Distribution: BLM 4 Copies Regulatory Accounting Well File March 9, 2006 | HESUURCES / | | | | | | | | Revised. March 9, 2006 | | |--|---|-----------------------|---|----------------------|--|---|---------------------------------------|---|--| | PRODUCTION ALLOCATION FORM PRODUCTION ALLOCATION FORM FINAL | | | | | | | | | | | | | | | | | | | INAL □
EVISED □ | | | Commingle Type | | | | | | | | ate: 6/23/2011 | | | SURFACE DOWNHOLE X | | | | | | | | PI No. 30-045-35064 | | | Type of Completion NEW DRILL ☑ RECOMPLETION ☐ PAYADD ☐ COMMINGLE ☐ | | | | | | | | HC No. DHC3530AZ | | | | | | | | | | | Lease No. SF-078128 | | | Well Name | | | | | | | | /ell No. | | | Turner Federal | | | | | | | | 2M | | | Unit Letter | 1 | | · 1 · · · · · · · · · · · · · · · · · · | | Footage | | County, State | | | | Surf- D
BH- D | 13
13 | T030
T030 | | | 5' FNL & 979' FWL
' FNL & 1012' FWL | | San Juan County,
New Mexico | | | | Completion | | Test Me | | 1 7 5 2 | 11112 00 101 | Z TWL | | TYCW IVICATED | | | | | | | | | | | | | | 6/20/11 HISTORICAL FIELD TEST PROJECTED OTHER | | | | | | | | ER 🔝 | | | The Same Same | | | | 1311 | | | alle a | | | | FORMATION | | | GAS | | ERCENT CONI | | DENSATE PERCENT | | | | MESAVERDE | | | | | 22% | | | 66% | | | MIES | 11 1 131(1) 13 | | | | | | | | | | *************************************** | KOTA | | | | 78% | | | 34% | | | *************************************** | • | | | | 78% | | | | | | *************************************** | • | | | | 78% | | | | | | JUSTIFICA | TION OF A | | | | itages are bas | | | 34% onal gas analysis tests | | | JUSTIFICA from the Me | TION OF A | d Dakota | a formations du | iring co | ntages are bas | erations. Su | ibsequen | mal gas analysis tests tallocations will be | | | JUSTIFICA from the Me submitted ex | TION OF A | d Dakota
nonths at | a formations du
fter the first de | iring co
livery o | ntages are bas
empletion ope
late. Allocati | erations. Su
ion splits w | ibsequen
ill keep (| onal gas analysis tests t allocations will be changing until the gas | | | JUSTIFICA from the Me submitted ex | TION OF A | d Dakota
nonths at | a formations du | iring co
livery o | ntages are bas
empletion ope
late. Allocati | erations. Su
ion splits w | ibsequen
ill keep (| onal gas analysis tests t allocations will be changing until the gas | | | JUSTIFICA from the Me submitted ex | TION OF A | d Dakota
nonths at | a formations du
fter the first de | iring co
livery o | ntages are bas
empletion ope
late. Allocati | erations. Su
ion splits w | ibsequen
vill keep of
formation | onal gas analysis tests tallocations will be changing until the gas on yields. | | | JUSTIFICA from the Me submitted evanalysis mol | TION OF A saverde and very three in the fractions | d Dakota
nonths at | a formations dufter the first de c. Condensate | iring co
livery o | ntages are bas
ompletion ope
late. Allocati
ages are base | erations. Su
ion splits w | ibsequen
vill keep of
formation | onal gas analysis tests tallocations will be changing until the gas on yields. | | | JUSTIFICA from the Me submitted ex | TION OF A saverde and very three in the fractions | d Dakota
nonths at | a formations du
fter the first de | iring co
livery o | ntages are bas
empletion ope
late. Allocati | erations. Su
ion splits w | ibsequen
vill keep of
formation | onal gas analysis tests tallocations will be changing until the gas on yields. | | | JUSTIFICA from the Me submitted evanalysis mol | TION OF A saverde and very three in the fractions | d Dakota
nonths at | a formations dufter the first de c. Condensate | iring co | ntages are bas
ompletion ope
late. Allocati
ages are base | erations. Su
ion splits w | ibsequen
vill keep of
formation | onal gas analysis tests tallocations will be changing until the gas on yields. | | | JUSTIFICA
from the Me
submitted ev
analysis mol | TION OF A saverde and very three nee fractions | d Dakota
nonths at | a formations du
fter the first de
c. Condensate
DATE | iring co | ntages are bas
ompletion ope
late. Allocati
ages are base | erations. Su
ion splits w | ibsequen
vill keep of
formation | onal gas analysis tests tallocations will be changing until the gas on yields. PHONE | | | JUSTIFICA from the Me submitted ev analysis mol | TION OF A saverde and very three nee fractions | d Dakota
nonths at | a formations du
fter the first de
c. Condensate
DATE | iring co | ntages are bas
ompletion ope
late. Allocati
ages are base | erations. Su
ion splits w
ed upon the | ibsequen
vill keep of
formation | onal gas analysis tests tallocations will be changing until the gas on yields. PHONE | |