipe	BTC	LTC.	STC	
Minimum Yield Strength	110,000		-		psi
Maximum Yield Strength	140,000		<u>_</u>		psi
Minimum Tensile Strength	125,000		+		psi
DIMENSIONS	Pipe , 1	втс	LTC	STC	
Outside Diameter	5.500	6.050	6.050		in.
Wall Thickness	0.304		<u> </u>		in.
Inside Diameter	4.892	4.892	4.892		in.
Standard Drift	4.767	4.767	4.767		in.
Alternate Drift			<u> </u>		in.
Nominal Linear Weight, T&C	17.00		1		lbs/ft
Plain End Weight	16.89		<u> </u>		lbs/ft
PERFORMANCE	Pipe	ВТС	LTC	STC	ا د خدیر :
Minimum Collapse Pressure	7,480	7,480	7,480		psi
Minimum Internal Yield Pressure	10,640	10,640	10,640		psi
Minimum Pipe Body Yield Strength	546		<u> </u>		1,000 lbs
Joint Strength		568	445		1,000 lbs
Reference Length		22,271	17,449		ft
MAKE-UP DATA	Pipe	BTC	LTĆ	STC	
Make-Up Loss		4.13	3.50		in.
Minimum Make-Up Torque	••		3,470		ft-lbs
Maximum Make-Up Torque			5,780		ft-lbs
			1		

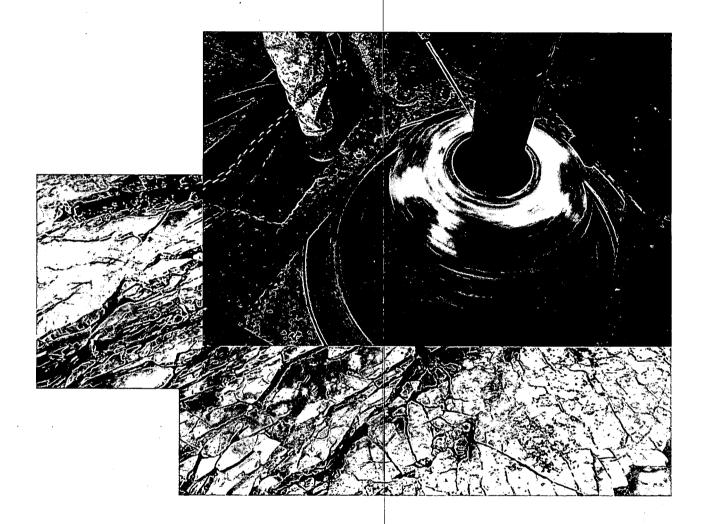
Legal Notice

All material contained in this publication is for general information only. This material should not therefore be used or relied upon for any specific application without independent competent professional examination and verification of accuracy, suitability and applicability. Anyone making use of this material does so at their own risk and assumes any and all liability resulting from such use. U. S. Steel disclaims any and all expressed or implied warranties of fitness for any general or particular application.

U. S. Steel Tubular Products 460 Wildwood Forest Drive, Suite 300S Spring, Texas 77380 1-877-893-9461 connections@uss.com www.usstubular.com

Metal One Corp.		FLUSHMAX	-111	Page	44-C	
7.4		I EGGI IMIAX-III		Date	25-Jan	-17
Metal	l One	Connection Data				
		Ooiliection Date	a Silect	Rev.	N - 1	
		Geometry				
			<u>lm</u>	<u>erial</u>	<u>S.I.</u>	
		Pipe Body				
		Grade	P110		P110	
		Pipe OD (D)	7 5/8		193.68	mm
FLUSH	IMAX-III	Weight	29.70		44.20	kg/m
		Actual weight	29.04		43.21	kg/m
		Wall Thickness (t)	0.375	in	9.53	mm
		Pipe ID (d)	6.875	in	174.63	mm
		Pipe body cross section	8.537	in ²	5,508	mm ²
		Drift Dia.	6.750	in	171.45	mm
ينموي ا						
	-	Connection				т
		Box OD (W)	7.625	in	193.68	mm
1	7	PIN ID	6.875	in	174.63	mm
	5	Make up Loss	3.040	in	77.22	mm
	\sim	Box Critical Area	4.424	in ²	2854	mm ²
	Box	Joint load efficiency	60	%	60	%
	critical	Thread Taper		1 / 16 (3/	4" per ft)	
1 1 5	area	Number of Threads		5	TPI	
	,					
5	,					
Make S	, [Performance				
	· l←—d l	renormance				
un S			1			
Make up loss		Performance Properties	for Pipe E	Body		
up loss		Performance Properties S.M.Y.S.	for Pipe E 939		4,177	kN
up loss			939	kips		
up loss	Pin	S.M.Y.S. M.I.Y.P.	939 9,470	kips psi	65.31	MPa
up loss	Pin critical	S.M.Y.S. M.I.Y.P. Collapse Strength	939 9,470 5,350	kips psi psi	65.31 36.90	MPa MPa
up loss	Pin	S.M.Y.S. M.I.Y.P. Collapse Strength	939 9,470 5,350 ied Minimur	kips psi psi n YIELD Stre	65.31 36.90 angth of Pipe be	MPa MPa odv
up loss	Pin critical	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim	939 9,470 5,350 ied Minimur um Internal	kips psi psi m YIELD Stre Yield Pressu	65.31 36.90 angth of Pipe be	MPa MPa odv
up loss	Pin critical	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties	939 9,470 5,350 ied Minimur um Internal	kips psi psi m YIELD Stree Yield Pressu	65.31 36.90 ngth of Pipe bore of Pipe bod	MPa MPa ody v
up loss	Pin critical	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load	939 9,470 5,350 ied Minimur um Internal for Conn 563	kips psi psi n YIELD Stre Yield Pressu ection kips (60%	65.31 36.90 ngth of Pipe bore of Pipe bod of S.M.Y.S.	MPa MPa ody v
up loss	Pin critical	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield	939 9,470 5,350 ied Minimur um Internal for Conn 563 563	kips psi psi psi m YIELD Stree Yield Pressurection kips (60% 60% psi	65.31 36.90 Ingth of Pipe borre of Pipe bod of S.M.Y.S. of S.M.Y.S.	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	939 9,470 5,350 ied Minimur um Internal for Conn 563	kips psi psi psi n YIELD Stre Yield Pressuection kips (60% psi (80%	65.31 36.90 Ingth of Pipe bore of Pipe bod of S.M.Y.S. of S.M.Y.S.	MPa MPa ody v
up loss	Pin critical	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	939 9,470 5,350 ied Minimur um Internal for Conn 563 563	kips psi psi psi psi psi psi psi psi psi	65.31 36.90 Ingth of Pipe borre of Pipe bod of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.)	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure	939 9,470 5,350 ied Minimur um Internal for Conn 563 563	kips psi psi psi n YIELD Stre Yield Pressuection kips (60% psi (80%	65.31 36.90 Ingth of Pipe borre of Pipe bod of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.)	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure	939 9,470 5,350 ied Minimur um Internal for Conn 563 563	kips psi psi psi psi psi psi psi psi psi	65.31 36.90 Ingth of Pipe borre of Pipe bod of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.)	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft)	939 9,470 5,350 ied Minimur um Internal for Conn 563 563	kips psi psi psi psi psi psi psi psi psi	65.31 36.90 Ingth of Pipe borre of Pipe bod of S.M.Y.S. of S.M.Y.S. of M.I.Y.P.)	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque	939 9,470 5,350 ied Minimur um Internal for Conn 563 563 7,580	kips psi psi psi m YIELD Stre Yield Pressu ection kips (60% psi (80% 100% c 2	65.31 36.90 Ingth of Pipe borre of Pipe body of S.M.Y.S. of S.M.Y.S. of M.I.Y.P. of Collapse S	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	939 9,470 5,350 ied Minimum um Internal for Conn 563 563 7,580	kips psi psi psi psi psi psi psi psi psi	65.31 36.90 Ingth of Pipe bore of Pipe body of S.M.Y.S. of S.M.Y.S. of M.I.Y.P. of Collapse S 5	MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min. Opti.	939 9,470 5,350 ied Minimur um Internal for Conn 563 563 7,580 15,500 17,200	kips psi psi psi m YIELD Stree Yield Pressurection kips (60% psi (80% 100% c 2) ft-lb) ft-lb	65.31 36.90 Ingth of Pipe borre of Pipe body of S.M.Y.S. of S.M.Y.S. of M.I.Y.P. of Collapse S 5	MPa MPa MPa ody v
up loss	Pin critical area	S.M.Y.S. M.I.Y.P. Collapse Strength Note S.M.Y.S.= Specif M.I.Y.P. = Minim Performance Properties Tensile Yield load Min. Compression Yield Internal Pressure External Pressure Max. DLS (deg. /100ft) Recommended Torque Min.	939 9,470 5,350 ied Minimum um Internal for Conn 563 563 7,580	kips psi psi psi psi m YIELD Stre Yield Pressurent Street Street	65.31 36.90 Ingth of Pipe bore of Pipe body of S.M.Y.S. of S.M.Y.S. of M.I.Y.P. of Collapse S 5	MPa MPa ody v

Legal Notice


The use of this information is at the reader/user's risk and no warranty is implied or expressed by Metal One Corporation or its parents, subsidiaries or affiliates (herein collectively referred to as "Metal One") with respect to the use of information contained herein. The information provided on this Connection Data Sheet is for informational purposes only, and was prepared by reference to engineering information that is specific to the subject products, without regard to safety-related factors, all of which are the sole responsibility of the operators and users of the subject connectors. Metal One assumes no responsibility for any errors with respect to this information.

Statements regarding the suitability of products for certain types of applications are based on Metal One's knowledge of typical requirements that are often placed on Metal One products in standard well configurations. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application

The products described in this Connection Data Sheet are not recommended for use in deep water offshore applications. For more information, please refer to http://www.mtlo.co.jp/mo-con/ images/top/WebsiteTerms Active 20333287 1.pdf the contents of which are incorporated by reference into this Connection Data Sheet.

devon

Commitment Runs Deep

Design Plan
Operation and Maintenance Plan
Closure Plan

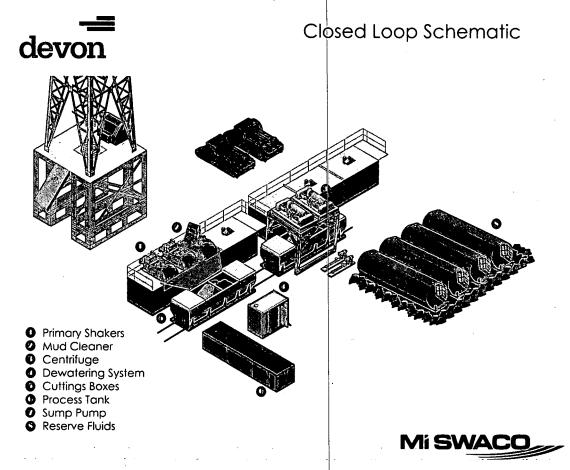
SENM - Closed Loop Systems
June 2010

I. Design Plan

Devon uses MI SWACO closed loop system (CLS). The MI SWACO CLS is designed to maintain drill solids at or below 5%. The equipment is arranged to progressively remove solids from the largest to the smallest size. Drilling fluids can thus be reused and savings is realized on mud and disposal costs. Dewatering may be required with the centrifuges to insure removal of ultra fine solids.

The drilling location is constructed to allow storm water to flow to a central sump normally the cellar. This insures no contamination leaves the drilling pad in the event of a spill. Storm water is reused in the mud system or stored in a reserve fluid tank farm until it can be reused. All lubricants, oils, or chemicals are removed immediately from the ground to prevent the contamination of storm water. An oil trap is normally installed on the sump if an oil spill occurs during a storm.

A tank farm is utilized to store drilling fluids including fresh water and brine fluids. The tank farm is constructed on a 20 ml plastic lined, bermed pad to prevent the contamination of the drilling site during a spill. Fluids from other sites may be stored in these tanks for processing by the solids control equipment and reused in the mud system. At the end of the well the fluids are transported from the tank farm to an adjoining well or to the next well for the rig.


Prior to installing a closed-loop system on site, the topsoil, if present, will be stripped and stockpiled for use as the final cover or fill at the time of closure.

