Michelle Lujan Grisham Governor

Sarah Cottrell Propst Cabinet Secretary

Todd E. Leahy, JD, PhD Deputy Secretary Adrienne Sandoval, Division Director Oil Conservation Division

New Mexico Oil Conservation Division approval and conditions listed below are made in accordance with OCD Rule 19.15.7.11 and are in addition to the actions approved by BLM on the following <u>3160-3</u> APD form.

Operator Signature Date: _4/25/2019__ Well information; Operator__Enduring__, Well Name and Number_Rodeo Unit 495H____

API#__45-38170____, Section_31_, Township __23_N/S, Range __8_E/W

Conditions of Approval: (See the below checked and handwritten conditions)

- ✓ Notify Aztec OCD 24hrs prior to casing & cement.
- ✓ If cement doesn't circulate on any casing string or stage tool a CBL will be required. Contact the regulatory agencies prior to proceeding.
- ✓ Hold C-104 for directional survey & "As Drilled" Plat
- ✓ Hold C-104 for: <u>NSL</u>, NSP, DHC, <u>5.9 Compliance</u>
- Spacing rule violation. Operator must follow up with change of status notification on other well to be shut in or abandoned
- Regarding the use of a pit, closed loop system or below grade tank, the operator must comply with the following as applicable:
 - A pit requires a complete C-144 be submitted and approved prior to the construction or use of the pit, pursuant to 19.15.17.8.A
 - A closed loop system requires notification prior to use, pursuant to 19.15.17.9.A
 - A below grade tank requires a registration be filed prior to the construction or use of the below grade tank, pursuant to 19.15.17.8.C
- Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string
- o Submit Gas Capture Plan form prior to spudding or initiating recompletion operations
- ✓ Regarding Hydraulic Fracturing, review EPA Underground Injection Control Guidance 84
- ✓ Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.
- ✓ Well-bore communication is regulated under 19.15.29 NMAC. This requires well-bore Communication to be reported in accordance with 19.15.29.8.
- ✓ Submit sundry correcting proposed depths reported on Federal form

Frandom Dand

NMOCD Approved by Signature

_5/8/2020____

1220 South St. Francis Drive • Santa Fe, New Mexico 87505 Phone (505) 476-3460 • Fax (505) 476-3462 • www.emnrd.state.nm.us/ocd

Date

Form 3160-3 (June 2015) UNITED STAT DEPARTMENT OF TH		NMOCD REC'I 3-19-2020	FORM OMB N	APPROVED o. 1004-0137 inuary 31, 2018
BUREAU OF LAND MA			N0G14021893	
APPLICATION FOR PERMIT TO	DRILL OR	REENTER	6. If Indian, Allotee EASTERN NAVAJ	
1a. Type of work:	REENTER		7. If Unit or CA Age NMNM136328A	reement, Name and No.
1b. Type of Well: Ib. Type of Well: Ib. Type of Completion: Ib. Type of Completion:	Other	✔ Multiple Zone	8. Lease Name and RODEO UNIT 495H	Well No.
2. Name of Operator ENDURING RESOURCES LLC			9 API Well No.	5.38170
3a. Address 1050 17TH ST STE 2500 DENVER CO 80265	3b. Phone 1 (505)386-8	No. (include area code)	10. Field and Pool, MANCOS / BASIN	
 Location of Well (Report location clearly and in accordan At surface NWNW / 225 FNL / 895 FWL / LAT 36.1 At proposed prod. zone SESE / 330 FSL / 199 FEL / 	90011 / LONG	-107.728479	11. Sec., T. R. M. of SEC 31 / T23N / R	r Blk. and Survey or Area 8W / NMP
14. Distance in miles and direction from nearest town or post 53.9 miles	office*		12. County or Parish SAN JUAN	h 13. State NM
15. Distance from proposed* 20 feet location to nearest property or lease line, ft. (Also to nearest drig. unit line, if any)	16. No of a 161.73	cres in lease 17. Sp 641.4	acing Unit dedicated to t 8	his well
 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	19. Propose 3350 feet /		.M/BIA Bond No. in file NMB001492 / IND: RL	
21. Elevations (Show whether DF, KDB, RT, GL, etc.) 6680 feet	22. Approx 06/01/2019	imate date work will start*	23. Estimated durat 30 days	ion
	24. Atta	chments		
 The following, completed in accordance with the requiremen (as applicable) 1. Well plat certified by a registered surveyor. 2. A Drilling Plan. 3. A Surface Use Plan (if the location is on National Forest Stupportion Structure) 	ystem Lands, the	4. Bond to cover the opera Item 20 above).	tions unless covered by a	n existing bond on file (see
25. Signature (Electronic Submission)		e (Printed/Typed) y Granillo / Ph: (505)947-1	704	Date 04/25/2019
Title Permitting Specialist				
Approved by (Signature) (Electronic Submission)		e (Printed/Typed) ard Fields / Ph: (505)564-7	612	Date 03/19/2020
Title Field Manager		MINGTON	Rin and a	
Application approval does not warrant or certify that the appl applicant to conduct operations thereon. Conditions of approval, if any, are attached.	licant holds legal	or equitable title to those rig	hts in the subject lease w	hich would entitle the
Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 121 of the United States any false, fictitious or fraudulent statemet	2, make it a criments or representa	he for any person knowingly tions as to any matter within	and willfully to make to its jurisdiction.	any department or agency

(Continued on page 2)

AV

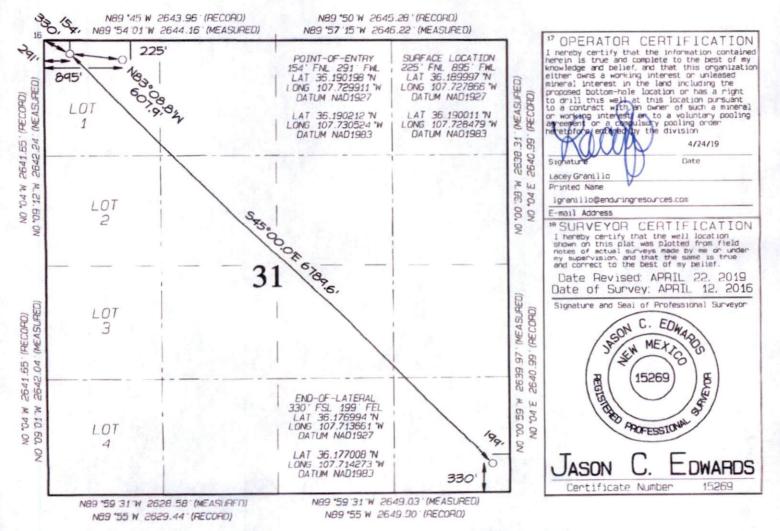
KP

*(Instructions on page 2)

District I 1625 N. French Drive, Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II B11 S. First Street, Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road. Aztec. NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV 1220 S. St. Francis Drive, Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department

Form C-102 Revised August 1, 2011


Submit one copy to Appropriate District Office

AMENDED REPORT

OIL CONSERVATION DIVISION 1220 South St. Francis Drive Santa Fe, NM 87505

			WELL L			CREAGE DEDI	*Pool Nam		
	API Numbe)-045-38			*Pool Coo 97232	A CONTRACTOR OF		BASIN MAN		
*Property 32125				'		ty Name) UNIT		* W	ell Number 495H
'OGRID 37228				EN		on Name SOURCES, LLC		5	Elevation 6680'
					¹⁰ Sur face	Location			
ul or lot no.	Section	Township	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
D	31	23N	8W	1	225	NORTH	895	WEST	SAN JUAN
	1		11 Botto	m Hole	Location	If Different	From Surfac	е	1
UL or lot no.	Section	Townshap	Range	Lot Idn	Feet from the	North/South line	Feet from the	East/West line	County
P	31	23N	8W	The state	330	SOUTH	199	EAST	SAN JUAN
¹² Dedicated Acres 641.48		ntire Se	ection	31	¹³ Joint or Infill	¹⁴ Consolidation Code	¹⁵ Orden No.	-14313	

NO ALLOWABLE WILL BE ASSIGNED TO THIS COMPLETION UNTIL ALL INTERESTS HAVE BEEN CONSOLIDATED OR A NON-STANDARD UNIT HAS BEEN APPROVED BY THE DIVISION

ENDURING RESOURCES IV, LLC 1050 SEVENTEENTH STREET, SUITE 2500 DENVER, COLORADO 80265

DRILLING PLAN:

Drill, complete, and equip single lateral in the Mancos-Cms formation

WELL INFORMATION:

-					
	Name:	RODEO UNIT 495H			
	API Number:	30-045-			
	State:	New Mexico			
	County:	San Juan			
	Surface Elevation:	6,680 ft ASL (GL)	6,705 ft ASL (KB)		
	Surface Location:	31-23N-08W Sec-Twn-Rng	225 ft FNL	895 ft FWL	
		36.190011 ° N latitude	107.728479 ° W longitude	(NAD 83)	
	BH Location:	31-23N-08W Sec-Twn-Rng	330 ft FSL	199 ft FEL	
		36.177008 ° N latitude	107.714273 ° W longitude	(NAD 83)	
	Driving Directions:	FROM THE INTERSECTION OF	US HWY 550 & US HWY 64 IN	BLOOMFIELD, NM: South on US Hwy	550 for 38.7 miles
	8			; Right (West) on 7940 for 2.6 miles, nit 492H Pad (includes wells 492H, 49	

496H).

