District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Incident ID	NCS1912055883
District RP	
Facility ID	
Application ID	

Release Notification

RCVD 6/27/19

Responsible Party

Responsible Party Hilcorp Energy Company	OGRID 372171
Contact Name Jennifer Deal	Contact Telephone 505-801-6517
Contact email jdeal@hilcorp.com	Incident # NCS1912055883
Contact mailing address 382 Road 3100, Aztec NM 87410	

Location of Release Source

Latitude 36.9806099

Longitude -108.1144028_

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Stanolind Gas Com D 2	Site Type Gas Well
Date Release Discovered 4/29/19 2:00pm	API# 30-045-29775

Unit Letter	Section	Township	Range	County
0	17	32N	12W	San Juan

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 25	Volume Recovered (bbls) 20
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
□ Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A release of 25 bbls of Produced water was released due to the Y-strainer to the transfer pump was plugged with coal fines and the relay to shut down the PC pump on high tank level was bad. Produced water soaked through earthen berm material and traveled approximately 60 yards off location down a small dray arroyo. Operations shut down the PC pump and cleaned out the Y-strainer and transfer pump was started to empty tank. 20 bbls of free standing produced water was recovered with a vac truck.

Form C-141 Page 3 State of New Mexico Oil Conservation Division

Incident ID	NCS1912055883
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>50ft</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Form C-141	State of New Mexico	In a damt ID	NCC1012055992			
Page 4	Oil Conservation Division	Incident ID	NCS1912055883			
		District RP				
		Facility ID				
		Application ID				
regulations all operators and public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name:Jenn Signature:		hs and perform corrective actions for re- bes not relieve the operator of liability should be approximately surface water, human healt sibility for compliance with any other f	leases which may endanger hould their operations have h or the environment. In ederal, state, or local laws			
OCD Only		_				
Received by:		Date:				

State of New Mexico Oil Conservation Division

Incident ID	NCS1912055883
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

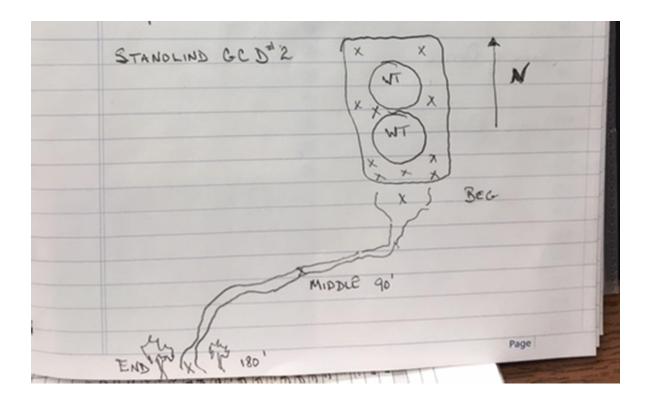
Printed Name: Jennifer Deal	Title: <u>Environmental Specialist</u>	
Signature:	Date:6/11/2019	
email:jdeal@hilcorp.com	Telephone:505-801-6517	
OCD Only		
Received by:	6/27/19 Date:	
remediate contamination that poses a threat to groundwater, sur party of compliance with any other federal, state, or local laws	•	
Closure Approved by:	Date:	
Printed Name: Cory	Title: Environmental Spec	

Scaled Map

Ν

Photographs – 4/29/19 Initial Release

Photographs – 4/29/19 Initial Release



Stanolind Gas Com D 2 Release Info

- Initial release occurred on April 29
- Confirmation sampling occurred on May 16 at 1pm. Cory Smith with OCD was present while Kurt took samples
- No excavation occurred for this site as sample results were below NMOCD standards

Field Data

Data table of soil contaminant concentration data

	SOIL ANALYTICAL RESULTS												
	STANOLIND GAS COM D 2												
	HILCORP ENERGY - L48 WEST												
Soil Sample Identification	Sample	Field	Benzene	Toluene	Ethylbenzene (mg/kg)	Total	Total	Chlorides	GRO	DRO	MRO	MRO+DRO	TPH
Son Sample Identification	Date	Headspace	(mg/kg)	(mg/kg)	Etnyioenzene (mg/kg)	Xylenes	BTEX	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
N Inside Berm	5/16/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	671	<0.1	<4.0	<4.0	<4.0	<4.0
S Inside Berm	5/16/2019		< 0.0005	< 0.005	<0.0005	< 0.0015	<0.005	26	<0.1	<4.0	<4.0	<4.0	<4.0
Beginning of Spill	5/16/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	227	<0.1	7.77	7.21	14.98	14.98
Middle 30'-60'-90'	5/16/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	323	<0.1	<4.0	<4.0	<4.0	<4.0
End 120'-150'-180'	5/16/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	125	<0.1	<4.0	<4.0	<4.0	<4.0
Background	5/16/2019		< 0.0005	< 0.005	< 0.0005	< 0.0015	< 0.005	102	<0.1	19.00	19.30	38.30	38.30
NMOCD Standar	ds	NE	10	NE	NE	NE	50	10,000	NE	NE	NE	1,000	2,500

