Form 3160-3 (June 2015) UNITED ST	ATES MA	CEN AR 0	\$ 2020		0	OMB	APPROVED No. 1004-0137 January 31, 201	8
DEPARTMENT OF T BUREAU OF LAN			DAR	TESI	A	5. Lease Serial No NMNM138850		
APPLICATION FOR PERMIT			;		, .	6. If Indian, Allote	e or Tribe Nam	e
1a. Type of work: 🖌 DRILL		TER				7. If Unit or CAA	greement, Nam	e and No.
1b. Type of Well: Oil Well 🖌 Gas Well	Other					8. Lease Name and	Well No	
1c. Type of Completion: Hydraulic Fracturing	Single	Zone [Multip	le Zone		NAILED IT FED		
)						1308	
2. Name of Operator					· · · ·	224H Ja /	500	
TAP ROCK OPERATING LLC							15-46	883
3a. Address 602 Park Point Drive Suite 200, Golden, CO 80401			0. (include	e area coa	le)	10. Field and Pool,		
4. Location of Well (<i>Report location clearly and in accord</i>	<u>L'</u>	0) 460-3		n(a *)	· · · ·	PURPLE SAGE V		
At surface LOT 1 / 766 FSL / 668 FEL / LAT 32.0		-	-			11. Sec., T. R. M. c SEC 36/T26S/R30		ey or Area
At proposed prod. zone NESE / 2466 FSL / 750 FE					285522			
14. Distance in miles and direction from nearest town or po 20 miles						12. County or Paris EDDY	sh 13. NM	State
15. Distance from proposed* 766 feet	16.	No of ac	res in lease	e	17. Spacin	ng Unit dedicated to	this well	
property or lease line, ft. (Also to nearest drig. unit line, if any)	320	l			288.4			
18. Distance from proposed location* to nearest well drilling completed	19.	Propose	l Depth		20. BLM/	BIA Bond No. in file	;	
to nearest well, drilling, completed, 25 feet applied for, on this lease, ft.	117	11760 feet / 16125 feet			FED: NM	IB001443		
21. Elevations (Show whether DF, KDB, RT, GL, etc.)			nate date v	work will	start*	23. Estimated durat	tion	
3045 feet		1/2020		· ·		30 days		
		. Attac						
The following, completed in accordance with the requirement (as applicable)	ents of Onsl	hore Oil	and Gas O	rder No. 1	l, and the H	lydraulic Fracturing	rule per 43 CFI	R 3162.3-3
 Well plat certified by a registered surveyor. A Drilling Plan. A Surface Use Plan (if the location is on National Forest SUPO must be filed with the appropriate Forest Service 0 		nds, the	Item 20 5. Operat	0 above). tor certific	ation.	s unless covered by a mation and/or plans a		:
25. Signature		Name	(Printed/T	ivped)	······································		Date	
(Electronic Submission)		Brian	Nood / P	h: (720) 4	460-3316	• · ·	10/21/2019	
Title President					•			
Approved by (Signature)		Name	(Printed/T	vped)			Date	
(Electronic Submission)		Cody I	ayton / P	h: (575)	234-5959		02/24/2020	
Title Assistant Field Manager Lands & Minerals		Office	ad Field (Office				
Application approval does not warrant or certify that the ap applicant to conduct operations thereon.	plicant hold		1		iose rights i	n the subject lease w	hich would en	itle the
Conditions of approval, if any, are attached.								
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 12 of the United States any false, fictitious or fraudulent statem	212, make it nents or repr	t a crime resentati	for any pe ons as to a	erson knov ny matter	wingly and within its j	willfully to make to urisdiction.	any department	or agency
							1	
			COLUMN STREET		IN BIAL			
				MAL	IONS	3-1	9-20	
	- ARTENE	d WIT	ir na	NUBB	States and	3-19 Ru	D	
(Continued on page 2)	ROVE	y w.s.	STATES OF				structions of	n nage 7)
JPb -	proval	Date:	02/24/	2020		. (IU	su uctions of	n page 2)

Ċ

INSTRUCTIONS

GENERAL: This form is designed for submitting proposals to perform certain well operations, as indicated on Federal and Indian lands and leases for action by appropriate Federal agencies, pursuant to applicable Federal laws and regulations. Any necessary special instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from local Federal offices.

ITEM I: If the proposal is to redrill to the same reservoir at a different subsurface location or to a new reservoir, use this form with appropriate notations. Consult applicable Federal regulations concerning subsequent work proposals or reports on the well.

ITEM 4: Locations on Federal or Indian land should be described in accordance with Federal requirements. Consult local Federal offices for specific instructions.

ITEM 14: Needed only when location of well cannot readily be found by road from the land or lease description. A plat, or plats, separate or on the reverse side, showing the roads to, and the surveyed location of, the wen, and any other required information, should be furnished when required by Federal agency offices.

ITEMS 15 AND 18: If well is to be, or has been directionany drilled, give distances for subsurface location of hole in any present or objective productive zone.

ITEM 22: Consult applicable Federal regulations, or appropriate officials, concerning approval of the proposal before operations are started.

ITEM 24: If the proposal will involve hydraulic fracturing operations, you must comply with 43 CFR 3162.3-3, including providing information about the protection of usable water. Operators should provide the best available information about all formations containing water and their depths. This information could include data and interpretation of resistivity logs run on nearby wells. Information may also be obtained from state or tribal regulatory agencies and from local BLM offices.

NOTICES

The Privacy Act of 1974 and regulation in 43 CFR 2.48(d) provide that you be furnished the following information in connection with information required by this application.

AUTHORITY: 30 U.S.C. 181 et seq., 25 U.S.C. 396; 43 CFR 3160

PRINCIPAL PURPOSES: The information will be used to: (1) process and evaluate your application for a permit to drill a new oil, gas, or service wen or to reenter a plugged and abandoned well; and (2) document, for administrative use, information for the management, disposal and use of National Resource Lands and resources including (a) analyzing your proposal to discover and extract the Federal or Indian resources encountered; (b) reviewing procedures and equipment and the projected impact on the land involved; and (c) evaluating the effects of the proposed operation on the surface and subsurface water and other environmental impacts.

ROUTINE USE: Information from the record and/or the record win be transferred to appropriate Federal, State, and local or foreign agencies, when relevant to civil, criminal or regulatory investigations or prosecution, in connection with congressional inquiries and for regulatory responsibilities.

EFFECT OF NOT PROVIDING INFORMATION: Filing of this application and disclosure of the information is mandatory only if you elect to initiate a drilling or reentry operation on an oil and gas lease.

The Paperwork Reduction Act of 1995 requires us to inform you that:

The BLM conects this information to anow evaluation of the technical, safety, and environmental factors involved with drilling for oil and/or gas on Federal and Indian oil and gas leases. This information will be used to analyze and approve applications. Response to this request is mandatory only if the operator elects to initiate drilling or reentry operations on an oil and gas lease. The BLM would like you to know that you do not have to respond to this or any other Federal agency-sponsored information collection unless it displays a currently valid OMB control number.

BURDEN HOURS STATEMENT: Public reporting burden for this form is estimated to average 8 hours per response, including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding the burden estimate or any other aspect of this form to U.S. Department of the Interior, Bureau of Land Management (1004-0137), Bureau Information Conection Clearance Officer (WO-630), 1849 C Street, N.W., Mail Stop 401 LS, Washington, D.C. 20240.

Additional Operator Remarks¹

Location of Well

ł

0. SHL: LOT 1 / 766 FSL / 668 FEL / TWSP: 26S / RANGE: 30E / SECTION: 36 / LAT: 32.0022659 / LONG: -103.8282751 (TVD: 0 feet, MD: 0 feet) PPP: LOT 1 / 44 FSL / 835 FEL / TWSP: 26S / RANGE: 30E / SECTION: 36 / LAT: 32.00289 / LONG: -103.8288138 (TVD: 10812 feet, MD: 10873 feet) BHL: NESE / 2466 FSL / 750 FEL / TWSP: 26S / RANGE: 30E / SECTION: 25 / LAT: 32.0128149 / LONG: -103.8285522 (TVD: 11760 feet, MD: 16125 feet)

BLM Point of Contact

Name: Candy Vigil Title: LIE Phone: (575) 234-5982 Email: cvigil@blm.gov

Review and Appeal Rights

A person contesting a decision shall request a State Director review. This request must be filed within 20 working days of receipt of the Notice with the appropriate State Director (see 43 CFR 3165.3). The State Director review decision may be appealed to the Interior Board of Land Appeals, 801 North Quincy Street, Suite 300, Arlington, VA 22203 (see 43 CFR 3165.4). Contact the above listed Bureau of Land Management office for further information.

Approval Date: 02/24/2020

(

PECOS DISTRICT SURFACE USE CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Tap Rock Operating LLC
LEASE NO.:	NMNM138850
COUNTY:	Lea

The following conditions of approval are only applicable to the portion of road residing in the SWSW quarter of Section 25, T26S, R30E.

See page two for the applicable wells and their legal descriptions.

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

General Provisions
Permit Expiration
Archaeology, Paleontology, and Historical Sites
Noxious Weeds
🛛 Special Requirements
Cave/Karst
Construction
Notification
Federal Mineral Material Pits
Roads
Road Section Diagram

)

				SHL	an da antin di Maryak tarangan di Kanangan tan Angan da Angan			BHL				
	Well Name	ULSTR	Foo	tage	Coord	inates	ULSTR	Foc	tage	Coord	linates	
· · · ·	Nailed It Fed Com 201H	L4 36-26S-30E	330 FSL	279 FWL	32.0010601	-103.8424129	NWSW 25-26S-30E	2464 FSL	638 FWL	32.0128419	-103.8412680	
			32.0010602	-103.8423323	NWSW 25-26S-30E	2464 FSL	1254 FWL	32.0128378	-103.8392806			
			32.0009914	-103.8424129	NWSW 25-26S-30E	2464 FSL	331 FWL	32.0128440	-103.8422585			
W2W2	Nailed It Fed Com 215H	L4 36-26S-30E			32.0009915	-103.8423323	NWSW 25-265-30E	2464 FSL	946 FWL	32.0128399	-103.8402743	
Pad	Nailed It Fed Com 221H	L4 36-26S-30E	330 FSL	384 FWL	32.0010603	-103.8420742	NWSW 25-26S-30E	2464 FSL	331 FWL	32.0128440	-103.8422585	
(Slot 1)	Nailed It Fed Com 225H	L4 36-26S-30E	330 FSL	434 FWL	32.0010604	-103.8419129	NWSW 25-26S-30E	2464 FSL	1170 FWL	32.0128384	-103.8395516	
1.10	Nailed It Fed Com 231H	L4 36-26S-30E	330 FSL	409 FWL	32.0010604	-103.8419936	NWSW 25-26S-30E	2464 FSL	750 FWL	32.0128412	-103.8409067	
	Nailed It Fed Com 241H	L4 36-26S-30E	305 FSL	384 FWL	32.0009916	-103.8420742	NWSW 25-26S-30E	2464 FSL	331 FWL	32.0128440	-103.8422585	
	Nailed It Fed Com 245H	L4 36-26S-30E	305 FSL	434 FWL	32.0009917	-103.8419129	NWSW 25-26S-30E	2464 FSL	1170 FWL	32.0128384	-103.8395516	
	Nailed It Fed Com 202H	L3 36-26S-30E	230 FSL	1840 FWL	32.0007876	-103.8373781	NESW 25-26S-30E	2465 FSL	1870 FWL	32.0128336	-103.8372932	
	Nailed It Fed Com 207H	L3 36-26S-30E	230 FSL	1865 FWL	32.0007876	-103.8372974	NESW 25-26S-30E	2465 FSL	2486 FWL	32.0128294	-103.8353058	
E2W2	Nailed It Fed Com 212H	L3 36-26S-30E	205 FSL	1840 FWL	32.0007189	-103.8373780	NESW 25-26S-30E	2464 FSL	1562 FWL	32.0128357	-103.8382869	
Pad	Nailed It Fed Com 217H	L3 36-26S-30E	205 FSL	1865 FWL	32.0007189	-103.8372974	NESW 25-26S-30E	2465 FSL	2178 FWL	32.0128315	-103.8362995	
(Slot 2)	Nailed It Fed Com 222H	L3 36-26S-30E	230 FSL	1970 FWL	32.0007878	-103.8369587	NESW 25-26S-30E	2465 FSL	2010 FWL	32.0128327	-103.8368415	
(5.5.2)	Nailed It Fed Com 232H	L3 36-26S-30E	26S-30E 205 FSL 1970 FWL 32.0007190 -103.8369587 N		NESW 25-26S-30E	2465 FSL	2430 FWL	32.0128298	-103.8354865			
	Nailed It Fed Com 235H	L3 36-26S-30E	230 FSL	1945 FWL	32.0007877	-103.8370394	NESW 25-26S-30E	2464 FSL 1590 FWL		32.0128355	-103.8381966	
N. 1	Nailed It Fed Com 242H	L3 36-26S-30E	205 FSL	1945 FWL	32.0007190	-103.8370393	NESW 25-26S-30E	2465 FSL	2010 FWL	32.0128327	-103.8368415	
N	Nailed It Fed Com 203H	L2 36-26S-30E	701 FSL	2225 FEL	32.0020849	-103.8332991	NWSE 25-26S-30E	2465 FSL /	2178 FEL	32.0128248	-103.8331593	
	Nailed-It-Fed-Com-206H-	L2-36=26S=30E	701_FSL	2200 FEL	32.0020849	-103.8332184	NWSE 25-26S-30E	2465 FSL	1562 FEL	32.0128206	-103.8311720	
	Nailed It Fed Com 213H	L2 36-26S-30E	676 FSL	2225 FEL	32.0020162	-103.8332990	NWSE 25-26S-30E	2465 FSL	2486 FEL	32.0128269		
W2E2	Nailed It Fed Com 216H	L2 36-26S-30E	676 FSL	2200 FEL	32.0020162	-103.8332184	NWSE 25-26S-30E	2465 FSL	1870 FEL	32.0128227	-103.8321657	
Pad	Nailed It Fed Com 223H	L2 36-26S-30E	701 FSL	2120 FEL	32.0020850	-103.8329603	NWSE 25-26S-30E	2465 FSL	2430 FEL	32.0128266	-103.8339724	
(Slot 3)	Nailed It Fed Com 226H	L2 36-26S-30E	701 FSL	2070 FEL	32.0020851	-103.8327990	NWSE 25-26S-30E	2465 FSL	1590 FEL	32.0128207	-103.8312623	
a she in the test	Nailed It Fed Com 233H	L2 36-26S-30E	701 FSL	2095 FEL	32.0020851	-103.8328797	NWSE 25-26S-30E	2465 FSL	2010 FEL	32.0128237	-103.8326173	
	Nailed It Fed Com 243H	L2 36-26S-30E	676 FSL	2120 FEL	32.0020163	-103.8329603	NWSE 25-26S-30E	2465 FSL	2430 FEL	32.0128266	-103.8339724	
27	Nailed It Fed Com 246H	L2 36-26S-30E	676 FSL	2070 FEL	32.0020164	-103.8327990	NWSE 25-26S-30E	2465 FSL	1590 FEL	32.0128207	-103.8312623	
1. 1. 1. 1. 1.	Nailed It Fed Com 204H	L1 36-26S-30E	766 FSL	588 FEL	32.0022660	-103.8280170	NESE 25-26S-30E	2466 FSL	946 FEL	32.0128162	-103.8291846	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Nailed It Fed Com 208H	L1 36-26S-30E	766 FSL	563 FEL	32.0022660	-103.8279364	NESE 25-26S-30E	2466 FSL	331 FEL	32.0128119	-103.8272004	
E2E2	Nailed It Fed Com 214H	L1 36-26S-30E	741 FSL	588 FEL	32.0021972	-103.8280170	NESE 25-265-30E	2465 FSL	1254 FEL	32.0128184	-103.8301783	
Pad	Nailed It Fed Com 218H	L1 36-26S-30E	741 FSL	563 FEL	32.0021973	-103.8279363	NESE 25-26S-30E	2466 FSL	638 FEL	32.0128141	-103.8281909	
(Slot 4)	Nailed It Fed Com 224H	L1 36-26S-30E	766 FSL	668 FEL	32.0022659	-103.8282751	NESE 25-26S-30E	2466 FSL	750 FEL	32.0128149	-103.8285522	
	Nailed It Fed Com 234H	L1 36-26S-30E	741 FSL	668 FEL	32.0021971	-103.8282750	NESE 25-265-30E	2466 FSL	331 FEL	32.0128119	-103.8272004	
	Nailed It Fed Com 236H	ed It Fed Com 236H L1 36-26S-30E 766 FSL 693 FEL		32.0022658	-103.8283557	NESE 25-26S-30E	2465 FSL	1170 FEL	32.0128178	-103.8299072		
	Nailed It Fed Com 244H	L1 36-26S-30E	741 FSL	693 FEL	32.0021971	-103.8283557	NESE 25-26S-30E	2466 FSL	750 FEL	32.0128149	-103.8285522	

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural resource (historic or prehistoric site or object) discovered by the holder, or any person working on the holder's behalf, on public or Federal land shall be immediately reported to the Authorized Officer. The holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to the proper mitigation measures will be made by the Authorized Officer.

