1Q 2020

SVE REPORT

April 30, 2020

RCVD Via Email 5/21/2020 Reviewed by Cory

Mr. Cory Smith, Environmental Specialist New Mexico Oil Conservation Division – District 3 1000 Rio Brazos Road Aztec, New Mexico 87410

Re: Status Report – 1st Quarter 2020 San Juan 28-7 Unit 183M Rio Arriba County, New Mexico OCD Incident No. NCS1901627746

Dear <u>Mr.</u> Smith:

On behalf of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this report to document remedial activities conducted during the first quarter of 2020 (1Q20) at the San Juan 28-7 Unit 183M (Site). Activities conducted during the 1Q20 consisted of the following:

- Operation and maintenance of the soil vapor extraction (SVE) system
- Collection and laboratory analysis of an initial gas sample
- Installation of additional equipment (i.e., heat tape, insulation, and hour meter)

Environmental Setting and Site Geology

The Site is situated on federal land managed by the Bureau of Land Management (BLM) in western Rio Arriba County, New Mexico (Figure 1). The area consists of sparse vegetative cover comprised primarily of scrub brush and native grasses. Area terrain is comprised of plateaus divided by canyons. The primary canyon in the area is Carrizo Canyon, which drains to the northwest into the San Juan River, approximately 19 miles from the Site (Figures 2 and 3).

The Site is situated along the rimrock of an unnamed side canyon to Carrizo Canyon. Average elevation at the Site is approximately 6,523 feet (ft) above mean sea level. The closest surface water is a first order tributary of Carrizo Creek, situated 1,500 ft southeast of the Site and 330 ft lower in elevation.

According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS), the Site soil consists of the Vessilla-Menefee-Orlie complex, 2 to 30 percent slopes. The surface horizon is comprised of a sandy loam, underlain by bedrock encountered between 15 to 19 inches below ground surface (bgs). Native salinity of the soil is nonsaline to very slightly saline (0.0 to 2.0 millimhos per centimeter (mmhos/cm)).

HEC-190007 April 30, 2020 Page 2

Site History

Corrosion near the base of the former oil tank resulted in the release of approximately 150 barrels (bbls) of oil and 7 bbls of produced water. All released fluid was contained by the berm. Standing fluid was recovered; the tank was removed from service and disposed off-site. The initial investigation identified the area of the former tank battery as the primary area of concern (AOC).

Hilcorp constructed a new tank battery northeast of the original tank battery. Tanks and interconnective piping were removed from the original tank battery.

A soil investigation, conducted during March 2019, revealed the constituents of concern (COC) were: total BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) and total petroleum hydrocarbons (TPH). Impacted soil was horizontally and vertically delineated; the vertical extent of impacted soil was approximately 27 ft bgs. Additionally, the soil investigation revealed that subsurface soil is unconsolidated to a depth of 10 ft below ground surface (bgs) which is underlain by sandstone. Findings of the investigation are documented in Timberwolf's report entitled: *Site Characterization Report and Remedial Action Plan*, dated May 21, 2019.

SVE System Overview

To remediate impacted soil at the Site, Hilcorp installed and operates a soil vapor extraction (SVE) system. The SVE system is comprised 11 SVE wells, four vent wells, and a SVE trailer (Photo No. 1).

SVE Wells and Vents

SVE and vent wells at the Site include:

- 4 shallow SVE wells (i.e., SVE1 SVE4)
- 7 deep SVE wells (i.e., SVE5 SVE11)
- 4 deep SVE vents

Each vent or SVE wells was constructed of 2-inch polyvinyl chloride (PVC) screened and blank pipe. The four shallow SVE wells were completed in unconsolidated soil with screened intervals from 7 to 10 feet (ft) bgs. Seven deep SVE wells and four vents were completed within sandstone with screened intervals from 15 ft to 25 ft bgs.

SVE System

The SVE system consists of SVE wells and vents and a SVE trailer. The SVE trailer is comprised of:

- a liquid-ring, explosion proof, regenerative blower capable of producing 77 cubic feet per minute (CFM) at 4.5 inches of mercury
- moisture separator and filter
- sampling port
- manifold with three independent legs
- 12 inlet ports comprised of 2-inch cam-lock fittings and PVC piping
- gate valves
- vacuum gauges

HEC-190007 April 30, 2020 Page 3

Each leg accommodates four inlet ports and supports up to four SVE wells. SVE wells are connected to inlet ports with 2-inch PVC piping and vacuum hoses. System configuration is documented in Photo Nos. 2 - 5. The system is powered by an electrical generator which was installed at the Site from 12/13/20 through 12/17/19.

Each inlet port is equipped with a vacuum gauge capable of measuring the vacuum exerted on each SVE well and a gate valve to regulate vacuum and flow. Each leg is equipped with a flow meter and automated valve. The three legs converge into a 3-inch PVC trunk line to form the manifold. The trunk line is fitted with a sampling port and empties into a moisture separator. The moisture separator is equipped with a high-level shut-off and drain line to manage recovered water and condensate. Air exiting the moisture separator is filtered prior to entering a regenerative blower. Exhaust from the blower exits the trailer through a 2-inch steel pipe fitted with a rain cap.

The SVE trailer is equipped with a programmable automation panel to control valves for each manifold leg. The SVE system creates a treatment field of approximately 0.15 acres and treats soil to a depth of approximately 30 ft bgs for a total volume of approximately 7,021 cubic yards of soil. The SVE wells, measured radius of influence of 25 ft, and leg configurations are shown in Figure 4.

SVE System Operations

The SVE system was designed with three independent legs (i.e., Leg 1, Leg 2, and Leg 3). Legs 1 and 3 provide vacuum extraction to the deep SVE wells; Leg 2 is piped to the shallow wells. System startup was initiated on 12/18/19.

The automation panel was programmed to oscillate between Legs 1, 2, and 3 every four hours for continuous 24-hr operations. Programmed runtimes are presented in Table 1 below.

Leg	SVE Wells and Location	Scheduled Runtime
Leg 1	Deep Wells SVE7, SVE8, and SVE9 Eastern side of treatment zone	4 hours
Leg 2	Shallow Wells SVE1, SVE2, SVE3, and SVE4	4 hours
Leg 3	Deep Wells SVE5, SVE6, SVE10, and SVE11 Central and Western side of treatment zone	4 hours
Leg 1	Deep Wells SVE7, SVE8, and SVE9 Eastern side of treatment zone	4 hours
Leg 2	Shallow Wells SVE1, SVE2, SVE3, and SVE4	4 hours
Leg 3	Deep Wells SVE5, SVE6, SVE10, and SVE11 Central and Western side of treatment zone	4 hours

Table 1. Programmed Runtimes	s and Leg Configurations
------------------------------	--------------------------

SVE – soil vapor extraction well

Water and condensate collected in the moisture separator was drained through a 1-inch PVC pipe and transferred to an open-top tank fitted with bird netting as shown in Photo No. 6. Approximately 41 gallons of water/condensate was recovered during the first quarter of 2020.