GEOLOGIC AND RESERVOIR INFORMATION:

rognosis:	Formation Tops	TVD (ft ASL)	TVD (ft KB)	MD (ft KB)	O/G/W	Pressure
1	Ojo Alamo	6,431	274	274	W	normal
	Kirtland	6,310	395	395	w	normal
	Fruitland	6,105	600	600	G, W	sub
	Pictured Cliffs	5,798	907	907	G, W	sub
	Lewis	5,750	955	956	G, W	normal
	Chacra	5,365	1,340	1,353	G, W	normal
	Cliff House	4,289	2,416	2,564	G, W	sub
	Menefee	4,283	2,422	2,570	G, W	normal
	Point Lookout	3,303	3,402	3,682	G, W	normal
	Mancos	3,090	3,615	3,901	O,G	sub (~0.38)
	Gallup (MNCS_A)	2,860	3,845	4,141	O,G	sub (~0.38)
	MNCS_B	2,760	3,945	4,258	O,G	sub (~0.38)
	MNCS_Cms	2,635	4,070	4,441	O,G	sub (~0.38)
	P.O.E. TARGET	2,535	4,170	4,932	O,G	sub (~0.38)
	PROJECTED TD	2,590	4,115	11,722	O,G	sub (~0.38)

Surface: Nacimiento

Oil & Gas Zones: Several gas bearing zones will be encountered; target formation is the Gallup

Pressure:	Normal (0.43 psi/ft) or sub-n	ormal press	ure gradients	anticipated in all formations		
	Max. pressure gradient:	0.43	psi/ft	Evacuated hole gradient:	0.22	psi/ft
	Maximum anticipated BH pr	essure, assu	iming maxim	um pressure gradient:	1,800	psi
	Maximum anticipated surface	ce pressure,	assuming pa	artially evacuated hole:	890	psi
moratura	Maximum anticipated BHT	125° For la	229			

Temperature: Maximum anticipated BHT is 125° F or less

H₂S INFORMATION:

H 2 S Zones: Encountering hydrogen-sulfide bearing zones is NOT anticipated.

Safety: Sensors and alarms will be placed in the substructure, on the rig floor, above the pits, and at the shakers.

LOGGING, CORING, AND TESTING:

Mud Logs: None planned; gas detection from drill out of 13-3/8" casing to TD; remote geo-steering from drill out of 9-5/8" casing to TD.

MWD / LWD: MWD surveys with inclination and azimuth in 100' stations (minimum) from drill out of 13-3/8" casing to TD; Gamma Ray from drill out of 9-5/8" casing to TD; Gamma Ray optional in 12-1/4" intermediate hole

Open Hole Logs: None planned

Testing: None planned

Coring: None planned

Cased Hole Logs: CBL on 5-1/2" casing from deepest free-fall depth to surface

DRILLING RIG INFORMATION:

Contractor: Aztec

Rig No.: 1000

Draw Works: E80 AC 1,500 hp

Mast: Hyduke Triple (136 ft, 600,000 lbs, 10 lines)

Top Drive: NOV IDS-350PE (350 ton)

Prime Movers: 4 - GE Jenbacher Natural Gas Generator

Pumps: 2 - RS F-1600 (7,500 psi)

BOPE 1: Cameron double gate ram (13-5/8", 3,000 psi)

BOPE 2: Cameron annular (13-5/8", 5,000 psi)

Choke Cameron (4", 10,000 psi)

KB-GL (ft): 25

Note: Actual drilling rig may vary depending on availability at time the well is scheduled to be drilled.

BOPE REQUIREMENTS:

See attached diagram for details regarding BOPE specifications and configuration.

- 1) Rig will be equipped with upper and lower kelly cocks with handles available.
- 2) Inside BOP and TIW valves will be available to use on all sizes and threads of drill pipe used while drilling the well.
- 2) BOP accumulator will have enough capacity to open the HCR valve, close all rams and annular preventer, and retain minimum of 200 psi above precharge on the closing manifold without the use of closing pumps. The fluid reservoir capacity shall be at least double the usable fluid volume of the accumulator system capacity, and the fluid level shall be maintained at manufacturer's recommendation. There will be two additional sources of power for the closing pumps (electric and air). Sufficient nitrogen bottles will be available and will be recharged when pressure falls below manufacturer's recommended minimum.
- 3) BOP testing shall be conducted (a) when initially installed, (b) whenever any seal is broken or repaired, (c) if the time since the previous test exceeds 30 days. Tests will be conducted using a test plug. BOP ram preventers will be tested to 3,000 psig for 10 minutes, and the annular preventer will be tested to 1,500 psi for 10 minutes. Ram and annular preventers will be tested to 250 psi for 5 minutes. Additionally, BOP and casing strings will be tested to .22 psi/ft or 1,500 psi, whichever is greater but not exceeding 70% of yield strength of the casing, for 30 minutes, prior to drilling out 13-3/8" and 9-5/8" casing. Rams and hydraulically operated remote choke line valve will be function tested daily at a minimum.
- 4) Remote valve for BOP rams, HCR, and choke shall be placed in a location that is readily available to the driller. The remote BOP valve shall be capable of closing and opening the rams.
- 5) Manual locking devices (hand wheels) shall be intalled on rams. A valve will be installed on the annular preventer's closing line as close as possible to the preventer to act as a locking device. The valve will be maintained in the open position and shall only be closed when the there is no power to the accumulator.

FLUIDS AND SOLIDS CONTROL PROGRAM:

Fluid Measurement:	Pumps shall be equipped with stroke counters with displays in the dog-house. Slow pump speed shall be recorded daily and after mudding up, at a minimum, on the drilling report. A Pit Volume Totalizer will be installed and the readout will be displayed in the dog-house. Gas-detecting equipment will be installed at the shakers, and readouts will be available in the dog-house and the in the geologist's work-station (if geologist or mud-logger is on-site).
Closed-Loop System:	A fully, closed-loop system will be utilized. The system will consist of above-ground piping and above-ground
	storage tanks and bins. The system will not entail any earthen pits, below-grade storage, or drying pads. All equipment will be disassembled and removed from the site when drilling operations cease. The system will be capable of storing all fluids and generated cuttings and of preventing uncontrolled releases of the same. The system will be operated in an efficient manner to allow the recycling and reuse of as much fluid as possible and to minimimize the amount of fluids and solids that require disposal.
Fluid Disposal :	Fluids that cannot be reused, recycled, or returned to the supplier will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or Envirotech, Inc.).
Solids Disposal :	Drilling solids will be stored (until haul-off) on-site in separate containers with no other waste, debris, or garbage products. Waste solids will be hauled to and disposed of at an approved disposal site (Industrial Ecosystem, Inc. or
	Envirotech, Inc.).

Fluid Program: See "Detailed Drilling Plan" section for specifics.

DETAILED DRILLING PLAN:

SURFACE: Drill vertically to casing setting depth (plus necessary rathole), run casing, cement casing to surface. Hole Section Length: 350 ft 0 ft (MD) 350 ft (MD) to 350 ft 0 ft (TVD) to 350 ft (TVD) **Casing Required:** Note: Surface hole may be drilled, cased, and cemented with a smaller rig in advance of the drilling rig. FL YP (mL/30 min) PV (cp) (lb/100 sqft) Comments MW (ppg) pH Fluid: Type N/C 2 - 12 9.0 Spud mud Fresh Water 8.4 2-8 Hole Size: 17-1/2" Bit / Motor: Mill Tooth or PDC, no motor MWD / Survey: No MWD, deviation survey Logging: None Tens. Conn Tens. Body (lbs) Wt (lb/ft) Grade Conn. Collapse (psi) Burst (psi) (lbs) **Casing Specs:** 2,730 853,000 909,000 13.375 54.5 J-55 BTC 1,130 Specs 800 116,634 116,634 153 Loading 7.79 7.39 3.41 7.31 Min. S.F. Assumptions: Collapse: fully evacuated casing with 8.4 ppg equivalent external pressure gradient Burst: maximum anticipated surface pressure with 9.5 ppg fluid inside casing while drilling intermediate hole and 8.4 ppg equivalent external pressure gradient Tension: buoyed weight in 8.4 ppg fluid with 100,000 lbs over-pull Optimum: N/A Maximum: N/A MU Torque (ft lbs): Minumum: N/A Make-up as per API Buttress Connection running procedure. Casing Details: Float shoe, 1 jt casing, float collar, casing to surface Centralizers: 2 centralizers per jt stop-banded 10' from each collar on bottom 3 jts, 1 centralizer per 2 jts to surface Planned TOC Total Cmt Hole Cap. Yield Water (ft MD) (sx) Cement: Weight (ppg) (cuft/sk) (gal/sk) (cuft/ft) % Excess Type 100% 0 414 0.6946 Class G 1.174 5.15 15.8 Calculated cement volumes assume gauge hole and the excess noted in table Halliburton HALCEM surface cementing blend Notify NMOCD & BLM if cement is not circulated to surface. Cement must achieve 500 psi compressive strength

INTERMEDIATE: Drill as per directional plan to casing setting depth, run casing, cement casing to surface	INTERMEDIATE:	as per directional plan to co	ising setting depth, run casing	g, cement casing to surface.
---	---------------	-------------------------------	---------------------------------	------------------------------