OR

If the entire project is covered under the Permian Basin Programmatic Agreement (cultural resources only):

The proponent has contributed funds commensurate to the undertaking into an account for offsite mitigation. Participation in the PA serves as mitigation for the effects of this project on cultural resources. If any human skeletal remains, funerary objects, sacred objects, or objects of cultural patrimony are discovered at any time during construction, all construction activities shall halt and the BLM will be notified as soon as possible within 24 hours. Work shall not resume until a Notice to Proceed is issued by the BLM. See information below discussing NAGPRA.

If the proposed project is split between a Class III inventory and a Permian Basin Programmatic Agreement contribution, the portion of the project covered under Class III inventory should default to the first paragraph stipulations.

The holder is hereby obligated to comply with procedures established in the Native American Graves Protection and Repatriation Act (NAGPRA) to protect such cultural items as human remains, associated funerary objects, sacred objects, and objects of cultural patrimony discovered inadvertently during the course of project implementation. In the event that any of the cultural items listed above are discovered during the course of project work, the proponent shall immediately halt the disturbance and contact the BLM within 24 hours for instructions. The proponent or initiator of any project shall be held responsible for protecting, evaluating, reporting, excavating, treating, and disposing of these cultural items according to the procedures established by the BLM in consultation with Indian Tribes."

Page 3 of 8

Any paleontological resource (historic or prehistoric site or object) discovered by the holder, or any person working on the holder's behalf, on public or Federal land shall be immediately reported to the Authorized Officer. The holder shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery will be made by the Authorized Officer to determine appropriate actions to prevent the loss of significant cultural or scientific values. The holder will be responsible for the cost of evaluation and any decision as to the proper mitigation measures will be made by the Authorized Officer after consulting with the holder.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

SPECIAL REQUIREMENT(S)

Cave/Karst:

Road Construction:

- Turnout ditches and drainage leadoffs will not be constructed in such a manner as to alter the natural flow of water into or out of cave or karst features.
- Special restoration stipulations or realignment may be required if subsurface features are discovered during construction.

CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road. Notify the Carlsbad Field Office at (575) 234-5909 at least 3 working days prior to commencing construction of the access road and/or well pad.

B. FEDERAL MINERAL MATERIALS PIT

Payment shall be made to the BLM prior to removal of any federal mineral materials. Call the Carlsbad Field Office at (575) 234-5972.

C. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed twenty-five (25) feet.

Surfacing

Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Page 4 of 8

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall conform to Figure 1; cross section and plans for typical road construction.

Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch 1 Minimum Depth Natural Ground Level Berm ion i Down Slope Side.

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

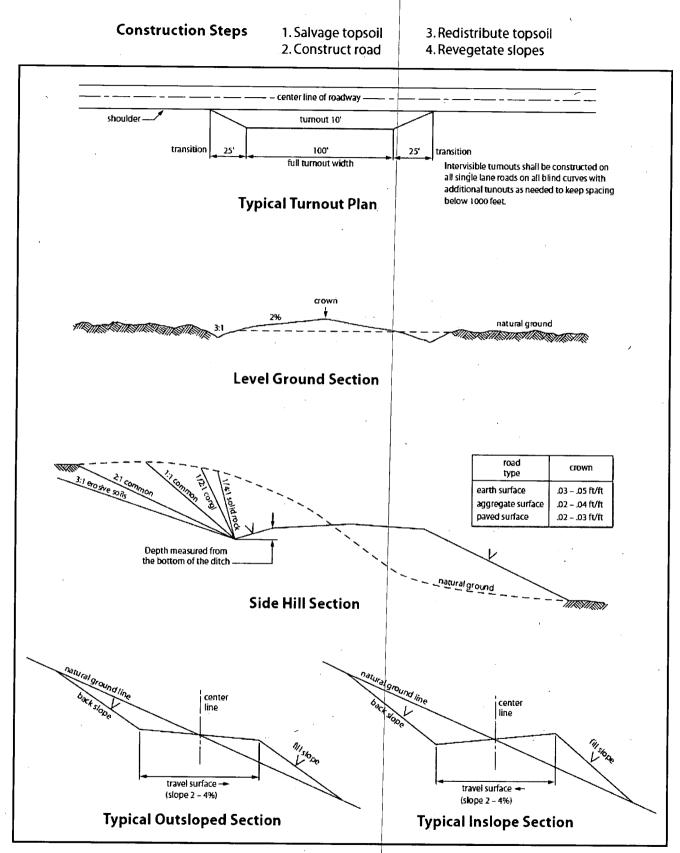
Page 5 of 8

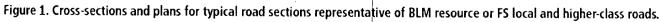
Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: 400! + 100' = 200' lead-off ditch interval

Cattle guards


An appropriately sized cattle guard sufficient to carry out the project shall be installed and maintained at fence/road crossings. Any existing cattle guards on the access road route shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattle guards that are in place and are utilized during lease operations.


Fence Requirement

Where entry is granted across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting. The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fences.

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Page 7 of 8

Seed Mixture 2, for Sandy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law (s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species

	l <u>b/acre</u>
Sand dropseed (Sporobolus cryptandrus)	1.0
Sand love grass (Eragrostis trichodes)	1.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed **x** percent purity **x** percent germination = p_{ounds} pure live seed

Page 8 of 8

PECOS DISTRICT DRILLING CONDITIONS OF APPROVAL

OPERATOR'S NAME:	Tap Rock Operating LLC	1
WELL NAME & NO.:	Nailed It Fed Com 224H	5
SURFACE HOLE FOOTAGE:	230 FSL / 1840 FWL	
BOTTOM HOLE FOOTAGE	2465 FSL / 1870 FWL	
LOCATION:	Sec 36 / 26S / 30E / NMP	
COUNTY:	Eddy County, New Mexico	

H2S	C Yes	© No	
Potash	None	C Secretary	C R-111-P
Cave/Karst Potential	C Low	C Medium	6 High
Cave/Karst Potential	Critical,		
Variance	O None	🖲 Flex Hose	C Other
Wellhead	C Conventional	• Multibowl	C Both
Other	L 4 String Area	Capitan Reef	WIPP
Other	Fluid Filled	Cement Squeeze	Pilot Hole
Special Requirements	☐ Water Disposal	COM	🖵 Unit

A. HYDROGEN SULFIDE

Hydrogen Sulfide (H2S) monitors shall be installed prior to drilling out the surface shoe. If H2S is detected in concentrations greater than 100 ppm, the Hydrogen Sulfide area shall meet Onshore Order 6 requirements, which includes equipment and personnel/public protection items. If Hydrogen Sulfide is encountered, provide measured values and formations to the BLM.

B. CASING

- 1. The **13-3/8** inch surface casing shall be set at approximately 920 feet (a minimum of 70 feet (Eddy County) into the Rustler Anhydrite and above the salt) and cemented to the surface.
 - a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with surface log readout will be used or a cement bond log shall be run to verify the top of the cement. Temperature survey will be run a minimum of six hours after pumping cement and ideally between 8-10 hours after completing the cement job.
 - b. Wait on cement (WOC) time for a primary cement job will be a minimum of $\underline{\mathbf{8}}$ hours or 500 pounds compressive strength, whichever is greater. (This is to

Page 1 of 7

include the lead cement)

- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.

Intermediate casing must be kept fluid filled to meet BLM minimum collapse requirement.

- 2. The minimum required fill of cement behind the 9-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 3. The minimum required fill of cement behind the 7-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a, c-d above. Wait on cement (WOC) time for a primary cement job is to include the lead cement slurry due to cave/karst or potash.
 - In <u>High Cave/Karst Areas</u> if cement does not circulate to surface on the first two casing strings, the cement on the 3rd casing string must come to surface.
- 4. The minimum required fill of cement behind the 5-1/2 inch production casing is:
 - Cement should tie-back at least **200 feet** into previous casing string. Operator shall provide method of verification.

C. PRESSURE CONTROL

- 1. Variance approved to use flex line from BOP to choke manifold. Manufacturer's specification to be readily available. No external damage to flex line. Flex line to be installed as straight as possible (no hard bends).'
- 2. Operator has proposed a multi-bowl wellhead assembly. This assembly will only be tested when installed on the surface casing. Minimum working pressure of the blowout preventer (BOP) and related equipment (BOPE) required for drilling below the surface casing shoe shall be **5000** (**5M**) psi.
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.

- b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
- c. Manufacturer representative shall install the test plug for the initial BOP test.
- d. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- e. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.

D. SPECIAL REQUIREMENT (S)

Communitization Agreement

- The operator will submit a Communitization Agreement to the Carlsbad Field Office, 620 E Greene St. Carlsbad, New Mexico 88220, at least 90 days before the anticipated date of first production from a well subject to a spacing order issued by the New Mexico Oil Conservation Division. The Communitization Agreement will include the signatures of all working interest owners in all Federal and Indian leases subject to the Communitization Agreement (i.e., operating rights owners and lessees of record), or certification that the operator has obtained the written signatures of all such owners and will make those signatures available to the BLM immediately upon request.
- If the operator does not comply with this condition of approval, the BLM may take enforcement actions that include, but are not limited to, those specified in 43 CFR 3163.1.
- In addition, the well sign shall include the surface and bottom hole lease numbers. <u>When the Communitization Agreement number is known, it shall also be</u> on the sign.

GENERAL REQUIREMENTS

The BLM is to be notified in advance for a representative to witness:

- a. Spudding well (minimum of 24 hours)
- b. Setting and/or Cementing of all casing strings (minimum of 4 hours)
- c. BOPE tests (minimum of 4 hours)
 - 🛛 Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

Lea County

Call the Hobbs Field Station, 414 West Taylor, Hobbs NM 88240, (575) 393-3612

Page 3 of 7

- 1. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.
 - a. In the event the operator has proposed to drill multiple wells utilizing a skid/walking rig. Operator shall secure the wellbore on the current well, after installing and testing the wellhead, by installing a blind flange of like pressure rating to the wellhead and a pressure gauge that can be monitored while drilling is performed on the other well(s).
 - b. When the operator proposes to set surface casing with Spudder Rig
 - Notify the BLM when moving in and removing the Spudder Rig.
 - Notify the BLM when moving in the 2nd Rig. Rig to be moved in within 90 days of notification that Spudder Rig has left the location.
 - BOP/BOPE test to be conducted per Onshore Oil and Gas Order No. 2 as soon as 2nd Rig is rigged up on well.
- 2. Floor controls are required for 3M or Greater systems. These controls will be on the rig floor, unobstructed, readily accessible to the driller and will be operational at all times during drilling and/or completion activities. Rig floor is defined as the area immediately around the rotary table; the area immediately above the substructure on which the draw works are located, this does not include the dog house or stairway area.
- 3. The record of the drilling rate along with the GR/N well log run from TD to surface (horizontal well vertical portion of hole) shall be submitted to the BLM office as well as all other logs run on the borehole 30 days from completion. If available, a digital copy of the logs is to be submitted in addition to the paper copies. The Rustler top and top and bottom of Salt are to be recorded on the Completion Report.

A. CASING

- 1. Changes to the approved APD casing program need prior approval if the items substituted are of lesser grade or different casing size or are Non-API. The Operator can exchange the components of the proposal with that of superior strength (i.e. changing from J-55 to N-80, or from 36# to 40#). Changes to the approved cement program need prior approval if the altered cement plan has less volume or strength or if the changes are substantial (i.e. Multistage tool, ECP, etc.). The initial wellhead installed on the well will remain on the well with spools used as needed.
- Wait on cement (WOC) for Potash Areas: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi for all cement blends, 2) until hours. WOC time will be recorded in the driller's log. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.

Page 4 of 7

- 3. Wait on cement (WOC) for Water Basin: After cementing but before commencing any tests, the casing string shall stand cemented under pressure until both of the following conditions have been met: 1) cement reaches a minimum compressive strength of 500 psi at the shoe, 2) until cement has been in place at least <u>8 hours</u>. WOC time will be recorded in the driller's log. See individual casing strings for details regarding lead cement slurry requirements. The casing intergrity test can be done (prior to the cement setting up) immediately after bumping the plug.
- 4. Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string. Have well specific cement details onsite prior to pumping the cement for each casing string.
- 5. No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.
- 6. On that portion of any well approved for a 5M BOPE system or greater, a pressure integrity test of each casing shoe shall be performed. Formation at the shoe shall be tested to a minimum of the mud weight equivalent anticipated to control the formation pressure to the next casing depth or at total depth of the well. This test shall be performed before drilling more than 20 feet of new hole.
- 7. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.
- 8. Whenever a casing string is cemented in the R-111-P potash area, the NMOCD requirements shall be followed.

B. PRESSURE CONTROL

- 1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17.
- 2. If a variance is approved for a flexible hose to be installed from the BOP to the choke manifold, the following requirements apply: The flex line must meet the requirements of API 16C. Check condition of flexible line from BOP to choke manifold, replace if exterior is damaged or if line fails test. Line to be as straight as possible with no hard bends and is to be anchored according to Manufacturer's requirements. The flexible hose can be exchanged with a hose of equal size and equal or greater pressure rating. Anchor requirements, specification sheet and hydrostatic pressure test certification matching the hose in service, to be onsite for review. These documents shall be posted in the company man's trailer and on the rig floor.