Runtime, flow rates, and percentage of runtime for 1Q20 are documented in Table 2 below. Note: runtimes were measured from an hour meter installed on SVE system on 01/15/20. The system did not run from 01/01/20 to 01/15/20 due to water freezing in moisture separator. On 01/15/20, the moisture separator was fitted with heat tape and insulation to defrost the tank and prevent further freezing.

Measurement	Leg 1	Leg 2	Leg 3	Total
Runtime (hours)	134.8	125.4	117.4	377.6
Runtime (min)	8,088	7,524	7,044	22,656
Average CFM	11.75	8.5	20	N/A
Runtime Percentage	35.7%	33.2%	31.1%	100%
min – minutes	CFM – cubic feet per minute			

 Table 2. System Runtime and Flow Rates – 1Q20

The 1Q20 had 2,184 hours in the quarter; the SVE system ran for 377.6 hours. The runtime for the system in 1Q20 was 17.3%. The low runtime was due to persistent generator malfunctions. Of the nine operation and maintenance (O&M) events conducted during 1Q20, the generator had shut down on seven occasions. Most of the generator malfunctions were related to sensor alarms. A field log of the O&M events and work performed at the Site is provided in the attached Table A-1.

Collection and Analysis of Initial Gas Sample

On 02/12/20, a composite gas sample was collected from the three legs using a single summa canister. A summa canister was prepared by the laboratory and received with a vacuum of 25 inches of mercury and was equipped with a gauge to monitor canister vacuum.

The summa canister was connected to the sampling port after the legs had ran for a minimum of 45 minutes. The valve at the sampling port was opened to purge air within the tubing between the sampling port and summa canister. After purging, the summa canister valve was opened, and the vacuum gauge was monitored until vacuum in the canister became static. The sample stabilized within 10 minutes with a final vacuum reading of 4.1 inches of mercury. Upon stabilization, canister and sample port valves were closed prior to disconnecting the summa canister.

The gas sample (i.e., 183M Initial) was shipped to Pace National in Mt. Juliet, Tennessee for chemical analysis of volatile organic compounds (VOCs) using EPA method Toxic Organics 15 (TO 15) and analysis of oxygen and carbon dioxide using ASTM method D1946. The sample was shipped under proper chain-of-custody protocol. The laboratory report and chain-of-custody documents are attached. Constituents which exceeded laboratory detection limits are presented in Table 3; all constituent results are documented in the attached Table A-2.

Volatile Organic Carbons	183M Initial* (mg/m³)	183M Initial* %
Benzene	268	NC
Cyclohexane	1,900	NC
Ethanol	2.47	NC
Ethylbenzene	25.8	NC
Heptane	1,760	NC
N-Hexane	1,520	NC
2-Propanol	11.7	NC
Toluene	964	NC
Vinyl Acetate	67.3	NC
Total Xylenes	195.3	NC
TPH (GC/MS) Low Fraction	21,600	2.16
Oxygen	163,000	16.3
Carbon Dioxide	NC	< 0.500

Table 3. Initial Gas Analysis – 02/12/20

mg/m³ – milligrams per cubic meter

*composite sample for Leg 1, Leg 2, & Leg 3 % – percent

NC - not calculated

A few notable observations from the laboratory data in Table 3:

- Cyclohexane is a daughter product of benzene, the fact that cyclohexane has a much higher concentration than benzene reveals the benzene degradation process has already begun by the time soil vapors reach the sampling port
- Alcohol and acetate are common laboratory contaminates. Ethanol, 2-propanol and vinyl acetate were reported at low concentrations which is indicative of a laboratory contaminants
- TPH low fraction (i.e., GRO) was measured at 21,600 milligrams per cubic meter (mg/m³) or 2.16 percent which indicates an efficient vapor extraction of petroleum hydrocarbons
- The relatively high concentration of oxygen indicates the vents are effective

During 1Q20, samples were collected from each leg and screened for volatile organic carbons (VOCs) utilizing a photoionization detector (PID) during three O&M events. Each sample was collected from the sampling port using a vacuum pump to fill a dedicated Tedlar® bag. The PID meter was then connected to the Tedlar® bag and the meter's pump extracted the air sample from the bag. The PID readings are presented in Table 4 below.

Date	PID (ppm)			
Date	Leg 1	Leg 2	Leg 3	
02/12/20	577.6	442.8	595.5	
02/20/20	555	446.7	571.1	
03/06/20	1152	624.2	866.5	

Table 4. PID Readings

PID – photoionization detector

ppm – parts per million

Mass Removal

Timberwolf used the results from the initial gas analysis, flow rates, and runtimes to calculate constituent mass removal. Mass removal of GRO and BTEX and associated recovered volume are presented in Table 5 below.

Constituent	Ма	Mass Removal by Leg (kg) ¹			Recovered Volume ³
	Leg 1	Leg 2	Leg 3	Removed ² (lbs)	(bbl)
GRO	58.1	39.1	86.2	403	1.50
Benzene	0.72	0.49	1.07	5.01	NC
Toluene	2.59	1.75	3.85	18.0	NC
Ethylbenzene	0.07	0.05	0.10	0.48	NC
Xylenes	0.53	0.35	0.78	3.65	NC

Table 5. Mass Removal and Associated Volun
--

¹Calculation = minutes ran * CFM * Concentration (mg/m³) * 1 M3/35.3147 ft³*1g/1000 mg * 1 kg/1000 g

²Calculation = [Leg 1 + Leg 2 + Leg 3] * 2.2 lbs/kg
³Calculation = lbs / 6.42 lb/gal / 42 gal/bbl
GRO = from TPH (GC/MS) Low Fraction
GRO – gasoline range organics
Assumptions: API Gravity = 52
kg – kilograms
lbs – pounds
bbl -barrel

NC – not calculated

Summary

System runtime during 1Q20 was 17.3% of total available hours in 1Q20. The low runtime was due to generator malfunctions. The total mass removed during 1Q20 for TPH low fraction (i.e., GRO) was approximately 403 lbs (i.e., 1.50 bbls).

The initial gas sample revealed elevated concentrations in the following COCs: benzene, cyclohexane, ethanol, ethylbenzene, heptane, n-hexane, 2-propanol, toluene, vinyl acetate, total xylenes, TPH low fraction (i.e., GRO).

