OCD-ARTESIA

Form 3160 -3 (April 2004)

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT AUG - 6 2008

FORM APPROVED OMB No 1004-0137 Expires March 31, 2007

Lease Serial No

NMLC 068677 15007 6 If Indian, Allotee or Tribe Name

APPLICATION FOR PERMIT TO	6 If Indian, Allotee	or Tribe	Name			
Ia Typeofwork- DRILL REENT	ER			7 If Unit or CA Agre	ement, Na	ime and No
lb Type of Well Oil Well Gas Well Other		Single Zone M	ultiple Zone	8, Lease Name and V Jets Federal Con		37314
2 Name of Operator	. 77			9 API Well No.		
Mack Energy Corporation 138	31	No (include area code		30-015	-3	4524
3a Address	3b Phone	No (include area code)	10 Field and Pool, or 1	Explorato	ry
P.O. Box 960 Artesia, NM 88211-0960	(575)74	8-1288		County Line Tan	ık;Abo	
4 Location of Well (Report location clearly andinaccorounce with any	y State requir	ements*)		II Sec, T R. M or B	lk. and Su	rvey or Area
At surface 2210 FSL & 330 FWL						
At proposed prod zone 2285 FSL & 330 FEL				Sec. 10 T16S R2	9E	
14 Distance in miles and direction from nearest town or post office*				12 County or Parish		13. State
10 miles northwest of Loco Hills, NM				Eddy		NM
15 Distance from proposed* location to nearest property or lease line, ft		f acres in lease	17. Spacii	ng Unit dedicated to this v	vell	
(Also to nearest drlg. unit line, if any) 330	1680		160			
18 Distance from proposed location* to nearest well, drilling, completed,		osed Depth	20 BLM/	BIA Bond No on file		
applied for, on this lease, ft	MD 11 TVD 7		NMB0	00206		
IV/A		zimate date work will		12.3 Estimated duration		
2 1 Elevations (Show whether DF, KDB, RT, GL, etc.) 3703' GR	5/25/08		Start	35 days	ıi	
3703 GR		tachments		133 days		
The following, completed in accordance with the requirements of Onsho			a attack ad to th			
The following, completed in accordance with the requirements of Orisho	re On and O	as Order 140 1, shall t	e attached to ti	ns ionn		
1 Well plat certified by a registered surveyor				ns unless covered by an	existing b	ond on file (see
2 A Drilling Plan.		Item 20 abov	,,			
3 A Surface Use Plan (if the location is on National Forest System SUPO shall be filed with the appropriate Forest Service Office)	Lands, the	5 Operator cer 6 Such other si authorized of	te specific info	ormation and/or plans as	may be re	equired by the
25 Signature		me (Printed'/Typed)			Date	0
Jony W. Shonell	Jer	ry W. Sherrell			4/25/0	8
Title Production Clerk						
Approved by (Signature)	No	ma (Donata H.C. a. A)			Data 44	
/s/ James Stovall	INA	me (Printedl/Typed)	/s/ Jam	es Stovall	Date AL	JG 0 4 2001
FIELD MANAGER	Off	CAR		PIELD OFF		
Application approval does not warrantor certify that the applicant hold	ls lega orequ	itable title to those ri	ghts in the subj	ect lease which would er	ititle the a	ipplicant to
conduct operations thereon Conditions of approval, if any, are attached	****		APPRO	OVAL FOR TO	WO)	/EARS
Title 18 U S C Section 1001 and Tide 43 U S.C Section 1212, make it States any false, fictitious or fraudulent statements or representations as	a crime for a to any matte	ny person knowirilly r within its juris iction	NUL	E: NEW PIT I	RULE	<u>Σ</u> Γ 17
*(Instructions on page 2)	19-13	m C-144 must	he an	proved		
ROSWELL CONTROLLED WA	befor	m C-144 must e starting drilli	ng op	erations.		
				_		

SEE ATTACHED FOR CONDITIONS OF APPROVAL APPROVAL SUBJECT TO GENERAL REQUIREMENTS AND SPECIAL STIPULATIONS ATTACHED

DISTRICT I 1625 N. FRENCH DR., HOBBS, NM 88240

State of New Mexico

EAST

EDDY

Form C-102

DISTRICT II 1301 W. GRAND AVENUE, ARTESIA, NM 68210

1000 Rio Brazos Rd., Aztec, NM 87410

DISTRICT III

OIL CONSERVATION DIVISION 1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Revised October 12, 2005 Submit to Appropriate District Office State Lease - 4 Copies Fee Lease - 3 Copies

WELL LOCATION AND	ACREAGE DEDICATION PLAT	☐ AMENDED REPOR
Pool Code	Pool Name	
97197	County Line Tank; Abo	
Pro	Well Number	
JETS F	1.	
0 p e	erator Name	Elevation
MACK ENER	3703'	
	Pool Code 97197 Pro JETS F	

UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/EAST line	County
L	10	16-S	29-E		2210	SOUTH	330	WEST	EDDY
, Bottom Hole Location If Different From Surface .									
UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/EAST line	County

SOUTH

330

1	10	16-	-S	29-E			228	35
Dedicated Acres	Joint o	Infill	Con	nsolidation	Eode	Orc	ler No.	
160	İ							

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

GEODETIC COORDINATES NAD 27 NME SURFACE LOCATION Y=703930.5 N X=580897.2 E	3702.7' 3707.2' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OPERATOR CERTIFICATION I hereby certify that the information herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an owner of such mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division. Date Jerry W. Sherrell Printed Name
. 33337.12		Frinced Name
LAT. = 32.934902° N LONG. = 104.069660° W S.L. SIL. HORIZ. 5 Point of Penetration	4.=00 33/44 / / / / O	SURVEYOR CERTIFICATION I hereby certify that the well location shown on this plat was plotted from field notes of actual surveys made by me or under my supervision, and that the same is true and correct to the best of my belief. APRIL 10: 2008 Date Surveyed DSS Signature & Seal of Professional Surveyor Certificate No. GARY G. EIDSON 12641 RONALD J. EIDSON 3239

DISTRICT I 1626 N. FRENCH DR., HOBBS, NM 68240

State of New Mexico Energy, Minerals and Natural Resources Department

OIL CONSERVATION DIVISION

1220 SOUTH ST. FRANCIS DR. Santa Fe, New Mexico 87505

Form C-102 Revised October 12, 2005

Submit to Appropriate District Office State Lease - 4 Copies Fee Lease - 3 Copies

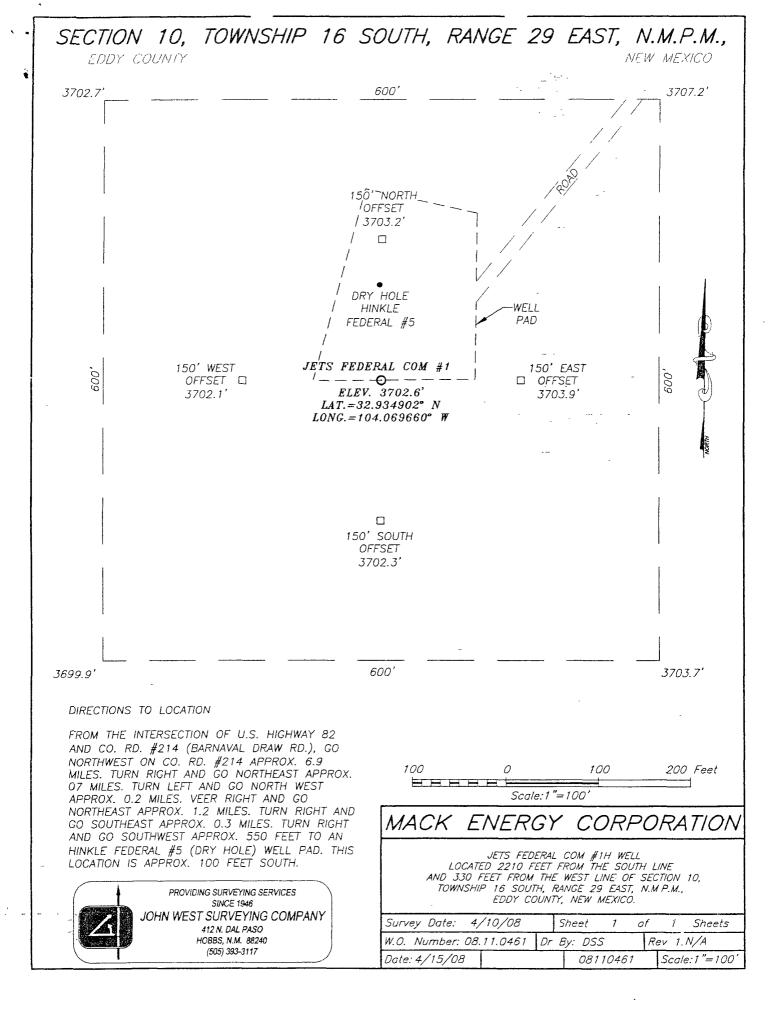
DISTRICT III 1000 Rio Brazos Rd., Aztec, NM 87410

013837

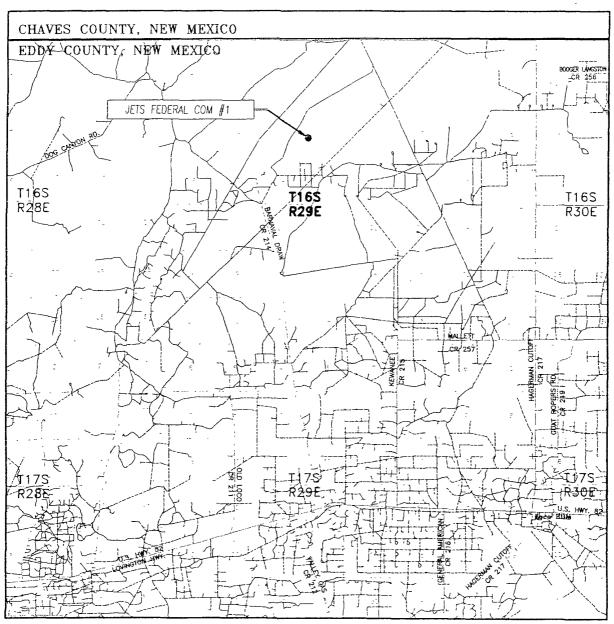
DISTRICT II
1301 W. GRAND AVENUE, ARTESIA, NM 88210