Page 5 of 7

- 3. 5M or higher system requires an HCR valve, remote kill line and annular to match. The remote kill line is to be installed prior to testing the system and tested to stack pressure.
- 4. If the operator has proposed a multi-bowl wellhead assembly in the APD. The following requirements must be met:
 - a. Wellhead shall be installed by manufacturer's representatives, submit documentation with subsequent sundry.
 - b. If the welding is performed by a third party, the manufacturer's representative shall monitor the temperature to verify that it does not exceed the maximum temperature of the seal.
 - c. Manufacturer representative shall install the test plug for the initial BOP test.
 - d. Whenever any seal subject to test pressure is broken, all the tests in OOGO2.III.A.2.i must be followed.
 - e. If the cement does not circulate and one inch operations would have been possible with a standard wellhead, the well head shall be cut off, cementing operations performed and another wellhead installed.
- 5. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. In a water basin, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. The casing cut-off and BOP installation can be initiated four hours after installing the slips, which will be approximately six hours after bumping the plug. For those casing strings not using slips, the minimum wait time before cut-off is eight hours after bumping the plug. BOP/BOPE testing can begin after cut-off or once cement reaches 500 psi compressive strength (including lead when specified), whichever is greater. However, if the float does not hold, cut-off cannot be initiated until cement reaches 500 psi compressive strength (including lead when specified).
 - b. In potash areas, for all casing strings utilizing slips, these are to be set as soon as the crew and rig are ready and any fallback cement remediation has been done. For all casing strings, casing cut-off and BOP installation can be initiated at twelve hours after bumping the plug. However, **no tests** shall commence until the cement has had a minimum of 24 hours setup time, except the casing pressure test can be initiated immediately after bumping the plug (only applies to single stage cement jobs).
 - c. The tests shall be done by an independent service company utilizing a test plug not a cup or J-packer. The operator also has the option of utilizing an independent tester to test without a plug (i.e. against the casing) pursuant to Onshore Order 2 with the pressure not to exceed 70% of the burst rating for

Page 6 of 7

the casing. Any test against the casing must meet the WOC time for water basin (8 hours) or potash (24 hours) or 500 pounds compressive strength, whichever is greater, prior to initiating the test (see casing segment as lead cement may be critical item).

d. The test shall be run on a 5000 psi chart for a 2-3M BOP/BOP, on a 10000 psi chart for a 5M BOP/BOPE and on a 15000 psi chart for a 10M BOP/BOPE. If a linear chart is used, it shall be a one hour chart. A circular chart shall have a maximum 2 hour clock. If a twelve hour or twenty-four hour chart is used, tester shall make a notation that it is run with a two hour clock.

- e. The results of the test shall be reported to the appropriate BLM office.
- f. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
- g. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug. This test shall be performed prior to the test at full stack pressure.
- h. BOP/BOPE must be tested by an independent service company within 500 feet of the top of the Wolfcamp formation if the time between the setting of the intermediate casing and reaching this depth exceeds 20 days. This test does not exclude the test prior to drilling out the casing shoe as per Onshore Order No. 2.

C. DRILLING MUD

1

Mud system monitoring equipment, with derrick floor indicators and visual and audio alarms, shall be operating before drilling into the Wolfcamp formation, and shall be used until production casing is run and cemented.

D. WASTE MATERIAL AND FLUIDS

All waste (i.e. drilling fluids, trash, salts, chemicals, sewage, gray water, etc.) created as a result of drilling operations and completion operations shall be safely contained and disposed of properly at a waste disposal facility. No waste material or fluid shall be disposed of on the well location or surrounding area.

Porto-johns and trash containers will be on-location during fracturing operations or any other crew-intensive operations.

Page 7 of 7

愛AFMSS

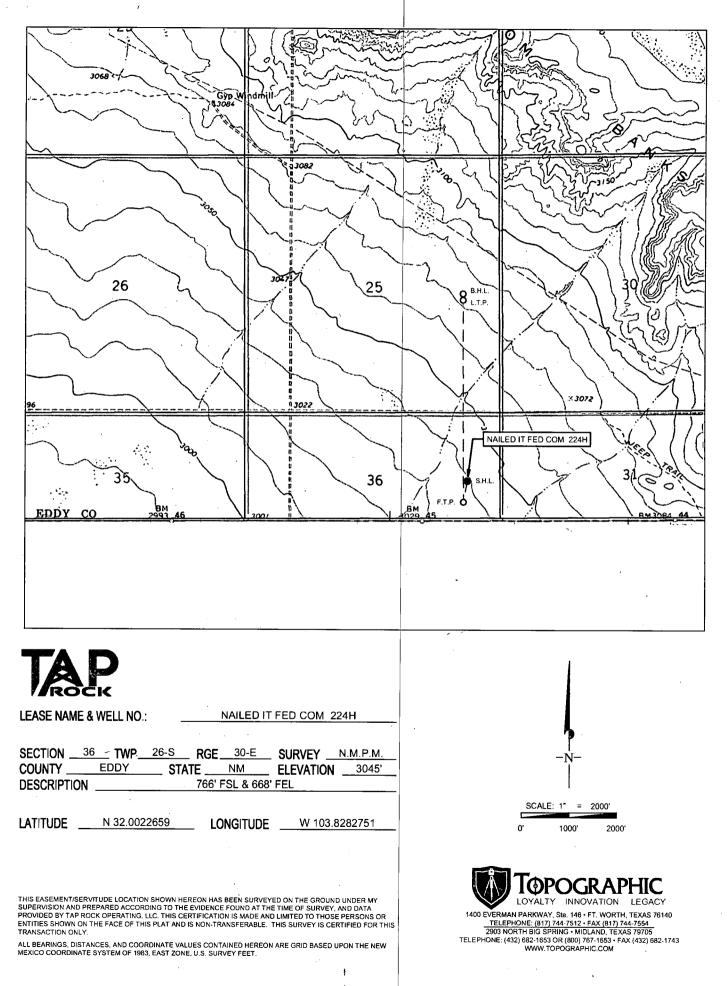
U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

Operator Certification

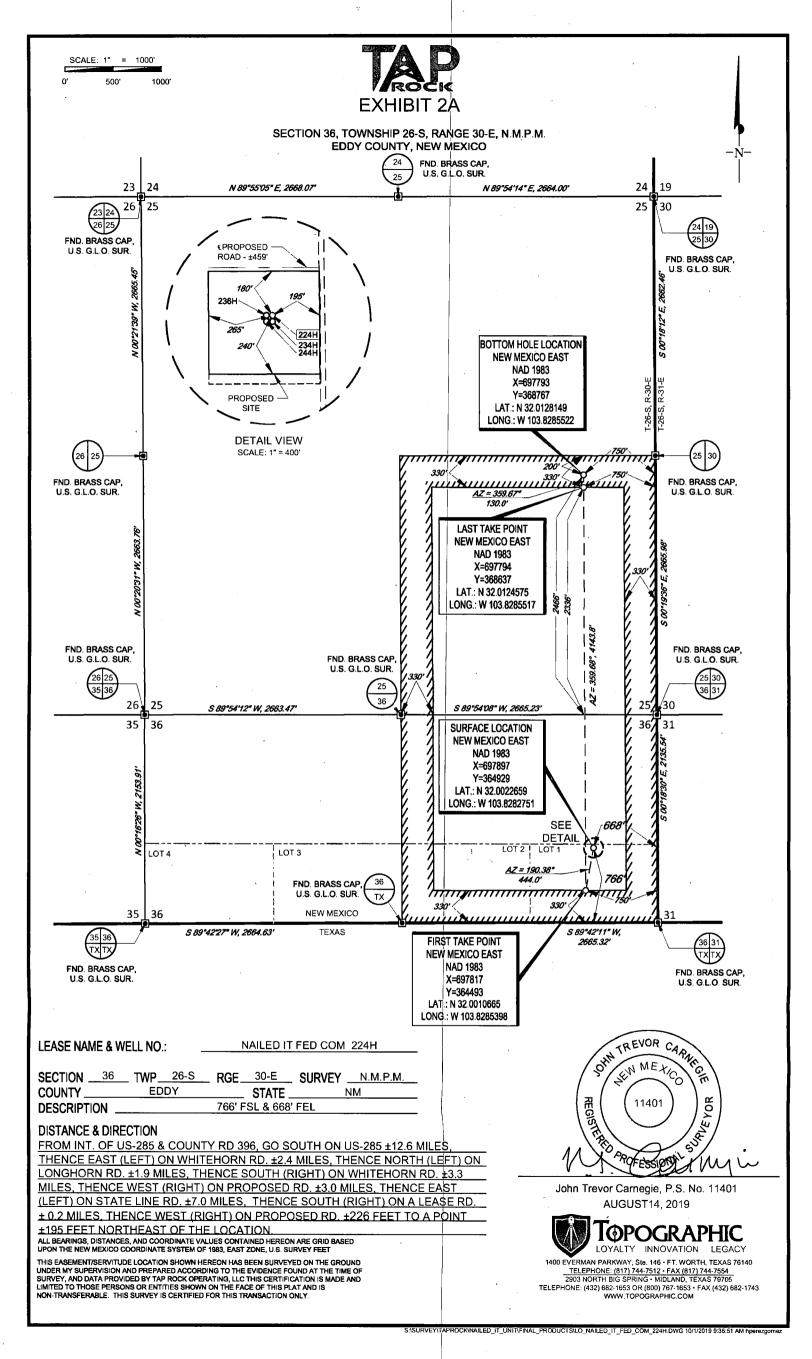
I hereby certify that I, or someone under my direct supervision, have inspected the drill site and access route proposed herein; that I am familiar with the conditions which currently exist; that I have full knowledge of state and Federal laws applicable to this operation; that the statements made in this APD package are, to the best of my knowledge, true and correct; and that the work associated with the operations proposed herein will be performed in conformity with this APD package and the terms and conditions under which it is approved. I also certify that I, or the company I represent, am responsible for the operations conducted under this application. These statements are subject to the provisions of 18 U.S.C. 1001 for the filing of false statements.

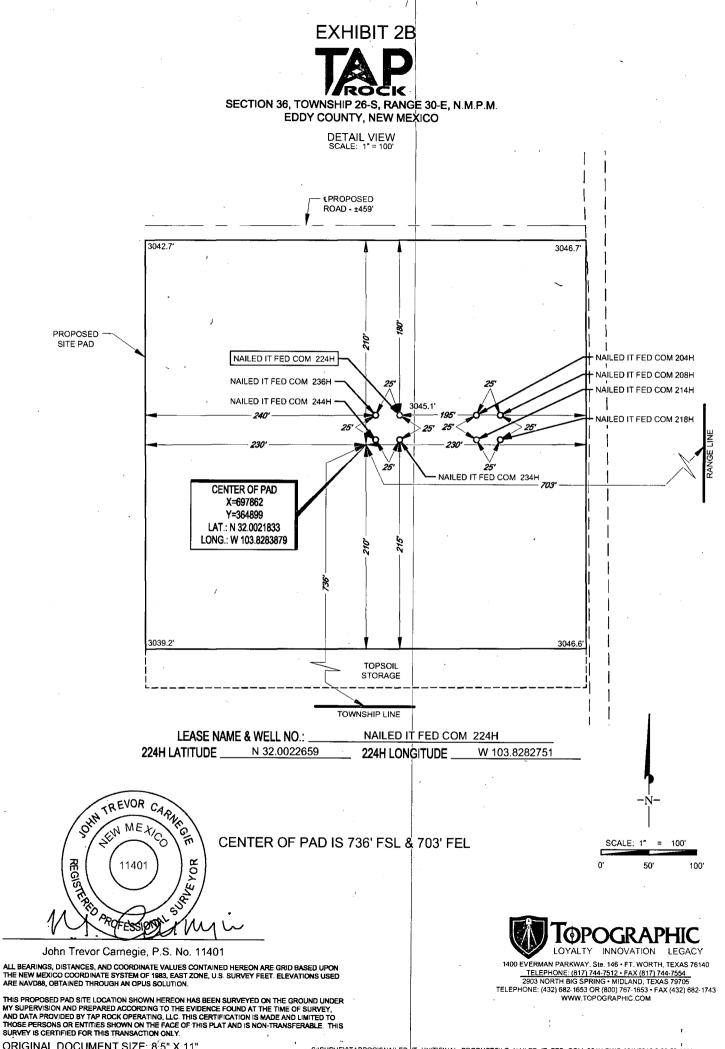
NAME: Brian Wood		Signed on: 09/02/2019
Title: President		
Street Address: 37 Verano Looop)	
City: Santa Fe	State: NM	Zip: 87508
Phone: (505)466-8120		
Email address: afmss@permitsw	est.com	
Field Representative	•	
Representative Name:		
Street Address:		
City:	State:	Zip:
Phone: (505)466-8120		
Email address: afmss@permitsw	est.com	
,		
		·

Operator Certification Data Report


02/25/2020

AFMSS U.S. Department of the Interior BUREAU OF LAND MANAGEMENT		Applic	ation Data Report 02/25/2020
APD ID: 10400048141	Submissi	on Date: 10/21/20	r ngringritoù data
Operator Name: TAP ROCK OPERATING I	LC		reflects the most recent changes
Well Name: NAILED IT FED COM	Well Num	ber: 224H	Show Final Text
Well Type: CONVENTIONAL GAS WELL	Well Worl	k Type: Drill	
Section 1 - General			
APD ID: 10400048141	Tie to previous NOS?	N	Submission Date: 10/21/2019
BLM Office: CARLSBAD	User: Brian Wood	Titl	e: President
Federal/Indian APD: FED	Is the first lease penet	rated for product	ion Federal or Indian? FED
Lease number: NMNM138850	Lease Acres: 320		
Surface access agreement in place?	Allotted?	Reservation:	
Agreement in place? NO	Federal or Indian agree	ement:	
Agreement number:			
Agreement name:			
Keep application confidential? N			
Permitting Agent? YES	APD Operator: TAP RC	CK OPERATING	LLC
Operator Info			
Operator Organization Name: TAP ROCK	OPERATING LLC		
Operator Address: 602 Park Point Drive Su	ite 200	Zip: 80401	
Operator PO Box:			
Operator City: Golden State:	СО		
Operator Phone: (720)460-3316			
Operator Internet Address:			
Section 2 - Well Informa	tion		
Well in Master Development Plan? NO	Master Develo	opment Plan nam	I e:
Well in Master SUPO? NO	Master SUPO	name:	
Well in Master Drilling Plan? NO	Master Drillin	g Plan name:	
Well Name: NAILED IT FED COM	Well Number:	•	Well API Number:
Field/Pool or Exploratory? Field and Pool	WOLFCAMP		Pool Name:
Is the proposed well in an area containing	other mineral resources?	OTHER,NATURA	AL GAS,OIL
			Page 1 of 3


!


. . . .

