SITE CHARACTERIZATION REPORT AND ABATEMENT PLAN

KAUFMAN NO. 1 HILCORP ENERGY COMPANY SAN JUAN COUNTY, NEW MEXICO

OCD Incident No.: NCS1833331001

30-045-10174

February 21, 2019

Prepared for:

HILCORP ENERGY COMPANY

382 Road 3100 Aztec, New Mexico 87410 505-599-3400

Prepared by:

TIMBERWOLF ENVIRONMENTAL, LLC

691 CR 233, Suite B4 Durango, Colorado 81301 970-516-8419

NOT APPROVED

Administrative incomplete 4/26/19

MAR 1 1 2019

DISTRICT III

Smith, Cory, EMNRD

From: Smith, Cory, EMNRD

Sent: Friday, April 26, 2019 9:46 AM

To: 'Jennifer Deal'

Cc: 'Ryan Mersmann'; 'Abiodun Adeloye'; 'Jim Foster'

Subject: RE: [EXT] Hilcorp Energy, Kaufman No. 1 - Site Characterization Report and Abatement Plan

Jennifer,

As discussed OCD is denying the report received on March 11, 2019 because it was not submitted on a signed C-141, nor does it meet the requirements of 19.15.29.11 NMAC for a site characterization nor does it meet the requirements of 19.15.30 NMAC for a stage 1 abatement plan.

If HEC wants to mange both soils and ground water under a Stage 1 abetment plan please indicate as such and resubmit a complete and correct report that has all the requirement of a Stage 1 Abatement plan per 19.15.30 NMAC.

Please also note, all ground water samples must be sampled for EPA method 8260 Full list, TDS, Cation/Anion

Please review the report and resubmit a complete and correct site characterization and remediation plan per 19.15.29 NMAC or a complete and correct stage 1 abatement plan per 19.15.30 NMAC no later than May 27, 2019.

Thanks you,

Cory Smith
Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

From: Smith, Cory, EMNRD

Sent: Friday, March 8, 2019 7:06 AM

To: 'Jim Foster' <jim@teamtimberwolf.com>; Fields, Vanessa, EMNRD <Vanessa.Fields@state.nm.us> Cc: Jennifer Deal <jdeal@hilcorp.com>; Ryan Mersmann <ryan@teamtimberwolf.com>; 'Abiodun Adeloye'

<aadeloye@blm.gov>

Subject: RE: [EXT] Hilcorp Energy, Kaufman No. 1 - Site Characterization Report and Abatement Plan

Jim,

I am referencing that only MW-1 had a full 8260, all of the other wells were an 8260 short.

Cory Smith
Environmental Specialist
Oil Conservation Division

Energy, Minerals, & Natural Resources 1000 Rio Brazos, Aztec, NM 87410 (505)334-6178 ext 115 cory.smith@state.nm.us

From: Jim Foster < <u>iim@teamtimberwolf.com</u>>

Sent: Thursday, March 7, 2019 4:03 PM

To: Smith, Cory, EMNRD < Cory.Smith@state.nm.us >; Fields, Vanessa, EMNRD < Vanessa.Fields@state.nm.us > Cc: Jennifer Deal < ideal@hilcorp.com >; Ryan Mersmann < ryan@teamtimberwolf.com >; 'Abiodun Adeloye'

<aadeloye@blm.gov>

Subject: RE: [EXT] Hilcorp Energy, Kaufman No. 1 - Site Characterization Report and Abatement Plan

Cory,

The full 8260 list was provided in Appendix D, Attached Table D-5.

No LNAPL was observed in any monitoring well.

MW-1 exceeded the domestic water supply standard for TDS and Sulfate, we will add those parameters to the monitoring program.

I'll call you tomorrow afternoon to discuss the last point with you.

Thanks, Jim

From: Smith, Cory, EMNRD < Cory.Smith@state.nm.us>

Sent: Thursday, March 7, 2019 4:27 PM

To: Jim Foster < jim@teamtimberwolf.com >; Fields, Vanessa, EMNRD < Vanessa.Fields@state.nm.us > Cc: Jennifer Deal < jdeal@hilcorp.com >; Ryan Mersmann < ryan@teamtimberwolf.com >; 'Abiodun Adeloye' < aadeloye@blm.gov >

Subject: RE: [EXT] Hilcorp Energy, Kaufman No. 1 - Site Characterization Report and Abatement Plan

Jim,

I am reviewing this site, Do you have the water analysis reports for the full list of the 8206? Please remember when sampling water the full 8260 report is required. I am sure you can acquire this data from Hall as it was probably logged just not reported.

Was there any LNAPLS present in any of the wells? Please also note TDS, Cation/Anions will need to be sampled in at least one upgradient and possibly down gradient wells as there are contaminates of concern from produce water release.

Also I am a little confused on what HEC is trying to accomplish for this site the report is written to almost conform to almost 29 and almost 30?

Thanks,

Cory Smith

Environmental Specialist
Oil Conservation Division
Energy, Minerals, & Natural Resources
1000 Rio Brazos, Aztec, NM 87410
(505)334-6178 ext 115
cory.smith@state.nm.us

From: Jim Foster < <u>jim@teamtimberwolf.com</u>>
Sent: Wednesday, March 6, 2019 5:39 PM

To: Smith, Cory, EMNRD < <u>Cory.Smith@state.nm.us</u>>; Fields, Vanessa, EMNRD < <u>Vanessa.Fields@state.nm.us</u>> **Cc:** Jennifer Deal < <u>jdeal@hilcorp.com</u>>; Ryan Mersmann < <u>ryan@teamtimberwolf.com</u>>; 'Abiodun Adeloye'

<aadeloye@blm.gov>

Subject: [EXT] Hilcorp Energy, Kaufman No. 1 - Site Characterization Report and Abatement Plan

Vanessa, Cory, and Emmanuel:

Please find attached the site characterization report and abatement plan for the Kaufman No. 1 (OCD Incident No.: NCS1833331001).

A hard copy will additionally be delivered to NMOCD District 3 office.

Thank you,

Jim Foster President

691 CR 233, Suite B-4 Durango, CO 81301 970-516-8419 (O) 979-324-2139 (C) **Teamtimberwolf.com**

This email has been scanned for Virus/Malware by RusTECH MailCLOUD Protect.

SITE CHARACTERIZATION REPORT AND ABATEMENT PLAN

KAUFMAN NO. 1 HILCORP ENERGY COMPANY SAN JUAN COUNTY, NEW MEXICO

February 21, 2019

At the request of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this site characterization report and abatement plan for the Kaufman No. 1 (Site). This document was prepared by the following Timberwolf personnel:

Jan Kins	2/21/19
Preston Kocian	Date
Project Manager	
Ry-	2/21/19
Ryan S. Mersmann, P.G., CPSS	 Date
Vice President of Operations	
In Shot	2/21/19
Jim Foster	Date
President	

Timberwolf Project No. HEC-180061

Table of Contents

			<u>Page</u>
Intro	oductio	on and Certification	i
1.0	Over	rview	1
	1.1	Introduction	1
	1.2	Site Description	1
	1.3	Site History	1
	1.4	Initial Soil Assessment	2
	1.5	Soil Characterization	2
	1.5	Groundwater Assessment	2
	1.5	Abatement Plan	2
2.0	Regu	ılatory Limits	3
	2.1	Introduction	3
	2.2	Regulatory Limits for Soil	3
	2.3	Regulatory Limits for Groundwater	4
3.0	Soil A	Assessment Methodology	6
	3.1	Introduction	6
	3.2	Environmental Soil Sampling Methodology	6
	3.3	Geotechnical Soil Sampling Methodology	7
4.0	Soil .	Analytical Results and Site Characterization Findings	8
	4.1	Introduction	8
	4.2	Initial Assessment	8
	4.3	Site Characterization	8
	4.4	Geotechnical Data	9
	4.5	Soil Assessment Summary	10
5.0	Grou	ındwater Assessment	11
	5.1	Introduction	11
	5.2	Monitoring Well Installation	11
	5.3	Well Development and Groundwater Monitoring	11
	5.4	Groundwater Analytical Results	12
	5.5	Well Gauging and Survey	13
	5.6	Findings of Groundwater Assessment	13

Table of Contents (continued)

				<u>Page</u>		
6.0	Abat	ement P	lan	14		
	6.1	Introd	luction	14		
	6.2	Horizo	ontal Delineation	14		
	6.3	Vados	e Zone Abatement	14		
	6.4	Satura	ted Zone Abatement	14		
	6.5		ndwater Remedial Targets			
	6.6					
	6.7		tor Survey			
	of Figu	1200				
LIST	_		Sita Lagatian Man			
	Figu: Figu:		Site Location Map Topographic Map			
	Figu		Aerial Map			
	Figu		Initial Assessment – Soil Sample Location Map			
	Figu		Site Characterization – Soil Sample Location Map			
	Figu		Monitor Well Location Map			
	Figu	re 7	Benzene Isoconcentration Map			
	Figu	re 8	Potentiometric Surface Map			
	Figu	re 9	Proposed Leachate Study Area			
	Figu	re 10	Proposed Soil Boring Locations			
List	of Tab	les				
	Tabl	e 1	Closure Criteria for Soils Impacted by a Release			
	Tabl	e 2	Soil Regulatory Criteria – Kaufman No. 1			
	Tabl	e 3	Groundwater Regulatory Criteria – Kaufman No. 1			
	Tabl	e 4	Soil Analytical Results – Initial Assessment			
	Tabl	e 5	Soil Analytical Results – Site characterization			
	Tabl	e 6	Results of Geotechnical Testing			
	Tabl	e 7	Groundwater Analytical Results			
	Tabl	e 8	Remedial Targets for Groundwater			
List	of App	endices				
	Арре	endix A	Soil Boring Logs			
		endix B	Laboratory Reports and Chain-of-Custody Documents			
		endix C	Geotechnical Reports			
		endix D	Table D-1. Groundwater Stabilization Parameters			
	11		Table D-2. Groundwater Analytical Results – General Chemistry			
			Table D-3. Groundwater Analytical Results – RCRA-8 Metals			
			Table D-4. Groundwater Analytical Results – Volatile Organic Comp	oounds		
			Table D-5. Groundwater Analytical Results – Semi-volatile Organic	Compounds		

1.0 Overview

1.1 Introduction

At the request of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this site characterization report and abatement plan for the Kaufman No. 1 (Site). The Site is located approximately 9.1 miles north of Farmington in San Juan County, New Mexico (Figures 1-3).

The assessment and characterization activities were intended to 1) evaluate the effectiveness of initial response actions, 2) delineate the horizontal and vertical extents of constituents of concern (COCs), 3) determine if groundwater had been impacted and, if necessary, delineate the horizontal extent of groundwater impacts, and 4) collect sufficient geotechnical data from the saturated zone to determine suitable remedial techniques for the Site (if required).

1.2 Site Description

The Site is situated on Federal land (managed by the Bureau of Land Management (BLM)) and is immediately adjacent to the La Plata River (Figures 2 and 3). The Site is comprised of approximately 1 acre, all of which is located within the La Plata River flood plain.

The Site has been temporarily abandoned following a release in November 2018. Most of the equipment has been taken out of service, including: storage tanks, separators, and a glycol dehydrator. Other surface equipment at the Site includes a well head and gas meter.

The Site is situated in a rural area and surrounding land use is predominantly recreational and oil and gas production. According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS), the Site soil consists of Walrees loam, 0 to 2 percent slope – texture consists of loam underlain by stratified gravelly sand; native salinity is very slightly saline to moderately saline (2.0 to 8.0 millimhos per centimeter (mmhos/cm)).

The average elevation at the Site is approximately 5,537 feet above mean sea level. Topography across the Site is generally flat but slightly slopes to the west, toward the La Plata River.

1.3 Site History

On 11/16/18, field personnel were on Site conducting routine well operations at the Kaufman No. 1. The well produced a substantial volume of water, causing the produced water tank to overflow. This resulted in a release of approximately 8 barrels (bbls) of oil and 10 bbls of produced water; all released fluids were contained in the facility's secondary containment. The well was shut-in and initial cleanup operations commenced. Released fluids were recovered with a vacuum truck.

At the time of the release, Enervest Operating, LLC was the operator of record; however, Hilcorp assumed operations of the Site on or about December 1, 2018.

After Hilcorp assumed operations, the well was temporarily abandoned. All surface equipment within the tank battery was removed, and impacted soil within the battery was excavated and disposed. The excavated soil was primarily along the eastern and southern portion of the tank battery. A safety fence was constructed along the perimeter of the excavation.

1.4 Initial Soil Assessment

In November 2018 and prior to Hilcorp assuming operations, Timberwolf conducted an initial sampling event to: 1) evaluate the effectiveness of initial response actions, 2) characterize the nature of the release (i.e., identify constituents of concern (COCs)) 3) determine the concentrations of COC at the horizontal and vertical extents of the excavation, and 3) develop recommendations for further action to address remaining impacts.

The initial soil assessment revealed COCs at the Site were petroleum hydrocarbons and that COCs were not delineated horizontally or vertically.

1.5 Site Characterization

In January 2019, Timberwolf returned to the Site collect additional data to better characterize the nature of soil and groundwater. The activity included additional soil sampling, installation of groundwater monitoring wells, and groundwater sampling. Based on the site characterization activities, COCs present in Site soil included the following:

- Total BTEX (i.e., benzene, toluene, ethylbenzene, and xylene)
- Total petroleum hydrocarbons

Soil assessment activities are documented in Sections 3 and 4.

1.6 Groundwater Assessment

The groundwater assessment revealed the following COC present in Site groundwater:

• Benzene

Groundwater assessment activities are documented in Section 5.

1.7 Abatement Plan

An abatement plan to bring the Site to regulatory closure by mitigating source soil areas and impacted groundwater is included in Section 6.

2.0 Regulatory Limits

2.1 Introduction

Regulatory oversight of soil and groundwater remediation associated with oil and gas exploration and production (E&P) activities is under the jurisdiction of the New Mexico Oil Conservation Division (NMOCD).

2.2 Regulatory Limits for Soil

The NMOCD established remedial action levels for soils impacted by oilfield products or wastes which are documented under New Mexico Administrative Code (NMAC) Rule 19.15.29. The Rule was repealed and replaced by *Oil Conservation Commission Order No.: R-14751*, dated June 21, 2018.

Under Rule 19.15.29, soil cleanup criteria is determined primarily based on the distance between the base of impacted soil and the depth to usable groundwater. However, if groundwater is greater than 50 feet (ft) deep then surface water bodies or sensitive features (e.g., playa lakes, wetlands, or public areas) may require a more stringent standard. NMOCD laboratory methodology and soil closure criteria are presented in Table 1.

Table 1. Closure Criteria for Soils Impacted by a Release

Depth to Groundwater ¹	Constituent	Method ²	Regulatory Limit ³ (mg/kg)
≤ 50 feet	Chloride ⁴	EPA 300.0	600
	TPH	EPA SW-846 Method 8015M	100
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8015M	10
51 feet-100 feet	Chloride ⁴	EPA 300.0	10,000
	TPH	EPA SW-846 Method 8015M	2,500
	GRO+DRO	EPA SW-846 Method 8015M	1,000
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8260B	10
> 100 feet	Chloride ⁴	EPA 300.0	20,000
	TPH	EPA SW-846 Method 8015M	2,500
	GRO+DRO	EPA SW-846 Method 8015M	1,000
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8015M	10

¹From base of impact to useable groundwater (i.e., less than 10,000 milligrams per liter (mg/L) total dissolved solids (TDS))

mg/kg – milligrams per kilograms

MRO – motor oil range organics Total BTEX = Benzene + Toluene + Ethylbenzene + Xylene

TPH – total petroleum hydrocarbons (TPH = GRO + DRO + MRO)

²Or other test methods approved by the division

³Established limits or natural background level, whichever is greater

⁴Applies to produced water releases or other fluids which may contain chloride prior to site abandonment

GRO - gasoline range organics

DRO – diesel range organics

Groundwater at the Kaufman No. 1 is less than 50 ft below ground surface (bgs). The applicable regulatory limits for soil are presented in Table 2.

Table 2. Soil Regulatory Criteria - Kaufman No. 1

Constituents	Chloride	GRO + DRO	TPH	Benzene	Total BTEX
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Regulatory Criteria for Soil	600	100	100	10	50

mg/kg- milligrams per kilogram

GRO – gasoline range organics

DRO - diesel range organics

TPH – total petroleum hydrocarbons (TPH = GRO + DRO + MRO)

Total BTEX = Benzene + Toluene + Ethylbenzene + Xylene

2.3 Regulatory Limits for Groundwater

Human health standards for usable groundwater (i.e., total dissolved solids (TDS) less than 10,000 milligrams per kilograms (mg/L)) are established under NMAC 20.6.2§3103. Additionally, this statute provides standards for domestic water supply. These criteria provide standards for a variety of constituents, including: metals, anions, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), certain radioactive isotopes, salinity, and pH.

Based on process knowledge, a constituent list was prepared for the Site, which included certain VOCs, SVOCs, arsenic, barium, cadmium, chromium, mercury, lead, selenium, and silver (i.e., Resource Conservation and Recovery Act (RCRA)-8 metals), anions, TDS, and pH. The standards for human health or domestic water supply for these constituents are provided in Table 3.

Table 3. Groundwater Regulatory Criteria - Kaufman No. 1

Constituent	Regulatory Criteria (mg/L)
Metals	
Arsenic	0.10 ¹
Barium	1.00 ¹
Cadmium	0.01 ¹
Chromium	0.05 ¹
Lead	0.05 ¹
Mercury	0.0002 ¹
Selenium	0.05 ¹
Silver	0.05 ¹
VOCs	
Benzene	0.01 ¹
Toluene	0.75 ¹
Ethylbenzene	0.75 ¹
Xylenes	0.62 ¹
PAHs (Total Naphthalene)	0.03 ¹
SVOCs	
Phenols	0.005 ²
General Water Chemistry	
Total Dissolved Solids	1,000²
Chloride	250 ²
Sulfate	600²
pH (units – s.u.)	6 – 92

¹New Mexico human health standard

²New Mexico Standard for domestic water supply wells

mg/L - milligrams per liter

s.u. - standard units

VOCs - volatile organic compounds

SVOCs - semi-volatile organic compounds

3.0 Soil Assessment Methodology

3.1 Introduction

Timberwolf conducted two soil assessment events at the Site (i.e., initial assessment and site characterization) in an attempt to 1) verify if soil impacts are present, 2) to identify the COCs at the Site, 3) determine the magnitude and extent of soil impacts, and 4) sufficiently characterize site soil to evaluate various remedial techniques. Information obtained from the assessment activities was used to develop a remedial action plan or abatement plan. Soil assessment methodology is presented below.

3.2 Environmental Soil Sampling Methodology

A total of 26 soil samples were collected from either an excavation, pothole (i.e., narrow excavations dug with a backhoe), or soil boring installed using a rotary rig equipped with a hollow stem auger and split spoon barrel. Excavations and potholes did not extend below 3 ft bgs. Soil borings were advanced to depths ranging from 12 ft to 15 ft bgs. Prior to soil boring installation, clearance requests were submitted to New Mexico 811 (i.e., One Call).

During boring installation, soil samples were continuously logged for morphological characteristics, and field screened for volatile organic compounds (VOCs) using a photoionization detector (PID). Soil boring logs are included in Appendix A; PID readings are recorded on the soil boring logs.

Samples from each boring exhibiting the highest PID reading were selected for chemical analysis along with the groundwater interface and/or boring terminus. Sample locations from the initial assessment are presented in Figure 4; soil borings installed during the site characterization are shown in Figure 5.

Soil samples were placed directly into laboratory provided sample containers, labeled, stored on ice, and transported under proper chain-of-custody protocol to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico for chemical analysis. Selected soil samples were analyzed for one or more of the following using the described method:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by USEPA Method 8021B
- TPH by EPA SW-846 Method 8015M/D
- Chloride by EPA Method 300

Laboratory results, analytical methods, and chain-of-custody documents are included in Appendix B and are discussed in subsequent sections of this report.

3.3 Geotechnical Soil Sampling Methodology

Geotechnical samples were collected into a steel ring tube by driving the tube into the sample interval using a geotechnical hammer. Two soil samples were collected from one boring (i.e., MW4); the depth intervals were 5.5- 6.0 ft and 13.5-14.0 ft. These intervals represent the top of the groundwater sand which appeared highly transmissive and the lower unit of that sand, comprised of silty or clayey sand, and appeared substantially marginally transmissive.

The samples were submitted to Goemat, Inc. for the following geotechnical parameters:

- volumetric water content
- bulk density
- hydraulic conductivity

Testing results and methods are included in Appendix C and are discussed in subsequent sections of this report.

4.0 Soil Analytical Results and Site Characterization Findings

4.1 Introduction

A total of 26 soil samples were collected from the Site for chemical analysis. Two samples were collected for geotechnical evaluation. Analytical results from all soil assessment events are presented in the sections below.

4.2 Initial Assessment (11/29/18)

The initial assessment event was intended to characterize the presence, magnitude, and horizontal extent of potential COCs at the Site. Eleven soil samples were collected from excavation sidewalls or pothole locations (Figure 4). The depths of samples ranged from 1 ft to 3 ft bgs. Laboratory results from the initial assessment are summarized in Table 4.