DISTRICT IV 1220 S. ST. FRANCIS DR., SANTA FE, NM 87505	WELL LOCATION AND A	ACREAGE DEDICATION PLAT	□ AMENDED REPORT
API Number	Pool Code	Pool Name	
	97197	County Line Tank; Abo	1
Property Code	Prope	Well Number	
	JETS FE	DERAL COM	1 .
OGRID No.	Opera	itor Name	Elevation
013837	MACK ENERG	3703'	

Surface Location


UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/EAST line	County	
L	10	16-S	29-E		2210	SOUTH	330	WEST	EDDY 1	-

Bottom Hole Location If Different From Surface


UL or lot No.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/EAST line	County
	10	16-S	29-E		2285	SOUTH	330	EAST	EDDY
Dedicated Acres	s Joint o	r Infill Co	nsolidation (Eode Or	der No.		•		-

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

	3702.7' 3707.2' O 0	OPERATOR CERTIFICATION I hereby certify that the information herein is true and complete to the best of my knowledge and belief, and that this organization either owns a working interest or unleased mineral interest in the land including the proposed bottom hole location or has a right to drill this well at this location pursuant to a contract with an
0500570 00000044750	3699.9' 3703 7' DETAIL	owner of such mineral or working interest, or to a voluntary pooling agreement or a compulsory pooling order heretofore entered by the division.
GEODETIC COORDINATES NAD 27 NME SURFACE LOCATION Y=703930.5 N X=580897.2 E	BOTTOM HOLE LOCATION Y=704016.6 N X=585500.1 E	Jerry W. Sherrell Printed Name
LAT.=32.934902* N LONG.=104.069660* W		SURVEYOR CERTIFICATION
330	=88'55'42" T=4604.9' B.H.	I hereby certify that the well location shown on this plat was plotted from field notes of actual surreys made by me or under my supervision, and that the same is true and correct to the best of my belief.
	7 22885	APRIL 10: 2008 Date Surveyed DSS Signature & Seal of Professional Surveyor
		Certificate No. GARY G. EIDSON 12841 RONALD J. EIDSON 3239

VICINITY MAP

SCALE: 1" = 2 MILES

SEC. 10 TWP. 16-S RGE. 29-E

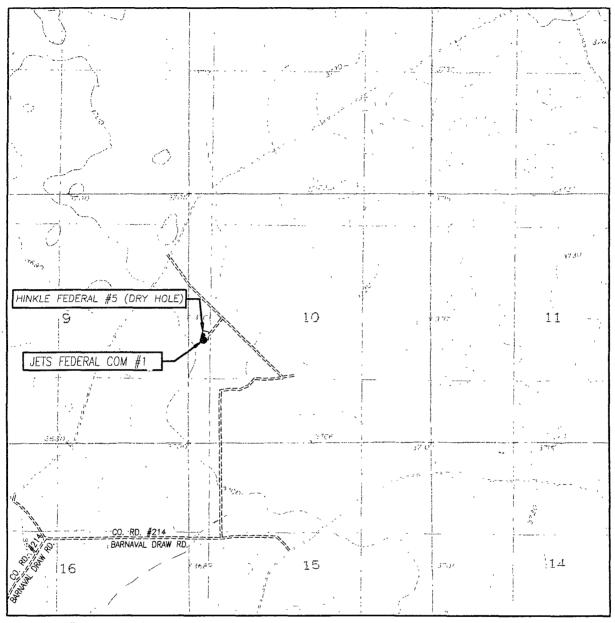
SURVEY N.M.P.M

COUNTY EDDY STATE NEW MEXICO

DESCRIPTION 2210' FSL & 330' FWL

ELEVATION 3703'

OPERATOR MACK ENERGY CORPORATION


LEASE JETS FEDERAL COM

PROVIDING SURVEYING SERVICES SINCE 1946 JOHN WEST SURVEYING COMPANY 412 N. DAL PASO HOBBS, N.M. 88240 (505) 393-3117

LOCATION VERIFICATION MAP

SCALE: 1" = 2000'

CONTOUR INTERVAL: BASIN WELL, N.M. - 10'

SEC. <u>10</u>	TWP. <u>16-S</u> RGE. <u>29-E</u>
SURVÉY	N.M.P.M.
COUNTY	EDDY STATE NEW MEXICO
DESCRIPTIO	N 2210' FSL & 330' FWL
ELEVATION_	3703'
OPERATOR	MACK ENERGY CORPORATION
•	JETS FEDERAL COM
U.S.G.S. TO BASIN WELL,	POGRAPHIC MAP N.M.

PROVIDING SURVEYING SERVICES
SINCE 1946
JOHN WEST SURVEYING COMPANY
412 N. DAL PASO
HOBBS, N.M. 88240
(505) 393-3117

DRILLING PROGRAM

1. Geologic Name of Surface Formation

Quaternary

2. Estimated Tops of Important Geologic Markers:

Quaternary	Surface
San Andres	2220'
Glorieta	3750'
Tubb	4960'
Abo	5730'
Wolfcamp	7310'

3. Estimated Depths of Anticipated Fresh Water, Oil and Gas:

Water Sand	150'	Fresh Water
San Andres	2220'	Oil/Gas
Abo	5730'	Oil/Gas
Wolfcamp	7310'	Oil/Gas

No other formations are expected to give up oil, gas or fresh water in measurable quantities. Setting 13 3/8" casing to 380' and circulating cement back to surface will protect the surface fresh water sand. Salt Section will be protected by setting 9 5/8" casing to 1800' and circulating cement back to surface. Any shallower zones above TD, which contain commercial quantities of oil and/or gas, will have cement circulated across them by cementing 5 1/2" production casing, sufficient cement will be pumped to circulate back to surface.

4. Casing Program:

Hole Size Interval	OD Casing	Wt, Grade, Jt, cond, collapse/burst/tension
17 ½" 0-380° 12 ¼" 0-1800° 8 3/4" 0-1600° 8 3/4" 1600°-6200° 8 3/4" 6200-11.513°	13 3/8" 9 5/8" 5 1/2" 5 1/2" Her 5 1/2"	48#, H-40, ST&C, New, 3.984/3.380/3.46 36#, J-55, ST&C, New, 2.137/3.767/3.52 17#, L-8-110, LT&C, New, 9.27/3.01/2.35 17#, L-80, LT&C, New, 1.642/2.19/2.09 17#, HCL-80, Buttress, New, 2.425/2.19/4.73
	1	

per operator 6/13/08

Drilling Program Page 1

5. Cement Program:

13 3/8" Surface Casing: Class C, 300sx, yield 1.32.

9 5/8 Intermediate Casing: Class C, 850sx, yield 1.32.

5 1/2" Production Casing: Class C, 2500sx, yield 1.32.

6. Minimum Specifications for Pressure Control:

The blowout preventer equipment (BOP) shown in Exhibit #9 will consist of a double ram-type (3000 psi WP) minimum preventer. This unit will be hydraulically operated and the ram type preventer will be equipped with blind rams on top of 4 1/2" drill pipe rams on bottom. The BOP will be nippled up on the 13 3/8" surface casing and tested to 1000 psi using the rig pump. The BOP will then be nippled up on the 8 5/8" intermediate casing and tested by a 3rd party to 2000 psi and used continuously until TD is reached. All BOP's and accessory equipment will be tested to 2000 psi before drilling out of intermediate casing. Pipe rams will be operationally checked each 24-hour period. Blind rams will be operationally checked on each trip out of the hole. These checks will be noted on the daily tour sheets. Other accessories to the BOP equipment (Exhibit #10) will include a Kelly cock and floor safety valve and choke lines and choke manifold (Exhibit #11) with a minimum 3000 psi WP rating.

7. Types and Characteristics of the Proposed Mud System:

The well will be drilled to TD with a combination of brine, cut brine and polymer mud system. The applicable depths and properties of this system are as follows:

DEPTH	TYPE	WEIGHT	VISCOSITY	WATERLOSS
0-380'	Fresh Water	8.5	28	N.C.
380-1800'	Brine	10	30	N.C.
1800'-TD	Cut Brine	9.1	29	N.C.

Sufficient mud materials to maintain mud properties and meet minimum lost circulation and weight increase requirements will be kept at the well site at all times.

8. Auxiliary Well Control and Monitoring Equipment:

- A. Kelly cock will be kept in the drill string at all times.
- B. A full opening drill pipe-stabbing valve with proper drill pipe connections will be on the rig floor at all times.

9. Logging, Testing and Coring Program:

See 1 COX

- A. The electric logging program will consist of GR-Dual Laterolog, Spectral Density, Dual Spaced Neutron, CSNG Log and will be ran from T.D. to 9 5/8 casing shoe.
- B. Drill Stem test is not anticipated.
- C. No conventional coring is anticipated.
- D. Further testing procedures will be determined after the 5 1/2" production casing has been cemented at TD based on drill shows and log evaluation.

10. Abnormal Conditions, Pressures, Temperatures and Potential Hazards:

No abnormal pressures or temperatures are anticipated. The estimated bottom hole at TD is 120 degrees and estimated maximum bottom hole pressure is 3250 psig. Low levels of Hydrogen sulfide have been monitors in producing wells in the area, so H2S may be present while drilling of the well; a plan is attached to the Drilling program. No major loss of circulation zones has been reported in offsetting wells.

11. Anticipated Starting Date and Duration of Operations:

Road and location work will not begin until approval has been received from the BLM. The anticipated spud date is May 25, 2008. Once commenced, the drilling operation should be finished in approximately 35 days. If the well is productive, an additional 30 days will be required for completion and testing before a decision is made to install permanent facilities.