LOCATION & ELEVATION VERIFICATION MAP

1

ORIGINAL DOCUMENT SIZE: 8:5" X 11"

FMSS

U.S. Department of the Interior BUREAU OF LAND MANAGEMENT

AND MANAGEMENT

Drilling Plan Data Report

APD ID: 10400048141

Operator Name: TAP ROCK OPERATING LLC

Well Name: NAILED IT FED COM

Well Type: CONVENTIONAL GAS WELL

Submission Date: 10/21/2019

Highlighted data reflects the most recent changes

02/25/2020

Well Number: 224H

Show Final Text

Well Work Type: Drill

(

Section 1 - Geologic Formations

Formation			True Vertical	Measured			Producing
ID	Formation Name	Elevation	Depth	Depth	Lithologies	Mineral Resources	Formatior
548895	QUATERNARY	3045	0	0	OTHER : None	NONE	N
548896	RUSTLER	2185	860	860	ANHYDRITE	OTHER : Salt	N
548897	SALADO	1633	1412	1412	SALT	OTHER : Salt	N
548898	BASE OF SALT	-406	3451	3455	SALT	OTHER : Salt	N
548899	LAMAR	-618	3663	3671	LIMESTONE	NONE	N
548900	BELL CANYON	-637	3682	3690	SANDSTONE	NATURAL GAS, OIL	N
548901	CHERRY CANYON	-1827	4872	4898	SANDSTONE	NATURAL GAS, OIL	N
548902	BRUSHY CANYON	-2780	5825	5866	SANDSTONE	NATURAL GAS, OIL	N
548903	BONE SPRING	-4529	7574	7635	LIMESTONE	NATURAL GAS, OIL	N
548904	BONE SPRING 1ST	-5474	8519	8580	SANDSTONE	NATURAL GAS, OIL	N
548905	BONE SPRING 2ND	-5824	8869	8930	SANDSTONE	NATURAL GAS, OIL	N
548906	BONE SPRING 3RD	-6708	9753	9814	SANDSTONE	NATURAL GAS, OIL	N
548907	WOLFCAMP	-7767	10812	10873	OTHER : Shale	NATURAL GAS, OIL	Y

Section 2 - Blowout Prevention

1

Well Name: NAILED IT FED COM

Well Number: 224H

Pressure Rating (PSI): 5M

Rating Depth: 15000

Equipment: A 15,000, 5,000 psi BOP stack consisting of 3 rams with 2 pipe rams, 1 blind ram, and 1 annular preventer will be used below surface casing to TD. See attachments for BOP and choke manifold diagrams. Also present will be an accumulator that meets the requirements of Onshore Order #2 for the pressure rating of the BOP stack. A rotating head will also be installed as needed. BOP will be inspected and operated as recommended in Onshore Order #2. A top drive check valve and sub equipped with a full opening valve sized to fit the drill pipe and collars will be available on the rig floor in the open position. The wellhead will be a multi-bowl speed head. **Requesting Variance?** YES

Variance request: Tap Rock requests a variance to run a multi-bowl speed head for setting the Intermediate 1, Intermediate 2, and Production Strings. Tap Rock requests a variance to drill this well using a co-flex line between the BOP and choke manifold. Certification for proposed co-flex hose is attached. The hose is not required by the manufacturer to be anchored. In the event the specific hose is not available, one of equal or higher rating will be used. Tap Rock requests a variance to have the option of batch drilling this well with other wells on the same pad. In the event that this well is batch drilled, after drilling surface, 1st intermediate, and 2nd intermediate hole sections and cementing 2nd intermediate casing, a 10M dry hole cap with bleed off valve will be installed. The rig will then walk to another well on the pad. When the rig returns to this well and BOPs are installed, the operator will perform a full BOP test. Tap Rock requests a variance to run 7-5/8" BTC casing inside 9-5/8" BTC casing will be less than the 0.422" stand off regulation. Through conversations with BLM representatives, Tap Rock has received approval for this design as long as the 7-5/8" flush casing was run throughout the entire 300' cement tie back section between 9-5/8" and 7-5/8" casing. Tap Rock requests approval to possibly utilize a spudder rig to drill and set casing for the surface interval on this well. The spudder rig will be possibly utilized in order to reduce cost and save time. The wellhead will be installed and tested as soon as the surface casing is cut off per the existing COAs. A blind flange with the same pressure rating as the wellhead will be installed on the well. Once the spudder rig is removed, Tap Rock will secure the wellhead area by placing a guard rail around the cellar. Pressure will be monitored and a means for intervention will be maintained while the drilling rig is not over the well. Spudder rig operations are expected to take 2-3 days per well. Three wells on the pad will have surface casing set by the spudder rig as a part of this operation. The BLM will be notified 24 hours prior to commencing spudder rig operations. Within 90 days of the departure of the spudder rig, drilling operations will recommence on these wells. This rig will have a BOP stack equal or greater to the pressure rating required in the COAs. The BLM will be notified 24 hours before the larger rig moves on the pre-set wells. Tap Rock will have supervision on the spudder rig to ensure compliance with all BLM and NMOCD regulations.

Testing Procedure: After surface casing is set and the BOP is nippled up, the BOP pressure tests will be made with a third party tester to 250 psi low, 5000 psi high, and the annular preventer will be tested to 2,500 psi. The BOP will be tested in this manner after nipple-up if any break of the stack occurs.

Choke Diagram Attachment:

Nailed_Choke_032918_20190927111106.pdf

BOP Diagram Attachment:

5M_BOP_Stack_20200204144304.pdf

	Section 3 - Casing										>						·					
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF

(

Well Name: NAILED IT FED COM

Well Number: 224H

	r		1	<u> </u>	-									•								
Casing ID	String Type	Hole Size	Csg Size	Condition	Standard	Tapered String	Top Set MD	Bottom Set MD	Top Set TVD	Bottom Set TVD	Top Set MSL	Bottom Set MSL	Calculated casing length MD	Grade	Weight	Joint Type	Collapse SF	Burst SF	Joint SF Type	Joint SF	Body SF Type	Body SF
1	SURFACE	17.5	13.375	NEW	API	N	0	950	0	950	3045	2095	950	J-55	54.5	BUTT	1.13	1.15	DRY	1.6	DRY	1.6
2	INTERMED IATE	8.75	7.625	NEW	API	N	0	3400	o	3391	3009	-346	3400	Р- 110	29.7	BUTT	1.13	1.15	DRY	1.6	DRY	1.6
	INTERMED IATE	12.2 5	9.625	NEW	API	N	0	3700	0	3691	3009	-646	3700	J-55	40	BUTT	1.13	1.15	DRY	1.6	DRY	1.6
	PRODUCTI ON	6.75	5.5	NEW	API	N	0	10900	0	10838	3009	-7793	10900	P- 110		OTHER - TXP	1.13	1.15	DRY	1.6	DRY	1.6
5	INTERMED IATE	8.75	7.625	NEW	API	Y	3400	11100	3391	11038	-346	-7993	7700	P- 110		OTHER - W- 513	1.13	1.15	DRY	1.6	DRY	1.6
	PRODUCTI ON	6.75	5.0	NEW	API	Y	10900	16125	10838	11760	-7793	-8715		P- 110		OTHER - W- 521	1.13	1.13	DRY	1.6	DRY	1.6

Casing Attachments

Casing ID: 1 String Type: SURFACE

Inspection Document:

Spec Document:

Tapered String Spec:

Casing Design Assumptions and Worksheet(s):

Nailed_Casing_Design_Assumptions_20190927111151.pdf

Operator	Name:	TAP	ROCK	OPERAT	ING LLC
----------	-------	-----	------	--------	---------

Well Name: NAILED IT FED COM

Well Number: 224H

;

1

asing Attachments	
Casing ID: 2 String Type: INTERMEDIATE	
Inspection Document:	
Spec Document:	
· · · · · · · · · · · · · · · · · · ·	
Tapered String Spec:	
· · ·	
Casing Design Assumptions and Worksheet(s):	
Nailed_Casing_Design_Assumptions_20190927111232.pdf	
Casing ID: 3 String Type: INTERMEDIATE	
Inspection Document:	
Spec Document:	
	, · · ,
Tapered String Spec:	
Casing Design Assumptions and Worksheet(s):	
Nailed_Casing_Design_Assumptions_20190927111215.pdf	
Casing ID: 4 String Type: PRODUCTION	
Inspection Document:	
Spec Document:	
Tapered String Spec:	
rapered String Spec.	
Casing Design Assumptions and Worksheet(s):	
Nailed_5.5in_TXP_Casing_Spec_20190927111325.PDF	i i
Nailed_Casing_Design_Assumptions_20190927111332.pdf	
railed_casing_cesign_Assumptions_20190927111332.pdf	·

j

Well Name: NAILED IT FED COM

Well Number: 224H

Casing Attachments		
Casing ID: 5 String Type: INTERMEDIATE		
Inspection Document:		
Spec Document:	٢	
Tapered String Spec:		
Nailed_7.625in_W513_Casing_Spec_20190927111257.pdf		
Casing Design Assumptions and Worksheet(s):		
Nailed_Casing_Design_Assumptions_20190927111305.pdf	,	
Casing ID: 6 String Type: PRODUCTION		
Inspection Document:		
Spec Document:	,	
· · ·		
Tapered String Spec:		
Nailed_5in_W521_Casing_Spec_20190927111359.pdf		
Casing Design Assumptions and Worksheet(s):		,

							/				
String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
PRODUCTION	Lead		0.	0	0	0	0	0	0	None	0
PRODUCTION	Tail		1060 0	1612 5	453	1.71	14.2	774	25	Class H	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Lead		0	0	0	0	0	0	0	None	None
						l	1	L		·	I

PRODUCTION	Lead	0	0	0	0	0	0	0	None	None
										· · ·

ι.

Well Name: NAILED IT FED COM

Well Number: 224H

String Type	Lead/Tail	Stage Tool Depth	Top MD	Bottom MD	Quantity(sx)	Yield	Density	Cu Ft	Excess%	Cement type	Additives
SURFACE	Lead		0	570	440	1.8	13.5	792	100	Class C	None
SURFACE	Tail		570	950	391	1.35	14.8	528	100	Class C	5% NCI + LCM
INTERMEDIATE	Lead		0	2960	702	2.18	12.7	1529	65	Class C	Bentonite + 1% CaCL2 + 8% NaCl + LCM
INTERMEDIATE	Tail		2960	3700	287	1.33	14.8	382	65	Class C	5% NaCl + LCM
INTERMEDIATE	Lead		3400	1010 0	317	2.87	11.5	909	35	ТХІ	Fluid Loss + Dispersant + Retarder + LCM
INTERMEDIATE	Tail		1010 0	1110 0	107	1.27	15	136	35	Class H	Fluid Loss + Dispersant + Retarder + LCM

Section 5 - Circulating Medium

Mud System Type: Closed

1

Will an air or gas system be Used? NO

Description of the equipment for the circulating system in accordance with Onshore Order #2:

Diagram of the equipment for the circulating system in accordance with Onshore Order #2:

Describe what will be on location to control well or mitigate other conditions: All necessary mud products (e. g., barite, cedar bark) for weight addition and fluid loss control will always be on site. Mud program is subject to change due to hole conditions.

Describe the mud monitoring system utilized: Electronic Pason mud monitor system complying with Onshore Order 1 will be used.

		· · · · · · · · · · · · · · · · · · ·										
Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	ΡΉ	Viscosity (CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics	,
0	950	OTHER : Fresh water spud mud	8.3	8.3		-	ı					
950	3700	OTHER : Brine Water	10	10								
3700	1110 0	OTHER : Fresh water/cut brine	9	9		-						

Circulating Medium Table

Well Name: NAILED IT FED COM

Well Number: 224H

Top Depth	Bottom Depth	Mud Type	Min Weight (Ibs/gal)	Max Weight (Ibs/gal)	Density (lbs/cu ft)	Gel Strength (lbs/100 sqft)	Hd	Viscosity-(CP)	Salinity (ppm)	Filtration (cc)	Additional Characteristics
1110 0	1612 5	OIL-BASED MUD	12	12							

Section 6 - Test, Logging, Coring

List of production tests including testing procedures, equipment and safety measures:

Electric Logging Program: No open-hole logs are planned at this time for the pilot hole.

GR will be collected while drilling through the MWD tools from 9.625 casing shoe to TD.

A 2-person mud logging program will be used from 9.625 casing shoe to TD.

CBL w/ CCL from as far as gravity will let it fall to TOC. List of open and cased hole logs run in the well: GAMMA RAY LOG,CEMENT BOND LOG,

Coring operation description for the well:

No DSTs or cores are planned at this time.

Section 7 - Pressure

Anticipated Bottom Hole Pressure: 7330

Anticipated Surface Pressure: 4742

Anticipated Bottom Hole Temperature(F): 170

Anticipated abnormal pressures, temperatures, or potential geologic hazards? NO

Describe:

Contingency Plans geoharzards description:

Contingency, Plans geohazards attachment:

Hydrogen Sulfide drilling operations plan required? YES Hydrogen sulfide drilling operations plan:

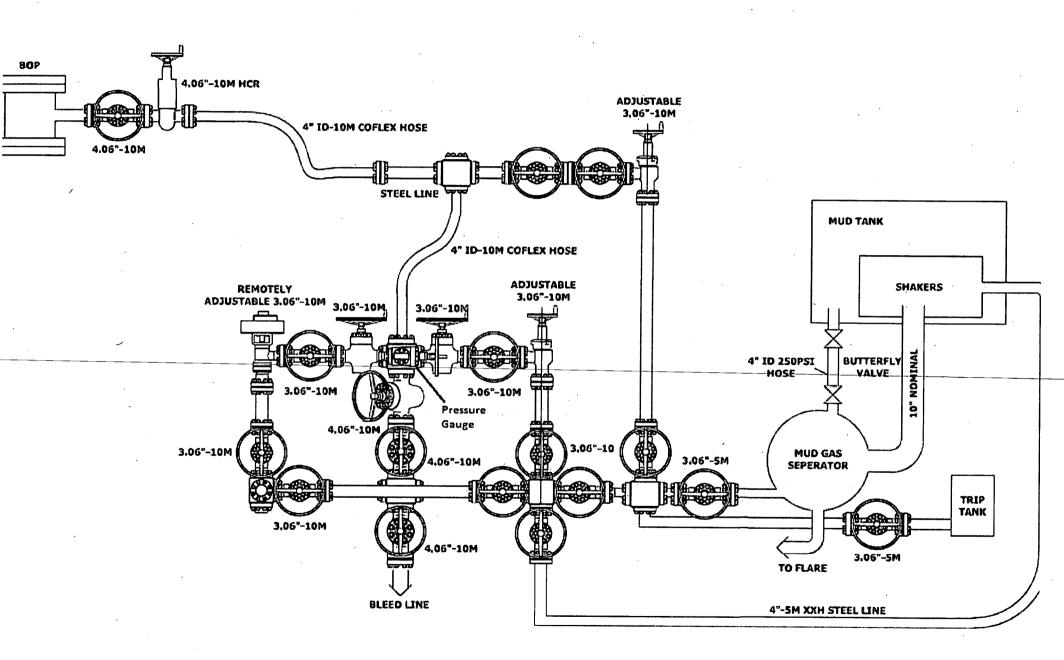
Nailed_Slot4_H2S_Plan_20190927112209.pdf

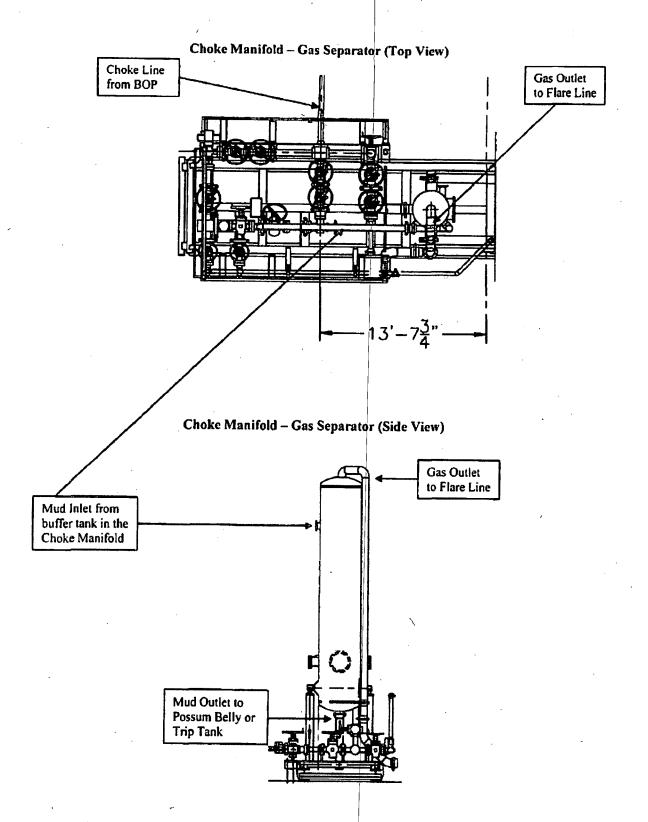
Well Name: NAILED IT FED COM

Well Number: 224H

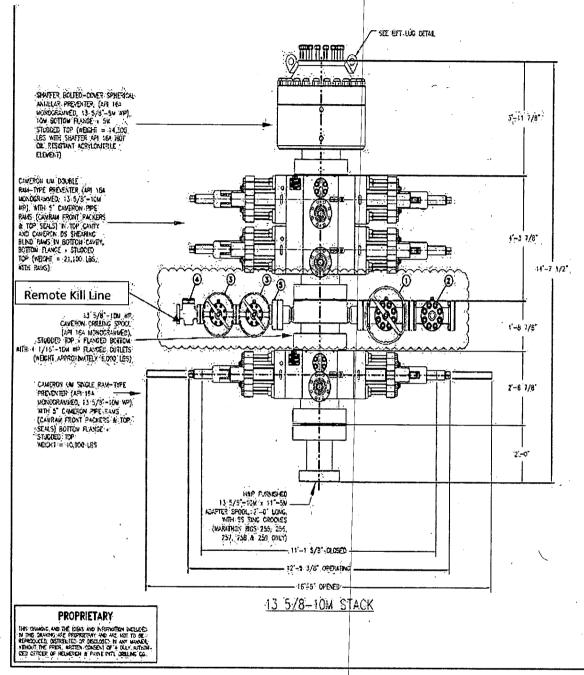
Section 8 - Other Information

Proposed horizontal/directional/multi-lateral plan submission:


Nailed_224H_Horizontal_Plan_20190927112233.pdf


Other proposed operations facets description:

Other proposed operations facets attachment:


CoFlex_Certs_20190927112320.pdf Nailed_224H_Anticollision_Report_20190927112353.pdf Nailed_224H_Drill_Plan_v2_020420_20200204144544.pdf Wellhead_4T_012720_20200204144557.pdf

Other Variance attachment:

5,000 psi BOP Stack

ŧ

For the latest performance data, always visit our website: www.tenaris.com

Wedge 513®

Printed on: 01/30/2018

Sec. Sec.	ļ
1. 54	Ì
	į
1 7 2 4	
1.	Ì
1.5	ļ
(· · ·	
1	
1.1	
12.3.1	
In Sec. 1	
1. 1	
i z zd	
	l
	ĺ
1	l
1 4	İ
	İ
1 1	
5	
E.S.	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A 10 A 10 A 10 A 10 A 10 A 10 A 10 A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	
10 A A	

Outside Diameter	7.625 in,	Min. Wall Thickness	87.5 %	(*) Grade P110	
Wall Thickness	0.375 in.	Connection OD Option	REGULAR	COUPLING	PIPE BODY
Grade	P110*	Drift	API Standard	[/] Body: White 1st Band: - 2nd Band: -	1st Band: White 2nd Band: - 3rd Band: -
		Туре	Casing	3rd Band: -	4th Band: -
			J		
GEOMETRY					
Nominal OD	7.625 in.	Nominal Weight	29.70 lbs/ft	Drift	6.75 in.

GEOMETRY				(
Nominal OD	7.625 in.	Nominal Weight	29.70 lbs/ft	Drift	6.75 in.
Nominal ID	6.875 in.	Wall Thickness	0.375 in.	Plain End Weight	29.06 lbs/ft
OD Tolerance	ΑΡΙ)		
PERFORMANCE	ni			с а	
Body Yield Strength	940 x1000 lbs	Internal Yield	9470 psi	SMYS	110000 psi
Collapse	5350 psi				
	• 	k	. <u></u>	1 	
GEOMETRY					
Connection OD	7.625 in.		6.800 in.	Make-up Loss	4.420 in.
Threads per in	3.29	Connection OD Option	REGULAR	17 	
PERFORMANCE				<i>k</i>	. <u>`</u>
Tension Efficiency	60.0 %	Joint Yield Strength	564.000 x1000 lbs	Internal Pressure Capacity	
Compression Efficiency	75.2 %	Compression Strength	706.880 x1000 Ibs	Max. Allowable Bending	
External Pressure Capacity	5350.000 psi			······································	in on a methodog i un andranismismi
MAKE-UP TORQUES	8	4	`.	-	
Minimum	9000 ft-lbs /	Optimum	10800 ft-lbs	Maximum	15800 ft-lbs
OPERATION LIMIT T	ORQUES	<u>.</u>		л ₩	
Operating Torque	47000 ft-lbs	Yield Torque	70000 ft-lbs	- -	

Notes

This connection is fully interchangeable with:

Wedge 523® - 7.625 in. - 29.7 lbs/ft

Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version

For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ('Information') is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information --if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . ©Tenaris 2017. All rights reserved.

L.

1

.

,

} . ·

.

`

For the latest performance data, always visit our website: www.tenaris.com

Wedge 521®

Printed on: 05/22/2018

5.000 in.	Min. Wall Thickness	87.5%	(*) Grade P110-	A	
0.362 in.	Connection OD Option	REGULAR	COUPLING	PIPE BODY	
P110-IC*	Drift	API Standard	J Body: White 1st Band: -	1st Band; White 2nd Band: Pale	
	Туре	Casing	2nd Band: - 3rd Band: -	Green 3rd Band: - ' 4th Band: -	
5.000 in.	Nominal Weight	18.00 lbs/ft	Drift	4.151 in.	
4.276 in.	Wall Thickness	0.362 in.	Plain End Weight	17.95 lbs/ft	
API	*******			*****	
	· · · · · · · · · · · · · · · · · · ·		3		
580 x1000 lbs	Internal Yield	13940 psi	SMYS	110000 psi	
14840 psi					
5.359 in.	Connection ID	4.226 in.	Make-up Loss	3.620 in.	
3.36	Connection OD Option	REGULAR	1		
	.4		4		
73.8 %	Joint Yield Strength	428.040 ×1000 Ibs	Internal Pressure Capacity	13940.000 ps	
88.7 %	Compression Strength	514.460 ×1000 ibs	Max. Allowable Bending	74.5 °/100 ft	
14840.000 psi	1				
ES	· · · · · · · · · · · · · · · · · · ·				
6100 ft-lbs	Optimum	7300 ft-lbs	Maximum	10700 ft-lbs	
TORQUES	<u>a</u>	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·	
	4.276 in. API 580 x1000 lbs 14840 psi 5.359 in. 3.36 73.8 % 88.7 % 14840.000 psi ES § 6100 ft-lbs	Thickness 0.362 in. Connection OD Option P110-IC* Drift S.000 in. Nominal Weight 4.276 in. Wall Thickness API Internal Yield 14840 psi Internal Yield 3.36 Connection ID 73.8 % Joint Yield Strength 88.7 % Compression Strength 14840.000 psi ES § 100 ft-lbs Optimum	Thickness Connection OD Option REGULAR Option P110-IC* Drift API Standard 5.000 in. Nominal Weight 18.00 lbs/ft 4.276 in. Wall Thickness 0.362 in. API	Thickness (1) Grade P110-IC 0.362 in. Connection OD Option REGULAR COUPLING Drift API Standard Body: White 1st Band: - 2nd Band: - Body: White 1st Band: - 2nd Band: - 5.000 in. Nominal Weight 18.00 ibs/ft Drift 4.276 in. Wall Thickness 0.362 in. Plain End Weight 5.000 in. Nominal Weight 18.00 ibs/ft Drift 4.276 in. Wall Thickness 0.362 in. Plain End Weight 580 x1000 lbs Internal Vield 3940 psi SMYS 14840 psi Internal Vield 1426 in. Make-up Loss 3.36 Connection ID 4.226 in. Make-up Loss 73.8 % Joint Yield Strength 428.040 x1000 lbs Internal Pressure Capacity lbs 88.7 % Compression Strength 514.460 x1000 lbs Max. Allowable Bending lbs 14840.000 psi Optimum 7300 ft-lbs Maximum	

Notes

This connection is fully interchangeable with:

Wedge 521® - 5 in. - 13 / 15 lbs/ft

Connections with Dopeless® Technology are fully compatible with the same connection in its Standard version

For further information on concepts indicated in this datasheet, download the Datasheet Manual from www.tenaris.com

Tenaris has issued this document for general information only, and the information in this document, including, without limitation, any pictures, drawings or designs ("Information") is not intended to constitute professional or any other type of advice or recommendation and is provided on an "as is" basis. No warranty is given. Tenaris has not independently verified any information -if any- provided by the user in connection with, or for the purpose of, the Information contained hereunder. The use of the Information is at user's own risk and Tenaris does not assume any responsibility or liability of any kind for any loss, damage or injury resulting from, or in connection with any Information contained hereunder or any use thereof. The Information in this document is subject to change or modification without notice. Tenaris's products and services are subject to Tenaris's standard terms and conditions or otherwise to the terms resulting from the respective contracts of sale or services, as the case may be, between petitioner and Tenaris. For more complete information please contact a Tenaris's representative or visit our website at www.tenaris.com . **CT**enaris 2017. All rights reserved.

- Gas gravity 0.7
- Pore pressure gradient .468 psi/ft above the Wolfcamp, .676 psi/ft Wolfcamp and below
- .676 psi/ft fracture gradient above the Wolfcamp, .832 psi/ft Wolfcamp and below.
- 60°F average surface temperature and 1.5°/100ft temperature gradient
- Cementing loads based on slurries listed in Cement table, and post cement static loading
- Strings landed at neutral weight
- Gas kicks assumed at each casing shoe
- External pressure calculated with fluid gradients and pore pressure
- Production string load tested with completion fluid density and rate
- Tubing leak tested in production scenario

- Gas gravity 0.7
- Pore pressure gradient .468 psi/ft above the Wolfcamp, .676 psi/ft Wolfcamp and below
- .676 psi/ft fracture gradient above the Wolfcamp, .832 psi/ft Wolfcamp and below.
- 60°F average surface temperature and 1.5°/100ft temperature gradient
- Cementing loads based on slurries listed in Cement table, and post cement static loading
- Strings landed at neutral weight
- Gas kicks assumed at each casing shoe
- External pressure calculated with fluid gradients and pore pressure
- Production string load tested with completion fluid density and rate
- Tubing leak tested in production scenario

- Gas gravity 0.7
- Pore pressure gradient .468 psi/ft above the Wolfcamp, .676 psi/ft Wolfcamp and below
- .676 psi/ft fracture gradient above the Wolfcamp, .8 32 psi/ft Wolfcamp and below.
- 60°F average surface temperature and 1.5°/100ft temperature gradient
- Cementing loads based on slurries listed in Cement table, and post cement static loading
- Strings landed at neutral weight
- Gas kicks assumed at each casing shoe
- External pressure calculated with fluid gradients and pore pressure
- Production string load tested with completion fluid density and rate
- Tubing leak tested in production scenario

- Gas gravity 0.7
- Pore pressure gradient .468 psi/ft above the Wolfcamp, .676 psi/ft Wolfcamp and below
- .676 psi/ft fracture gradient above the Wolfcamp, .832 psi/ft Wolfcamp and below.
- 60°F average surface temperature and 1.5°/100ft temperature gradient
- Cementing loads based on slurries listed in Cement table, and post cement static loading
- Strings landed at neutral weight
- Gas kicks assumed at each casing shoe
- External pressure calculated with fluid gradients and pore pressure
- Production string load tested with completion fluid density and rate
- Tubing leak tested in production scenario

5.5", 20#, P-110, TXP connection (modified buttress connection that provides a torque rating of nearly 24000ft-lbs)

XP® BTC					SHARE	EXPORT DATA PRI
	and the state of the state		•• • • •			
	Outside 5.500 in. Diameter	Min. Wali Thíckness	87.5%		▼	Clear Filters
	Wall 0.361 in.	Drift	API Slandard		· · · · · · · · · · · · · · · · · · ·	Compare
	Thickness	Туре	Casing			Request Info
	Grade <u>P110</u>	Connection OD	REGULAR		in	FORMATION Blanking Dimensions
Q		Option ···			>	Connection's Page Brochure Datasheet Manual
· .	PIPE BODY DATA"	a to a to a	a a contra			
	GEOMETRY				n that de tenser is the 	yr er e gelege yn yw ywr
	Nominal OD	5.500 in	Nominal Weight	20 lbs/ft	Drift	4.653 in
	Nominal ID	4.778 in.	Wall Thickness	0.361 in,	Plain End Weight	19.83 lbs/fi
	OD Tolerance	API				
		- · · · ·		· · ·) <u></u>	
	PERFORMANCE Body Yield Strength	644 y4000 lba	1		d anala	
	Body nelu Strength	641 x1000 lbs	Internal Yield	12640 psi	SMYS	110000 psi
	Collapse	11100 psi				a a san yerna allanaan yerna as
e e	•					x
	CONNECTION DATA	14.4 新闻·	1		a a construction of the second	
Ο	GEOMETRY					1
	Connection OD	6.100 in.	Coupling Length	9.450 in,	Connection ID	4.766 in.
	Make-up Loss	4.204 in	Threads per in	5	Connection OD Option	REGULAR
	PERFORMANCE				and an a second	
n B K	Tension Efficiency	100.0 %	Joint Yield Strength	641.000 ×1000 lbs	Internal Pressure Capacity [1]	12640.000 psi
	Compression Efficiency	100 %	Compression Strength	641.000 ×1000 lbs	Max. Allowable Bending	92 ³/100 ft
	External Pressure Capacity	11100.000 psi		/		• • • • • • • • • • • •
	MAKE-UP TORQUES		1,	· · · · · · · · · · · · · · · · · · ·	- , iji	
	Minimum	11270 ft-lbs	Optimum	12520 ft-lbs	Maximum	13770 ft-lbs
		POUR		• ····		· · · · · · · · · · · · · · · · · · · ·
	OPERATION LIMIT TO Operating Torque	21500 ft-lbs	Yield Torque	23900 ft-lbs		** .
	1					

- Gas gravity 0.7
- Pore pressure gradient .468 psi/ft above the Wolfcamp, .676 psi/ft Wolfcamp and below
- .676 psi/ft fracture gradient above the Wolfcamp, .832 psi/ft Wolfcamp and below.
- 60°F average surface temperature and 1.5°/100ft temperature gradient
- Cementing loads based on slurries listed in Cement table, and post cement static loading
- Strings landed at neutral weight
- Gas kicks assumed at each casing shoe
- External pressure calculated with fluid gradients and pore pressure
- Production string load tested with completion fluid density and rate
- Tubing leak tested in production scenario

- Gas gravity 0.7
- Pore pressure gradient .468 psi/ft above the Wolfcamp, .676 psi/ft Wolfcamp and below
- .676 psi/ft fracture gradient above the Wolfcamp, .\$32 psi/ft Wolfcamp and below.
- 60°F average surface temperature and 1.5°/100ft temperature gradient
- Cementing loads based on slurries listed in Cement table, and post cement static loading
- Strings landed at neutral weight
- Gas kicks assumed at `each casing shoe
- External pressure calculated with fluid gradients and pore pressure
- Production string load tested with completion fluid density and rate
- Tubing leak tested in production scenario

Hydrogen Sulfide Drilling

Operations Plan

Tap Rock Resources

1 H2S safety instructions to the following:

- Characteristics of H2S
- Physical effects and hazards
- Principal and operation of H2S detectors, warning system and briefing areas
- Evacuation procedures, routes and first aid
- Proper use of safety equipment & life support systems
- Essential personnel meeting medical evaluation criteria will receive additional training on the proper use of 30min pressure demand air packs

2 H2S Detection and Alarm Systems:

- H2S sensor/detectors to be located on the drilling rig floor, in the base of the sub structure / cellar area, on the mud pits in the shale shaker area. Additional H2S detectors may be placed as deemed necessary
- An audio alarm system will be installed on the derrick floor and in the doghouse