Signs will be posted on the fence surrounding the closed-loop system unless the closed-loop system is located on a site where there is an existing well, that is operated by Devon.

II. Operations and Maintenance Plan

Primary Shakers: The primary shakers make the first removal of drill solids from the drilling mud as it leaves the well bore. The shakers are sized to handle maximum drilling rate at optimal screen size. The shakers normally remove solids down to 74 microns.

Mud Cleaner: The Mud Cleaner cleans the fluid after it leaves the shakers. A set of hydrocyclones are sized to handle 1.25 to 1.5 times the maximum circulating rate. This ensures all the fluid is being processed to an average cut point of 25 microns. The wet discharged is dewatered on a shaker equipped with ultra fine mesh screens and generally cut at 40 microns.

Centrifuges: The centrifuges can be one or two in number depending on the well geometry or depth of well. The centrifuges are sized to maintain low gravity solids at 5% or below. They may or may not need a dewatering system to enhance the removal rates. The centrifuges can make a cut point of 8-10 microns depending on bowl speed, feed rate, solids loading and other factors.

The centrifuge system is designed to work on the active system and be flexible to process incoming fluids from other locations. This set-up is also dependant on well factors.

Dewatering System: The dewatering system is a chemical mixing and dosing system designed to enhance the solids removal of the centrifuge. Not commonly used in shallow wells. It may contain pH adjustment, coagulant mixing and dosing, and polymer mixing and dosing. Chemical flocculation binds ultra fine solids into a mass that is within the centrifuge operating design. The

dewatering system improves the centrifuge cut point to infinity or allows for the return of clear water or brine fluid. This ability allows for the ultimate control of low gravity solids.

Cuttings Boxes: Cuttings boxes are utilized to capture drill solids that are discarded from the solids control equipment. These boxes are set upon a rail system that allows for the removal and replacement of a full box of cuttings with an empty one. They are equipped with a cover that insures no product is spilled into the environment during the transportation phase.

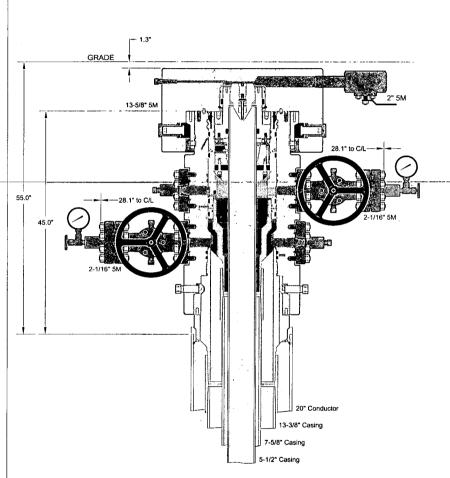
Process Tank: (Optional) The process tank allows for the holding and process of fluids that are being transferred into the mud system. Additionally, during times of lost circulation the process tank may hold active fluids that are removed for additional treatment. It can further be used as a mixing tank during well control conditions.

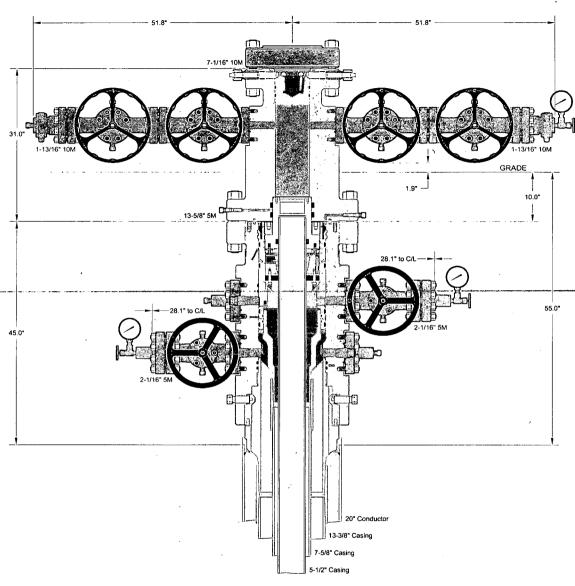
Sump and Sump Pump: The sump is used to collect storm water and the pump is used to transfer this fluid to the active system or to the tank for to hold in reserve. It can also be used to collect fluids that may escape during spills. The location contains drainage ditches that allow the location fluids to drain to the sump.

Reserve Fluids (Tank Farm): A series of frac tanks are used to replace the reserve pit. These are steel tanks that are equipped with a manifold system and a transfer pump. These tanks can contain any number of fluids used during the drilling process. These can include fresh water, cut brine, and saturated salt fluid. The fluid can be from the active well or reclaimed fluid from other locations. A 20 ml liner and berm system is employed to ensure the fluids do not migrate to the environment during a spill.

If a leak develops, the appropriate division district office will be notified within 48 hours of the discovery and the leak will be addressed. Spill prevention is accomplished by maintaining pump packing, hoses, and pipe fittings to insure no leaks are occurring. During an upset condition the source of the spill is isolated and repaired as soon as it is discovered. Free liquid is removed by a diaphragm pump and returned to the mud system. Loose topsoil may be used to stabilize the spill and the contaminated soil is excavated and placed in the cuttings boxes. After the well is finished and the location is scrapped and testing will be performed to determine if a release has occurred.

All trash is kept in a wire mesh enclosure and removed to an approved landfill when full. All spent motor oils are kept in separate containers and they are removed and sent to an approved recycling center. Any spilled lubricants, pipe


dope, or regulated chemicals are removed from soil and sent to landfills approved for these products.


These operations are monitored by Mi Swaco service technicians. Daily logs are maintained to ensure optimal equipment operation and maintenance. Screen and chemical use is logged to maintain inventory control. Fluid properties are monitored and recorded and drilling mud volumes are accounted for in the mud storage farm. This data is kept for end of well review to insure performance goals are met. Lessons learned are logged and used to help with continuous improvement.

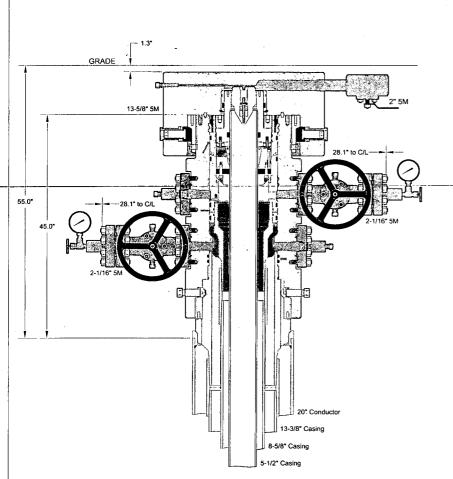
A MI SWACO field supervisor manages from 3-5 wells. They are responsible for training personnel, supervising installations, and inspecting sites for compliance of MI SWACO safety and operational policy.

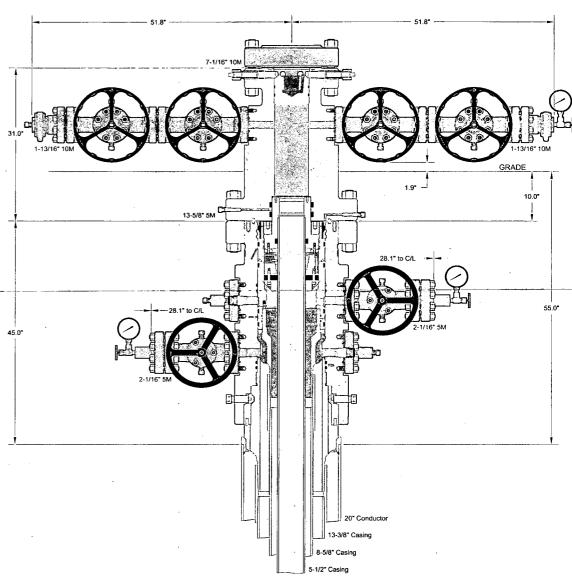
III. Closure Plan

A maximum 340' X 340' caliche pad is built per well. All of the trucks and steel tanks fit on this pad. All fluid cuttings go to the steel tanks to be hauled by various trucking companies to an agency approved disposal.

ALL DIMENSIONS APPROXIMATE

CACTUS WELLHEAD LLC


20" x 13-3/8" x 7-5/8" x 5-1/2" MBU-3T-CFL-R-DBLO Wellhead Sys. With Quick Connect Top TA Cap, 5-1/2" Emergency Slip Hanger And 13-5/8" 5M x 7-1/16" 10M CTH-DBLHPS Tubing Head


DEVON ENERGY CORPORATION DELAWARE BASIN

DLE 13MAR19 DRAWN APPRV SDT-1960

DRAWING NO.

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY CACTUS WELLHEAD, LLC.

ALL DIMENSIONS APPROXIMATE

SDT-1929

CACTUS WELLHEAD LLC

20" x 13-3/8" x 8-5/8" x 5-1/2" MBU-3T-CFL-R-DBLO Wellhead Sys. With Quick Connect Top TA Cap, 5-1/2" Emergency Slip Hanger And 13-5/8" 5M x 7-1/16" 10M CTH-DBLHPS Tubing Head

DEVON ENERGY CORPORATION DELAWARE BASIN

DLE 25FEB19 DRAWN APPRV

DRAWING NO

INFORMATION CONTAINED HEREIN IS THE PROPERTY OF CACTUS WELLHEAD, LLC. REPRODUCTION, DISCLOSURE, OR USE THEREOF IS PERMISSIBLE ONLY AS PROVIDED BY BY CONTRACT OR AS EXPRESSLY AUTHORIZED BY

CACTUS WELLHEAD, LLC.

Papas Fritas 27-22 Fed Com 711H

1. Geologic Formations

TVD of target	10200	Pilot hole depth	N/A
MD at TD:	20677	Deepest expected fresh water	

Basin

Formation	Depth (TVD) from KB	Water/Mineral Bearing/Target Zone?	Hazards*
Rustler	179		
Top of Salt	534		
Base of Salt	3014		
Delaware	3014		
Bone Spring 1st	7689		
Bone Spring 2nd	8517		
Bone Spring 3rd	9634	` ` `	
Wolfcamp	9962		
			
	1		

^{*}H2S, water flows, loss of circulation, abnormal pressures, etc.

2. Casing Program (Primary Design)

Hole Size	Casing	Interval	Con Sign Wt	Wt		Conn	Min SF	Min SF	Min SF
Hole Size	From	То	Csg. Size	(PPF)	(PPF) Grade		Collapse	Burst	Tension
17 1/2	0	204 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	9634 TVD	7 5/8	29.7	P110	Flushmax III	1.125	1.25	1.6
6 3/4	0	TD	5 1/2	20.0	P110	Vam SG	1.125	1.25	1.6
				BLM N	Ainimum Sa	fety Factor	1.125	1	1.6 Dry 1.8 Wet

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Casing Program (Alternative Design)

Hole Size	Casing Interval		Csg. Size Wt Grade		Conn	Min SF	Min SF	Min SF	
1101e Size	From	То	Csg. Size	(PPF)	Graue	Conn	Collapse	Burst	Tension
17 1/2	0	204 TVD	13 3/8	48.0	H40	STC	1.125	1.25	1.6
9 7/8	0	9634 TVD	8 5/8	32.0	P110	TLW	1.125	1.25	1.6
7 7/8	0	TD	5 1/2	17.0	P110	ВТС	1.125	1.25	1.6
BLM Minimum				/Iinimum Sat	fety Factor	1.125	. 1	1.6 Dry 1.8 Wet	

- All casing strings will be tested in accordance with Onshore Oil and Gas Order #2 IILB.1.h Must have table for continengcy casing.
- Rustler top will be validated via drilling parameters (i.e. reduction in ROP) and surface casing setting depth revised accordingly if needed.
- A variance is requested for collapse rating on intermediate casing. Operator will keep pipe full while running casing.
- Int casing shoe will be selected based on drilling data/gamma, setting depth with be revised accordingly if needed.
- A variance is requested to wave the centralizer requirement for the Intermediate casing and production casing.
- •Variance requested to drill 10.625" hole instead of 9.875" for intermediate 1, the 8.625" connection will change from TLW to BTC.
- A variance is requested to set intermediate casing in the curve if hole conditions dictate that a higher shoe strength is required.