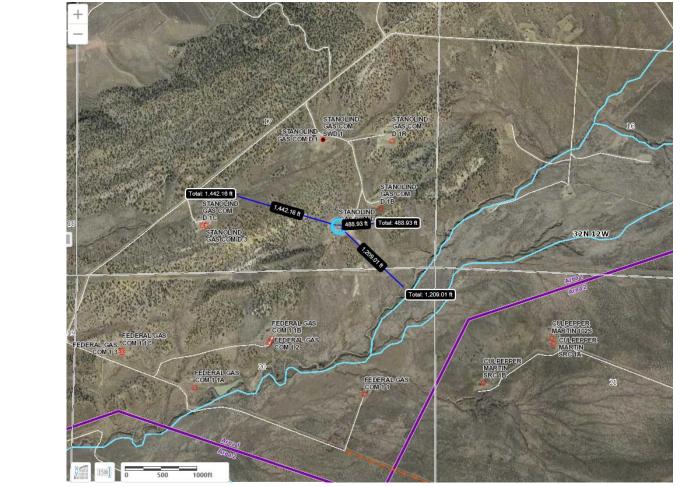
Depth to water determination

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)

No records found.

PLSS Search:


Section(s): 16, 17, 20, 21 Township: 32N Range: 12W

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

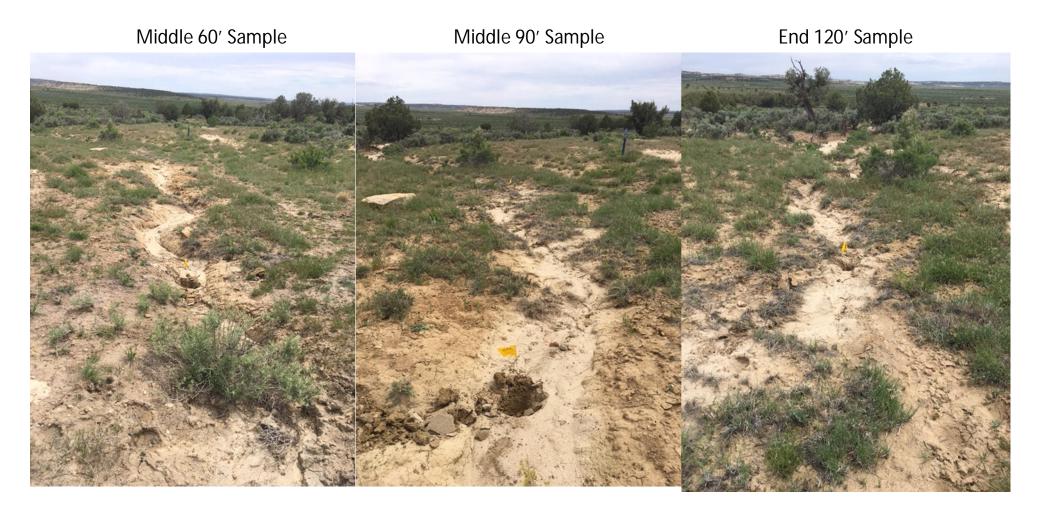
5/6/19 9:58 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Determination of water sources and significant watercourses within $\frac{1}{2}$ mile of the lateral extent of the release