3 Windsocks and / Wind Streamers:

- Windsocks at mud pit area should be high enough to be visible
- Windsock on the rig floor and / top of doghouse should be high enough to be visible

4 Condition Flags and Signs:

- Warning sign on access road to location
- Flags to be displayed on sign at entrance to location
 - Green Flag Normal Safe Operation Condition
 - Yellow Flag Potential Pressure and Danger
 - Red Flag Danger (H2S present in dangerous concentrations) Only H2S trained personnel admitted on location

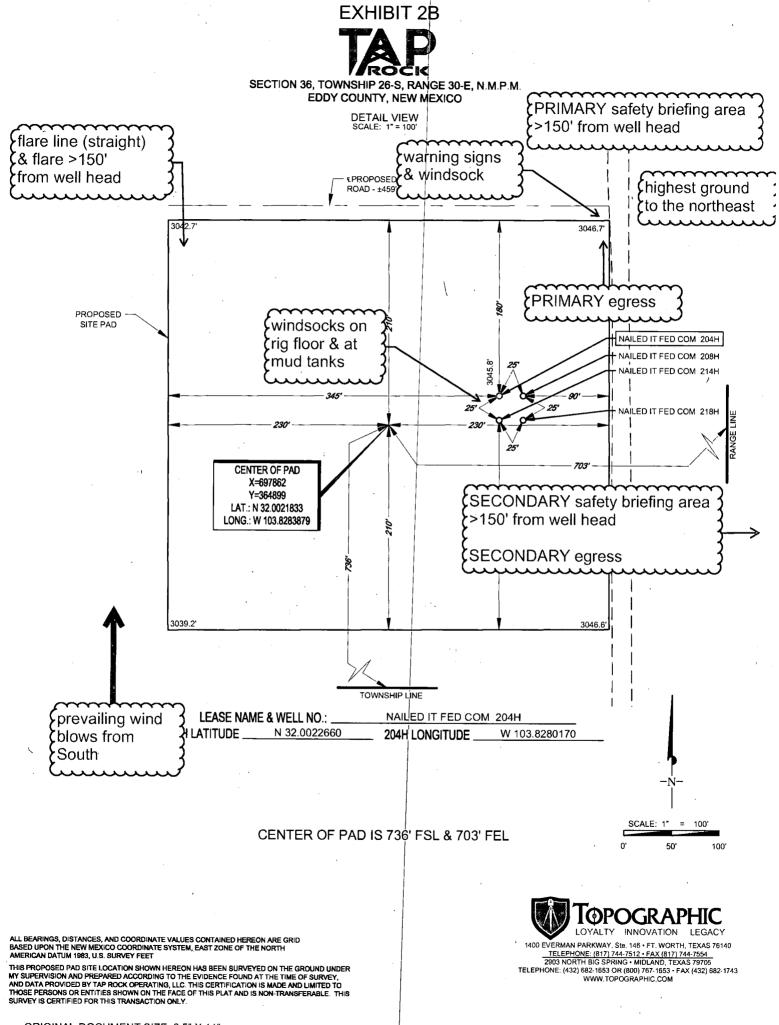
5 Well Control Equipment:

• See Drilling Operations Plan Schematics

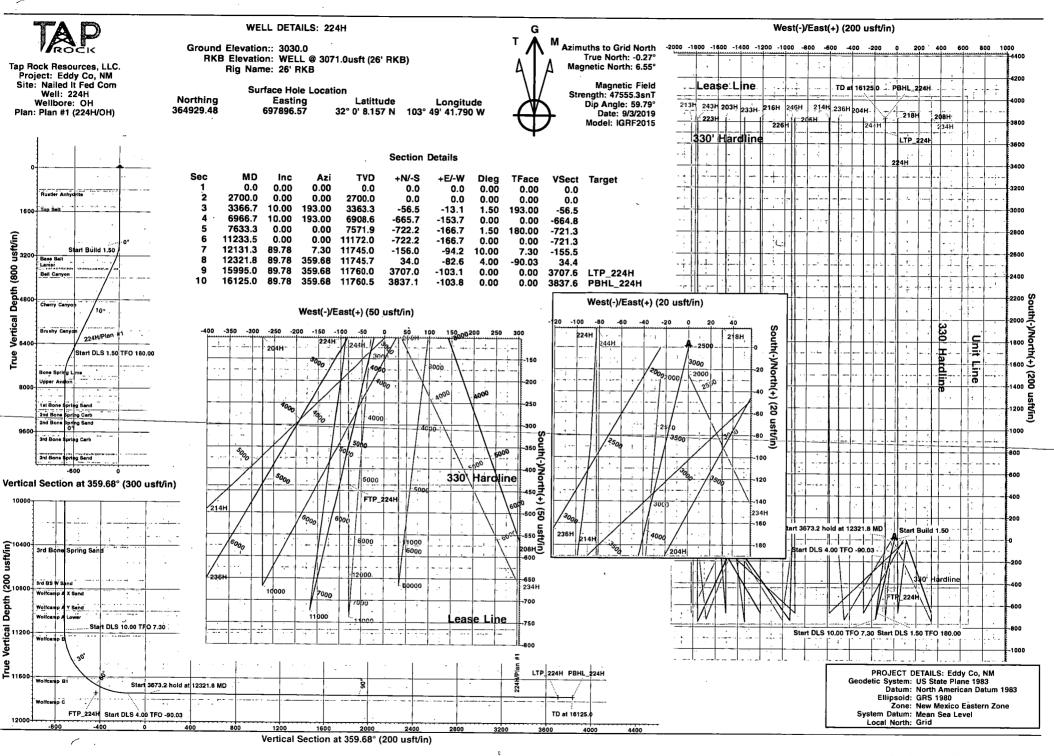
6 Communication:

- While working under masks chalkboards will be used for communications
- Hand signals will be used where chalk board is inappropriate
- Two way radio will be used to communicate off location in case of emergency help is required. In most cases cellular telephones will be available at most drilling foreman's trailer or living quarters.

7 Drilling Stem Testing:


• No DST cores are planned at this time

8 Drilling contractor supervisor will be required to be familiar with the effects H2S has on tubulars good and other mechanical equipment


9 If H2S is encountered, mud system will be altered if necessary to maintain control of formation. A mud gas separator will be brought into service along with H2S scavengers if necessary

11 Emergency Contacts

Emergency Cont	acts	
Carlsbad Police Department	575.887.7551	911
Carlsbad Medical Center	575.887.4100	911
Eddy County Fire Service	575.628.5450	911
Eddy County Sherriff	575.887.7551	911
Lea County Fire Service	575.391.2983	911
Lea County Sherriff	575.396.3611	911
, Jal Police Department	575.395.2121	911
Jal Fire Department	575.395.2221	.911
Tap Rock Resources	720.772.5090	

ORIGINAL DOCUMENT SIZE: 8.5" X 11"

Plan: Plan #1 (224H/OH) Created By: MIH Consulting Date: 20:20, September 20 2019

Tap Rock Resources

Eddy Co, NM Nailed It Fed Com 224H

OH

Plan: Plan #1

Standard Planning Report

04 September, 2019

Project	Eddy Co, NM		andre and the second descent second second second second second second second second second second second secon	·			
Map System: Geo Datum: Map Zone:	US State Plane North Americar New Mexico Ea	e 1983 n Datum 1983		System Datum:		Mean Sea Leve	l ,
Site	Nailed It Fed	Com					
Site Position: From: Position Uncertainty	Lat/Long	2.0 usft	Northing: Easting: Slot Radius:	364,379.32 695,207.24 13-3	usft Long	ide: itude: Convergence:	32° 0' 2.836 103° 50' 13.051 0.26
Well	224H			alaini dhaalaini ahaa amii yo aaniini aaaana amaa a		and a second second second second second second second second second second second second second second second	
Well Position Position Uncertainty	+N/-S +E/-W	550.2 usft 2,689.3 usft 2.0 usft	Northing: Easting: Wellhead Eleva	697	,929.48 usft ,896.57 usft	Latitude: Longitude: Ground Level:	32° 0' 8.157 103° 49' 41.790 3,045.0 u
Wellbore	ОН						
Magnetics	Model Na	nme RF2015	Sample Date 9/3/2019	Declination (°)	682	Dip Angle (°) 59.79	Field Strength (nT) 47,555.30498219
Design	Plan #1			ference of the second second second second second second second second second second second second second second		To the set of Alata and a constant	
							د میشوند. و سروی میشوند و بین میشوند و میشوند و میشوند و میشوند و میشوند و بین میشوند و میشوند و میشوند و می در میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و میشوند و م
Audit Notes: Version:			Phase:	PLAN	Tie On D		0.0
		(u	om (TVD) sft) .0	+N/-S (usft) 0.0	+E/-W (usft)		virection (°)
				0.0	0.0		359.68
Plan Survey Tool Pro	ogram	Date 9/4/20	19		0.0		359.68
Plan Survey Tool Pro Depth From (usft)	ogram Depth To (usft)	Date 9/4/20 Survey (Wellbo		, Tool Name	e y e se e se e se	narks	359.68
Depth From	Depth To			and the second second second second second second second second second second second second second second second	e y e se e se e se		359.68
Depth From (usft)	Depth To (usft)	Survey (Wellbo		Tool Name	e y e se e se e se		359.68
Depth From (usft) 1 0.0 Plan Sections Measured	Depth To (usft) 16,125.0	Survey (Wellbc Plan #1 (OH) Vertic uth Dept	ore) al h +N/ ₂ S	Tool Name MWD	Rer leg B te R		359.68 TFO (۴) Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0	Depth To (usft) 16,125.0	Survey (Wellbc Plan #1 (OH) Vertic outh Dept (usft 0.00	al h +N/-S) (usft) 0.0 0.0	Tool Name MWD MWD - Standard Dog +E/-W (usft) (°/100 0.0	leg Bute (*/10 0.00	narks Jild Turn ate Rate Ousft) (°/100usft) 0.00 0.00	TFO (*) Target
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 2,700.0	Depth To (usft) 16,125.0	Survey (Wellbc Plan #1 (OH) Vertic uth Dept). (uşft 0.00 0.00 2,7	al h +N/-S) (usft) 0.0 0.0 700.0 0.0	Tool Name MVVD MVVD - Standard Dog +E/-W Rat (usft) (°/100 0.0 0.0	leg Br te R usft) (*/10 0.00 0.00	narks uild Turn ate Rate 0usft) (°/100usft) 0.00 0.00 0.00 0.00	TFO (°) Target 0.00 0.00
Depth From (usft) 1 0.0 Plan Sections Measured Depth inclin (usft) (0.0 2,700.0 3,366.7	Depth To (usft) 16,125.0	Survey (Wellbc Plan #1 (OH) Vertic uth Dept). (usft 0.00 0.00 2,7 193.00 3,3	al h +N/-S) (usft) 0.0 0.0 700.0 0.0 63.3 -56.5	Tool Name MVVD MVVD - Standard +E/-W Rat (usft) (°/100 0.0 0.0 -13.1	leg Br te R usft) (*/10 0.00 0.00 1.50	narks uild Turn ate Rate 0usft) (°/100usft) 0.00 0.00 0.00 0.00 1.50 0.00	TFO (°) Target 0.00 0.00 193.00
Depth From (usft) 1 0.0 Plan Sections Measured Depth inclin (usft) 0.0 2,700.0 3,366.7 6,966.7	Depth To (usft) 16,125.0 nation Azim (°) (°) 0.00 0.00 10.00 10.00	Survey (Wellbc Plan #1 (OH) Vertic uth Dept). (usft 0.00 0.00 2,7 193.00 3,3 193.00 6,9	al h +N/-S) (usft) 0.0 0.0 700.0 0.0 163.3 -56.5 108.6 -665.7	Tool Name MVVD MVVD - Standard Dog +E/-W Rat (usft) (*/100 0.0 0.0 -13.1 -153.7	leg Bi te (*/10 0.00 0.00 1.50 0.00	narks uild Tùrn ate Rate Ousft) (°/100usft) 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00	TFO (*) 0.00 0.00 193.00 0.00
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 2,700.0 3,366.7 6,966.7 7,633.3	Depth To (usft) 16,125.0 nation Azim (°) (°) 0.00 0.00 10.00 10.00 10.00 0.00	Survey (Wellbc Plan #1 (OH) Vertic uth Dept). (usft 0.00 0.00 2,7 193.00 3,3 193.00 6,9 0.00 7,5	al h +N/-S) (usft) 0.0 0.0 00.0 0.0 063.3 -56.5 008.6 -665.7 771.9 -722.2	Tool Name MVVD MVVD - Standard Dog +E/-W Rat (usft) (°/100 0.0 0.0 -13.1 -153.7 -166.7	leg Bi te R usft) (*/10 0.00 1.50 0.00 1.50	narks uild Tùrn ate Rate Ousft) (°/100usft) 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 -1.50 25.05	TFO (*) Target 0.00 0.00 193.00 0.00 180.00
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 2,700.0 3,366.7 6,966.7 7,633.3 11,233.5	Depth To (usft) 16,125.0 nation Azim (°) (° 0.00 0.00 10.00 10.00 10.00 0.00 0.00	Survey (Wellbc Plan #1 (OH) Vertic uth Dept). (usft 0.00 0.00 2,7 193.00 3,3 193.00 6,9 0.00 7,5 0.00 11,1	al h +N/-S) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.63.3 -56.5 0.65.7 0.71.9 -722.2 72.0 -722.2	Tool Name MVVD MVVD - Standard Dog +E-W (usft) (°/100 0.0 -13.1 -153.7 -166.7 -166.7	leg Bi te Rer (*/10 0.00 0.00 1.50 0.00 1.50 0.00	narks uild Turn ate Rate Ousft) (°/100usft) 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 -1.50 25.05 0.00 0.00	TFO (*) Target 0.00 0.00 193.00 0.00 180.00 0.00
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 2,700.0 3,366.7 6,966.7 7,633.3 11,233.5 12,131.3	Depth To (usft) 16,125.0 nation Azim (*) (*) 0.00 0.00 10.00 10.00 10.00 0.00 89.78	Survey (Wellbc Plan #1 (OH) Vertic uth Dept). (usft 0.00 0.00 2,7 193.00 3,3 193.00 6,9 0.00 7,5 0.00 11,1 7,30 11,7	al h +N/-S (usft) 0.0 0.0 0.0 0.0	Tool Name MVVD MVVD - Standard Dog +E/-W (usft) (°/100 0.0 -13.1 -153.7 -166.7 -166.7 -94.2	leg Bi te (*/10 0.00 0.00 1.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00	narks uild Turn ate Rate Ousft) (°/100usft) 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 -1.50 25.05 0.00 0.00 10.00 0.00	TFO (*) Target 0.00 0.00 193.00 0.00 180.00 0.00 180.00 0.00 7.30
Depth From (usft) 1 0.0 Plan Sections Measured Depth Inclin (usft) (0.0 2,700.0 3,366.7 6,966.7 7,633.3 11,233.5	Depth To (usft) 16,125.0 16,125.0 Azim (*) (*) (*) 0.00 0.00 10.00 10.00 10.00 10.00 0.00 0.00 89.78 89.78	Survey (Wellbc Plan #1 (OH) Vertic uth Dept 0.00 0.00 2,7 193.00 3,3 193.00 6,9 0.00 7,5 0.00 11,1 7,30 11,7 359.68 11,7	al h +N/-S) (usft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.63.3 -56.5 0.65.7 0.71.9 -722.2 72.0 -722.2	Tool Name MVVD MVVD - Standard Dog +E-W (usft) (°/100 0.0 -13.1 -153.7 -166.7 -166.7	leg Bi te Rer (*/10 0.00 0.00 1.50 0.00 1.50 0.00	narks uild Turn ate Rate Ousft) (°/100usft) 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 -1.50 25.05 0.00 0.00	TFO (*) Target 0.00 0.00 193.00 0.00 180.00 0.00 180.00 0.00 7.30 -90.03

