District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Incident ID	
District RP	
Facility ID	
Application ID	

I Release Notification

Responsible Party

Responsible Party Hilcorp Energy	OGRID 372171
Contact Name Clara Cardoza	Contact Telephone 505-564-0733
Contact email <u>ccardoza@hilcorp.com</u>	Incident # (assigned by OCD) NVF1718155324
Contact mailing address 382 CR 3100 Aztec NM 87410	

Location of Release Source

Latitude 36.7496223_

Longitude -108.0189896

(NAD 83 in decimal degrees to 5 decimal places)

Site Name Fifield 5 1	Site Type Well Site (Plugged)
Date Release Discovered	API# (<i>if applicable</i>) 30-045-08640

Unit Letter	Section	Township	Range	County
Ν	05	29N	11W	San Juan

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)	
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)	
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No	
Condensate	Volume Released (bbls)	Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)	
Other (describe) Historic Hydrocarbon	Volume/Weight Released (provide units) Unknown	Volume/Weight Recovered (provide units) 0	
Cause of Release			
During BGT closure activities of P&A well, historic contamination was discovered under the North BGT.			

Michelle Lujan Grisham Governor

Sarah Cottrell Propst Cabinet Secretary

Todd E. Leahy, JD, PhD Deputy Secretary Adrienne Sandoval, Division Director Oil Conservation Division

Clara,

OCD has reviewed the remediation plan for the Fifield 5 #1 received on July 15, 2019 and have approved the plan with the following conditions of approval:

- HEC will start SVE remediation no later than October 18, 2019
- HEC will achieve a run time of 90% or better of the proposed 12 hours per day.
- HEC will collect an initial gas sample for laboratory analysis shortly after startup of SVE operations after the initial gas sample an annual sample is required. The air sample must be collected prior to the inlet of the vacuum pump but, after the convergence of all SVE wells or alternativity an air sample from each SVE well is acceptable.
 - The gas sample will be analyzed for EPA Method 8260 Full List and include Carbon Dioxide and Oxygen.
- HEC quarterly report will include at a minimum
 - o Summary of remediation activity for the quarter
 - o SVE Run time
 - o SVE mass removal
 - Field notes (VOC readings, water/product recovery, inspection dates etc)
 - Amount of liquids/product recovered if any (This will be recorded from the knock out drum since ground water in not expected to be encountered)
- HEC will submit a detailed closure plan for OCD approval prior to the collection of any confirmation Borehole samples. The Closure plan will include at a minimum bore hole locations, sampling method and frequency.

OCD recommends the installation of an additional "Vent" well with fans or even active air sparging well to increase oxygen levels which would promote biodegradation and assist in air movement for sve remediation.

If you have any questions please give me a call.

Cory Smith Environmental Specialist Oil Conservation Division

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? Historic release		
Yes No			
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? N/A			

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have <u>not</u> been undertaken, explain why:

This is a historic release and there was no active source at the time of discovery.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:Clara Cardoza	Title:Environmental Specialist
Signature:	Date:3/5/2019
email:ccardoza@hilcorp.com	Telephone:505.564.0733
OCD Only	
Received by:	Date:

Form C-141 Page 5 State of New Mexico Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Scaled sitemap with GPS coordinates showing delineation points \square Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) \square Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Clara Cardoza Title: ____Environmental Specialist_____ Signature: Date: 7/15/2019 Telephone: ____505.564.0733 email: ___ccardoza@hilcorp.com_ **OCD Only** OCD 7/15/19 Received by: ____ Date: Approved with Attached Conditions of Approval Approved Denied Deferral Approved 7/18/19 Signature: Date:

961 CR 233, Ste. B-4 Durango, Colorado 81301 979.324.2139 www.teamtimberwolf.com

June 14, 2019

Ms. Clara Cardoza Hilcorp Energy Company 382 Road 3100 Aztec, New Mexico 87410

Re: Site Characterization Report and Remedial Action Plan Fifield 5 No. 1 (SE ¼, SW ¼, Sec. 5, T29N, R11W) Hilcorp Energy Company San Juan County, New Mexico OCD Incident No.: NVF1718155324

Dear Ms. Cardoza:

At the request of Hilcorp Energy Company (Hilcorp), Timberwolf Environmental, LLC (Timberwolf) presents this site characterization report and remedial action plan for the Fifield 5 No. 1 (Site). The Site is located approximately 3.3 miles northwest of Bloomfield, San Juan County, New Mexico (Figures 1 - 3).

The purpose of this document is to present Site characterization activities and outline the preferred remedial option to bring the Site to regulatory closure.

Site History

Historically, the Site has consisted a well head, line heater and separator with associated below-grade tank (BGT) for produced water, sales meter, and tank battery comprised of one above-ground storage tank (AST) and one BGT. On or about 06/01/17, removal and closure of the BGT revealed historical contamination beneath the BGT. All surface equipment was removed and the well was plugged and abandoned. Surface equipment present at the time of Site abandonment is presented in Figure 4.

Initial assessment efforts were conducted by Rule Engineering, LLC (Rule), a subcontractor of ConocoPhillips Company (ConocoPhillips). Hilcorp's acquired the property in 2017 and Rule conducted additional assessments in 2018. All findings by Rule Engineering are documented in Timberwolf's *Site Characterization and Remedial Action Plan*, dated February 28, 2019. The initial assessment identified the following constituents of concern (COCs): benzene, toluene, ethylbenzene, and xylene (BTEX) and total Petroleum Hydrocarbons (TPH).

Site Characterization Report

Timberwolf's characterization of the Site included a review of data collected during Rule's field investigations, a desktop review of publicly available data, a field inspection, and a soil investigation. The environmental setting, applicable regulatory criteria, sampling methodology, Timberwolf soil investigation, and conclusions are presented below. HEC-190009 June 14, 2019 Page 2

<u>Environmental Setting</u>

The well has been plugged and all surface equipment has been removed from the Site; however, Hilcorp's Hali Meador #005R is located immediately west of the Site. The surrounding area consists of sparse vegetative cover comprised primarily of scrub brush. Area topography consists of mesas divided by shallow canons and intermittent streams that flow south into the San Juan River. The Site is situated along the eastern edge of an unnamed mesa; average elevation is approximately 5,786 feet (ft) above mean sea level. The nearest water way is an unnamed intermittent stream located approximately 1,350 ft west of the Site. The intermittent stream empties into the San Juan River, approximately 3.4 miles south of the Site.

According to the U.S. Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS), the Site soil consists of the Gypsiorthids-Badland-Stumble complex, 5 to 30 percent slopes. The surface layer consists of sandy loam, underlain by lithic bedrock encountered between 16 to 20 inches below ground surface (bgs). Native salinity of the soil is very slightly saline to slightly saline (2.0 to 4.0 millimhos per centimeter (mmhos/cm)). Site soil is presented in Figure 5.

Regulatory Criteria

The New Mexico Oil Conservation Division (NMOCD) established remediation action levels for soil impacted by oilfield products or wastes, which are documented under New Mexico Administrative Code (NMAC) Rule 19.15.29. Under Rule 19.15.29, soil cleanup criteria is determined based on the depth to usable groundwater and distances to surface water resources and sensitive features. Regulated groundwater intervals, required laboratory methodology, and soil closure criteria are presented in the following table.

Depth to Groundwater ¹	Constituent	Method ²	Regulatory Criteria ³ (mg/kg)
<u><</u> 50 feet	Chloride ⁴	EPA 300.0	600
	TPH	EPA SW-846 Method 8015M	100
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8015M	10
51 feet-100 feet	Chloride ⁴	EPA 300.0	10,000
	TPH	EPA SW-846 Method 8015M	2,500
	GRO+DRO	EPA SW-846 Method 8015M	1,000
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8260B	10
> 100 feet	Chloride ⁴	EPA 300.0	20,000
	TPH	EPA SW-846 Method 8015M	2,500
	GRO+DRO	EPA SW-846 Method 8015M	1,000
	Total BTEX	EPA SW-846 Method 8021B or 8260B	50
	Benzene	EPA SW-846 Method 8021B or 8015M	10

¹ From surface to useable groundwater (i.e., less than 10,000 milligrams per liter (mg/L) total dissolved solids (TDS))

² Or other test methods approved by the division

 $^{\rm 3}\, {\rm Regulatory}$ limits or background level, whichever is greater

mg/kg - milligrams per kilogram

GRO – gasoline range organics

MRO - motor oil organics

⁴ Applies to produced water and fluids containing chloride TPH = GRO + DRO + MRO DRO - diesel range organics

Additionally, the most stringent closure criteria as presented in Table 1 (i.e., \leq 50 feet) are applicable for releases within a municipal boundary, 100-year floodplain, overlying a mine or unstable area, or within the specified protective distances from sensitive features as shown in Table 2.

Sensitive Feature	Protective Distance (feet)
Continuously flowing watercourse and its first order tributaries	300
Lakebed, sinkhole, or playa lake	200
Residence, school, hospital, or church	300
Spring or water well for private domestic/livestock water source	500
Any spring or fresh water well	1,000
Wetland	300

 Table 2. Protective Distances for Sensitive Features

To determine depth to groundwater at the Site, Timberwolf reviewed well records maintained by the New Mexico Office of the State Engineer (NMOSE). The review revealed four water wells within a one-mile radius of the Site and that the depth to groundwater in those wells is greater than 51 ft bgs. A copy of relevant water well files are attached.

The nearest water well found in NMOSE records is situated approximately 0.88 mile southwest of the Site. This well is identified by the NMOSE as POD No.: SJ-03749-POD1 and has the following global positioning system (GPS) coordinates: 36.74247° / -108.03251° in North American Datum from 1983 (NAD83). The depth to water is approximately 140 ft bgs with a total well depth of 440 ft. The surface elevation of this well is approximately 5,696 ft above mean sea level.

The shallowest water well found in NMOSE records is situated approximately 1.0 mile southwest of the Site. This well is identified by the NMOSE as POD No.: SJ-00867 and has the following GPS coordinates: 36.73676° / -108.02854°. The depth to water is approximately 55 ft bgs with a total well depth of 75 ft. The surface elevation of this well is approximately 5,722 ft above mean sea level. The differential surface elevation between this water well and the Site plus the depth to groundwater in the well yields a depth to water for the Site of 119 ft. Referenced water wells are mapped in Figure 2.