Papas Fritas 27-22 Fed Com 711H

	Y or N
Is casing new? If used, attach certification as required in Onshore Order #1 .	Y
Does casing meet API specifications? If no, attach casing specificition sheet.	Y
Is premium or uncommon casing planned? If yes attach casing specification sheet.	N
Does the above casing design meet or exceed BLM's minimum standards? If not provide justification (loading assumptions, casing design criteria).	Y
Will the intermediate pipe be kept at a minimum 1/3 fluid filled to avoid approaching the collapse pressure rating of the casing?	Y
Is well located within Capitan Reef?	N
If yes, does production casing cement tie back a minimum of 50' above the Reef?	
Is well within the designated 4 string boundary.	
Is well located in SOPA but not in R-111-P?	N
If yes, are the first 2 strings cemented to surface and 3 rd string cement tied back 500' into previous casing?	
Is well located in R-111-P and SOPA?	N
If yes, are the first three strings cemented to surface?	
Is 2 nd string set 100' to 600' below the base of salt?	
Is well located in high Cave/Karst?	N
If yes, are there two strings cemented to surface?	
(For 2 string wells) If yes, is there a contingency casing if lost circulation occurs?	
Is well located in critical Cave/Karst?	N
If yes, are there three strings cemented to surface?	

3. Cementing Program (Primary Design)

Casing	# Sks	TOC	Wt. (lb/gal)	Yld (ft3/sack)	Slurry Description 37.50
Surface	· 186	Surf	13.2	1.44	Lead: Class C Cement + additives
I 1	499	Surf	9	3.27	Lead: Class C Cement + additives
Int 1	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
	750	Surf	9	3.27	1st stage Lead: Class C Cement + additives
Int 1 Two Stage	93	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives
w/ DV @ TVD of Delaware	225	Surf	9	3.27	2nd stage Lead: Class C Cement + additives
	93	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives
Int 1	As Needed	Surf	. 9	1.44	Squeeze Lead: Class C Cement + additives
Intermediate	499	Surf	9	3.27	Lead: Class C Cement + additives
Squeeze	783	4000' above shoe	13.2	1.44	Tail: Class H / C + additives
Production	301	0	9.0	3.3	Lead: Class H /C + additives
Production	705	9627	13.2	1.4	Tail: Class H / C + additives

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

3. Cementing Program (Alternative Design)

Casing	# Sks	# Sks TOC Wt. ppg		Yld (ft3/sack)	Slurry Description			
Surface	186	Surf	13.2	1.44	Lead: Class C Cement + additives			
Int 1	302	Surf	9	3.27	Lead: Class C Cement + additives			
IIIt I	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives			
	440	Surf	9	3.27	1st stage Lead: Class C Cement + additives			
Int 1 Two Stage	55	500' above shoe	13.2	1.44	1st stage Tail: Class H / C + additives			
w DV @ ~4500	141	Surf	9	3.27	2nd stage Lead: Class C Cement + additives			
	55	500' above DV	13.2	1.44	2nd stage Tail: Class H / C + additives			
Int 1	As Needed	Surf	13.2	1.44	Squeeze Lead: Class C Cement + additives			
Intermediate	302	Surf	9	3.27	Lead: Class C Cement + additives			
Squeeze	465	4000' above shoe	13.2	1.44	Tail: Class H / C + additives			
Int 1 (10.625" Hole Size)	483	Surf	9	3.27	Lead: Class C Cement + additives			
THE T (10.025 , 11010 SIZE)	768	4000' above shoe	13.2	1.44	Tail: Class H / C + additives			
Duo duoti on	561	0	9.0	3.3	Lead: Class H /C + additives			
Production	1462	9627	13.2	1.4	Tail: Class H / C + additives			

If a DV tool is ran the depth(s) will be adjusted based on hole conditions and cement volumes will be adjusted proportionally. Slurry weights will be adjusted based on estimated fracture gradient of the formation. DV tool will be set a minimum of 50 feet below previous casing and a minimum of 200 feet above current shoe. If cement is not returned to surface during the primary cement job on the surface casing string, a planned top job will be conducted immediately after completion of the primary job.

Casing String	% Excess
Surface	50%
Intermediate 1	30%
Intermediate 1 (Two Stage)	25%
Prod	10%

4. Pressure Control Equipment (Three String Design)

BOP installed and tested before drilling which hole?	Size?	Min. Require d WP	F	/pe		Tested to:
			Anr	ıular	X	50% of rated working pressure
Int 1	13-58"	5M		l Ram	X	
	13-30	3141	A	Ram		5M
			Doubl	e Ram	X	5101
			Other*			
	13-5/8"		Annula	ar (5M)	X	50% of rated working pressure
Production		5M	Bline	Ram	X	
roduction		3101	Pipe	ipe Ram		514
			Doubl	e Ram	X	5M
			Other*			
·			Annula	ar (5M)		
			Blind	Ram		
			Pipe	Ram		,
			Doubl	e Ram		
			Other*			
N A variance is requested for	the use of a	diverter on	the surface	casing. See a	ttached for so	chematic.
Y A variance is requested to re	un a 5 M anı	nular on a	10M system			

5. Mud Program (Three String Design)

Section	Туре	Weight (ppg)
Surface	FW Gel	8.5-9
Intermediate	DBE / Cut Brine	10- 10.5
Production	OBM	10-10.5

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept on location at all times.

The state of the s	
What will be used to monitor the loss or gain of fluid?	PVT/Pason/Visual Monitoring

6. Logging and Testing Procedures

Logging,	Coring and Testing
	Will run GR/CNL from TD to surface (horizontal well - vertical portion of hole). Stated logs run will be in the
X	Completion Report and shumitted to the BLM.
	No logs are planned based on well control or offset log information.
	Drill stem test? If yes, explain.
	Coring? If yes, explain.

Addition	al logs planned	Interval
	Resistivity	Int. shoe to KOP
	Density	Int. shoe to KOP
X	CBL	Production casing
X	Mud log	Intermediate shoe to TD
	PEX	

7. Drilling Conditions

Condition	Specfiy what type and where?
BH pressure at deepest TVD	5569
Abnormal temperature	No

Mitigation measure for abnormal conditions. Describe. Lost circulation material/sweeps/mud scavengers.

Hydrogren Sulfide (H2S) monitors will be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the operator will comply with the provisions of Onshore Oil and Gas Order #6. If Hydrogen Sulfide is encountered measured values and formations will be provided to the BLM.

encountered	measured values and formations will be provided to the BLW.	
N	H2S is present	
Y	H2S plan attached.	

8. Other facets of operation

Is this a walking operation? Potentially

- 1 If operator elects, drilling rig will batch drill the surface holes and run/cement surface casing; walking the rig to next wells on the pad.
- 2 The drilling rig will then batch drill the intermediate sections and run/cement intermediate casing; the wellbore will be isolated with a blind flange and pressure gauge installed for monitoring the well before walking to the next well.
- 3 The drilling rig will then batch drill the production hole sections on the wells with OBM, run/cement production casing, and install TA caps or tubing heads for completions.

NOTE: During batch operations the drilling rig will be moved from well to well however, it will not be removed from the pad until all wells have production casing run/cemented.

Will be pre-setting casing? Potentially

- 1 Spudder rig will move in and batch drill surface hole.
 - a. Rig will utilize fresh water based mud to drill surface hole to TD. Solids control will be handled entirely on a closed loop basis.,
- 2 After drilling the surface hole section, the spudder rig will run casing and cement following all of the applicable rules and regulations (OnShore Order 2, all COAs and NMOCD regulations).
- .3 The wellhead will be installed and tested once the surface casing is cut off and the WOC time has been reached.
- 4 A blind flange with the same pressure rating as the wellhead will be installed to seal the wellbore. Pressure will be monitored with a pressure gauge installed on the wellhead.
- 5 Spudder rig operations is expected to take 4-5 days per well on a multi-well pa.
- 6 The NMOCD will be contacted and notified 24 hours prior to commencing spudder rig operations.
- 7 Drilling operations will be performed with drilling rig. A that time an approved BOP stack will be nippled up and tested on the wellhead before drilling operations commences on each well.
 - a. The NMOCD will be contacted / notified 24 hours before the drilling rig moves back on to the pad with the pre-set surface casing.

Attachments	
X	Directional Plan
	Other, describe

Fluid Technology

ContiTech Beattie Corp. Website: www.contitechbeattie.com

Monday, June 14, 2010

RE:

Drilling & Production Hoses Lifting & Safety Equipment

To Helmerich & Payne,

A Continental ContiTech hose assembly can perform as intended and suitable for the application regardless of whether the hose is secured or unsecured in its configuration. As a manufacturer of High Pressure Hose Assemblies for use in Drilling & Production, we do offer the corresponding lifting and safety equipment, this has the added benefit of easing the lifting and handling of each hose assembly whilst affording hose longevity by ensuring correct handling methods and procedures as well as securing the hose in the unlikely event of a failure; but in no way does the lifting and safety equipment affect the performance of the hoses providing the hoses have been handled and installed correctly it is good practice to use lifting & safety equipment but not mandatory

Should you have any questions or require any additional information/clarifications then please do not hesitate to contact us.

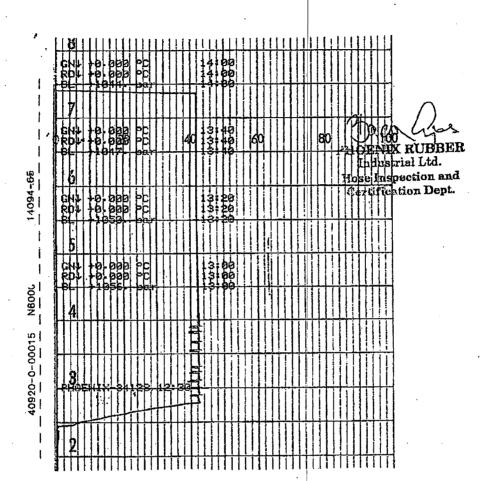
ContiTech Beattie is part of the Continental AG Corporation and can offer the full support resources associated with a global organization.

Best regards,

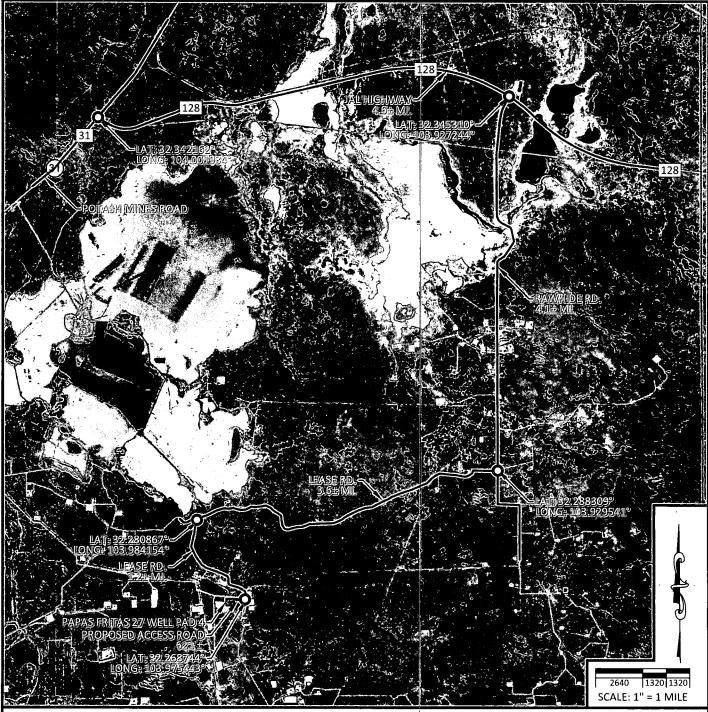
Robin Hodgson Sales Manager ContiTech Beattie Corp

ContiTech Beattle Corp, 11535 Brittmoore Park Drive, Houston, TX 77041 Phone: +1 (832) 327-0141 Fax: +1 (832) 327-0148 www.contitechbeattle.com

R16 212


PHOENIX

OUALITY DOCUMENT


PHOENIX RUBBER
INDUSTRIAL LTD.