Mack Energy

Eddy County
Jets Federal Com #1
Jets Federal Com #1
Original Hole

Plan: Plan #1

Pathfinder Survey Report

25 April, 2008

Mack Energy Corporation

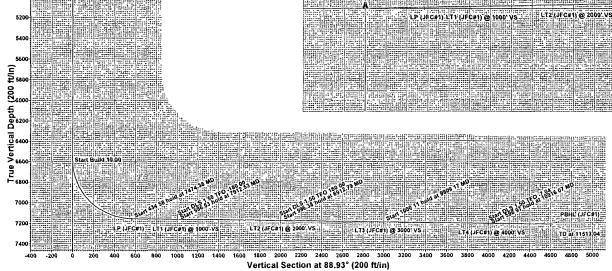
Azimuths to Grid North True North: -0.14° Magnetic North: 8.09°

Magnetic Field Strength: 49324.0snT Dip Angle: 60.84° Date: 4/25/2008 Model. IGRF200510

PROJECT DETAILS. Eddy County
Geodetic System: US State Plane 1927 (Exact solution)
Datum: NAD 1927 (NADCON CONUS) Ellipsoid: Clarke 1866

Zone. New Mexico East 3001 System Datum Mean Sea Level

		WELL	DETAILS, Jets Fe	deral Com #1H						
Ground Elevation · 3703.00 RKB Elevation. EST RKB @ 3721.50ft Rip Name										
+N/-S 0 00	+E/-W 0.00	Northing 703930 500	Easting 580897.200	Latittude 32* 56* 5 647 N	Longitude 104° 4' 10 777 W	Slot				


SECTION DETAILS										
Sec	: MD	Inc	A21	TVD	+N/-S	+E/-W	DLeg	TFace	VSec	Target
1	0.00	0 00	0.00	0.00	0.00	0 00	0 00	0.00	0.00	=
2	658188	0,00	0 00	6581.88	0 00	0.00	0 00	0,00	0.00	
3	7474.38	89 25	88 93	7154 79	10 56	565,36	10 00	88 93	565 46	
4	7908 96	89.25	88 93	7160 48	18,67	999.83	0 00	0,00	1000 00	LT1 (JFC#1) @ 1000' VS
5	7912 53	89,20	88,93	7160 53	18,74	1003,39	1.50	-180.00	1003.57	, , .
6	8909,06	89.20	88.93	7174.50	37.35	1999,65	0.00	0.00	2000.00	LT2 (JFC#1) @ 2000' VS
7	8912 79	89,14	88 93	7174.55	37 42	2003 38	1.50	180 00	2003 73	
8	9909.17	89 14	88.93	7189.50	56.02	2999 48	0.00	0.00	3000.00	LT3 (JFC#1) @ 3000° VS
9	10909.28	89,14	88.93	7204 50	74,70	3999 30	0.00	0 00	4000.00	LT4 (JFC#1) @ 4000' VS
10	10916.07	89 24	88 92	7204 60	74 82	4006 09	1.50	-7 04	4006.78	,, &
11	11513 04	89 24	88 92	7212 50	86 10	4602.90	0.00	0 00	4603.71	PBHL (JFC#1)

WELLE	ORE TARGET	T DETAILS		
Name	TVD	+N/-S	+E/-W	Shape
LP (JFC#1)	7154.79	10.56	565,36	Point
LT1 (JFC#1) @ 1000' VS	7160.50	18 67	999,83	Point
LT2 (JFC#1) @ 2000' VS	7174.50	37.35	1999,65	Point
LT3 (JFC#1) @ 3000' VS	7189.50	66.02	2999.48	Point
LT4 (JFC#1) @ 4000' VS	7204.50	74.70	3999.30	Point
PBHL (JFC#1)	7212.50	86.10	4602.90	Point

West(-)/East(+) (200 ft/in)

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200

Site: Jets Federal Com #1H Well: Jets Federal Com #1H Wellbore: Original Hole Plan: Plan #1 (Jets Federal Com #1H/Original Hole)

Project: Eddy County

Created By	Mark Freeman	Date. 14 09, April 25 2008
Checked		Date.

Pathfinder Survey Report

Company: Mack Energy
Project: Eddy County
Site: Jels Federal Com#1H
Well: Jels Federal Com#1H
Organal Hola Local Co-ordinate Reference: Well Jets Federal Com #1H; EST RKB @ 3721 50ft TVD Reference: EST RKB @ 3721 50ft Grid MD Reference: Grid Minimum Gurvature North Reference: Wellbore: Original'Holes Plan #1 Survey Calculation Method: EDM-2003.16 Single User Db

Project Eddy County

Map System:

US State Plane 1927 (Exact solution)

NAD 1927 (NADCON CONUS)

Geo Datum: Map Zone:

New Mexico East 3001

System Datum:

Mean Sea Level.

NJets Federal Com #1H

Site Position:

Map

Northing:

703,930 500 ft

Latitude: Longitude:

32° 56' 5 647 N 104° 4' 10 777 W

580,897.200ft From: Easting: 0 14 ° Position Uncertainty: 0 00 ft Slot Radius: Grid Convergence:

Well Jets Federal Com:#1H4 +N/-S Northing: 703.930 500 ft 32° 56' 5 647 N Well Position 0.00 ft Latitude: +E/-W 0 00 ft Easting: 580,897 200 ft Longitude: 104° 4' 10 777 W 3,703 00 ft 0 00 ft Wellhead Elevation: ft Ground Level: Position Uncertainty

Wellbore Original Hole Field Strength Magnetics Dip Angle IGRF200510 4/25/2008 8 23 60 85 49.324

Design Plan #1 Audit Notes: Version: PLAN 0.00 Phase: Tie On Depth: Vertical Section: +E/-W Depth From (TVD) +N/-S' Direction (ft) (ft) (ft)a 0 00 0.00 0 00 88 93

Survey Tool Program t) Survey (Wellbore) Tool Name Description 11,513 04 Plan #1 (Original Hole) MWD MWD - Standard

Planned Survey E/W (ft) m MD' -- Inc 1 -- (ft) -- (°) TVD N/S (ft) (ft) 0 00 0 00 0.00 0 00 0 00 0.00 0.00 100 00 0 00 0 00 100 00 0 00 0 00 0 00 0.00 200.00 0 00 0 00 200 00 0 00 0 00 0 00 0.00 300 00 0 00 0 00 300 00 0.00 0 00 0 00 0.00 400 00 0.00 0.00 400 00 0.00 0.00 0.00 0 00 500.00 0 00 0 00 500 00 0 00 0.00 0.00 0 00 600 00 0 00 0 00 600.00 0 00 0 00 0 00 0.00 700.00 0.00 0 00 700 00 0 00 0.00 0 00 0.00 800 00 0 00 0.00 800.00 0 00 0.00 0 00 0 00 900 00 0 00 0.00 900 00 0.00 0.00 0 00 0.00 0.00 0 00 0 00 1,000 00 1,000.00 0.00 0 00 0 00 1 100 00 0 00 0 00 1,100.00 0.00 0 00 0 00 0 00

WHS Pathfinder Survey Report

Company: JMack Energy: Local Co-ordinate Reference: Well Jets Federal Com.#1H
iProject: Eddy.County TVD:Reference: EST:RKB(@:372150ff, %: 6 %)
Sire: Vets:Eederal.Com#1H # MD.Reference: EST-RKB.@:3721/50ff
Well: "Jets Federal Com#1H North Reference" Grid
Wellbore: Original:Hole Survey Calculation Method: Minimum Curvature
Design: Plan:#1f Database:

Planned Survey							
MD (ft)	lnc Ax		TVD (ft)	N/S (ft)	E/W (ft)	V. Sec (ft)	DLeg (°/100ft)
1,200.00	0.00	0 00	1,200 00	0 00	0 00	0 00	0.00
1,300.00	0 00	0 00	1,300 00	0.00	0 00	0 00	0.00
1,400 00	0 00	0 00	1,400.00	0.00	0.00 ·	0 00	0 00
1,500 00	0 00	0 00	1,500 00	0 00	0 00	0 00	0 00
1,600.00	0.00	0.00	1,600.00	0.00	0 00	0 00	0.00
1,700 00	0 00	0 00	1,700 00	0 00	0 00	0 00	0 00
1,800 00	0 00	0 00	1,800 00	0 00	0 00	0 00	0.00
1,900.00	0.00	0 00	1,900 00	0 00	0 00	0 00	0 00
2,000 00	0 00	0 00	2,000 00	0 00	0 00	0 00	0 00
2,100 00	0 00	0 00	2,100 00	0.00	0 00	0.00	0 00
-2,200.00	0 00	0 00	2,200 00	0.00	0 00	. 0.00	0 00
2,300.00	0 00	0 00	2,300 00	0.00	0.00	0 00	0 00
2,400 00	0 00	0-00	2,400 00	0.00	2.22	0 00	- 0 00
				*			
2,500.00	0 00	0 00	2,500 00	0.00	0 00	0 00	0 00
2,600 00	0 00	0 00	2,600 00	0 00	0.00	0 00	0.00
2,700 00	0 00	0.00	2,700.00	0 00	0 00	0 00	0 00
2,800 00	0 00	0 00	2 800 00	0 00	0 00	0 00	0 00
2 900 00	0 00	0 00	2,900 00	0.00	0 00	0 00	0 00
3,000 00	0 00	0 00	3.000.00	0 00	0 00	0 00	0 00
3,100 00	0 00	0 00	3,100 00	0 00	0 00	0.00	00 0
3,200 00	0 00	0 00	3,200 00	0 00	0 00	0 00	0 00
3,300 00	0 00	0 00	3.300 00	0 00	0 00	0 00	0 00
3,400 00	0 00	0 00	3,400 00	0 00	0 00	0 00	0 00
3,500 00	0 00	0 00	3,500 00	0 00	0.00	0 00	0 00
3.600 00	0 00	0 00	3,600 00	0 00	0 00	0 00	0 00
3.700 00	0.00	0 00	3.700.00	0 00	0 00	0 00	0 00
3.800 00	0 00	0 00	3.800 00	0.00	0.00	0.00	0 00
3,900 00	0 00	0 00	3.900 00	0 00	0 00 -	0 00	0 00
4,000.00	0 00	0 00	4,000.00	0 00	0 00	0 00	0 00
4,100.00	0.00	0.00	4,100.00	0 00	0 00	0 00	0.00
4 200 00	0 00	0.00	4.200 00	0 00	0.00	0 00	0.00
4,300 00	0 00	0.00	4,300 00	0 00	0 00	- , -0 00	0 00
4.400.00	0.00	0 00	4,400 00	0 00 -	0.00	0 00	0 00
4.500 00	0 00	0.00		0 00	0 00	0 00	0 00
4,600 00	0 00	0.00	4,500 00 4.600 00	0.00	0 00	0 00	0 00
4,700 00	0 00	0 00	4,700 00	0.00	0 00	0 00	0 00
4.800 00	0 00	0 00	4,800 00	0 00	0 00	0 00	0 00
4,900 00	0 00	0 00	4,900.00	0 00	0.00	0 00	0 00
1							
5 000 00	0 00	0.00	5,000 00	0 00	0.00	0 00	0 00
5,100 00	0 00	0.00	5.100 00	0 00	0 00	0 00	0.00
5,200 00	0 00	0 00	5,200 00	0 00	0 00	0 00	0 00
5,300 00	0 00	0.00	5,300 00	0 00	0 00	0.00	0.00
5,400 00	0 00	0 00	5.400 00	0 00	0 00	0 00	0 00
5,500 00	0 00 -	0 00	5,500 00	0 00	0 00	0 00	0 00