Further Actions - Second Quarter 2020

During 2Q20, Timberwolf plans to conduct the following activities at the Site:

- Conduct regular Site O&M to ensure proper system function and drain any water/condensate accumulation in the moisture separator
- Install a more reliable power source

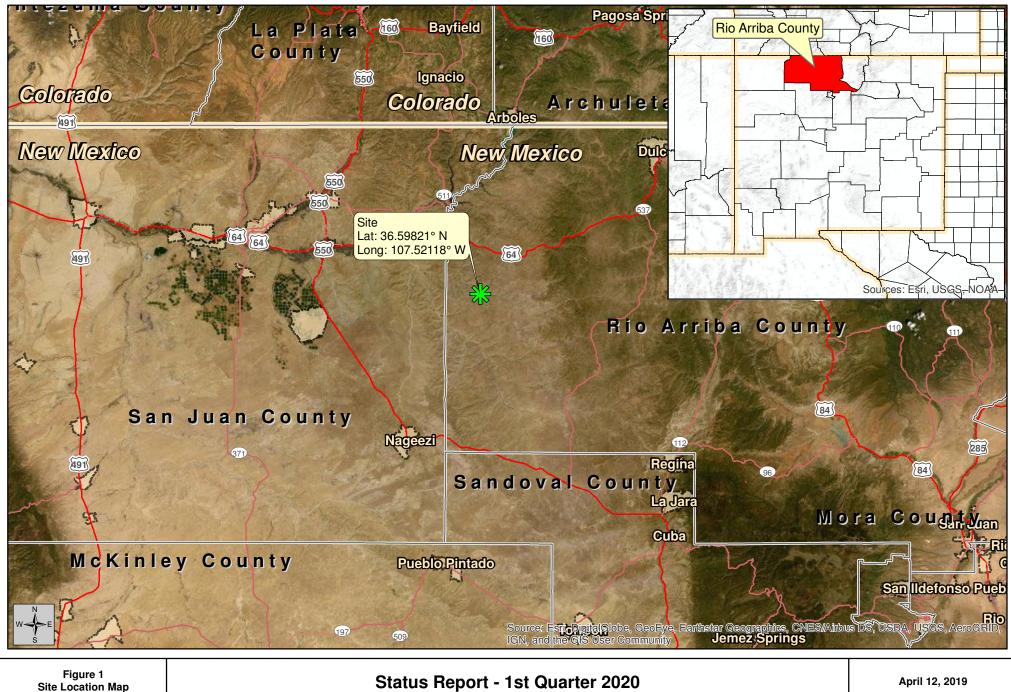
HEC-190007 April 30, 2020 Page 7

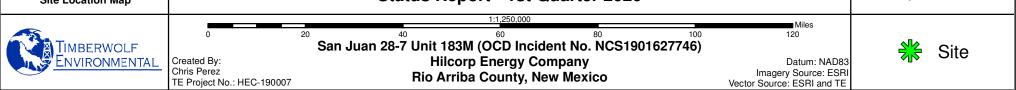
If you have any questions regarding this report or need further assistance, please call us at 979-324-2139.

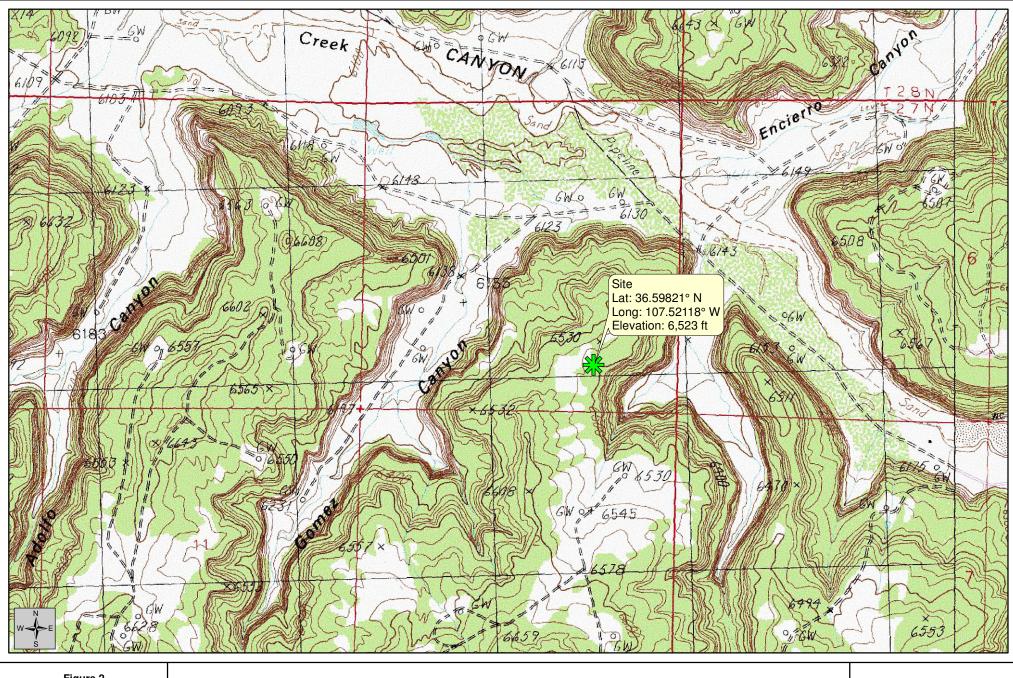
Sincerely, Timberwolf Environmental, LLC