Ν

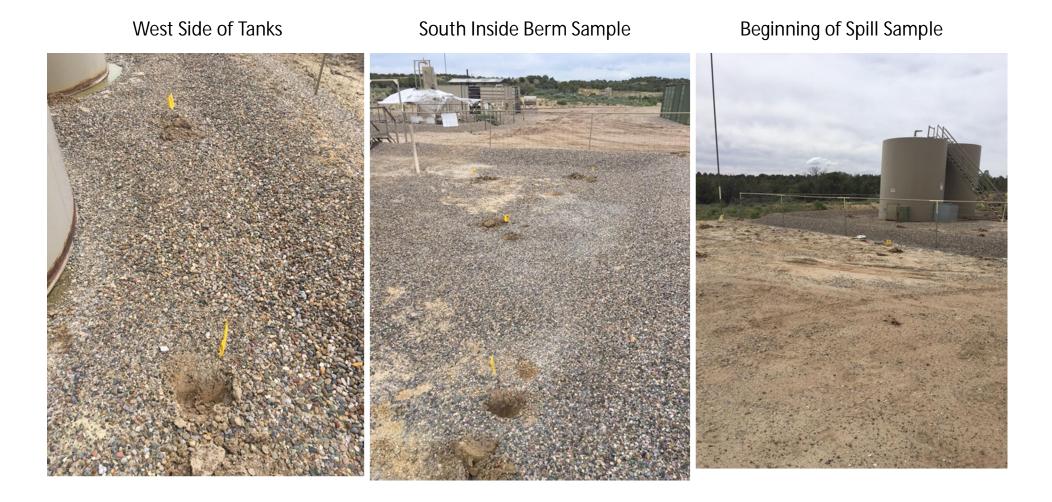
Depth to water determination



End 150' Sample

End 180' Sample

Background Sample


Beginning of Spill Sample

Beginning of Spill Sample

Middle 30' Sample

Northeast Side of Tanks Southwest side of Tank West side Middle of Tanks Contra-

Topographic/Aerial Maps

Ν

Sampling Notification Email

🗛 Reply 🛱 Reply All 🔤 Forward 🖽 IM

Mon 5/13/2019 4:00 PM

Jennifer Deal

Confirmation Sampling - Stanolind Gas Com D 2

To 🔄 Griswold, Jim, EMNRD; 🗆 Powell, Brandon, EMNRD; 🔤 'Adeloye, Abiodun'; 🗔 whitney thomas (l1thomas@blm.gov); 🗔 cory.smith@state.nm.us

Cc 📕 Kurt Hoekstra; 📕 Mike Murphy; 🗏 Ramon Florez

Good afternoon,

Hilcorp Energy is providing 48-hour notice for confirmation sampling to occur on Thursday, May 16 @ 1:00pm at the Stanolind Gas Com D 2. Please let me know if you have any questions.

Thanks,

Jennifer Deal Environmental Specialist Hilcorp Energy – L48 West jdeal@hilcorp.com 382 Road 3100 Aztec, NM 87410 Office: (505) 324-5128 Cell: (505) 801-6517

ANALYTICAL REPORT

HilCorp-Farmington, NM

Entire Report Reviewed By:

Sample Delivery Group:	L1100546
Samples Received:	05/18/2019
Project Number:	STANOLIND GCD#2
Description:	STANOLIND GCD#2
Site:	STANOLIND GCD#2
Report To:	Jennifer Deal
	382 Road 3100
	Aztec, NM 87401

Jason Romer Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: HilCorp-Farmington, NM PROJECT: STANOLIND GCD#2 SDG: L1100546 DATE/TIME: 05/29/19 11:33 PAGE: 1 of 19

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

TABLE OF CONTENTS

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
°Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
N INSIDE BERM L1100546-01	5
S INSIDE BERM L1100546-02	6
BEGINNING OF SPILL L1100546-03	7
MIDDLE 30'-60'-90' L1100546-04	8
END 120'-150'-180' L1100546-05	9
BACKGROUND L1100546-06	10
Qc: Quality Control Summary	11
Wet Chemistry by Method 9056A	11
Volatile Organic Compounds (GC) by Method 8015/8021	12
Volatile Organic Compounds (GC) by Method 8021	14
Semi-Volatile Organic Compounds (GC) by Method 8015	15
GI: Glossary of Terms	17
Al: Accreditations & Locations	18
Sc: Sample Chain of Custody	19

SDG: L1100546

DATE/TIME: 05/29/19 11:33

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLES					
N INSIDE BERM L1100546-01 Solid			Collected by Kurt	Collected date/time 05/16/19 13:10	Received da 05/18/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1284798	1	05/22/19 10:47	05/22/19 12:34	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1284784	1	05/21/19 17:24	05/23/19 21:30	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1286046	1	05/24/19 08:30	05/24/19 22:04	DMW	Mt. Juliet, TN
S INSIDE BERM L1100546-02 Solid			Collected by Kurt	Collected date/time 05/16/19 13:30	Received da 05/18/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1284798	1	05/22/19 10:47	05/22/19 12:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1284784	1	05/21/19 17:24	05/23/19 21:54	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1286046	1	05/24/19 08:30	05/24/19 22:18	DMW	Mt. Juliet, TN
			Collected by Kurt	Collected date/time 05/16/19 13:40	Received da 05/18/19 08:	
BEGINNING OF SPILL L1100546-03 Solid			Kult	03/10/19 13:40	03/10/13 08.	tJ
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1284798	1	05/22/19 10:47	05/22/19 13:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1284784	1	05/21/19 17:24	05/23/19 22:18	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1286046	1	05/24/19 08:30	05/24/19 23:11	DMW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MIDDLE 30'-60'-90' L1100546-04 Solid			Kurt	05/16/19 13:50	05/18/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1284798	1	05/22/19 10:47	05/22/19 13:33	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG1284784	1	05/21/19 17:24	05/23/19 22:41	JAH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1286046	1	05/24/19 08:30	05/24/19 22:31	DMW	Mt. Juliet, TN
END 120'-150'-180' L1100546-05 Solid			Collected by Kurt	Collected date/time 05/16/19 13:55	Received da 05/18/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1284798	1	05/22/19 10:47	05/22/19 13:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015	WG1284784	1	05/21/19 17:24	05/23/19 23:05	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8021	WG1286345	1	05/21/19 17:24	05/28/19 16:11	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1286046	1	05/24/19 08:30	05/24/19 22:57	DMW	Mt. Juliet, TN
BACKGROUND L1100546-06 Solid			Collected by Kurt	Collected date/time 05/16/19 14:00	Received da 05/18/19 08:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG1284798	1	05/22/19 10:47	05/22/19 13:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015	WG1284784	1	05/21/19 17:24	05/23/19 23:29	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8021	WG1286345	1	05/21/19 17:24	05/28/19 16:35	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1286378	1	05/25/19 08:55	05/25/19 23:58	KME	Mt. Juliet, TN