Table 4. Soil Analytical Results - Initial Assessment (11/29/18)

Samula ID	Volatil	e Organic Co	ompounds (m	ng/kg)	Total BTEX	GRO	DRO	MRO	TPH
Sample ID	В	Т	E	Х	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
N Sidewall	< 0.016	0.031	0.061	0.37	0.462	17	< 9.8	< 49	17.0
N Sidewall 2	< 0.099	< 0.20	< 0.20	< 0.40	0	< 20	380	< 49	380.0
SW Sidewall	< 0.026	< 0.052	0.08	< 0.10	0.08	15	120	< 48	135.0
SE Sidewall	1.7	29	6.4	85	122.1	1,300	220	< 48	1,520.0
N Pothole	< 0.016	< 0.032	< 0.032	< 0.064	< 0.064	< 3.2	< 9.4	< 47	< 47
NW Pothole	< 0.018	< 0.035	< 0.035	< 0.071	< 0.071	< 3.5	< 9.3	< 49	< 49
W Pothole	< 0.094	< 0.19	2.1	17	19.1	790	210	< 49	1,000.0
W Pothole 2	< 0.02	< 0.039	< 0.039	< 0.079	< 0.079	< 3.9	< 9.6	< 48	< 48
E Pothole	< 0.014	< 0.028	< 0.028	< 0.055	< 0.055	< 2.8	< 9.8	< 49	< 49
SE Pothole	< 0.017	< 0.035	< 0.035	< 0.07	< 0.07	< 3.5	< 9.6	< 48	< 48
River Grab	< 0.017	< 0.033	< 0.033	< 0.067	< 0.067	< 3.3	< 10	< 50	< 50
Regulatory Criteria	10				50				100

TPH - total petroleum hydrocarbons

BTEX - benzene, toluene, ethylbenzene, and xylenes

mg/kg – milligrams per kilogram

___ exceeds regulatory criteria

GRO - gasoline range organics

DRO - diesel range organics

MRO – motor oil range organics

4.3 Site Characterization (01/14/19 - 01/15/19)

The purpose of the site characterization was to: 1) characterize Site soil, 2) delineate the horizontal and vertical extents of COCs in the soil, 3) collect sufficient geotechnical data from the saturated and unsaturated zones to determine suitable remedial techniques for the Site (if required).

Fifteen soil samples were collected from 6 soil borings (Figure 5). The depths of samples ranged from 2.5 ft to 15.5 ft bgs. Laboratory results from this assessment are summarized in Table 5.

Table 5. Soil Analytical Results – Site Characterization (01/14/19 and 01/15/19)

Commis ID	Volat	ile Organic	Compounds	(mg/kg)	Total	Chloride	GRO	DRO	MRO	TPH
Sample ID	В	Т	E	Х	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW1 2.5-3.5'	0.96	22	7	92	121.96	< 30	1,200	600	< 49	1,800
MW1 4.5-5.5'	< 0.025	< 0.049	< 0.049	0.12	0.12	< 30	< 4.9	31	< 46	31
MW1 6.5-7.5'	< 0.023	< 0.046	< 0.046	< 0.092	< 0.0092	< 30	4.7	20	48	72.7
MW1 14-15'	< 0.025	< 0.05	< 0.05	< 0.1	< 0.1	< 30	< 5.0	< 9.3	< 47	<47
MW2 5'	< 0.024	< 0.048	< 0.048	< 0.096	< 0.096	< 30	< 4.8	< 9.2	< 46	<46
MW2 6.5-7.5'	< 0.024	< 0.048	< 0.048	< 0.096	< 0.096	< 30	< 4.8	18	< 49	18
MW3 5.0-5.5'	< 0.024	< 0.049	< 0.049	< 0.098	< 0.098	< 30	< 4.9	< 9.8	< 49	< 49
MW3 6.5-7.5'	< 0.024	< 0.049	< 0.049	< 0.097	< 0.097	< 30	< 4.9	< 9.4	< 47	< 47
MW4 5-6'	< 0.024	< 0.048	< 0.048	< 0.096	< 0.096	< 30	< 4.8	< 9.8	< 49	< 49
MW4 8-9'	< 0.024	< 0.047	< 0.047	< 0.094	< 0.094	< 30	< 4.7	130	< 50	130
MW5 4.5-5.5'	< 0.024	< 0.048	< 0.048	< 0.097	< 0.097	< 30	< 4.8	< 9.8	< 49	< 49
MW5 8-9'	< 0.024	< 0.049	< 0.049	< 0.098	< 0.098	< 30	29	86	< 47	115
MW5 14.5-15.5'	< 0.023	< 0.046	< 0.046	< 0.093	< 0.093	< 30	< 4.6	< 9.5	< 47	< 47
MW6 5.0-5.5'	< 0.025	< 0.05	< 0.05	< 0.099	< 0.099	< 30	10	10	< 49	20
MW6 7.5-8.5'	< 0.025	0.057	< 0.05	< 0.1	< 0.1	< 30	120	110	< 49	230
Regulatory Criteria	10		-	-	50	600		-	-	100

TPH – total petroleum hydrocarbons (TPH = GRO+DRO+MRO)

BTEX - benzene, toluene, ethylbenzene, and xylenes

mg/kg – milligrams per kilogram

- exceeds regulatory criteria

GRO – gasoline range organics

DRO - diesel range organics

MRO - motor oil range organics

4.4 Geotechnical Data

The collected sample intervals for geotechnical analysis were tested for volumetric water content, bulk density (wet and dry), and hydraulic conductivity. The results are summarized in Table 6.

Table 6. Results of Geotechnical Testing

Sample ID	Volumetric Water Content (%)	Bulk Density-Wet ¹ (g/cc)	Bulk Density-Dry ¹ (g/cc)	Hydraulic Conductivity (cm/sec)
MW1 5.5-6.0'	9.4	2.09	1.92	1.0 E ⁻⁰³
MW4 13.5-14.0'	15.3	1.91	1.65	2.4 E ⁻⁰³

^{% -} percent

g/cc - grams per cubic centimeter

cm/sec - centimeters per second

¹Laboratory reports acknowledge a reporting bias due to insufficient sample volume and gravel inclusions in sample

4.5 Soil Assessment Summary

Of the 26 soil samples collected for laboratory analysis, 8 samples exceeded the regulatory criteria for TPH and 2 samples exceeded the regulatory criteria for Total BTEX. All other COCs were below NMOCD regulatory criteria.

The soil assessments revealed that soils at the Site were comprised of interbedded sand, silt, and clay. A typical soil profile for the Site consists of clayey silty from the surface to approximately 0.5 ft, underlain by a firm clay to a depth of approximately 3.5 to 5.0 ft bgs. The clay was underlain by a medium or coarse grain groundwater sand to approximately 10 ft, which was underlain by a clayey or silty sand.

5.0 Groundwater Assessment

5.1 Introduction

Soil assessment activities indicated that the release reached the upper groundwater-bearing unit (GWBU). Therefore, all six soil borings installed at the Site were converted into groundwater monitor wells (i.e., MW1 – MW6). Each monitor well was permitted by the New Mexico Office of State Engineer (Permit No.: SJ-4327 POD1-POD6). Groundwater assessment activities are documented below.

5.2 Monitoring Well Installation

MW1 was situated adjacent and downgradient from the point of release. MW2-MW6 were installed along the perimeter of the Site for horizontal delineation. Monitor well locations are shown in Figure 6.

Groundwater sand was typically encountered between 4 and 5 ft bgs across the Site. Monitor wells were drilled to depths ranging from 12 ft bgs to 15 ft bgs. Monitoring wells were constructed inside of hollow-stem augers using 2-inch PVC. Each well was constructed with 10-ft of screened pipe at the base of the well. A sand pack consisting of 20/40 silica sand was installed to approximately 1 ft above each well screen. Bentonite seals were installed above each sand pack to ground surface. Surface completions are stick-up with protective casing and 2 ft x 2 ft concrete pads. Each well was fitted with 3 protective bollards.

5.3 Well Development and Groundwater Monitoring

Each well was developed using a submersible stainless-steel pump and dedicated tubing. Water was purged from each well until water clarified (approximately 10 gallons per well; greater than 3 well volumes).

Following well development, wells were sampled using EPA low-flow techniques. Five groundwater samples were collected utilizing the EPA low-flow sampling technique (i.e., MW1, MW2, MW3, MW4 and MW5). Water was produced from wells using low-density polyethylene (LDPE) tubing and a stainless-steel submersible pump. The submersible pump was set in the screened interval of each well. The depth to water was monitored as water was removed. Pump rates were adjusted to maintain a static water level and laminar flow in each well.

Purged water was piped to a flow-through cell equipped with a YSI probe to monitor water quality parameters (i.e., temperature, pH, electrical conductivity, dissolved oxygen, and oxidation-reduction potential). Water was purged until all parameters stabilized. Stabilized parameters for wells that were sampled using EPA low flow methodology are documented in attached Table D-1 (Appendix D).

One well (i.e., MW6) pumped dry. This well was allowed to recharge and was sampled within 24 hours of well development and purging.

All samples were placed directly into laboratory-provided sample containers, stored on ice, and transported under proper chain-of-custody protocol to Hall Environmental Analytical Laboratory in Albuquerque, New Mexico for the following chemical analysis:

- BTEX by EPA SW-846 Method 8260
- TPH by EPA SW-846 Method 8015M/D
- Chloride by EPA Method 300.0

5.4 Groundwater Analytical Results

Groundwater analytical results for chloride and petroleum hydrocarbons are shown in Table 7. Laboratory reports containing analytical methods, results, and chain-of-custody documents are attached.

Volatile Organic Compounds (mg/L) Chloride **GRO** DRO MRO **TPH** Sample ID Date (mg/L)(mg/L) (mg/L) (mg/L) (mg/L) В Т Ε Χ MW1 01/18/19 0.074 0.35 0.027 0.33 2.0 < 1.0 < 5.0 2.0 130 < 0.001 MW2 01/17/19 < 0.001 < 0.001 < 0.0015 150 < 0.05 < 1.0 < 5.0 < 5.0 MW3 01/17/19 < 0.001 < 0.001 < 0.0015 < 1.0 < 5.0 < 0.001 140 < 0.05 < 5.0 MW4 01/17/19 140 < 5.0 < 0.001 < 0.001 < 0.001 < 0.0015 < 0.05 < 1.0 < 5.0

< 0.0015

< 0.0015

0.62

130

180

250

Table 7. Groundwater Analytical Results

TPH – total petroleum hydrocarbons (TPH=GRO+DRO+MRO) BTEX – benzene, toluene, ethylbenzene, and xylenes

< 0.001

< 0.001

0.75

GRO – gasoline range organics DRO – diesel range organics MRO – motor oil range organics

0.32

1.1

< 1.0

< 1.0

< 5.0

< 5.0

0.32

1.1

mg/L - milligrams per liter

01/17/19

01/18/19

MW5

MW6

Regulatory Criteria

- exceeds regulatory criteria

< 0.001

< 0.001

0.01

One groundwater sample (i.e., MW1) was also analyzed for the following additional constituents:

- TDS by Standard Method 2540C
- Anions by EPA Method 300.0
- RCRA 8 Metals by EPA SW-846 Method 6010B and 7470

< 0.001

< 0.001

0.75

- VOCs by EPA SW-846 Method 8260B
- SVOCs by EPA SW-846 Method 8270C
- VOCs by EPA SW-846 Method 8260B

Laboratory results as well as applicable standards for human health standards and/or domestic water supply are presented in the attached tables (Tables A-2 through A-5). Analytical results of additional constituents for the MW1 sample are summarized below:

- TDS exceeded the domestic water supply criteria (Table D-2)
- Except for sulfate, all anions were below the domestic water supply criteria (Table D-2)
- All RCRA-8 metals were below human health standards (Table D-3)
- Except for benzene as noted above, all VOCs were below human health standards (Table D-4)
- All SVOC were below standards for human health, domestic water supply or laboratory detection limits (Table D-5)

5.5 Well Gauging and Survey

Each well was gauged to determine the depth to water using an oil-water interface probe capable of measuring to the nearest one-hundredth foot. No phase separated hydrocarbons (PSH) were observed. An elevation survey was conducted on the tops of monitor well casings using a survey rod and laser level transit. Depths to groundwater were subtracted from the corresponding monitor well elevation to determine the depth of groundwater above mean sea level in each well.

Using this data, Timberwolf prepared a potentiometric surface elevation (PSE) map as shown in Figure 7. The PSE map reveals the groundwater gradient to be west-southwesterly across the Site.

5.6 Findings of Groundwater Assessment

The Site is underlain by a confined, yet seasonal, groundwater aquifer. The top of the groundwater sand was encountered between 4.5 and 5.0 ft bgs. However, groundwater was typically encountered a foot below the top of sand. The groundwater sand is characterized as stratified gravelly sand, with medium and coarse grain sand in the upper portion of the unit and silty and clayey sands in the lower portion of the unit. Gravel inclusions ranged in size from 0.25 to 2.0 inches in diameter and were distributed through the groundwater unit.

Benzene was the only COC identified within Site groundwater. Benzene was observed in only 1 well (i.e., MW1) situated adjacent and downgradient of the point of release. Benzene was horizontally delineated. A benzene isoconcentration map is provided in Figure 7.

Groundwater samples collected from MW5 and MW6 exceeded laboratory detection limits for GRO (i.e., 0.32 mg/L and 1.1 mg/L, respectively); however, neither the NMOCD nor NMDEQ has established criteria for petroleum hydrocarbons (i.e., TPH) in groundwater.

The PSE map reveals that the groundwater gradient at the Site is to the west-southwest, toward the La Plata River.

6.0 Abatement Plan

6.1 Introduction

The proposed further actions are based on the subsurface investigations conducted by Timberwolf in 2018 and 2019. The work plan presented below is intended to address impacted source soil within the vadose zone and impacted groundwater.

6.2 Horizontal Delineation

The soil assessment revealed TPH was not horizontally delineated to the south, southwest or west of the point of release. Timberwolf recommends installation of 3 soil borings to approximately 10 ft bgs to achieve horizontal delineation of TPH in soil. The proposed boring locations are shown in Figure 10.

6.3 Vadose Zone Abatement

The soil assessments revealed soil within and adjacent to the former tank battery with elevated Total BTEX and TPH. Further evaluation of impacted soil from the vadose zone (i.e., unsaturated zone) is required to determine if constituents are capable of migrating to the underlying groundwater (as required under NMAC 20.6.2§4103). Note: soil having the potential to leach constituents in concentrations exceeding groundwater criteria are considered "source soils".

The following plan is presented to mitigate impacted soil in the vadose zone:

- 1. Determine the leachability of impacted soil by analyzing select soil samples, including samples exhibiting the highest concentrations of TPH, for synthetic precipitation leaching procedure (SPLP) by EPA SW-846 Method 1312
- 2. Mitigate risk to groundwater by excavating soil which has the potential to leach constituents in concentrations exceeding groundwater criteria
- 3. Transport and dispose of excavated soil at a permitted commercial disposal facility
- 4. Backfill the excavation with clean fill

6.4 Saturated Zone Abatement

The groundwater assessment revealed a benzene plume in the vicinity of the former tank battery. The plume dimensions are estimated to be approximately 175 ft x 90 ft (Figure &). Benzene is a constituent which is susceptible to air sparging, bioventing, and soil vapor extraction (SVE). Additionally, geotechnical analysis reveal a favorable environment for biovent or air sparge system. Because this groundwater unit is confined, an air sparge system would additionally require SVE or passive wells to facilitate air flow.

The following plan is presented to mitigate impacted groundwater:

- 1. Install approximately 8 air sparge points constructed of 2-inch PVC
- 2. Sparge points to be oriented in a manner to provide plume containment
- 3. Install approximately 4 biovents or passive wells to facilitate air flow
- 4. Construct a manifold and piping system to serve each sparge point
- 5. Select an electric single-phase blower to power the air sparge system
- 6. Run the system on 4 to 6 hour cycles to prevent preferential pathways from developing
- 7. Monitor Site groundwater until the benzene plume is stable (i.e, stable constituent concentrations in groundwater with a stable or shrinking plume)

6.5 Groundwater Remedial Targets

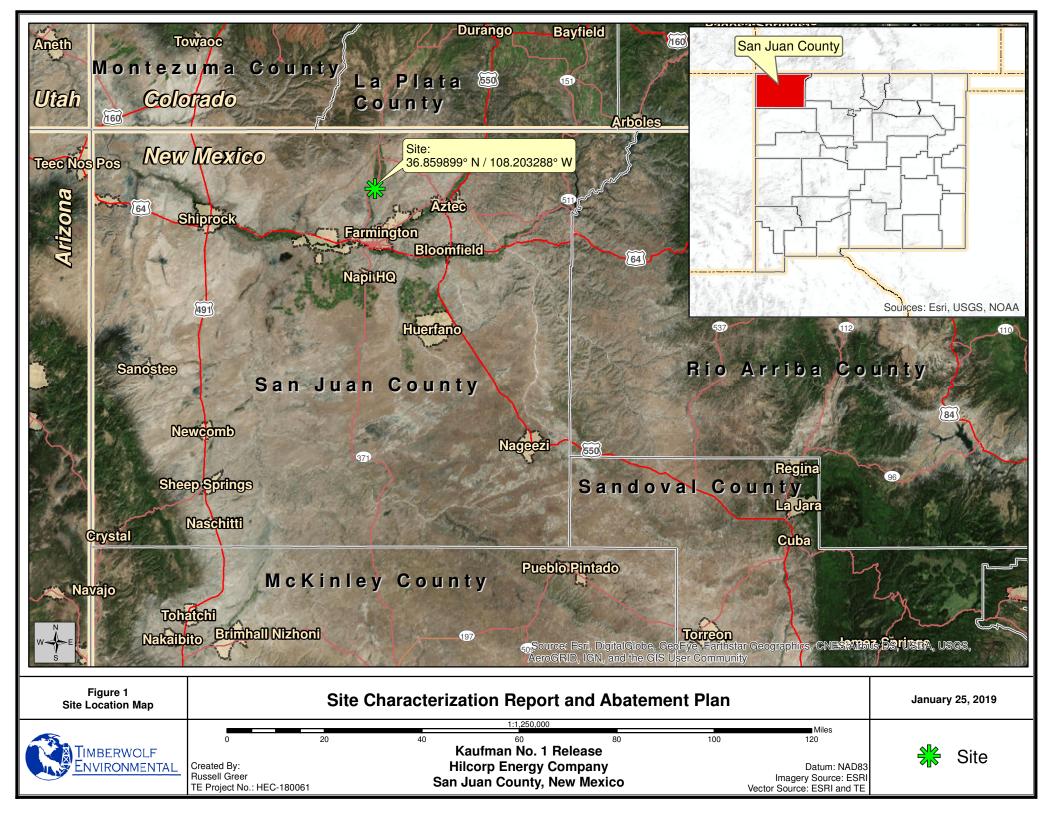
The remedial target for BTEX in groundwater at the Site are established in Table 8.