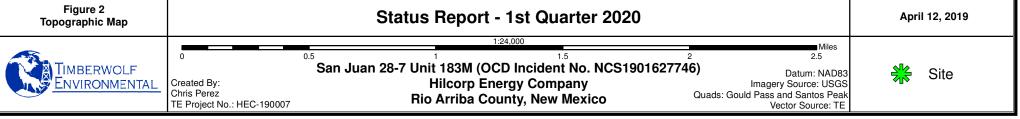
Michael Morse Project Scientist

that

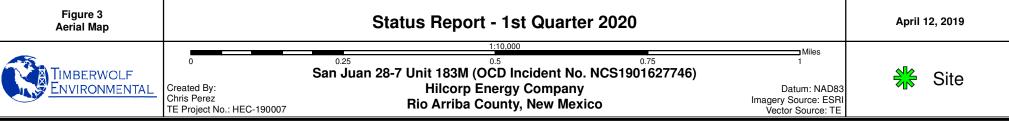

Jim Foster President

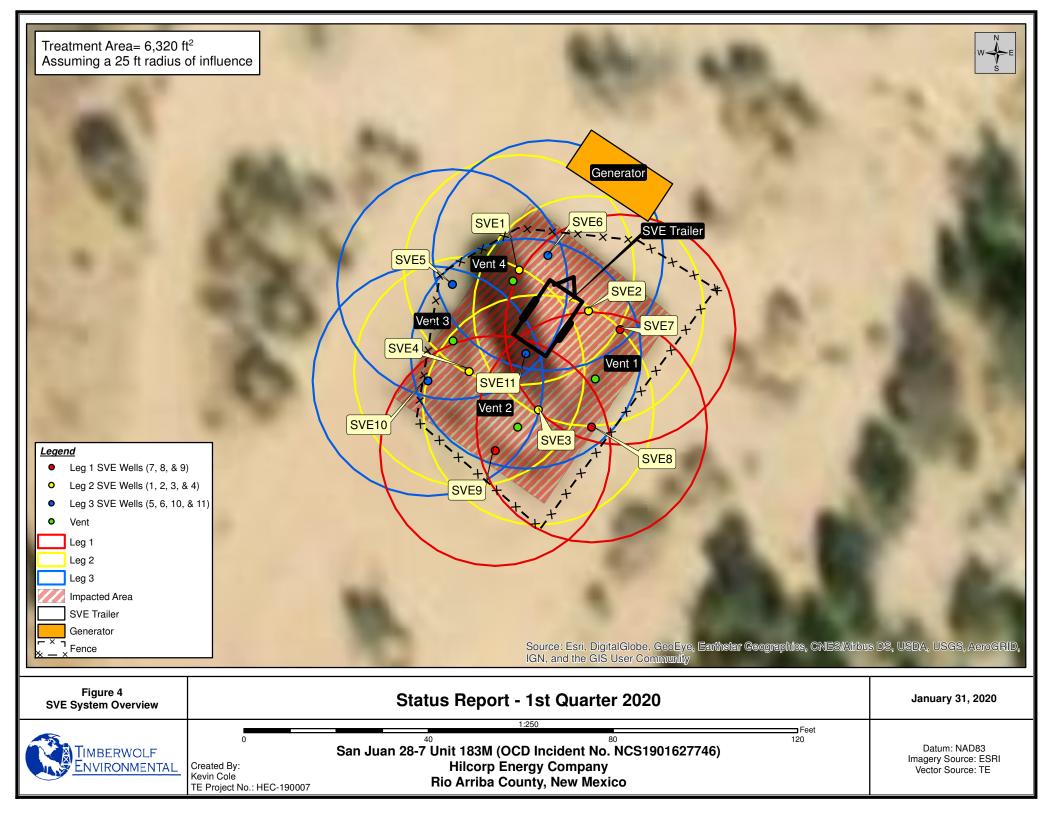

Attachments: Figures Attached Table Photographic Log Laboratory Report and Chain-of-Custody Documents


Cc: Clara Cardoza, Hilcorp Energy Company



Figures





Attached Table

Table A-1. Operation and Maintenance EventsStatus Report 1st Quarter 2020San Juan 28-7 183M

Date	Hour Meter (hrs)	Water/Condenstate recovered (gal)	Maintenance	
01/10/20		System Frozen	System was shut down upon arrival at Site. System shut down due to separator tank being full and fluid in tank being frozen. Attempted to drain system but unable to defrost separator and drain. *Planned to return to site on Tuesday (01/14/20) after getting equipment necessary to defrost and insulate separator tank.	
01/14/20		System Frozen	Installed heat tape and insulation on bottom 2/3 of water seperator (Allowed tank to defrost overnight) (Had to get more insulation to cover the rest of the tank) *Planned to return next day (01/15/20) to drain defrosted tank, install hour meter, and install remaining insulation	
01/15/20	Hour Meter Installed	15	Installed remaining insulation; Replaced fuse for leg 2 automation valve; Installed hour meter; Repaired cracked PVC pipe on leg 1. Restarted generator and SVE system.	
01/20/20	122.2	21	No maintenance required. System running properly	
01/31/20	168	0	Generator was not running upon arrival at site. Hilcorp was notified of the generator not running. Hilcorp sent a mechanic to work on the generator. Generator was indicating the following fault alarms: Change Air Filter; Change oil and oil filter; ECU overide and lockout	
02/12/20	194.0	2.5	Generator not running upon arrival at site (Alarms: under voltage and under phase). Attempted system restart, generator started and had a rough idle. Generator shut down after 1 hour (Alarm: Low oil pressure). Hilcorp mechanic came out and replaced spark plugs, changed oil and cleaned O2 sensor) Generator and SVE system back up and running. Took composite air sample from all three legs	
02/20/20	215.5	0.25	Generator not running upon arrival at site (Alarms: low oil pressure). Hilcorp mechanic replaced O2 sensor and adjusted fuel flow. Was able to get generator back up and running.	
03/06/20	301.1*	1.5	Generator was not running upon arrival at site Alarms: Generator under frequency; Battery under voltage. Generator and SVE system back up and running prior to leaving site. Hour meter reading upon leaving site 303.9 hours	
03/11/20	372.6	0.5	Generator fuel line was re-plumbed to glycol dehydrator on 03/9/20 by Hilcorp mechanics/field personnel. Generator was not running upon arrival on 03/11/20; Attempted to restart generator and it shut down twice. Alarms: change oil and filter. Was able to get generator and SVE system back up and running prior to leaving the site.	
03/26/20	374.8*	0	Generator was not running upon arrival at site. Alarms: Oil pressure low; Change oil and filter; change air filter Hilcorp mechanic came to site and replaced spark plugs; adjusted fuel flow and checked oil. Generator and SVE system back up and running prior to leaving site Hour meter reading upon leaving site 376.2 hours	
04/01/20	377.6	0	Generator was not running upon arrival Alarms: Oil pressure low; Change oil and filter; change air filter Attempted serveral times to restart generator. Generator would start initially with a rough idle up and idle down. After a minute or two the generator would then shut down due to ECU overide Contacted Jeff Bell with Hilcorp and updated him on the sitituation	

-- = No Maintenace Required gal - gallons hrs - hours

Table A-2. Initial Gas Analysis - 02/12/20 Status Report - 1st Quarter 2020 San Juan 28-7 Unit 183M Rio Arriba County, New Mexico

Volatiles	183M Initial (mg/m3)
Acetone	< 5.94
Allyl Chloride	< 1.25
Benzene	268
Benzyl Chloride	< 2.08
Bromodichloromethane	< 2.68
Bromoform	< 12.4
Bromomethane	< 1.55
1,3-Butadiene	< 8.85
Carbon Disulfide	< 1.24
Carbon Tetrachloride	< 2.52
Chlorobenzene	< 1.85
Chloroethane	< 1.06
Chloroform	< 1.95
Chloromethane	< 0.826
2-Chlorotoluene	< 2.06
Cyclohexane	1,900
Chlorodibromomethane	< 3.40
1,2-Dibromoethane	< 3.08
1,2-Dichlorobenzene	< 2.40
1,3-Dichlorobenzene	< 2.40
1,4-Dichlorobenzene	< 2.40
1,2-Dichloroethane	< 1.62
1,1-Dichloroethane	< 1.60
1,1-Dichloroethene	< 1.59
Cis-1,2-Dichloroethene	< 1.59
Trans-1,2-Dichloroethene	< 1.59
1,2-Dichloropropane	< 1.85
Cis-1,3-Dichloropropene	< 1.82
Trans-1,3-Dichloropropene	< 1.82
1,4-Dioxane	< 1.44
Ethanol	2.47
Ethylbenzene	25.8
4-Ethyltoluene	< 1.96
Trichlorofluoromethane	< 2.25
Dichlorodifluoromethane	< 1.98
1,1,2-Trichlorotrifluoroethane	< 3.07
1,2-Dichlorotetrafluoroethane	< 2.80
Heptane	1760
Hexachloro-1,3-Butadiene	< 13.5
N-Hexane	1,520

Table A-2. Initial Gas Analysis - 02/12/20 Status Report - 1st Quarter 2020 San Juan 28-7 Unit 183M Rio Arriba County, New Mexico