The Site qualifies soil closure criteria for groundwater depths of >100 ft as presented in Table 1 because the Site is not situated within a municipal boundary, floodplain, mine, or unstable area; or within 1,000 ft of any sensitive feature as shown in Figure 5; and the depth to water at the Site is greater than 100 ft. However, according to BGT permits filed by ConocoPhillips', the closure standards for a release from the BGT are derived from the New Mexico Administrative Code (NMAC) 19.15.17 (Pits, Closed Loop Systems, Below Grade Tanks, and Sumps) Section H (Reclamation of pit locations, onsite burial locations and drying pad locations). The permit specified the most stringent closure criteria for a release occurring from a BGT; consequently, applicable regulatory criteria for the Site are presented in Table 3 below.

Table 3. Closure Criteria for Soils Beneath Below-Grade Tanks, Drying Pads Associated with Closed-Loop Systems and Pits where Contents are Removed

Depth to Groundwater ¹	Constituent	Laboratory Method ²	Regulatory Criteria ³ (mg/kg)
	Chloride ⁴	EPA 300.0	600
. EQ foot*	TPH	EPA SW-846 Method 8015M	100
< 50 leet	Total BTEX	EPA SW-846 Method 8021B or 8260	50
	Benzene	EPA SW-846 Method 8021B or 8260	10

Groundwater is deeper than 50 ft, but per permit, most stringent criteria was used

¹ – Depth below bottom of pit to useable groundwater (i.e., less than 10,000 mg/L TDS)

- 2 Or other test methods approved by the division
- ³ Regulatory limits or background level, whichever is greater
- ⁴ Applies to produced water and fluids containing chloride

mg/kg - milligrams per kilogram

GRO – gasoline range organics

DRO – diesel range organics

EPA – Environmental Protection Agency

mg/L – milligrams per liter TDS – total dissolved solids TPH = GRO + DRO + MRO MRO – motor oil range organics SW – solid waste

Sampling Methodology

Soil samples were collected from borings installed using a rotary rig equipped with a hollow stem auger and split spoon barrel or flight augers. Prior to soil boring installation, a clearance request was submitted to New Mexico 811 (i.e., One Call).

During boring installation, soil samples were continuously sampled, logged for morphological characteristics, and field screened for volatile organic compounds (VOCs) using a photoionization detector (PID). PID readings are recorded on the attached soil boring logs.

Samples from each boring exhibiting the highest PID reading were selected for chemical analysis along with the boring terminus. Each boring was plugged with a bentonite seal to prevent vertical migration of constituents. Sample locations are presented in Figure 5.

Soil samples were placed directly into laboratory provided sample containers, labeled, stored on ice, and transported under proper chain-of-custody protocols to Pace Analytical Laboratory in Mt. Juliet, Tennessee for chemical analysis. Selected soil samples were analyzed for one or more of the following constituents of concern (COCs) using the described method:

- BTEX by SW-846 EPA Method 8260B
- TPH (GRO, DRO, and MRO, extended range) by SW-846 EPA Method 8015M

Laboratory results, analytical methods, and chain-of-custody documents are provided in the attached laboratory reports.

Geotechnical samples were collected from two soil borings. The samples were collected by driving a split-spoon fitted with acetate liners with a hydraulic geotechnical hammer. Intact samples were collected within the acetate liners. Samples were submitted under proper chain-of-custody protocol to Gessner Engineering, LLC of Bryan, Texas.

Soil Investigation

On 03/20/19, Timberwolf contracted with GEOMAT, Inc. of Farmington, New Mexico to install soil borings at the Site. Four soil borings (i.e. SB11 – SB14) were installed at and surrounding the former BGT to vertically and horizontally delineate petroleum hydrocarbon impacts in soil. Auger refusal was encountered in SB12 at 51 ft bgs. Groundwater was not encountered in any boring. Eight soil samples were collected from the borings; sample depths ranged from 20 ft bgs to 51 ft bgs.

The analytical results from the soil investigation are summarized in Table 4 below. Cumulative soil analytical results from all Site investigation events at the Site are attached in Table A-1 and presented on Figure 7.

Semple ID	Volatile Organic Compounds (mg/kg)						Total Petroleum Hydrocarbons (mg/kg)					
Sample ID	В	т	E	х	Total	GRO	DRO	MRO	TPH			
SB11 25-26'	< 0.0010	< 0.0050	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1			
SB11 35-36'	< 0.0010	< 0.0050	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1			
SB12 20-21'	0.372	13.9	3.88	58.8	76.95	3,990	471	15.3	4,476.3			
SB12 50-51'	< 0.0010	< 0.0050	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1			
SB13 30-31'	< 0.020	1.13	0.407	7.77	9.327	704	314	14	1,032			
SB13 40-41'	0.0062	0.0355	< 0.0025	0.0342	0.0759	1.5	< 4.0	< 4.0	1.5			
SB14 30-31'	0.00813	0.0256	< 0.0025	0.0294	0.0656	0.12	< 4.0	< 4.0	8.12			
SB14 35-36'	< 0.001	< 0.005	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1			
Remedial Target	10				50				100			

Table 4. Soil Analytical Results – BTEX and TPH

TPH - total petroleum hydrocarbons (TPH = GRO+DRO+MRO) BTEX - benzene, toluene, ethylbenzene, and xylenes mg/kg - milligrams per kilogram

GRO – gasoline range organics

DRO – diesel range organics MRO – motor oil range organics

-- - no applicable regulatory criteria

A total of six geotechnical samples were collected from SB12 and SB13 to quantify physical and hydrogeologic properties of the various depth intervals within the impacted zones. Geotechnical testing is underway; results will be utilized for remedial system design.

Conclusions of Site Characterization

N/A - constituent not analyzed – exceeds regulatory criteria

Based on prior assessments, Timberwolf's Site characterization, the NMOCD regulatory criteria, and findings of the soil investigation, the following is concluded:

- A historical release from a BGT resulted in subsurface impacts at the former tank battery
- The BGT permit stipulates that any release occurring from the BGT is subject to the most stringent criteria

- Total BTEX concentrations exceeded regulatory criteria in one soil sample (i.e., SB12 20-21')
 - SB12 was situated immediately adjacent to the former BGT (i.e., point of release)
 - The total BTEX concentration was 76.95 mg/kg
- TPH concentrations exceeded regulatory criteria in two soil samples (i.e., SB12 20-21' and SB13 30-31')
 - SB13 was situated downgradient and approximately 75 ft southeast from the former GBT
 - TPH concentrations were 4,476.3 mg/kg and 1,032 mg/kg, respectively
 - PID readings indicate vertical extents of impacted soil in SB12 and SB13 to be approximately 45 ft and 35 ft bgs, respectively
- Concentrations of all other COCs were below regulatory criteria
- Each constituent is vertically and horizontally delineated for all COCs
 - Horizontally and vertically extent of each constituent are shown in isoconcentration maps and cross-sectional views (Figures 8 – 10)
 - The horizontal extent of impacted soil is approximately 10,420 square feet (ft²) or 0.24 acres
 - The vertical extent of impacted soil is approximately 45 ft bgs
 - The volume of impacted soil is approximately 7,500 cubic yards

Remedial Action Plan

The soil investigations revealed the COCs at this Site include total BTEX and TPH; most of the TPH was observed in the gasoline range (i.e., C6-C10). Because total BTEX and GRO have high volatilization and degradation rates, effective treatment of these constituents can be achieved in situ with a soil-vapor extraction (SVE) system.

To bring Site soils into compliance, Hilcorp will install a SVE system to include approximately 13 SVE wells. Each SVE well will be constructed of 4-inch PVC and screened across the impacted intervals. Wells will be piped to a manifold system in a manner to provide multiple legs (approximately 3). The system will be powered by a vacuum pump or blower. Since electrical power is not available at the Site, the vacuum/blower motors will be powered by a solar panel and battery storage system.

To prevent preferential pathways from developing, the runtime for each leg will be approximately 4 hours. Electric solenoids and timers will control valves on each leg to cycle through each leg of the system. Daily system runtime will be largely dependent on the solar panel power system but is estimated at 12 hours per day. The SVE system will be designed and operated in a manner capable of treating the estimated 7,500 yds³ of impacted soil.

A detailed SVE system will be designed once geotechnical data is available. A Site Remediation Plan presenting the designed SVE system, operation and maintenance schedule, and anticipated closure timeline will be submitted to the NMOCD for approval prior to system installation.

Quarterly monitoring reports for the system will be submitted to the NMOCD while the system is operational. Additionally, Site soil will be monitored periodically. Once regulatory compliance is achieved, a no further action status request will be made with the NMOCD and the SVE system will be discontinued and dismantled.

Upon NMOCD approval of this remedial technique, system design will begin immediately. The total system runtime is projected to be approximately 3 years. The anticipated timeline for system design, installation, treatment period, soil monitoring schedule, quarterly monitoring reports, and site closure are presented in Table 5.

Tack	2019		2020	2021	2022	2023
rask	3Q19	4Q19	1Q20 - 4Q20	1Q21 - 4Q21	1Q22 - 4Q22	1Q23 - 4Q23
System Design & O&M Schedule		5				
System Install		-				
Start-up, Automation Install & Initial Monitoring		~				
System Run-time						
Soil Monitoring						
Monitoring Reports		1				1
Site Closure Report						

Table 5. Projected Remedial Tasks and Timeline

Timberwolf appreciates the opportunity to provide Hilcorp with our professional consulting services. If you have any questions regarding this proposal, please contact us at (979) 324-2135.