6728 Szeged, Budapesti út 10. Hungary • H–6701 Szeged, P. O. Box 152 none: (3662) 566-737 • Fax: (3662) 566-738 SALES & MARKETING: H-1092 Budapest, Réday u. 42-44, Hungary • H-1440 Budapest, P. O. 8ox 26 Phone: (361) 456-4200 • Fax: (361) 217-2972, 456-4273 • www.taurusemerge.hu

QUAL INSPECTION	C	CERT. N	٠: 5	552	·			
PURCHASER:	Phoenix Beat	tie Co.		F	P.O. Nº	1519F	A-871	
PHOENIX RUBBER order No.	170466	HOSE TYPE:	3" (D		Cho	ke and Kill H	lose	
HOSE SERIAL Nº	34128	NOMINAL / AC	TUAL LENG	 H :		11,43 m		
W.P. 68,96 MPa 1	0000 psi	T.P. 103,4	MPa 15	000	psi	Duration:	60	min.
Pressure test with water at ambient temperature						- ·		
\$ 17 18 1								
	See atta	achment. (1	page)					
		•		:				4. 4. 4.
↑ 10 mm = 10 Min. → 10 mm = 25 MPa		!						. vo.
		COUPLIN	IGS					÷
Туре		Serial N°		Q	uality		Heat N°	
3" coupling with	72	20 719		AIS	4130		C7626	
4 1/16" Flange end				AIS	1 4130		47357	
					:		······································	•
			API Spec			·	· · · · · · · · · · · · · · · · · · ·	
			Tempera	ture	rate:"E	3"		
All metal parts are flawless WE CERTIFY THAT THE ABOVE			ED IN ACCOR	DANC	E WITH	THE TERMS O	F THE ORDE	R AND
PRESSURE TESTED AS ABOVE	1	ORY RESULT.		· · · ·		·		
Date: 29. April. 2002.	Inspector		Quality Co		HOE	NIX RUBB lustrial Ltd. Inspection a		
			3-130			THE PERSON	#COLONIA	

VERIFIED TRUE CO.
PHOENIX RUBBER C.C.

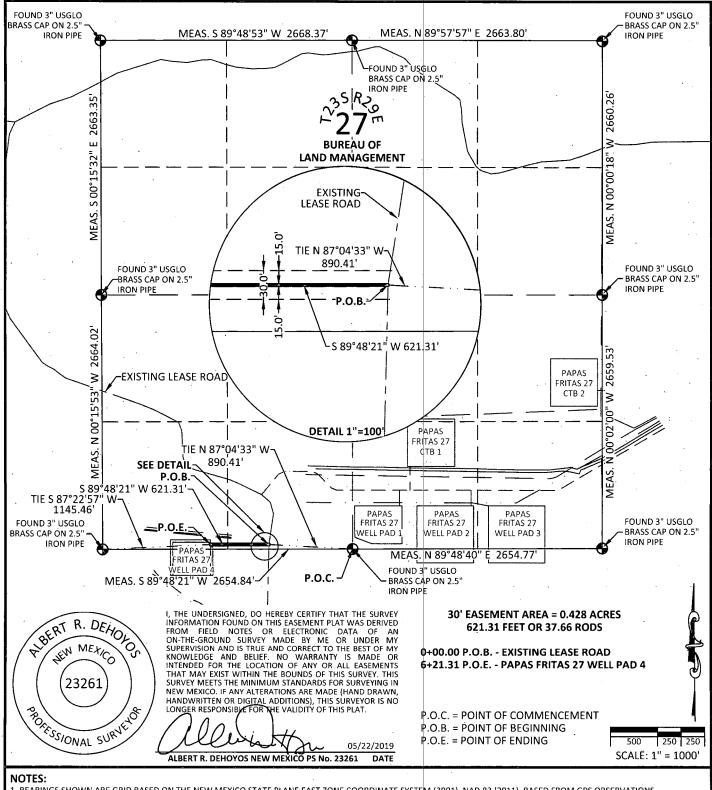
NOTES

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641°.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.

1515 9¹⁺ STREET, STE A, ROCK SPRINGS, WY 8290; 307.362.6065 | 866.938.3088 | www.whsmlthpc.com


 DRAWN BY: KGH
 CHECKED BY: ARD

 DATE: 03/05/2019
 JOB NO: 18080

AERIAL ACCESS ROUTE MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27-22 FED COM 711H

LOCATED 102 FEET FROM THE NORTH LINE, AND 973 FEET FROM THE WEST LINE, SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT

\$\(\sin \) \(\sin

LEGAL DESCRIPTION

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the South Half (S1/2) of the Southwest Quarter (SW1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 87°04'33" West a distance of 890.41 feet to the POINT OF BEGINNING.

thence, South 89°48'21" West a distance of 621.31 feet to a point within the Southwest Quarter (SW1/4) of the Southwest Quarter (SW1/4) of said Section 27, also being the POINT OF ENDING, from which the Southwest Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 87°22'57" West a distance of 1145.46 feet.

Said centerline being 621.31 feet or 37.66 rods in length and containing 0.428 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

RIGHT MEXICO OF CONTROL OF CONTRO

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261 DATE

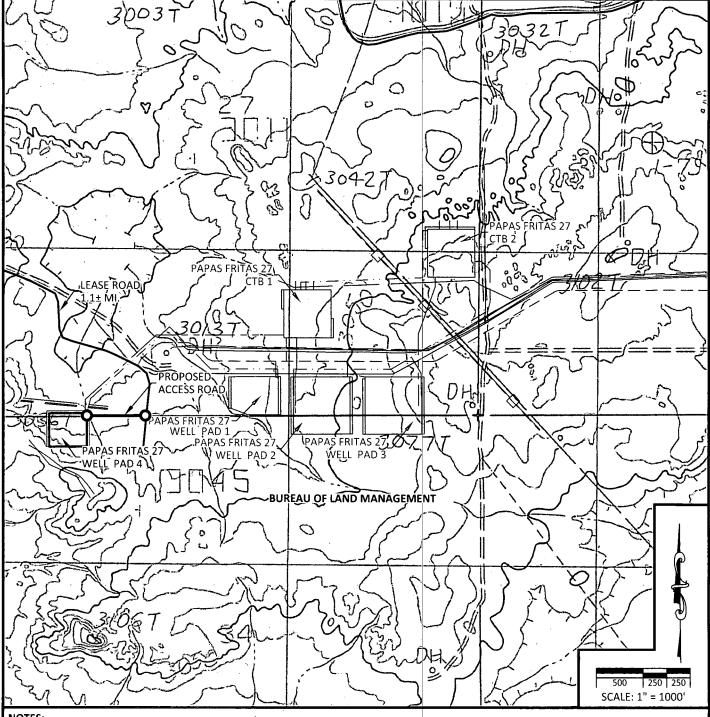
NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

1515 9[™] STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD


DATE: 05/07/2019 JOB NO: 18080

REVISIONS:

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
\$1/2 SW1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

NOTES:

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641°.

2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD
DATE: 05/07/2019 JOB NO: 18080
REVISIONS:

QUAD MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

NOTES

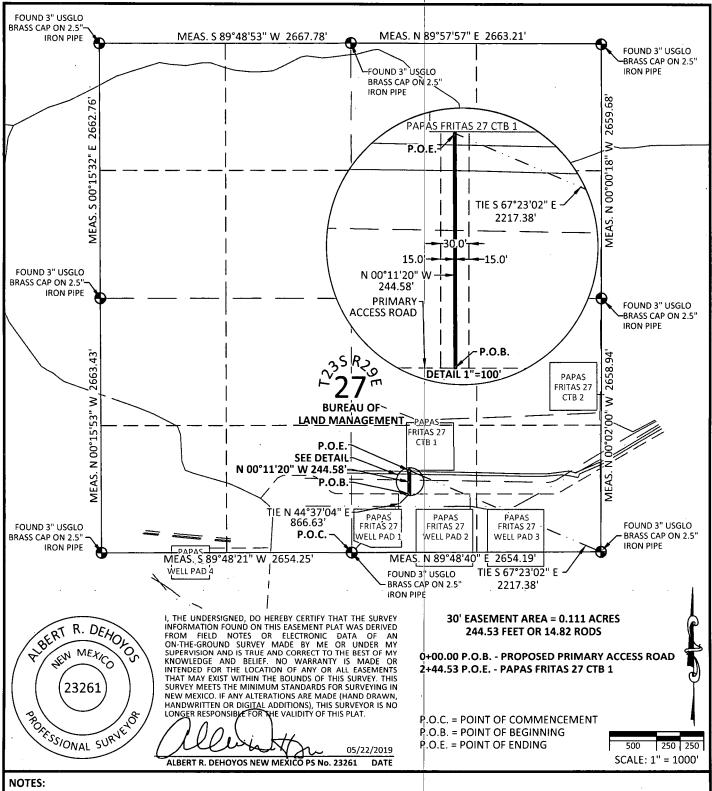
1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.

1515 9th STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH DATE: 05/07/2019


REVISIONS:

CHECKED BY: ARD JOB NO: 18080

AERIAL MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

SECTION 34, TOWNSHIP 23 SOUTH
RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

307.362.6065 | 866.938.3088 | www.whsmithpc.com
DRAWN BY: KGH CHECKED BY: ARD
DATE: 05/06/2019 JOB NO: 18080
REVISIONS:

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SE1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

LEGAL DESCRIPTION

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land locate in the Southwest Quarter (SW1/4) of the Southeast Quarter (SE1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter (S1/4) corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 44°37'04" East a distance of 866.63" feet to the Point Of Beginning;

thence, North 00°11'20" East a distance of 244.58 feet to a point within the South west Quarter (SW1/4) of the Southeast Quarter (SE1/4) of said Section 27, also being the Point of Ending, from which the Southeast corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 67°23'02" East a distance of 2217.38 feet.

Said centerline being 244.53 feet or 14.82 rods in length and containing 0.168 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261

05/22/2019

NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMPINED SCALE FACTOR OF 1.000221019

1515 9[™] STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD
DATE: 05/06/2019 JOB NO: 18080
REVISIONS:

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

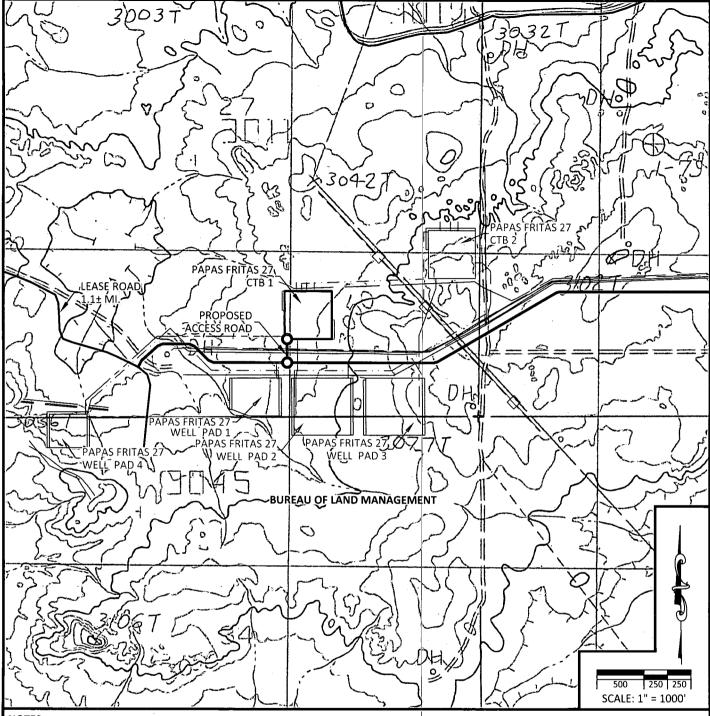
PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SE1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

NOTES

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD. TURN LEFT AND HEAD EAST ON THE PROPOSED ACCESS ROAD FOR 0.33 MILE TO THE TO THE CTB 1 ACCESS ROAD. TURN LEFT AND HEAD NORTH FOR 245 FEET TO THE SOUTHWEST POINT OF THE PROPOSED PAPAS FRITAS 27 CTB 1.