Volatiles	183M Initial (mg/m3)		
Isopropylbenzene	< 1.97		
Methylene Chloride	< 1.39		
Methyl Butyl Ketone	< 10.2		
2-Butanone (Mek)	< 7.37		
4-Methyl-2-Pentanone (Mibk)	< 10.2		
Methyl Methacrylate	< 1.64		
Methyl Tert-Butyl Ether	< 1.44		
Naphthalene	< 6.60		
2-Propanol	11.7		
Propene	< 1.38		
Styrene	< 1.70		
1,1,2,2-Tetrachloroethane	< 2.75		
Tetrachloroethene	< 2.72		
Tetrahydrofuran	< 1.18		
Toluene	964		
1,2,4-Trichlorobenzene	< 9.33		
1,1,1-Trichloroethane	< 2.18		
1,1,2-Trichloroethane	< 2.18		
Trichloroethene	< 2.14		
1,2,4-Trimethylbenzene	< 1.96		
1,3,5-Trimethylbenzene	< 1.96		
2,2,4-Trimethylpentane	< 1.87		
Vinyl Chloride	< 1.02		
Vinyl Bromide	< 1.75		
Vinyl Acetate	67.3		
Total Xylene	195.3		
TPH (GC/MS) low fraction	21,600		
Oxygen	16,300		
Carbon Dioxide	< 5,000		

Photographic Log

PHOTOGRAPHIC LOG

Project No.:	HEC-190007	Client:	Hilcorp Energy Company
Project Name: Task Description:	San Juan 28-7 No. 183M 1 st Quarter 2020 Report	Site Location: Date:	Rio Arriba County, New Mexico January-March, 2020
Photo No.: 1 Direction: South Comments: SVE Trailer and Wells. Note: Locations of vents and shallow wells.		Trailer	Sandary-Warch, 2020
Photo No.: 2 Direction: N/A Comments: View of manifold and 3 independent legs		<image/>	<image/>

PHOTOGRAPHIC LOG

Project No.:	HEC-190007	Client:	Hilcorp Energy Company
Project Name:	San Juan 28-7 No. 183M	Site Location:	Rio Arriba County, New Mexico
Task Description:	1 st Quarter 2020 Report	Date:	January-March, 2020
Photo No.: 3 Direction: N/A Comments: View inside SVE trailer: system automation, flow meter, leg 1, 3-inch trunk line, sample port, and moisture separator.		Trunk Line System Automation Sample Port Flow Meter Leg 1	In the separator
Photo No.:			
4	Moisture Sep High Level Sh		
Direction:			
N/A Comments: Moisture Separator high level shut-off and drain.		E entire	

PHOTOGRAPHIC LOG

Project No.:	HEC-190007 San Juan 28-7 No. 183M	Client:	Hilcorp Energy Company
Project Name: Task Description:	1 st Quarter 2020 Report	Site Location: Date:	Rio Arriba County, New Mexico January-March, 2020
Photo No.: 5 Direction: N/A Comments: Moisture Separator, filter, and regenerative pump.		sture Separator	Filter
Photo No.: 6			
Direction: N/A			
Comments: Open top water/condensate storage tank fitted with bird netting.			

Laboratory Report and Chain-of-Custody Documents

ANALYTICAL REPORT February 20, 2020

Timberwolf Environmental, LLC

Sample Delivery Group: Samples Received: Project Number: Description:

L1189522 02/14/2020 190007 HEC-190007

Report To:

Jim Foster 1920 W Villa Maria, Ste 205 Bryan, TX 77807

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

inio à

Olivia Studebaker Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

ACCOUNT: Timberwolf Environmental, LLC PROJECT: 190007

SDG: L1189522

DATE/TIME: 02/20/20 17:32 PAGE: 1 of 15

TABLE OF CONTENTS

1 2

3

4

5

5

7

7

12

13

14

15

*
¹ Cp
² Tc
³ Ss

² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

ACCOUNT:
Timberwolf Environmental, LLC

Cp: Cover Page

Tc: Table of Contents

Ss: Sample Summary Cn: Case Narrative

Sr: Sample Results

GI: Glossary of Terms

Qc: Quality Control Summary

Al: Accreditations & Locations

Sc: Sample Chain of Custody

183M INITIAL (1,2, & 3 LEGS) L1189522-01

Organic Compounds (GC) by Method D1946

Volatile Organic Compounds (MS) by Method TO-15

PROJECT: 190007 SDG: L1189522

D4 02/2 PAGE: 2 of 15

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

183M INITIAL (1,2, & 3 LEGS) L1189522-01 Air			Collected by Michael Morse	Collected date/time 02/12/20 13:45	Received da 02/14/20 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1428428	2000	02/16/20 02:48	02/16/20 02:48	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1428942	50000	02/17/20 04:23	02/17/20 04:23	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method D1946	WG1430237	1	02/19/20 12:39	02/19/20 12:39	JAL	Mt. Juliet, TN

*

Ср

ACCOUNT:
Timberwolf Environmental, LLC

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Olivia Studebaker Project Manager