PROJECT: STANOLIND GCD#2 SDG: L1100546 DATE/TIME: 05/29/19 11:33

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

ACCOUNT: HilCorp-Farmington, NM PROJECT: STANOLIND GCD#2 SDG: L1100546 DATE/TIME: 05/29/19 11:33 PAGE: 4 of 19

N INSIDE BERM Collected date/time: 05/16/19 13:10

(S) o-Terphenyl

51.6

SAMPLE RESULTS - 01

*

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	671	<u>13 16</u>	10.0	1	05/22/2019 12:34	WG1284798	
Volatile Organic Comp	oounds (GC	C) by Meth	od 8015/80	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	05/23/2019 21:30	WG1284784	
Toluene	ND		0.00500	1	05/23/2019 21:30	WG1284784	
Ethylbenzene	ND		0.000500	1	05/23/2019 21:30	WG1284784	
Total Xylene	ND		0.00150	1	05/23/2019 21:30	WG1284784	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/23/2019 21:30	WG1284784	
(S) a,a,a-Trifluorotoluene(FID)	97.5		77.0-120		05/23/2019 21:30	WG1284784	
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		05/23/2019 21:30	<u>WG1284784</u>	
Semi-Volatile Organic	Compoun	ds (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	05/24/2019 22:04	WG1286046	
C28-C40 Oil Range	ND		4.00	1	05/24/2019 22:04	WG1286046	

05/24/2019 22:04

18.0-148

WG1286046

S INSIDE BERM Collected date/time: 05/16/19 13:30

SAMPLE RESULTS - 02

*

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	26.0		10.0	1	05/22/2019 12:59	WG1284798	
Volatile Organic Comp	oounds (GC	C) by Meth	od 8015/80	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	05/23/2019 21:54	WG1284784	
Toluene	ND		0.00500	1	05/23/2019 21:54	WG1284784	
Ethylbenzene	ND		0.000500	1	05/23/2019 21:54	WG1284784	
Total Xylene	ND		0.00150	1	05/23/2019 21:54	WG1284784	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/23/2019 21:54	WG1284784	
(S) a,a,a-Trifluorotoluene(FID)	97.3		77.0-120		05/23/2019 21:54	WG1284784	
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		05/23/2019 21:54	WG1284784	
Semi-Volatile Organic	Compound	ds (GC) by	Method 8	015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	05/24/2019 22:18	WG1286046	
			1.00	1	05/24/2010 22:10	WC120C04C	
C28-C40 Oil Range	ND		4.00	1	05/24/2019 22:18	WG1286046	

BEGINNING OF SPILL Collected date/time: 05/16/19 13:40

(S) o-Terphenyl

61.9

SAMPLE RESULTS - 03

*

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	227		10.0	1	05/22/2019 13:08	WG1284798	
Volatile Organic Comp	ounds (GC	C) by Meth	od 8015/80	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	05/23/2019 22:18	WG1284784	
Toluene	ND		0.00500	1	05/23/2019 22:18	WG1284784	
Ethylbenzene	ND		0.000500	1	05/23/2019 22:18	WG1284784	
Total Xylene	ND		0.00150	1	05/23/2019 22:18	WG1284784	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/23/2019 22:18	WG1284784	
(S) a,a,a-Trifluorotoluene(FID)	97.8		77.0-120		05/23/2019 22:18	WG1284784	
(S) a,a,a-Trifluorotoluene(PID)	102		72.0-128		05/23/2019 22:18	WG1284784	
Semi-Volatile Organic	Compoun	ds (GC) by	Method 8	8015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	7.77		4.00	1	05/24/2019 23:11	WG1286046	
C28-C40 Oil Range	7.21		4.00	1	05/24/2019 23:11	WG1286046	

05/24/2019 23:11

18.0-148

WG1286046

SDG: L1100546 (S) o-Terphenyl

SAMPLE RESULTS - 04

*

Wet Chemistry by Method 9056A

58.0

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chloride	323		10.0	1	05/22/2019 13:33	WG1284798	
Volatile Organic Comp	ounds (G0	C) by Meth	od 8015/80	021			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000500	1	05/23/2019 22:41	WG1284784	
Toluene	ND		0.00500	1	05/23/2019 22:41	WG1284784	
Ethylbenzene	ND		0.000500	1	05/23/2019 22:41	WG1284784	
Total Xylene	ND		0.00150	1	05/23/2019 22:41	WG1284784	
TPH (GC/FID) Low Fraction	ND		0.100	1	05/23/2019 22:41	WG1284784	
(S) a,a,a-Trifluorotoluene(FID)	97.4		77.0-120		05/23/2019 22:41	WG1284784	
(S) a,a,a-Trifluorotoluene(PID)	99.8		72.0-128		05/23/2019 22:41	WG1284784	
Semi-Volatile Organic	Compoun	ds (GC) by	/ Method 8	3015			
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	05/24/2019 22:31	WG1286046	
C28-C40 Oil Range	ND		4.00	1	05/24/2019 22:31	WG1286046	