and the second	350	ft (MD)	to	4,003	B ft (MD)	Hole Se	ection Length:	3,653 f
	350	ft (TVD)	to	3,71	5 ft (TVD)	Cas	ing Required:	4,003 f
Fluid:	Туре	MW (ppg)	FL (mL/30 min)	PV (cp)	YP (lb/100 sqft)	рН	Comn	nents
	LSND	8.8 - 9.5	20	8 - 14	8 - 14	9.0 - 9.5		
Hole Size:	12-1/4"							
Bit / Motor:	PDC w/mud m	notor						
MWD / Survey:	MWD surveys	with inclinatio	n and azimuth in	100' statio	ns (minimum), G	R optional		
Logging:	None							
Pressure Test:	NU BOPE and	test (as noted	above); pressure	e test 13-3/8	" casing to	1,500	psi for 30 minu	and the second se
							Tens. Body	Tens. Conn
Casing Specs:		Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	(lbs)	(lbs)
Specs	9.625	36.0	J-55	LTC	2,020	3,520	564,000	453,000
Loading	to The States and				1,623	1,102	225,669	225,669
Min. S.F.					1.24	3.19	2.50	2.01
	Assumptions:	Collapse: fully	evacuated casin	g with 8.4 p	pg equivalent ex	ternal pressure	e gradient	
			um anticipated s					ing
			le and 8.4 ppg e					
			ed weight in 8.4					
To any the thirds					Maximum:	6,500		
U Torque (ft lbs):	Minumum:	3,900	Optimum:	5,200	waximum.	0,500		
	a second second and the second s		collar, casing to s				2 11 11 11 11	
Centralizers:	2 centralizers	per jt stop-bar	ded 10' from ea		bottom 3 jts, 1 c	the second s		
			Yield	Water	1.	Planned TOC	Total Cmt	
Cement:	Туре	Weight (ppg)	(cuft/sk)	(gal/sk)	% Excess	(ft MD)	(sx)	
	G:POZ Blend	12.3	1.987	10.16	40%	0	785	
Lead	G.I OL DICHIG							
Lead Tail	Class G	15.8	1.148	4.98	10%	3,503	150	
		15.8 cuft/ft	1.148 9-5/8" casing x			3,503	150	
Tail	Class G		1	13-3/8" cas	ing annulus	3,503	150	
Tail	Class G 0.3627 0.3132	cuft/ft cuft/ft	9-5/8" casing x	13-3/8" casi 12-1/4" hole	ing annulus e annulus		150	
Tail	Class G 0.3627 0.3132 Calculated cer	cuft/ft cuft/ft ment volumes	9-5/8" casing x 9-5/8" casing x assume gauge h	13-3/8" casi 12-1/4" hole ole and the o	ing annulus e annulus		150	
Tail	Class G 0.3627 0.3132 Calculated cer Halliburton EC	cuft/ft cuft/ft ment volumes CONOCEM & H	9-5/8" casing x 9-5/8" casing x assume gauge he ALCEM cementin	13-3/8" cash 12-1/4" hole ole and the o ng blend	ing annulus e annulus excess noted in t	able		ive strength
Tail	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer	9-5/8" casing x 9-5/8" casing x assume gauge h	13-3/8" cash 12-1/4" hole ole and the o ng blend	ing annulus e annulus excess noted in t	able		ive strength
Tail	Class G 0.3627 0.3132 Calculated cer Halliburton EC	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer	9-5/8" casing x 9-5/8" casing x assume gauge he ALCEM cementin	13-3/8" cash 12-1/4" hole ole and the o ng blend	ing annulus e annulus excess noted in t	able		ive strength
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling	cuft/ft cuft/ft ment volumes of CONOCEM & H. D & BLM if cer g out.	9-5/8" casing x 9-5/8" casing x assume gauge he ALCEM cementin ment is not circu	13-3/8" casi 12-1/4" hole ole and the o og blend lated to sur	ing annulus e annulus excess noted in ta face. Cement mu	able ust achieve 50		ive strength
Tail	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD fol	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing directio	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu	13-3/8" cas 12-1/4" hole ole and the og blend lated to sur sing, cemen	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa	able ust achieve 50 ce.	0 psi compress	
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD fol 4,003	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing directio ft (MD)	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu anal plan, run ca to	13-3/8" cas 12-1/4" hold ole and the ing blend lated to sur sing, cemen 11,72	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD)	able ust achieve 50 ce. Hole Se	0 psi compress ection Length:	7,719
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD fol 4,003	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing directio	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu	13-3/8" cas 12-1/4" hold ole and the ing blend lated to sur sing, cemen 11,72	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa	able ust achieve 50 ce. Hole Se	0 psi compress	7,719
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD fol 4,003	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD)	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to	13-3/8" cash 12-1/4" hold ole and the o ng blend lated to sur sing, cemen 11,72 4,11	ing annulus e annulus excess noted in th face. Cement mu face. Cement mu face face for the surfa t casing to surfa t (MD) 5 ft (TVD)	able ust achieve 50 ce. Hole So Cas	0 psi compress ection Length: sing Required:	ive strength 7,719 11,722
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD)	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to to	13-3/8" cash 12-1/4" hold ole and the ole og blend lated to sur sing, cemen 11,72 4,11 3,62	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD)	able ust achieve 50 ce. Hole So Cas 3,350	0 psi compress ection Length: sing Required: ft (TVD)	7,719
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Emated Landing	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.):	13-3/8" cas 12-1/4" hold ole and the ole and the ole lated to sur sing, cemen 11,72 4,11 3,62 4,93	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD)	able ust achieve 50 ce. Hole So Cas 3,350	0 psi compress ection Length: sing Required:	7,719
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Emated Landing	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to to	13-3/8" cas 12-1/4" hold ole and the ole and the ole lated to sur sing, cemen 11,72 4,11 3,62 4,93	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD)	able ust achieve 50 ce. Hole So Cas 3,350	0 psi compress ection Length: sing Required: ft (TVD)	7,719
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Emated Landing	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.):	13-3/8" cas 12-1/4" hold ole and the ole and the ole lated to sur sing, cemen 11,72 4,11 3,62 4,93	ing annulus e annulus excess noted in the face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD) 0 ft (MD)	able ust achieve 50 ce. Hole So Cas 3,350	0 psi compress ection Length: sing Required: ft (TVD)	7,719
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Emated Landing	9-5/8" casing x 9-5/8" casing x assume gauge he ALCEM cemention ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.): ateral Length:	13-3/8" casi 12-1/4" hold ole and the o g blend lated to sur sing, cemen 11,72 4,11 3,62 4,93 6,79	ing annulus e annulus excess noted in the face. Cement mu face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD) 0 ft (MD) YP	able ust achieve 50 ce. Hole Sc Ca: 3,350 4,170	0 psi compress ection Length: sing Required: ft (TVD) ft (TVD)	7,719 11,722
Tail Annular Capacity	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Emated Landing	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.):	13-3/8" cas 12-1/4" hold ole and the ole and the ole lated to sur sing, cemen 11,72 4,11 3,62 4,93	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD) 0 ft (MD) YP (Ib/100 sqft)	oble ust achieve 50 ce. Hole So Ca: 3,350 4,170 pH	0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) Comr	7,719 11,722 ments
Tail Annular Capacity <u>PRODUCTION:</u>	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Estimated L	9-5/8" casing x 9-5/8" casing x assume gauge he ALCEM cemention ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.): ateral Length:	13-3/8" casi 12-1/4" hold ole and the o g blend lated to sur sing, cemen 11,72 4,11 3,62 4,93 6,79	ing annulus e annulus excess noted in the face. Cement mu face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD) 0 ft (MD) YP	able ust achieve 50 ce. Hole Sc Ca: 3,350 4,170	0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) Comr	7,719 11,722
Tail Annular Capacity <u>PRODUCTION:</u> Fluid:	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715 Estin Estin	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Estimated L MW (ppg)	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.): ateral Length: FL (mL/30')	13-3/8" casi 12-1/4" hold ole and the ole ole and the ole ole blend lated to sur sing, cemen 11,72 4,11 3,62 4,93 6,79 PV (cp)	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD) 0 ft (MD) YP (Ib/100 sqft)	oble ust achieve 50 ce. Hole So Ca: 3,350 4,170 pH	0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) Comr	7,719 11,722 ments
Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Hole Size:	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715 Estin Estin LSND 8-1/2"	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Estimated L MW (ppg) 8.8 - 9.5	9-5/8" casing x 9-5/8" casing x assume gauge ha ALCEM cementin ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.): ateral Length: FL (mL/30')	13-3/8" casi 12-1/4" hold ole and the ole ole and the ole ole blend lated to sur sing, cemen 11,72 4,11 3,62 4,93 6,79 PV (cp)	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 2 ft (MD) 0 ft (MD) YP (Ib/100 sqft)	oble ust achieve 50 ce. Hole So Ca: 3,350 4,170 pH	0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) Comr	7,719 11,722 ments
Tail Annular Capacity <u>PRODUCTION:</u> Fluid: Hole Size:	Class G 0.3627 0.3132 Calculated cer Halliburton EC Notify NMOC before drilling Drill to TD foll 4,003 3,715 Estin Estin S.T.S 8-1/2" PDC w/mud n	cuft/ft cuft/ft ment volumes CONOCEM & H. D & BLM if cer g out. lowing direction ft (MD) ft (TVD) Estimated L MW (ppg) 8.8 - 9.5	9-5/8" casing x 9-5/8" casing x assume gauge he ALCEM cemention ment is not circu onal plan, run ca to to stimated KOP: Point (P.O.E.): ateral Length: FL (mL/30') 20	13-3/8" casi 12-1/4" hold ole and the ole g blend lated to sur sing, cemen 11,72 4,11 3,62 4,93 6,79 PV (cp) 8 - 14	ing annulus e annulus excess noted in to face. Cement mu t casing to surfa 2 ft (MD) 5 ft (TVD) 4 ft (MD) 0 ft (MD) 0 ft (MD) 8 - 14	able ust achieve 50 ce. Hole Sr Ca: 3,350 4,170 PH 9.0 - 9.5	0 psi compress ection Length: sing Required: ft (TVD) ft (TVD) ft (TVD) Comr OBM as co	7,719 11,722 ments ontingency

Logging: MWD Gamma Ray for entire section, no mud-log or cuttings sampling, no OH WL logs