Sincerely, Timberwolf Environmental, LLC

Preston Kocian Project Manager

Attachments: Figures NMOSE Water Well Records Soil Boring Logs Attached Tables Laboratory Reports and Chain-of-Custody Documents

2 **Jim** Foster President

Figures

	1:1,000							
						Feet		
	0	100	200	300	400	500	1 86	
TIMBERWOLF		Fifield 5 No. 1 Release (OCD Incident No. NVF1718155324)						
Environmental	Created By:	ted By: Hilcorp Energy Company Datum: NAD83						
	Russell Greer TE Project No.: HEC-190009		San Juan County	, New Mexico		Imagery Source: ESRI Vector Source: TE	Well Pads	

NMOSE Water Well Records

New Mexico Office of the State Engineer Point of Diversion Summary

Well Tag P	OD Number	(quarters are smallest t	o largest) (NAD83 UTM in meters)	
Well Tag P	OD Number				
_		Q64 Q16 Q4 Sec	Tws Rng	X Y	
S	J 00867	4 07	29N 11W 2	229570 4069949* 🥌	
Driller Licens	se: 666	Driller Company:	GILBERT, JOI	HN G.	
Driller Name:	JOHN GILBERT				
Drill Start Da	te: 01/26/1979	Drill Finish Date:	01/31/1979	Plug Date:	
Log File Date	: 02/06/1979	PCW Rcv Date:		Source:	Shallow
Pump Type:		Pipe Discharge Size	:	Estimated Yield:	5 GPM
Casing Size:		Depth Well:	77 feet	Depth Water:	55 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

5/29/19 10:09 AM

POINT OF DIVERSION SUMMARY

		(quarters are smallest to la	argest)	(NAD83 UTM in meters)	
Well Tag	POD Number	Q64 Q16 Q4 Sec 7	fws Rng	X Y	
	SJ 03749 POD1	1 3 2 07 2	29N 11W	229235 4070593 🌍	
x Driller Lic	ense:	Driller Company:			
Driller Na	me: HARGIS				
Drill Start	Date: 07/24/2009	Drill Finish Date:	12/01/2009	Plug Date:	
Log File D	ate: 07/12/2010	PCW Rcv Date:		Source:	Shallow
Pump Typ	e:	Pipe Discharge Size:		Estimated Yield:	
Casing Siz	e: 6.00	Depth Well:	440 feet	Depth Water:	140 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

5/29/19 10:13 AM

POINT OF DIVERSION SUMMARY

Soil Boring Logs

SOIL BORING IN	STALLATION	Page 1 of 2				
SB1 ⁻	1					
Client: Hilcorp Energy Company	Completion Date: 03/2	20/19				
Project Name: Fifield 5 No. 1	Logged By: Preston K	ocian				
Site Location: San Juan County. New Mexico	Drilled By: Geomat, Ir	Drilled By: Geomat, Inc.				
Project Number: 190009	Drilling Method & Borir	ng Diameter: Hollow Stem Auger				
Boring Coordinates: 36.75001, -108.01962	Total Depth (ft): 36					
Ground Surface Elevation (ft, msl): 5,795 ft	First Water Encounter	ed (ft): NA				
Depth (feet) USCS PID Reading (ppm) Drilling Technique	Soil Description	Well Completion				
5 SC 10 4.9 TAN GREY S 15 SW 20 1.7 Notes: Groundwater not encountered; no well completion	HALE	- Hollow-stem auger				
		- Split spoon				

						Page 2	P of 2		
		S	OIL BO	ORING INSTALLATION					
				SB11			WOLF NMENTAL		
Client: Hilc	orp Energ	y Compar	ıy		Completion Date: 03/20	/19			
Project Nan	ne: Fifield	l 5 No. 1			Logged By: Preston Koo	cian			
Site Locatio	n: San Ju	uan Count	y. New N	1exico	Drilled By: Geomat, Inc.				
Project Nun	nber: 190	009			Drilling Method & Boring	Diameter: Hollow Ster	n Auger		
Boring Coo	rdinates:	36.75001,	-108.01	962	Total Depth (ft): 36'				
Ground Sur	face Eleva	ation (ft, m	nsl): 5,79	95 ft	First Water Encountered	I (ft): NA			
Jepth (feet)	ISCS	PID Reading ppm)	Drilling Fechnique		Soil Description		Well Completion		
	SW	2.1		LIGHT GREY SANDSTONE					
40				TD = 36'	Legend:	- Hollow stom augor			
Groundwate	er not enco	ountered;	no well c	completion		- Hollow-stem auger - Flight auger - Split spoon			

SOIL B	ORING INSTALLATION		Page 1	of 2	
			WOLF NMENTAL		
Client: Hilcorp Energy Company		Completion Date: 03/20/	19		
Project Name: Fifield 5 No. 1		Logged By: Preston Kocian			
Site Location: San Juan County. New	Mexico	Drilled By: Geomat, Inc.			
Project Number: 190009		Drilling Method & Boring	Diameter: Hollow Ster	m Auger	
Boring Coordinates: 36.74972, -108.0	19221	Total Depth (ft): 36'			
Ground Surface Elevation (ft, msl): 5,	795 ft	First Water Encountered	(ft): NA		
Depth (feet) USCS USCS PID Reading (ppm) Drilling Techniq	s	oil Description		Well Completion	
5 SC 10 10 15 SW 20 20 Notes: Groundwater not encountered; no well	TAN GREY SHALE	Legend:	- Hollow-stem auger		

SB14 Client: Hilcorp Energy Company Project Name: Filed 5 No. 1 Logged By: Proston Kocian Site Location: San Juan County, New Mexico Drilled Sy: Germat, Inc. Project Name: Filed 5 No. 1 Logged By: Proston Kocian Site Location: San Juan County, New Mexico Drilled Sy: Germat, Inc. Project Name: Filed 5 No. 1 Logged By: Proston Kocian Site Location: San Juan County, New Mexico Drilled Sy: Germat, Inc. Project Name: Site Jack Sy: Site Site Site System First Water Encountered (I): NA Ground Surface Elevation (II, may: S.758 ft) First Water Encountered (I): NA Site Site Site Site Site Site Site Site			sc	DIL BO	ORING INSTALLATION		Page 2	? of 2
Client: Hilcorp Energy Company Completion Date: 03/20/19 Project Number: 19009 Drilled By: Geomat, Inc. Project Number: 19009 Drilled By: Geomat, Inc. Boring Coordinates: 38.74972, -108.019221 Total Depth (t): 36' Ground Surface Elevation (tr, ms): 5.795 ft First Water Encountered (t): NA Image: Solid Description Well Completion Image: Solid Description TD = 36'		SB14						WOLF NMENTAL
Project Name: Filield 5 No. 1 Logged By: Preston Kocian Site Location: San Juan County. New Mexico Drilling Method & Boring Diameter: Hollow Stem Auger Boring Coordinates: 38.74972, -108.019221 Total Depth (th): 36 Ground Sufface Elevation (tr, ms): 5.755 ft First Water Encountered (th): NA Image State Elevation (tr, ms): 5.755 ft First Water Encountered (th): NA Image State Elevation (tr, ms): 5.755 ft First Water Encountered (th): NA Image State Elevation (tr, ms): 5.755 ft First Water Encountered (th): NA Image State Elevation (tr, ms): 5.755 ft First Water Encountered (th): NA Image State Elevation (tr, ms): 5.755 ft First Water Encountered (th): NA Image State Elevation (tr, ms): 66.2 Image State Encountered (th): NA Image State Elevation (tr, ms): 10.8 Image State Elevation (tr, ms): TO = 36' Image State Elevation (tr, ms): Image State Elevation (tr, ms): TO = 36' Image State Elevation (tr, ms): Image State Elevation (tr, ms): Image State Elevation (tr, ms): Image State Elevation (tr, ms): Image State Elevation (tr, ms): Image State Elevation (tr, ms): Image State Elevation (tr, ms): Image State Elevation (tr	Client: Hilco	orp Energ	y Compan	iy		Completion Date: 03/20/	/19	
Site Location: San Juan County. New Mexico Drilled By: Geomat. Inc. Project Number: 190009 Drilling Method & Boring Diameter: Hollow Stem Auger Boring Coordinates: 367-4972108.019221 Trail Depth (ft): 36 Ground Surface Elevation (ft, mai): 5,735 ft First Water Encountered (ft): NA Image: Step Step Step Step Step Step Step Step	Project Nam	ne: Fifield	d 5 No. 1			Logged By: Preston Koo	tian	
Project Number: 190009 Drilling Method & Boring Diameter: Hollow Stem Auger Boring Coordinates: 83, 14972, -108,019221 Total Depth (ft): 36 Ground Surface Elevation (ft, mai): 5,795 ft First Water Encountered (ft): NA Image: Stem Auger Image: Stem Auger Image: Stem Auger Image: St	Site Location	n: San J	uan Count	y. New N	<i>l</i> exico	Drilled By: Geomat, Inc.		
Boring Coordinates: 38:74972. +108.019221 Trail Depth (ft): 36: Ground Surface Elevation (ft, ms): 5.795 ft First Water Encountered (ft): NA Image: Second Surface Elevation (ft, ms): 5.795 ft First Water Encountered (ft): NA Image: Second Surface Elevation (ft, ms): 6.2 Image: Second Surface Elevation (ft, ms): Mell Completion Image: Second Surface Elevation (ft, ms): 66.2 Image: Table Second Surface Elevation (ft): NA Image: Second Surface Elevation (ft, ms): 66.2 Image: Table Second Surface Elevation (ft): Well Completion Image: Second Surface Elevation (ft, ms): 66.2 Image: Table Second Surface Elevation (ft): Well Completion Image: Second Surface Elevation (ft, ms): Image: Table Second Surface Elevation (ft): Table Second Surface Elevation (ft): NA Image: Second Surface Elevation (ft, ms): Image: Table Second Surface Elevation (ft): Table Second Surface Elevation (ft): NA Image: Table Second Surface Elevation (ft): Image: Table Second Surface Elevation (ft): Table Second Surface Elevation (ft): NA Image: Table Second Seco	Project Num	nber: 190	0009			Drilling Method & Boring Diameter: Hollow Stem Auger		
Ground Surface Elevation (It, ms): 5.795 ft First Water Encountered (ft): NA iso iso iso iso iso iso well Completion iso iso iso iso iso iso well Completion iso iso iso iso iso iso well Completion iso iso <td colspan="5">Boring Coordinates: 36.74972, -108.019221 Total Depth (ft): 3</td> <td>Total Depth (ft): 36'</td> <td></td> <td></td>	Boring Coordinates: 36.74972, -108.019221 Total Depth (ft): 3					Total Depth (ft): 36'		
Image: State of the s	Ground Surf	face Elev	ation (ft, m	nsl): 5,7	95 ft	First Water Encountered	(ft): NA	
30 SW 10.8 IGHT GREY SANDSTONE 35 IIIGHT GREY SANDSTONE 40 TD = 36'	Depth (feet)	nscs	PID Reading (ppm)	Drilling Techniq ue	S	oil Description		Well Completion
	30 30 31 40 40 40 41 40 41 41	SW	06.2 10.8	no well of	LIGHT GREY SANDSTONE	Legend:	- Hollow-stem auger	