WHS Pathfinder Survey Report

Company: Mack/Energy Local Co-ordinate Reference: Well Jets Federal Com #1H
Project: Eddy. County TVD Reference: EST-RKB: @:3721*50ft
Site: Jets/Federal Com #1H
MD/Reference: EST-RKB: @:3721*50ft
Well: Jets/Federal Com #1H
North Reference: Gnd
Wellbore: Original Hole Survey Calculation Method: Minimum Curvature
Design: Plan #1 Database: EDM/2003 16. Single User Dbt

			(Hillson)				
Planned Survey						uggayya Tega	
MD	«Inc ».	Azi	TVD	N/S	E/W	V. Sec	DLeg ***
(ft)	(°)	(°)	(ft) - 5 coo oo	(ft) 0 00	(ft): 0 00	(ft) 0.00	(°/1 00ft) 0.00
5 600.00	0 00	0 00	5,600.00		0 00	0.00	0.00
5,700 00	0 00 0 00	0.00 0.00	5,700 00 5.800 00	0 00 0 00	0 00	0.00	0.00
5,800 00	0 00	0.00	5,900.00	0 00	0 00	0.00	0.00
5,900 00	0 00	0 00	5,900.00		0 00	0 00	
6,000 00	0 00	0.00	6,000 00	0 00	0 00	0 00	0 00
6,100 00	0 00	0 00	6,100 00	0 00	0 00	0 00	0 00
6,200 00	0 00	0 00	6,200.00	0 00	0 00	0 00	0 00
6,300 00	0 00	0 00	6,300 00	0 00	0 00	0 00	0 00
6,400 00	0 00	0 00	6,400.00	0 00	0 00	0 00	0 00
6,500 00	0 00	0 00	6,500 00	0.00	0 00	0 00	0 00
6,581 88	0 00	0 00	6,581 88	0 00	0 00	0 00	0 00
6,600 00	1 81	88 93	6,600.00	0 01	0.29	0 29	10 00
6,650 00	6 81	88 93	6,649 84	0 08	4 04	4 04	10 00
6,700 00	11.81	88 93	6,699 17	0 23	12 13	12 13	10 00
							40.00
6,750.00	16 81	88 93	6,747.60	0 46	24 48	24.49	10.00
6,800 00	21 81	88 93	6,794 77	0 77	41 01	41 02	10 00
6.850 00	26 81	88 93	6,840.32	1 15	61 59	61 60	10.00
6,900 00	31.81	88 93	6,883 91	1 61	86 05	86 07	10 00
6,950 00	36 81	88 93	6.925.19	2.13	114 22	114 24	10 00
7.000 00	41 81	88 93	6,963 86	2 72	145.89	145 91	10 00
7.050 00	46 81	88 93	6.999 63	3 38	180 80	180 83	10.00
7,100 00	51 81	88 93	7.032 22	4 08	218 69	218 73	10 00
7,150 00	56 81	88 93	7,061 38	4.84	259.28	259 33	10 00
7,200 00	61 81	88 93	7,086.89	5.65	302 26	302 31	10 00
7,250 00	66 81	88 93	7,108 55	6 49	347 30	347 36	10 00
7,300 00	71 81	88 93	7,126.21	7 36	394 05	394 12	10.00
7,350 00	76 81	88 93	7,139 73	8 26	442 16	442 24	10 00
7,400.00	81.81	88 93	7,149 00	9 18	491 27	491 36	10 00
7,450 00	86 81	88.93	7,153 95	10 10	541 00	541 09	10 00
7 474 29	90.25	88 93	7 154 70	10 56	565 36	565 46	10.00
7,474.38 7 500 00	89 25 89 25	88 93	7;154.79 7,155 12	11.04	590 97	591 08	0.00
7,600 00	89 25	88 93	7,156 43	12.90	690 95	691 07	0.00
7,700 00	89 25	88.93	7,157 74	14 77	790.92	791 06	0 00
7,800.00	89 25	88 93	7,159 05	16.64	890 89	891 05	0 00
7,908 96	89 25	88 93	7,160 48	18 67	999 83	1 000 00	0 00
7,912 53	89 20	88 93	7,160 53	18 74	1,003 39	1,003 57	1.50
8,000.00	89 20	88.93	7,161 75	20 37	1,090 84	1,091 03	0 00
8,100 00	89.20	88 93	7,163 15	22 24	1,190.81	1,191.02	0 00
8.200.00	89 20	88 93	7,164.56	24 11	1,290 79	1,291 01	0.00
8,300.00	89 20	88 93	7,165 96	25 98	1,390.76	1,391 00	0 00
8,400 00	89 20	88 93	7,167 36	27.84	1,490 73	1,490.99	0 00
8,500 00	89 20	88 93	7,168 76	29 71	1,590.71	1,590 98	0 00
, 8,600 00	89 20	88 93	7,170 17	31.58	1,690 68	1,690.97	0 00
8,700 00	89.20	88 93	7,171 57	33 44	1,790 65	1,790 96	0 00
l							

WHSPathfinder Survey Report

Company: Mack-Energy Local Co-ordinate Reference: Well-uets Federal Com #1H
中国企业,但是一个工作,我们就是一个工作,只要是一个工作,我们就是一个工作,我们就是一个工作,我们就是一个工作,我们就是一个工作,我们就是一个工作,我们就是一个
Project: Eddy County TVD Reference: EST RKB @ 3721 50ff
Site: Jets/Federal Com(#1H Mark MD/Reference: JEST/RKB@ 3721-50ft
下,我们就是是最大的,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
Well: North Reference: Grid Grid Grid Grid Grid Grid Grid Grid
。如果你是我们的我们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
Wellbore: Onginal Hole Survey Calculation Method: Minimum Curvature
Design: Plan#1 Database: 1EDM 2003 16 Single User Db.
Design: IEDM:2003-16:Single:User Db
A STATE OF THE PROPERTY OF THE

	tratar de la companya de como de la companya del companya de la companya del companya de la comp	military binary and the same of the last	and the second second			CREATE AND A STREET, SOCIORS	
lanned Survey		rizerak ja 750.5					
						在12年11年1	
MD (ft)	Inc (°)	Azi	TVD	N/S:	Ē/W	V. Sec (ft)	DLeg, (°/100ft)
8,800 00	89 20	(°) 88 93	7,172.97	35 31	1,890 62	1.890.95	0.0
8,909 06	89 20 89 20	88.93	7,172.97 7,174 50	37 35	1,999 65	2,000 00	0.0
8,912.79	89 14	88 93	7,174 55	37 42	2,003 38	2,000 00	1 5
9,000 00	89 14	88 93	7,174 35	39 05	2,090 57	2,003 73	0.0
9,100 00	89.14	88 93	7,173.86	40 91	2,190 54	2,190 92	0 (
	09.14		7,177 30		2,190 54	•	
9,200.00	89 14	88 93	7,178 86	42 78	2,290 51	2,290 91	0 (
9,300.00	89.14	88 93	7,180.36	44 65	2,390 48	2,390.90	0 (
9,400 00	89 14	88 93	7,181 86	46 51	2,490 45	2,490 89	0 (
9,500 00	89 14	88 93	7,183 36	48.38	2,590 42	2,590 88	0 (
9,600 00	89 14	88 93	7,184 86	50 25	2,690.40	2,690 86	0 (
9.700 00	89 14	88 93	7.186 36	52.12	2.790 37	2,790 85	0 (
9.800 00	89 14	88 93	7,187 86	53 98	2,890.34	2,890 84	0
9:909 17	89.14	88 93	7,189 50	56 02	2,999 48	3,000 00	0
10,000 00	89.14	88.93	7,190.86	57 72	3,090 28	3.090 82	0
10,100 00	89 14	88 93	7.192.36	59.58	3.190 25	3,190 81	0
10,200 00	89 14	88 93	7,193 86	61 45	3,290 22	3,290 80	0.
10,300 00	89 14	88 93	7,195.36	63 32	3,390 19	3,390.79	0.
10,400 00	89.14	88 93	7,196.86	65 19	3.490 17	3,490 77	0
10,500 00	89 14	88.93	7,198 36	67 05	3,590 14	3,590 76	0
10.600 00	89 14	88 93	7,199 86	68 92	3,690 11	3,690 75	0
10,700 00	89 14	88 93	7,201 36	70 79	3,790 08	3,790 74	0
10,800 00	89 14	88 93	7.202 86	72 66	3.890 05	3 890.73	0
10,909 28	89 14	88 93	7,204 50	74 70	3,999 30	4,000 00	0.
10.916 07	89 24	88.92	7,204 60	74 82 .	4,006.09	4,006 78	1
11,000 00	89 24	88.92	7.205 71	76 41	4 090 00	4.090 71	0
11,100 00	89 24	88.92	7,207 03	78 30	4,189.97	4,190 70	0
11.200 00	89 24	88 92	7,208 36	80 19	4,289.94	4,290 69	0
11,300 00	89 24	88 92	7,209 68	82 08	4.389 92	4,390 68	0
11,400 00	89 24	88 92	7,211 00	83 96	4,489 89	4,490.67	0
11,500 00	89 24	88 92	7,212 33	85 85	4.589 86	4,590 67	0
11,513 04	89 24	88 92	7,212 50	86 10	4,602 90	4,603 71	0