Pressure lest:	NO BOPE and	test (as noted a	bovej, pressur	c (cst 5 5/0	casing to	1,500	psi for 30 min	
Casing Specs:	Size (in)	Wt (lb/ft)	Grade	Conn.	Collapse (psi)	Burst (psi)	Tens. Body (lbs)	Tens. Conr (lbs)
Specs	5.500	17.0	P-110	LTC	7,460	10,640	546,000	445,000
Loading	C. S.	Carlos and a state	The second second	A STATE	2,033	8,885	271,955	271,955
Min. S.F.					3.67	1.20	2.01	1.64
	Assumptions:	Collapse: fully e	evacuated casi	ng with 9.5 p	opg fluid in the a	nnulus (floatin	g casing during	running)
	•				g pressure with 1			
		fluid with 8.4 p						
					ith 100,000 lbs o	ver-pull		
U Torque (ft lbs):	Minumum:	3,400	Optimum:	4,530	Maximum:	5,660		
		at collar 2 its c	asing float coll	lar, 1 it casin	g, toe-intitiation	sleeve, 20' ma	rker joint, toe-	initiation
cusing becans.								
					nly in lateral ever			
	C		* mai .			- INT I INICI	DF + - 2201	it cothook
	Continue runn	ing casing to su	irface. The toe-	-initiation sl	eeves must be p	ositioned INSI	DE the 330° un	it setback.
Centralizers:								IL SELDACK.
Centralizers:	Centralizer co	unt and placem	ent may be adj		eeves must be p on well condition			IL SELDACK.
Centralizers:	Centralizer con Lateral: 1 cent	unt and placem ralizer per joint	ent may be adj	justed based	on well condition			it setback.
Centralizers:	Centralizer con Lateral: 1 cent POE to KOP: 1	unt and placem ralizer per joint centralizer per	ent may be adj joint from land	<i>justed based</i> ding point to	on well conditio	ns and as-drille	ed surveys.	
Centralizers:	Centralizer con Lateral: 1 cent POE to KOP: 1	unt and placem ralizer per joint centralizer per	ent may be adj joint from land per 2 joints from	iusted based ding point to m KOP to 9-1	on well condition	ns and as-drille 3 joints from 9	ed surveys. -5/8" shoe to s	
Centralizers:	Centralizer con Lateral: 1 cent POE to KOP: 1	unt and placem ralizer per joint centralizer per e: 1 centralizer p	ent may be adj joint from land per 2 joints fro Yield	iusted based ding point to m KOP to 9- Water	on well conditio KOP 5/8" shoe, 1 per :	ns and as-drille 3 joints from 9 Planned TOC	ed surveys. -5/8" shoe to s Total Cmt	
Centralizers: Cement:	Centralizer con Lateral: 1 cent POE to KOP: 1	unt and placem ralizer per joint centralizer per	ent may be adj joint from land per 2 joints from	iusted based ding point to m KOP to 9-1	on well conditio	ns and as-drille 3 joints from 9	ed surveys. -5/8" shoe to s	
	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface	unt and placem ralizer per joint centralizer per e: 1 centralizer p	ent may be adj joint from land per 2 joints fro Yield	iusted based ding point to m KOP to 9- Water	on well conditio KOP 5/8" shoe, 1 per :	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0	-5/8" shoe to s Total Cmt (sx) 814	
Cement:	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type	unt and placem ralizer per joint centralizer per e: 1 centralizer p Weight (ppg)	ent may be adj joint from land per 2 joints fro Yield (cuft/sk)	ding point to m KOP to 9-: Water (gal/sk)	KOP 5/8" shoe, 1 per % Excess	ns and as-drille 3 joints from 9 Planned TOC (ft MD)	-5/8" shoe to s Total Cmt (sx)	
Cement: Lead Tail	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend	unt and placem ralizer per joint centralizer per e: 1 centralizer p Weight (ppg) 12.4 13.3	ent may be adj joint from land per 2 joints fro Yield (cuft/sk) 1.907	ding point to m KOP to 9-3 Water (gal/sk) 9.98 6.00	KOP 5/8" shoe, 1 per : % Excess 40% 10%	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0	-5/8" shoe to s Total Cmt (sx) 814	
Cement: Lead Tail	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend G:POZ blend	what and placeme ralizer per joint centralizer per e: 1 centralizer p Weight (ppg) 12.4 13.3 cuft/ft	ent may be adj joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360	ding point to m KOP to 9- Water (gal/sk) 9.98 6.00 x 9-5/8" casin	KOP 5/8" shoe, 1 per 3 % Excess 40% 10% mg annulus	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0	-5/8" shoe to s Total Cmt (sx) 814	
Cement: Lead Tail	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend G:POZ blend 0.2691 0.2291	what and placeme ralizer per joint centralizer per e: 1 centralizer per weight (ppg) 12.4 13.3 cuft/ft cuft/ft	ent may be adj joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360 5-1/2" casing x 5-1/2" casing x	ding point to m KOP to 9-3 Water (gal/sk) 9.98 6.00 (9-5/8" casin (8-1/2" hole	KOP 5/8" shoe, 1 per % Excess 40% 10% mg annulus annulus	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0 4,141	-5/8" shoe to s Total Cmt (sx) 814	
Cement: Lead Tail	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend G:POZ blend 0.2691 0.2291 Calculated cen	weight (ppg) 12.4 13.3 cuft/ft cuft/ft ment volumes a	ent may be adj joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360 5-1/2" casing x 5-1/2" casing x ssume gauge h	ding point to m KOP to 9- Water (gal/sk) 9.98 6.00 (9-5/8" casin (8-1/2" hole nole and the	KOP 5/8" shoe, 1 per : % Excess 40% 10% mg annulus annulus excess noted in t	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0 4,141	-5/8" shoe to s Total Cmt (sx) 814	
Cement: Lead Tail	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend G:POZ blend 0.2691 0.2291 Calculated cen Halliburton EC	weight (ppg) 12.4 13.3 cuft/ft cuft	ent may be adj joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360 5-1/2" casing x 5-1/2" casing x ssume gauge h TENDACEM cer	ding point to m KOP to 9- Water (gal/sk) 9.98 6.00 \$9-5/8" casin \$8-1/2" hole nole and the menting bler	KOP 5/8" shoe, 1 per : % Excess 40% 10% mg annulus annulus excess noted in t	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0 4,141	-5/8" shoe to s Total Cmt (sx) 814	
Cement: Lead Tail Annular Capacity	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend G:POZ blend 0.2691 0.2291 Calculated cen Halliburton EC Notify NMOC	weight (ppg) 12.4 13.3 cuft/ft cuft	i joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360 5-1/2" casing x 5-1/2" casing x ssume gauge fr TENDACEM center pent is not circu	ding point to m KOP to 9- Water (gal/sk) 9.98 6.00 6.9-5/8" casin 6.8-1/2" hole nole and the menting bler ulated to sur	KOP 5/8" shoe, 1 per : % Excess 40% 10% mg annulus annulus excess noted in t nd face.	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0 4,141 able	-5/8" shoe to s Total Cmt (sx) 814 1,405	urface
Cement: Lead Tail Annular Capacity	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface G:POZ blend G:POZ blend 0.2691 0.2291 Calculated cen Halliburton EC Notify NMOC The lateral ma	weight (ppg) 12.4 13.3 cuft/ft cuft	ent may be adj joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360 5-1/2" casing x 5-1/2" casing x ssume gauge h TENDACEM cert ent is not circus at applicaple se	ding point to m KOP to 9- Water (gal/sk) 9.98 6.00 (9-5/8" casin (8-1/2" hole nole and the menting blen ulated to sup	f on well condition KOP 5/8" shoe, 1 per 3 % Excess 40% 10% mg annulus annulus excess noted in t and face. ximize the length	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0 4,141 cable	-5/8" shoe to s Total Cmt (sx) 814 1,405	urface
Cement: Lead Tail Annular Capacity	Centralizer con Lateral: 1 cent POE to KOP: 1 KOP to surface Type G:POZ blend G:POZ blend 0.2691 0.2291 Calculated cent Halliburton EC Notify NMOC The lateral marriesource reco	weight (ppg) 12.4 13.3 cuft/ft cuft	ent may be adj joint from land per 2 joints from Yield (cuft/sk) 1.907 1.360 5-1/2" casing x 5-1/2" casing x 5-1/2" casing x ssume gauge h TENDACEM cent tent is not circu st applicaple set is drilled past	ding point to m KOP to 9- Water (gal/sk) 9.98 6.00 6.00 6.9-5/8" casin 6.8-1/2" hole mole and the menting bler ulated to sur- etback to ma the setback,	KOP 5/8" shoe, 1 per : % Excess 40% 10% mg annulus annulus excess noted in t nd face.	ns and as-drille 3 joints from 9 Planned TOC (ft MD) 0 4,141 able n of the completer sleeve and al	-5/8" shoe to s Total Cmt (sx) 814 1,405 eted interval ar I perforations	nd to maximi

inside the setback. An unorthodox location application is not required because the completed interval will be entirely within the setback as defined and allowed by NMAC 19.15.16.7B(1), NMAC 19.15.16.14B(2), NMAC 19.15.16.15B(2) . Rodeo Unit Order Number is R-14313.

FINISH WELL: ND BOP, NU WH, RDMO.

COMPLETION AND PRODUCTION PLAN:

Frac: Lateral will be fracture-stimulated in approximately 40 plug-and-perf stages with approximately 160,000 bbls slickwater fluid and 13,000,000 lbs of proppant.

Flowback: Well will be flowed back through production tubing. An ESP may be used to assist in load water recovery. *Production:* Well will produce up production tubing via gas-lift into permanent production and storage facilities.

ESTIMATED START DATES:

Drilling:	6/1/2019
Completion:	7/16/2019
Production:	8/15/2019

Prepared by:

Alec Bridge 4/17/2019

Enduring Resources IV, LLC

Enduring Resources LLC

San Juan Basin - Rodeo Unit 492H Pad 495H

Wellbore #1

Plan: Design #1

Standard Planning Report

17 April, 2019

Database: Company: Project: Site: Well: Wellbore: Design:		ore #1			TVD Refer MD Refer North Ref	ence:	1	Well 495H KB @ 6705.0usf KB @ 6705.0usf Grid Minimum Curvat	t (Original We	
Project	San Ju	an Basin - Ro	deo Unit							
Map System: Geo Datum: Map Zone:	North An	e Plane 1983 nerican Datum xico Western 2			System Dat	tum:	Me	ean Sea Level		
Site	492H F	Pad, San Juan	County, Ne	w Mexico						
Site Position: From: Position Uncerta		'Long 0	E	orthing: asting: ot Radius:		,477.95 usft ,011.92 usft 13-3/16 "	Latitude: Longitude: Grid Converg	ence:		36.190011°N 107.728546°W 0.06
Well	495H, U	Jpper Target								
Well Position Position Uncerta	+N/-S +E/-W	1	0.0 usft 9.8 usft 0.0 usft	Northing: Easting: Wellhead Eleva	ation:	1,888,477.97 2,754,031.69	usft Lor	itude: ogitude: ound Level:		36.190011°N 107.728479°V 6,680.0 ust
Wellbore	Wellbo	ore #1								
Magnetics	Mo	odel Name	Sa	mple Date	Declina (°)	ition	Dip A (*	a state of the second		Strength nT)
	1.2.5	IGRF200510	0	12/31/2009		9.97		63.04	50,	595.11761150
Design	Design	#1					Virginia de la composición de la composicinde la composición de la composición de la composición de la			
Audit Notes:	1		1.1	22. L - V		14			2	
Version:			P	hase:	PROTOTYPE	Tie	On Depth:		0.0	
Vertical Section:			Depth From		+N/-S		E/-W	Contraction of the second second	ection	
			(usft 0.0)	(usft) 0.0		1 sft) 0.0	HALL OF CARLES	(°) 8.40	
Dia Carros Tax		Date		0	0.0					
Plan Survey Too Depth From (usft)	n Dept (us	h To ift) Surve	y (Wellbore n #1 (Wellbo)	Tool Name MWD		Remarks			
					OWSG MWD	- Standard				
Plan Sections								P.R. P. P.	and a second	
Measured Depth I (usft)	nclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.0	0.00	0.00	(0.0 0.0	0.0	0.00	0.00	0.00	0.00	
350.0	0.00	0.00				0.00	0.00	0.00	0.00	
700.0	0.00	0.00				0.00 3.00	0.00 3.00	0.00 0.00	0.00 300.96	
1,642.1 3,624.0	28.26 28.26	300.96 300.96				0.00	0.00			495H KOP
4,767.6	88.59	134.35				10.15	5.28		-165.08	
4,932.4	90.46	135.00				1.20	1.13		19.21	495H POE