Attached Tables

Table A1. Cumulative Soil Analytical Results Fifield 5 No. 1 (OCD Incident No. NVF1718155324) San Juan County, New Mexico Hilcorp Energy Company

		Volotilo Organio Compoundo (mg/kg)				Total Potroloum Hydrocarbons (mg/kg)				
Sample ID	Sample Date		volatile Org	Janic Compou	mus (mg/Kg)		Iotal	Petroleum Hy	urocarbons (ng/kg)
•	•	В	Т	E	х	Total BTEX	GRO	DRO	MRO	TPH
SB1 27.5-28.5*	12/22/17	3.1	53	9.8	150	216	2,500	710	< 50	3,210
SB1 35-36*	12/22/17	0.36	6.9	1.5	20	29	440	93	< 49	533
SB1 40-41*	12/22/17	< 0.024	0.064	< 0.049	0.34	0.4	18	10	< 48	28
SB2 15-16*	02/05/18	< 0.11	< 0.23	0.41	2	2.4	270	33	< 48	303
SB2 35-36*	02/05/18	0.25	2.7	0.55	7.3	10.8	200	23	<49	232
SB4 22.5-23.5*	02/06/18	0.56	10	2.1	29	42	560	170	< 49	730
SB4 45-46*	02/06/18	0.027	0.22	< 0.037	0.26	0.51	11	< 9.8	< 49	11
SB5 17.5-18.5*	02/07/18	< 0.25	4.4	3.7	56	64	700	260	< 43	960
SB6 25-26*	02/07/18	< 0.12	5.3	1.5	29	36	390	160	< 49	550
SB7 15-16*	02/07/18	< 0.023	< 0.047	< 0.047	0.51	0.51	32	66	< 45	98
SB8 25-26*	02/08/18	0.028	0.37	< 0.046	1.1	1.1	5.5	< 9.5	< 48	5.5
SB9 27.5-28.5*	02/08/18	< 0.025	< 0.049	< 0.049	< 0.098	0.221	< 4.9	< 9.8	< 49	63.7
SB10 27.5-28.5*	02/08/18	0.03	0.13	< 0.049	0.17	0.33	< 4.9	< 9.5	< 48	63.4
SB11 25-26'	03/20/19	< 0.0010	< 0.0050	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1
SB11 35-36'	03/20/19	< 0.0010	< 0.0050	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1
SB12 20-21'	03/20/19	0.372	13.9	3.88	58.8	76.95	3,990	471	15.3	4,476.3
SB12 50-51'	03/20/19	< 0.0010	< 0.0050	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1
SB13 30-31'	03/20/19	< 0.020	1.13	0.407	7.77	9.327	704	314	14	1,032
SB13 40-41'	03/20/19	0.0062	0.0355	< 0.0025	0.0342	0.0759	1.5	< 4.0	< 4.0	1.5
SB14 30-31'	03/20/19	0.00813	0.0256	< 0.0025	0.0294	0.0656	0.12	< 4.0	< 4.0	8.12
SB14 35-36'	03/20/19	< 0.001	< 0.005	< 0.0025	< 0.0065	0.015	< 0.10	< 4.0	< 4.0	8.1
NMOCD Action Level		10				50				100

*- Samples collected by Rule Engineering

BTEX - benzene, toluene, ethylbenzene, and xylene

DRO - diesel range organics

MRO - motor oil range organics

mg/kg - milligrams per kilogram

TPH - total petroleum hydrocarbons

GRO - gasoline range organics

Laboratory Report and Chain-of-Custody Documents

ANALYTICAL REPORT March 29, 2019

HilCorp-Farmington, NM

Sample Delivery Group:	L1081533
Samples Received:	03/22/2019
Project Number:	FIEIELD 5 / ²
Description:	Fiefield

Report To:

Clara Cardoza 382 Road 3100 Aztec, NM 87401

5/190009

Entire Report Reviewed By: Waphne R Richardf

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Cp: Cover Page

SDG: L1081533 DATE/TIME: 03/29/19 10:09

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by Preston K	Collected date/time	Received da	te/time 30
SB12 20-21' L1081533-01 Solid			TTESTOTI K.	03/20/19 08:30	03/22/19 00.	.50
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1256152	500	03/23/19 08:55	03/27/19 15:06	JAH	Mt. Juliet, T
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1254601	40	03/23/19 08:55	03/24/19 04:42	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1255464	1	03/27/19 00:59	03/27/19 05:51	KME	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1255464	5	03/27/19 00:59	03/28/19 02:48	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SB12 50-51' L1081533-02 Solid			Preston K.	03/20/19 10:50	03/22/19 08:	:30
1ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1256152	1	03/23/19 08:55	03/27/19 15:28	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1254601	1	03/23/19 08:55	03/24/19 00:01	JHH	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1255464	1	03/27/19 00:59	03/27/19 05:19	KME	Mt. Juliet, Tl
			Collected by	Collected date/time	Received da	te/time
5B13 30-31' L1081533-03 Solid			Preston K.	03/20/19 13:15	03/22/19 08:	:30
<i>l</i> ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1256152	250	03/23/19 08:55	03/27/19 15:50	JAH	Mt. Juliet, T
'olatile Organic Compounds (GC/MS) by Method 8260B	WG1254601	20	03/23/19 08:55	03/24/19 05:01	JHH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1255464	1	03/27/19 00:59	03/27/19 05:35	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SB13 40-41' L1081533-04 Solid			Preston K.	03/20/19 14:00	03/22/19 08:	:30
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1256152	1	03/23/19 08:55	03/27/19 16:12	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1254601	1	03/23/19 08:55	03/24/19 00:20	JHH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1255464	1	03/27/19 00:59	03/27/19 06:08	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SB11 25-26' L1081533-05 Solid			Preston K.	03/20/19 13:15	03/22/19 08:	:30
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1256152	1	03/23/19 08:55	03/27/19 16:35	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1254601	1	03/23/19 08:55	03/24/19 00:39	JHH	Mt. Juliet, T
emi-Volatile Organic Compounds (GC) by Method 8015	WG1255464	1	03/27/19 00:59	03/27/19 06:41	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	te/time
SB11 35-36' L1081533-06 Solid			Preston K.	03/20/19 13:45	03/22/19 08:	:30
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1256152	1	03/23/19 08:55	03/27/19 16:57	JAH	Mt. Juliet, T
olatile Organic Compounds (GC/MS) by Method 8260B	WG1254601	1	03/23/19 08:55	03/24/19 00:57	JHH	Mt. Juliet, T

ACCOUNT: HilCorp-Farmington, NM PROJECT: FIEIELD 5 / 190009 SDG: L1081533 DATE/TIME: 03/29/19 10:09

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Project Manager

SDG: L1081533 DATE/TIME: 03/29/19 10:09 PAGE: 4 of 17

*

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

							I Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/kg		mg/kg		date / time		2
TPH (GC/FID) Low Fraction	3990		50.0	500	03/27/2019 15:06	WG1256152	Tc
(S) a,a,a-Trifluorotoluene(FID)	95.4		77.0-120		03/27/2019 15:06	WG1256152	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 4 (Cp
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.372		0.0400	40	03/24/2019 04:42	WG1254601	5
Toluene	13.9		0.200	40	03/24/2019 04:42	WG1254601	ँSr
Ethylbenzene	3.88		0.100	40	03/24/2019 04:42	WG1254601	
Total Xylenes	58.8		0.260	40	03/24/2019 04:42	WG1254601	⁶ Oc
(S) Toluene-d8	102		75.0-131		03/24/2019 04:42	WG1254601	QC
(S) a,a,a-Trifluorotoluene	98.9		80.0-120		03/24/2019 04:42	WG1254601	7
(S) 4-Bromofluorobenzene	97.5		67.0-138		03/24/2019 04:42	WG1254601	GI
(S) 1,2-Dichloroethane-d4	104		70.0-130		03/24/2019 04:42	WG1254601	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁹ c
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	471		20.0	5	03/28/2019 02:48	WG1255464	
C28-C40 Oil Range	15.3		4.00	1	03/27/2019 05:51	WG1255464	
(S) o-Terphenyl	103		18.0-148		03/28/2019 02:48	WG1255464	
(S) o-Terphenyl	99.9		18.0-148		03/27/2019 05:51	WG1255464	

*

Ss

ΔI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		2
TPH (GC/FID) Low Fraction	ND		0.100	1	03/27/2019 15:28	WG1256152	Tc
(S) a,a,a-Trifluorotoluene(FID)	99.5		77.0-120		03/27/2019 15:28	WG1256152	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4 Cn
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.00100	1	03/24/2019 00:01	WG1254601	5
Toluene	ND		0.00500	1	03/24/2019 00:01	WG1254601	ٌSr
Ethylbenzene	ND		0.00250	1	03/24/2019 00:01	WG1254601	
Total Xylenes	ND		0.00650	1	03/24/2019 00:01	WG1254601	⁶ Oc
(S) Toluene-d8	107		75.0-131		03/24/2019 00:01	WG1254601	QC
(S) a,a,a-Trifluorotoluene	95.3		80.0-120		03/24/2019 00:01	WG1254601	7
(S) 4-Bromofluorobenzene	92.1		67.0-138		03/24/2019 00:01	WG1254601	GI
(S) 1,2-Dichloroethane-d4	101		70.0-130		03/24/2019 00:01	WG1254601	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9 6
Analyte	mg/kg		mg/kg		date / time		130
C10-C28 Diesel Range	ND		4.00	1	03/27/2019 05:19	WG1255464	
C28-C40 Oil Range	ND		4.00	1	03/27/2019 05:19	WG1255464	
(S) o-Terphenyl	88.9		18.0-148		03/27/2019 05:19	WG1255464	