WHS

Pathfinder Survey Report

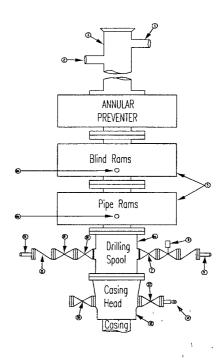
Company: Mackie Project: Eddy/C Site: Jetsifie	and residence of the second second			Ţ	ocal Co-or VD Referei ID Referen	Continue Court State Add L. Cont.	e: Well Jets F JEST⊩RKB (EST RKB (
from which is the first of the state of the	deral Com.# IlHole	The State of the S		. N ∴S	lorth Refer	And the second of the second o	Grid: :Minimum C		
Targets Target Name : hit/miss target C - Shape	Dip Angle	28 . V 43464 C	TVD (ft)	+N/-S (ff)	+E/-W (ft)	Northing (ft)	Easting (ft)	Latitude :	*Longitude
LT2 (JFC#1) @ 2000' - plan hits target - Point	0 00	0 00	7,174 50	37.35	1,999 65	703,967 848	582,896.851	32° 56' 5 967 N	104° 3' 47.312 W
LT4 (JFC#1) @ 4000' - plan hits target - Point	0 00	0 00	7,204 50	74 70	3,999 30	704,005.196	584,896 503	32° 56′ 6 285 N	104° 3′ 23.848 W
LT3 (JFC#1) @ 3000' - plan hits target - Point	0 00	0 00	7,189 50	56 02	2,999 48	703,986 522	583,896.677	32° 56' 6 126 N	104° 3′ 35 580 W
LP (JFC#1) - plan hits target - Point	0 00	0 00	7,154 79	10 56	565.36	703,941 060	581,462 560	32° 56' 5 738 N	104° 4' 4 143 W
PBHL (JFC#1) - plan hits target - Point	0 00	0 00	7,212 50	86.10	4,602 90	704,016 600	585,500 100	32° 56' 6.382 N	104° 3' 16 766 W
LT1 (JFC#1) @ 1000' - plan hits target - Point	0 00	0 00	7,160.50	18 67	999.83	703,949 174	581,897.026	32° 56' 5 807 N	104° 3′ 59 045 W

	Checked By	Approved By:	Date:	
- 1				-

Attachment to Exhibit #9 NOTES REGARDING THE BLOWOUT PREVENTERS Jets Federal Com #1 Eddy County, New Mexico

- 1. Drilling nipple to be so constructed that it can be removed without use of a welder through rotary table opening, with minimum I.D. equal to preventer bore.
- 2. Wear ring to be properly installed in head.
- 3. Blow out preventer and all fittings must be in good condition, 2000 psi WP minimum.
- 4. All fittings to be flanged.
- 5. Safety valve must be available on rig floor at all times with proper connections, valve to be full 2000 psi WP minimum.
- 6. All choke and fill lines to be securely anchored especially ends of choke lines.
- 7. Equipment through which bit must pass shall be at least as large as the diameter of the casing being drilled through.
- 8. Kelly cock on Kelly.
- 9. Extension wrenches and hands wheels to be properly installed.
- 10. Blow out preventer control to be located as close to driller's position as feasible.
- 11. Blow out preventer closing equipment to include minimum 40-gallon accumulator, two independent sources of pump power on each closing unit installation all API specifications.

Blowout Preventers Page 15


Mack Energy Corporation

Minimum Blowout Preventer Requirements

3000 psi Working Pressure 3 MWP EXHIBIT #10

Stack Requirements

	Stack Requireme	1113	
NO	Items	Mın.	Mın
1		IĐ	Nominal
1	Flowline		2"
2	Fill up line		2"
3	Drilling nipple		
4	Annular preventer		
5	Two single or one dual hydraulically operated rams		
6a	Drilling spool with 2" min. kill line and 3" min choke line outlets		2" Choke
6b	2" min. kill line and 3" min choke line outlets in ram (Alternate to 6a above)		
7	Valve Gate Plug	3 1/8	
8	Gate valve-power operated	3 1/8	
9	Line to choke manifold		3"
10	Valve Gate Plug	2 1/16	
11	Check valve	2 1/16	
12	Casing head		
13	Valve Gate	1 13/16	
14	Pressure gauge with needle valve		
15	·Kill line to rig mud pump manifold		2"

OPTIONAL

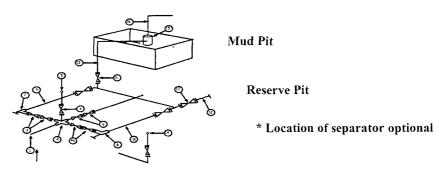
16 Flanged Valve 1 13/16				
16 Planged valve 1 13/10	16	Flanged Valve	1 13/16	

CONTRACTOR'S OPTION TO FURNISH:

- All equipment and connections above bradenhead or casinghead. Working pressure of preventers to be 2000 psi minimum
- Automatic accumulator (80 gallons, minimum) capable of closing BOP in 30 seconds or less and, holding them closed against full rated working pressure.
- BOP controls, to be located near drillers' position.
- Kelly equipped with Kelly cock
- Inside blowout preventer or its equivalent on derrick floor at all times with proper threads to fit pipe being used
- 6 Kelly saver-sub equipped with rubber casing protector at all times
- 7 Plug type blowout preventer tester.
- 8 Extra set pipe rams to fit drill pipe in use on location at all times
- 9 Type RX ring gaskets in place of Type R

MEC TO FURNISH

- Bradenhead or casing head and side valves
- 2 Wear bushing If required


GENERAL NOTES

- Deviations from this drawing may be made only with the express permission of MEC's Drilling Manager
- 2 All connections, valves, fittings, piping, etc., subject to well or pump pressure must be flanged (suitable clamp connections acceptable) and have minimum working pressure equal to rated working pressure of preventers up through choke valves must be full opening and suitable for high pressure mud service
- 3 Controls to be of standard design and each marked, showing opening and closing position
- 4 Chokes will be positioned so as not to hamper or delay changing of choke beans Replaceable parts for adjustable choke, or bean

- sizes, retainers, and choke wrenches to be conveniently located for immediate use.
- 5 All valves to be equipped with hand-wheels or handles ready for immediate use
- 6 Choke lines must be suitably anchored.
- 7 Handwheels and extensions to be connected and ready for use.
- Valves adjacent to drilling spool to be kept open. Use outside valves except for emergency.
- All seamless steel control piping (2000 psi working pressure) to have flexible joints to avoid stress. Hoses will be permitted.
- 10 Casinghead connections shall not be used except in case of emergency
- 11 Does not use kill line for routine fill up operations

Mack Energy Corporation Exhibit #11

Exhibit #11
MIMIMUM CHOKE MANIFOLD
3,000, 5,000, and 10,000 PSI Working Pressure
3M will be used
3 MWP - 5 MWP - 10 MWP

Below Substructure

Mimimum requirements

		3,0	00 MWP		· 5	,000 MWP		1	0,000 MWP	
No.		I.D.	NOMINAL	Rating	I.D.	Nominal	Rating	I.D.	Nominal	Rating
1	Line from drilling Spool		3"	3,000		3"	5,000		3"	10,000
2	Cross 3" x 3" x 3" x 2"			3,000			5,000			
2	Cross 3" x 3" x 3" x 2"									10,000
3	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000
4	Valve Gate Plug	1 13/16		3,000	1 13/16		5,000	1 13/16		10,000
4a	Valves (1)	2 1/16		3,000	2 1/16		5,000	2 1/16		10,000
5	Pressure Gauge			3,000			5,000			10.000
6	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000
7	Adjustable Choke (3)	2"		3,000	2"		5,000	2"		10,000
8_	Adjustable Choke	1"		3,000	1"		5,000	2"		10,000
9	Line		3"	3,000		3"	5,000		3"	10,000
10	Line		2"	3,000		2"	5,000		2"	10,000
11	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000
12	Line		3"	1,000		3"	1,000		3"	2,000
13	Line		3"	1,000		3"	1,000		3"	2,000
14	Remote reading compound Standpipe pressure quage			3,000			5,000			10,000
15	Gas Separator		2' x5'			2' x5'			2' x5'	
16	Line		4"	1,000		4"	1,000		4"	2,000
ι7	Valve Gate Plug	3 1/8		3,000	3 1/8		5,000	3 1/8		10,000

- (1) Only one required in Class 3M
- (2) Gate valves only shall be used for Class 10 M
- (3) Remote operated hydraulic choke required on 5,000 psi and 10,000 psi for drilling.

EQUIPMENT SPECIFICATIONS AND INSTALLATION INSTRUCTION

- 1. All connections in choke manifold shall be welded, studded, flanged or Cameron clamp of comparable rating
- 2 All flanges shall be API 6B or 6BX and ring gaskets shall be API RX or BX Use only BX for 10 MWP
- 3. All lines shall be securely anchored.
- 4. Chokes shall be equipped with tungsten carbide seats and needles, and replacements shall be available.
- 5. Choke manifold pressure and standpipe pressure gauges shall be available at the choke manifold to assist in regulating chokes As an alternate with automatic chokes, a choke manifold pressure gauge shall be located on the rig floor in conjunction with the standpipe pressure gauge.
- 6 Line from drilling spool to choke manifold should bee as straight as possible. Lines downstream from chokes shall make turns by large bends or 90 degree bends using bull plugged tees.

Mack Energy Corporation Onshore Order #6 Hydrogen Sulfide Drilling Operation Plan

I. HYDROGEN SULFIDE TRAINING

All personnel, whether regularly assigned, contracted, or employed on an unscheduled basis, will receive training from a qualified instructor in the following areas prior to commencing drilling operations on this well:

- 1. The hazards an characteristics of hydrogen sulfide (H2S)
- 2. The proper use and maintenance of personal protective equipment and life support systems.
- 3. The proper use of H2S detectors alarms warning systems, briefing areas, evacuation procedures, and prevailing winds.
- 4. The proper techniques for first aid and rescue procedures.

In addition, supervisory personnel will be trained in the following areas:

- 1. The effects of H2S on metal components. If high tensile tubular are to be used, personnel well be trained in their special maintenance requirements.
- 2. Corrective action and shut-in procedures when drilling or reworking a well and blowout prevention and well control procedures.
- 3. The contents and requirements of the H2S Drilling Operations Plan and Public Protection Plan.