Database:	EDM	Local Co-ordinate Reference:	Well 495H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6705.0usft (Original Well Elev)
Project:	San Juan Basin - Rodeo Unit	MD Reference:	KB @ 6705.0usft (Original Well Elev)
Site:	492H Pad	North Reference:	Grid
Well:	495H	Survey Calculation Method:	Minimum Curvature
Wellbore: Design:	Wellbore #1 Design #1	Survey Calculation method.	

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	0.0
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	0.0
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	0.0
274.0	0.00	0.00	274.0	0.0	0.0	0.0	0.00	0.00	0.0
Ojo Alamo	0.00	0.00	214.0	0.0	0.0	0.0	0.00	0.00	0.0
300.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	0.0
350.0	0.00	0.00	350.0	0.0	0.0	0.0	0.00	0.00	0.0
13 3/8"	0.00	0.00	000.0	0.0	0.0	0.0	0.00	0.00	
395.0	0.00	0.00	395.0	0.0	0.0	0.0	0.00	0.00	0.0
Kirtland									
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	0.0
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	0.0
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	0.0
Fruitland									
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	0.0
800.0	3.00	300.96	800.0	1.3	-2.2	-2.5	3.00	3.00	0.0
900.0	6.00	300.96	899.6	5.4	-9.0	-10.0	3.00	3.00	0.0
900.0	6.22	300.96	907.0	5.8	-9.0	-10.0	3.00	3.00	0.0
Lewis	0.22	300.90	507.0	0.0	-9.0	-10.7	3.00	5.00	0.0
955.8	7.67	300.96	955.0	8.8	-14.7	-16.3	3.00	3.00	0.0
Pictured Cliff		Provide States							
1,000.0	9.00	300.96	998.8	12.1	-20.2	-22.4	3.00	3.00	0.0
1,100.0	12.00	300.96	1,097.1	21.5	-35.8	-39.8	3.00	3.00	0.0
		300.96							0.0
1,200.0	15.00		1,194.3	33.5	-55.8	-62.1	3.00	3.00	
1,300.0	18.00	300.96	1,290.2	48.1	-80.2	-89.2	3.00 3.00	3.00 3.00	0.0
1,352.6	19.58	300.96	1,340.0	56.8	-94.7	-105.3	3.00	3.00	0.0
Chacra								and service and	
1,400.0	21.00	300.96	1,384.4	65.3	-108.8	-121.0	3.00	3.00	0.0
1,500.0	24.00	300.96	1,476.8	85.0	-141.6	-157.5	3.00	3.00	0.0
1,600.0	27.00	300.96	1,567.1	107.1	-178.5	-198.6	3.00	3.00	0.0
1,642.1	28.26	300.96	1,604.4	117.1	-195.2	-217.2	3.00	3.00	0.0
1,700.0	28.26	300.96	1,655.4	131.3	-218.8	-243.4	0.00	0.00	0.0
1,800.0	28.26	300.96	1,743.4	155.6	-259.4	-288.6	0.00	0.00	0.0
1,900.0	28.26	300.96	1,831.5	180.0	-300.0	-333.7	0.00	0.00	0.0
2,000.0	28.26	300.96	1,919.6	204.3	-340.6	-378.9	0.00	0.00	0.0
2,100.0	28.26	300.96	2,007.7	228.7	-381.2	-424.1	0.00	0.00	0.0
2,200.0	28.26	300.96	2,095.7	253.1	-421.8	-469.3	0.00	0.00	0.0
2,300.0	28.26	300.96	2,183.8	277.4	-462.4	-514.4	0.00	0.00	0.0
2,400.0	28.26	300.96	2,271.9	301.8	-503.0	-559.6	0.00	0.00	0.0
2,500.0	28.26	300.96	2,360.0	326.2	-543.6	-604.8	0.00	0.00	0.0
2,563.6	28.26	300.96	2,416.0	341.6	-569.4	-633.5	0.00	0.00	0.0
Cliff House	20.20		_,						a costo de
2,570.4	28.26	300.96	2,422.0	343.3	-572.2	-636.6	0.00	0.00	0.0
Menefee									
2,600.0	28.26	300.96	2,448.1	350.5	-584.2	-650.0	0.00	0.00	0.0
2,700.0	28.26	300.96	2,536.1	374.9	-624.8	-695.1	0.00	0.00	0.0
2,800.0	28.26	300.96	2,624.2	399.2	-665.4	-740.3	0.00	0.00	0.0
2,900.0	28.26	300.96	2,712.3	423.6	-706.0	-785.5	0.00	0.00	0.0
3,000.0	28.26	300.96	2,800.4	448.0	-746.6	-830.7	0.00	0.00	0.0
					-787.2	-875.8	0.00	0.00	0.0
3,100.0	28.26	300.96	2,888.4	472.3					
3,200.0	28.26	300.96	2,976.5	496.7	-827.8	-921.0	0.00	0.00	0.0
3,300.0	28.26	300.96	3,064.6	521.1	-868.4	-966.2	0.00	0.00	0.0
3,400.0	28.26	300.96	3,152.7	545.4	-909.0	-1,011.4	0.00	0.00	0.0

Database:	EDM	Local Co-ordinate Reference:	Well 495H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6705.0usft (Original Well Elev)
Project:	San Juan Basin - Rodeo Unit	MD Reference:	KB @ 6705.0usft (Original Well Elev)
Site:	492H Pad	North Reference:	Grid
Well: Wellbore: Design:	495H Wellbore #1 Design #1	Survey Calculation Method:	Minimum Curvature

Planned Survey

Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
3,500.0	28.26	300.96	3,240.8	569.8	-949.6	-1,056.6	0.00	0.00	0.0
3,600.0	28.26	300.96	3,328.8	594.1	-990.2	-1,101.7	0.00	0.00	0.0
3,624.0	28.26	300.96	3,350.0	600.0	-1,000.0	-1,112.6	0.00	0.00	0.0
495H KOP									
3,681.6	22.66	297.06	3,402.0	612.1	-1,021.6	-1,136.0	10.15	-9.72	-6.7
Point Looko	ut								
3,700.0	20.90	295.41	3,419.0	615.1	-1,027.7	-1,142.3	10.15	-9.58	-9.0
3,800.0	11.86	278.37	3,514.9	624.3	-1,054.1	-1,166.6	10.15	-9.04	-17.0
3,900.0	7.03	219.67	3,613.7	621.0	-1,068.2	-1.173.6	10.15	-4.84	-58.7
3,901.3	7.04	218.63	3,615.0	620.9	-1,068.3	-1,173.6	10.15	0.88	-82.5
Mancos	1.04	210.00	0,010.0	020.0	1,000.0	-1,170.0	10.10	0.00	-02.0
4,000.0	12.76	167.02	3,712.4	605.5	-1,069.6	-1,162.9	10.15	5.80	-52.2
4,002.7	12.99	166.36	3,715.0	605.0	-1,069.5	-1,162.4	10.15	8.49	-24.9
9 5/8"			-,		.,				- 1.0
4,100.0	21.94	151.93	3,807.8	578.2	-1,058.3	-1,135.0	10.15	9.19	-14.8
						The Aller and a second			
4,140.7	25.88	148.85	3,845.0	563.9	-1,050.1	-1,118.9	10.15	9.67	-7.5
Gallup (MNC									
4,200.0	31.70	145.65	3,896.9	539.9	-1,034.6	-1,090.6	10.15	9.81	-5.3
4,258.4	37.48	143.40	3,945.0	513.0	-1,015.4	-1,057.7	10.15	9.91	-3.8
MNCS_B	11.00	440.40	0.077.4	101.0	000.0	4 004 0	10.15	0.00	
4,300.0	41.63 51.63	142.12 139.76	3,977.1	491.9	-999.3	-1,031.3 -958.8	10.15	9.96 10.00	-3.0 -2.3
4,400.0			4,045.7	435.6	-953.5		10.15		
4,441.1	55.75	138.97	4,070.0	410.5	-931.9	-925.7	10.15	10.03	-1.9
MNCS_Cms									
4,500.0	61.66	137.97	4,100.6	372.8	-898.5	-875.4	10.15	10.04	-1.7
4,600.0	71.72	136.50	4,140.1	305.5	-836.2	-783.7	10.15	10.06	-1.4
4,700.0	81.79	135.19	4,163.0	235.8	-768.5	-686.5	10.15	10.07	-1.3
4,767.6	88.59	134.35	4,168.6	188.4	-720.7	-619.4	10.15	10.07	-1.2
4,800.0	88.96	134.48	4,169.3	165.7	-697.6	-587.0	1.20	1.13	0.4
4,900.0	90.10	134.87	4,170.2	95.4	-626.5	-487.3	1.20	1.13	0.4
4,932.4	90.46	135.00	4,170.0	72.5	-603.5	-454.9	1.20	1.13	0.4
495H POE								Color Call Calls	Ballen
5,000.0	90.46	135.00	4,169.5	24.7	-555.7	-387.4	0.00	0.00	0.0
5,100.0	90.46	135.00	4,168.6	-46.0	-485.0	-287.6	0.00	0.00	0.0
5,200.0	90.46	135.00	4,167.8	-116.7	-414.3	-187.8	0.00	0.00	0.0
5,300.0	90.46	135.00	4,167.0	-187.4	-343.6	-88.0	0.00	0.00	0.0
5,400.0	90.46	135.00	4,166.2	-258.1	-272.9	11.8	0.00	0.00	0.0
5,500.0	90.46	135.00	4,165.4	-328.8 -399.5	-202.2	111.7 211.5	0.00	0.00	0.0
5,600.0	90.46	135.00	4,164.6						
5,700.0	90.46	135.00	4,163.8	-470.2	-60.8	311.3	0.00	0.00	0.0
5,800.0	90.46	135.00	4,163.0	-540.9	9.9	411.1	0.00	0.00	0.0
5,900.0	90.46	135.00	4,162.2	-611.6	80.7	510.9	0.00	0.00	0.0
6,000.0 6,100.0	90.46 90.46	135.00 135.00	4,161.4 4,160.5	-682.3 -753.0	151.4 222.1	610.8 710.6	0.00	0.00 0.00	0.0 0.0
6,200.0	90.46	135.00	4,159.7	-823.7	292.8	810.4	0.00	0.00	0.0
6,300.0	90.46	135.00	4,158.9	-894.5	363.5	910.2	0.00	0.00	0.0
6,400.0	90.46	135.00	4,158.1	-965.2	434.2	1,010.0	0.00	0.00	0.0
6,500.0	90.46	135.00	4,157.3	-1,035.9	504.9	1,109.9	0.00	0.00	0.0 0.0
6,600.0	90.46	135.00	4,156.5	-1,106.6	575.6	1,209.7	0.00		
6,700.0	90.46	135.00	4,155.7	-1,177.3	646.3	1,309.5	0.00	0.00	0.0
6,800.0	90.46	135.00	4,154.9	-1,248.0	717.0	1,409.3	0.00	0.00	0.0
6,900.0	90.46	135.00	4,154.1	-1,318.7	787.8	1,509.1	0.00	0.00	0.0
7,000.0	90.46	135.00	4,153.3	-1,389.4	858.5	1,609.0	0.00	0.00	0.