05/24/2019 22:31

18.0-148

WG1286046

END 120'-150'-180' Collected date/time: 05/16/19 13:55

SAMPLE RESULTS - 05 L1100546

-

AI

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/kg		mg/kg		date / time		2
Chloride	125		10.0	1	05/22/2019 13:42	WG1284798	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Compounds (GC) by Method 8015/8021									
	Result	Qualifier	RDL	Dilution	Analysis	Batch	— L		
Analyte	mg/kg		mg/kg		date / time		4		
Benzene	ND		0.000500	1	05/28/2019 16:11	WG1286345			
Toluene	ND		0.00500	1	05/28/2019 16:11	WG1286345	5		
Ethylbenzene	ND		0.000500	1	05/28/2019 16:11	WG1286345	٦S		
Total Xylene	ND		0.00150	1	05/28/2019 16:11	WG1286345			
TPH (GC/FID) Low Fraction	ND		0.100	1	05/23/2019 23:05	WG1284784	⁶ Q		
(S) a,a,a-Trifluorotoluene(FID)	97.7		77.0-120		05/23/2019 23:05	WG1284784			
(S) a,a,a-Trifluorotoluene(FID)	96.3		77.0-120		05/28/2019 16:11	WG1286345	7		
(S) a,a,a-Trifluorotoluene(PID)	103		72.0-128		05/23/2019 23:05	WG1284784	΄G		
(S) a,a,a-Trifluorotoluene(PID)	98.9		72.0-128		05/28/2019 16:11	WG1286345			

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Se
Analyte	mg/kg		mg/kg		date / time		SC
C10-C28 Diesel Range	ND		4.00	1	05/24/2019 22:57	WG1286046	
C28-C40 Oil Range	ND		4.00	1	05/24/2019 22:57	WG1286046	
(S) o-Terphenyl	54.2		18.0-148		05/24/2019 22:57	WG1286046	

BACKGROUND Collected date/time: 05/16/19 14:00

SAMPLE RESULTS - 06 L1100546

AI

Wet Chemistry by Method 9056A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		2
Chloride	102		10.0	1	05/22/2019 13:50	WG1284798	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Compounds (GC) by Method 8015/8021									
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg		date / time		4		
Benzene	ND		0.000500	1	05/28/2019 16:35	WG1286345			
Toluene	ND		0.00500	1	05/28/2019 16:35	WG1286345	5		
Ethylbenzene	ND		0.000500	1	05/28/2019 16:35	WG1286345	ٌS		
Total Xylene	ND		0.00150	1	05/28/2019 16:35	WG1286345			
TPH (GC/FID) Low Fraction	ND		0.100	1	05/23/2019 23:29	WG1284784	⁶ G		
(S) a,a,a-Trifluorotoluene(FID)	97.1		77.0-120		05/23/2019 23:29	WG1284784	G		
(S) a,a,a-Trifluorotoluene(FID)	96.3		77.0-120		05/28/2019 16:35	WG1286345	7		
(S) a,a,a-Trifluorotoluene(PID)	101		72.0-128		05/23/2019 23:29	WG1284784	í G		
(S) a,a,a-Trifluorotoluene(PID)	99.9		72.0-128		05/28/2019 16:35	WG1286345			

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch 9	9
Analyte	mg/kg		mg/kg		date / time		SC
C10-C28 Diesel Range	19.0		4.00	1	05/25/2019 23:58	WG1286378	
C28-C40 Oil Range	19.3		4.00	1	05/25/2019 23:58	WG1286378	
(S) o-Terphenyl	104		18.0-148		05/25/2019 23:58	WG1286378	

SDG: L1100546

WG1284798

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3413727-1 05/22	2/19 11:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	2.57	J	0.795	10.0

L1100539-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1100539-01 05/22/	(OS) L1100539-01 05/22/19 12:17 • (DUP) R3413727-3 05/22/19 12:25							
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	1180	1280	5	7.56		15		

Laboratory Control Sample (LCS)

(LCS) R3413727-2 05/2	22/19 11:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	202	101	80.0-120	

L1100546-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100546-01 05/22/19 12:34 • (MS) R3413727-4 05/22/19 12:42 • (MSD) R3413727-5 05/22/19 12:51												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%

DATE/TIME: 05/29/19 11:33

WG1284784

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

GI

Â

°Sc

Method Blank (MB)

(MB) R3414742-2 05/23/	19 12:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	0.000176	J	0.000120	0.000500	
Toluene	0.000702	J	0.000150	0.00500	
Ethylbenzene	U		0.000110	0.000500	
Total Xylene	U		0.000460	0.00150	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	98.2			77.0-120	
(S) a,a,a-Trifluorotoluene(PID)	104			72.0-128	