*

Ss

ΔI

Volatile Organic Compounds (GC) by Method 8015D/GRO

							I Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/kg		mg/kg		date / time		 2
TPH (GC/FID) Low Fraction	704		25.0	250	03/27/2019 15:50	WG1256152	Tc
(S) a,a,a-Trifluorotoluene(FID)	98.6		77.0-120		03/27/2019 15:50	WG1256152	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cp
Analyte	mg/kg		mg/kg		date / time		CI
Benzene	ND	<u>J3</u>	0.0200	20	03/24/2019 05:01	WG1254601	5
Toluene	1.13	<u>J5</u>	0.100	20	03/24/2019 05:01	WG1254601	ĭSr
Ethylbenzene	0.407	<u>J3</u>	0.0500	20	03/24/2019 05:01	WG1254601	
Total Xylenes	7.77	<u>J5</u>	0.130	20	03/24/2019 05:01	WG1254601	⁶ Oc
(S) Toluene-d8	99.8		75.0-131		03/24/2019 05:01	WG1254601	
(S) a,a,a-Trifluorotoluene	98.2		80.0-120		03/24/2019 05:01	WG1254601	7
(S) 4-Bromofluorobenzene	93.9		67.0-138		03/24/2019 05:01	WG1254601	Í GI
(S) 1,2-Dichloroethane-d4	106		70.0-130		03/24/2019 05:01	WG1254601	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9 6
Analyte	mg/kg		mg/kg		date / time		130
C10-C28 Diesel Range	314		4.00	1	03/27/2019 05:35	WG1255464	
C28-C40 Oil Range	14.0		4.00	1	03/27/2019 05:35	WG1255464	
(S) o-Terphenyl	85.8		18.0-148		03/27/2019 05:35	WG1255464	

*

Ss

AI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/kg		mg/kg		date / time		2
TPH (GC/FID) Low Fraction	1.50		0.100	1	03/27/2019 16:12	WG1256152	Tc
(S) a,a,a-Trifluorotoluene(FID)	93.8		77.0-120		03/27/2019 16:12	WG1256152	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4 (Cn
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.00620		0.00100	1	03/24/2019 00:20	WG1254601	5
Toluene	0.0355		0.00500	1	03/24/2019 00:20	WG1254601	ٌSr
Ethylbenzene	ND		0.00250	1	03/24/2019 00:20	WG1254601	
Total Xylenes	0.0342		0.00650	1	03/24/2019 00:20	WG1254601	⁶ Oc
(S) Toluene-d8	101		75.0-131		03/24/2019 00:20	WG1254601	QC
(S) a,a,a-Trifluorotoluene	93.5		80.0-120		03/24/2019 00:20	WG1254601	7
(S) 4-Bromofluorobenzene	87.8		67.0-138		03/24/2019 00:20	WG1254601	GI
(S) 1,2-Dichloroethane-d4	98.4		70.0-130		03/24/2019 00:20	WG1254601	
							0

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9
Analyte	mg/kg		mg/kg		date / time		130
C10-C28 Diesel Range	ND		4.00	1	03/27/2019 06:08	WG1255464	
C28-C40 Oil Range	ND		4.00	1	03/27/2019 06:08	WG1255464	
(S) o-Terphenyl	84.3		18.0-148		03/27/2019 06:08	WG1255464	

*

Ss

ΔI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		2
TPH (GC/FID) Low Fraction	ND		0.100	1	03/27/2019 16:35	WG1256152	Tc
(S) a,a,a-Trifluorotoluene(FID)	100		77.0-120		03/27/2019 16:35	WG1256152	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4 Cn
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.00100	1	03/24/2019 00:39	WG1254601	5
Toluene	ND		0.00500	1	03/24/2019 00:39	WG1254601	ँSr
Ethylbenzene	ND		0.00250	1	03/24/2019 00:39	WG1254601	
Total Xylenes	ND		0.00650	1	03/24/2019 00:39	WG1254601	⁶ Oc
(S) Toluene-d8	108		75.0-131		03/24/2019 00:39	WG1254601	QC
(S) a,a,a-Trifluorotoluene	94.6		80.0-120		03/24/2019 00:39	WG1254601	7
(S) 4-Bromofluorobenzene	97.9		67.0-138		03/24/2019 00:39	WG1254601	GI
(S) 1,2-Dichloroethane-d4	97.4		70.0-130		03/24/2019 00:39	WG1254601	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁹ Sc
Analyte	mg/kg		mg/kg		date / time		130
C10-C28 Diesel Range	ND		4.00	1	03/27/2019 06:41	WG1255464	
C28-C40 Oil Range	ND		4.00	1	03/27/2019 06:41	WG1255464	
(S) o-Terphenyl	89.3		18.0-148		03/27/2019 06:41	WG1255464	

Ss

ΔI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/kg		mg/kg		date / time			2
TPH (GC/FID) Low Fraction	ND		0.100	1	03/27/2019 16:57	WG1256152		Tc
(S) a,a,a-Trifluorotoluene(FID)	99.1		77.0-120		03/27/2019 16:57	WG1256152	L	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4 Cn
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.00100	1	03/24/2019 00:57	WG1254601	5
Toluene	ND		0.00500	1	03/24/2019 00:57	WG1254601	ဳSr
Ethylbenzene	ND		0.00250	1	03/24/2019 00:57	WG1254601	
Total Xylenes	ND		0.00650	1	03/24/2019 00:57	WG1254601	⁶ Oc
(S) Toluene-d8	106		75.0-131		03/24/2019 00:57	WG1254601	QC
(S) a,a,a-Trifluorotoluene	94.8		80.0-120		03/24/2019 00:57	WG1254601	7
(S) 4-Bromofluorobenzene	94.5		67.0-138		03/24/2019 00:57	WG1254601	GI
(S) 1,2-Dichloroethane-d4	97.2		70.0-130		03/24/2019 00:57	WG1254601	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁹ Sc
Analyte	mg/kg		mg/kg		date / time		130
C10-C28 Diesel Range	ND		4.00	1	03/27/2019 06:24	WG1255464	
C28-C40 Oil Range	ND		4.00	1	03/27/2019 06:24	WG1255464	
(S) o-Terphenyl	85.5		18.0-148		03/27/2019 06:24	WG1255464	

WG1256152

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3395885-3 03/27/*	19 11:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3395885-1 03/27/1	9 09:54 • (LCS	D) R3395885-2	2 03/27/19 10:1	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.15	5.25	93.6	95.5	72.0-127			1.99	20
(S) a.a.a-Trifluorotoluene(FID)				101	102	77.0-120				

Sc

ACCOUNT: HilCorp-Farmington, NM PROJECT: FIEIELD 5 / 190009 SDG: L1081533 DATE/TIME: 03/29/19 10:09

PAGE: 11 of 17 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

22:47			
MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		0.000400	0.00100
U		0.000530	0.00250
U		0.00125	0.00500
U		0.00478	0.00650
105			75.0-131
97.7			80.0-120
94.1			67.0-138
	22:47 MB Result mg/kg U U U U U 105 97.7 94.1	22:47 MB Result MB Qualifier mg/kg U U U U U U U U 105 97.7 94.1	22:47 MB Result MB Qualifier MB MDL mg/kg mg/kg U 0.000400 U 0.000530 U 0.00125 U 0.00478 105 57.7 94.1 91.1

Laboratory Control Sample (LCS)

LCS) R3396249-1 03/23/19 21:42								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Benzene	0.125	0.0977	78.2	70.0-123				
Ethylbenzene	0.125	0.110	88.3	74.0-126				
Toluene	0.125	0.0964	77.1	75.0-121				
Xylenes, Total	0.375	0.336	89.6	72.0-127				
(S) Toluene-d8			103	75.0-131				
(S) a,a,a-Trifluorotoluene			99.3	80.0-120				
(S) 4-Bromofluorobenzene			103	67.0-138				
(S) 1,2-Dichloroethane-d4			104	70.0-130				

L1081533-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1081533-03 03/24/19 05:01 • (MS) R3396249-3 03/24/19 05:19 • (MSD) R3396249-4 03/24/19 05:38

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	ND	0.908	1.87	35.6	74.2	20	10.0-149		<u>J3</u>	69.4	37
Ethylbenzene	0.125	0.407	1.82	3.08	56.4	107	20	10.0-160		<u>J3</u>	51.6	38
Toluene	0.125	1.13	4.58	5.51	138	175	20	10.0-156		<u>J5</u>	18.5	38
Xylenes, Total	0.375	7.77	19.5	23.4	156	209	20	10.0-160	<u>J5</u>	<u>J5</u>	18.4	38
(S) Toluene-d8					101	102		75.0-131				
(S) a,a,a-Trifluorotoluene					98.6	102		80.0-120				
(S) 4-Bromofluorobenzene					98.3	103		67.0-138				
(S) 1,2-Dichloroethane-d4					105	108		70.0-130				

ACCOUNT:	
HilCorp-Farmington, NM	

PROJECT: FIEIELD 5 / 190009 SDG: L1081533 DATE/TIME: 03/29/19 10:09

PAGE: 12 of 17 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3395471-1 03/27/19 02:52								
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
C10-C28 Diesel Range	U		1.61	4.00				
C28-C40 Oil Range	U		0.274	4.00				
(S) o-Terphenyl	89.3			18.0-148				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3395471-2 03/27/19 03:08 • (LCSD) R3395471-3 03/27/19 03:25										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
C10-C28 Diesel Range	50.0	40.6	39.0	81.2	78.0	50.0-150			4.02	20
(S) o-Terphenyl				119	119	18.0-148				

L1081494-24 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1081494-24 03/27/19 12:12 • (MS) R3395471-4 03/27/19 12:29 • (MSD) R3395471-5 03/27/19 12:45												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	59.7	4160	1500	1750	0.000	0.000	5	50.0-150	$\underline{\vee}$	$\underline{\vee}$	15.5	20
(S) o-Terphenyl					338	408		18.0-148	J1	J1		

Sample Narrative:

OS: Surrogate failure due to matrix interference

 ² Tc
³ Ss
⁴ Cn
 ⁵Sr

⁶Qc ⁷Gl ⁸Al

Sc

PROJECT: FIEIELD 5 / 190009 SDG: L1081533 DATE/TIME: 03/29/19 10:09 PAGE: 13 of 17

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dy)Results are reported based on the dy weight of the sample. [this will only be present on a dy report basis for solis].MDLMethod Detection Limit.NDNot detected at the Reporting Limit (or MDL where applicable).RDLReported Detection Limit.Rec.Recovery.RPDRelative Percent Difference.SDGSample Delivery Group.SDGSample Delivery Group.(s)Surgites (Surgites Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.UNot detected at the Reporting Limit (or MDL where applicable).UNot detected at the Reporting material. the sample preparation volume or weight values differ from the isonatory or an accurately report. Its sample are higher than the highest limit of concentrations of analytes in the sample are higher than the highest limit of concentration with field, the result reported. Successful QC Sample enalysis lif a value different than 1 is used in this field, the result reported within these regortes QL.DilutionThe non-spiked sample in the propet sith used to determine the Relative Percent Difference (RPD) from a quality control sample may be diluted for analysis. If a value different than 1 is used in this field. The result reported in a outpresent register of a sample analysis being in the reported SQL.Original SampleThe non-spiked sample in the prese batch used to determine the Relative Percent Difference (RPD) from a quality control sample result by the laboratory from state. ThO' (NOT Detected) or TBDL' (Redocreminty).ResultRelative encourted of a sampl		
MDL Method Detection Limit. ND Not detected at the Reporting Limit (or MDL where applicable). RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Matrix Spike/Duplicate: used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the report on accurately reported. Dilution the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the reported. Limits The same of the particular compound or analyse in the sem of per them the high-per than 1 is used in the reported. Limits The the sample matrix contains an interfering material, the sample may the diluter high with any the diluter high with any the site of or contains on a maly the site of concentration that the inductate within the sem of the particular contains on analy the set of concentration that the inductate within the sem of the particular contains of the particular contanaly the set of concentration in t	(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
NDNot detected at the Reporting Limit (or MDL where applicable).RDLReported Detection Limit.Rec.Recovery.RPDRelative Percent Difference.SDGSample Detected Difference.SDGSurrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.UNot detected at the Reporting Limit (or MDL where applicable).AnalyteThe name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.DilutionIf the sample matrix contains an interfering material, the sample are higher than the highest limit of concentrations of analytes in the sample are higher than the highest limit of concentration soft analytes in the sample are higher than the highest limit of concentration soft analytes in the sample are higher than the highest limit of concentrations of analytes in the sample are higher than the highest limit of concentration soft analytes in the sample are higher than the highest limit of concentration soft analytes in the sample are higher than the highest limit of concentration soft analytes in the sample are higher than the highest limit of concentration soft analytes in the sample analyte and the soft of analysis. If values different that the inductor of upple ated within the reported SDG.Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The original Sample in the prep batch used to determine the cases variative if apolicable.OullarderThe actual analytical final result (corected for an	MDL	Method Detection Limit.
RDL Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. SQL Synogate Sundard) - Analytes added to every blank, sample. Laboratory Control Sample/Duplicate and Meter Opice/Duplicate; used to evaluate analytical efficiency by messuring recovery. Surrogates are not expected to be detected in the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor. Dilution The non-splice das agnies and the biotecome value that the laboratory with may be alloted for analysis. If a value different than 1 is used in this field, the result in on-splice das agnies allote and provided within the reported has instracely determined as normal for the method and analyte being reported. UC Cample analysis will target all analytes control sample. The Original Sample may not be included within the reported DSG. Original Sample The non-spliced sample in the prep spectra any sample specific characteristics upported or value different the report of DSG. Qualifier The soclum provides a letter and/or number designation that co	ND	Not detected at the Reporting Limit (or MDL where applicable).
Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution Relative Percentions of analytes in the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the standard or if concentrations of analytes in the sample are higher than the highest limit of concentration that the result reported has already been corrected for this factor. Original Sample The non-spiked sample in the prop batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG. Qualifier The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was necessariy and Definitions page and sector in the close and analyte begoting percention. Qualifier The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was necessariy and Definitions page and sector in the calcel analytical final result (corrected for any sample specific characteris	RDL	Reported Detection Limit.
RPD Relative Percent Difference. SDG Sample Delivery Group. Strong der (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate: used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor. Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyste being reported. Successful QC Sample analysis will target all analytes control sample. The Original Sample is prepared in output the included within the reported SDG. Qualifier The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG. Qualifier This column provides a letter and/or number results column should always ba accompanie dby petcethel for ab	Rec.	Recovery.
SDG Sample Delivery Group. (s) Surrogate Standard) - Analytes added to every bank, sample, Laboratory Control Sample/Duplicate, used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes and Methods will have multiple analytes in the sample are higher than the highest limit of concentrations of analytes in the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of societa and analyte being reported. Units The sample Matrix Contains an interfering material. The sample are higher than the laboratory has historically determined as normal for the method and analyte being reported for US (Societa) will target all analytes recovered or analysis. If analytes recovered or analysis is analytes in analytes in analytes in analytes. Original Sample matrix contains an interfering material. The sample area the analytical envices and the report of concentration promoted sa sanot envices analyte.	RPD	Relative Percent Difference.
Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and distributions of analytes and efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media. U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the subtraction of reported in the sample are higher than the highest limit of concentration that the iaboratory can accurately report. If the sample may be diluted for analysis if a value different than 1 is used in this field, the result reported has already been corrected for this factor. Limits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will arget all analytes recovered or duplicated within these ranges. Original Sample The on-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG. Qualifier The actual analytical final result reported for any sample specific characteristics reported for your sample. There was no measurable result returned for a specific character state in applicable. Qualifier The columination of PDL (Reporting Detection Limit) that defines the lowestare of your sample. There analyte a sample receive the wality an	SDG	Sample Delivery Group.
U Not detected at the Reporting Limit (or MDL where applicable). Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample reparation volume or weight values differ from the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the relative reported has already been corrected for this factor. Umits These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or alulicated within these ranges. Original Sample The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control spike. The original Sample may not be included within the reported SDG. Qualifier This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier in the Case Narrative if applicable. Result The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. The Original Sample or a specific analyte, in the casult in this column may state "ND" (NOE betected) or "BDL" (Below Detectable Levels). The information in the results ciclum should always be accompanied by ether an MDL (Redoting betecton Limit) or RDL (Reporting Detecton Limit) or RDL (Reporting Qualifiers the loward y qualifier sused in the re	(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Analyte The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported. Dilution If the sample matrix contains an interfering material, the sample are higher than the highest limit of concentration that the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor. Limits The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG. Qualifier This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable. Qualifier The actual analytical final result (corrected for any sample specific characteristics) reported for you sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. Uncertainty (Radiochemistry) Confidence level of 2 sigma. Confidence level of 2 sigma. Quality Control This section of t	U	Not detected at the Reporting Limit (or MDL where applicable).
DilutionIf the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the result reported has already been corrected for this factor.DilutionThese are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample mary not be included within the reported SDG.QualifierThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample mary not be included within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the case Narrative if applicable.QualifierThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Rediochemistry)Confidence level of 2 sigma.Quality ControlAbrief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory gualifier surged in the result or used of the result in the Case Narrative (Cn)Confidence level of 2 sigma.Quality ControlThis section of the report includes the results of the taboratory is requared	Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
LimitsThese are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualier to the Case Narrative if applicable.ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Quality Control Summary (Qc)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory qualifier or your samples. These analyses are not being performed on your samples typically, but on laboratory ogenerated material.Quality Control Summary (Qc)This section of the report ded in the report.Quality Control Summary (Qc)This section of your samples typically, but on laboratory generated.<	Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Original SampleThe non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Relow Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory guality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples specific analyte, we can analyte addition of collection Limit)Quality ControlThis section of the report includes the results of the laboratory quality control analyses required by procedure or analyt	Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
QualifierThis column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier is provided within the Glossary and Definitions page and no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.Uncertainty 	Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
ResultThe actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.Quality Control Summary (Qc)This section of the report includes the results of the laboratory generated material.Sample Chain of Custody (Sc)This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This samples from the time of collection until delivery to the laboratory of analysis.Sample Results (Sr)This section of the Analytical provide the results of all testing performed on your samples. These results are provided by sample 1D and are separated by the analyses performed on allyses.Sample Chain of custody (Sc)This section of your report will provide the results of all besting performed on your samples. These results are provided by sample ID and are separated by the analyses performed	Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Uncertainty (Radiochemistry)Confidence level of 2 sigma.Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.Quality Control Summary (Qc)This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.Sample Chain of Custody (Sc)This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This samples from the time of collection until delivery to the laboratory for analysis.Sample Results (Sr)This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.Sample Summary (Ss)This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and method number for the analysis.	Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.Quality Control Summary (Qc)This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.Sample Chain of Custody (Sc)This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.Sample Results (Sr)This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.Sample Summary (Ss)This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.	Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Quality ControlThis section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.Sample Chain of Custody (Sc)This is the document created in the field when your samples, and the analyses that the laboratory is requested to perform. This 	Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Sample Chain of Custody (Sc)This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.Sample Results (Sr)This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.Sample Summary (Ss)This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and 	Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Results (Sr)This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.Sample Summary (Ss)This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.	Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Summary (Ss) This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.	Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
	Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: FIEIELD 5 / 190009 SDG: L1081533 DATE/TIME: 03/29/19 10:09

PAGE: 14 of 17

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebra
Alaska	17-026	Neva
Arizona	AZ0612	New I
Arkansas	88-0469	New.
California	2932	New
Colorado	TN00003	New Y
Connecticut	PH-0197	North
Florida	E87487	North
Georgia	NELAP	North
Georgia ¹	923	North
Idaho	TN00003	Ohio-
Illinois	200008	Oklah
Indiana	C-TN-01	Orego
lowa	364	Penns
Kansas	E-10277	Rhode
Kentucky ¹⁶	90010	South
Kentucky ²	16	South
Louisiana	AI30792	Tenne
Louisiana 1	LA180010	Texas
Maine	TN0002	Texas
Maryland	324	Utah
Massachusetts	M-TN003	Verm
Michigan	9958	Virgin
Minnesota	047-999-395	Wash
Mississippi	TN00003	West
Missouri	340	Wisco
Montana	CERT0086	Wyom