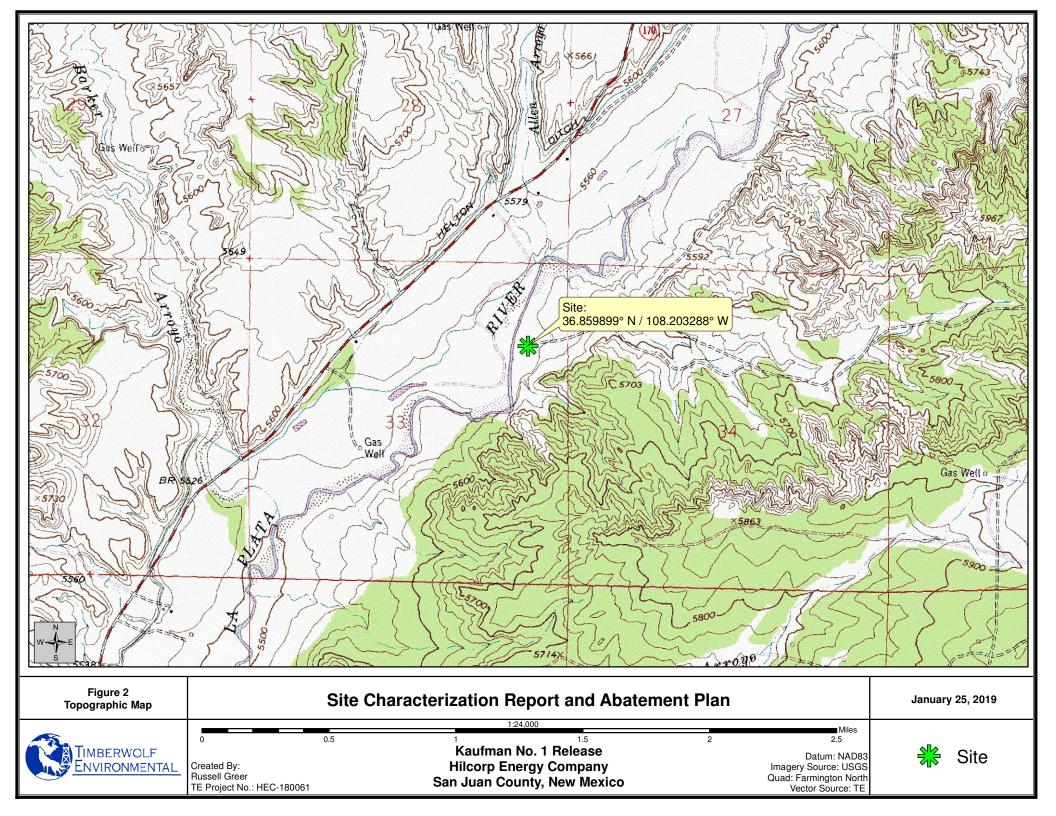
Table 8. Remedial Targets for Groundwater

Constituent	Remedial Target (mg/L)
Benzene	0.074
Toluene	0.75
Ethylbenzene	0.75
Xylenes	1.00

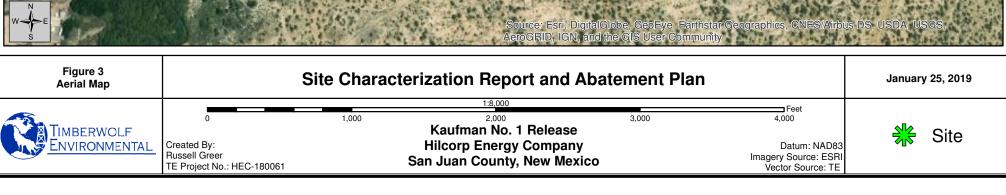
mg/L - milligrams per liter

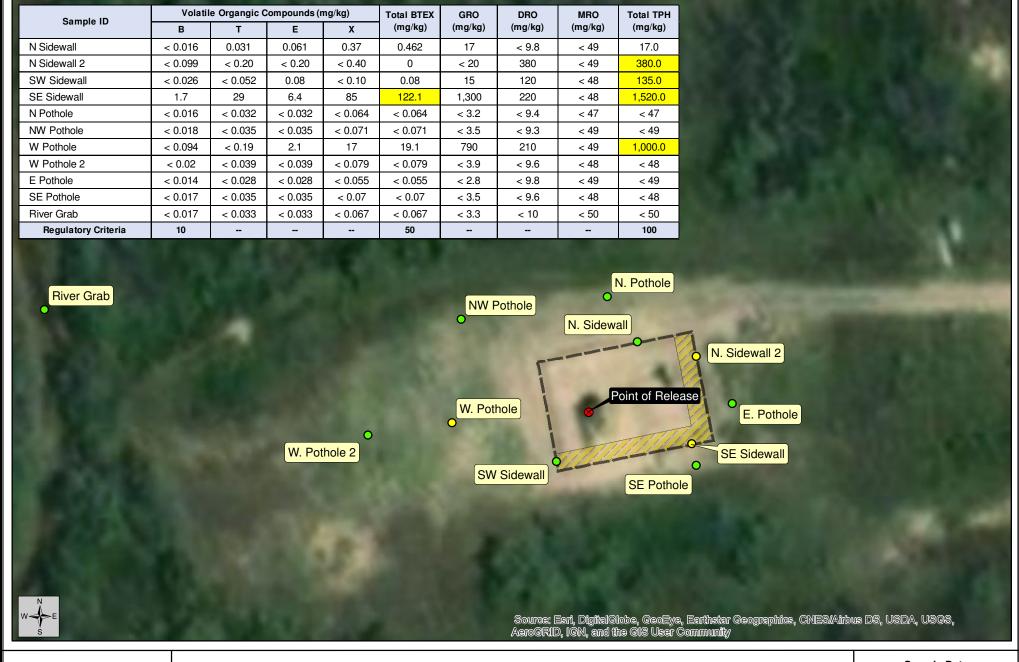
6.6 Groundwater Monitoring Program

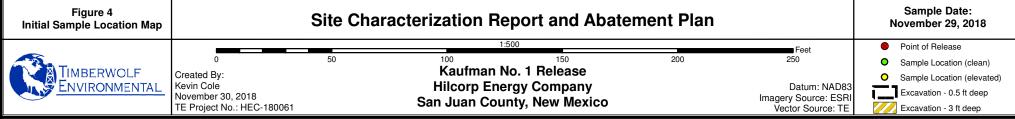

Site groundwater will be monitored quarterly to evaluate remediation and mitigation efforts. During each monitoring event, groundwater will be analyzed for BTEX, and the depth to water in each well will be gauged, and a PSE map will be prepared to monitor the direction of groundwater flow.

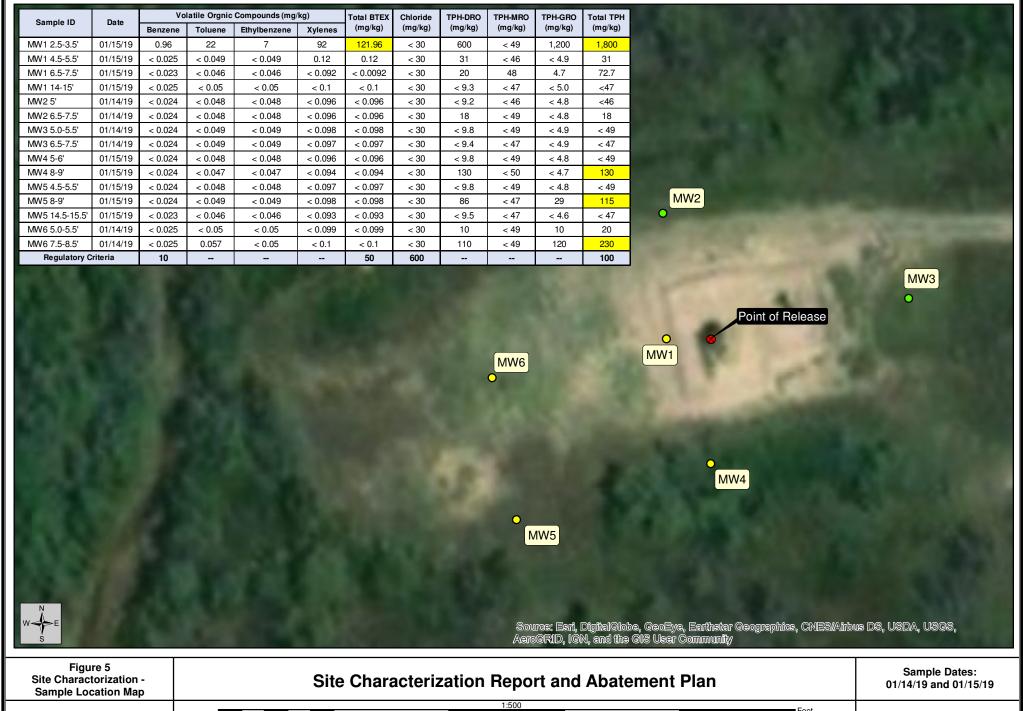

Once 8 consecutive quarterly monitoring events indicate a stable groundwater plume and samples from all monitor wells during that period do not exceed the remedial target, the monitoring program will terminate, and site abatement will be considered complete.

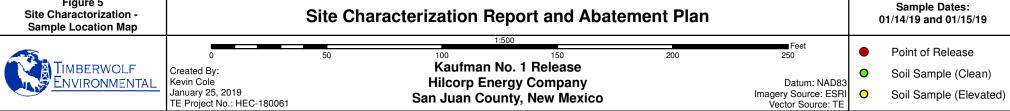
6.7 Receptor Survey

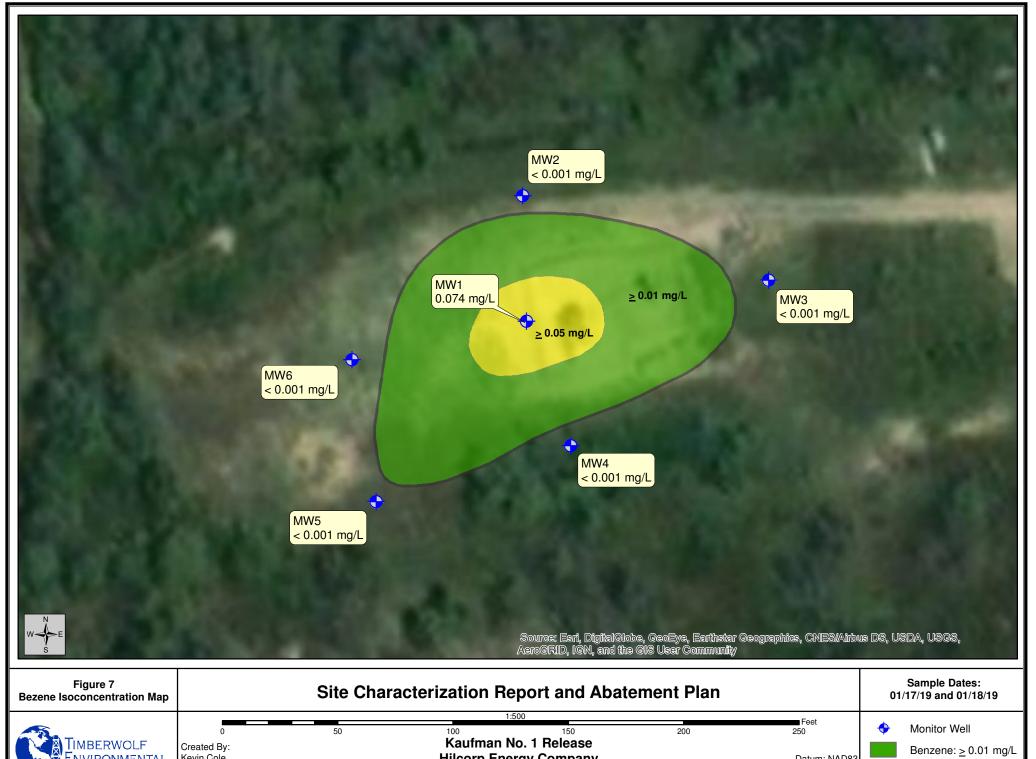

Conduct a receptor survey to identify all water wells within a one-mile radius of the Site and sensitive features within a one-quarter mile radius of the Site.

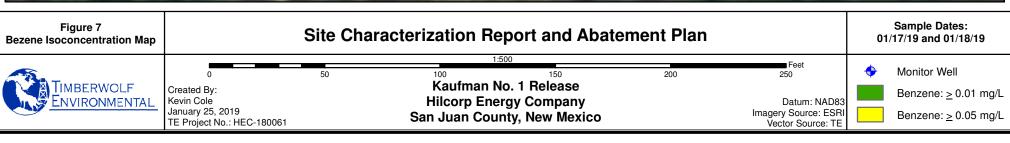

Figures			
0			

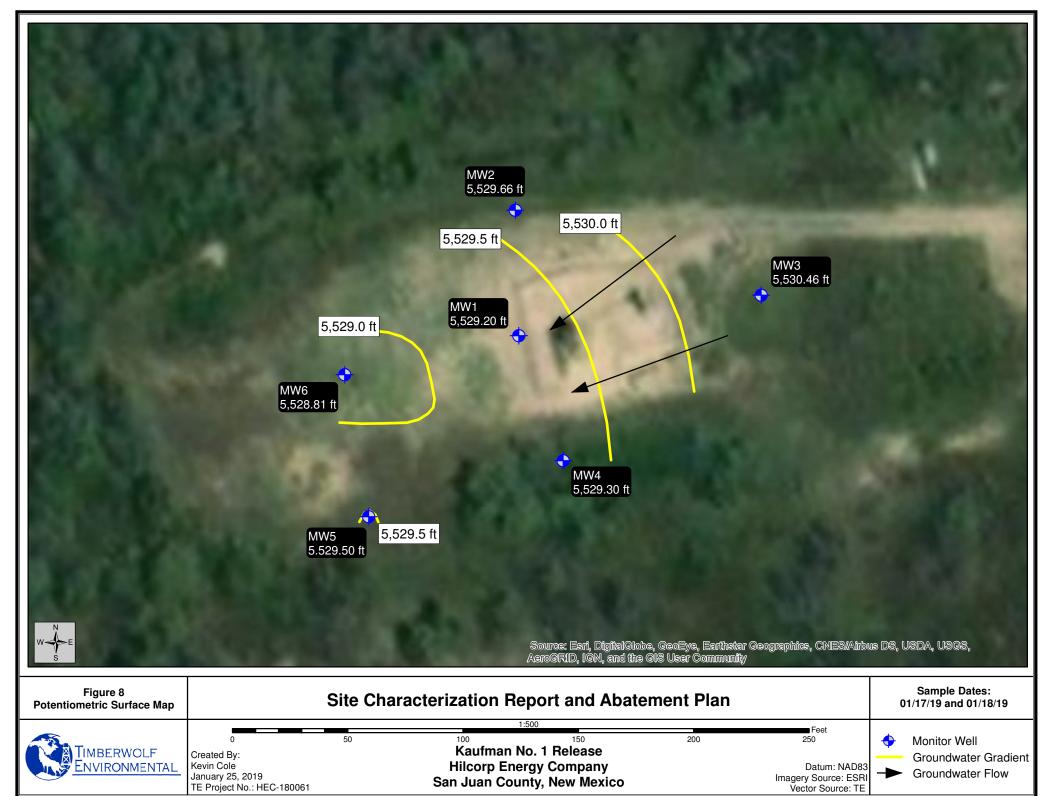


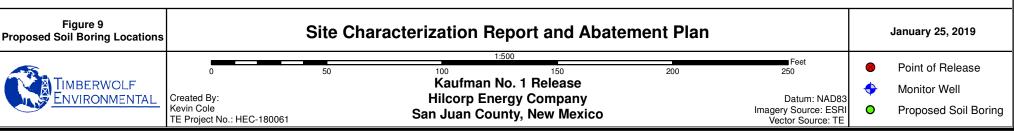




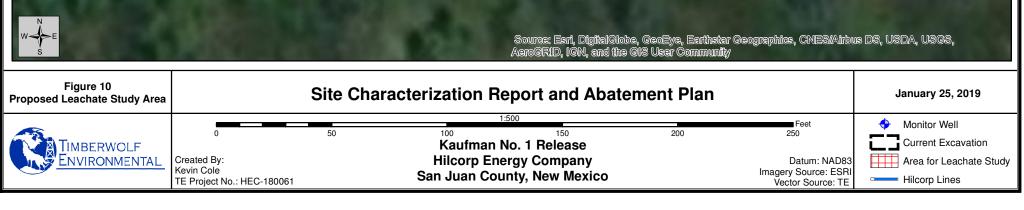




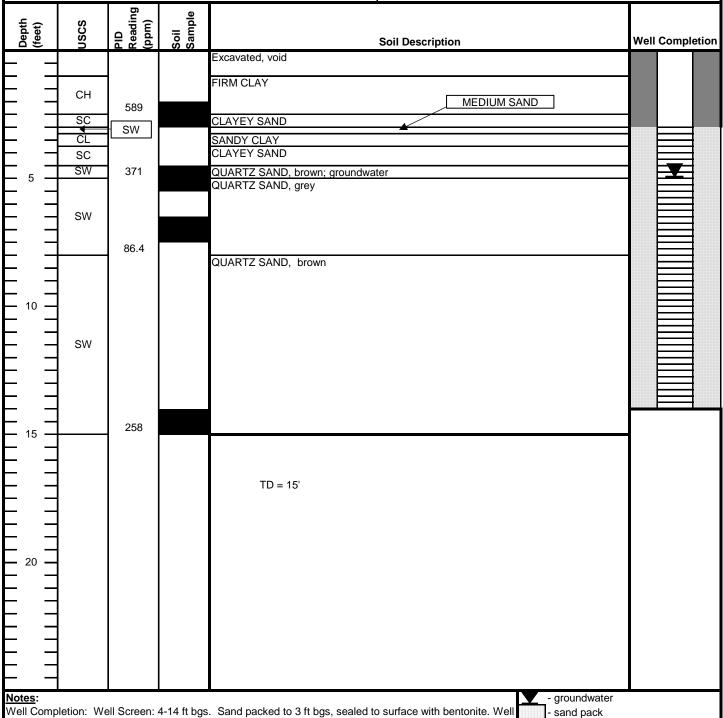






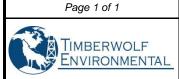


Appendix A			
F F			
Soil Boring Logs			

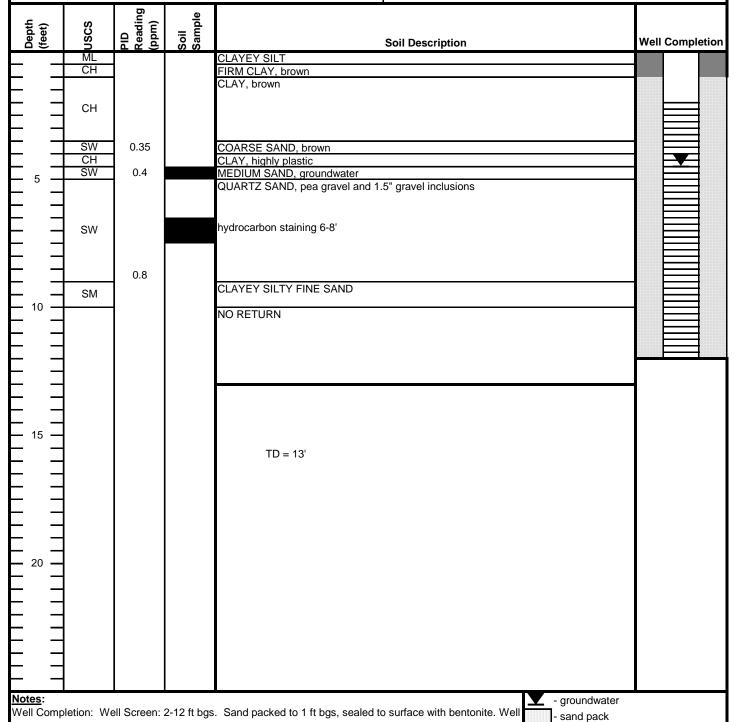

MONITORING WELL INSTALLATION REPORT

MW-1

screened intervalbentonite seal


Client: Hilcorp Energy Company	Completion Date: 01/15/19
Project Name: Kaufman No. 1	Logged By: Jim Foster
Site Location: Farmington, New Mexico	Drilled By: Geomat, Inc.
Project Number: 180061	Drilling Method & Boring Diameter: Hollow Stem Auger 5.5'
Boring Coordinates: 36.85988, -108.20337	Total Depth (ft): 15'
Ground Surface Elevation (ft, msl): 5,537 ft	First Water Encountered (ft): 5'

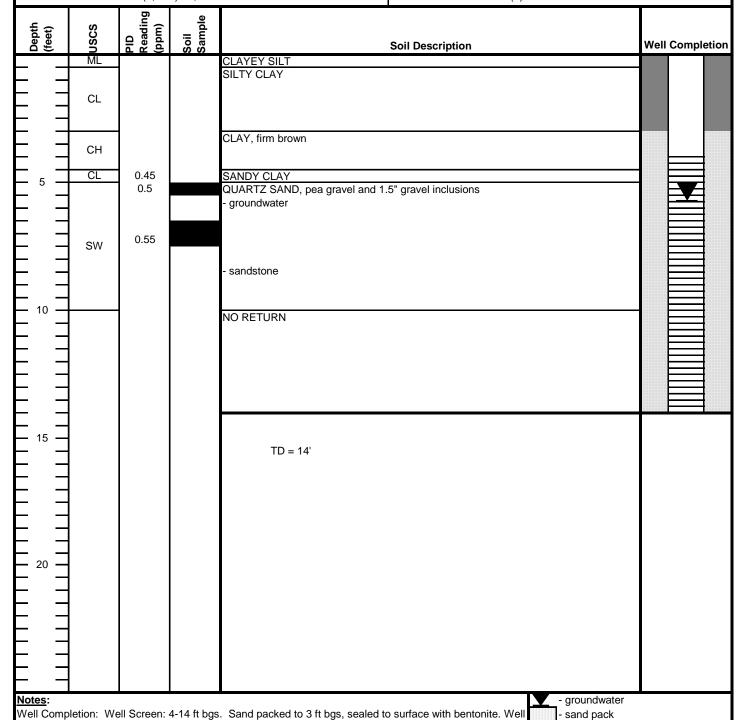
completed with 2-inch PVC, surface completion is stick up.


MONITORING WELL INSTALLATION REPORT

MW-2

screened intervalbentonite seal

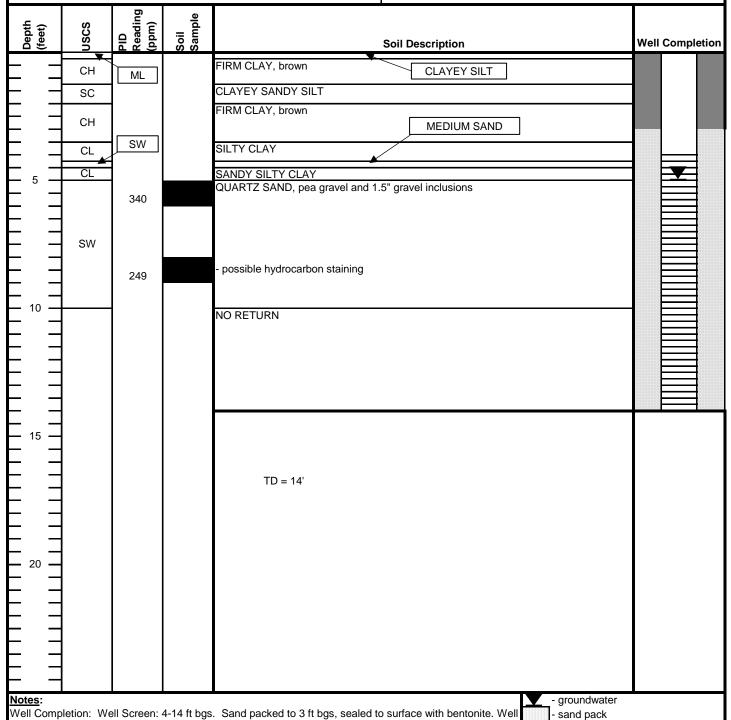
Client: Hilcorp Energy Company	Completion Date: 01/14/19
Project Name: Kaufman No. 1	Logged By: Jim Foster
Site Location: Farmington, New Mexico	Drilled By: Geomat, Inc.
Project Number: 180061	Drilling Method & Boring Diameter: Hollow Stem Auger 5.5"
Boring Coordinates: 36.86007, -108.2034	Total Depth (ft): 13'
Ground Surface Elevation (ft, msl): 5,536ft	First Water Encountered (ft): 4.33'


completed with 2-inch PVC, surface completion is stick up.