COMPASS 5000.15 Build 88

Database:	EDM	Local Co-ordinate Reference:	Well 495H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6705.0usft (Original Well Elev)
Project:	San Juan Basin - Rodeo Unit	MD Reference:	KB @ 6705.0usft (Original Well Elev)
Site:	492H Pad	North Reference:	Grid
Well:	495H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

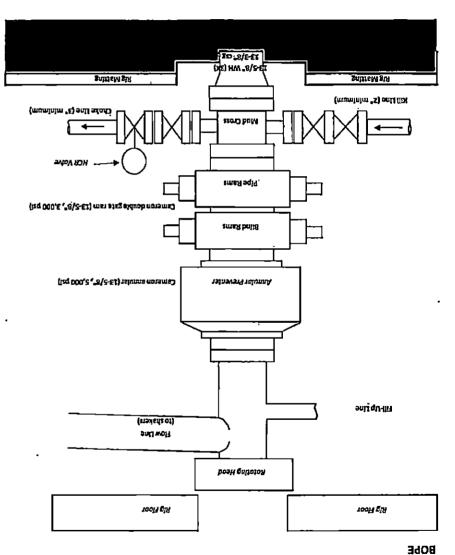
Planned Survey

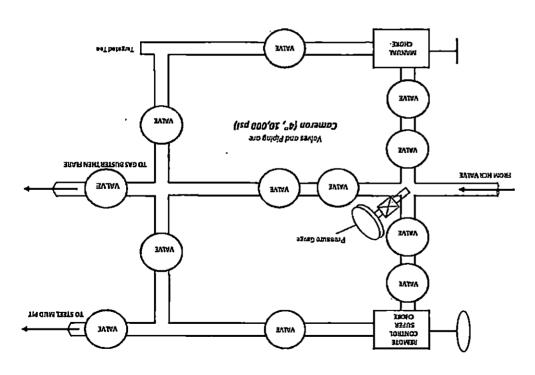
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7,100.0			4,152.4	-1,460.1	929.2	1,708.8	0.00	0.00	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 200 0	90.46	135.00	4 151 6	-1 530 8	999 9	1 808 6	0.00	0.00	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
8,100.0 90.46 135.00 $4,144.3$ $-2,167.2$ $1,636.3$ $2,707.0$ 0.00 0.00 0.00 $8,200.0$ 90.46 135.00 $4,142.7$ $-2,308.6$ $1,777.7$ $2,906.6$ 0.00 0.00 0.00 $8,400.0$ 90.46 135.00 $4,141.9$ $-2,379.3$ $1,848.4$ $3,066.4$ 0.00 0.00 0.00 $8,600.0$ 90.46 135.00 $4,141.3$ $-2,450.7$ $1,989.8$ $3,206.1$ 0.00 0.00 $8,600.0$ 90.46 135.00 $4,130.5$ $-2,520.7$ $1,989.8$ $3,206.1$ 0.00 0.00 $8,700.0$ 90.46 135.00 $4,137.9$ $-2,732.8$ $2,201.9$ $3,505.5$ 0.00 0.00 $8,900.0$ 90.46 135.00 $4,137.1$ $-2,803.5$ $2,272.6$ $3,605.4$ 0.00 0.00 $9,000.0$ 90.46 135.00 $4,135.4$ $-2,945.0$ $2,414.1$ $3,805.4$ 0.00 0.00 $9,000.0$ 90.46 135.00 $4,135.4$ $-2,945.0$ $2,414.1$ $3,805.4$ 0.00 0.00 $9,000.0$ 90.46 135.00 $4,133.0$ $-3,157.1$ $2,262.2$ $4,104.5$ 0.00 0.00 $9,000.0$ 90.46 135.00 $4,132.6$ $-3,365.2$ $2,767.6$ $4,304.1$ 0.00 0.00 $9,000.0$ 90.46 135.00 $4,132.6$ $-3,365.2$ $2,767.6$ $4,004.3$ 0.00 0.00 $9,000.0$ 90.46 <td></td>										
8,400.0 90,46 135,00 4,141.9 -2,379.3 1,848.4 3,006.4 0.00 0.00 0.00 8,600.0 90,46 135.00 4,141.1 -2,450.0 1,919.1 3,106.3 0.00 0.00 0.0 8,600.0 90,46 135.00 4,139.5 -2,250.7 1,989.8 3,206.1 0.00 0.00 0.0 8,900.0 90,46 135.00 4,137.9 -2,262.1 2,131.2 3,405.7 0.00 0.00 0.0 9,000.0 90.46 135.00 4,137.1 -2,263.5 2,272.6 3,605.5 0.00 0.00 0.0 9,100.0 90.46 135.00 4,136.4 -2,974.3 2,343.4 3,705.2 0.00 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.0 0.0 0.00 0.0 0.00 0.0 0.0 </td <td></td>										
8,500.0 90.46 135.00 4,141.1 -2,450.0 1,919.1 3,106.3 0.00 0.00 0.00 8,600.0 90.46 135.00 4,140.3 -2,520.7 1,989.8 3,206.1 0.00 0.00 0.00 8,700.0 90.46 135.00 4,139.5 -2,561.4 2,065.5 3,305.7 0.00 0.00 0.00 8,900.0 90.46 135.00 4,137.1 -2,662.1 2,131.2 3,405.7 0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td></t<>										0.0
8,600.0 90.46 135.00 $4,140.3$ $-2,520.7$ $1,989.8$ $3,206.1$ 0.00 0.00 $8,700.0$ 90.46 135.00 $4,139.5$ $-2,581.4$ $2,060.5$ $3,305.9$ 0.00 0.00 0.00 $8,900.0$ 90.46 135.00 $4,137.9$ $-2,732.8$ $2,201.9$ $3,505.5$ 0.00 0.00 0.00 $9,000.0$ 90.46 135.00 $4,137.1$ $-2,2874.3$ $2,343.4$ $3,705.2$ 0.00										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8,600.0	90.46	135.00	4,140.3	-2,520.7	1,989.8	3,206.1	0.00	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8,700.0	90.46	135.00	4,139.5	-2,591.4	2,060.5			0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8,800.0	90.46	135.00	4,138.7	-2,662.1	2,131.2				0.0
9,100.0 90.46 135.00 4,136.2 -2,874.3 2,343.4 3,705.2 0.00 0.00 0.00 9,200.0 90.46 135.00 4,135.4 -2,945.0 2,414.1 3,805.0 0.00 0.00 0.00 9,300.0 90.46 135.00 4,133.8 -3,015.7 2,484.8 3,904.8 0.00 0.00 0.0 9,400.0 90.46 135.00 4,133.8 -3,015.7 2,484.8 3,904.8 0.00 0.00 0.0 9,600.0 90.46 135.00 4,133.2 -3,157.1 2,626.2 4,104.5 0.00 0.00 0.0 9,700.0 90.46 135.00 4,130.6 -3,369.2 2,883.3 4,403.9 0.00 0.00 0.0 9,000.0 90.46 135.00 4,129.0 -3,510.6 2,978.7 4,603.8 0.00 0.00 0.0 10,000.0 90.46 135.00 4,128.5 -3,722.7 3,191.4 4,803.2 0.00 0.00 0.0<	8,900.0	90.46	135.00	4,137.9	-2,732.8	2,201.9	3,505.5	0.00	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9,000.0	90.46	135.00	4,137.1	-2,803.5	2,272.6	3,605.4	0.00	0.00	0.0
9,300.0 90.46 135.00 $4,134.6$ $-3,015.7$ $2,484.8$ $3,904.8$ 0.00 0.00 0.00 $9,400.0$ 90.46 135.00 $4,133.8$ $-3,086.4$ $2,555.5$ $4,004.7$ 0.00 0.00 0.00 $9,500.0$ 90.46 135.00 $4,132.2$ $-3,227.8$ $2,696.9$ $4,204.3$ 0.00 0.00 0.00 $9,600.0$ 90.46 135.00 $4,131.4$ $-3,298.5$ $2,767.6$ $4,304.1$ 0.00 0.00 0.00 $9,000.0$ 90.46 135.00 $4,131.4$ $-3,298.5$ $2,767.6$ $4,304.1$ 0.00 0.00 0.00 $9,900.0$ 90.46 135.00 $4,129.8$ $-3,349.9$ $2,909.0$ $4,503.8$ 0.00 0.00 0.00 $0,000.0$ 90.46 135.00 $4,129.4$ $-3,581.3$ $3,050.5$ $4,703.4$ 0.00 0.00 0.00 $10,000.0$ 90.46 135.00 $4,127.3$ $-3,652.0$ $3,121.2$ $4,803.2$ 0.00 0.00 0.00 $10,200.0$ 90.46 135.00 $4,127.3$ $-3,652.0$ $3,121.2$ $4,803.2$ 0.00 0.00 0.00 $10,200.0$ 90.46 135.00 $4,124.7$ $-3,783.5$ $3,262.6$ $5,002.9$ 0.00 0.00 0.00 $10,400.0$ 90.46 135.00 $4,124.9$ $-3,864.2$ $3,333.3$ $5,102.7$ 0.00 0.00 0.00 $10,600.0$ 90.46 135.00 $4,124.9$ <	9,100.0	90.46	135.00	4,136.2	-2,874.3	2,343.4	3,705.2	0.00	0.00	0.0
9,300.0 90.46 135.00 $4,134.6$ $-3,015.7$ $2,484.8$ $3,904.8$ 0.00 0.00 0.00 $9,400.0$ 90.46 135.00 $4,133.8$ $-3,086.4$ $2,555.5$ $4,004.7$ 0.00 0.00 0.00 $9,500.0$ 90.46 135.00 $4,132.2$ $-3,227.8$ $2,696.9$ $4,204.3$ 0.00 0.00 0.00 $9,600.0$ 90.46 135.00 $4,131.4$ $-3,298.5$ $2,767.6$ $4,304.1$ 0.00 0.00 0.00 $9,000.0$ 90.46 135.00 $4,131.4$ $-3,298.5$ $2,767.6$ $4,304.1$ 0.00 0.00 0.00 $9,900.0$ 90.46 135.00 $4,129.8$ $-3,349.9$ $2,909.0$ $4,503.8$ 0.00 0.00 0.00 $0,000.0$ 90.46 135.00 $4,129.4$ $-3,581.3$ $3,050.5$ $4,703.4$ 0.00 0.00 0.00 $10,000.0$ 90.46 135.00 $4,127.3$ $-3,652.0$ $3,121.2$ $4,803.2$ 0.00 0.00 0.00 $10,200.0$ 90.46 135.00 $4,127.3$ $-3,652.0$ $3,121.2$ $4,803.2$ 0.00 0.00 0.00 $10,200.0$ 90.46 135.00 $4,124.7$ $-3,783.5$ $3,262.6$ $5,002.9$ 0.00 0.00 0.00 $10,400.0$ 90.46 135.00 $4,124.9$ $-3,864.2$ $3,333.3$ $5,102.7$ 0.00 0.00 0.00 $10,600.0$ 90.46 135.00 $4,124.9$ <	9,200.0	90.46	135.00	4,135.4	-2,945.0	2,414.1	3,805.0	0.00	0.00	0.0
9,400.0 90.46 135.00 $4,133.8$ $-3,086.4$ $2,555.5$ $4,004.7$ 0.00 0.00 0.00 $9,600.0$ 90.46 135.00 $4,132.2$ $-3,157.1$ $2,262.2$ $4,104.5$ 0.00 0.00 0.00 $9,600.0$ 90.46 135.00 $4,132.2$ $-3,227.8$ $2,696.9$ $4,204.3$ 0.00 0.00 0.00 $9,700.0$ 90.46 135.00 $4,131.4$ $-3,298.5$ $2,767.6$ $4,304.1$ 0.00 0.00 0.00 $9,900.0$ 90.46 135.00 $4,129.8$ $-3,439.9$ $2,909.0$ $4,503.8$ 0.00 0.00 0.00 $10,000.0$ 90.46 135.00 $4,129.8$ $-3,439.9$ $2,909.0$ $4,503.8$ 0.00 0.00 0.00 $10,000.0$ 90.46 135.00 $4,127.3$ $-3,652.0$ $3,121.2$ $4,803.2$ 0.00 0.00 0.00 $10,200.0$ 90.46 135.00 $4,126.5$ $-3,722.7$ $3,191.9$ $4,903.0$ 0.00 0.00 0.00 $10,400.0$ 90.46 135.00 $4,122.7$ $-3,793.5$ $3,262.6$ $5,002.9$ 0.00 0.00 0.00 $10,600.0$ 90.46 135.00 $4,122.3$ $-4,005.6$ $3,474.7$ $5,302.3$ 0.00 0.00 0.00 $10,600.0$ 90.46 135.00 $4,122.5$ $4,076.3$ $3,545.4$ $5,402.1$ 0.00 0.00 0.00 $10,600.0$ 90.46 135.00 $4,122.5$	9,300.0	90.46	135.00	4,134.6		2,484.8	3,904.8	0.00	0.00	0.0
9,600.090.46135.004,132.2 $-3,227.8$ 2,696.94,204.30.000.000.09,700.090.46135.004,131.4 $-3,298.5$ 2,767.64,304.10.000.000.09,800.090.46135.004,130.6 $-3,369.2$ 2,838.34,403.90.000.000.09,900.090.46135.004,129.8 $-3,510.6$ 2,9774,603.60.000.000.010,000.090.46135.004,128.1 $-3,581.3$ 3,050.54,703.40.000.000.010,100.090.46135.004,125.7 $-3,793.5$ 3,121.24,803.20.000.000.010,400.090.46135.004,125.7 $-3,793.5$ 3,262.65,002.90.000.000.010,400.090.46135.004,124.1 $-3,934.9$ 3,404.05,202.50.000.000.010,600.090.46135.004,122.5 $-4,076.3$ 3,545.45,402.10.000.000.010,600.090.46135.004,122.5 $-4,076.3$ 3,545.45,402.10.000.000.010,800.090.46135.004,120.0 $-4,288.4$ 3,757.55,701.60.000.000.011,800.090.46135.004,120.0 $-4,288.4$ 3,757.55,701.60.000.000.011,800.090.46135.004,120.0 $-4,288.4$ 3,757.55,701.60.		90.46	135.00	4,133.8	-3,086.4	2,555.5	4,004.7	0.00	0.00	0.0