There will be an initial training session just prior to encountering a known or probable H2S zone (within 3 days or 500 feet) and weekly H2S and well control drills for all personnel in each crew. The initial training session shall include a review of the site specific H2S Drilling Operations Plan and the Public Protection Plan. The concentrations of H2S of wells in this area from surface to TD are low enough that a contingency plan is not required.

H2S Plan Page 10

II. H2S SAFETY EQUIPMENT AND SYSTEMS

Note: All H2S safety equipment and systems will be installed, tested, and operational when drilling reaches a depth of 500 feet above, or three days prior to penetrating the first zone containing or reasonable expected to contain H2S.

1. Well Control Equipment:

- A. Flare line.
- B. Choke manifold.
- C. Blind rams and pipe rams to accommodate all pipe sizes with properly sized closing unit.
- Auxiliary equipment may include if applicable: annular preventer & rotating head.

2. Protective equipment for essential personnel:

A. Mark II Survive air 30-minute units located in the doghouse and at briefing areas, as indicated on well site diagram.

3. H2S detection and monitoring equipment:

A. 1 portable H2S monitors positioned on location for best coverage and response. These units have warning lights and audible sirens when H2S levels of 20 PPM are reached.

4. Visual warning systems:

- A. Wind direction indicators as shown on well site diagram (Exhibit #8).
- B. Caution/Danger signs (Exhibit #7) shall be posted on roads providing direct access to location. Signs will be painted a high visibility yellow with black lettering of sufficient size to be readable at a reasonable distance from the immediate location. Bilingual signs will be used, when appropriate. See example attached.

5. Mud program:

A. The mud program has been designed to minimize the volume of H2S circulated to surface. Proper mud weight, safe drilling practices and the use of H2S scavengers will minimize hazards when penetrating H2S bearing zones.

H2S Plan Page 11

6. Metallurgy:

- A. All drill strings, casings, tubing, wellhead, blowout preventer, drilling spool, kill lines, choke manifold and lines, and valves shall be suitable for H2S service.
- B. All elastomers used for packing and seals shall be H2S trim.

7.. Communication:

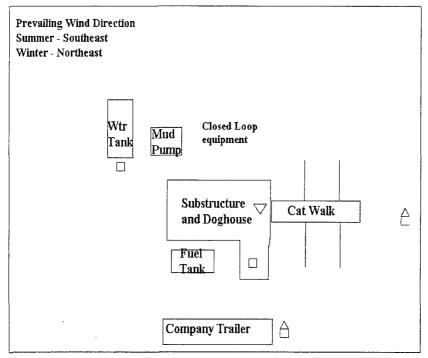
- A. Radio communications in company vehicles including cellular telephone and 2-way radio.
- B. Land line (telephone) communication at Office.

8. Well testing:

- A. Drill stem testing will be performed with a minimum number of personnel in the immediate vicinity, which are necessary to safely and adequately conduct the test. The drill stem testing will be conducted during daylight hours and formation fluids will not be flowed to the surface. All drill-stem-testing operations conducted in an H2S environment will use the closed chamber method of testing.
- B. There will be no drill stem testing.

EXHIBIT #7

WARNING


YOU ARE ENTERING AN H2S

AUTHORIZED PERSONNEL ONLY

- 1. BEARDS OR CONTACT LENSES NOT ALLOWED
- 2. HARD HATS REQUIRED
- 3. SMOKING IN DESIGNATED AREAS ONLY
- 4. BE WIND CONSCIOUS AT ALL TIMES
- 5. CHECK WITH MACK ENERGY FOREMAN AT OFFICE

MACK ENERGY CORPORATION 1-575-748-1288 Jan A Land

DRILLING LOCATION H2S SAFTY EQUIPMENT Exhibit # 8

- \bigvee H2S Monitors with alarms at the bell nipple
- ☐ Wind Direction Indicators
- Safe Briefing areas with caution signs and breathing equipment min 150 feet from

Mack Energy Corporation Call List, Eddy County

Artesia (575)	Cellular	Office	Home
Jim Krogman.	746-5515	748-1288	746-2674
Lonnie Archer	·746-7889	748-1288	365-2998
Donald Arche	. 748-7875	748-1288	748-2287
Chris Davis	746-7132	748-1288	• • • • • •
Kevin Garrett.	746-7423	748-1288	
Agency Call I	<u>List (575)</u>		
Artesia			
	State Police		
	City Police		
	Sheriff's Office		746-9888
	Ambulance	• • • • • • • • • • • • • • • • • • • •	911
	Fire Department		746-2701
	LEPC (Local Emergency Plannin	g Committee	746-2122
	NMOCD		748-1283
Carlsb	ad		
	State Police		885-3137
	City Police		885-2111
	Sheriff's Office		
	Ambulance	• • • • • • • • • • • • • • • • • • • •	911
	Fire Department		885-2111
	LEPC (Local Emergency Plannin		
	Bureau of Land Management	_	
	New Mexico Emergency Respons		
	24 Hour		, ,
	Natonal Emergency Response Ce		` '
Emero	ency Services		
21101 6	Boots & Coots IWC	1-800-256-968	38 or (281)931-8884
	Cudd pressure Control		, ,
	Halliburton		
	B. J. Services		
	Flight For Life-Lubbock, TX		(806)743-9911
	Aerocare-Lubbock, TX		` '
	Med Flight Air Amb-Albuquerqu		
	Lifeguard Air Med Svc. Albuque		
	Eneguard An Med Svc. Arouque	ique, inivi	(303)212-3113

H2S Plan Page 14

SURFACE USE AND OPERATING PLAN

1. Existing & Proposed Access Roads

- A. The well site and elevation plat for the proposed well is shown in Exhibit #1. It was staked by John West Engineering, Hobbs, NM.
- B. All roads to the location are shown in Exhibit below. The existing lease roads are illustrated and are adequate for travel during drilling and production operations. Upgrading existing roads prior to drilling well will be done where necessary.
- C. Directions to Location: From the intersection of Hwy 82 and CR 214 go NW on CR 214 6.9 miles, turn right/NE 0.7 miles, turn left/NW 0.2 miles, veer right/NE 1.2 miles, turn right/SE 0.3 miles, turn right to location 650' south.
- D. Routine grading and maintenance of existing roads will be conducted as necessary to maintain their condition as long as any operations continue on this lease.

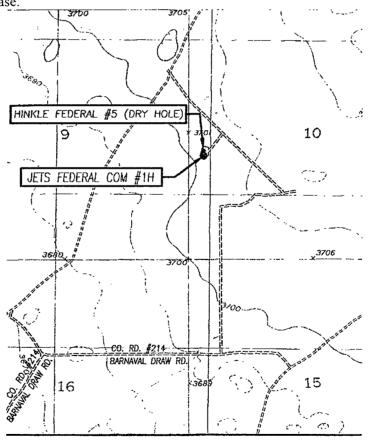


Exhibit #4

2. Proposed Access Road:

Exhibit #3 shows the 0' of new access road to be constructed. The road will be constructed as follows:

- A. The Maximum width of the running surface will be 14'. The road will be crowned and ditched and constructed of 6" rolled and compacted caliche. Ditches will be at 3:1 slope and 4 feet wide. Water will be diverted where necessary to avoid ponding, prevent erosion, maintain good drainage, and to be consistent with local drainage patterns.
- B. The average grade will be less than 1%.
- C. No turnouts are planned.
- D. No culverts, cattleguard, gates, low water crossings or fence cuts are necessary.
- E. Surfacing material will consist of native caliche. Caliche will be obtained from the nearest BLM approved caliche pit.
- F. The proposed access road as shown in Exhibit #3 has been centerline flagged by John West Engineering, Hobbs, New Mexico.

3. Location of Existing Wells & Proposed flow lines for New Wells:

Exhibit #4 shows all existing wells within a one-mile radius of this well. Proposed flow lines, will stay on location production facility will be constructed.

4. Location of Existing and/or Proposed Facilities:

- A. Mack Energy Corporation does not operate a production facility on this lease.
- B. If the well is productive, contemplated facilities will be as follows:
 - 1) Abo Completion: Will be sent to the Jets Federal Com TB located at the #1 well. The Facility is shown in Exhibit #5.
 - 2) The tank battery and facilities including all flow lines and piping will be installed according to API specifications.
 - 3) Any additional caliche will be obtained from a BLM approved caliche pit. Any additional construction materials will be purchased from contractors.

4) It will be necessary to run electric power if this well is productive. Power will be run by CVE and they will send in a separate plan for power.

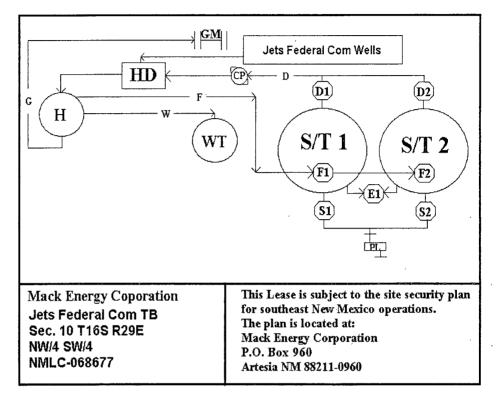


Exhibit #5

- A. If the well is productive, rehabilitation plans are as follows:
 - 1) Topsoil removed from the drill site will be used to recontour the surrounding area to the original natural level, as nearly as possible, and reseeded as per BLM specifications.

5. Location and Type of Water Supply:

The well will be drilled with combination brine and fresh water mud system as outlined in the drilling program. The water will be obtained from commercial water stations in the area and hauled to location by transport truck over the existing and proposed access roads shown in Exhibit #4. If a commercial fresh water source is nearby, fasline may be laid along existing road ROW's and fresh water pumped to the well. No water well will be drilled on the location.

6. Source of Construction Materials:

All caliche required for construction of the drill pad and proposed new access road (approximately 2500 cubic yards) will be obtained from a BLM approved caliche pit.

7. Methods of Handling Water Disposal:

- A. Drill cuttings not retained for evaluation purposes will be disposed into the steel tanks and hauled to an approved facility.
- B. Drilling fluids will be contained in steel tanks using a closed loop system.
- C. Water produced from the well during completion may be disposed into a steel tank. After the well is permanently placed on production, produced water will be collected in tanks (fiberglass) until pumped to an approved disposal system; produced oil will be collected in steel tanks until sold.
- D. Garbage and trash produced during drilling or completion operations will be collected in a trash bin and hauled to an approved landfill. All water and fluids will be disposed of into an approved facility. No toxic waste or hazardous chemicals will be produced by this operation.
- E. After the rig is moved out and the well is either completed or abandoned, all waste materials will be cleaned up within 30 days. In the event of a dry hole only a dry hole marker will remain.