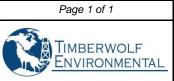
MW-3

- screened interval - bentonite seal

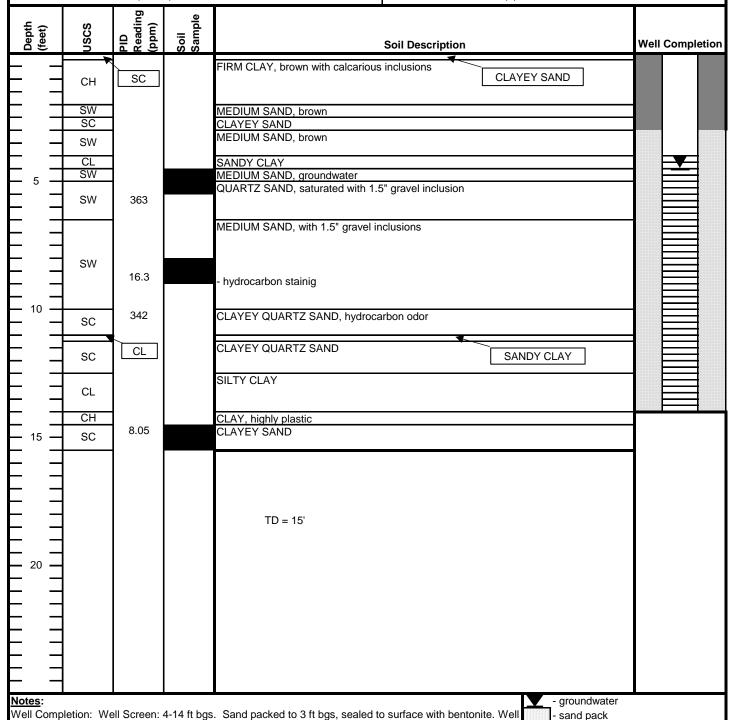
Client: Hilcorp Energy Company	Completion Date: 01/14/19
Project Name: Kaufman No. 1	Logged By: Jim Foster
Site Location: Farmington, New Mexico	Drilled By: Geomat, Inc.
Project Number: 180061	Drilling Method & Boring Diameter: Hollow Stem Auger 5.5"
Boring Coordinates: 36.85995, -108.20309	Total Depth (ft): 13'
Ground Surface Elevation (ft, msl): 5,536ft	First Water Encountered (ft): 4.33'


completed with 2-inch PVC, surface completion is stick up.

MW-4


- screened interval - bentonite seal

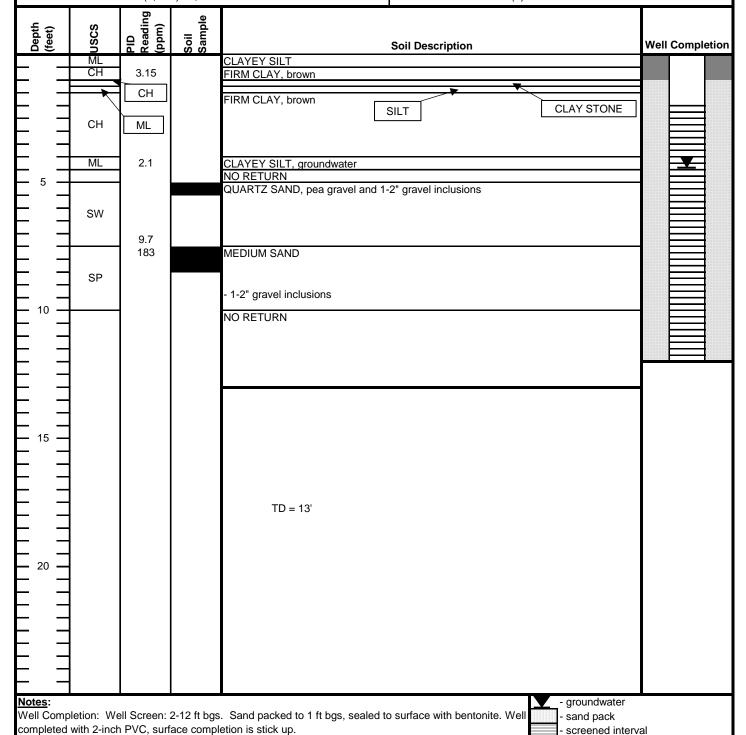
Client: Hilcorp Energy Company	Completion Date: 01/15/19
Project Name: Kaufman No. 1	Logged By: Jim Foster
Site Location: Farmington, New Mexico	Drilled By: Geomat, Inc.
Project Number: 180061	Drilling Method & Boring Diameter: Hollow Stem Auger 5.5"
Boring Coordinates: 36.85973, -108.20333	Total Depth (ft): 14'
Ground Surface Elevation (ft, msl): 5,539ft	First Water Encountered (ft): 5


completed with 2-inch PVC, surface completion is stick up.

MW-5

- screened interval - bentonite seal

Client: Hilcorp Energy Company	Completion Date: 01/15/18
Project Name: Kaufman No. 1	Logged By: Jim Foster
Site Location: Farmington, New Mexico	Drilled By: Geomat, Inc.
Project Number: 180061	Drilling Method & Boring Diameter: Hollow Stem Auger 5.5"
Boring Coordinates: 36.85966, -108.20358	Total Depth (ft): 15'
Ground Surface Elevation (ft, msl): 5,536ft	First Water Encountered (ft): 4.5'


completed with 2-inch PVC, surface completion is stick up.

MW-6

- bentonite seal

Client: Hilcorp Energy Company	Completion Date: 01/14/19
Project Name: Kaufman No. 1	Logged By: Jim Foster
Site Location: Farmington, New Mexico	Drilled By: Geomat, Inc.
Project Number: 180061	Drilling Method & Boring Diameter: Hollow Stem Auger
Boring Coordinates: 36.85984, -108.20366	Total Depth (ft): 13'
Ground Surface Elevation (ft, msl): 5,536ft	First Water Encountered (ft): 4.5'

Appendix B	- d Chair of Creeks	J. D	
Laboratory Reports as	iid Ciiaiii-oi-Gustoo	ly Documents	
Laboratory Reports a	nd Cham-of-Custod	ly Documents	
Laboratory Reports a	nd Gham-oi-Gusto	ly Bocuments	
Laboratory Reports a	nd Gham-of-Gusto	ay Bocuments	
Laboratory Reports a	nd Gham-of-Gusto	ay Bocuments	
Laboratory Reports a	nd Gham-of-Gusto	ay Bocuments	
Laboratory Reports a	nd Gram-of-Gusto	ay Bocuments	
Laboratory Reports a	nd Gram-of-Gusto	ay Bocuments	
Laboratory Reports a	nd Gram-of-Gusto	ay Bocuments	
Laboratory Reports a	nd Gram-of-Custor	ly Bocuments	
Laboratory Reports a	iid Giain-oi-Gusto	ly Bocuments	
Laboratory Reports a	iid Giain-oi-Gusto	ly Bocuments	
Laboratory Reports a	iid Giain-oi-Gusto	ly Documents	
Laboratory Reports a	iid Giain-oi-Gusto	ly Documents	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2019

Jim Foster Timberwolf Environmental 1920 W Villa Maria Ste 205 Bryan, TX 77807

TEL: (979) 324-2139

FAX

RE: Kaufman No1 OrderNo.: 1901789

Dear Jim Foster:

Hall Environmental Analysis Laboratory received 6 sample(s) on 1/19/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 2/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Timberwolf Environmental Client Sample ID: MW2

 Project:
 Kaufman No1
 Collection Date: 1/17/2019 10:26:00 AM

 Lab ID:
 1901789-001
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	150	5.0	mg/L	10	1/21/2019 9:47:54 PM	R57149
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: AG
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/22/2019 11:56:31 AM	R57171
Surr: BFB	98.6	70-130	%Rec	1	1/22/2019 11:56:31 AM	R57171
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	: CLP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	1/23/2019 9:58:20 AM	42745
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	1/23/2019 9:58:20 AM	42745
Surr: DNOP	110	70-130	%Rec	1	1/23/2019 9:58:20 AM	42745
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: AG
Benzene	ND	1.0	μg/L	1	1/22/2019 11:56:31 AM	A57171
Toluene	ND	1.0	μg/L	1	1/22/2019 11:56:31 AM	A57171
Ethylbenzene	ND	1.0	μg/L	1	1/22/2019 11:56:31 AM	A57171
Xylenes, Total	ND	1.5	μg/L	1	1/22/2019 11:56:31 AM	A57171
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/22/2019 11:56:31 AM	A57171
Surr: Toluene-d8	103	70-130	%Rec	1	1/22/2019 11:56:31 AM	A57171

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 28
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Timberwolf Environmental Client Sample ID: MW3

 Project:
 Kaufman No1
 Collection Date: 1/17/2019 12:15:00 PM

 Lab ID:
 1901789-002
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL Qı	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	140	5.0	mg/L	10	1/21/2019 10:13:38 PM	R57149
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: AG
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/22/2019 1:22:09 PM	R57171
Surr: BFB	97.0	70-130	%Rec	1	1/22/2019 1:22:09 PM	R57171
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	CLP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	1/23/2019 11:04:31 AM	42745
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	1/23/2019 11:04:31 AM	42745
Surr: DNOP	102	70-130	%Rec	1	1/23/2019 11:04:31 AM	42745
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: AG
Benzene	ND	1.0	μg/L	1	1/22/2019 1:22:09 PM	A57171
Toluene	ND	1.0	μg/L	1	1/22/2019 1:22:09 PM	A57171
Ethylbenzene	ND	1.0	μg/L	1	1/22/2019 1:22:09 PM	A57171
Xylenes, Total	ND	1.5	μg/L	1	1/22/2019 1:22:09 PM	A57171
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	1/22/2019 1:22:09 PM	A57171
Surr: Toluene-d8	101	70-130	%Rec	1	1/22/2019 1:22:09 PM	A57171

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 28
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW4

 Project:
 Kaufman No1
 Collection Date: 1/17/2019 1:30:00 PM

 Lab ID:
 1901789-003
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL Q	Qual Units	DF	Date Analyzed Ba	atch
EPA METHOD 300.0: ANIONS					Analyst: sn	mb
Chloride	140	5.0	mg/L	10	1/21/2019 10:39:21 PM R5	57149
EPA METHOD 8015D: GASOLINE RANGE					Analyst: AC	G
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/22/2019 2:47:49 PM R5	57171
Surr: BFB	97.8	70-130	%Rec	1	1/22/2019 2:47:49 PM R5	57171
EPA METHOD 8015M/D: DIESEL RANGE					Analyst: Cl	LP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	1/23/2019 11:26:23 AM 42	2745
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	1/23/2019 11:26:23 AM 42	2745
Surr: DNOP	106	70-130	%Rec	1	1/23/2019 11:26:23 AM 42	2745
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: AC	G
Benzene	ND	1.0	μg/L	1	1/22/2019 2:47:49 PM A5	57171
Toluene	ND	1.0	μg/L	1	1/22/2019 2:47:49 PM A5	57171
Ethylbenzene	ND	1.0	μg/L	1	1/22/2019 2:47:49 PM A5	57171
Xylenes, Total	ND	1.5	μg/L	1	1/22/2019 2:47:49 PM A5	57171
Surr: 4-Bromofluorobenzene	107	70-130	%Rec	1	1/22/2019 2:47:49 PM A5	57171
Surr: Toluene-d8	104	70-130	%Rec	1	1/22/2019 2:47:49 PM A5	57171

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 28
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Timberwolf Environmental

Client Sample ID: MW5

 Project:
 Kaufman No1
 Collection Date: 1/17/2019 2:45:00 PM

 Lab ID:
 1901789-004
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL Q	ual Units	DF I	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	130	5.0	mg/L	10	1/21/2019 11:05:04 PM	R57149
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: AG
Gasoline Range Organics (GRO)	0.32	0.050	mg/L	1	1/22/2019 3:16:21 PM	R57171
Surr: BFB	95.8	70-130	%Rec	1	1/22/2019 3:16:21 PM	R57171
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	: CLP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	1/23/2019 11:48:26 AM	42745
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	1/23/2019 11:48:26 AM	42745
Surr: DNOP	107	70-130	%Rec	1	1/23/2019 11:48:26 AM	42745
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: AG
Benzene	ND	1.0	μg/L	1	1/22/2019 3:16:21 PM	A57171
Toluene	ND	1.0	μg/L	1	1/22/2019 3:16:21 PM	A57171
Ethylbenzene	ND	1.0	μg/L	1	1/22/2019 3:16:21 PM	A57171
Xylenes, Total	ND	1.5	μg/L	1	1/22/2019 3:16:21 PM	A57171
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	1/22/2019 3:16:21 PM	A57171
Surr: Toluene-d8	99.5	70-130	%Rec	1	1/22/2019 3:16:21 PM	A57171

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 28
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW6

 Project:
 Kaufman No1
 Collection Date: 1/18/2019 1:35:00 PM

 Lab ID:
 1901789-005
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	smb
Chloride	180	5.0	mg/L	10	1/21/2019 11:30:46 PM	R57149
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: AG
Gasoline Range Organics (GRO)	1.1	0.050	mg/L	1	1/22/2019 3:44:54 PM	R57171
Surr: BFB	95.5	70-130	%Rec	1	1/22/2019 3:44:54 PM	R57171
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	CLP
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	1/23/2019 12:10:26 PM	42745
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	1/23/2019 12:10:26 PM	42745
Surr: DNOP	103	70-130	%Rec	1	1/23/2019 12:10:26 PM	42745
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: AG
Benzene	ND	1.0	μg/L	1	1/22/2019 3:44:54 PM	A57171
Toluene	ND	1.0	μg/L	1	1/22/2019 3:44:54 PM	A57171
Ethylbenzene	ND	1.0	μg/L	1	1/22/2019 3:44:54 PM	A57171
Xylenes, Total	ND	1.5	μg/L	1	1/22/2019 3:44:54 PM	A57171
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	1/22/2019 3:44:54 PM	A57171
Surr: Toluene-d8	96.1	70-130	%Rec	1	1/22/2019 3:44:54 PM	A57171

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 28
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW1

 Project:
 Kaufman No1
 Collection Date: 1/18/2019 3:15:00 PM

 Lab ID:
 1901789-006
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	smb
Fluoride	ND	1.0		mg/L	10	1/22/2019 12:22:13 AM	R57149
Chloride	130	5.0		mg/L	10	1/22/2019 12:22:13 AM	R57149
Nitrogen, Nitrite (As N)	ND	1.0	Н	mg/L	10	1/22/2019 12:22:13 AM	R57149
Bromide	ND	1.0		mg/L	10	1/22/2019 12:22:13 AM	R57149
Nitrogen, Nitrate (As N)	ND	1.0	Н	mg/L	10	1/22/2019 12:22:13 AM	R57149
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	1/22/2019 12:22:13 AM	R57149
Sulfate	1700	50	*	mg/L	100	1/22/2019 12:35:04 AM	R57149
SM2510B: SPECIFIC CONDUCTANCE						Analyst	MRA
Conductivity	3600	5.0		µmhos/c	: 1	1/21/2019 9:31:21 PM	R57160
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	KS
Total Dissolved Solids	3130	40.0	*D	mg/L	1	1/23/2019 3:44:00 PM	42739
EPA METHOD 7470: MERCURY						Analyst	pmf
Mercury	ND	0.00020		mg/L	1	1/23/2019 5:51:24 PM	42731
EPA 6010B: TOTAL RECOVERABLE METALS						Analyst	rde
Arsenic	ND	0.020		mg/L	1	1/29/2019 2:53:21 PM	42806
Barium	0.079	0.020		mg/L	1	1/28/2019 5:31:55 PM	42806
Cadmium	ND	0.0020		mg/L	1	1/28/2019 5:31:55 PM	42806
Calcium	430	5.0		mg/L	5	1/28/2019 6:52:17 PM	42806
Chromium	ND	0.0060		mg/L	1	1/28/2019 5:31:55 PM	42806
Lead	ND	0.0050		mg/L	1	1/28/2019 6:47:08 PM	42806
Magnesium	88	1.0		mg/L	1	1/28/2019 5:31:55 PM	42806
Potassium	3.3	1.0		mg/L	1	1/28/2019 5:31:55 PM	42806
Selenium	ND	0.050		mg/L	1	1/28/2019 5:31:55 PM	42806
Silver	0.0068	0.0050		mg/L	1	1/28/2019 5:31:55 PM	42806
Sodium	370	5.0		mg/L	5	1/28/2019 6:52:17 PM	42806
EPA METHOD 8015D: GASOLINE RANGE						Analyst	AG
Gasoline Range Organics (GRO)	2.4	0.050		mg/L	1	1/22/2019 4:13:29 PM	R57171
Surr: BFB	98.5	70-130		%Rec	1	1/22/2019 4:13:29 PM	R57171
EPA METHOD 8015M/D: DIESEL RANGE						Analyst	CLP
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	1/23/2019 12:32:30 PM	42745
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	1/23/2019 12:32:30 PM	42745
Surr: DNOP	111	70-130		%Rec	1	1/23/2019 12:32:30 PM	42745
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
Acenaphthene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Acenaphthylene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Aniline	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 28
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 2/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Timberwolf Environmental

Client Sample ID: MW1

 Project:
 Kaufman No1
 Collection Date: 1/18/2019 3:15:00 PM

 Lab ID:
 1901789-006
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Anthracene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Azobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Benz(a)anthracene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Benzo(a)pyrene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Benzo(b)fluoranthene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Benzo(g,h,i)perylene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Benzo(k)fluoranthene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Benzoic acid	ND	20		μg/L	1	1/28/2019 4:34:16 PM	42755
Benzyl alcohol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Bis(2-chloroethoxy)methane	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Bis(2-chloroethyl)ether	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Bis(2-chloroisopropyl)ether	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4-Bromophenyl phenyl ether	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Butyl benzyl phthalate	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Carbazole	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4-Chloro-3-methylphenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4-Chloroaniline	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2-Chloronaphthalene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2-Chlorophenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4-Chlorophenyl phenyl ether	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Chrysene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Di-n-butyl phthalate	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Di-n-octyl phthalate	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Dibenz(a,h)anthracene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Dibenzofuran	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
1,2-Dichlorobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
1,3-Dichlorobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
1,4-Dichlorobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
3,3'-Dichlorobenzidine	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Diethyl phthalate	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Dimethyl phthalate	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2,4-Dichlorophenol	ND	20		μg/L	1	1/28/2019 4:34:16 PM	42755
2,4-Dimethylphenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4,6-Dinitro-2-methylphenol	ND	20		μg/L	1	1/28/2019 4:34:16 PM	42755
2,4-Dinitrophenol	ND	20		μg/L	1	1/28/2019 4:34:16 PM	42755
2,4-Dinitrotoluene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2,6-Dinitrotoluene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Fluoranthene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 28
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 2/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Timberwolf Environmental Client Sample ID: MW1

 Project:
 Kaufman No1
 Collection Date: 1/18/2019 3:15:00 PM

 Lab ID:
 1901789-006
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
Fluorene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Hexachlorobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Hexachlorobutadiene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Hexachlorocyclopentadiene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Hexachloroethane	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Indeno(1,2,3-cd)pyrene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Isophorone	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
1-Methylnaphthalene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2-Methylnaphthalene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2-Methylphenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
3+4-Methylphenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
N-Nitrosodi-n-propylamine	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
N-Nitrosodimethylamine	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
N-Nitrosodiphenylamine	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Naphthalene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2-Nitroaniline	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
3-Nitroaniline	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4-Nitroaniline	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Nitrobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2-Nitrophenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
4-Nitrophenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Pentachlorophenol	ND	20		μg/L	1	1/28/2019 4:34:16 PM	42755
Phenanthrene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Phenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Pyrene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Pyridine	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
1,2,4-Trichlorobenzene	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2,4,5-Trichlorophenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
2,4,6-Trichlorophenol	ND	10		μg/L	1	1/28/2019 4:34:16 PM	42755
Surr: 2-Fluorophenol	32.4	15-74.1		%Rec	1	1/28/2019 4:34:16 PM	42755
Surr: Phenol-d5	30.0	15-59.8		%Rec	1	1/28/2019 4:34:16 PM	42755
Surr: 2,4,6-Tribromophenol	52.1	22.1-112		%Rec	1	1/28/2019 4:34:16 PM	42755
Surr: Nitrobenzene-d5	47.5	33.2-94		%Rec	1	1/28/2019 4:34:16 PM	42755
Surr: 2-Fluorobiphenyl	39.3	34-90.9		%Rec	1	1/28/2019 4:34:16 PM	42755
Surr: 4-Terphenyl-d14	44.3	15-149		%Rec	1	1/28/2019 4:34:16 PM	42755
EPA METHOD 8260B: VOLATILES						Analyst	: AG
Benzene	74	1.0		μg/L	1	1/22/2019 4:13:29 PM	B57171
Toluene	350	10		μg/L	10	1/23/2019 4:08:15 PM	R57206
Ethylbenzene	27	1.0		μg/L	1	1/22/2019 4:13:29 PM	B57171
•							

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 28
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 2/1/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Timberwolf Environmental