Τс Ss Cn Sr Qc GI AI Sc

SAMPLE RESULTS - 01

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	C
Analyte			ppbv	ug/m3	ppbv	ug/m3				2
Acetone	67-64-1	58.10	2500	5940	ND	ND		2000	WG1428428	T
Allyl chloride	107-05-1	76.53	400	1250	ND	ND		2000	WG1428428	
Benzene	71-43-2	78.10	400	1280	84000	268000		2000	WG1428428	³ S
Benzyl Chloride	100-44-7	127	400	2080	ND	ND		2000	WG1428428	5.
Bromodichloromethane	75-27-4	164	400	2680	ND	ND		2000	WG1428428	4
Bromoform	75-25-2	253	1200	12400	ND	ND		2000	WG1428428	°C
Bromomethane	74-83-9	94.90	400	1550	ND	ND		2000	WG1428428	
1,3-Butadiene	106-99-0	54.10	4000	8850	ND	ND		2000	WG1428428	⁵ SI
Carbon disulfide	75-15-0	76.10	400	1240	ND	ND		2000	WG1428428	5
Carbon tetrachloride	56-23-5	154	400	2520	ND	ND		2000	WG1428428	
Chlorobenzene	108-90-7	113	400	1850	ND	ND		2000	WG1428428	ŮQ
Chloroethane	75-00-3	64.50	400	1060	ND	ND		2000	WG1428428	
Chloroform	67-66-3	119	400	1950	ND	ND		2000	WG1428428	7
Chloromethane	74-87-3	50.50	400	826	ND	ND		2000	WG1428428	΄G
2-Chlorotoluene	95-49-8	126	400	2060	ND	ND		2000	WG1428428	
Cyclohexane	110-82-7	84.20	10000	34400	553000	1900000		50000	WG1428942	A ⁸
Dibromochloromethane	124-48-1	208	400	3400	ND	ND		2000	WG1428428	
1,2-Dibromoethane	106-93-4	188	400	3400	ND	ND		2000	WG1428428	9
1,2-Dichlorobenzene	95-50-1	100	400	2400	ND	ND		2000	WG1428428	s
1,3-Dichlorobenzene	541-73-1 106-46-7	147 147	400 400	2400 2400	ND	ND ND		2000 2000	WG1428428	
1,4-Dichlorobenzene					ND				WG1428428	
1,2-Dichloroethane	107-06-2	99	400	1620	ND	ND		2000	WG1428428	
1,1-Dichloroethane	75-34-3	98	400	1600	ND	ND		2000	WG1428428	
1,1-Dichloroethene	75-35-4	96.90	400	1590	ND	ND		2000	WG1428428	
cis-1,2-Dichloroethene	156-59-2	96.90	400	1590	ND	ND		2000	WG1428428	
trans-1,2-Dichloroethene	156-60-5	96.90	400	1590	ND	ND		2000	WG1428428	
1,2-Dichloropropane	78-87-5	113	400	1850	ND	ND		2000	WG1428428	
cis-1,3-Dichloropropene	10061-01-5	111	400	1820	ND	ND		2000	WG1428428	
trans-1,3-Dichloropropene	10061-02-6	111	400	1820	ND	ND		2000	WG1428428	
1,4-Dioxane	123-91-1	88.10	400	1440	ND	ND		2000	WG1428428	
Ethanol	64-17-5	46.10	1260	2380	1310	2470		2000	WG1428428	
Ethylbenzene	100-41-4	106	400	1730	5940	25800		2000	WG1428428	
4-Ethyltoluene	622-96-8	120	400	1960	ND	ND		2000	WG1428428	
Trichlorofluoromethane	75-69-4	137.40	400	2250	ND	ND		2000	WG1428428	
Dichlorodifluoromethane	75-71-8	120.92	400	1980	ND	ND		2000	WG1428428	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	400	3070	ND	ND		2000	WG1428428	
1,2-Dichlorotetrafluoroethane	76-14-2	171	400	2800	ND	ND		2000	WG1428428	
Heptane	142-82-5	100	10000	40900	431000	1760000		50000	WG1428942	
Hexachloro-1,3-butadiene	87-68-3	261	1260	13500	ND	ND		2000	WG1428428	
n-Hexane	110-54-3	86.20	10000	35300	431000	1520000		50000	WG1428942	
Isopropylbenzene	98-82-8	120.20	400	1970	ND	ND		2000	WG1428428	
Methylene Chloride	75-09-2	84.90	400	1390	ND	ND		2000	WG1428428	
Methyl Butyl Ketone	591-78-6	100	2500	10200	ND	ND		2000	WG1428428	
2-Butanone (MEK)	78-93-3	72.10	2500	7370	ND	ND		2000	WG1428428	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	2500	10200	ND	ND		2000	WG1428428	
Methyl methacrylate	80-62-6	100.12	400	1640	ND	ND		2000	WG1428428	
MTBE	1634-04-4	88.10	400	1440	ND	ND		2000	WG1428428	
Naphthalene	91-20-3	128	1260	6600	ND	ND		2000	WG1428428	
2-Propanol	67-63-0	60.10	2500	6150	4750	11700		2000	WG1428428	
Propene	115-07-1	42.10	800	1380	ND	ND		2000	WG1428428	
Styrene	100-42-5	104	400	1700	ND	ND		2000	WG1428428	
1,1,2,2-Tetrachloroethane	79-34-5	168	400	2750	ND	ND		2000	WG1428428	
Tetrachloroethylene	127-18-4	166	400	2750	ND	ND		2000	WG1428428	
·			400			ND				
Tetrahydrofuran Teluopo	109-99-9	72.10		1180	ND			2000	WG1428428	
Toluene 1,2,4-Trichlorobenzene	108-88-3	92.10	10000	37700	256000	964000		50000	WG1428942	
	120-82-1	181	1260	9330	ND	ND		2000	WG1428428	

Timberwolf Environmental, LLC

190007

L1189522

02/20/20 17:32

5 of 15

SAMPLE RESULTS - 01

*

٦A

Volatile Organic Compounds (MS) by Method TO-15

1,1,2-Trichloroethane79-CTrichloroethylene79-C	-55-6 13: 0-00-5 13: 0-01-6 13' 5-63-6 120	13 4 13 4 11 4	400 400	2180	ND	ug/m3 ND ND	2000	WG1428428
1,1,2-Trichloroethane79-CTrichloroethylene79-C	0-00-5 13: 0-01-6 131 5-63-6 120	13 4 11 4	400	2180				
Trichloroethylene 79-0	0-01-6 131 5-63-6 120	i1 4			ND	ND	2000	11101100100
,	5-63-6 120		400	2140		ND	2000	WG1428428
1,2,4-Trimethylbenzene 95-6		0		2140	ND	ND	2000	WG1428428
		-0	400	1960	ND	ND	2000	WG1428428
1,3,5-Trimethylbenzene 108-	8-67-8 120	20 4	400	1960	ND	ND	2000	WG1428428
2,2,4-Trimethylpentane 540	10-84-1 114	4.22	400	1870	ND	ND	2000	WG1428428
Vinyl chloride 75-0	62 62	2.50	400	1020	ND	ND	2000	WG1428428
Vinyl Bromide 593	93-60-2 10	6.95	400	1750	ND	ND	2000	WG1428428
Vinyl acetate 108-	8-05-4 86	5.10 4	400	1410	19100	67300	2000	WG1428428
m&p-Xylene 1330	30-20-7 10)6 8	800	3470	39800	173000	2000	WG1428428
o-Xylene 95-4	5-47-6 10)6 4	400	1730	5150	22300	2000	WG1428428
TPH (GC/MS) Low Fraction 800	06-61-9 10)1 4	400000	1650000	5230000	21600000	2000	WG1428428
(S) 1,4-Bromofluorobenzene 460-	50-00-4 175	'5 (60.0-140		102			WG1428428
(S) 1,4-Bromofluorobenzene 460	50-00-4 175	'5 e	60.0-140		101			WG1428942

Organic Compounds (GC) by Method D1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch	
Analyte			%	%				
Oxygen	7782-44-7	32	2.00	16.3	B	1	WG1430237	
Carbon Dioxide	124-38-9	44.01	0.500	ND		1	WG1430237	

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

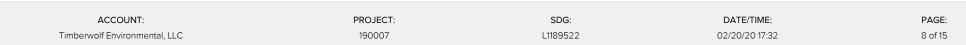
Method Blank (MB)

(MB) R3500283-3 02/15/2	20 08:02				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.0569	1.25	
Allyl Chloride	U		0.0546	0.200	
Benzene	U		0.0460	0.200	
Benzyl Chloride	U		0.0598	0.200	
Bromodichloromethane	U		0.0436	0.200	
Bromoform	U		0.0786	0.600	
Bromomethane	U		0.0609	0.200	
,3-Butadiene	U		0.0563	2.00	
Carbon disulfide	U		0.0544	0.200	
Carbon tetrachloride	U		0.0585	0.200	
Chlorobenzene	U		0.0601	0.200	
Chloroethane	U		0.0489	0.200	
Chloroform	U		0.0574	0.200	
chloromethane	U		0.0544	0.200	
-Chlorotoluene	U		0.0605	0.200	
Dibromochloromethane	U		0.0494	0.200	
,2-Dibromoethane	U		0.0185	0.200	
,2-Dichlorobenzene	U		0.0603	0.200	
3-Dichlorobenzene	U		0.0597	0.200	
4-Dichlorobenzene	U		0.0557	0.200	
2-Dichloroethane	U		0.0616	0.200	
1-Dichloroethane	U		0.0514	0.200	
,1-Dichloroethene	U		0.0490	0.200	
is-1,2-Dichloroethene	U		0.0389	0.200	
ans-1,2-Dichloroethene	U		0.0464	0.200	
2-Dichloropropane	U		0.0599	0.200	
is-1,3-Dichloropropene	U		0.0588	0.200	
ans-1,3-Dichloropropene	U		0.0435	0.200	
4-Dioxane	U		0.0554	0.200	
thylbenzene	U		0.0506	0.200	
-Ethyltoluene	U		0.0666	0.200	
richlorofluoromethane	U		0.0673	0.200	
lichlorodifluoromethane	U		0.0601	0.200	
1,2-Trichlorotrifluoroethane	U		0.0687	0.200	
2-Dichlorotetrafluoroethane	U		0.0458	0.200	
lexachloro-1,3-butadiene	U		0.0656	0.630	
sopropylbenzene	U		0.0563	0.200	
Methylene Chloride	U		0.0465	0.200	
Methyl Butyl Ketone	U		0.0682	1.25	
2-Butanone (MEK)	U		0.0493	1.25	