Laboratory Control Sample (LCS)

19 11:15				
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/kg	mg/kg	%	%	
0.0500	0.0456	91.3	76.0-121	
0.0500	0.0467	93.4	80.0-120	
0.0500	0.0496	99.2	80.0-124	
0.150	0.147	98.0	37.0-160	
		97.8	77.0-120	
		101	72.0-128	
	Spike Amount mg/kg 0.0500 0.0500 0.0500	Spike Amount LCS Result mg/kg mg/kg 0.0500 0.0456 0.0500 0.0467 0.0500 0.0496	Spike Amount LCS Result LCS Rec. mg/kg mg/kg % 0.0500 0.0456 91.3 0.0500 0.0467 93.4 0.0500 0.0496 99.2 0.150 0.147 98.0 97.8 97.8	Spike Amount LCS Result LCS Rec. Rec. Limits mg/kg mg/kg % % 0.0500 0.0456 91.3 76.0-121 0.0500 0.0467 93.4 80.0-120 0.0500 0.0496 99.2 80.0-124 0.150 0.147 98.0 37.0-160 97.8 77.0-120 97.8 97.8

Laboratory Control Sample (LCS)

(LCS) R3414742-3 05/23	(LCS) R3414742-3 05/23/19 14:24								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.52	100	72.0-127					
(S) a,a,a-Trifluorotoluene(FID)			108	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)			111	72.0-128					

ACCOUNT:	
HilCorp-Farmington, NM	

PROJECT: STANOLIND GCD#2 SDG: L1100546 DATE/TIME: 05/29/19 11:33 PAGE: 12 of 19

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY L1100546-01,02,03,04,05,06

Тс

Ss

Cn

Śr

Qc

GI

A

Sc

L1100478-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100478-01 05/23/19 19:32 • (MS) R3414742-4 05/23/19 15:09 • (MSD) R3414742-5 05/23/19 15:33												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0500	0.0413	0.798	1.08	59.4	81.4	25.5	10.0-155			29.9	32
Toluene	0.0500	0.213	1.00	1.32	62.0	86.7	25.5	10.0-160			27.1	34
Ethylbenzene	0.0500	0.0474	0.980	1.30	73.1	98.6	25.5	10.0-160			28.5	32
Total Xylene	0.150	0.597	3.18	4.20	67.5	94.2	25.5	10.0-160	<u>J6</u>	<u>J3</u>	27.7	32
(S) a,a,a-Trifluorotoluene(FID)					102	99.7		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					104	102		72.0-128				

L1100478-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100478-01 05/23/1	9 19:32 • (MS) R	3414742-6 05	/23/19 15:57 •	• (MSD) R341474	2-7 05/23/19	16:21						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	14.4	129	130	81.6	82.3	25.5	10.0-151			0.772	28
(S) a,a,a-Trifluorotoluene(FID)					107	107		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					109	108		72.0-128				

PROJECT: STANOLIND GCD#2

SDG: L1100546

DATE/TIME: 05/29/19 11:33

PAGE: 13 of 19 Volatile Organic Compounds (GC) by Method 8021

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

⁶Qc

Method Blank (MB)

Method Blank (ME)				
(MB) R3415571-3 05/28/1	9 12:04				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
enzene	U		0.000120	0.000500	
oluene	0.000345	<u>J</u>	0.000150	0.00500	
thylbenzene	U		0.000110	0.000500	
otal Xylene	U		0.000460	0.00150	
(S) ı,a,a-Trifluorotoluene(FID)	98.0			77.0-120	
(S) a,a,a-Trifluorotoluene(PID)	101			72.0-128	

Laboratory Control Sample (LCS)

(LCS) R3415571-1 05/28/	19 10:53					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.0500	0.0440	88.1	76.0-121		⁸ Al
Toluene	0.0500	0.0466	93.1	80.0-120		
Ethylbenzene	0.0500	0.0485	96.9	80.0-124		9
Total Xylene	0.150	0.142	94.5	37.0-160		SC
(S) a,a,a-Trifluorotoluene(FID)			96.1	77.0-120		
(S) a,a,a-Trifluorotoluene(PID)			99.8	72.0-128		

SDG: L1100546 DATE/TIME: 05/29/19 11:33 PAGE: 14 of 19 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

GI

Â

Sc

Method Blank (MB)

	ю)				1
(MB) R3414838-1 05/24	4/19 14:08				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	3
(S) o-Terphenyl	55.3			18.0-148	Ľ
					4

Laboratory Control Sample (LCS)

(LCS) R3414838-2 05/2	24/19 14:22				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	37.0	74.0	50.0-150	
(S) o-Terphenyl			59.9	18.0-148	