9,600.090.46135.004,132.2 $-3,227.8$ 2,696.94,204.30.000.000.09,700.090.46135.004,131.4 $-3,298.5$ 2,767.64,304.10.000.000.09,800.090.46135.004,130.6 $-3,369.2$ 2,838.34,403.90.000.000.09,900.090.46135.004,129.8 $-3,510.6$ 2,977.4 603.6 0.000.000.010,000.090.46135.004,128.1 $-3,581.3$ 3,050.54,703.40.000.000.010,100.090.46135.004,125.7 $-3,793.5$ 3,121.24,803.20.000.000.010,300.090.46135.004,125.7 $-3,793.5$ 3,262.65,002.90.000.000.010,400.090.46135.004,124.1 $-3,934.9$ 3,404.05,202.50.000.000.010,600.090.46135.004,122.5 $-4,076.3$ 3,545.45,402.10.000.000.010,600.090.46135.004,122.5 $-4,076.3$ 3,545.45,402.10.000.000.010,800.090.46135.004,120.0 $-4,217.7$ 3,686.85,601.80.000.000.010,900.090.46135.004,122.5 $-4,076.3$ 3,545.45,402.10.000.000.011,900.090.46135.004,120.0 $-4,217.7$ 3,686.85,601.8	9,500.0				•				0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.00	0.0
9,800.090.46135.004,130.6 $-3,369.2$ 2,838.34,403.90.000.000.019,900.090.46135.004,129.8 $-3,439.9$ 2,909.04,503.80.000.000.0110,000.090.46135.004,129.0 $-3,510.6$ 2,979.74,603.60.000.000.0110,100.090.46135.004,127.3 $-3,652.0$ 3,121.24,803.20.000.000.0110,200.090.46135.004,126.5 $-3,722.7$ 3,191.94,903.00.000.000.0110,300.090.46135.004,126.5 $-3,722.7$ 3,191.94,903.00.000.000.0110,400.090.46135.004,124.1 $-3,934.9$ 3,404.05,202.50.000.000.0110,600.090.46135.004,122.3 $-4,056.6$ 3,474.75,302.30.000.000.0110,600.090.46135.004,122.7 $-4,147.0$ 3,645.45,402.10.000.000.0110,600.090.46135.004,122.7 $-4,147.0$ 3,645.45,601.80.000.000.0110,600.090.46135.004,122.7 $-4,147.0$ 3,645.45,602.90.000.000.0110,600.090.46135.004,122.7 $-4,147.0$ 3,645.45,602.80.000.000.0110,600.090.46135.004,122.9 $-4,217.7$ 3,686.85,	9,700.0	90.46	135.00	4,131,4	-3.298.5	2.767.6	4.304.1	0.00	0.00	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 200 0	90.46	135.00	4 127 3	-3 652 0	3 121 2	4 803 2	0.00	0.00	0.0
10,400.0 90.46 135.00 $4,125.7$ $-3,793.5$ $3,262.6$ $5,002.9$ 0.00 0.00 0.01 $10,500.0$ 90.46 135.00 $4,124.9$ $-3,864.2$ $3,333.3$ $5,102.7$ 0.00 0.00 0.01 $10,600.0$ 90.46 135.00 $4,124.1$ $-3,934.9$ $3,404.0$ $5,202.5$ 0.00 0.00 0.01 $10,600.0$ 90.46 135.00 $4,123.3$ $-4,005.6$ $3,474.7$ $5,302.3$ 0.00 0.00 0.00 $10,700.0$ 90.46 135.00 $4,122.5$ $-4,076.3$ $3,545.4$ $5,402.1$ 0.00 0.00 0.00 $10,900.0$ 90.46 135.00 $4,120.9$ $-4,217.7$ $3,686.8$ $5,601.8$ 0.00 0.00 0.00 $11,000.0$ 90.46 135.00 $4,120.9$ $-4,217.7$ $3,686.8$ $5,601.8$ 0.00 0.00 0.00 $11,000.0$ 90.46 135.00 $4,120.9$ $-4,217.7$ $3,686.8$ $5,601.8$ 0.00 0.00 0.00 $11,200.0$ 90.46 135.00 $4,119.2$ $-4,359.1$ $3,828.3$ $5,801.4$ 0.00 0.00 0.00 $11,300.0$ 90.46 135.00 $4,117.6$ $-4,500.5$ $3,969.7$ $6,001.1$ 0.00 0.00 0.00 $11,400.0$ 90.46 135.00 $4,116.6$ $-4,571.2$ $4,040.4$ $6,100.9$ 0.00 0.00 0.00 $11,600.0$ 90.46 135.00 $4,115.2$										0.0
10,500.090.46135.004,124.9 $-3,864.2$ $3,333.3$ $5,102.7$ 0.000.000.1010,600.090.46135.004,124.1 $-3,934.9$ $3,404.0$ $5,202.5$ 0.00 0.00 0.00 10,700.090.46135.004,123.3 $-4,005.6$ $3,474.7$ $5,302.3$ 0.00 0.00 0.00 10,800.090.46135.004,122.5 $-4,076.3$ $3,545.4$ $5,402.1$ 0.00 0.00 0.00 10,900.090.46135.004,121.7 $-4,147.0$ $3,616.1$ $5,502.0$ 0.00 0.00 0.00 11,000.090.46135.004,120.9 $-4,217.7$ $3,686.8$ $5,601.8$ 0.00 0.00 0.00 11,100.090.46135.00 $4,120.0$ $-4,288.4$ $3,757.5$ $5,701.6$ 0.00 0.00 0.00 11,200.090.46135.00 $4,119.2$ $-4,359.1$ $3,828.3$ $5,801.4$ 0.00 0.00 0.00 11,300.090.46135.00 $4,118.4$ $-4,429.8$ $3,899.0$ $5,901.2$ 0.00 0.00 0.00 11,400.090.46135.00 $4,117.6$ $-4,500.5$ $3,969.7$ $6,001.1$ 0.00 0.00 0.00 11,500.090.46135.00 $4,116.8$ $-4,571.2$ $4,040.4$ $6,100.9$ 0.00 0.00 0.00 11,600.090.46135.00 $4,115.2$ $-4,712.6$ $4,181.8$ $6,300.5$ 0.00 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>										0.0
10,600.090.46135.004,124.1 $-3,934.9$ 3,404.05,202.50.000.000.110,700.090.46135.004,123.3 $-4,005.6$ 3,474.75,302.30.000.000.010,800.090.46135.004,122.5 $-4,076.3$ 3,545.45,402.10.000.000.010,900.090.46135.004,121.7 $-4,147.0$ 3,616.15,502.00.000.000.011,000.090.46135.004,120.9 $-4,217.7$ 3,686.85,601.80.000.000.011,100.090.46135.004,120.0 $-4,288.4$ 3,757.55,701.60.000.000.011,200.090.46135.004,119.2 $-4,359.1$ 3,828.35,801.40.000.000.011,300.090.46135.004,117.6 $-4,500.5$ 3,969.76,001.10.000.000.011,400.090.46135.004,116.8 $-4,571.2$ 4,040.46,100.90.000.00.011,500.090.46135.004,116.0 $-4,641.9$ 4,111.16,200.70.000.000.011,700.090.46135.004,115.2 $-4,712.6$ 4,181.86,300.50.000.000.011,722.490.46135.004,115.0 $-4,728.5$ 4,197.76,322.90.000.000.0										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					and the second second second					0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,700.0	90,46	135.00	4,123,3	-4.005.6	3,474.7	5,302.3	0.00	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							the second se			0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										0.0
11,300.0 90.46 135.00 4,118.4 -4,429.8 3,899.0 5,901.2 0.00 0.00 0. 11,400.0 90.46 135.00 4,117.6 -4,500.5 3,969.7 6,001.1 0.00 0.00 0. 11,500.0 90.46 135.00 4,116.8 -4,571.2 4,040.4 6,100.9 0.00 0.00 0. 11,600.0 90.46 135.00 4,116.0 -4,641.9 4,111.1 6,200.7 0.00 0.00 0. 11,700.0 90.46 135.00 4,115.2 -4,712.6 4,181.8 6,300.5 0.00 0.00 0. 11,722.4 90.46 135.00 4,115.0 -4,728.5 4,197.7 6,322.9 0.00 0.00 0.										0.0
11,300.0 90.46 135.00 4,118.4 -4,429.8 3,899.0 5,901.2 0.00 0.00 0.0 11,400.0 90.46 135.00 4,117.6 -4,500.5 3,969.7 6,001.1 0.00 0.00 0.0 11,500.0 90.46 135.00 4,116.8 -4,571.2 4,040.4 6,100.9 0.00 0.00 0.0 11,600.0 90.46 135.00 4,116.0 -4,641.9 4,111.1 6,200.7 0.00 0.00 0.0 11,700.0 90.46 135.00 4,115.2 -4,712.6 4,181.8 6,300.5 0.00 0.00 0.0 11,722.4 90.46 135.00 4,115.0 -4,728.5 4,197.7 6,322.9 0.00 0.00 0.0	11 200 0	90.46	135.00	4,119,2	-4.359.1	3,828,3	5,801 4	0.00	0.00	0.0
11,400.090.46135.004,117.6-4,500.53,969.76,001.10.000.000.011,500.090.46135.004,116.8-4,571.24,040.46,100.90.000.000.011,600.090.46135.004,116.0-4,641.94,111.16,200.70.000.000.011,700.090.46135.004,115.2-4,712.64,181.86,300.50.000.000.011,722.490.46135.004,115.0-4,728.54,197.76,322.90.000.000.0										0.0
11,500.090.46135.004,116.8-4,571.24,040.46,100.90.000.000.000.0011,600.090.46135.004,116.0-4,641.94,111.16,200.70.000.000.000.0011,700.090.46135.004,115.2-4,712.64,181.86,300.50.000.000.000.0011,722.490.46135.004,115.0-4,728.54,197.76,322.90.000.000.00										0.0
11,600.090.46135.004,116.0-4,641.94,111.16,200.70.000.000.11,700.090.46135.004,115.2-4,712.64,181.86,300.50.000.000.11,722.490.46135.004,115.0-4,728.54,197.76,322.90.000.000.										0.0
11,700.0 90.46 135.00 4,115.2 -4,712.6 4,181.8 6,300.5 0.00 0.00 0.0 11,722.4 90.46 135.00 4,115.0 -4,728.5 4,197.7 6,322.9 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>										0.0
11,722.4 90.46 135.00 4,115.0 4,728.5 4,197.7 6,322.9 0.00 0.00 0.										
										0.0
495H BHL		50.40	100.00	4,110.0	-,720.0	4,101.1	0,022.0	0.00	0.00	0.0