Client Sample ID: MW1

 Project:
 Kaufman No1
 Collection Date: 1/18/2019 3:15:00 PM

 Lab ID:
 1901789-006
 Matrix: AQUEOUS
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: AG
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2,4-Trimethylbenzene	32	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,3,5-Trimethylbenzene	15	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Naphthalene	3.2	2.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1-Methylnaphthalene	ND	4.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
2-Methylnaphthalene	ND	4.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Acetone	ND	10	μg/L	1	1/22/2019 4:13:29 PM	B57171
Bromobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Bromodichloromethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Bromoform	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Bromomethane	ND	3.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
2-Butanone	ND	10	μg/L	1	1/22/2019 4:13:29 PM	B57171
Carbon disulfide	ND	10	μg/L	1	1/22/2019 4:13:29 PM	B57171
Carbon Tetrachloride	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Chlorobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Chloroethane	ND	2.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Chloroform	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Chloromethane	ND	3.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
2-Chlorotoluene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
4-Chlorotoluene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
cis-1,2-DCE	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Dibromochloromethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Dibromomethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2-Dichlorobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,3-Dichlorobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,4-Dichlorobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Dichlorodifluoromethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1-Dichloroethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1-Dichloroethene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2-Dichloropropane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,3-Dichloropropane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
2,2-Dichloropropane	ND	2.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1-Dichloropropene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Hexachlorobutadiene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
2-Hexanone	ND	10	μg/L	1	1/22/2019 4:13:29 PM	B57171

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value excee

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 9 of 28
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/1/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW1

Kaufman No1 **Project: Collection Date:** 1/18/2019 3:15:00 PM 1901789-006 Lab ID: Matrix: AQUEOUS Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: AG
Isopropylbenzene	3.1	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
4-Isopropyltoluene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
4-Methyl-2-pentanone	ND	10	μg/L	1	1/22/2019 4:13:29 PM	B57171
Methylene Chloride	ND	3.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
n-Butylbenzene	ND	3.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
n-Propylbenzene	3.9	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
sec-Butylbenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Styrene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
tert-Butylbenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
trans-1,2-DCE	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1,1-Trichloroethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,1,2-Trichloroethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Trichloroethene (TCE)	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Trichlorofluoromethane	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
1,2,3-Trichloropropane	ND	2.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Vinyl chloride	ND	1.0	μg/L	1	1/22/2019 4:13:29 PM	B57171
Xylenes, Total	330	15	μg/L	10	1/23/2019 4:08:15 PM	R57206
Surr: 1,2-Dichloroethane-d4	108	70-130	%Rec	1	1/22/2019 4:13:29 PM	B57171
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	1	1/22/2019 4:13:29 PM	B57171
Surr: Dibromofluoromethane	108	70-130	%Rec	1	1/22/2019 4:13:29 PM	B57171
Surr: Toluene-d8	104	70-130	%Rec	1	1/22/2019 4:13:29 PM	B57171

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 10 of 28 J
- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

ND

ND

0.50

0.50

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Phosphorus, Orthophosphate (As P

Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: **R57149** RunNo: 57149 Prep Date: Analysis Date: 1/21/2019 SeqNo: 1911765 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Fluoride ND 0.10 Chloride ND 0.50 Nitrogen, Nitrite (As N) ND 0.10 Bromide ND 0.10 Nitrogen, Nitrate (As N) ND 0.10

Sample ID LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	Batch	n ID: R5	7149	F	RunNo: 5	7149				
Prep Date:	Analysis D	ate: 1/	21/2019	9	SeqNo: 1	911766	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.48	0.10	0.5000	0	96.4	90	110			
Chloride	4.8	0.50	5.000	0	95.5	90	110			
Nitrogen, Nitrite (As N)	0.96	0.10	1.000	0	95.9	90	110			
Bromide	2.4	0.10	2.500	0	96.5	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	100	90	110			
Phosphorus, Orthophosphate (As P	4.8	0.50	5.000	0	95.7	90	110			
Sulfate	9.7	0.50	10.00	0	96.8	90	110			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 11 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42745	SampT	SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range								
Client ID: PBW	Batch	n ID: 42	745	R	RunNo: 57173					
Prep Date: 1/22/2019	Analysis D	ate: 1/	23/2019	S	SeqNo: 1	913176	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	1.0								
Motor Oil Range Organics (MRO)	ND	5.0								
Surr: DNOP	0.98		1.000		98.2	70	130			
Sample ID LCS-42745	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range									
Client ID: LCSW	Batch	n ID: 42	745	R	RunNo: 5	7173				
Prep Date: 1/22/2019	Analysis D	ate: 1/	23/2019	S	SeqNo: 1	913177	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.6	1.0	5.000	0	112	71.8	135			
Surr: DNOP	0.50		0.5000		99.8	70	130			
Sample ID 1901789-001BMS	SampT	уре: М\$	<u> </u>	Tes	tCode: E	PA Method	8015M/D: Die	sel Rang	e	_
Client ID: MW2	Batch									

Campic 15 1301703-001Billo	Campi	eamprype. Me			restoude. Et A Metriod 00 13M/D. Dieser Kang					
Client ID: MW2	Batch	Batch ID: 42745			RunNo: 57173					
Prep Date: 1/22/2019	Analysis D	ate: 1/	23/2019	S	SeqNo: 1	913184	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.6	1.0	5.000	0	112	68.1	137			
Surr: DNOP	0.50		0.5000		99.3	70	130			

Sample ID 1901789-001BMSI	D SampT	ype: M \$	SD	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	9	
Client ID: MW2	Batch	1D: 42	745	R	RunNo: 5	7173				
Prep Date: 1/22/2019	Analysis D	ate: 1/	23/2019	S	SeqNo: 1	913185	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.7	1.0	5.000	0	114	68.1	137	2.02	20	
Surr: DNOP	0.50		0.5000		99.4	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 12 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID 100ng lcs	SampT	ype: LC	s	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: LCSW	Batch	1D: A5	7171	F	RunNo: 5	7171				
Prep Date:	Analysis D	Analysis Date: 1/22/2019			SeqNo: 1	912430	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Toluene	20	1.0	20.00	0	99.3	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Sample ID 1901789-001ams	SampT	SampType: MS TestCode: EPA Method 8260: Volatiles Short List								
Client ID: MW2	Batch	n ID: A5	7171	F	RunNo: 5	7171				
Prep Date:	Analysis D	ate: 1/	22/2019	S	SeqNo: 1	912432	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	108	70	130			
Toluene	20	1.0	20.00	0	99.8	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		106	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		111	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	10		10.00		99.6	70	130			

Sample ID 1901789-001amsd	SampT	SampType: MSD TestCode: EPA Method 8260: Volatiles Short List									
Client ID: MW2	Batch	1D: A5	7171	R	RunNo: 57171						
Prep Date:	Analysis D	ate: 1/	22/2019	S	SeqNo: 1	912433	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0	105	70	130	2.37	20		
Toluene	19	1.0	20.00	0	93.6	70	130	6.39	20		
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130	0	0		
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130	0	0		
Surr: Dibromofluoromethane	11		10.00		109	70	130	0	0		
Surr: Toluene-d8	9.8		10.00		97.7	70	130	0	0		

Sample ID rb	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: PBW	Batch	n ID: A5	7171	R	RunNo: 5	7171					
Prep Date:	Analysis D	Analysis Date: 1/22/2019				912439	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Xylenes, Total	ND	1.5									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 13 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

 $01 ext{-}Feb ext{-}19$

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID rb	SampT	SampType: MBLK			TestCode: EPA Method 8260: Volatiles Short List						
Client ID: PBW	Batch	Batch ID: A57171			RunNo: 5	7171					
Prep Date:	Analysis D	Analysis Date: 1/22/2019			SeqNo: 1912439						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130				
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130				
Surr: Dibromofluoromethane	11		10.00		109	70	130				
Surr: Toluene-d8	10		10.00		100	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 14 of 28

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID rb

Sample ID 100ng lcs	SampT	ype: LC	s	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	Batch ID: B57171			RunNo: 5	7171				
Prep Date:	Analysis D	Analysis Date: 1/22/2019			SeqNo: 1					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Chlorobenzene	21	1.0	20.00	0	104	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	101	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	93.1	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

TestCode: EPA Method 8260B: VOLATILES

Prep Date: Analysis Date: 1/22/2019 SeqNo: 1912429 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Benzene ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.2 1.35-Trimethylbenzene ND 1.0 1.0 1.2	Qual
Benzene ND 1.0 Ethylbenzene ND 1.0 Methyl terl-butyl ether (MTBE) ND 1.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 1,2-Dibrooethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	Qual
Ethylbenzene ND 1.0 Methyl tert-butyl ether (MTBE) ND 1.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 1,2-Dibforoethane (EDC) ND 1.0 N2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 1.0	
Methyl terl-butyl ether (MTBE) ND 1.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromoform ND 3.0 Bromomethane ND 3.0 2-Butanone ND 10	
1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
1,3,5-Trimethylbenzene ND 1.0 1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 1.0 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
1,2-Dibromoethane (EDB)ND1.0NaphthaleneND2.01-MethylnaphthaleneND4.02-MethylnaphthaleneND4.0AcetoneND10BromobenzeneND1.0BromodichloromethaneND1.0BromoformND1.0BromomethaneND3.02-ButanoneND10	
Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
Bromodichloromethane ND 1.0 Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10	
Bromomethane ND 3.0 2-Butanone ND 10	
2-Butanone ND 10	
Carbon disulfide ND 10	
Carbon Tetrachloride ND 1.0	
Chlorobenzene ND 1.0	
Chloroethane ND 2.0	
Chloroform ND 1.0	
Chloromethane ND 3.0	
2-Chlorotoluene ND 1.0	
4-Chlorotoluene ND 1.0	
cis-1,2-DCE ND 1.0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 15 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: PBW Batch ID: **B57171** RunNo: 57171 Analysis Date: 1/22/2019 Prep Date: SeqNo: 1912429 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual cis-1,3-Dichloropropene ND 1.0 ND 1,2-Dibromo-3-chloropropane 2.0 ND Dibromochloromethane 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 ND Dichlorodifluoromethane 1.0 1.1-Dichloroethane ND 1.0 ND 1.0 1,1-Dichloroethene 1,2-Dichloropropane ND 1.0 ND 1,3-Dichloropropane 1.0 2,2-Dichloropropane ND 2.0 1,1-Dichloropropene ND 1.0 Hexachlorobutadiene ND 1.0 2-Hexanone ND 10 Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 4-Methyl-2-pentanone ND 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 Styrene ND 1.0 tert-Butylbenzene ND 1.0 1.1.1.2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 ND trans-1,3-Dichloropropene 1.0 ND 1.2.3-Trichlorobenzene 1.0 1,2,4-Trichlorobenzene ND 1.0 1.1.1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 ND 1.0 Trichloroethene (TCE) Trichlorofluoromethane ND 1.0 ND 2.0 1,2,3-Trichloropropane Vinyl chloride ND 1.0 Surr: 1,2-Dichloroethane-d4 11 10.00 107 70 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 16 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID rb	SampT	SampType: MBLK			tCode: El	ATILES				
Client ID: PBW	Batch	1D: B 5	7171	F	RunNo: 5	7171				
Prep Date:	Analysis D	ate: 1/	22/2019	9	SeqNo: 1	912429	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	11		10.00		107	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	ATILES				
Client ID: LCSW	Batch	ID: R5	7206	F	RunNo: 5	7206				
Prep Date:	Analysis D	ate: 1/	23/2019	8	SeqNo: 1	913462	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	19	1.0	20.00	0	93.0	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	9.8		10.00		97.8	70	130			

Sample ID rb	SampT	ype: ME	BLK	Tes	tCode: E					
Client ID: PBW	Batch	1D: R5	7206	F	RunNo: 5					
Prep Date:	Analysis D	nalysis Date: 1/23/2019			SeqNo: 1	913486				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		109	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 17 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42755	SampTy	/pe: MBLK	TestCode: EPA Method 8270C: Semivolatiles
Client ID: PBW	Batch	ID: 42755	RunNo: 57311
Prep Date: 1/23/2019	Analysis Da	ate: 1/28/2019	SeqNo: 1917305 Units: μg/L
Analyte	Result	PQL SPK valu	ue SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Acenaphthene	ND	10	
Acenaphthylene	ND	10	
Aniline	ND	10	
Anthracene	ND	10	
Azobenzene	ND	10	
Benz(a)anthracene	ND	10	
Benzo(a)pyrene	ND	10	
Benzo(b)fluoranthene	ND	10	
Benzo(g,h,i)perylene	ND	10	
Benzo(k)fluoranthene	ND	10	
Benzoic acid	ND	20	
Benzyl alcohol	ND	10	
Bis(2-chloroethoxy)methane	ND	10	
Bis(2-chloroethyl)ether	ND	10	
Bis(2-chloroisopropyl)ether	ND	10	
Bis(2-ethylhexyl)phthalate	ND	10	
4-Bromophenyl phenyl ether	ND	10	
Butyl benzyl phthalate	ND	10	
Carbazole	ND	10	
4-Chloro-3-methylphenol	ND	10	
4-Chloroaniline	ND	10	
2-Chloronaphthalene	ND	10	
2-Chlorophenol	ND	10	
4-Chlorophenyl phenyl ether	ND	10	
Chrysene	ND	10	
Di-n-butyl phthalate	ND	10	
Di-n-octyl phthalate	ND	10	
Dibenz(a,h)anthracene	ND	10	
Dibenzofuran	ND	10	
1,2-Dichlorobenzene	ND	10	
1,3-Dichlorobenzene	ND	10	
1,4-Dichlorobenzene	ND	10	
3,3´-Dichlorobenzidine	ND	10	
Diethyl phthalate	ND	10	
Dimethyl phthalate	ND	10	
	ND ND	20	
2,4-Dichlorophenol			
2,4-Dimethylphenol	ND	10	
4,6-Dinitro-2-methylphenol	ND	20	
2,4-Dinitrophenol	ND	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 18 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42755	SampTy	pe: MBLK	TestCode: EPA Method 8270C: Semivolatiles					
Client ID: PBW	Batch	ID: 42755	F	RunNo: 57311				
Prep Date: 1/23/2019		ate: 1/28/2019		SeqNo: 1917305	Units: µg/L			
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10						
2,6-Dinitrotoluene	ND	10						
Fluoranthene	ND	10						
Fluorene	ND	10						
Hexachlorobenzene	ND	10						
Hexachlorobutadiene	ND	10						
Hexachlorocyclopentadiene	ND	10						
Hexachloroethane	ND	10						
Indeno(1,2,3-cd)pyrene	ND	10						
Isophorone	ND	10						
1-Methylnaphthalene	ND	10						
2-Methylnaphthalene	ND	10						
2-Methylphenol	ND	10						
3+4-Methylphenol	ND	10						
N-Nitrosodi-n-propylamine	ND	10						
N-Nitrosodimethylamine	ND	10						
N-Nitrosodiphenylamine	ND	10						
Naphthalene	ND	10						
2-Nitroaniline	ND	10						
3-Nitroaniline	ND	10						
4-Nitroaniline	ND	10						
Nitrobenzene	ND	10						
2-Nitrophenol	ND	10						
4-Nitrophenol	ND	10						
Pentachlorophenol	ND	20						
Phenanthrene	ND	10						
Phenol	ND	10						
Pyrene	ND	10						
Pyridine	ND	10						
1,2,4-Trichlorobenzene	ND	10						
2,4,5-Trichlorophenol	ND	10						
2,4,6-Trichlorophenol	ND	10						
Surr: 2-Fluorophenol	180	200.0		91.9 15				S
Surr: Phenol-d5	150	200.0		75.8 15	59.8			S
Surr: 2,4,6-Tribromophenol	190	200.0		97.3 22.1	112			
Surr: Nitrobenzene-d5	99	100.0		99.4 33.2	94			S
Surr: 2-Fluorobiphenyl	91	100.0		91.4 34				S
Surr: 4-Terphenyl-d14	97	100.0)	97.5 15	149			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 19 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID LCS-42755	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSW	Batch	n ID: 42	755	F	RunNo: 5	7311				
Prep Date: 1/23/2019	Analysis D)ate: 1/	28/2019	S	SeqNo: 1	917306	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	81	10	100.0	0	80.8	55.1	104			
4-Chloro-3-methylphenol	200	10	200.0	0	101	57	115			
2-Chlorophenol	180	10	200.0	0	89.2	43.4	112			
1,4-Dichlorobenzene	80	10	100.0	0	79.7	38	95.2			
2,4-Dinitrotoluene	75	10	100.0	0	74.7	55.1	96.7			
N-Nitrosodi-n-propylamine	95	10	100.0	0	94.6	55	112			
4-Nitrophenol	170	10	200.0	0	84.3	16.6	93			
Pentachlorophenol	160	20	200.0	0	79.3	43.2	104			
Phenol	160	10	200.0	0	78.6	21.3	85.7			
Pyrene	87	10	100.0	0	86.8	64.9	105			
1,2,4-Trichlorobenzene	84	10	100.0	0	84.2	42.6	107			
Surr: 2-Fluorophenol	160		200.0		81.7	15	74.1			S
Surr: Phenol-d5	150		200.0		74.6	15	59.8			S
Surr: 2,4,6-Tribromophenol	190		200.0		93.5	22.1	112			
Surr: Nitrobenzene-d5	89		100.0		89.2	33.2	94			
Surr: 2-Fluorobiphenyl	76		100.0		76.0	34	90.9			
Surr: 4-Terphenyl-d14	95		100.0		94.8	15	149			

Sample ID Icsd-42755	SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles										
Client ID: LCSS02	Batch	n ID: 42	755	F	RunNo: 5	7332					
Prep Date: 1/23/2019	Analysis D	ate: 1/	29/2019	9	SeqNo: 1	918063	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	64	10	100.0	0	63.8	55.1	104	23.5	34.9		
4-Chloro-3-methylphenol	160	10	200.0	0	81.2	57	115	22.0	30.2		
2-Chlorophenol	140	10	200.0	0	72.4	43.4	112	20.7	49.5		
1,4-Dichlorobenzene	58	10	100.0	0	58.3	38	95.2	31.0	43.2		
2,4-Dinitrotoluene	61	10	100.0	0	61.1	55.1	96.7	20.1	49.9		
N-Nitrosodi-n-propylamine	73	10	100.0	0	73.1	55	112	25.5	42.1		
4-Nitrophenol	100	10	200.0	0	50.8	16.6	93	49.5	31.5	R	
Pentachlorophenol	120	20	200.0	0	58.0	43.2	104	31.1	52.5		
Phenol	120	10	200.0	0	60.3	21.3	85.7	26.5	54.4		
Pyrene	70	10	100.0	0	70.1	64.9	105	21.3	30.7		
1,2,4-Trichlorobenzene	68	10	100.0	0	67.6	42.6	107	22.0	48.1		
Surr: 2-Fluorophenol	98		200.0		48.8	15	74.1	0	0		
Surr: Phenol-d5	92		200.0		46.0	15	59.8	0	0		
Surr: 2,4,6-Tribromophenol	120		200.0		62.3	22.1	112	0	0		
Surr: Nitrobenzene-d5	60		100.0		59.7	33.2	94	0	0		
Surr: 2-Fluorobiphenyl	50		100.0		49.6	34	90.9	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 20 of 28

Hall Environmental Analysis Laboratory, Inc.