L1100545-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1100545-07 05/25/	19 19:40 • (MS) I	R3415061-1 05/	/25/19 19:54 •	(MSD) R341506	61-2 05/25/19	20:08							L
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	S
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	50.0	ND	37.9	38.5	75.8	77.0	4	50.0-150			1.57	20	
(S) o-Terphenyl					57.6	59.7		18.0-148					

Sample Narrative:

OS: Dilution due to matrix impact during extract concentration procedure

DATE/TIME: 05/29/19 11:33 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Ср

⁴Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

9 22:25			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		1.61	4.00
1.14	J	0.274	4.00
91.1			18.0-148
	MB Result mg/kg U 1.14	MB Result mg/kgMB QualifierU1.14J	MB ResultMB QualifierMB MDLmg/kgmg/kgU1.611.14J0.274

Laboratory Control Sample (LCS)

(LCS) R3415097-2 05/25	5/19 22:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	50.6	101	50.0-150	
(S) o-Terphenyl			109	18.0-148	

DATE/TIME: 05/29/19 11:33

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

PROJECT: STANOLIND GCD#2 SDG: L1100546 PAGE: 17 of 19

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

ArizonaAZ0612New HaArkansas88-0469New JeCalifornia2932New MaColoradoTN00003New YoConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth CGeorgia ¹ 923North DIdahoTN00003Ohio-VIlinois20008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ¹⁶ 90010South DLouisianaAI30792TenensylLouisiana324UtahMarjand324UtahMinnesota047-999-395WashingMississippiTN0003West ViMissouri340Wisconsyl	Alabama	40660	Nebrask
Arkansas88-0469New JeCalifornia2932New MeColoradoTN00003New YoConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth CGeorgia ¹ 923North DIdahoTN00003Ohio-VIllinois20008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ¹⁶ 90010South DLouisianaAl30792TenessLouisiana ¹ LA180010Texas ⁵ Marjand324UtahMinnesota047-999-395WashingMississippiTN0003West ViMissouri340Wiscons	Alaska	17-026	Nevada
California2932New MeColoradoTN00003New YoConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth DIdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ¹⁶ 90010South DLouisianaAl30792TennessLouisiana324UtahMaineTN0003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VitMissouri340Wiscons	Arizona	AZ0612	New Har
ColoradoTN00003New YoConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth DIdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ¹⁶ 90010South DLouisianaAl30792TennessLouisiana ¹ LA180010Texas ⁵ MaineTN0002Texas ⁵ Maryland324UtahMinnesota047-999-395WashingMississippiTN0003West ViMissouri340Wiscons	Arkansas	88-0469	New Jer
ConnecticutPH-0197North CFloridaE87487North CGeorgiaNELAPNorth CGeorgia 1923North DIdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky 1690010South DLouisianaAl30792TennessLouisiana 1LA180010Texas 5MaineTN0002Texas 5Maryland324UtahMinnesota047-999-395WashingMississippiTN0003West VitMissouri340Wiscons	California	2932	New Me
FloridaE87487North CGeorgiaNELAPNorth DGeorgia 1923North DIdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky 1690010South DLouisianaAl30792TennessLouisiana 1LA180010TexasMaineTN0002TexasMaineM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMissoirpiTN0003West VirginiaMissouri340Wiscons	Colorado	TN00003	New Yor
GeorgiaNELAPNorth CGeorgia 1923North DIdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky 1 690010South DLouisianaAl30792TennessLouisiana 1LA180010Texas 5MaineTN0002Texas 5Maryland324UtahMinnesota047-999-395WashingMississippiTN0003West VitMissouri340Wisconst	Connecticut	PH-0197	North Ca
Georgia 1923North DIdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky 1690010South CLouisianaAl30792TennessLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashingMississippiTN0003West ViMissouri340Wiscons	Florida	E87487	North Ca
IdahoTN00003Ohio-VIllinois200008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ¹⁶ 90010South CKentucky ² 16South DLouisianaAl30792TennessLouisiana ¹ LA180010TexasMaineTN0002Texas ⁵ Maryland324UtahMichigan9958VirginiaMinsesta047-999-395WashingMississippiTN0003West ViMissouri340Wiscons	Georgia	NELAP	North Ca
Illinois20008OklahorIndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ¹⁶ 90010South CKentucky ² 16South DLouisianaAl30792TennessLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMinnesota047-999-395WashingMississippiTN0003West VitMissouri340Wisconst	Georgia ¹	923	North Da
IndianaC-TN-01OregonIowa364PennsylKansasE-10277Rhode IKentucky ^{1 6} 90010South CKentucky ² 16South DLouisianaAl30792TennessLouisiana ¹ LA180010TexasMaineTN0002Texas ⁵ Maryland324UtahMichigan9958VirginiaMinsesta047-999-395WashingMississippiTN0003West VirginiaMissouri340Wiscons	Idaho	TN00003	Ohio–VA
Iowa364PensylKansasE-10277Rhode IKentucky ¹⁶ 90010South CKentucky ² 16South DLouisianaAl30792TennessLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West ViMissouri340Wiscons	Illinois	200008	Oklahon
KansasE-10277Rhode IKansasE-10277Rhode IKentucky ¹⁶ 90010South DLouisianaAl30792TennessLouisiana ¹ LA180010TexasMaineTN0002TexasMaryland324UtahMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West ViMissouri340Wiscons	Indiana	C-TN-01	Oregon
Kentucky 1690010South CKentucky 216South DLouisianaAl30792TennessLouisiana 1LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirMissouri340Wiscons	lowa	364	Pennsylv
Kentucky²16South DLouisianaAl30792TennessLouisiana ¹LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirMissouri340Wiscons	Kansas	E-10277	Rhode Is
Kentucky²16South DLouisianaAl30792TennessLouisiana ¹LA180010TexasMaineTN0002TexasMaryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirMissouri340Wiscons	Kentucky ¹⁶	90010	South Ca
Louisiana 1LA180010TexasMaineTN0002Texas 5Maryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirMissouri340Wiscons		16	South Da
MaineTN0002Texas 5Maryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirMissouri340Wisconst	Louisiana	AI30792	Tenness
Maryland324UtahMassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirMissouri340Wiscons	Louisiana 1	LA180010	Texas
MassachusettsM-TN003VermonMichigan9958VirginiaMinnesota047-999-395WashingMississippiTN0003West VirginiaMissouri340Wiscons	Maine	TN0002	Texas ⁵
Michigan 9958 Virginia Minnesota 047-999-395 Washing Mississippi TN00003 West Virginia Missouri 340 Wiscons	Maryland	324	Utah
Minnesota047-999-395WashingMississippiTN00003West ViMissouri340Wiscons	Massachusetts	M-TN003	Vermont
Mississippi TN00003 West Vi Missouri 340 Wiscons	Michigan	9958	Virginia
Missouri 340 Wiscons	Minnesota	047-999-395	Washing
	Mississippi	TN00003	West Vir
Montana CERT0086 Wyomir	Missouri	340	Wiscons
	Montana	CERT0086	Wyomin