ACCOUNT: Timberwolf Environmental, LLC PROJECT: 190007 SDG: L1189522 DATE/TIME: 02/20/20 17:32

PAGE: 7 of 15 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY


ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3500283-3 02/15/2	20 08:02				- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ppbv		ppbv	ppbv	Tc
4-Methyl-2-pentanone (MIBK)	U		0.0650	1.25	
Methyl Methacrylate	U		0.0773	0.200	³ Ss
MTBE	U		0.0505	0.200	0.0
Naphthalene	U		0.154	0.630	4
2-Propanol	U		0.0882	1.25	Cn
Propene	U		0.0932	0.400	
Styrene	U		0.0465	0.200	⁵Sr
1,1,2,2-Tetrachloroethane	U		0.0576	0.200	51
Tetrachloroethylene	U		0.0497	0.200	6
Tetrahydrofuran	U		0.0508	0.200	ဳQc
1,2,4-Trichlorobenzene	U		0.148	0.630	
1,1,1-Trichloroethane	U		0.0665	0.200	⁷ Gl
1,1,2-Trichloroethane	U		0.0287	0.200	Ŭ1
Trichloroethylene	U		0.0545	0.200	8
1,2,4-Trimethylbenzene	U		0.0483	0.200	Al
1,3,5-Trimethylbenzene	U		0.0631	0.200	
2,2,4-Trimethylpentane	U		0.0456	0.200	°Sc
Vinyl chloride	U		0.0457	0.200	00
Vinyl Bromide	U		0.0727	0.200	
Vinyl acetate	U		0.0639	0.200	
m&p-Xylene	U		0.0946	0.400	
o-Xylene	U		0.0633	0.200	
Ethanol	U		0.0832	0.630	
TPH (GC/MS) Low Fraction	U		6.91	200	
(S) 1,4-Bromofluorobenzene	93.3			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Ethanol	3.75	3.93	4.00	105	107	55.0-148			1.77	25
Propene	3.75	3.81	3.85	102	103	64.0-144			1.04	25
Dichlorodifluoromethane	3.75	3.73	3.65	99.5	97.3	64.0-139			2.17	25
1,2-Dichlorotetrafluoroethane	3.75	3.94	3.97	105	106	70.0-130			0.759	25
Chloromethane	3.75	3.87	3.91	103	104	70.0-130			1.03	25
Vinyl chloride	3.75	3.98	3.92	106	105	70.0-130			1.52	25
1,3-Butadiene	3.75	3.76	3.40	100	90.7	70.0-130			10.1	25
Bromomethane	3.75	3.85	3.75	103	100	70.0-130			2.63	25

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Śr

[´]Qc

GI

A

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3500283-1_02/15/20_06:33 • (LCSD) R3500283-2_02/15/20_07:19

(LCS) R3500283-1 02/15/2	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Chloroethane	3.75	3.90	3.94	104	105	70.0-130			1.02	25	
Trichlorofluoromethane	3.75	3.82	3.81	102	102	70.0-130			0.262	25	
1,1,2-Trichlorotrifluoroethane	3.75	3.86	3.83	103	102	70.0-130			0.780	25	
1,1-Dichloroethene	3.75	3.88	3.87	103	103	70.0-130			0.258	25	
1,1-Dichloroethane	3.75	3.89	3.92	104	105	70.0-130			0.768	25	
Acetone	3.75	4.54	4.53	121	121	70.0-130			0.221	25	
2-Propanol	3.75	3.99	3.99	106	106	70.0-139			0.000	25	
Carbon disulfide	3.75	3.87	3.90	103	104	70.0-130			0.772	25	
Methylene Chloride	3.75	3.86	3.86	103	103	70.0-130			0.000	25	
MTBE	3.75	3.85	3.88	103	103	70.0-130			0.776	25	
trans-1,2-Dichloroethene	3.75	3.87	3.90	103	104	70.0-130			0.772	25	
Vinyl acetate	3.75	4.29	4.41	114	118	70.0-130			2.76	25	
Methyl Ethyl Ketone	3.75	4.03	4.14	107	110	70.0-130			2.69	25	
cis-1,2-Dichloroethene	3.75	3.92	3.89	105	104	70.0-130			0.768	25	
Chloroform	3.75	3.82	3.85	102	103	70.0-130			0.782	25	
1,1,1-Trichloroethane	3.75	3.84	3.87	102	103	70.0-130			0.778	25	
Carbon tetrachloride	3.75	3.79	3.81	101	102	70.0-130			0.526	25	
Benzene	3.75	3.96	3.99	106	106	70.0-130			0.755	25	
1,2-Dichloroethane	3.75	3.80	3.89	101	104	70.0-130			2.34	25	
Trichloroethylene	3.75	3.80	3.85	101	103	70.0-130			1.31	25	
1,2-Dichloropropane	3.75	3.89	3.92	104	105	70.0-130			0.768	25	
1,4-Dioxane	3.75	3.88	3.89	103	104	70.0-140			0.257	25	
Bromodichloromethane	3.75	3.84	3.90	102	104	70.0-130			1.55	25	
cis-1,3-Dichloropropene	3.75	3.93	3.97	105	106	70.0-130			1.01	25	
4-Methyl-2-pentanone (MIBK)	3.75	4.06	4.10	108	109	70.0-139			0.980	25	
trans-1,3-Dichloropropene	3.75	3.99	3.99	106	106	70.0-130			0.000	25	
1,1,2-Trichloroethane	3.75	3.86	3.88	103	103	70.0-130			0.517	25	
Tetrachloroethylene	3.75	3.93	3.93	105	105	70.0-130			0.000	25	
Methyl Butyl Ketone	3.75	4.16	4.19	111	112	70.0-149			0.719	25	
Dibromochloromethane	3.75	3.87	3.89	103	104	70.0-130			0.515	25	
1,2-Dibromoethane	3.75	3.93	4.01	105	107	70.0-130			2.02	25	
Chlorobenzene	3.75	3.99	4.00	106	107	70.0-130			0.250	25	
Ethylbenzene	3.75	3.95	3.98	105	106	70.0-130			0.757	25	
m&p-Xylene	7.50	7.80	7.82	104	104	70.0-130			0.256	25	
o-Xylene	3.75	3.88	3.89	103	104	70.0-130			0.257	25	
Styrene	3.75	3.99	4.02	106	107	70.0-130			0.749	25	
Bromoform	3.75	3.78	3.78	101	101	70.0-130			0.000	25	
1,1,2,2-Tetrachloroethane	3.75	3.95	3.97	105	106	70.0-130			0.505	25	
4-Ethyltoluene	3.75	4.04	4.07	108	109	70.0-130			0.740	25	
1,3,5-Trimethylbenzene	3.75	3.94	3.95	105	105	70.0-130			0.253	25	
,.,											
A	CCOUNT:			PR	OJECT:		SDG:			DATE/TIME:	PAGE:
Timberwolf	Environmental, L	LC		19	90007		L118952	22		02/20/20 17:32	9 of 15