57

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Surr: 4-Terphenyl-d14

Sample ID Icsd-42755 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

100.0

Client ID: LCSS02 Batch ID: 42755 RunNo: 57332

Prep Date: 1/23/2019 Analysis Date: 1/29/2019 SeqNo: 1918063 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

56.5

15

149

0

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 21 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID Ics-1 99.0uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R57160 RunNo: 57160

Prep Date: Analysis Date: 1/21/2019 SeqNo: 1911988 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 98 5.0 99.00 0 98.9 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 22 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901789

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42731 SampType: MBLK TestCode: EPA Method 7470: Mercury

Client ID: PBW Batch ID: 42731 RunNo: 57210

Prep Date: 1/21/2019 Analysis Date: 1/23/2019 SeqNo: 1913735 Units: mg/L

Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

ND 0.00020 Mercury

Sample ID LCS-42731 SampType: LCS TestCode: EPA Method 7470: Mercury

Client ID: LCSW Batch ID: 42731 RunNo: 57210

Prep Date: 1/21/2019 Analysis Date: 1/23/2019 SeqNo: 1913736 Units: mg/L

SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte Result **PQL** HighLimit Qual

120 Mercury 0.0053 0.00020 0.005000 0 106

Sample ID 1901789-006EMS SampType: MS TestCode: EPA Method 7470: Mercury

Client ID: MW1 Batch ID: 42731 RunNo: 57210

Prep Date: 1/21/2019 Analysis Date: 1/23/2019 SeqNo: 1913738 Units: mg/L

SPK value SPK Ref Val %REC LowLimit **RPDLimit** Analyte **PQL** HighLimit %RPD Qual Result

0.0057 0.00020 0.005000 .00006954 Mercury

Sample ID 1901789-006EMSD SampType: MSD TestCode: EPA Method 7470: Mercury

Client ID: MW1 Batch ID: 42731 RunNo: 57210

Analysis Date: 1/23/2019 SeqNo: 1913739 Prep Date: 1/21/2019 Units: mg/L

SPK value SPK Ref Val %RPD Analyte %REC LowLimit HighLimit **RPDLimit** Qual

0.0059 0.00020 0.005000 .00006954 2.56 Mercury 116 75 125 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 23 of 28

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42806 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: PBW Batch ID: 42806 RunNo: 57316 Prep Date: 1/24/2019 Analysis Date: 1/28/2019 SeqNo: 1917487 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.020 Barium ND 0.0020 Cadmium Calcium ND Chromium ND 0.0060 Magnesium ND 1.0 Potassium ND 1.0 Selenium ND 0.050 0.0050 ND Silver Sodium ND 1.0

Sample ID LCS-42806	Samp	Type: LC	s	Tes	TestCode: EPA 6010B: Total Recoverable Metals						
Client ID: LCSW	Bato	ch ID: 42	806	F							
Prep Date: 1/24/2019	Analysis	Date: 1/	28/2019	S	SeqNo: 1	917488	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Barium	0.50	0.020	0.5000	0	99.6	80	120				
Cadmium	0.51	0.0020	0.5000	0	102	80	120				
Calcium	50	1.0	50.00	0	99.7	80	120				
Chromium	0.51	0.0060	0.5000	0	101	80	120				
Magnesium	50	1.0	50.00	0	99.3	80	120				
Potassium	49	1.0	50.00	0	98.2	80	120				
Selenium	0.48	0.050	0.5000	0	96.8	80	120				
Silver	0.10	0.0050	0.1000	0	101	80	120				
Sodium	49	1.0	50.00	0	98.7	80	120				

Sample ID	1901789-006EMS	Samp	Type: MS	5	Tes	tCode: El	PA 6010B: 1	Total Recover	able Meta	als	
Client ID:	MW1	Bato	th ID: 428	306	F	RunNo: 5	7316				
Prep Date:	1/24/2019	Analysis I	Date: 1/	28/2019	8	SeqNo: 1	917493	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		0.55	0.020	0.5000	0.07931	93.9	75	125			_
Cadmium		0.50	0.0020	0.5000	0	101	75	125			
Chromium		0.49	0.0060	0.5000	0.001728	97.0	75	125			
Potassium		54	1.0	50.00	3.337	101	75	125			
Selenium		0.48	0.050	0.5000	0	96.6	75	125			
Silver		0.11	0.0050	0.1000	0.006835	103	75	125			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 24 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901789

01-Feb-19

Timberwolf Environmental **Client:**

Project: Kaufman No1

Sample ID 1901789-006EM	SD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals									
Client ID: MW1	Bato	h ID: 42	806	F	RunNo: 5	7316				
Prep Date: 1/24/2019	Analysis	Date: 1/	28/2019	9	SeqNo: 1	917494	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.54	0.020	0.5000	0.07931	92.9	75	125	0.888	20	
Cadmium	0.50	0.0020	0.5000	0	100	75	125	0.552	20	
Chromium	0.48	0.0060	0.5000	0.001728	96.3	75	125	0.713	20	
Potassium	54	1.0	50.00	3.337	102	75	125	0.989	20	
Selenium	0.53	0.050	0.5000	0	106	75	125	9.27	20	
Silver	0.11	0.0050	0.1000	0.006835	102	75	125	1.70	20	
Sample ID MB-42806	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA 6010B:	Total Recove	rable Met	als	

Sample ID MB-42806	SampT	ype: ME	BLK	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als	
Client ID: PBW	Batch	n ID: 428	806	R	RunNo: 5	7316				
Prep Date: 1/24/2019	Analysis D	ate: 1/2	28/2019	S	SeqNo: 1	917519	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Lead	ND	0.0050								
Sodium	ND	1.0								

Sample ID LCS-42806	Samp	SampType: LCS TestCode:					EPA 6010B: Total Recoverable Metals						
Client ID: LCSW	Bato	Batch ID: 42806 RunNo: 57316											
Prep Date: 1/24/2019	Analysis	Date: 1/	28/2019	9	SeqNo: 1	917520	Units: mg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Calcium	49	1.0	50.00	0	97.7	80	120						
Lead	0.48	0.0050	0.5000	0	95.1	80	120						
Sodium	50	1.0	50.00	0	99.2	80	120						

Sample ID	1901789-006EMS	Samp ⁻	Type: MS	5	Test	Code: El	PA 6010B: 1	Total Recover	able Meta	ıls	
Client ID:	MW1	Bato	h ID: 42	806	R	tunNo: 5	7316				
Prep Date:	1/24/2019	Analysis [Date: 1/	28/2019	S	SeqNo: 1	917523	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		0.46	0.0050	0.5000	0	91.7	75	125	•		

Sample ID 1901789-00	6EMSD Samp	Type: MS	SD	Test	Code: El	PA 6010B:	Total Recover	rable Meta	als		
Client ID: MW1	Batc	h ID: 42	806	R	unNo: 5	7316					
Prep Date: 1/24/2019	Analysis [Date: 1/	28/2019	S	eqNo: 1	917524	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Lead	0.46	0.0050	0.5000	0	92.2	75	125	0.519	20		

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix D

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Sample pH Not In Range

P

RLReporting Detection Limit Sample container temperature is out of limit as specified Page 25 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901789**

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42806 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 42806 RunNo: 57326

Prep Date: 1/24/2019 Analysis Date: 1/29/2019 SeqNo: 1917932 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic ND 0.020

Sample ID LCS-42806 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 42806 RunNo: 57326

Prep Date: 1/24/2019 Analysis Date: 1/29/2019 SeqNo: 1917933 Units: mg/L

11 Tep Date. 1724/2019 Analysis Date. 1723/2019 Seq. 1917933 Office. 11917

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.47 0.020 0.5000 0 93.6 80 120

Sample ID 1901789-006EMS SampType: MS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: MW1 Batch ID: 42806 RunNo: 57326

Prep Date: 1/24/2019 Analysis Date: 1/29/2019 SeqNo: 1917936 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.49 0.020 0.5000 0 99.0 75 125

Sample ID 1901789-006EMSD SampType: MSD TestCode: EPA 6010B: Total Recoverable Metals

Client ID: MW1 Batch ID: 42806 RunNo: 57326

Prep Date: 1/24/2019 Analysis Date: 1/29/2019 SeqNo: 1917937 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Arsenic 0.49 0.020 0.5000 0 98.0 75 125 0.972 20

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

Reporting Detection Limit

J Analyte detected below quantitation limits

C 1 HN I D

P Sample pH Not In Range

RL

W Sample container temperature is out of limit as specified

Page 26 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901789

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID 1901789-002ams SampType: MS TestCode: EPA Method 8015D: Gasoline Range Client ID: MW3 Batch ID: **R57171** RunNo: 57171 Prep Date: Analysis Date: 1/22/2019 SeqNo: 1912400 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.52 0.050 0.5000 O 63.4 104 130 97.7 Surr: BFB 9.8 10.00 70 130

Sample ID 1901789-002amsd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: MW3 Batch ID: **R57171** RunNo: 57171 Prep Date: Analysis Date: 1/22/2019 SeqNo: 1912401 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.49 0.050 0.5000 98.2 63.4 130 5.62 20 Surr: BFB 9.7 10.00 96.8 70 130 0

Sample ID 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Client ID: LCSW Batch ID: **R57171** RunNo: 57171 Prep Date: Analysis Date: 1/22/2019 SeqNo: 1912406 Units: mg/L SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Gasoline Range Organics (GRO) 0.53 0.050 0.5000 0 106 70 130 Surr: BFB 70 9.8 10.00 98.0 130

Sample ID rb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range Client ID: PBW Batch ID: **R57171** RunNo: 57171 Prep Date: Analysis Date: 1/22/2019 SeqNo: 1912407 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 0.050 Surr: BFB 9.7 10.00 96.6 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Page 27 of 28

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901789

01-Feb-19

Client: Timberwolf Environmental

Project: Kaufman No1

Sample ID MB-42739 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 42739 RunNo: 57198

Prep Date: 1/22/2019 Analysis Date: 1/23/2019 SeqNo: 1913205 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Total Dissolved Solids ND 20.0

Sample ID LCS-42739 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Batch ID: 42739 Client ID: LCSW RunNo: 57198

Prep Date: 1/22/2019 Analysis Date: 1/23/2019 SeqNo: 1913206 Units: mg/L

Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Qual

Total Dissolved Solids 1010 20.0 1000 0 101 120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- POL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Page 28 of 28

ilali Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	TIMBERW	OLF ENVIRON	Work Order N	lumber: 190178	9	RcptNo	1
Received By:	Victoria 2	Zellar	1/19/2019 11:10	MA 00:0	Victoria Lanta 193	Gellas	
Completed By	: Leah Bac	a	1/21/2019 10:24	4:02 AM	1 1 000	L	
Reviewed By:	ENM		1/21/19		Laufill	MON.	
Labeled	by WZI	121/19	" ZIM				
Chain of Cu		1 1-					
1. Is Chain of		olete?		Yes 🗸	No □	Not Present	
2. How was th	ne sample deli	vered?		Courier			
Log In	ampt made to	cool the sample	-2	v		🗆	
O. Was all au	empi made to	cool the sample	is r	Yes 🗸	No L	, NA	
4. Were all sa	mples received	d at a temperatu	ire of >0° C to 6.0°C	Yes 🗸	No 🗆	NA 🗆	
				15,176 155,55		NA L	
Sample(s) i	in proper conta	iner(s)?		Yes 🗸	No [
6. Sufficient sa	ample volume t	for indicated tes	t(s)?	Yes 🗸	No 🗆		
			erly preserved?	Yes 🗹	No 🗆		
8. Was presen			.,	Yes 🗆	No 🗸	NA 🗆	
9. VOA vials h	ava zero head	anaco?		v 🖼	N- 🗆	N. 1/01.15 1 □	
10. Were any s			kan?	Yes ✓ Yes □	No □ No ☑		
TO. Freie dity 3	ample contain	ara received bit	MOIT?	res 🗀	NO (# of preserved	
11. Does papen	work match bo	ttle labels?		Yes 🗸	No 🗌	for pH:	
		ain of custody)		Constitute Const	A1118600100		>12 unless noted)
2. Are matrices			of Custody?	Yes 🗹	No U	Adjusted?	0
3, is it clear wh 4. Were all hol				Yes 🗸	No 🗌	Charlest hus.	17 110111
	customer for a			Yes 🗸	No 🗌	Checked by:	oz yallo
Special Hand	dlina (if an	alicable					
15. Was client			th this audor?	v 🗆	0.1		
		isciepancies wi	ur this order?	Yes 🗆	No 🗆	NA ₩	
	n Notified:			ate			
By W Rega			V	a: eMail	Phone Fa	x In Person	
	Instructions:						
16. Additional r							
17. Cooler Info Cooler N		Condition	Soul latest Carte		0:	-1	
1	3.7		Seal Intact Seal N	o Seal Date	Signed By	E	
2	4.3	Good 1	res			-	

Chain-of-Custody Record	Turn-Around Time:				227711		į		
Client Timbusile Enu	⊕Standard □ Rush			ANAI YSTS I ABORATORY	STS	ABO	PAT	LAL OPY	
	Project Name:			alled www	www.hallenvironmental.com	moo le	5		
Mailing Address:	Kautora NoI	I	4901 Hav	4901 Hawkins NE - /	Albuquerque, NM 87109	e, NM 87	109		
	Project #:		Tel. 505	Tel. 505-345-3975	Fax 505-345-4107	345-410	7		
Phone #: 979 324-2139	120061			An	Analysis Request	uest		TO S	1000
amail or Fax#: jim@team timburalf	Project Manager:		_		701	(ţu			
DAVOC Package: ,	1		N/ MR		e **O-	əsq V /	, , ,	7	
1 A7 Con	Sampler J. Carlo		DRC 82 F	S703	1.420	tuəs	/	1/2	
	TYPE:	ON L	/ O	8 10		en9		1	
(adv	lers: 2		Sepi GE	10 o) w.	V	1	
	(including CF): 3	70432	12D(£8 √ 9M 8	(AO	olifor	,	ful.	
	Preservative	HEAL No.	TEX / PH:80 981 Pe	DB (M	1, F, E 260 (V 270 (S	obal Co	ク	(2)	
Vala 1026 / MW2	Type and # Type	100 784	1 N	Ч	8	1	>	V	
3 500	>	5000	-			1	5	M	
		1001	,	+	-		1	×	
10/13/30 W MWY		-003	>			>	>	4	
Inlayer WMS		- 00H	1			>	3	2.7	
18/19 1335 W MW6	1 1 1	-005	/		1	>	5	1	
Wall ISIS W MWZ	* *	400-	`	>	7		>	>	
9									
Nate: Relinquished by 1/4/9/160	J. Via.	-	Remarks:	Hold	MW-1 Pro16	3	, 2	cisplans	
Agre; Time: Refiguished by:	Repended by: Via: Course	Date Time	A Line	Lad escens 100c	You.	ا م	D	から	B
If necessary, samples submitted to Hall Environmental may be subcontracted	subcontracted to other accredited laboratories.	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	s possibility. Any sub-	confracted data w	Il be clearly notated of	aled on the s	analytical	2	12
>									

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 25, 2019

Jim Foster Timberwolf Environmental 1920 W Villa Maria Ste 205 Bryan, TX 77807

TEL: (979) 324-2139

FAX

RE: Kaufman #1 OrderNo.: 1901788

Dear Jim Foster:

Hall Environmental Analysis Laboratory received 4 sample(s) on 1/19/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/25/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW1 2.5-3.5'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 11:30:00 AM

 Lab ID:
 1901788-001
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	ND	30		mg/Kg	20	1/23/2019 1:49:31 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: CLP
Diesel Range Organics (DRO)	600	9.8		mg/Kg	1	1/23/2019 12:54:33 PM	42722
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	1/23/2019 12:54:33 PM	42722
Surr: DNOP	105	50.6-138		%Rec	1	1/23/2019 12:54:33 PM	42722
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	1200	99		mg/Kg	20	1/22/2019 7:41:28 PM	42717
Surr: BFB	298	73.8-119	S	%Rec	20	1/22/2019 7:41:28 PM	42717
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	0.96	0.50		mg/Kg	20	1/22/2019 7:41:28 PM	42717
Toluene	22	0.99		mg/Kg	20	1/22/2019 7:41:28 PM	42717
Ethylbenzene	7.0	0.99		mg/Kg	20	1/22/2019 7:41:28 PM	42717
Xylenes, Total	92	2.0		mg/Kg	20	1/22/2019 7:41:28 PM	42717
Surr: 4-Bromofluorobenzene	117	80-120		%Rec	20	1/22/2019 7:41:28 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 8
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 1/25/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW1 4.5-5.5'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 11:40:00 AM

 Lab ID:
 1901788-002
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	:: smb
Chloride	ND	30	mg/Kg	20	1/23/2019 2:26:45 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	:: CLP
Diesel Range Organics (DRO)	31	9.3	mg/Kg	1	1/23/2019 1:16:42 PM	42722
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	1/23/2019 1:16:42 PM	42722
Surr: DNOP	104	50.6-138	%Rec	1	1/23/2019 1:16:42 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/22/2019 8:28:12 PM	42717
Surr: BFB	114	73.8-119	%Rec	1	1/22/2019 8:28:12 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.025	mg/Kg	1	1/22/2019 8:28:12 PM	42717
Toluene	ND	0.049	mg/Kg	1	1/22/2019 8:28:12 PM	42717
Ethylbenzene	ND	0.049	mg/Kg	1	1/22/2019 8:28:12 PM	42717
Xylenes, Total	0.12	0.099	mg/Kg	1	1/22/2019 8:28:12 PM	42717
Surr: 4-Bromofluorobenzene	103	80-120	%Rec	1	1/22/2019 8:28:12 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 8
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 1/25/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW1 6.5-7.5'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 11:50:00 AM

 Lab ID:
 1901788-003
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: smb
Chloride	ND	30		mg/Kg	20	1/23/2019 2:39:10 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS					Analyst	CLP
Diesel Range Organics (DRO)	200	9.6		mg/Kg	1	1/23/2019 2:22:37 PM	42722
Motor Oil Range Organics (MRO)	48	48		mg/Kg	1	1/23/2019 2:22:37 PM	42722
Surr: DNOP	105	50.6-138		%Rec	1	1/23/2019 2:22:37 PM	42722
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	4.7	4.6		mg/Kg	1	1/22/2019 9:14:43 PM	42717
Surr: BFB	125	73.8-119	S	%Rec	1	1/22/2019 9:14:43 PM	42717
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.023		mg/Kg	1	1/22/2019 9:14:43 PM	42717
Toluene	ND	0.046		mg/Kg	1	1/22/2019 9:14:43 PM	42717
Ethylbenzene	ND	0.046		mg/Kg	1	1/22/2019 9:14:43 PM	42717
Xylenes, Total	ND	0.092		mg/Kg	1	1/22/2019 9:14:43 PM	42717
Surr: 4-Bromofluorobenzene	100	80-120		%Rec	1	1/22/2019 9:14:43 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 8
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 1/25/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW1 14-15'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 12:25:00 PM

 Lab ID:
 1901788-004
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed Ba	atch
EPA METHOD 300.0: ANIONS					Analyst: sn	mb
Chloride	ND	30	mg/Kg	20	1/23/2019 2:51:34 PM 42	2757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: CI	LP
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	1/22/2019 6:18:59 PM 42	2722
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/22/2019 6:18:59 PM 42	2722
Surr: DNOP	105	50.6-138	%Rec	1	1/22/2019 6:18:59 PM 42	2722
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NS	SB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	1/22/2019 10:01:13 PM 42	2717
Surr: BFB	99.0	73.8-119	%Rec	1	1/22/2019 10:01:13 PM 42	2717
EPA METHOD 8021B: VOLATILES					Analyst: NS	SB
Benzene	ND	0.025	mg/Kg	1	1/22/2019 10:01:13 PM 42	2717
Toluene	ND	0.050	mg/Kg	1	1/22/2019 10:01:13 PM 42	2717
Ethylbenzene	ND	0.050	mg/Kg	1	1/22/2019 10:01:13 PM 42	2717
Xylenes, Total	ND	0.10	mg/Kg	1	1/22/2019 10:01:13 PM 42	2717
Surr: 4-Bromofluorobenzene	94.3	80-120	%Rec	1	1/22/2019 10:01:13 PM 42	2717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 8
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901788**

25-Jan-19

Client: Timberwolf Environmental

Project: Kaufman #1

Sample ID MB-42757 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 42757 RunNo: 57220

Prep Date: 1/23/2019 Analysis Date: 1/23/2019 SeqNo: 1914002 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-42757 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 42757 RunNo: 57220

Prep Date: 1/23/2019 Analysis Date: 1/23/2019 SeqNo: 1914003 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 15 1.5 15.00 0 97.5 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 5 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901788

25-Jan-19

Client: Timberwolf Environmental

Project: Kaufman #1

Sample ID MB-42722 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 42722 RunNo: 57155 Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912133 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 10 ND Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 50.6 10 10.00 101 138 Sample ID LCS-42722 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 42722 RunNo: 57155 Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912134 Units: mg/Kg Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 10 54 50.00 107 63.9 124 Surr: DNOP 4.8 5.000 96.4 50.6 138

Sample ID 1901788-004AMS SampType: MS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: MW1 14-15' Batch ID: 42722 RunNo: 57173 Prep Date: 1/21/2019 Analysis Date: 1/23/2019 SeqNo: 1913196 Units: mg/Kg Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 50 48.17 0 104 53.5 9.6 126 Surr: DNOP 4.6 4.817 96.5 50.6 138

Sample ID 1901788-004AMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: MW1 14-15' Batch ID: 42722 RunNo: 57173 Prep Date: 1/21/2019 Analysis Date: 1/23/2019 SeqNo: 1913238 Units: mg/Kg LowLimit HighLimit SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** Qual Diesel Range Organics (DRO) 51 9.7 48.73 0 104 53.5 126 1.09 21.7 Surr: DNOP 4.6 4.873 95.0 50.6 138 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 6 of 8

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901788**

S

25-Jan-19

Client: Timberwolf Environmental

Project: Kaufman #1

Surr: BFB

Sample ID MB-42717 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: **PBS** Batch ID: **42717** RunNo: **57168**

Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912285 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 1100 1000 106 73.8 119

Sample ID LCS-42717 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 42717 RunNo: 57168

1200

Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912286 Units: mg/Kg

1000

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 28 5.0 25.00 114 80.1 123

120

73.8

119

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 8

Hall Environmental Analysis Laboratory, Inc.