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

FIEIELD 5 / 190009

L1081533

PAGE: 15 of 17

03/29/19 10:09

Τс Ss Cn Sr Qc Gl AI Sc

CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields							ent			LAB	USE C	NLY- Affi	Workord	ler/Logi MTJL Lo	n Label og-in Nu	Here or Lis umber Here	st Pace Workorder Number or e		
Company: HilCorp-Farmington	, NM		Billing Information:										ALL SI	HADED	ARE	EAS are for LAB USE ONLY			
Address: 382 Road 3100	n galer staar staar George of Staar			••					-		Cor	ntainer	Preservat	ive Type *	**		Lab Proje	ect Manager:	
Aztec, NM 87401			Houston, TX	29 (77208						F							288 - Dag	phne Richards	
Report To: Clara Co	ardoza		Email To:	Email To: Clardsza@hilcorf.com				** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetat. (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate,						odium hydroxide, (5) zinc acetate, bic acid, (B) ammonium sulfate,					
COPYTO: Preston K	pricab		Site Collection Info/Address:			(C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) U Analyses					Unpreserve	ed, (0) Ot	her	l ab Profile/Line:					
Customer Project Name/Number	/ 190	009	State: C	ounty/Cit	ty: Tii Jan ^{PT}	me Zone Co	ollected: CT	ET					Analyse				Lab Sam	nple Receipt Checklist:	N 602
Phone: 505-486-9543 Email:	Site/Facility I	ID #:		8 	Compliand [] Yes	e Monitori [] No	ing?		0	24	NY:	W					Custody Collect	y Signatures Present Y cor Signature Present	N NA
Collected by (print): Preston Koulan	Purchase Ord Quote #:	der #:		~	DW PWS I DW Locati	D #: on Code:			826	BOU	3010	3010					Correct	E Bottles	N NA N NA N NA
Collected by (signature):	Turnaround	Date Requir	ed: TA	T	Immediate	ely Packed [] No	on Ice:		2	1	2	2	1				VOA - H USDA Re	Headspace Acceptable Y egulated Soils in Holding Time	N CO N NA
Semple Disposal: [] Dispose as appropriate [] Return] Archive Hold	Rush: n []: []2 Day	Same Day [] 3 Day (Expedite C	[] Next Day [] 4 Day [harges Apply)	/] 5 Day	Field Filter [] Yes Analysis: _	red (if appl [] No	icable):	,		GR0	020	- mRo	0				Residua Cl Stri Sample pH Stri	al Chlorine Present Y ips: pH Acceptable Y ips:	N NA
* Matrix Codes (Insert in Matrix b Product (P), Soil/Solid (SL), Oil (Dox below): Dri OL), Wipe (WP	inking Wate), Air (AR), 1	r (DW), Groun Tissue (TS), Bio	nd Water bassay (B)	(GW), Wast), Vapor (V),	ewater (W Other (OT	'W),)		L'	·H'	PH-	74 -	707				Lead Ac	cetate Strips:	-
Customer Sample ID	Matrix *	Comp / Grab	Collecte Composit	ed (or e Start)	Compo	site End	Res Cl	# of Ctns	87	Ŧ	1	F					Lab San	nple # / Comments	
5812 20-21'	55	Grad	Date 3/20/19	0850	Date	Time		1	X	X	X	X						L168	1933-01
SB12 25-26'				0905		25 4 5 2	d.	1-1				11.50	H			-			
5812 35-36'		<u> </u>		0490									H		-15				
5312 40-41'				1000	and a start	Action of the second							H				F	THE SCITEME OF	11
5B12 45-46'				1020		A. S. S. S.							14						
5812 50-51'	24-1			1050		1.17		1912	X		- X	X		1					00
SB13 20-21'				1250		and the second	7.02			2.42		10,704	H						
5313 25-26'	and and the			1300									H			-			
5313 30-31'				1315		and the second	1		X		X	X							03
5813 35-36		1		1330						1 minis		199	H		9	1	1		
Customer Remarks / Special Con	ditions / Possib	ole Hazards:	Type of Ice	Used:	Wet	Blue	Dry	None		SHC	ORT HO	LDS PR	ESENT (<7	2 hours) :	YN	I N//	4	LAB Sample Temperature Info): JH
#Error			Packing Ma	iterial Use	ed:					LAB	Tracki	ng #:	461	36 6	,47	5 9	5479	Temp Blank Received:	9 NA
#Error			Radchem sa	ample(s) s	screened (<	500 cpm):	YN	N NA		Sam	ples re	ceived	via: PS Cli	ent C	ourier	Pace	Courier	Therm ID#: Cooler 1 Temp Upon Receipt	2.0 oc
Relinquished by/Company: (Sign P.Karian (T-Wa)f	ature	tim 3	te/Time:	1200	Received	by/Compar	ny: (Signa	ature)			Date/	Time:			E02	23		Cooler 1 Therm Corr. Factor	Doc P
Relinquished by/Company: (Sign	ature)	Da	te/Time:		Received	by/Compar	ny: (Signa	ature)	en de en		Date/	Time:	Martes	Acctn	um: HIL	CORAN	IM	Comments: Trip Blank Received: Y	N NA
Relinquished by/Company: (Sign	ature)	Da	te/Time:		Received	by/Compar	ny: (Signa	ature) -			Date/	Time: LZ/ 8:7	19	Prelo PM: 2 PB:	gin: 288 - Daj	ohne R	ichards	HCL MeOH TSP NonConformance(s) Pa YES / NO of	Other

			Billing Inf	ormation:	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		9.47	1. A. 14	Analysis	s / Cont	ainer / Pre	servative				(
			ATTN: (Clara Cardoz	a	Pres Chk									Chain of Custo	dy Page
															National	Center for Testing &
Report to: Clara Cardoza		in .	Email To: ccardoz	a@hilcorp.c	om;				(4	541			-		12065 Lebanon R	
Project Description: Asheroft SWD	Fiefiel	d	- I .	City/State Collected:	tec, NM San	Julin	160	2015.11	3015.	801					Mount Juliet, TN 3 Phone: 615-758-5 Phone: 800-767-5	87122 858 859
hone: 5055640733	Client Proje	ct #		Lab Project #	Δ	<u>_///</u>	00	e	le	1	1				Pax. 015-758-5855	66.6
ax:	190	2009													L# LI	08153
allected by (print): Preston Hara Gardoza Kousa	Site/Facility	ID #		P.O. #		PK			0	80					Table #	
ollected by (signature).	Rush? Same	(Lab MUST Be Day	Notified)	Quote #				622	- DR	W	0				Acctnum: HIL Template:	CORANM
nmediately acked on Ice N Y	Next D Two D Three	bay5 Day ay 10 Da Day	(Rad Only) y (Rad Only)	Date Re	sults Needed	No.	TEU	- HJ	- HJ	PH-	tor				Prelogin: TSR:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	00	F	F	$\left + \right $	L				PB: Shipped Via:	
rt Pile - NE	Comp	SS		1/23/2019	4:33 PM	11 9									Remarks	Sample # (lat
13 40-41	Grab	55		3/20/19	1400		X	X	X	X				-		
Bii 20-21				1 ² *	1300	11			-1	~	14					-
BII 25-26'			-	i la	1315		X	X		~	Π			-		
'Bil 30-31'			-		1330			~		~	4			2	and the second s	
BI(35-36'					1345	1		X	X	~	11	F	ADEO			
314 25-26'					1620				~	X	11	Pat		REEN	:<0.5 mp/h	_ (
Biy 30-31'					1146		- 25				FT	-			NO TRAVEL	
14 35-36'	X				1000						11				and the second	
				4	1700						H					
itrix: Soil AIR - Air F - Filter - Groundwater B - Bioassay - WasteWater	Remarks:			I	ad sonern	1 ef 3 m	R\$.		pH _		Temp		COC Se	Sampl al Pre	e Receipt Che esent/Intact:	cklast NP Y
- Drinking Water Other	Samples retur UPSFe	ned via: dEx Courie	er	Tra	acking # 40	01.	C 11	70	Flow_	<u> </u>	Other	. <u>1</u> . 18 	Bottle Correc Suffic	s arri t bott ient v	ve intact: les used: olume sent:	NNN.
equished by : (Signature)	- 12 - 12	Date: 3/21/10	a Tim	ne: Rei	ceived by: (Signatu	re)	64	Tr	ip Blank	Receive	ed: Yes/A	10 Jones	VOA Ze Preser	ro Hea vation	If Applicable dspace: Correct/Check	ked: \underline{Y}
nquished by : (Signature)		Date:	Tim	ne: Red	ceived by: (Signatur	re)		Те	mp:	°C	TBR Bottles Re	ceived:	If preser	vation r	equired by Login:	Date/Time
quished by : (Signature)		Date:	Tim	le: Rec	eived for lab by: (S	ignature)	-	3. Da	0±0:	:30	the	8			,	, mine
A second s					12	11.			>/	1	nme:		Hold:			Condition:

ANALYTICAL REPORT

HilCorp-Farmington, NM

Sample Delivery Group:	L1084213
Samples Received:	03/22/2019
Project Number:	190009
Description:	Fiefield

Report To:

Clara Cardoza 382 Road 3100 Aztec, NM 87401

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¥	

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
SB14 30-31' L1084213-01	5
SB14 35-36' L1084213-02	6
Qc: Quality Control Summary	7
Volatile Organic Compounds (GC) by Method 8015D/GRO	7
Volatile Organic Compounds (GC/MS) by Method 8260B	8
Semi-Volatile Organic Compounds (GC) by Method 8015	9
GI: Glossary of Terms	10
Al: Accreditations & Locations	11
Sc: Sample Chain of Custody	12

SDG: L1084213 DATE/TIME: 04/05/19 10:20

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

			Collected by	Collected date/time	Received dat	te/time
SB14 30-31' L1084213-01 Solid			Preston K.	03/20/19 16:45	03/22/19 08:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1259939	1	04/02/19 16:36	04/03/19 13:38	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1259804	1	04/02/19 16:36	04/03/19 07:17	BMB	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1260485	1	04/03/19 16:34	04/03/19 23:11	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
				02/20/10 17:00	00/00/40 00	20
SB14 35-36' L1084213-02 Solid			Preston K.	03/20/19 1/:00	03/22/19 08:	30
SB14 35-36' L1084213-02 Solid Method	Batch	Dilution	Preston K. Preparation	Analysis	03/22/19 08: Analyst	Location
SB14 35-36' L1084213-02 Solid Method	Batch	Dilution	Preston K. Preparation date/time	Analysis date/time	Analyst	Location
SB14 35-36' L1084213-02 Solid Method Volatile Organic Compounds (GC) by Method 8015D/GRO	Batch WG1259939	Dilution 1	Preparation date/time 04/02/19 16:36	Analysis date/time 04/03/19 13:58	Analyst JHH	Location Mt. Juliet, TN
SB14 35-36' L1084213-02 Solid Method Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	Batch WG1259939 WG1259804	Dilution 1 1	Preston K. Preparation date/time 04/02/19 16:36 04/02/19 16:36	Analysis date/time 04/03/19 13:58 04/03/19 07:37	JHH BMB	Location Mt. Juliet, TN Mt. Juliet, TN