1

,

	· · · · ·						i i se statu		de la de la com
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	alamaa ahaa ahaa ahaa ahaa ahaa ahaa aha	0.0		0.0	- 0.0	0.00	0.00	
100.0	0.00		100.0	· 0.0	0.0	- 0.0 0.0	. 0.00	0.00	0.00 0.00
200.0	0.00	0.00	200.0	0.0	0.0	` 0.0	0.00	0.00	0.00
, 300.0	0.00	0.00	300.0	0.0	ó.o	0.0	0.00	0.00	0.00
. 400.0	0.00	0.00	400.0	0.0	ģ.o	0.0	0.00	0.00	0.00
500.0	0.00	0.00	500.0	0.0	0.0	0.0			
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.00
700.0	0.00	0.00	700.0	0.0	0.0	. 0.0	, 0.00 0.00	0.00	0.00
800.0	. 0.00	0.00	800.0	0.0	0.0	0.0	0.00	0.00 0.00	0.00
860.0	0.00	0.00	860.0	0.0	0.0	0.0	· 0.00	0.00	0.00 0.00
Rustler Ani	nydrite					0.0	0.00	0.00	0.00
900.0	. 0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	0.00
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	0.00
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	0.00
1,200.0	0.00	0.00	1,200.0	0.0	0.0	0.0 0.0	0.00	0.00	0.00
1,300.0	0.00	0.00	1,300.0	0.0	0.0	0.0	0.00	0.00	0.00
						0.0	0.00	0.00	0.00
1,400.0	0.00	0.00	1,400.0	0.0	0.0	0.0	0.00	0.00	0.00
1,412.0	0.00	0.00	1,412.0	0.0	0.0	0.0	0.00	0.00	0.00
Top Salt					.				1
1,500.0	0.00	0.00	1,500.0	0.0	0.0	0.0	0.00	0.00	0.00
1,600.0	0.00	0.00	1,600.0	0.0	0.0	0.0	0.00	0.00	0.00
1,700.0	0.00	0.00	1,700.0	0.0	0.0	0.0	0.00	0.00	0.00
1,800.0	0.00	0.00	1,800.0						
1,900.0	0.00	0.00	1,800.0	0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00			0.0	0.0	0.0	0.00	0.00	0.00
2,000.0	0.00	0.00 •0.00	2,000.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,100.0	0.0	0.0	0.0	0.00	0.00	0.00
2,200.0	0.00	0.00	2,200.0	0.0	0.0	0.0	0.00	0.00	0.00
2,300.0	0.00	0.00	2,300.0	0.0	0.0	0.0	0.00	0.00	0.00
2,400.0	0.00	0.00	2,400.0	0.0	0.0	0.0	0.00	0.00	0.00
2,500.0	0.00	0.00	2,500.0	0.0	0.0	0.0	0.00	0.00	0.00
2,600.0	0.00	0.00	2,600.0	0.0	0.0	0.0	0.00	0.00	0.00
2,700.0	0.00	0.00	2,700.0	0.Ò	0.0	0.0	0.00	0.00	0.00
Start Build	1.50					·	,		
2,800.0	1.50	102.00	0 000 0	4.0					
2,900.0	3.00	193.00 193.00	2,800.0	-1.3	-0.3	-1.3	1.50	1.50	0.00
3,000.0	4.50	193.00	2,899.9 2,999.7	-5.1	-1.2	-5.1	1.50	1.50	0.00
3,100.0	6.00	193.00	2,999.7	-11.5 -20.4	-2.6	-11.5	1.50	1.50	0.00
3,200.0	7.50	193.00	3,099.3	-20.4 -31.8	-4.7 -7.4	-20.4	1.50	1.50	0.00
						-31.8	1.50	1.50	0.00
3,300.0	9.00	193.00	3,297.5	-45.8	-10.6	45.8	1.50	1.50	0.00
3,366.7	10.00	193.00	3,363.3	-56.5	-13.1	-56.5	1.50	1.50	0.00
	hold at 3366.7 l							۲.	
3,400.0	10.00	193.00	3,396.1	-62.2	-14.4	-62.1	0.00	0.00	0.00
3,455.7	10.00	193.00	3,451.0	-71.6	-16.5	-71.5	0.00	0.00	0.00
Base Salt			,						
3,500.0	10.00	193.00	3,494.6	-79.1	-18.3	-79.0	0.00	0.00	0.00
3,600.0	10.00	193.00	3,593.1	-96.0	-22.2	-95.9	0.00	0.00	0.00
3,663.9	10.00	193.00	3,656.0	-106.8	-24.7	-106.7	0.00	0.00	0.00
Delaware M							0.00	0.00	0.00
3,671.0	10.00	193.00	3,663.0	-108.0	-24.9	-107.9	0.00	. 0.00	0.00
Lamar			-,•			107.0	0.00	0.00	0.00
3,690.3	10.00	193.00	3,682.0	-111.3	-25.7	-111.2	0.00	0.00	0.00
Bell Canyon		100.00	5,002.0	-111.0	-23.1	-111.2	0.00	0.00	0.00
3,700.0	10.00	193.00	3,691.6	112.0	06.4	440.0	0.00	A AA	0.00
,				-112.9	-26.1	-112.8	0.00	0.00	0.00
3,702.5	10.00	193.00	3,694.0	-113.4	-26.2	-113.2	0.00	0.00	0.00
Ramsey Sar	nd								
3,800.0	10.00	193.00	3,790.0	-129.9	-30.0	-129.7	0.00	0.00	0.00
3,900.0	10.00	193.00	3,888.5	-146.8	-33.9	-146.6	0.00	0.00	0.00
4,000.0	10.00	193.00	3,987.0	-163.7	-37.8	-163.5	0.00	0.00	0.00
4,100.0	10.00	193.00	4,085.5	-180.6	-41.7	-180.4	0.00	0.00	0.00
4,200.0	10.00	193.00	4,184.0	-197.5	-45.6	-197.3	0.00	0.00	0.00
4,300.0	10.00	193.00	4,282.4	-214.5	-49.5	-214.2	0.00	0.00	0.00
4,400.0	10.00	193.00	4,380.9	-231.4	-53.4	-231.1	0.00	0.00	. 0.00
4,500.0	10.00	193.00	4,479.4	-248.3	-57.3	-248.0	0.00	0.00.	0.00
4,600.0	10.00	193.00	4,577.9	-265.2	-61.2	-264.9	0.00	0.00	0.00
4,700.0	10.00	193.00	4,676.4	-282.1	-65.1	-281.8	0.00	0.00	0.00
4,700.0	-		4,774.8	-299.1			0.00	0.00	0.00

	· · · · · · · · · · · · · · · · · · ·						· · ·			
annec	l Survey									
			and a set of the set	a standard						
	Measured			Vertical	الحکي التي الطحالي و ارجي الحروم و الا	i u ijek. Na na	Vertical	Dogleg	Build	Turn
* 15, #4	Depth (usft)	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Rate
	(usic)	<u> </u>	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
	4,898.7	10.00	193.00	4,872.0	-315.8	-72	.9 -315.3	0.00	0.00	0.00
	Cherry Cany				•					
	4,900.0 5,000.0	10.00	193.00	4,873.3	-316.0	-72		0.00	0.00	0.00
		10.00	193.00	4,971.8	-332.9	-76	.9 -332.5	0.00	0.00	0.00
	5,100.0	10.00	193.00	5,070.3	-349.8	-80		0.00	0.00	0.00
	5,200.0	10.00	193.00	5,168.8	-366.7	-84		0.00	0.00	0.00
	5,300.0 5,400.0	10.00	193.00	5,267.2	-383.7	-88	•	0.00	0.00	0.00
	5,400.0	10.00 10.00	193.00 193.00	5,365.7 5,464.2	-400.6	-92		0.00	0.00	0.00
					-417.5	-96	.4 -417.0	0.00	0.00	0.00
	5,600.0	10.00	193.00	5,562.7	-434.4	-100		0.00	0.00	0.00
	5,700.0	10.00	193.00	5,661.2	-451.3	-104.		0.00	0.00	0.00
	5,800.0	10.00	193.00	5,759.7	-468.3	-108		0.00	0.00	0.00
	5,866.4	10.00	193.00	5,825.0	-479.5	-110.	7 -478.9	0.00	0.00	0.00
	Brushy Cany		100.00				-			
	5,900.0	10:00	193.00	5,858.1	-485.2	-112.	0 -484.5	0.00	0.00	0.00
	6,000.0	10.00	193.00	5,956.6	-502.1	/-115.	9 -501.4	0.00	0.00	0.00
	6,100.0	10.00	193.00	6,055.1	-519.0	-119.		0.00	0.00	0.00
	6,200.0	10.00	193.00	6,153.6	-535.9	-123.	7 -535.2	0.00	0.00	0.00
	6,300.0	10.00	193.00	6,252.1	-552.9	-127.		0.00	0.00	0.00
	6,400.0	10.00	193.00	6,350.5	-569.8	-131.	5 -569.0	0.00	0.00	0.00
	6,500.0	10.00	193.00	6,449.0	-586.7	-135.	4 -585.9	0.00	0.00	0.00
	6,600.0	10.00	193.00	6,547.5	-603.6	-139.		0.00	0.00	0.00
	6,700.0	10.00	193.00	6,646.0	-620.5	-143.		0.00	0.00	0.00
	6,800.0	10.00	193.00	6,744.5	-637.5	-147.		0.00	0.00	0.00
	6,900.0	10.00	193.00	6,842.9	-654.4	151.	1 -653.5	0.00	0.00	0.00
	6,966.7	10.00	193.00	6,908.6	-665.7	-153.	7 -664.8	0.00	0.00	0.00
	,	0 TFO 180.00	100.00	0,000.0	-000.7	-135.	/ -004.0	0.00	0.00	0.00
	7,000.0	9.50	193.00	6,941,4	-671.2	-154.			4.50	0.00
	7,100.0	8.00	193.00	7,040.3	-686.0	-154.		1.50 1.50	-1.50 -1.50	0.00
	7,200.0	6.50	193.00	7,139.5	-698.3	-161.		1.50	-1.50	0.00 0.00
	7,300.0	5.00	193.00	7,239.0	-708.0	-163.		1.50	-1.50	0.00
	7,400.0	3.50	193.00	7,338.7	-715.3	-165.		1.50	-1.50	0.00
	7,500.0 7,600.0	2.00 0.50	193.00 193.00	7,438.6	-719.9	-166.		1.50	-1.50	0.00
	7,633.3	0.00	0.00	7,538.5 7,571.9	-722.1	-166. -166.		1.50	-1.50	0.00
	-	nold at 7633.3 M		7,371.9	-722.2	- 100.	7 -721.3	1.50	-1.50	501.00
	7,635.5	0.00	0.00	7,574.0	. 700.0	100	7 704 0	0.00		
			. 0.00	7,574.0	-722.2	-166.	7 -721.3	0.00	0.00	0.00
	Bone Spring	Lime							/	
	7,700.0	0.00	0.00	7,638.5	-722.2	-166.	7 -721.3	0.00	0.00	0.00
	7,753.5	0.00	0.00	7,692.0	-722.2	-166.	7 -721.3	0.00	0.00	0.00
	Upper Avalon	۱	ſ				•			
	7,800.0	0.00	0.00	7,738.5	-722.2	-166.1	7 -721.3	0.00	0.00	0.00
	7,900.0	0.00	0.00	7,838.5	-722.2	-166.	7 -721.3	0.00	0.00	0.00
	8,000.0	0.00	0.00	7,938.5	-722.2	-166.1	7 -721.3	0.00	0.00	0.00
	8,100.0	0.00	0.00	8,038.5	-722.2	-166.	7 -721.3	0.00	0.00	, 0.00
•	8,140.5	. 0.00	0.00	8,079.0	-722.2	-166.		0.00	0.00	0.00
	Middle Avalor	n)					
	8,200.0	0.00	0.00	8,138.5	-722.2	-166.1	7 -721.3	0.00	0.00	0.00
	8,300.0	0.00	0.00	8,238.5	-722.2	-166.3		0.00	0.00	0.00
	8,364.5	0.00	0.00	8,303.0	-722.2	-166.3	7 -721.3	0.00	× 0.00	0.00
	Lower Avalon	1					r i			
	8,400.0	0.00	0.00	8,338.5	-722.2	-166.	7 704.0	0.00	0.00	0.00
	8,500.0	0.00	0.00	8,438.5	-722.2	166.		0.00 0.00	0.00 0.00	0.00 0.00
	8,580.5	0.00	0.00	8,519.0	-722.2	166.1		0.00	0.00	0.00
	1st Bone Spri		0.00		166.2	. 100.1	121.0	0.00	0.00	0.00
	8,600.0	0.00	0.00	8,538.5	-722.2	-166.1	7 -721.3	0.00	0.00	0.00
	8,700.0	0.00	0.00	8,638.5	-722.2	-166		0.00	0.00	0.00
	8,800.0	0.00	0.00	8,738.5	-722.2	-166.7		0.00	0.00	0.00
	8,900.0	0.00	0.00	8,838.5	-722.2	-166.		0.00	0.00	0.00
	8,930.5	0.00	0.00	8,869.0	-722.2	-166.7	7 -721.3	0.00	0.00	0.00
	2nd Bone Spr	-								
	9,000.0	0.00	0.00	8,938.5	-722.2	-166.7		0.00	0.00	0.00
	9,100.0	0.00	0.00	9,038.5	-722.2	-166.7	7 -721.3	0.00	0.00	0.00
	9,200.0	·0.00	0.00	9,138.5	-722.2	-166.7	-721.3	0.00	0.00	0.00
	9,215.5	0.00	0.00	9,154.0	-722.2	-166.7		0.00	0.00	0.00
	-10.0	3.00	0.00	0,104.0	,	- 100.1	-121.0	0.00	0.00	0.00