8. Ancillary Facilities:

No airstrip, campsite or other facilities will be built as a result of the operation on this well.

9. Well Site Layout:

- A. The drill pad layout, with elevations staked by John West Engineering, is shown in Exhibit #6. Dimensions of the pad are shown. Topsoil, if available, will be stockpiled per BLM specifications. Because the pad is almost level no major cuts will be required.
- B. Diagram below shows the proposed orientation of the location. No permanent living facilities are planned, but a temporary foreman/toolpusher's trailer will be on location during the drilling operations.

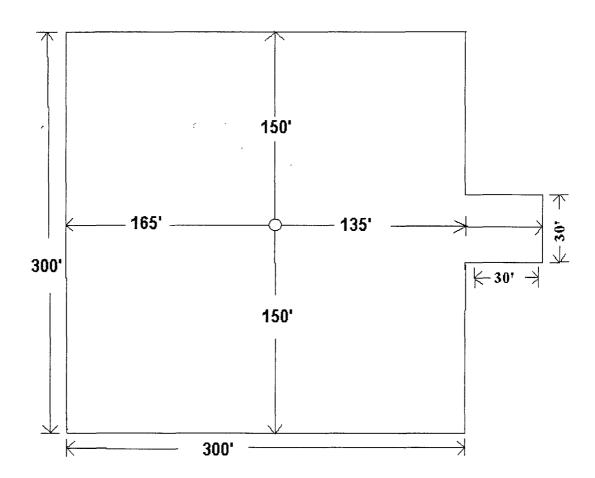


Exhibit #6

10. Plans for Restoration of the Surface:

- A. Upon completion of the proposed operations, if the well is completed, any additional caliche required for facilities will be obtained from a BLM approved caliche pit.
- B. In the event of a dry hole. Topsoil removed from the drill site will be used to recontour the area to its original natural level and reseeded as per BLM specifications.

11. Surface Ownership:

The well site and lease is located entirely on Federal surface. We have notified the surface lessee of the impending operations. According to BLM the lease is Bogel Limited Company, Lewis Derrick, P.O. Box 460 Dexter, NM 88230

12. Other Information:

- A. The area around the well site is grassland and the topsoil is sandy. The vegetation is native scrub grass with sagebrush.
- B. There is no permanent or live water in the immediate area.
- C. A Cultural Resources Examination has been requested and will be forwarded to your office in the near future.

13. Lessee's and Operator's Representative:

The Mack Energy Corporation representative responsible for assuring compliance with the surface use plan is as follows:

Jerry W. Sherrell Mack Energy Corporation P.O. Box 960 Artesia, NM 88211-0960 Phone (575) 748-1288 (office)

CERTIFICATION

I hereby certify that I, or person under my direct supervision, have inspected the proposed drill site and access route; that I am familiar with the conditions which currently exist; that the statements made in this APD are to the best of my knowledge, true and correct; and the work associated with the operations proposed herein will be performed by Mack Energy Corporation and its contractors and subcontractors in conformity with this plan and the terms and conditions which it is approved. This statement is subject to the provisions of 18 U.S.C. 1001 for the filing of a false statement.

Date: 4-28-08

Signed:

Jerry W. Sherrell

PECOS DISTRICT CONDITIONS OF APPROVAL

OPERATOR'S NAME: Mack Energy Corp
LEASE NO.: NM -15007
WELL NAME & NO.: 1-Jets Federal Com
SURFACE HOLE FOOTAGE: 2210' FSL & 330' FWL
BOTTOM HOLE FOOTAGE 2285' FSL & 330' FEL
LOCATION: Section 10, T. 16 S., R 29 E., NMPM
COUNTY: Eddy County, New Mexico

TABLE OF CONTENTS

Standard Conditions of Approval (COA) apply to this APD. If any deviations to these standards exist or special COAs are required, the section with the deviation or requirement will be checked below.

☐ General Provisions ☐ Permit Expiration ☐ Archaeology, Paleontology, and Historical Sites ☐ Noxious Weeds ☐ Special Requirements Playas
⊠ Construction
Notification
Topsoil
Closed Loop System
Federal Mineral Material Pits
Well Pads
Roads
Road Section Diagram
□ Drilling
Production (Post Drilling)
Well Structures & Facilities
Pipelines
Electric Lines
☐ Closed Loop System/Interim Reclamation
Final Abandonment/Reclamation

I. GENERAL PROVISIONS

The approval of the Application For Permit To Drill (APD) is in compliance with all applicable laws and regulations: 43 Code of Federal Regulations 3160, the lease terms, Onshore Oil and Gas Orders, Notices To Lessees, New Mexico Oil Conservation Division (NMOCD) Rules, National Historical Preservation Act As Amended, and instructions and orders of the Authorized Officer. Any request for a variance shall be submitted to the Authorized Officer on Form 3160-5, Sundry Notices and Report on Wells.

II. PERMIT EXPIRATION

If the permit terminates prior to drilling and drilling cannot be commenced within 60 days after expiration, an operator is required to submit Form 3160-5, Sundry Notices and Reports on Wells, requesting surface reclamation requirements for any surface disturbance. However, if the operator will be able to initiate drilling within 60 days after the expiration of the permit, the operator must have set the conductor pipe in order to allow for an extension of 60 days beyond the expiration date of the APD. (Filing of a Sundry Notice is required for this 60 day extension.)

III. ARCHAEOLOGICAL, PALEONTOLOGY & HISTORICAL SITES

Any cultural and/or paleontological resource discovered by the operator or by any person working on the operator's behalf shall immediately report such findings to the Authorized Officer. The operator is fully accountable for the actions of their contractors and subcontractors. The operator shall suspend all operations in the immediate area of such discovery until written authorization to proceed is issued by the Authorized Officer. An evaluation of the discovery shall be made by the Authorized Officer to determine the appropriate actions that shall be required to prevent the loss of significant cultural or scientific values of the discovery. The operator shall be held responsible for the cost of the proper mitigation measures that the Authorized Officer assesses after consultation with the operator on the evaluation and decisions of the discovery. Any unauthorized collection or disturbance of cultural or paleontological resources may result in a shutdown order by the Authorized Officer.

IV. NOXIOUS WEEDS

The operator shall be held responsible if noxious weeds become established within the areas of operations. Weed control shall be required on the disturbed land where noxious weeds exist, which includes the roads, pads, associated pipeline corridor, and adjacent land affected by the establishment of weeds due to this action. The operator shall consult with the Authorized Officer for acceptable weed control methods, which include following EPA and BLM requirements and policies.

V. SPECIAL REQUIREMENT(S)

Mitigation Measures: The mitigation measures include the Pecos District Conditions of Approval, the standard stipulations for access roads and some of the locations will need stipulations on them for nearby playas. The wells that need mitigation for playas and hydrological concerns are listed below:

Jets Federal Com. #1: This well pad location needs to have a berm placed around the south side of the proposed location. This will help to minimize erosion or loss of sediments into the nearby playa as well as reduce the chance of contaminating the playas in case of a spill of any hydrocarbons or salts on the well pad location itself.

Jets Federal Com. #1: V-door East

VI. CONSTRUCTION

A. NOTIFICATION

The BLM shall administer compliance and monitor construction of the access road and well pad. Notify the Carlsbad Field Office at (505) 234-5972 at least 3 working days prior to commencing construction of the access road and/or well pad.

When construction operations are being conducted on this well, the operator shall have the approved APD and Conditions of Approval (COA) on the well site and they shall be made available upon request by the Authorized Officer.

B. TOPSOIL

The operator shall stockpile the topsoil of the well pad The topsoil shall not be used to backfill the reserve pit and will be used for interim and final reclamation.

C. Closed Loop System

Jets Federal Com. #1: V-door East

Tanks are required for drilling operations: No Pits.

The operator shall properly dispose of drilling contents at an authorized disposal site.

D. FEDERAL MINERAL MATERIALS PIT

If the operator elects to surface the access road and/or well pad, mineral materials extracted during construction of the reserve pit may be used for surfacing the well pad and access road and other facilities on the lease.

Payment shall be made to the BLM prior to removal of any additional federal mineral materials from any site other than the reserve pit. Call the Carlsbad Field Office at (505) 234-5972.

E. WELL PAD SURFACING

Surfacing of the well pad is not required.

If the operator elects to surface the well pad, the surfacing material may be required to be removed at the time of reclamation.

The well pad shall be constructed in a manner which creates the smallest possible surface disturbance, consistent with safety and operational needs.

F. ON LEASE ACCESS ROADS

Road Width

The access road shall have a driving surface that creates the smallest possible surface disturbance and does not exceed fourteen (14) feet in width. The maximum width of surface disturbance, when constructing the access road, shall not exceed thirty (30) feet.

Surfacing

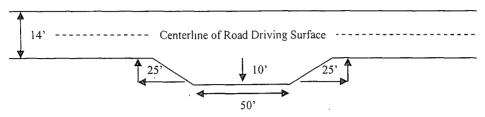
Surfacing material is not required on the new access road driving surface. If the operator elects to surface the new access road or pad, the surfacing material may be required to be removed at the time of reclamation.

Where possible, no improvements should be made on the unsurfaced access road other than to remove vegetation as necessary, road irregularities, safety issues, or to fill low areas that may sustain standing water.

The Authorized Officer reserves the right to require surfacing of any portion of the access road at any time deemed necessary. Surfacing may be required in the event the road deteriorates, erodes, road traffic increases, or it is determined to be beneficial for future field development. The surfacing depth and type of material will be determined at the time of notification.

Crowning

Crowning shall be done on the access road driving surface. The road crown shall have a grade of approximately 2% (i.e., a 1" crown on a 14' wide road). The road shall conform to Figure 1; cross section and plans for typical road construction.

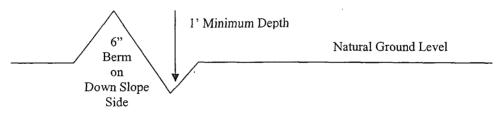

Ditching

Ditching shall be required on both sides of the road.