1515 9^{1H} STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

AERIAL MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

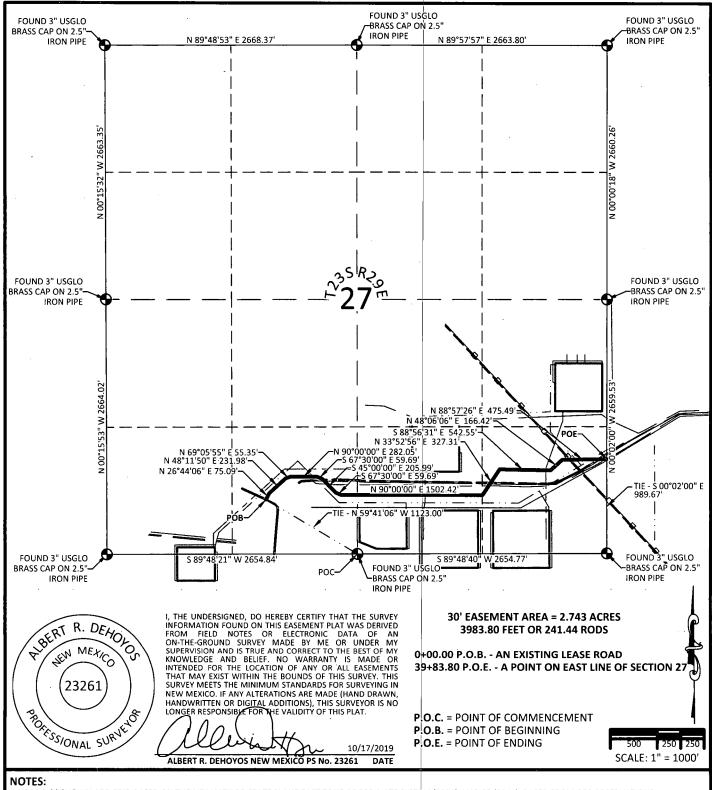
SECTION 27, TOWNSHIP 23 SOUTH
RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

NOTES:

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD. TURN LEFT AND HEAD EAST ON THE PROPOSED ACCESS ROAD FOR 0.33 MILE TO THE TO THE CTB 1 ACCESS ROAD. TURN LEFT AND HEAD NORTH FOR 245 FEET TO THE SOUTHWEST POINT OF THE PROPOSED PAPAS FRITAS 27 CTB 1.


1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901

307.362.6065 | 866.938.3088 | www.whsmithpc.com
DRAWN BY: KGH CHECKED BY: ARD
DATE: 05/07/2019 JOB NO: 18080
REVISIONS:

QUAD MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

SECTION 27, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 3198.327, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD

DATE: 10/17/2019 JOB NO: 18080

REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SE1/4 SW1/4, S1/2 SE1/4 SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

LEGAL DESCRIPTION

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the Southeast Quarter of the Southwest Quarter and the South Half of the Southeast Quarter (SE1/4 SW1/4, S1/2 SE1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 59°41'06" West a distance of 1123.00 feet to the Point Of Beginning;

thence, North 26°44'06" East a distance of 75.09 feet;

thence, North 48°11'50" East a distance of 231.98 feet;

thence, North 69°05'55" East a distance of 55.35 feet;

thence, North 90°00'00" East a distance of 282.05 feet;

thence, South 67°30'00" East a distance of 59.69 feet;

thence, South 45°00'00" East a distance of 205.99 feet;

thence, South 67°30'00" East a distance of 59.69 feet:

thence, North 90°00'00" East a distance of 1502.42 feet;

thence, North 33°52'56" East a distance of 327.31 feet;

thence, South 88°56'31" East a distance of 542.55 feet; thence, North 48°06'06" East a distance of 166.42 feet;

thence, North 88°57'26" East a distance of 475.49 feet; to a point on the East line of said Section 27, also being the Point of Ending, from which the Southeast corner of said Section 27 (Found 3" USGLO Brass Cap on a 2 5" Iron Pipe) bears South 00°02'00" Ease a distance of 989.67 feet.

Said centerline being 3983.80 feet or 241.44 rods in length and containing 2.743 Acres more or less.

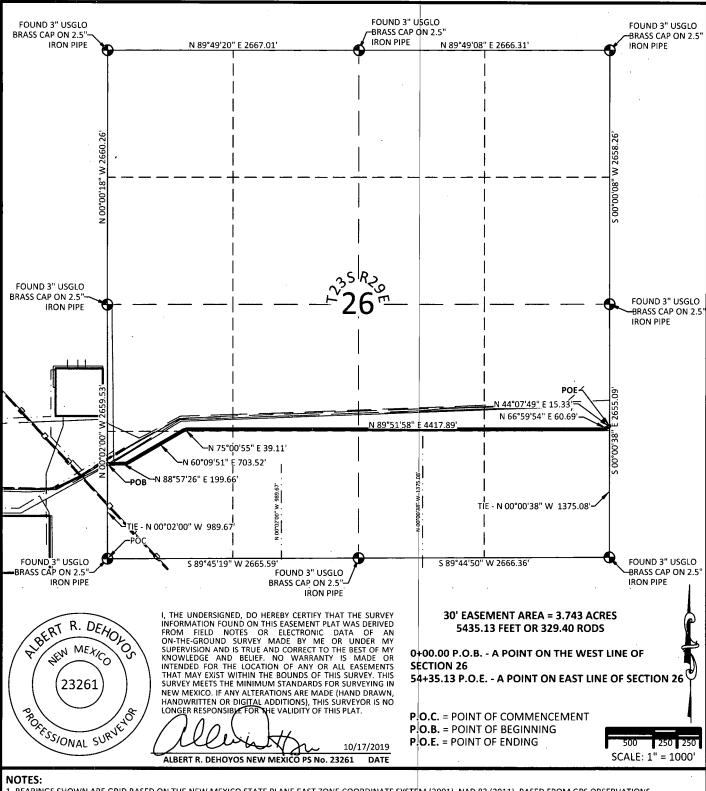
I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS). THIS SURVEYOR IS NO HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

10/17/2019

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET STE A ROCK SPRINGS WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com


DRAWN BY: JSP/NJC CHECKED BY: ARD DATE: 10/17/2019 JOB NO: 18080

REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT SE1/4 SW1/4, S1/2 SE1/4 SECTION 27, TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 3198.327, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD
DATE: 10/17/2019 JOB NO: 18080
REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SW1/4 , N1/2 S1/2 SECTION 26,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the Southwest One Half of the Southwest One Half and the North One Half of the South One Half (SW1/4 SW1/4, N1/2 S1/2) of Section 26, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the Southwest corner of said Section 26 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 00°02'00" West a distance of 989.67 feet to a point on the West Line of said Section 26, also being the Point Of Beginning;

thence, North 88°57'26" East a distance of 199.66 feet;

thence, North 60°09'51" East a distance of 703.52 feet;

thence, North 75°00'55" East a distance of 39.11 feet;

thence, North 89°51'58" East a distance of 4417.89 feet;

thence, North 66°59'54" East a distance of 60.69 feet;

thence, North 44°07'49" East a distance of 15.33 feet; to a point on the East line of said Section 26, also being the Point of Ending, from which the Southwest corner of said Section 26 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 00°00'38" East a distance of 1375.08 feet.

Said centerline being 5435.13 feet or 329.40 rods in length and containing 3.743 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. INO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261 DATE

NOTES:

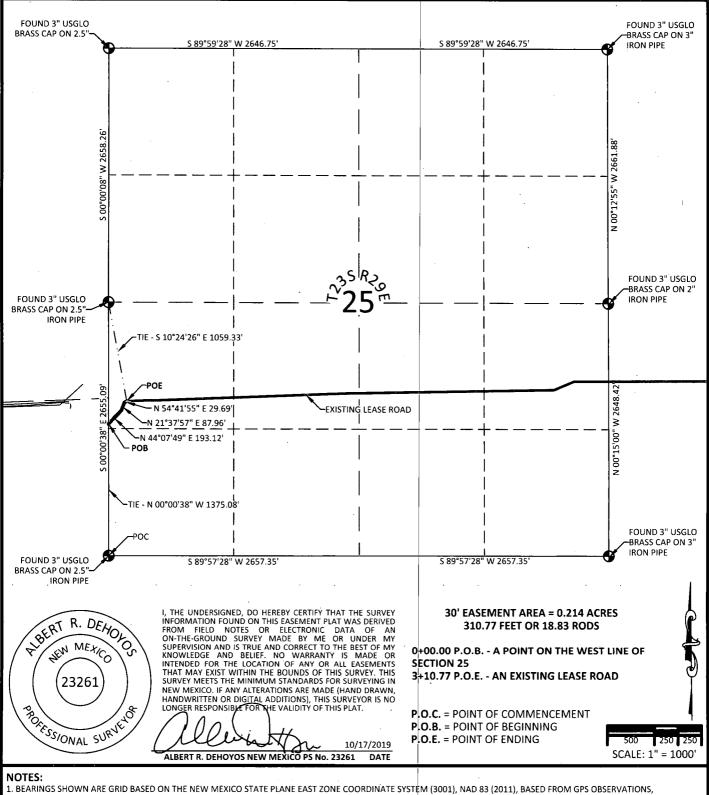
1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TM STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD

DATE: 10/17/2019 JOB NO: 18080


REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SW1/4 , N1/2 S1/2 SECTION 26,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27

PRIMARY ACCESS ROAD

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 3198.327, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9¹⁴ STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD
DATE: 10/17/2019 JOB NO: 18080
REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT

NW1/4 SW1/4 SECTION 25,

TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the Northwest Quarter of the Southwest Quarter (NW1/4 SW1/4) of Section 25 Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the Southwest corner of said Section 25 (Found 3" USGLO Brass cap on a 2.5" Iron Pipe); thence, North 00°00'38" West a distance of 1375.08 feet to a point on the West line of said Section 25, also being the Point Of Beginning; thence, North 54°41'55" East a distance of 29.69 feet;

thence, North 21°37'57" East a distance of 87.96 feet:

thence, North 44°07'49" West a distance of 193.12 feet to the Point of Ending, from which the East Quarter corner of said Section 25 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears North 10°24'26" West a distance of 1059.33 feet.

Said centerline being 310.77 feet or 18.83 rods in length and containing 0.214 Acres more or less.

I, THE UNDERSIGNED, DO HERBBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENT THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261

SURVEYING IN IAND DRAWN, RVEYOR IS NO PLAT.

REAL SURVEYOR OF STREET

NOTES:

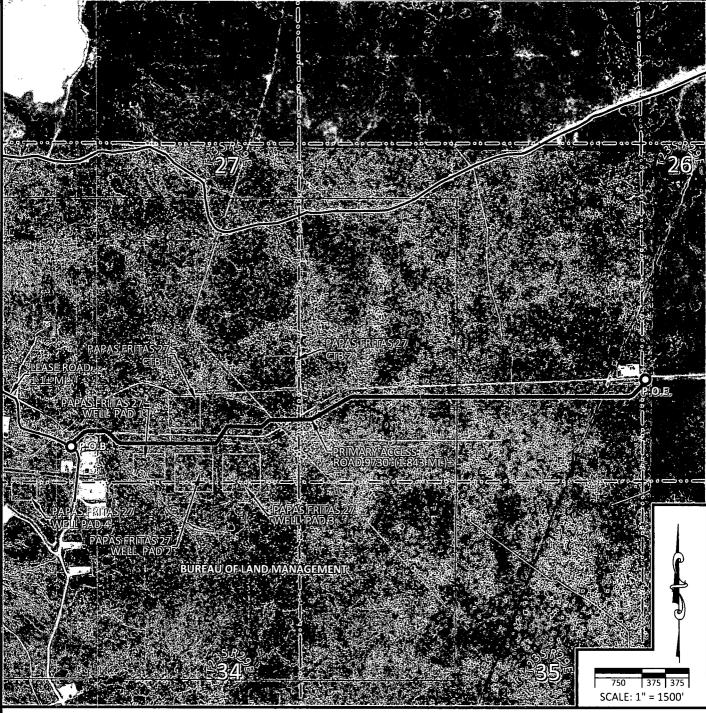
1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD DATE: 10/17/2019 JOB NO: 18080

REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)


DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT

NW1/4 SW1/4 SECTION 25,

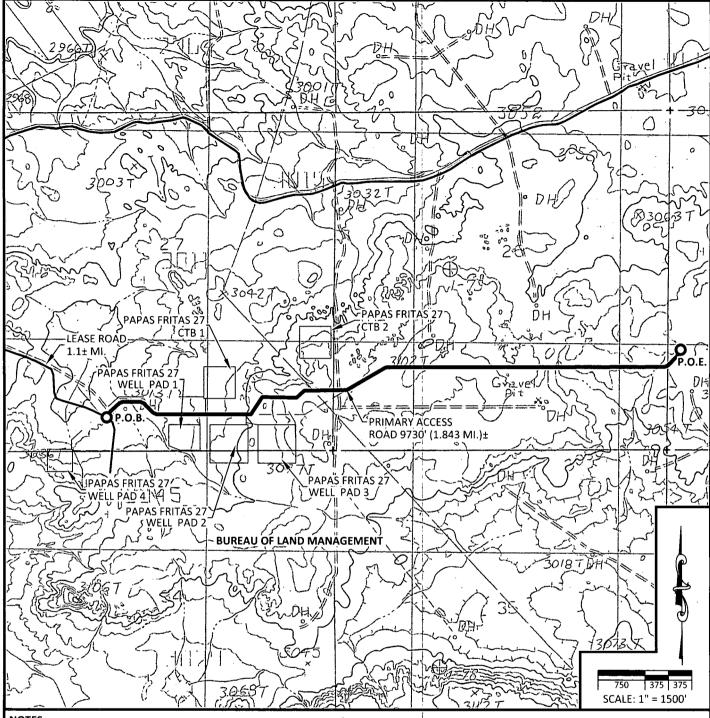
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

NOTES

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD.