*

Ср

Tc

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Project Manager

SDG: L1084213

0

PAGE: 4 of 13

Ss

AI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		2
TPH (GC/FID) Low Fraction	0.120	В	0.100	1	04/03/2019 13:38	WG1259939	Tc
(S) a,a,a-Trifluorotoluene(FID)	97.4		77.0-120		04/03/2019 13:38	WG1259939	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4 Cn
Analyte	mg/kg		mg/kg		date / time		
Benzene	0.00813		0.00100	1	04/03/2019 07:17	WG1259804	5
Toluene	0.0256		0.00500	1	04/03/2019 07:17	WG1259804	ँSr
Ethylbenzene	ND		0.00250	1	04/03/2019 07:17	WG1259804	
Total Xylenes	0.0294		0.00650	1	04/03/2019 07:17	WG1259804	⁶ Oc
(S) Toluene-d8	108		75.0-131		04/03/2019 07:17	WG1259804	QC
(S) a,a,a-Trifluorotoluene	102		80.0-120		04/03/2019 07:17	WG1259804	7
(S) 4-Bromofluorobenzene	105		67.0-138		04/03/2019 07:17	WG1259804	GI
(S) 1,2-Dichloroethane-d4	97.2		70.0-130		04/03/2019 07:17	WG1259804	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	9 6
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	ND		4.00	1	04/03/2019 23:11	WG1260485	
C28-C40 Oil Range	ND		4.00	1	04/03/2019 23:11	WG1260485	
(S) o-Terphenyl	69.3		18.0-148		04/03/2019 23:11	WG1260485	

Ss

AI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		2
TPH (GC/FID) Low Fraction	ND		0.100	1	04/03/2019 13:58	WG1259939	Tc
(S) a,a,a-Trifluorotoluene(FID)	99.3		77.0-120		04/03/2019 13:58	WG1259939	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cr
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND	J3	0.00100	1	04/03/2019 07:37	WG1259804	5
Toluene	ND	<u>J3</u>	0.00500	1	04/03/2019 07:37	WG1259804	۲. Sr
Ethylbenzene	ND	<u>J3</u>	0.00250	1	04/03/2019 07:37	WG1259804	
Total Xylenes	ND	<u>J3</u>	0.00650	1	04/03/2019 07:37	WG1259804	6
(S) Toluene-d8	105		75.0-131		04/03/2019 07:37	WG1259804	
(S) a,a,a-Trifluorotoluene	102		80.0-120		04/03/2019 07:37	WG1259804	7
(S) 4-Bromofluorobenzene	105		67.0-138		04/03/2019 07:37	WG1259804	Í GI
(S) 1,2-Dichloroethane-d4	93.2		70.0-130		04/03/2019 07:37	WG1259804	

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁹ Cc
Analyte	mg/kg		mg/kg		date / time		SC
C10-C28 Diesel Range	ND		4.00	1	04/03/2019 22:55	WG1260485	
C28-C40 Oil Range	ND		4.00	1	04/03/2019 22:55	WG1260485	
(S) o-Terphenyl	60.5		18.0-148		04/03/2019 22:55	WG1260485	

WG1259939

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3398107-5 04/03/19 12:06						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
TPH (GC/FID) Low Fraction	0.0305	J	0.0217	0.100		
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3398107-3 04/03/19 11:05 • (LCSD) R3398107-4 04/03/19 11:26										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.97	5.89	109	107	72.0-127			1.35	20
(S) a.a.a-Trifluorotoluene(FID)				94.0	93.3	77.0-120				

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3398075-2 04/03/1	9 01:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	111			75.0-131
(S) a,a,a-Trifluorotoluene	101			80.0-120
(S) 4-Bromofluorobenzene	109			67.0-138
(S) 1,2-Dichloroethane-d4	99.5			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3398075-1 04/02/1	(LCS) R3398075-1 04/02/19 23:35						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
Benzene	0.125	0.124	98.8	70.0-123			
Ethylbenzene	0.125	0.130	104	74.0-126			
Toluene	0.125	0.115	92.0	75.0-121			
Xylenes, Total	0.375	0.365	97.3	72.0-127			
(S) Toluene-d8			102	75.0-131			
(S) a,a,a-Trifluorotoluene			98.3	80.0-120			
(S) 4-Bromofluorobenzene			101	67.0-138			
(S) 1,2-Dichloroethane-d4			95.8	70.0-130			

L1084213-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1084213-02 04/03/19 07:37 • (MS) R3398075-3 04/03/19 07:58 • (MSD) R3398075-4 04/03/19 08:18

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.125	ND	0.0751	0.135	60.1	108	1	10.0-149		<u>J3</u>	56.8	37
Ethylbenzene	0.125	ND	0.0815	0.145	65.2	116	1	10.0-160		<u>J3</u>	56.3	38
Toluene	0.125	ND	0.0756	0.137	60.5	109	1	10.0-156		<u>J3</u>	57.6	38
Xylenes, Total	0.375	ND	0.243	0.434	64.8	116	1	10.0-160		<u>J3</u>	56.4	38
(S) Toluene-d8					109	108		75.0-131				
(S) a,a,a-Trifluorotoluene					101	101		80.0-120				
(S) 4-Bromofluorobenzene					106	106		67.0-138				
(S) 1,2-Dichloroethane-d4					94.9	94.4		70.0-130				

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:
lilCorp-Farmington, NM	190009	L1084213	04/05/19 10:20

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) R3398241-1 04/03/19 21:48						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
C10-C28 Diesel Range	U		1.61	4.00		
C28-C40 Oil Range	U		0.274	4.00		
(S) o-Terphenyl	60.2			18.0-148		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3398241-2 04/03/19 22:06 • (LCSD) R3398241-3 04/03/19 22:23										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Extractable Petroleum Hydrocarbon	50.0	33.8	31.3	67.6	62.6	50.0-150			7.68	20
C10-C28 Diesel Range	50.0	32.7	29.9	65.4	59.8	50.0-150			8.95	20
(S) o-Terphenyl				91.1	86.5	18.0-148				

Â

Sc

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nobraska
AldUdIIId	40000	Nedraska
Alaska	17-026	Nevada
Arizona	AZ0612	New Hampshi
Arkansas	88-0469	New Jersey–N
California	2932	New Mexico ¹
Colorado	TN00003	New York
Connecticut	PH-0197	North Carolina
Florida	E87487	North Carolina
Georgia	NELAP	North Carolina
Georgia ¹	923	North Dakota
ldaho	TN00003	Ohio-VAP
Illinois	200008	Oklahoma
Indiana	C-TN-01	Oregon
lowa	364	Pennsylvania
Kansas	E-10277	Rhode Island
Kentucky ¹⁶	90010	South Carolina
Kentucky ²	16	South Dakota
Louisiana	Al30792	Tennessee ¹⁴
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washington
Mississippi	TN00003	West Virginia
Missouri	340	Wisconsin
Montana	CERT0086	Wyoming

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

HilCorp-Farmington, NM

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

190009

L1084213

PAGE: 11 of 13

04/05/19 10:20

Τс Ss Cn Sr Qc Gl AI Sc

		Billing		ling Information:						Analysis	s / Conta	iner / Pre	eservative			Chain of Custody	v Page 2 of 2
		ATTN: (TTN: Clara Cardoza			es ik									- Pace	2 ace Analytical* snat Center for Toating & Innovation	
Report to: Clara Cardoza			Email To: ccardoz	a@hilcorp	a@hilcorp.com;			6	0	3	54					12065 Lebanon Rd	
Project Description: Asherpft SWD-	Fiefi	ild		City/State & Sar Ju Collected: Aztec, NM- Sar Ju			ny	1260	305.0	8015	8					Phone: 615-758-58 Phone: 800-767-58 Fax: 615-758-5859	158 59
Phone: 5055640733	Client Pro	0000		Lab Project #				6	Pa	1	1					L# L-	081533
Collected by (print): Preston	Site/Facility ID #		P.O. #		Mithodomialexs(consort)	PK-		0	0	80					Table #		
Collected by (signature)	Same Day		Quote #		etals	X	622	- DR	W-	01				Template:	CORANM		
mnudiately Packed on Ice N Y	Two Two Three	b Day 51 b Day 10 be Day	-ay (Rad Only) Day (Rad Only)	Date	e Results Needed	No. of	A 8 M	375	Hd	HUL	to H	HOL				TSR: PB:	
Sample ID	Comp/Gr	rab Matrix *	Depth	Date	Time	Cnti	RCR	Contract of the second	10		1	1				Shipped Via:	Samula
)irt Pile - NE	Comp	<u>\$\$</u>		1/23/20	119 4:33 PM	14	×	2							-		omripi≋# (lab only)
5813 40-41'	Gral	b 55		3/201	19 1400	1		X	X	X	X					+	
5811 20-21					1300	T	1.5			t	1	H				+	-69
SB11 25-26'					1315			X	X	X	X	1.6			-	+	-
SB11 30-31'					1330	+			-	F)	-	H			-	+	05
SB11 35-36'					1345	- -		X	X	X	V	41	A	ADSI	BEF		
814 25-26'					1630			T	-	É		H	P.P.	-	THE.	50.5 mg/h	04
SB14 30-31'					1645	77						H				61084213	
3014 35-36'	X				1700	7 -						11					-01
												11				+	00
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - OtherUPS'FedExCourier				RAD SONETH			ί\$.		рН	I			coc a	Samp Seal Pr ligned/	Le Receipt Che esent/Intact: Accurate:	CRAST Y N	
		turned via: FedExCo	urier		6	Flow Other						Bott. Corre Suffi	es arr ect bot cient	tive intact: ties used: volume sent: if Applicable			
Relinguished by : (Signature)	Date: 11 3/21/19		119	ime: 1200			1	Trip Blank Received: Yes /No HCtr/MeoH				VOA Prese	VOA Zero Headspace:YN Preservation Correct/Checked:YN				
elinquished by : (Signature)	Date: Ti		ime:	Received by: (Signature)				Temp: °C Bottles Received:					If preservation required by Login: Date/Time				
Relinquished by : (Signature) Date: T		- crea	ime:	e: Received for lab by: (Signature)					Date: Time: 3/22/19 2:30				Hold: Candition: NCF //OK			Condition:	

Jeremy W. Watkins

From: Sent: To: Subject: Daphne Richards Friday, March 29, 2019 3:33 PM Login Taking samples off HOLD 03-0126 HILCORANM

Refer to 03-0126 Please log sample ids: SB14 30-31 SB14 35-36

For V8260BTEX GRO and DRORLA. Samples OOH 4/3

Thanks

L1084213