Turnouts

Vehicle turnouts shall be constructed on the road. Turnouts shall be intervisible with interval spacing distance less than 1000 feet. Turnouts shall be constructed on all blind curves. Turnouts shall conform to the following diagram:

Standard Turnout - Plan View



Drainage

Drainage control systems shall be constructed on the entire length of road (e.g. ditches, sidehill outsloping and insloping, lead-off ditches, culvert installation, and low water crossings).

A typical lead-off ditch has a minimum depth of 1 foot below and a berm of 6 inches above natural ground level. The berm shall be on the down-slope side of the lead-off ditch.

Cross Section of a Typical Lead-off Ditch

All lead-off ditches shall be graded to drain water with a 1 percent minimum to 3 percent maximum ditch slope. The spacing interval are variable for lead-off ditches and shall be determined according to the formula for spacing intervals of lead-off ditches, but may be amended depending upon existing soil types and centerline road slope (in %);

Formula for Spacing Interval of Lead-off Ditches

Example - On a 4% road slope that is 400 feet long, the water flow shall drain water into a lead-off ditch. Spacing interval shall be determined by the following formula:

400 foot road with 4% road slope: $\frac{400'}{4\%}$ + 100' = 200' lead-off ditch interval

Culvert Installations

Appropriately sized culvert(s) shall be installed at the deep waterway channel flow crossing.

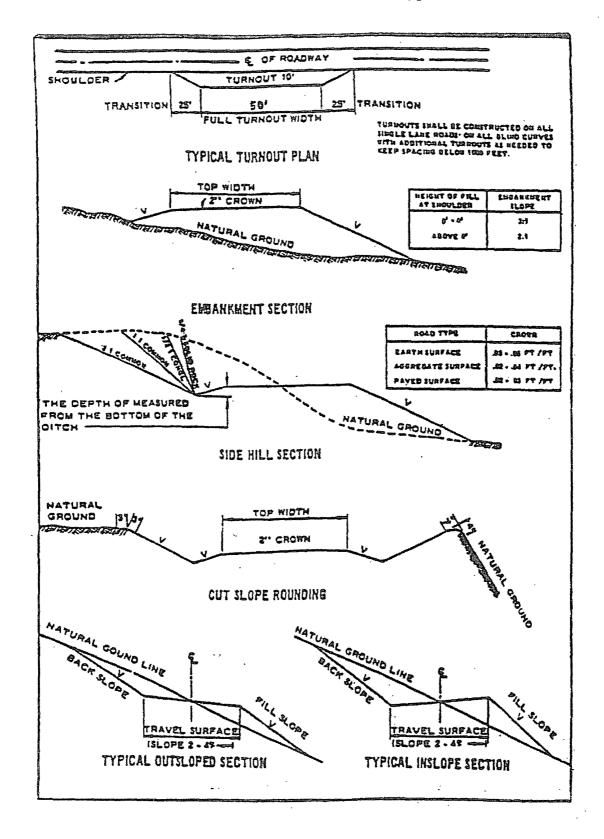
Cattleguards

An appropriately sized cattleguard(s) sufficient to carry out the project shall be installed and maintained at fence crossing(s).

Any existing cattleguard(s) on the access road shall be repaired or replaced if they are damaged or have deteriorated beyond practical use. The operator shall be responsible for the condition of the existing cattleguard(s) that are in place and are utilized during lease operations.

A gate shall be constructed and fastened securely to H-braces.

Fence Requirement


Where entry is required across a fence line, the fence shall be braced and tied off on both sides of the passageway prior to cutting.

The operator shall notify the private surface landowner or the grazing allotment holder prior to crossing any fence(s).

Public Access

Public access on this road shall not be restricted by the operator without specific written approval granted by the Authorized Officer.

Figure 1 - Cross Sections and Plans For Typical Road Sections

VII. DRILLING

A. DRILLING OPERATIONS REQUIREMENTS

The BLM is to be notified a minimum of 4 hours in advance for a representative to witness:

- a. Spudding well
- b. Setting and/or Cementing of all casing strings
- c. BOPE tests

Eddy County

Call the Carlsbad Field Office, 620 East Greene St., Carlsbad, NM 88220, (575) 361-2822

- 1. Although Hydrogen Sulfide has not been reported in this section, it is always a possible hazard. It has been reported in the Township to the east. If Hydrogen Sulfide is encountered, please report measured amounts and formations to the BLM.
- 2. Unless the production casing has been run and cemented or the well has been properly plugged, the drilling rig shall not be removed from over the hole without prior approval.

B. CASING

Changes to the approved APD casing and cement program require submitting a sundry and receiving approval prior to work. Failure to obtain approval prior to work will result in an Incident of Non-Compliance being issued.

Centralizers required on surface casing per Onshore Order 2.III.B.1.f.

Provide compressive strengths including hours to reach required 500 pounds compressive strength prior to cementing each casing string.

No pea gravel permitted for remedial or fall back remedial without prior authorization from the BLM engineer.

Possible lost circulation in the Grayburg and San Andres formations. Possible brine and water flows in the Salado and Artesia Groups.

1. The 13-3/8 inch surface casing shall be set at approximately 380 feet (a minimum of 25 feet into the Rustler Anhydrite and above the salt) and cemented to the surface.

- a. If cement does not circulate to the surface, the appropriate BLM office shall be notified and a temperature survey utilizing an electronic type temperature survey with a surface log readout will be used or a cement bond log shall be run to verify the top of the cement.
- b. Wait on cement (WOC) time for a primary cement job will be a minimum 18 hours for a water basin, 24 hours in the potash area, or 500 pounds compressive strength, whichever is greater. (This is to include the lead cement).
- c. Wait on cement (WOC) time for a remedial job will be a minimum of 4 hours after bringing cement to surface or 500 pounds compressive strength, whichever is greater.
- d. If cement falls back, remedial cementing will be done prior to drilling out that string.
- 2. The minimum required fill of cement behind the 8-5/8 inch intermediate casing is:
 - Cement to surface. If cement does not circulate see B.1.a-d above.
- 3. The minimum required fill of cement behind the 5-1/2 inch production easing is:
 - Cement to surface. If cement does not circulate, contact the appropriate BLM office.

Centralizers required on horizontal leg, must be type for horizontal service and minimum of one every other joint.

4. If hardband drill pipe is rotated inside casing, returns will be monitored for metal. If metal is found in samples, drill pipe will be pulled and rubber protectors which have a larger diameter than the tool joints of the drill pipe will be installed prior to continuing drilling operations.

C. PRESSURE CONTROL

1. All blowout preventer (BOP) and related equipment (BOPE) shall comply with well control requirements as described in Onshore Oil and Gas Order No. 2 and API RP 53 Sec. 17. 3M system being tested as 2M – meets minimum requirements.

- 2. The appropriate BLM office shall be notified a minimum of 4 hours in advance for a representative to witness the tests.
 - a. The tests shall be done by an independent service company.
 - b. The results of the test shall be reported to the appropriate BLM office.
 - c. All tests are required to be recorded on a calibrated test chart. A copy of the BOP/BOPE test chart and a copy of independent service company test will be submitted to the appropriate BLM office.
 - d. The BOP/BOPE test shall include a low pressure test from 250 to 300 psi. The test will be held for a minimum of 10 minutes if test is done with a test plug and 30 minutes without a test plug.
 - e. A variance to test the surface casing and BOP/BOPE (entire system) to the reduced pressure of 1000 psi with the rig pumps is approved.

D. DRILL STEM TEST

If drill stem tests are performed, Onshore Order 2.III.D shall be followed.

WWI 061308

VIII. PRODUCTION (POST DRILLING)

A. WELL STRUCTURES & FACILITIES

Placement of Production Facilities

Production facilities should be placed on the well pad to allow for maximum interim recontouring and revegetation of the well location.

Containment Structures

The containment structure shall be constructed to hold the capacity of the entire contents of the largest tank, plus 24 hour production, unless more stringent protective requirements are deemed necessary by the Authorized Officer.

Painting Requirement

All above-ground structures including meter housing that are not subject to safety requirements shall be painted a flat non-reflective paint color Shale Green, Munsell Soil Color Chart # 5Y 4/2

- B. PIPELINES
- C. ELECTRIC LINES

IX. INTERIM RECLAMATION & RESERVE PIT CLOSURE

A. INTERIM RECLAMATION

If the well is a producer, interim reclamation shall be conducted on the well site in accordance with the orders of the Authorized Officer. The operator shall submit a Sundry Notices and Reports on Wells (Notice of Intent), Form 3160-5, prior to conducting interim reclamation.

During the life of the development, all disturbed areas not needed for active support of production operations should undergo interim reclamation in order to minimize the environmental impacts of development on other resources and uses.

The operators should work with BLM surface management specialists to devise the best strategies to reduce the size of the location. Any reductions should allow for remedial well operations, as well as safe and efficient removal of oil and gas.

During reclamation, the removal of caliche is important to increasing the success of revegetating the site. Removed caliche may be used for road repairs, fire walls or for building other roads and locations. In order to operate the well or complete workover operations, it may be necessary to drive, park and operate on restored interim vegetation within the previously disturbed area. Disturbing revegetated areas for production or workover operations will be allowed. If there is significant disturbance and loss of vegetation, the area will need to be revegetated. Communicate with the appropriate BLM office for any exceptions/exemptions if needed.

Seed Mixture 4, for Gypsum Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be <u>no</u> primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (smaller/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

Species	<u>lb/acre</u>
Alkali Sacaton (Sporobolus airoides)	1.0
DWS⊆ Four-wing saltbush (Atriplex canescens)	5.0

⊆DWS: DeWinged Seed

Pounds of seed x percent purity x percent germination = pounds pure live seed (Insert Seed Mixture Here)

^{*}Pounds of pure live seed:

X. FINAL ABANDONMENT & REHABILITATION REQUIREMENTS

Upon abandonment of the well and/or when the access road is no longer in service the Authorized Officer shall issue instructions and/or orders for surface reclamation and restoration of all disturbed areas.

On private surface/federal mineral estate land the reclamation procedures on the road and well pad shall be accomplished in accordance with the private surface land owner agreement.