1515 9^{1H} STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JEB CHECKED BY: ARD
DATE: 10/21/2019 JOB NO: 18080
REVISIONS:

AERIAL MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

SECTION 27, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

NOTES:

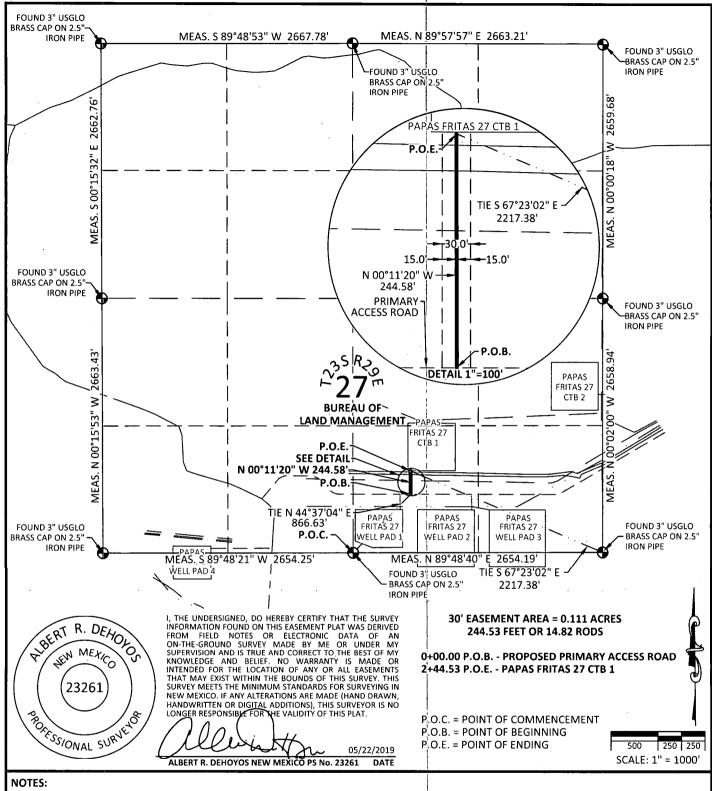
1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443′ E. 653560.641′.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD.

ENGINEERING > SURVEYING > PLANNING
1515 9th STREET, STE A, ROCK SPRINGS, WY 82901

QUAD MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD


PRIMARY ACCESS ROAD

SECTION 27, TOWNSHIP 23 SOUTH

RANGE 29 EAST, N.M.P.M.

EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT SW1/4 SE1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land locate in the Southwest Quarter (SW1/4) of the Southeast Quarter (SE1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter (\$1/4) corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 44°37'04" East a distance of 866.63" feet to the Point Of Beginning:

thence, North 00°11'20" East a distance of 244.58 feet to a point within the Southwest Quarter (SW1/4) of the Southeast Quarter (SE1/4) of said Section 27, also being the Point of Ending, from which the Southeast corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 67°23'02" East a distance of 2217.38 feet.

Said centerline being 244.53 feet or 14.82 rods in length and containing 0.168 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR 'ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUMI STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THEIVALIDITY OF THIS PLAT.

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261

05/22/2019

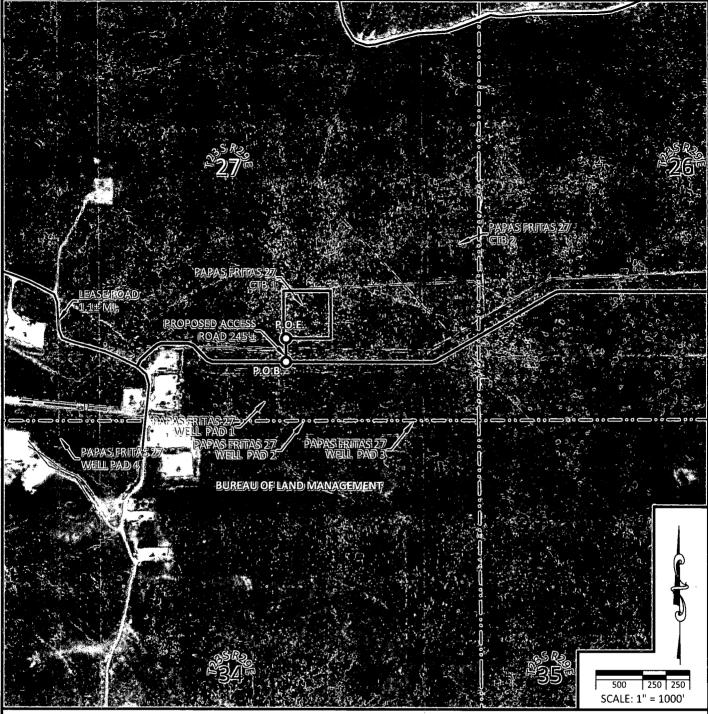
REAT R. DEHOLOGO (23261)

NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9¹ STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com


DRAWN BY: KGH CHECKED BY: ARD

DATE: 05/06/2019 JOB NO: 18080

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

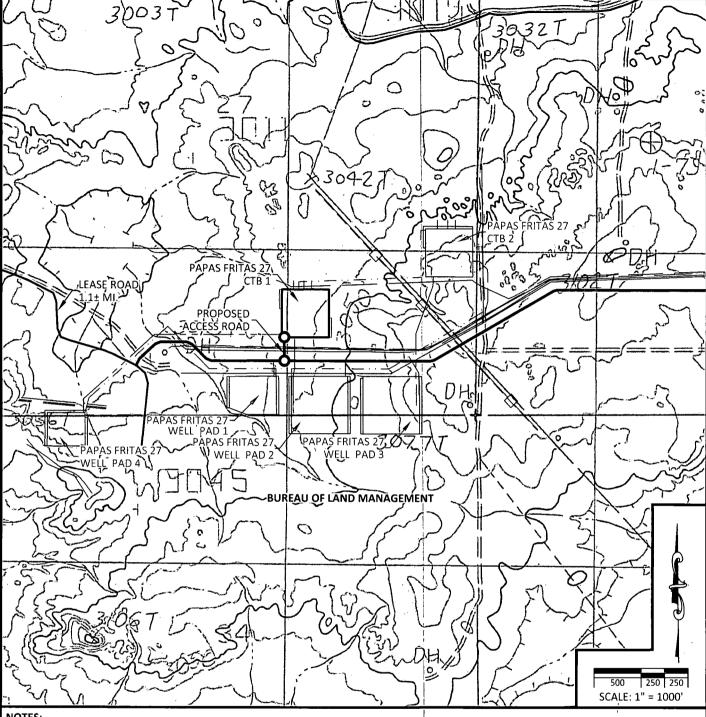
PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SE1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

NOTES

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD. TURN LEFT AND HEAD EAST ON THE PROPOSED ACCESS ROAD FOR 0.33 MILE TO THE TO THE CTB 1 ACCESS ROAD. TURN LEFT AND HEAD NORTH FOR 245 FEET TO THE SOUTHWEST POINT OF THE PROPOSED PAPAS FRITAS 27 CTB 1.



1515 9[™] STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

AERIAL MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

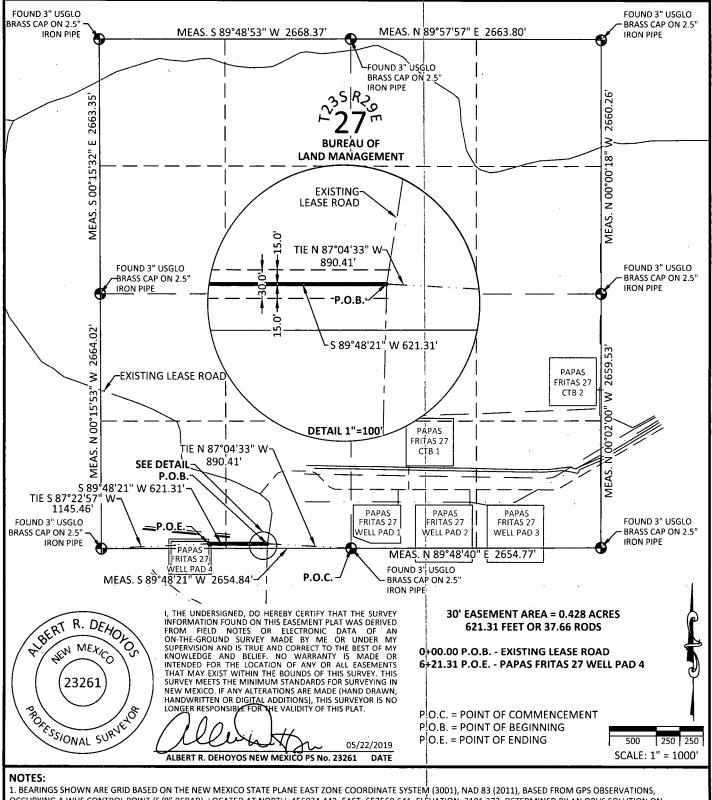
SECTION 27, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

NOTES

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD. TURN LEFT AND HEAD EAST ON THE PROPOSED ACCESS ROAD FOR 0.33 MILE TO THE TO THE CTB 1 ACCESS ROAD. TURN LEFT AND HEAD NORTH FOR 245 FEET TO THE SOUTHWEST POINT OF THE PROPOSED PAPAS FRITAS 27 CTB 1.


1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD
DATE: 05/07/2019 JOB NO: 18080
REVISIONS:

QUAD MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 CTB 1 ACCESS ROAD

SECTION 27, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELÉVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938,3088 | www.whsmithpc.com

307.362.6065 | 866.938.3088 | www.whsmithpc.com
DRAWN BY: KGH CHECKED BY: ARD
DATE: 05/07/2019 JOB NO: 18080
REVISIONS:

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT \$1/2 SW1/4 SECTION 27, TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the South Half (S1/2) of the Southwest Quarter (SW1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 87°04'33" West a distance of 890.41 feet to the POINT OF BEGINNING.

thence, South 89°48'21" West a distance of 621.31 feet to a point within the Southwest Quarter (SW1/4) of the Southwest Quarter (SW1/4) of said Section 27, also being the POINT OF ENDING, from which the Southwest Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 87°22'57" West a distance of 1145.46 feet.

Said centerline being 621.31 feet or 37.66 rods in length and containing 0.428 Acres more or less.