QUALITY CONTROL SUMMARY Volatile Organic Compounds (MS) by Method TO-15 L1189522-01

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
1,2,4-Trimethylbenzene	3.75	3.97	3.98	106	106	70.0-130			0.252	25	
1,3-Dichlorobenzene	3.75	4.09	4.05	109	108	70.0-130			0.983	25	
1,4-Dichlorobenzene	3.75	4.20	4.19	112	112	70.0-130			0.238	25	
Benzyl Chloride	3.75	4.09	4.11	109	110	70.0-152			0.488	25	
1,2-Dichlorobenzene	3.75	4.00	4.01	107	107	70.0-130			0.250	25	
1,2,4-Trichlorobenzene	3.75	3.85	3.81	103	102	70.0-160			1.04	25	
Hexachloro-1,3-butadiene	3.75	3.67	3.71	97.9	98.9	70.0-151			1.08	25	
Naphthalene	3.75	3.60	3.63	96.0	96.8	70.0-159			0.830	25	
TPH (GC/MS) Low Fraction	203	215	213	106	105	70.0-130			0.935	25	
Allyl Chloride	3.75	3.94	3.96	105	106	70.0-130			0.506	25	
2-Chlorotoluene	3.75	4.02	4.02	107	107	70.0-130			0.000	25	
Methyl Methacrylate	3.75	3.96	3.99	106	106	70.0-130			0.755	25	
Tetrahydrofuran	3.75	3.96	3.98	106	106	70.0-137			0.504	25	
2,2,4-Trimethylpentane	3.75	3.95	3.93	105	105	70.0-130			0.508	25	
Vinyl Bromide	3.75	3.82	3.83	102	102	70.0-130			0.261	25	
Isopropylbenzene	3.75	3.94	3.95	105	105	70.0-130			0.253	25	
(S) 1,4-Bromofluorobenzene	ē			97.6	97.6	60.0-140					

SDG: L1189522

DATE/TIME: 02/20/20 17:32

PAGE: 10 of 15 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Ср

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3500387-3 02/16/20 23:37

	0 20.07				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	Tc
Cyclohexane	U		0.0534	0.200	
Heptane	U		0.0626	0.200	Ss
n-Hexane	U		0.0457	0.200	00
Toluene	U		0.0499	0.200	
(S) 1,4-Bromofluorobenzene	100			60.0-140	Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3500387-1 02/16/2	20 22:21 • (LCSI	D) R3500387-3	2 02/16/20 23	:00						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
n-Hexane	3.75	3.80	3.96	101	106	70.0-130			4.12	25
Cyclohexane	3.75	3.87	4.00	103	107	70.0-130			3.30	25
Heptane	3.75	3.76	3.84	100	102	70.0-130			2.11	25
Toluene	3.75	3.76	3.85	100	103	70.0-130			2.37	25
(S) 1,4-Bromofluorobenzene				100	101	60.0-140				

DATE/TIME: 02/20/20 17:32

PAGE: 11 of 15

WG1430237

Organic Compounds (GC) by Method D1946

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3501107-3 02/19	9/20 09:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Oxygen	5.84		0.225	2.00
Carbon Dioxide	U		0.121	0.500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3501107-1 02/19/	/20 08:36 • (LCSE	D) R3501107-2	02/19/20 08:4	16							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	%	%	%	%	%	%			%	%	
Oxygen	2.50	2.53	2.51	101	100	70.0-130			0.794	20	
Carbon Dioxide	2.50	2.36	2.35	94.4	94.0	70.0-130			0.425	20	

DATE/TIME: 02/20/20 17:32

Â

Sc

GLOSSARY OF TERMS

*

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

В

The same analyte is found in the associated blank.

SDG: L1189522 DATE/TIME: 02/20/20 17:32

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshir
Arkansas	88-0469	New Jersey–N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
Idaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	AI30792	Tennessee ^{1 4}
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

lebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Dregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
/ermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

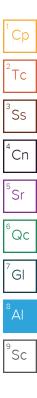
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Timberwolf Environmental, LLC

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.



190007

L1189522

PAGE: 14 of 15

02/20/20 17:32

				nformation:				Analysis / Container / Preservative						Chain of Custody Page of			
Timberwolf En 1920 W Villa Mar Bryan, TX 777807	ia, Ste	205		w villa	Maria, Ste	Pres Chk Z <i>05</i>	Summe			and and a second se						Pace	Analytical® nier far Tasting & Innovation
eport to: Ema		Email To: Jine Notified)	City/State Collected: Lab Project #	07 <u>aberwolf. (</u> NM IBTX-1900		zéo Full List		en						12065 Lebanon Rd Mount Juliet, TN 37 Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859 L # (1) ACC1 Acctnum: Template: Prelogin:	189522		
nmediately acked on Ice N Y Sample ID		y 5 Day 10 Day	(Rad Only)	Date Re	esults Needed Time	No. of Cntrs	EPA-8	207	OXYO							TSR: PB: Shipped Via:	Sample # (lab only)
183 M Initial (1,2, + 3	1	Air	N/A	2-12-2	0 1345	1	1	V	$\overline{\vee}$							Remarks	- Ol
						-											
in des Stations						-			Anna -								
																in the second se	
Matrix: S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater	Remarks:									pH Temp Flow Other				COC Bott	Sample Receipt Checklist COC Seal Present/Intact: _NP Y COC Signed/Accurate:Y Bottles arrive intact:Y		
DW - Drinking Water DT - Other	Samples retur UPSFe	rned via: edExCou	urier		Tracking #									Suff VOA	Correct bottles used: Sufficient volume sent: If Applicable VOA Zero Headspace: _Y		
Relinquished by: (Signature) Date: Z-12- ZO		Time: (0:45	Received by: (Signa					Trip Blank Received: Yes No HCL / MeoH TBR Temp: C Bottles Received:				Preservation Correct/Checked:N If preservation required by Login: Date/Time					
			Time:	Received by: (Signa	- P. L				Temp:	mb	2	1種用			on required by Lo		
Relinquished by : (Signature)		Date:		Time:	Received for lab by	(Sign	ature)			Date:	14	Time	DXU	Hold:			NCF / OR