C

•

ς.,

	Measured			Vertical	Υ		Vertical	Dogleg	Build	Turn	•
	Depth (usft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft)	Rate (°/100usft)	Rate (°/100usft)	
	2nd Bone S	pring Sand									
	.9,300.0	0.00	0.00	9,238.5	-722.2	-166-7	-721.3	0.00	0.00	. 0.00	
	9,400.0	0.00	0.00	9,338.5	-722.2	-166.7		0.00	0.00	0.00	
	9,500.0	0.00	0.00	9,438.5	-722.2	-166.7		0.00	0.00	0.00	
	0.000.0	0.00					1			0.00	
	9,600.0	0.00	0.00	9,538.5	-722.2	-166.7		0.00	0.00	0.00	
	9,700.0	0.00	0.00	9,638.5	-722.2	-166.7		0.00	0.00	0.00	
	9,800.0	0.00	0.00	9,738.5	-722.2	-166.7		0.00	0.00	0.00	
	9,814.5	0.00	0.00	9,753.0	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	3rd Bone Sp	-	C								
	9,900.0	0.00	0.00	9,838.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	10,000.0	0.00	0.00	9,938.5	-722.2	-166.7	704.0	0.00	·		
	10,100.0	0.00	0.00	10,038.5	-722.2			0.00	0.00	0.00	
	10,200.0	0.00	0.00	10,138.5	-722.2	-166.7		0.00	0.00	0.00	
	10,300.0	0.00	0.00			-166.7		0.00	0.00	0.00	
	10,400.0	0.00		10,238.5	-722.2	-166.7		0.00	0.00	0.00	
	10,400.0	0.00	0.00	10,338.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	10,482.5	0.00	0.00	10,421.0	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	3rd Bone Sp	ring Sand						0.00	0.00	0.00	
	10,500.0	0.00	0.00	10,438.5	-722.2	400 7	704 0	0.00			
	10,600.0	0.00	0.00	10,438.5		-166.7	-721.3	0.00	0.00	0.00	
	10,800.0	0.00			-722.2	-166.7	-721.3	0.00	0.00	0.00	
	10,782.5	0.00	0.00	10,638.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
			0.00	10,721.0	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	3rd BS W Sa	nd									
	10,800.0	0.00	0.00	10,738.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	10,873.5	0.00	0.00	10,812.0	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	Wolfcamp A		0.00	.0,012.0	-146.6	-100.7	-121.3	0.00	0.00	0.00	
	10,900.0		0.00	10 000 -		, L	·	-			
	•	0.00	0.00	10,838.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	11,000.0	0.00	0.00	10,938.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	11,002.5	0.00	0.00.	10,941.0	-722.2	-166.7	-721.3	0.00	. 0.00	0.00	
	Wolfcamp A	Y Sand				1					
	11,089.5	0.00	0.00	11,028.0	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	Wolfcamp A						121.0	0.00	0.00	0.00	
• •	11,100.0	0.00	0.00	11,038.5	700.0	100-	704 0		A		
	11,200.0	0.00	0.00	11,038.5	-722.2	-166.7	-721.3	0.00	0.00	0.00	
	11,233.5	0.00			-722.2	-166.7	-721.3	0.00	0.00	0.00	
			0.00	11,172.0	-722.2	-1667	-721.3	0.00	, 0.00	0.00	
	Start DLS 10.		_								
	11,250.0	1.65	7.30	11,188.5	-722.0	-166 7	-721.0	10.00	10.00	44.11	
	11,288.5	5.51	7.30	11,227.0	-719.6	-166.4	-718.6	10.00	10.00	0.00	
	Wolfcamp B	5.01				100,4	-7 10.0	10.00	10.00	0.00	
	woncamp в 11,300.0	0.05	7 00	14 000 4	740 4		•				
		6.65	7.30	11,238.4	-718.4	-166.2	-717.4	10.00	10.00	0.00	
	11,350.0	11.65	7.30	11,287.7	-710.5	-165.2	-709.5	10.00 ,	10.00	0.00	
	11,400.0	16.65	7.30	11,336.2	-698.4	-163.7	-697.4	10.00	10.00	0.00	
	11,450.0	21.65	7.30	11,383.4	-682.1	-161.6	-681.2	10.00	10.00	0.00	
	11,500.0	26.65	7.30	. 11,429.0	-661.8	-159.0	-660.9	10.00	10.00	0.00	
	11,550.0	31.65	7.30	11,472.7	-637.7	-155.9	-636.8	10.00	10.00		
	11,600.0	36.65	7.30	11,514.1	-609.8	-152.3	-609.0	10.00	10.00	0.00	
	11,650.0	41.65	7.30	11,552.8	-578.5	-152.3	-609.0 -577.7	10.00	10.00	0.00	
	11,700.0	46.65	7.30	11,588.7	-544.0	-140.5	-577.7	10.00	10.00	0.00	
								10.00		0.00	
	11,733.6	50.01	7.30	11,611.0	-519.1	-140.7	-518.3	10.00	10.00	0.00	
	Wolfcamp B1										
	11,750.0	51.65	7.30	11,621.4	-506.5	-139.1	-505.7	10.00	10.00	0.00	
	11,800.0	56.65	7.30	11,650.6	-466.3	-134.0	-465.5	10.00	10.00	0.00	
	11,850.0	61.65	7.30	11,676.3	-423.7	-128.5	-423.0	10.00	10.00	0.00	
	11,873.9	64.04	7.30	11,687.2	-402.6	-125.8	-401.9	10.00	10.00	0.00	
	FTP_224H				.0L.0	120.0	401.5	10.00	10.00	0.00	
	· ··· _2240								• .		
	11,894.7	66.12	7.30	11,696.0	-383.9	-123.4	-383.2	10.00	10.00	0.00	
	FTP_236H	•				Ţ					
	11,900.0	66.65	7.30	11,698.1	370 4	100.0	070 4	40.00	40.00	0.00	
	11,950.0	71.65			-379.1	-122.8	-378.4	10.00	10.00	0.00	
			7.30	11,715.9	-332.8	-116.8	-332.1	10.00	10.00	0.00	
	11,967.7	73.42) 7.30	11,721.2 _.	-316.1	-114.7	-315.4	10.00	10.00	0.00	
	FTP_234H		L .			1					
	,12,000.0	76.65	7.30	11,729.5	-285.1	-110.7 -	-284.5	10.00	10.00	0.00	
	FTP_244H							•			
	_	<u></u>									
	12,050.0	81.65	7.30	11,738.9	-236.4	-104.5	-235.8	10.00	10.00	0.00	
	12,100.0	86.65	7.30	11,744.0	-187.1	-98.2	-186.5	10.00	10.00	0.00	
	12,131.3	89.78	7.30	11,745.0	-156.0	-94.2	-155.5	10.00	10.00	0.00	

¢

	Measured			Vertical			Vertical	Dogleg	Build	Turr
	Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	Rate	Turn Rate
	(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft)	(°/100usft)	(°/100usft)
~	Start DLS 4.0	0 TEO -90 03	A							
	12,200.0	89.78	4.55	11,745.3	-87.7	87		4.00		,
	12,200.0	89.78	4.55	11,745.7	-07.7 12.2	-87.		4.00	0.00	-4.00
						-82.		4.00	0.00	-4.00
	12,321.8	89.78	359.68	11,745.7	34.0	-82.	6 34.4	4.00	0.00	-4.00
		old at 12321.8 N		-4		1				
	12,400.0	89.78	359.68	11,746.0	112.2	-83		0.00	0.00	0.00
	12,500.0	89.78	359.68	11,746.4	212.2	-83		0.00	0.00	0.00
	12,600.0	89.78	359.68	11,746.8	312.2	-84		0.00	0.00	0.00
	12,700.0	89.78	359.68	11,747.2	412.2	-84	412.6	0.00	⁷ 0.00	0.00
	12,800.0	89.78	359.68	11,747.6	512.2	-85	3 512.6	0.00	0.00	0.00
	12,900.0	89.78	359.68	11,748.0	612.1	-85.8		0.00	0.00	0.00
	13,000.0	89.78	359.68	11,748.4	712.1	-86.4		0.00	0.00	0.00
	13,100.0	89.78	359.68	11,748.8	812.1	-86.9		0.00	0.00	0.00
	13,200.0	89.78	359.68	11,749.1	912.1	-87.5		0.00	0.00	0.00
	13,300.0	89.78	359.68	11,749.5	1,012.1	88.1		0.00	0.00	0.00
	13,400.0	89.78	359.68	11,749.9	1,112.1	-88.6	,			
	13,500.0	89.78	359.68	11,750.3	1,212.1	-89.2		0.00 0.00	0.00	0.00
	13,600.0	89.78	359.68	11,750.7	1,312.1	-89.7			0.00	0.00
	13,700.0	89.78	359.68	11,751.1	1,412.1	-90.3		0.00	0.00 0.00	0.00 0.00
	-					.]				
	13,800.0	89.78	359.68	11,751.5	1,512.1	-90.8		0.00	0.00	0.00
	13,900.0	89.78	359.68	11,751.9	1,612.1	-91.4	,	0.00	0.00	0.00
5	14,000.0	89.78	359.68	11,752.3	1,712.1	-9Ź.C	•	0.00	0.00	0.00
	14,100.0	89.78	359.68	11,752.6	1,812.1	-92.5		0.00	0.00	0.00
	14,200.0	89.78	359.68	11,753.0	1,912.1	-93.1	1,912.6	. 0.00	0.00	0.00
	14,300.0	89.78	359.68	11,753.4	2,012.1	-93.6	2,012.6	0.00	0.00	0.00
	14,400.0	89.78	359.68	11,753.8	2,112.1	-94.2		0.00	0.00	0.00
	14,500.0	89.78	359.68	11,754.2	2,212.1	-94.7	,	0.00	0.00	0.00
	14,600.0	89.78	359.68	11,754.6	2,312.1	-95.3		0.00	0.00	0.00
	14,700.0	89.78	359.68	11,755.0	2,412.1	-95.8		0.00	0.00	0.00
	14,800.0	89.78	359.68	11,755.4	2,512.1	-96.4	2 5 1 2 6	0.00		
	14,900.0	89.78	359.68	11,755.7	2,512.1	-90.4		0.00	0.00	0.00
	15,000.0	89.78	359.68	11,756.1	2,712.1	-97.5		0.00	0.00	0.00
	15,100.0	89.78	359.68	11,756.5	2,712.1	-97.5 -98.1	,	0.00	0.00	0.00
	15,200.0	89.78	359.68	11,756.9	2,912.1	-98.6		0.00	0.00 0.00	0.00 0.00
				,						
	15,300.0	89.78	359.68	11,757.3	3,012.1	-99.2		0.00	0.00	0.00
	15,400.0	89.78	359.68	11,757.7	3,112.1	-99.7		0.00	0.00	0.00
	15,500.0	` 89.78	359.68	11,758.1	3,212.1	-100.3	•	0.00	0.00	0.00
	15,600.0	89.78	359.68	11,758.5	3,312.1	-100.9		0.00	0.00	0.00
	15,700.0	89.78	359.68	11,758.9	3,412.1	101.4	3,412.6	0.00	0.00	0.00
	15,800.0	89.78	359.68	11,759.2	3,512.1	-102.0	3,512.6	0.00	0.00	0.00
	15,900.0	89.78	359.68	11,759.6	3,612.1	-102.5		0.00	0.00	0.00
	15,995.0	89.78	359.68	11,760.0	3,707.0	-103.1	3,707.6	0.00	0.00	0.00
	Start 130.0 ho	ld at 15995.0 MD			-		, .			,
-	16,000.0	89.78	359.68	11,760.0	3,712,1	-103.1	3,712.6	0.00	0.00	0.00
	16,100.0	89.78	359.68	11,760.4	· 3,812.1	-103.6		0.00	0.00	0.00
_	16,125.0	89.78 - PBHL_224H	359.68	11,760.5	3,837.1 ₍	-103.8	3,837.6	0.00	0.00	0.00

v 9/4/2019 1:52:37AM

Page 6

)

COMPASS 5000.15 Build 90

							•	
FTP 224H	gle Dip Di (°)	ir. TVD` (usft)	+N/-S (uşft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
 plan misses target center by Point 	0.00 0 y 81.2usft at 1).00 11,745.0 11873.9usft MD (-436.7 (11687.2 TVD, -	-80.0 -402.6 N, -125.8	364,492.79 3 E)	697,816.55	32° 0' 3.839 N	103° 49' 42.743 V
LTP_224H - plan hits target center - Point	0.00 0.	0.00 11,760.0	3,707.0	-103.1	368,636.53	697,793.51	32° 0' 44.847 N	103° 49' 42.786 V
PBHL_224H - plan hits target center - Point	0.00 0.	.00 11,760.5	3,837.1	-103.8	368,766.54	697,792.75	32° 0' 46.134 N	103° 49' 42.788 V
FTP_236H - plan misses target center by - Point		.01 11,919.0 t 11894.7usft MD	-438.9 (11696.0 TVD,	-500.0 -383.9 N, -123.	364,490.61 .4 E)	697,396.55	32° 0′ 3.837 N	103° 49' 47.621 V
FTP_234H - plan misses target center by - Point		.01 11,932.0 t 11967.7usft MD	-434.5 (11721.2 TVD,	338.9 -316.1 N, -114.	36 <u>4,494.96</u> 7 E)	698,235.50	32° 0' 3.842 N	103° 49' 37.878 V
FTP_244H (- plan misses target center by - Point		.00 12,256.0 11994.5usft MD	-436.7 (11728.2 TVD,	-80.0 -290.4 N, -111.	364,492.79 4 E)	697,816.55	32° 0' 3.839 N	103° 49' 42.743 V
Formations		en an an the state of state of an an an an allow and						
Méasured Dépth (usft)	Vertical Depth (usft)		Name		Litholog	Di Iy (°		
860.0	860.0	Rustler Anhyd						
1,412.0	1,412.0	Top Salt						
3,455.7	3,451.0	Base Salt						
3,663.9	3,656.0	Delaware Mou	intain Gp					
3,671.0	3,663.0		•			(
3,690.3	3,682.0							
3,702.5	3,694.0	-						
4,898.7	4,872.0	•						
5,866.4		Brushy Canyo						:
7,635.5		Bone Spring Li						
7,753.5		Upper Avalon						
8,140.5		Middle Avalon				2		
8,364.5	8,303.0							
	8,519.0		n Sand					
8 580 5	8,869.0							
8,580.5 8 930 5		•	-					
8,930.5	0 15/ 0		÷			X		
8,930.5 9,215.5	9,154.0 9,753.0		ng Carb					
8,930.5 9,215.5 9,814.5	9,753.0	3rd Bone Sprin	-					
8,930.5 9,215.5 9,814.5 10,482.5	9,753.0 10,421.0	3rd Bone Sprin 3rd Bone Sprin	ng Sand			(
8,930.5 9,215.5 9,814.5 10,482.5 10,782.5	9,753.0 10,421.0 10,721.0	3rd Bone Sprin 3rd Bone Sprin 3rd BS W Sand	ng Sand d	,		(· · ·		
8,930.5 9,215.5 9,814.5 10,482.5 10,782.5 10,873.5	9,753.0 10,421.0 10,721.0 10,812.0	3rd Bone Sprin 3rd Bone Sprin 3rd BS W Sand Wolfcamp A X	ng Sand d Sand			(· · · ·		
8,930.5 9,215.5 9,814.5 10,482.5 10,782.5 10,873.5 11,002.5	9,753.0 10,421.0 10,721.0 10,812.0 10,941.0	3rd Bone Sprin 3rd Bone Sprin 3rd BS W Sand Wolfcamp A X Wolfcamp A Y	ng Sand d Sand Sand			(· · · ·		
8,930.5 9,215.5 9,814.5 10,482.5 10,782.5 10,873.5	9,753.0 10,421.0 10,721.0 10,812.0 10,941.0 11,028.0	3rd Bone Sprin 3rd Bone Sprin 3rd BS W Sand Wolfcamp A X	ng Sand d Sand Sand			(· · · ·		

.

•

L

Plan Annotations Measured Depth (usft)	Vertical Depth (usft)	Local Co +N/-S (usft)	ordinates +E/-W (usft)	Com	ment
2,700.0	2,700.0	0.0	0.0	Start	Build 1.50
3,366.7	3,363.3	-56.5	-13.1	Start	3600.0 hold at 3366.7 MD
6,966.7	6,908.6	-665.7	-153.7	Start	DLS 1.50 TFO 180.00
7,633.3	7;571.9	-722.2	-166.7	Start	3600.1 hold at 7633.3 MD
11,233.5	11,172.0	-722.2	-166.7	Start	DLS 10.00 TFO 7.30
12,131.3	11,745.0	-156.0	-94.2	Start	DLS 4.00 TFO -90.03
12,321.8	11,745.7	34.0	-82.6	Start	3673.2 hold at 12321.8 MD
15,995.0	11,760.0	3,707.0	-103.1	Start	130.0 hold at 15995.0 MD
16,125.0	11,760.5	3,837.1	-103.8		16125.0

.

1