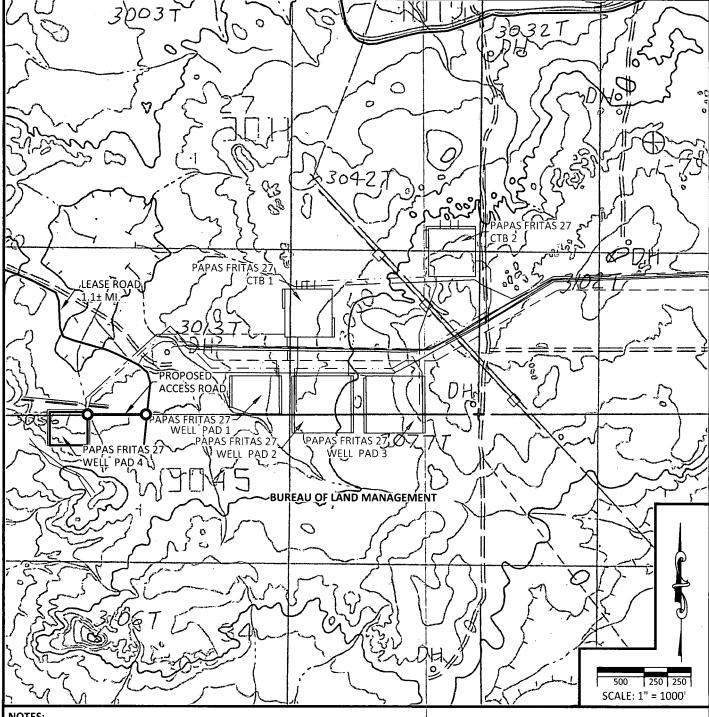
I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261 DATE

NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979



1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT S1/2 SW1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

NOTES

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641'.

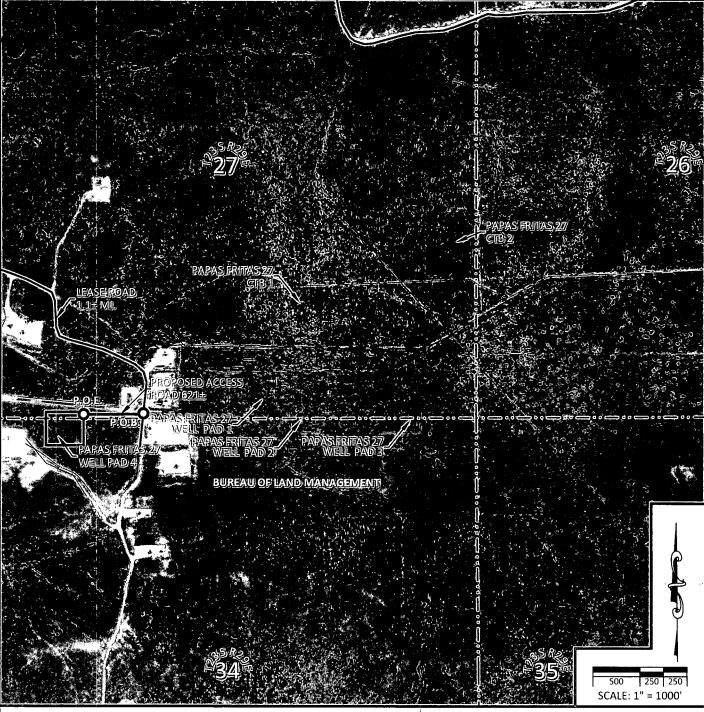
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD


DATE: 05/07/2019 JOB NO: 18080

REVISIONS:

QUAD MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

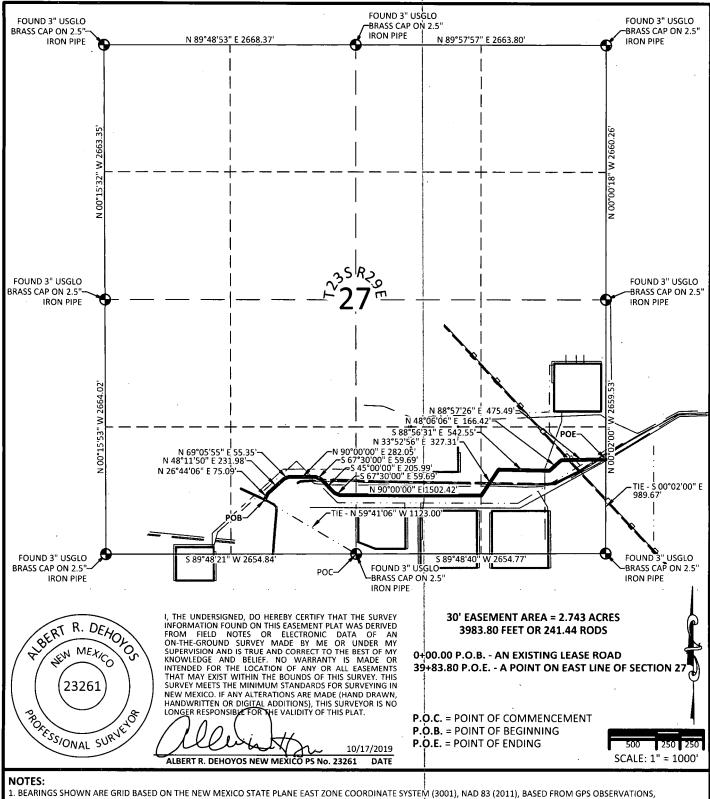
SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

NOTES:

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443° E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.18 MILE TO THE PROPOSED PAD ACCESS ROAD. TURN RIGHT AND HEAD WEST FOR 621 FEET TO THE NORTHEAST POINT OF THE PROPOSED PAPAS FRITAS 27 WELL PAD 4.


1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH DATE: 05/07/2019 REVISIONS: CHECKED BY: ARD JOB NO: 18080

AERIAL MAP DEVON ENERGY PRODUCTION, L.P. PÁPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

SECTION 34, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 3198.327, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD
DATE: 10/17/2019 JOB NO: 18080
REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 | PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT

SE1/4 SW1/4, S1/2 SE1/4 SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the Southeast Quarter of the Southwest Quarter and the South Half of the Southeast Quarter (SE1/4 SW1/4, \$1/2 SE1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico. being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the South Quarter corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 59°41'06"

West a distance of 1123.00 feet to the Point Of Beginning;

thence, North 26°44'06" East a distance of 75.09 feet;

thence, North 48°11'50" East a distance of 231.98 feet:

thence, North 69°05'55" East a distance of 55.35 feet;

thence, North 90°00'00" East a distance of 282.05 feet;

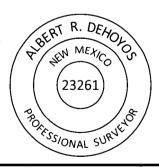
thence, South 67°30'00" East a distance of 59.69 feet:

thence, South 45°00'00" East a distance of 205.99 feet;

thence, South 67°30'00" East a distance of 59.69 feet;

thence, North 90°00'00" East a distance of 1502.42 feet;

thence, North 33°52'56" East a distance of 327.31 feet:


thence, South 88°56'31" East a distance of 542.55 feet; thence, North 48°06'06" East a distance of 166.42 feet;

thence, North 88°57'26" East a distance of 475.49 feet; to a point on the East line of said Section 27, also being the Point of Ending, from which the Southeast corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 00°02'00" Ease a distance of 989.67 feet.

Said centerline being 3983.80 feet or 241.44 rods in length and containing 2.743 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC. DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

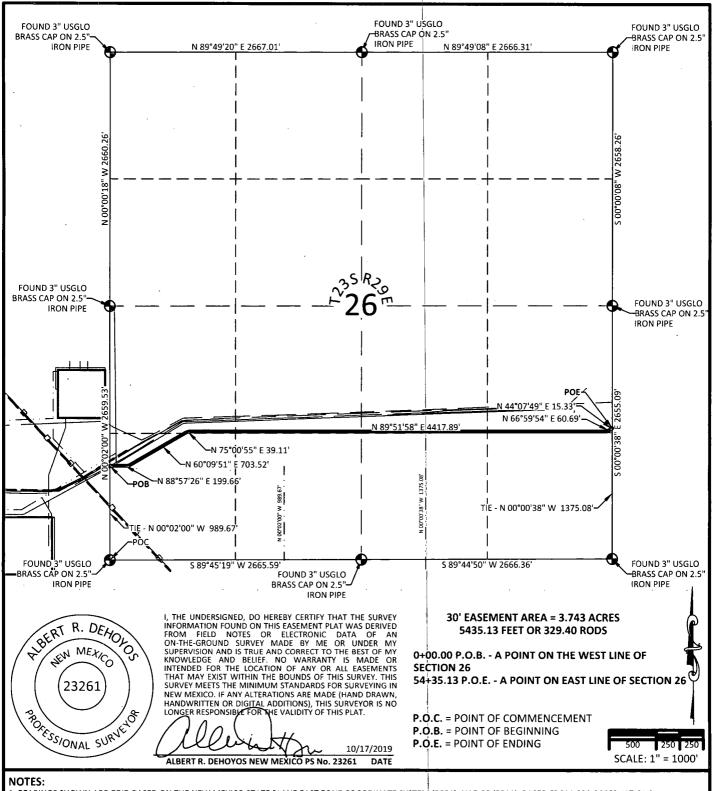
10/17/2019 ALBERT R. DEHOYOS NEW MEXICO PS No. 23261

NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A. ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com


DRAWN BY: JSP/NJC DATE: 10/17/2019 REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

CHECKED BY: ARD JOB NO: 18080

DEVON ENERGY PRODUCTION, L.P. **PAPAS FRITAS 27** PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT SE1/4 SW1/4, S1/2 SE1/4 SECTION 27, TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 3198.327, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD

DATE: 10/17/2019 JOB NO: 18080

REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SW1/4 , N1/2 S1/2 SECTION 26,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the Southwest One Half of the Southwest One Half and the North One Half of the South One Half (SW1/4 SW1/4, N1/2 S1/2) of Section 26, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

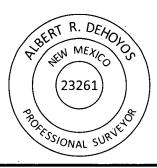
Commencing at the Southwest corner of said Section 26 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 00°02'00" West a distance of 989.67 feet to a point on the West Line of said Section 26, also being the Point Of Beginning;

thence, North 88°57'26" East a distance of 199.66 feet;

thence, North 60°09'51" East a distance of 703.52 feet;

thence, North 75°00'55" East a distance of 39.11 feet;

thence, North 89°51'58" East a distance of 4417.89 feet;


thence, North 66°59'54" East a distance of 60.69 feet;

thence, North 44°07'49" East a distance of 15.33 feet; to a point on the East line of said Section 26, also being the Point of Ending, from which the Southwest corner of said Section 26 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 00°00'38" East a distance of 1375.08 feet.

Said centerline being 5435.13 feet or 329.40 rods in length and containing 3.743 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND/CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

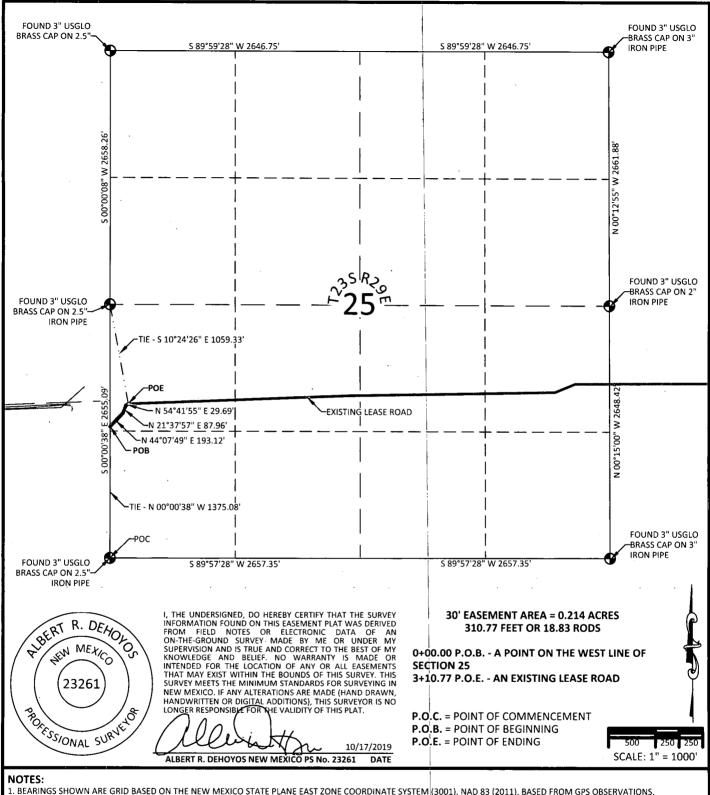
ALBERT R. DEHOYOS NEW MEXICO PS No. 23261 DATE

NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD. 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com


DRAWN BY: JSP/NJC CHECKED BY: ARD
DATE: 10/17/2019 JOB NO: 18080

REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
SW1/4 SW1/4 , N1/2 S1/2 SECTION 26,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 3198.327, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9th STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD
DATE: 10/17/2019 JOB NO: 18080
REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 | PRIMARY ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
NW1/4 SW1/4 SECTION 25.
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the Northwest Quarter of the Southwest Quarter (NW1/4 SW1/4) of Section 25 Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:

Commencing at the Southwest corner of said Section 25 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 00°00'38" West a distance of 1375.08 feet to a point on the West line of said Section 25, also being the Point Of Beginning; thence, North 54°41'55" East a distance of 29.69 feet;

thence, North 21°37'57" East a distance of 87.96 feet;

thence, North 44°07'49" West a distance of 193.12 feet to the Point of Ending, from which the East Quarter corner of said Section 25 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears North 10°24'26" West a distance of 1059.33 feet.