Database:	EDM	Local Co-ordinate Reference:	Well 495H
Company:	Enduring Resources LLC	TVD Reference:	KB @ 6705.0usft (Original Well Elev)
Project:	San Juan Basin - Rodeo Unit	MD Reference:	KB @ 6705.0usft (Original Well Elev)
Site:	492H Pad	North Reference:	Grid
Well:	495H	Survey Calculation Method:	Minimum Curvature
Wellbore:	Wellbore #1		
Design:	Design #1		

Design Targets

To	-	 Na.	-	


Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
495H KOP - plan hits target ce - Point	0.00 enter	0.00	3,350.0	600.0	-1,000.0	1,889,077.97	2,753,031.69	36.191662°N	107.731866°W
495H BHL - plan hits target ce - Point	0.00 enter	0.00	4,115.0	-4,728.5	4,197.7	1,883,749.47	2,758,229.35	36.177008°N	107.714273°W
495H POE - plan hits target ce - Point	0.00 enter	0.00	4,170.0	72.5	-603.5	1,888,550.50	2,753,428.18	36.190212°N	107.730524°W


Casing Points

Measured Depth (usft)	Vertical Depth (usft)		Name	Casing Diameter (")	Hole Diameter (")
350.0	350.0	13 3/8"		13-3/8	17-1/2
4,002.7	3,715.0	9 5/8"		9-5/8	12-1/4

Formations

Measured Depth (usft)	Vertical Depth (usft)	Name	Dip Dip Direction Lithology (°) (°)
274.0	274.0	Ojo Alamo	0.00
395.0	395.0	Kirtland	0.00
600.0	600.0	Fruitland	0.00
907.4	907.0	Lewis	0.00
955.8	955.0	Pictured Cliffs	0.00
1,352.6	1,340.0	Chacra	0.00
2,563.6	2,416.0	Cliff House	0.00
2,570.4	2,422.0	Menefee	0.00
3,681.6	3,402.0	Point Lookout	0.00
3,901.3	3,615.0	Mancos	0.00
4,140.7	3,845.0	Gallup (MNCS_A)	0.00
4,258.4	3,945.0	MNCS_B	0.00
4,441.1	4,070.0	MNCS Cms	0.00

2000

.

SMARDAIC DIOFINAM EXOLD DIAGRAMS

CHOKE MANIFOLD

Directions from the Intersection of US Hwy 550 & US Hwy 64

in Bloomfield, NM to Enduring Resources, LLC Rodeo Unit #495H

225' FNL & 895' FWL, Section 31, T23N, R8W, N.M.P.M., San Juan County, NM

Latitude: 36.190011°N Longitude: 107.728479°W Datum: NAD1983

From the intersection of US Hwy 550 & US Hwy 64 in Bloomfield, NM, travel Southerly on US Hwy 550 for 38.7 miles to Mile Marker 112.7;

Go Right (Southerly) on County Road #7900 for 2.3 miles to fork in road;

Go Right (Westerly) on County Road #7940 for 2.6 miles to existing access road on right-hand side which continues for 1071.2' to Enduring Rodeo Unit #495H existing location.