1.0

WO#: **1901788**

25-Jan-19

Client: Timberwolf Environmental

Project: Kaufman #1

Surr: 4-Bromofluorobenzene

Sample ID MB-42717 SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBS Batch ID: 42717 RunNo: 57168 Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912310 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.025 Toluene ND 0.050 Ethylbenzene ND 0.050 Xylenes, Total ND 0.10

105

80

120

1.000

Sample ID LCS-42717	Samp	Type: LC	s	Tes	tCode: E	PA Method	8021B: Volatiles					
Client ID: LCSS	Batc	h ID: 42	717	R	RunNo: 5	7168						
Prep Date: 1/21/2019	Analysis [Date: 1/	22/2019	S	SeqNo: 1	912311	Units: mg/k	(g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	0.92	0.025	1.000	0	92.2	80	120					
Toluene	0.95	0.050	1.000	0	95.0	80	120					
Ethylbenzene	0.96	0.050	1.000	0	95.8	80	120					
Xylenes, Total	2.9	0.10	3.000	0	97.6	80	120					
Surr: 4-Bromofluorobenzene	1.1		1.000		107	80	120					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 8 of 8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: **TIMBERWOLF ENVIRON** Work Order Number: 1901788 RcptNo: 1 Received By: Victoria Zellar 1/19/2019 11:10:00 AM Completed By: Leah Baca 1/21/2019 10:02:30 AM Reviewed By: Chain of Custody 1. Is Chain of Custody complete? No \square Yes 🗸 Not Present 2. How was the sample delivered? Courier Log In 3. Was an attempt made to cool the samples? Yes 🗸 No 🗀 NA \square No 🗍 4. Were all samples received at a temperature of >0° C to 6.0°C NA 🔲 Yes 🗸 Yes 🔽 Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 7. Are samples (except VOA and ONG) properly preserved? Yes 🔽 No 🗌 8. Was preservative added to bottles? Yes 🗌 No 🔽 NA 🗆 9. VOA vials have zero headspace? Yes No 🗆 No VOA Vials Yes 🗆 10. Were any sample containers received broken? No 🗹 # of preserved bottles checked No 🗀 11. Does paperwork match bottle labels? Yes 🔽 for pH: (Note discrepancies on chain of custody) (≤2 or >12 unless noted) Adjusted? 12. Are matrices correctly identified on Chain of Custody? No 🗌 Yes 🗸 13. Is it clear what analyses were requested? Yes 🔽 No 🗌 Checked by: DAD 1/21//9 14. Were all holding times able to be met? Yes 🔽 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes 🗌 NA 🔽 Person Notified: Date By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: Additional remarks: 17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date 3.7 Good Yes 4.3 Good Yes

Chain-of-Custody Record	Turn-Around Time:	
Client: Impanol En	Standard 🗆 Rush	ANAI VOTO I ABODATODA
	Project Name:	
Mailing Address:	Karimin #7	4901 Hawkins NF - Alburieran NM 87100
	Project #:	
Phone #:	1908/	Anal
email or Fax#:	Project Manager:	((
QA/QC Package:		NS (%)
☐ Standard ☐ Level 4 (Full Validation)		70d
Accreditation: ☐ Az Compliance ☐ Other	Sampler:	7 DR (1.40) (1.40) 10 S27(1.50) (A)
ype)	olers: 2	GRG ides id 50 10 c tals iO ₃ ,
	Cooler Templineliding or 37 1 3	15D(estical letho y 83 Me 3r, <i>N</i> AOV)
Date Time Matrix Sample Name	Container Preservative HEAL No.	3TEX / 5081 Pd 5081 Pd
19 1130 5	Varius Varues	8 8 8 8
1/5/4 140 < MWZ- 4.5-5.5		
1, dy 1235 5 MW2 14-151	7	
late: Time: Relinquished by:	Received by: Via: Date Time $\frac{1}{2}$	Remarks:
Time: Relinduished by:	Redefined by: Via: County bate Time	
I necessary, samples submitted to Hall Environmental may be subcontracted to other a	contracted to other defedited laboratories. This serves as notice of this	defectived laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 05, 2019

Jim Foster Timberwolf Environmental 1920 W Villa Maria Ste 205 Bryan, TX 77807

TEL: (979) 324-2139

FAX

RE: Kaufman #1 OrderNo.: 1901785

Dear Jim Foster:

Hall Environmental Analysis Laboratory received 11 sample(s) on 1/19/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW-2 5'

 Project:
 Kaufman #1
 Collection Date: 1/14/2019 1:45:00 PM

 Lab ID:
 1901785-001
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
WALKLEY BLACK TOC/FOC/OM					Analyst:	JRR
TOC	ND	0.13	% C	1	2/1/2019 9:10:00 AM	42930
EPA METHOD 300.0: ANIONS					Analyst:	smb
Chloride	ND	30	mg/Kg	20	1/22/2019 10:01:27 PM	42748
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst:	CLP
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	1/22/2019 12:25:59 PM	42722
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	1/22/2019 12:25:59 PM	42722
Surr: DNOP	100	50.6-138	%Rec	1	1/22/2019 12:25:59 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/22/2019 11:05:56 AM	42717
Surr: BFB	103	73.8-119	%Rec	1	1/22/2019 11:05:56 AM	42717
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 11:05:56 AM	42717
Toluene	ND	0.048	mg/Kg	1	1/22/2019 11:05:56 AM	42717
Ethylbenzene	ND	0.048	mg/Kg	1	1/22/2019 11:05:56 AM	42717
Xylenes, Total	ND	0.096	mg/Kg	1	1/22/2019 11:05:56 AM	42717
Surr: 4-Bromofluorobenzene	104	80-120	%Rec	1	1/22/2019 11:05:56 AM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW2 6.5-7.5'

 Project:
 Kaufman #1
 Collection Date: 1/14/2019 1:50:00 PM

 Lab ID:
 1901785-002
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed Batch
EPA METHOD 300.0: ANIONS					Analyst: smb
Chloride	ND	30	mg/Kg	20	1/22/2019 10:13:52 PM 42748
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst: CLP
Diesel Range Organics (DRO)	18	9.7	mg/Kg	1	1/22/2019 12:48:09 PM 42722
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/22/2019 12:48:09 PM 42722
Surr: DNOP	104	50.6-138	%Rec	1	1/22/2019 12:48:09 PM 42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/22/2019 12:16:18 PM 42717
Surr: BFB	103	73.8-119	%Rec	1	1/22/2019 12:16:18 PM 42717
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 12:16:18 PM 42717
Toluene	ND	0.048	mg/Kg	1	1/22/2019 12:16:18 PM 42717
Ethylbenzene	ND	0.048	mg/Kg	1	1/22/2019 12:16:18 PM 42717
Xylenes, Total	ND	0.096	mg/Kg	1	1/22/2019 12:16:18 PM 42717
Surr: 4-Bromofluorobenzene	103	80-120	%Rec	1	1/22/2019 12:16:18 PM 42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW3 5.0-5.5'

 Project:
 Kaufman #1
 Collection Date: 1/14/2019 3:30:00 PM

 Lab ID:
 1901785-003
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	smb
Chloride	ND	30	mg/Kg	20	1/23/2019 11:32:59 AM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	1/22/2019 1:10:09 PM	42722
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/22/2019 1:10:09 PM	42722
Surr: DNOP	101	50.6-138	%Rec	1	1/22/2019 1:10:09 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/22/2019 1:26:40 PM	42717
Surr: BFB	103	73.8-119	%Rec	1	1/22/2019 1:26:40 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 1:26:40 PM	42717
Toluene	ND	0.049	mg/Kg	1	1/22/2019 1:26:40 PM	42717
Ethylbenzene	ND	0.049	mg/Kg	1	1/22/2019 1:26:40 PM	42717
Xylenes, Total	ND	0.098	mg/Kg	1	1/22/2019 1:26:40 PM	42717
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	1/22/2019 1:26:40 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW3 6.5-7.5'

 Project:
 Kaufman #1
 Collection Date: 1/14/2019 3:45:00 PM

 Lab ID:
 1901785-004
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	ND	30	mg/Kg	20	1/23/2019 11:45:24 AM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	1/22/2019 1:54:46 PM	42722
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/22/2019 1:54:46 PM	42722
Surr: DNOP	105	50.6-138	%Rec	1	1/22/2019 1:54:46 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	1/22/2019 1:50:11 PM	42717
Surr: BFB	100	73.8-119	%Rec	1	1/22/2019 1:50:11 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 1:50:11 PM	42717
Toluene	ND	0.049	mg/Kg	1	1/22/2019 1:50:11 PM	42717
Ethylbenzene	ND	0.049	mg/Kg	1	1/22/2019 1:50:11 PM	42717
Xylenes, Total	ND	0.097	mg/Kg	1	1/22/2019 1:50:11 PM	42717
Surr: 4-Bromofluorobenzene	102	80-120	%Rec	1	1/22/2019 1:50:11 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW6 5.0 5.5'

 Project:
 Kaufman #1
 Collection Date: 1/14/2019 12:00:00 PM

 Lab ID:
 1901785-005
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	smb
Chloride	ND	30		mg/Kg	20	1/23/2019 11:57:49 AM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: CLP
Diesel Range Organics (DRO)	10	9.8		mg/Kg	1	1/22/2019 2:16:40 PM	42722
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	1/22/2019 2:16:40 PM	42722
Surr: DNOP	103	50.6-138		%Rec	1	1/22/2019 2:16:40 PM	42722
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	10	5.0		mg/Kg	1	1/22/2019 2:13:35 PM	42717
Surr: BFB	49.3	73.8-119	S	%Rec	1	1/22/2019 2:13:35 PM	42717
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.025		mg/Kg	1	1/22/2019 2:13:35 PM	42717
Toluene	ND	0.050		mg/Kg	1	1/22/2019 2:13:35 PM	42717
Ethylbenzene	ND	0.050		mg/Kg	1	1/22/2019 2:13:35 PM	42717
Xylenes, Total	ND	0.099		mg/Kg	1	1/22/2019 2:13:35 PM	42717
Surr: 4-Bromofluorobenzene	102	80-120		%Rec	1	1/22/2019 2:13:35 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW6 7.5-8.5'

 Project:
 Kaufman #1
 Collection Date: 1/14/2019 12:10:00 PM

 Lab ID:
 1901785-006
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	smb
Chloride	ND	30		mg/Kg	20	1/23/2019 12:10:13 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: CLP
Diesel Range Organics (DRO)	110	9.8		mg/Kg	1	1/22/2019 2:38:42 PM	42722
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	1/22/2019 2:38:42 PM	42722
Surr: DNOP	105	50.6-138		%Rec	1	1/22/2019 2:38:42 PM	42722
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	120	5.0		mg/Kg	1	1/22/2019 3:00:28 PM	42717
Surr: BFB	382	73.8-119	S	%Rec	1	1/22/2019 3:00:28 PM	42717
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.025		mg/Kg	1	1/22/2019 3:00:28 PM	42717
Toluene	0.057	0.050		mg/Kg	1	1/22/2019 3:00:28 PM	42717
Ethylbenzene	ND	0.050		mg/Kg	1	1/22/2019 3:00:28 PM	42717
Xylenes, Total	ND	0.10		mg/Kg	1	1/22/2019 3:00:28 PM	42717
Surr: 4-Bromofluorobenzene	103	80-120		%Rec	1	1/22/2019 3:00:28 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW5 4.5-5.5'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 9:10:00 AM

 Lab ID:
 1901785-007
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	ND	30	mg/Kg	20	1/23/2019 12:22:38 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	1/22/2019 3:00:56 PM	42722
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/22/2019 3:00:56 PM	42722
Surr: DNOP	101	50.6-138	%Rec	1	1/22/2019 3:00:56 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/22/2019 3:47:29 PM	42717
Surr: BFB	102	73.8-119	%Rec	1	1/22/2019 3:47:29 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 3:47:29 PM	42717
Toluene	ND	0.048	mg/Kg	1	1/22/2019 3:47:29 PM	42717
Ethylbenzene	ND	0.048	mg/Kg	1	1/22/2019 3:47:29 PM	42717
Xylenes, Total	ND	0.097	mg/Kg	1	1/22/2019 3:47:29 PM	42717
Surr: 4-Bromofluorobenzene	104	80-120	%Rec	1	1/22/2019 3:47:29 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW5 8-9'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 9:30:00 AM

 Lab ID:
 1901785-008
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	smb
Chloride	ND	30	mg/Kg	20	1/23/2019 12:35:02 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	86	9.5	mg/Kg	1	1/22/2019 3:23:04 PM	42722
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/22/2019 3:23:04 PM	42722
Surr: DNOP	103	50.6-138	%Rec	1	1/22/2019 3:23:04 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	29	4.9	mg/Kg	1	1/22/2019 4:11:02 PM	42717
Surr: BFB	79.9	73.8-119	%Rec	1	1/22/2019 4:11:02 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 4:11:02 PM	42717
Toluene	ND	0.049	mg/Kg	1	1/22/2019 4:11:02 PM	42717
Ethylbenzene	ND	0.049	mg/Kg	1	1/22/2019 4:11:02 PM	42717
Xylenes, Total	ND	0.098	mg/Kg	1	1/22/2019 4:11:02 PM	42717
Surr: 4-Bromofluorobenzene	106	80-120	%Rec	1	1/22/2019 4:11:02 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental Client Sample ID: MW5 14.5-15.5'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 10:05:00 AM

 Lab ID:
 1901785-009
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	smb
Chloride	ND	30	mg/Kg	20	1/23/2019 12:47:27 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	1/22/2019 3:45:02 PM	42722
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	1/22/2019 3:45:02 PM	42722
Surr: DNOP	99.5	50.6-138	%Rec	1	1/22/2019 3:45:02 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	1/22/2019 4:57:52 PM	42717
Surr: BFB	99.8	73.8-119	%Rec	1	1/22/2019 4:57:52 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.023	mg/Kg	1	1/22/2019 4:57:52 PM	42717
Toluene	ND	0.046	mg/Kg	1	1/22/2019 4:57:52 PM	42717
Ethylbenzene	ND	0.046	mg/Kg	1	1/22/2019 4:57:52 PM	42717
Xylenes, Total	ND	0.093	mg/Kg	1	1/22/2019 4:57:52 PM	42717
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	1/22/2019 4:57:52 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW4 5-6'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 1:35:00 PM

 Lab ID:
 1901785-010
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	smb
Chloride	ND	30	mg/Kg	20	1/23/2019 12:59:52 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	: CLP
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	1/22/2019 4:07:07 PM	42722
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	1/22/2019 4:07:07 PM	42722
Surr: DNOP	99.1	50.6-138	%Rec	1	1/22/2019 4:07:07 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	1/22/2019 6:54:48 PM	42717
Surr: BFB	98.2	73.8-119	%Rec	1	1/22/2019 6:54:48 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 6:54:48 PM	42717
Toluene	ND	0.048	mg/Kg	1	1/22/2019 6:54:48 PM	42717
Ethylbenzene	ND	0.048	mg/Kg	1	1/22/2019 6:54:48 PM	42717
Xylenes, Total	ND	0.096	mg/Kg	1	1/22/2019 6:54:48 PM	42717
Surr: 4-Bromofluorobenzene	100	80-120	%Rec	1	1/22/2019 6:54:48 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 10 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 2/5/2019

CLIENT: Timberwolf Environmental **Client Sample ID:** MW4 8-9'

 Project:
 Kaufman #1
 Collection Date: 1/15/2019 1:45:00 PM

 Lab ID:
 1901785-011
 Matrix: SOIL
 Received Date: 1/19/2019 11:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: smb
Chloride	ND	30	mg/Kg	20	1/23/2019 1:37:06 PM	42757
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	CLP
Diesel Range Organics (DRO)	130	9.9	mg/Kg	1	1/22/2019 4:28:57 PM	42722
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	1/22/2019 4:28:57 PM	42722
Surr: DNOP	103	50.6-138	%Rec	1	1/22/2019 4:28:57 PM	42722
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	1/22/2019 7:18:06 PM	42717
Surr: BFB	99.4	73.8-119	%Rec	1	1/22/2019 7:18:06 PM	42717
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	1/22/2019 7:18:06 PM	42717
Toluene	ND	0.047	mg/Kg	1	1/22/2019 7:18:06 PM	42717
Ethylbenzene	ND	0.047	mg/Kg	1	1/22/2019 7:18:06 PM	42717
Xylenes, Total	ND	0.094	mg/Kg	1	1/22/2019 7:18:06 PM	42717
Surr: 4-Bromofluorobenzene	101	80-120	%Rec	1	1/22/2019 7:18:06 PM	42717

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 11 of 16
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901785**

05-Feb-19

Client: Timberwolf Environmental

Project: Kaufman #1

Sample ID MB-42748 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 42748 RunNo: 57179

Prep Date: 1/22/2019 Analysis Date: 1/22/2019 SeqNo: 1912654 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-42748 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 42748 RunNo: 57179

Prep Date: 1/22/2019 Analysis Date: 1/22/2019 SeqNo: 1912655 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 94.2 90 110

Sample ID MB-42757 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 42757 RunNo: 57220

Prep Date: 1/23/2019 Analysis Date: 1/23/2019 SeqNo: 1914002 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-42757 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 42757 RunNo: 57220

Prep Date: 1/23/2019 Analysis Date: 1/23/2019 SeqNo: 1914003 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 15 1.5 15.00 0 97.5 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 12 of 16

Hall Environmental Analysis Laboratory, Inc.

4.8

WO#: **1901785**

05-Feb-19

Client: Timberwolf Environmental

Project: Kaufman #1

Surr: DNOP

Sample ID MB-42722 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 42722 RunNo: 57155 Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912133 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 10 10.00 50.6 101 138

Sample ID LCS-42722 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 42722 RunNo: 57155 Analysis Date: 1/22/2019 Prep Date: 1/21/2019 SeqNo: 1912134 Units: mg/Kg Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 10 63.9 54 50.00 107 124

96.4

50.6

138

5.000

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 13 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901785

05-Feb-19

Timberwolf Environmental **Client:**

Project: Kaufman #1

Sample ID MB-42717 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: **PBS** Batch ID: 42717 RunNo: 57168

Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912285 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) ND 5.0 1000 Surr: BFB 1100 106 73.8 119

Sample ID LCS-42717 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 42717 RunNo: 57168

Analysis Date: 1/22/2019 Prep Date: 1/21/2019 SeqNo: 1912286 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 5.0 25.00 114 80.1 123

Gasoline Range Organics (GRO) S Surr: BFB 1200 1000 120 73.8 119

Sample ID 1901785-001AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: MW-2 5' Batch ID: 42717 RunNo: 57168

Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912289 Units: mg/Kg

SPK value SPK Ref Val Analyte %REC %RPD **RPDLimit** Result **PQL** LowLimit HighLimit Qual

Gasoline Range Organics (GRO) 25 5.0 24.93 0 99.1 69.1 142 Surr: BFB 1200 997.0 116 73.8 119

Sample ID 1901785-001AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: MW-2 5' Batch ID: 42717 RunNo: 57168

Analysis Date: 1/22/2019 Prep Date: 1/21/2019 SeqNo: 1912290 Units: mg/Kg

Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 23 4.7 23.47 96.2 69.1 142 9.02 20 Surr: BFB 1100 939.0 116 73.8 119 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Η

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 14 of 16

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1901785

05-Feb-19

Timberwolf Environmental **Client:**

Project: Kaufman #1

Sample ID MB-42717 SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: **PBS** Batch ID: 42717 RunNo: 57168 Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912310 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.025 Toluene ND 0.050 Ethylbenzene ND 0.050

Xylenes, Total ND 0.10

Surr: 4-Bromofluorobenzene 1.0 1.000 105 80 120

Sample ID LCS-42717 SampType: LCS TestCode: EPA Method 8021B: Volatiles Client ID: **LCSS** Batch ID: 42717 RunNo: 57168 Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912311 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit 0.92 0.025 1.000 O 92.2 80 120 Benzene Toluene 0.95 0.050 1.000 0 95.0 80 120 Ethylbenzene 0.96 0.050 1.000 0 95.8 80 120 Xylenes, Total 2.9 0.10 3.000 0 97.6 80 120 Surr: 4-Bromofluorobenzene 1.1 1.000 107 80 120

Sample ID 1901785-002AMS SampType: MS TestCode: EPA Method 8021B: Volatiles Client ID: Batch ID: 42717 RunNo: 57168 MW2 6.5-7.5'

Prep Date: 1/21/2019	Analysis D	Date: 1/	/22/2019	S	SeqNo: 1	912314	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.83	0.023	0.9363	0	89.2	63.9	127			
Toluene	0.88	0.047	0.9363	0.009693	92.9	69.9	131			
Ethylbenzene	0.89	0.047	0.9363	0	95.6	71	132			
Xylenes, Total	2.7	0.094	2.809	0	96.1	71.8	131			
Surr: 4-Bromofluorobenzene	0.99		0.9363		106	80	120			

Sample ID 1901785-002AMSD SampType: MSD TestCode: EPA Method 8021B: Volatiles Client ID: Batch ID: 42717 RunNo: 57168 MW2 6.5-7.5' Prep Date: 1/21/2019 Analysis Date: 1/22/2019 SeqNo: 1912315 Units: mg/Kg %REC %RPD **RPDLimit** Analyte Result PQL SPK value SPK Ref Val LowLimit HighLimit Qual 0.79 0.024 0.9497 0 82.8 63.9 127 5.94 20 Benzene Toluene 0.82 0.047 0.9497 0.009693 85.5 69.9 131 6.82 20 Ethylbenzene 0.84 0.047 0.9497 0 88.0 71 132 6.87 20 2.5 0.095 2.849 0 89.0 71.8 131 6.24 20 Xylenes, Total 0.9497 105 80 120 0 0 1.0 Surr: 4-Bromofluorobenzene

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

POL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RLReporting Detection Limit

W Sample container temperature is out of limit as specified Page 15 of 16

Hall Environmental Analysis Laboratory, Inc.