Said centerline being 310.77 feet or 18.83 rods in length and containing 0.214 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAIT WAS DERIVED FROM FIELD NOTES OR ELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

ONS), THIS SURVEYOR IS NO LIDITY OF THIS PLAT.

DATE

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261

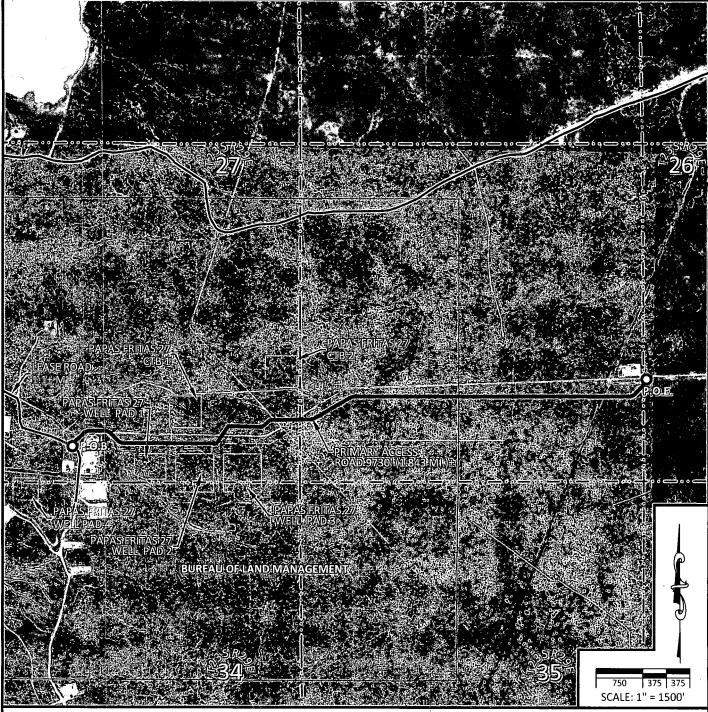
NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 457834.965, EAST: 670241.029, ELEVATION: 2306.69, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000221019

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JSP/NJC CHECKED BY: ARD


DATE: 10/17/2019 JOB NO: 18080

REVISIONS: 10/18/2019 NEW ALIGNMENT (JB)

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 PRIMARY ACCESS ROAD

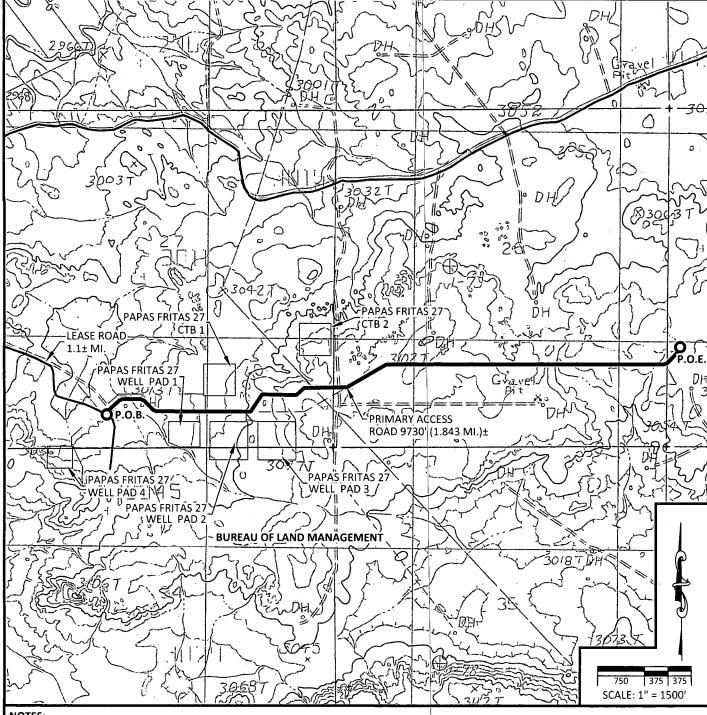
PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT
NW1/4 SW1/4 SECTION 25,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M.
EDDY COUNTY, STATE OF NEW MEXICO

NOTES:

1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'.
2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD.



1515 9^{1H} STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: JEB CHECKED BY: ARD
DATE: 10/21/2019 JOB NO: 18080
REVISIONS:

AERIAL MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27

PRIMARY ACCESS ROAD SECTION 27, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO devon

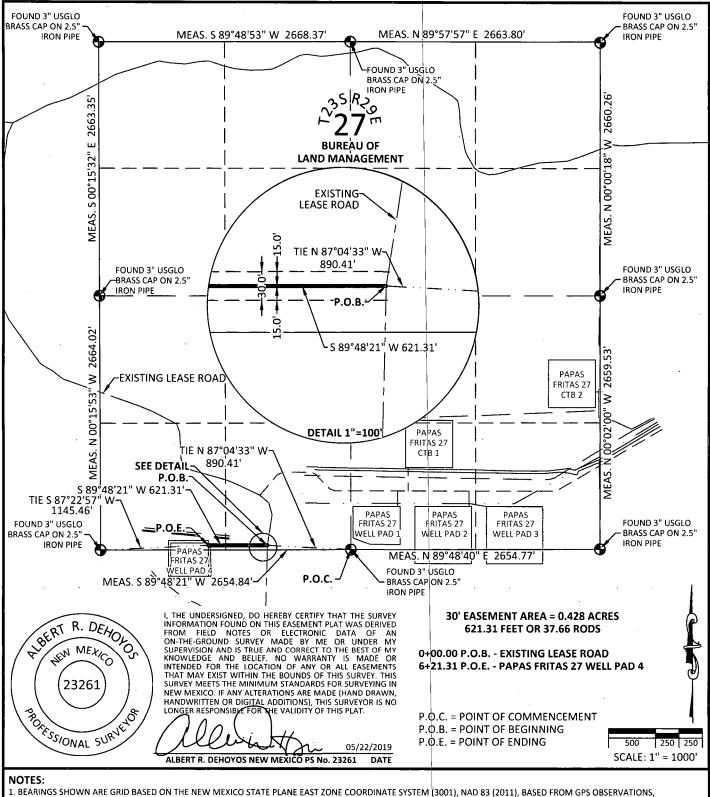
1. BASIS OF BEARINGS, COORDINATES AND DISTANCES ARE STATE PLANE GRID, NAD 83, NEW MEXICO EAST (3001) WITH A CONVERGENCE ANGLE OF 0.19373333° AND A COMBINED SCALE FACTOR OF 0.999779070 BASED ON CONTROL POINT HILLTOP AT N. 456034.443' E. 653560.641'. 2. UNITS REPRESENTED ON THIS PLAT ARE IN US SURVEY FEET.

DIRECTIONS TO LOCATION

FROM THE INTERSECTION OF HIGHWAY 128 (JAL HWY) AND RAWHIDE ROAD, HEAD SOUTH ON RAWHIDE ROAD FOR 4.10 MILES. TURN RIGHT ON AN EXISTING LEASE ROAD AND HEAD WEST FOR 3.55 MILES. TURN LEFT AND HEAD SOUTH ON AN EXISTING LEASE ROAD FOR 1.07 MILE TO THE PROPOSED ACCESS ROAD.

ENGINEERING > SURVEYING > PLANNING

1515 9TH STREET, STE A. ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com


DRAWN BY: JEB CHECKED BY: ARD DATE: 10/21/2019 JOB NO: 18080 **REVISIONS**:

QUAD MAP DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27

PRIMARY ACCESS ROAD

SECTION 27, TOWNSHIP 23 SOUTH RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

307.362.6065 | 866.938.3088 | www.whsmithpc.com

DRAWN BY: KGH CHECKED BY: ARD DATE: 05/07/2019 JOB NO: 18080 REVISIONS

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT S1/2 SW1/4 SECTION 27, TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

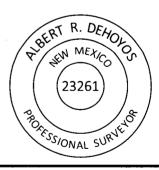
FOR

DEVON ENERGY PRODUCTION COMPANY, L.P.

BUREAU OF LAND MANAGEMENT

PROPOSED 30' ACCESS ROAD EASEMENT:

A strip of land located in the South Half (S1/2) of the Southwest Quarter (SW1/4) of Section 27, Township 23 South, Range 29 East, of the New Mexico Principal Meridian, Eddy county, State of New Mexico, being thirty feet (30') in width, lying fifteen feet (15') on each side of the following described centerline:


Commencing at the South Quarter Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe); thence, North 87°04'33" West a distance of 890.41 feet to the POINT OF BEGINNING.

thence, South 89°48'21" West a distance of 621.31 feet to a point within the Southwest Quarter (SW1/4) of the Southwest Quarter (SW1/4) of said Section 27, also being the POINT OF ENDING, from which the Southwest Corner of said Section 27 (Found 3" USGLO Brass Cap on a 2.5" Iron Pipe) bears South 87°22'57" West a distance of 1145.46 feet.

Said centerline being 621.31 feet or 37.66 rods in length and containing 0.428 Acres more or less.

I, THE UNDERSIGNED, DO HEREBY CERTIFY THAT THE SURVEY INFORMATION FOUND ON THIS EASEMENT PLAT WAS DERIVED FROM FIELD NOTES OR LELECTRONIC DATA OF AN ON-THE-GROUND SURVEY MADE BY ME OR UNDER MY SUPERVISION AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. NO WARRANTY IS MADE OR INTENDED FOR THE LOCATION OF ANY OR ALL EASEMENTS THAT MAY EXIST WITHIN THE BOUNDS OF THIS SURVEY. THIS SURVEY MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW MEXICO. IF ANY ALTERATIONS ARE MADE (HAND DRAWN, HANDWRITTEN OR DIGITAL ADDITIONS), THIS SURVEYOR IS NO LONGER RESPONSIBLE FOR THE VALIDITY OF THIS PLAT.

ALBERT R. DEHOYOS NEW MEXICO PS No. 23261 DATE

NOTES:

1. BEARINGS SHOWN ARE GRID BASED ON THE NEW MEXICO STATE PLANE EAST ZONE COORDINATE SYSTEM (3001), NAD 83 (2011), BASED FROM GPS OBSERVATIONS, OCCUPYING A WHS CONTROL POINT (5/8" REBAR), LOCATED AT NORTH: 456034.443, EAST: 653560.641, ELEVATION: 3101.373, DETERMINED BY AN OPUS SOLUTION ON DECEMBER 3RD, 2018.

2. DISTANCES DEPICTED HEREON ARE REPORTED AS GROUND DISTANCE IN US SURVEY FEET USING A COMBINED SCALE FACTOR OF 1.000220979

1515 9TH STREET, STE A, ROCK SPRINGS, WY 82901 307.362.6065 | 866.938.3088 | www.whsmithpc.com

DEVON ENERGY PRODUCTION, L.P. PAPAS FRITAS 27 WELL PAD 4 ACCESS ROAD

PROPOSED 30' EASEMENT ON THE PROPERTY OF BUREAU OF LAND MANAGEMENT \$1/2 SW1/4, SECTION 27,
TOWNSHIP 23 SOUTH, RANGE 29 EAST, N.M.P.M. EDDY COUNTY, STATE OF NEW MEXICO