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 14	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

STANOLIND GCD#2

L1100546

PAGE: 18 of 19

05/29/19 11:33

			Billing Infor	rmation:	The start	AT /			A	nalysis / Co	ontainer / P	Preservative		- Sec.	Chain of Custody	dy Page of
HilCorp-Fi rmington, NM 382 Road z 100 Aztec, NM 8 7401	٨					Pres Chk									Pace	e Analytical [®] Center for Testing & Innovatio
Report to: JEUNFER DE Project Description:	JENNIFER DEAL				<u>chilcorp.</u>	111090	AN								12065 Lebanon Rd Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
Phone: 505-486-9543 Fax:	Client Project #			Lab Project #			00,640								L# // 00546 F095 Acctnum: HILCORANM	
Collected by (print):	Site/Facility ID	LINDG	CD#2	P.O. #	4		- PCI	2	4							
Kurt Ave bittes Immediately Packed on Ice N Y X	Rush? (La Same Dav Next Day Two Day Three Da	y 10 Day	Day	Quote #	esults Needed	No. of	PH 8015	× ×	1120		e de la companya de l				Template: Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	F	BT	E						Shipped Via:	Sample # (lab only)
N. WSIDE BERM	Comp	Soil		5-16	1:10	1	X	X	×							
S. INSIDE BERM	1 11	0	Orange	P	1:30	\Box	X	X	X							-02
BEGINNING OF Spill	1	0	in the second	()	1:40	1	X	X	X	and the second s	NG 27					-03
MIDDLE 30'-60-90	1 11	- 19 	A PART	n	1:50	17	X	X	X	. interest		6				-04
END 120-150-180	0' 1)	N		Jies D.	1:55	17	X	X	X				J.		A	-05
BACKGROUND	Gread	0			2100	1	X	X	×							-06
B. A			and the second second													
	1	<u> </u>	Lan					and the second		Comment of the				2		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:				RAD SCREE	.EN: <	:0.5 m	nR/hr		pH		Temp		Seal Pr Signed/ tles arr	mple Receipt Checklist Present/Intact:NPY ed/Accurate:Y arrive intact:Y	
DW - Drinking Water OT - Other	Samples return UPSFee	rned via: edEx Cour	rier		Tracking # 73	30	Flow Other					Suffi	ficient	ottles used: t volume sent: <u>If Applicab</u>		
Relinguistied by: (Signature)	N.	Date: 5-17	Street Chill		Received by: (Signat							Yes / No HCL / Meot TBR	Prese	Zero ne ervatic	Headspace: ion Correct/Che	hecked: \underline{Y} h
Relinquished by : (Signature)		Date:	Ti	Time: F	Received by: (Signat					Temp:).(±0;-	-+ 18 2°	pottles Received:	If pres	eservation	on required by Log	gin: Date/Time
Relinquished by : (Signature) Date: Ti			Time: F	Received for lab by:	(Signat	10120)		C	Date: 5/18/1	and the second	rime:	Hold:	NCT / OK			