WO#: **1901785**

05-Feb-19

Client: Timberwolf Environmental

Project: Kaufman #1

Sample ID MB-42930 SampType: MBLK TestCode: Walkley Black TOC/FOC/OM

Client ID: PBS Batch ID: 42930 RunNo: 57408

Prep Date: 2/1/2019 Analysis Date: 2/1/2019 SeqNo: 1920834 Units: % C

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

TOC ND 0.14

Sample ID LCS-42930 SampType: LCS TestCode: Walkley Black TOC/FOC/OM

Client ID: LCSS Batch ID: 42930 RunNo: 57408

Prep Date: 2/1/2019 Analysis Date: 2/1/2019 SeqNo: 1920835 Units: % C

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

TOC 3.2 0.13 2.740 0 118 80 120

Sample ID 1901785-001AMS SampType: MS TestCode: Walkley Black TOC/FOC/OM

Client ID: MW-2 5' Batch ID: 42930 RunNo: 57408

Prep Date: 2/1/2019 Analysis Date: 2/1/2019 SeqNo: 1920837 Units: % C

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

TOC 3.3 0.13 2.740 0 119 75 129

Sample ID 1901785-001AMSD SampType: MSD TestCode: Walkley Black TOC/FOC/OM

Client ID: MW-2 5' Batch ID: 42930 RunNo: 57408

Prep Date: 2/1/2019 Analysis Date: 2/1/2019 SeqNo: 1920838 Units: % C

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

TOC 3.2 0.13 2.740 0 118 75 125 0.924 20

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 16 of 16

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client	Name:	TIMBERWO	LF ENVIROR	Work •	Order Num	ber: 190 1	785		Rcp	ŧNo: 1
Receiv	/ed By:	Victoria Ze	ellar	1/19/201	9 11:10:00) AM		Victoria S	&lla ₁	
Compl	leted By:	Leah Baca		1/21/201	9 9:01:44	AM		Unitaia S Lad B		
	-	VV21/21/	_	1721720	0.01.44	7 (16)		Laal)D	rla.	
Chain	LB _	DAD 1/	21/19							
		custody comple	ete?			Yes		No □	Not Present	
		sample delive				Cour				
Log i	<u>In</u>									
3. Wa	s an atter	npt made to co	ool the sample	es?		Yes	✓	No 🗌	NA [
4. Wer	e all sam	ples received	at a temperat	ure of >0°C t	o 6.0°C	Yes	✓	No 🗌	NA [
5. San	nple(s) in	proper contain	ner(s)?			Yes	V	No 🗌		
6. Suff	icient san	nple volume fo	r indicated te	st(s)?		Yes	✓	No 🗆		
7. Are	samples	(except VOA a	ınd ONG) pro	erly preserve	d?	Yes	✓	No 🗌		
8. Was	preserva	ative added to	bottles?			Yes		No 🗹	NA [
9. VOA	vials hav	ve zero heads	pace?			Yes		No 🗌	No VOA Vials	
10. Wei	re any sa	mple containe	rs received br	oken?		Yes		No 🗹	# of preserved	
		ork match bott ancies on cha				Yes	V	No 🗌	bottles checked for pH:	2 or 12 unless noted)
12. Are	matrices	correctly ident	ified on Chain	of Custody?		Yes	✓	No 🗌	Adjusted?	
13. Is it	clear wha	at analyses we	re requested?	ı		Yes	V	No 🗌		
		ing times able				Yes	y	No 🗌	Checked b	y: DAD 1/21/19
		ling (if app	·							
15. Wa	s client n	otified of all dis	crepancies w	ith this order?		Yes		No 🗆	NA [<u> </u>
	Person	Notified:		Management of the second state of the second	Date	i	****************	THE CHANGE OF THE PARTY OF THE	**	
	By Wh	om:			Via:	eMa	ıil 🔲	Phone 🔲 Fa	x 🔲 In Person	
	Regard	ling:					***********	***************************************		
	Client I	nstructions:								**************************************
16. Ad	ditional re	emarks:		•		·				
17. <u>C</u> o	oler Info	rmation								
115	Cooler No	street a service of the service of t	Condition	Seal Intact	Seal No	Seal Da	ite	Signed By	TO SERVICE STATE OF THE SERVIC	
1		3.7	Good	Yes	707070000000000000000000000000000000000			and the second s	***************************************	
2		4.3	Good	Yes						

Chain-of-Custody Record	Turn-Around Time:	
Client: Tim perwal For Found		HALL ENVIRONMENTAL
	· Party	MACION CONTRACTOR OF THE CASE
Mailing Address:	Kestmatt/	4901 Hawkins NF - Alburulardus NM 87109
	Project #:	
Phone #: 979-324-2139	1800el	√na
email or Fax#:	Project Manager:	(0
QA/QC Package:		MR(SB's
☐ Standard ☐ Level 4 (Full Validation)		POSIN
Accreditation: ☐ Az Compliance ☐ NELAC ☐ Other	Sampler: Nes II No	ʻ ^z ON
EDD (Type)_	ers. 🎢	GRades d 50 10 C
	Cooler Temp(including CF); 8,70°, 11,3°C	etho y 83 r, Ne r, N
	Container Preservative HEAL No.	H:801 Hs by Hs p F, B F, B (V (V)
ame	# Type 19.	808 ED PA
14/19 1345 5 BMWZ 51	Valian	
14/9 1350 S MW2 6,5.7,5		
1/4/9 1530 S MW3 50-5,00	- 603	
1149 1545 5 14W3 6.5-75	h00-	
14/19 1200 S. MWE 5.05.81	970-	
1/4/6/1210 S MUD 7.5-85	ØC)0	
1/5/16 C910 S MUS 4.5-53	स्रा० -	
13 1 St. 5 1 Med 5 8-91	8/10 -	
1/4/10055 MW5 145-15	3 - 000	
11/5/16 13355 MWY 5-6"	010-	A
1345 5 1444 8-91	110-	
Date: Time: Relinquished by:	Repaired by: Via: Date Time	Remarks:
Date: Time: Rejidquished by:	Reggived by: Via: Causus Date Time	
If necessary, samples submitted to Hall Environmental may be subcontracted to off	nehaccredited laboratories.	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix C		
Geotechnical Reports		

February 11, 2019

Jim Foster, President

Timberwolf Environmental 691 CR233, Suite B-4 Durango, Colorado 81301

RE: Kaufman #1 - Laboratory Results San Juan County, New Mexico GEOMAT Project No. 185-3187

Dear Mr. Foster,

GEOMAT Inc. (GEOMAT) has completed the laboratory testing services for the Kaufman #1 environmental exploration work performed on January 18, 2019. As requested, after installing six (6) monitor wells at the site, GEOMAT collected two (2) ring samples, Lab Nos. 7698 and 7699 from 5.5'-6' and 13.5'-14' below ground surface, respectively.

The single test boring sampled, MW-04-D, is the twin of MW-04 and presented minor difficulties with respect to recovery due to site conditions. However, sufficient sample was retrieved such that we were able to perform moisture-density analysis locally at our lab while conveying the majority of the sample recovered by the rings to an outside laboratory for the hydraulic conductivity (ASTM D5084) and specific gravity analysis. Results from both of these analyses are attached for your use.

Thank you for the opportunity to be of service to you on this project. We appreciate your business and look forward to assisting you further in the future. Should you have any questions regarding the attached data, please do not hesitate to contact us.

Sincerely yours,

GEOMAT Inc.

Robert "Bob" Flegal, P.E.

Senior Engineer/Drilling Manager

Copies to: Addressee (1) via email.

MOISTURE - DENSITY WORKSHEET

Project Name: La Plata Delineation - Timberwolf Project Number: 185-3187

: :: :: ::	Soli Dry Density (pcf)	119.7	103.3						
Soil Mot	Density (pcf)	131.0	119.1						
	Moisture (%)	9.4%	15.3%						
	Tare & Dry Soil	303.37	276.02						
Moisture	Tare & Wet Soil	315.08	289.06	pletely full	h				
	Tare	178.98	190.64	not being com	o trim ends flus				
Density	Wt of Rings + Soil (gm)	1224.8	1138.52	NOTE: Densities are understated due to rings not being completely full	gravel thus unable to trim ends flush				
Q	# of Rings	9	9	e understat	ntain grave				
	Sample Depth <u>(ft.)</u>	5.5 - 6.0	13.5 - 14.0	: Densities ar	Samples contain				
	Borehole No.	B-1	B-1	NOTE					
	Lab Number	8692	6692						

Client: GEOMAT, Inc. Report Date: February 05, 2019 915 Malta Avenue Project #: 18-519-01996 Farmington, NM 87401-Work Order #: 13 Lab #: 19-0030-01 Attn: Nathan Compton Sampled By: Client - F. Enriquez **Project Name:** 2018-19 Geomat Inc. Misc. Testing **Date Sampled: 1/17/2019** Visual Description of GEOMAT Lab # 7698 Albuquerque, NM Material: Sample Source: B-1 @ 5.5-6.0 **SOILS / AGGREGATES** Project Manager: Jesse Boam Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (ASTM D5084-16) Method: C Sample Preparation: Ring Sample **Compaction Method:** Insitu Initial Diameter (cm): Final Diameter (cm): 6.07 6.07 Final Length (cm): Initial Length (cm): 7.75 7.67 **Initial Moisture: Final Moisture:** 5.4% 11.1% Initial Unit Weight (pcf): 127.0 Final Unit Weight (pcf): 128.3 Initial Volume (in3): 13.7 Final Volume (in³): 13.5 Initial Degree of Saturation: Final Degree of Saturation: 46% 97% Permeant Liquid: City Water Magnitude of Total Backpressure: 18.0 **Effective Stress:** 2.0 Range of Hydraulic Gradient Used: 1.85 **To** 2.44 Specific Gravity(ASTM D854): 2.686 Corrected Hydraulic Time Conductivity Interval (cm/sec) (sec) 8 1.04E-03 1.07E-03 6 1.03E-03 9 9.98E-04 Average: 1.0E-03 Note: All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and handling during removal from cell. Reviewed By: Distribution: Client: File: Supplier: Email:

AMEC Environment & Infrastructure, Inc. 8519 Jefferson NE Albuquerque, NM 87113 Tel 5058211801

Tel 5058211801

Fax 5058217371 www.amec.com

Client: GEOMAT, Inc. Report Date: February 06, 2019 915 Malta Avenue Project #: 18-519-01996 Farmington, NM 87401-Work Order #: 13 Lab #: 19-0030-02 Attn: Nathan Compton Sampled By: Client - F. Enriquez **Project Name:** 2018-19 Geomat Inc. Misc. Testing **Date Sampled: 1/17/2019** Visual Description of GEOMAT Lab # 7699 Albuquerque, NM Material: Sample Source: B-1 @ 13.5-14.0 **SOILS / AGGREGATES** Project Manager: Jesse Boam Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter (ASTM D5084-16) Method: C Sample Preparation: Ring Sample **Compaction Method:** Insitu Initial Diameter (cm): Final Diameter (cm): 6.13 6.13 Final Length (cm): Initial Length (cm): 7.71 7.71 **Initial Moisture: Final Moisture:** 16.5% 18.8% Initial Unit Weight (pcf): 109.2 Final Unit Weight (pcf): 109.2 Initial Volume (in3): 13.9 Final Volume (in³): 13.9 Initial Degree of Saturation: Final Degree of Saturation: 85% 97% Permeant Liquid: City Water Magnitude of Total Backpressure: 33.0 **Effective Stress:** 2.0 Range of Hydraulic Gradient Used: 1.70 **To** 2.10 Specific Gravity(ASTM D854): 2.643 Corrected Hydraulic Time Conductivity Interval (cm/sec) (sec) 6 2.41E-03 8 2.44E-03 6 2.34E-03 6 2.25E-03 Average: 2.4E-03 Note: All final sample dimensions are subject to sample deformation caused by exsolution of air in pore water and handling during removal from cell. Reviewed By: Distribution: Client: File: Supplier: Email:

AMEC Environment & Infrastructure, Inc. 8519 Jefferson NE Albuquerque, NM 87113 Tel 5058211801

Fax 5058217371 ww

Appendix D

Attached Tables Table D-1. Groundwater Stabilization Parameters

Table D-2. Groundwater Analytical Results – General Chemistry

Table D-3. Groundwater Analytical Results – RCRA-8 Metals

Table D-4. Groundwater Analytical Results – Volatile Organic Compounds

Table D-5. Groundwater Analytical Results – Semi-volatile Organic Compounds

Table D-1. Groundwater Stabilization Parameters
Kaufman No. 1 Release
Hilcorp Energy Company
San Juan County, New Mexico

Well ID	Amount Purged (gallons) *	Depth to Water (ft bgs)	Temperature (°C)	Disolved Oxygen (mg/L)	Electric Conductivity (mS/cm)	рН	Oxidation Reduction Potential (mV)
	25	4.74	12.2	0.21	3.84	6.91	74.8
MW1	26	4.68	12.2	0.2	3.84	6.92	74.4
	27	4.68	12.2	0.21	3.85	6.9	74
	21	5.95	6.8	0.84	4.49	6.92	104.1
MW2	22	5.94	6.8	0.86	4.49	6.92	103.3
	23	5.95	6.8	0.88	4.49	6.92	102.2
	22	5.58	9.4	0.28	4.63	7.14	-24.8
MW3	23	5.58	9.5	0.25	4.62	7.13	-28.4
	24	5.58	9.5	0.24	4.62	7.13	-31.6
	16	6.45	9.6	0.31	4.01	6.96	37
MW4	17	6.46	9.6	0.28	4	6.96	34
	18	6.46	9.6	0.27	4	6.96	32.1
	13	6.78	9.2	0.26	3.94	7.13	-2.7
MW5	14	6.78	8.7	0.22	3.94	7.12	-4.6
	15	6.74	8.6	0.21	3.94	7.11	-5.6
MW6	Initial DTW: 5.34 ft; Well pumped dry at 11.5 gallons, allowed to recharge to 5.82 ft and sampled @ 1335.						

^{* - 10} gallons were purged prior to low flow to develop the monitor wells

ft bgs - feet below ground surface

°C - degrees celsius

mg/L - milligrams per liter

mS/cm - millisiemens per centimeter

mV - millivolts

Table D-2. Groundwater Analytical Results - General Chemistry Kaufman No. 1 Release Hilcorp Energy Company San Juan County, New Mexico

0 1 10	D. (Total Disolved	Total Disolved Specific		Anions							
Sample ID	Date	Solids (mg/kg)	Conductance (mmhos/cm)	Fluoride	Chloride	Nitrate	Bromide	Nitrogen	Phosphorus	Sulfate		
MW1	01/18/19	3,130	3.6	< 1.0	130	< 1.0 ^H	< 1.0	< 1.0 ^H	< 5.0 ^H	1,700		
Regulator	y Criteria*	1,000 ²	-	1.6 ¹	-	10 ¹	-	-	-	600 ²		

¹ Human health standard

² Domestic Water Suppy Standard

^H Sample analyzed out of hold time

⁻⁻ no applicable criteria

Table D-3. Groundwater Analytical Data - RCRA 8 Metals Kaufman No. 1 Release Hilcorp Energy Company San Juan County, New Mexico

Sample ID	Date	RCRA-8 (mg/L)								
Sample ID	Date	Arsenic	Barium	Cadium	Chromium	Lead	Mercury	Selenium	Silver	
MW1	01/18/19	< 0.02	0.079	< 0.002	< 0.006	< 0.005	< 0.0002	< 0.05	0.0068	
Regulatory C	riteria ¹	0.10	1.00	0.01	0.05	0.05	0.002	0.05	0.05	

RCRA - Resouce Conservation and Recovery Act mg/L - milligrams per liter

¹ Human health standard

Table D-4. Groundwater Analytical Data - Volatile Organic Compounds

Kaufman No. 1 Hilcorp Energy Company San Juan County, New Mexico

Volatile Organic Compounds	MW-1 (mg/L)	Regulatory Criteria ¹ (mg/L)
Benzene	0.074	0.01
Toluene	0.35	0.75
Ethylbenzene	0.027	0.75
Methyl tert-butyl ether (MTBE)	< 0.001	
1,2,4-Trimethylbenzene	0.032	
1,3,5,-Trimethylbenzene	0.015	
1,2-Dichloroethane (EDC)	< 0.001	0.01
1,2-Dibromoethane (EDB)	< 0.001	
Naphthalene	0.0032	
1-Methylnaphthalene	< 0.004	
2-Methylnaphthalene	< 0.004	
Acetone	< 0.01	
Bromobenzene	< 0.001	
Bromodichloromethane	< 0.001	
Bromoform	< 0.001	
Bromomethane	< 0.003	
2-Butanone	< 0.01	
Carbon disulfide	< 0.01	
Carbon Tetrachloride	< 0.001	0.01
Chlorobenzene	< 0.001	
Chloroethane	< 0.002	
Chloroform	< 0.001	0.1
Chloromethane	< 0.003	
2-Chlorotoluene	< 0.001	
4-Chlorotoluene	< 0.001	
cis-1,2-DCE	< 0.001	
cis-1,3- Dichloropropene	< 0.001	
1,2-Dibromo-3-chloropropane	< 0.002	
Dibromochloromethane	< 0.001	
Dibromomethane	< 0.001	
1,2-Dichlorobenzene	< 0.001	

Table D-4. Groundwater Analytical Data - Volatile Organic Compounds

Kaufman No. 1 Hilcorp Energy Company San Juan County, New Mexico

		Regulatory
Volatile Organic Compounds	MW-1	Criteria ¹
	(mg/L)	(mg/L)
1,3-Dichlorobenzene	< 0.001	
1,4-Dichlorobenzene	< 0.001	
Dichlorodifluoromethane	< 0.001	
1,1-Dichloroethane	< 0.001	0.025
1,1-Dichloroethene	< 0.001	
1,2-Dichloropropane	< 0.001	
1,3-Dichloropropane	< 0.001	
2,2-Dichloropropane	< 0.002	
1,1-Dichloropropene	< 0.001	
Hexachlorobutadiene	< 0.001	
2-Hexanone	< 0.01	
Isopropylbenzene	0.0031	
4-Isopropyltoluene	< 0.001	
4-Methyl-2-pentanone	< 0.01	
Methylene Chloride	< 0.003	0.1
n-Butylbenzene	< 0.003	
n-Propylbenzene	0.0039	
sec-Butylbenzene	< 0.001	
Styrene	< 0.001	
tert-Butylbenzene	< 0.001	
1,1,1,2-Tetrachloroethane	< 0.001	
1,1,2,2-Tetrachloroethane	< 0.002	0.01
Tetrachloroethene (PCE)	< 0.001	0.02
trans-1,2- DCE	< 0.001	
trans-1,3-Dichloropropene	< 0.001	
1,2,3-Trichlorobenzene	< 0.001	
1,2,4-Trichlorobenzene	< 0.001	
1,1,1-Trichloroethane	< 0.001	0.06
1,1,2-Trichloroethane	< 0.001	0.01
Trichloroethene	< 0.001	
Trichlorofluoromethane	< 0.001	
1,2,3-Trichloropropane	< 0.002	
Vinyl Chloride	< 0.001	0.001
Xylenes, Total	0.33	0.62

mg/L - milligrams per liter

¹ Human health standard

Table D-5. Groundwater Analytical Data - Semi-volatile Organic Compounds

Kaufman No. 1 Hilcorp Energy Company San Juan County, New Mexico

Semi-Volatile Organic Compounds	MW-1 (mg/L)	Regulatory Criteria
Acenaphthene	< 0.01	
Acenaphthylene	< 0.01	
Aniline	< 0.01	
Anthracene	< 0.01	
Azobenzene	< 0.01	
Benz(a)anthracene	< 0.01	
Benzo(a)pyrene	< 0.01	0.0007 ¹
Benzo(b)fluoranthene	< 0.01	
Benzo(g,h,i)perylene	< 0.01	
Benzo(k)fluoranthene	< 0.01	
Benzoic acid	< 0.02	
Benzyl alcohol	< 0.01	
Bis(2-chloroethoxy)methane	< 0.01	
Bis(2-chloroethyl)ether	< 0.01	
Bis(2-chloroisopropyl)ether	< 0.01	
Bis(2-ethylhexyl)phthalate	< 0.01	
4-Bromophenyl phenyl ether	< 0.01	
Butyl benzyl phthalate	< 0.01	
Carbazole	< 0.01	
4-Chloro-3-methylphenol	< 0.01	
4-Chloraniline	< 0.01	
2-Chloronaphthalene	< 0.01	
2-Chlorophenol	< 0.01	
4-Chlorophenyl phenyl ether	< 0.01	
Chrysene	< 0.01	
Di-n-butyl phthalate	< 0.01	
Di-n-octyl phthalate	< 0.01	
Dibenz(a,h)anthracene	< 0.01	
Dibezofuran	< 0.01	
1,2-Dichlorobenzene	< 0.01	
1,3-Dichlorobenzene	< 0.01	
1,4-Dichlorobenzene	< 0.01	
3,3'-Dichlorobenzidine	< 0.01	
Diethyl phthalate	< 0.01	
Dimethyl phthalate	< 0.01	
2,4-Dichlorophenol	< 0.02	
2,4-Dimethylphenol	< 0.01	
4,6-Dinitro-2-methylphenol	< 0.02	

Table D-5. Groundwater Analytical Data - Semi-volatile Organic Compounds

Kaufman No. 1 Hilcorp Energy Company San Juan County, New Mexico

		ı
Semi-Volatile Organic Compounds	MW-1 (mg/L)	Regulatory Criteria
2,4-Dinitrophenol	< 0.02	
2,4-Dinitrotoluene	< 0.01	
2,6-Dinitrotoluene	< 0.01	
Fluoranthene	< 0.01	
Fluorene	< 0.01	
Hexachlorobenzene	< 0.01	
Hexachlorobutadiene	< 0.01	
Hexachlorocyclopentadiene	< 0.01	
Hexachloroethane	< 0.01	
Indeno(1,2,3-cd)pyrene	< 0.01	
Isophorone	< 0.01	
1-Methylnaphthalene	< 0.01	
2-Methylnaphthalene	< 0.01	
2-Methylphenol	< 0.01	
3+4-Methylphenol	< 0.01	
N-Nitrosodi-n-propylamine	< 0.01	
N-Nitrosodimethylamine	< 0.01	
N-Nitrosodiphenylamine	< 0.01	
Naphthalene	< 0.01	
2-Nitroaniline	< 0.01	
3-Nitroaniline	< 0.01	
4Nitroaniline	< 0.01	
Nitrobenzene	< 0.01	
2-Nitrophenol	< 0.01	
4-Nitrophenol	< 0.01	
Pentachlorophenol	< 0.02	
Phenanthrene	< 0.01	
Phenol	< 0.01	0.005 ²
Pyrnen	< 0.01	
Pyridine	< 0.01	
1,2,4-Trichlorobenzene	< 0.01	
2,4,5-Tricholrophenol	< 0.01	
2,4,6-Trichlorophenol	< 0.01	

mg/L - milligrams per liter

¹ Human health standard

² Domestic water suppy santdard