State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin Cabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary Jami Bailey, Division Director Oil Conservation Division

New Mexico Oil Conservation Division approval and conditions listed below are made in accordance with OCD Rule 19.15.7.11 and are in addition

to the actions approved by BLM on the following <u>3160-3</u> APD form.

Operator Signature Date: \otimes Well information; _, Well Name and Number <u>Dilectione</u> Mea. #1H Operator LOQOS API# <u>30-039-31262</u>, Section <u>3</u>, Township <u>23</u> (N)S, Range ____

Conditions of Approval:

(See the below checked and handwritten conditions)

𝘜 Notify Aztec OCD 24hrs prior to casing & cement.

Hold C-104 for directional survey & "As Drilled" Plat

Hold C-104 for NSL, NSP, DHC

- Spacing rule violation. Operator must follow up with change of status notification on other well to be shut in or abandoned
- Regarding the use of a pit, closed loop system or below grade tank, the operator must comply with the following as applicable:
 - A pit requires a complete C-144 be submitted and approved prior to the construction or use of the pit, pursuant to 19.15.17.8.A
 - A closed loop system requires notification prior to use, pursuant to 19.15.17.9.A
 - A below grade tank requires a registration be filed prior to the construction or use of the below grade tank, pursuant to 19.15.17.8.C
- Once the well is spud, to prevent ground water contamination through whole or partial conduits from the surface, the operator shall drill without interruption through the fresh water zone or zones and shall immediately set in cement the water protection string

Regarding Hydraulic Fracturing, review EPA Underground Injection Control Guidance 84

✓ Oil base muds are not to be used until fresh water zones are cased and cemented providing isolation from the oil or diesel. This includes synthetic oils. Oil based mud, drilling fluids and solids must be contained in a steel closed loop system.

NMOCD Approved by Signature

1220 South St. Francis Drive • Santa Fe, New Mexico 87505 Phone (505) 476-3460 • Fax (505) 476-3462 • www.emnrd.state.nm.us/ocd

	Form 3160-3 (March 2012)				WE	FOR OME Expires	M APPROVED 3 No. 1004-0137 4 October 31 2014			
	DEPA BUR	UNITED STATES RTMENT OF THE I EAU OF LAND MAN	NTERIOR AGEMENT	AUG 07	2014	5. Lease Serial No NM 130875	l	ους 1994 φ 2.	1000 1 1000 1 1000 1 1000 1	
	APPLICATION	FOR PERMIT TO	DRILL OF	REENTERN	icid Oli	C.G. If Indian, Alloto	ee or Tribe Name	5		(°C) الارج
	la. Type of work: 🖌 DRILL	REENTE	R	AIRCIA OF COMP		7. If Unit or CA Ag	reement, Name and No.			jena Jena Jena
	lb. Type of Well: 🔽 Oil Well	Gas Well Other	Si	ngle Zone 🔲 Multi	ple Zone	8. Lease Name and DILECTIONE ME	i Well No. A 001H	D.	(22)	
	2. Name of Operator Logos Operating	g, LLC				9. API Well No. 30-039	-31262			
R	3a. Address 4001 North Butler Ave, Building 7101 Farmington, NM 87401			. (include area code) 333		10. Field and Pool, or Exploratory Counselors Gallup-Dakota				
AN)	4. Location of Well (Report location clearly and in accordance with any State requirements.*) 11. Sec., T. R. M. or Blk.and Survey or Area At surface 1695' FNL & 270' FWL (SW/NW) SHL: Sec. 3, T23N R06W, UL E BHL: Sec. 4, T23N R06W, UL D SHL: Sec. 4, T23N R06W, UL D									
	14. Distance in miles and direction from nea	urest town or post office*				12. County or Parish Rio Arriba	13. State			
	15. Distance from proposed* location to nearest property or lease line, ft.	vest edge of Sec 3	16. No. of a 639.12 acr	cres in lease es	17. Spacin N2/N2 =	g Unit dedicated to this 159.12 acres	swell			
	 Distance from proposed location* to nearest well, drilling, completed, applied for, on this lease, ft. 	ectione Mea 2H - 50'	19. Proposed Depth 20. BLM/E 10489' MD, 5483' VD BLM NM		/BIA Bond No. on file MB000917					
	21. Elevations (Show whether DF, KDB, 1 6693' GL	RT, GL, etc.)	22. Approxir 10/01/201	nate date work will sta 4	t	23. Estimated duration 45 days				
	The following completed in accordance with	the requirements of Onshore	24. Attac	hments	toohod to thi	in forma				
	 Well plat certified by a registered surveyor A Drilling Plan. A Surface Use Plan (if the location is or SUPO must be filed with the appropriate 	or. on National Forest System L Forest Service Office).	ands, the	 Bond to cover the later 20 above). Operator certific Such other site 	ne operation ation specific info	ns unless covered by a primation and/or plans a	n existing bond on file 15 may be required by t	(see		
	25. Signature	·	Name	BLM. (Printed/Typed)			Date			
	Title Ondosi	<u>~~</u>	Tamra	Sessions			08/07/2014			
	Operations Technician Approved by (Signature)		Name	(Printed/Typed)			Date	4		
	Title Cant	Lelote)	Office				8/14/1	4		
	Application approval does not warrant or cer conduct operations thereon.	tify that the applicant holds	legal or equit	able title to those right	s in the subj	ect lease which would	entitle the applicant to			
	Title 18 U.S.C. Section 1001 and Title 43 U.S.C States any false, fictitious or fraudulent states	C. Section 1212, make it a criments or representations as to	me for any pe any matter wi	rson knowingly and w thin its jurisdiction.	illfully to m	ake to any department	or agency of the United	1		
	(Continued on page 2)	ACTION DOES N OPERATOK FRO	NE OR AC OT RELH M OBTAI	CEPTANCE OF EVE THE LESS NING ANY OT	- THIS EE AND HER	*(Inst This and	tructions on page	2)		
	JUNICLING OF EXAMINAS JITHORIZED ARE SUBJECT TO OMPLIANCE WITH ATTACHED GENERAL REQUIREMENTS"	n requi id india NMC	RED FOR OPEF N LANDS	ATIONS	S and proc 43 CFR pursuant	ton is subject to tech Cedural review pursu 3165.3 and appeal to 43 CFR 3165.4	hnical Iant to	D		
								•	Ċ	
						CONFIDE	INTIAL			

Ŧ

į

۰ħ

t f

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III 1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170 District IV			Energy,	State of New Mexico nergy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION 1220 South St. Fancis Dr. Santa Fe, NM 87505			Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office					
Phone: (505) 476-34	60 Fax: (505) 4	76-3462								RCVD	AUG	27/14
<u>. </u>		WE	LL LO	CATIO	N AND A	ACRE	EAGE DEDI	CATION PL	AT	<u>OIL</u> C	ons	.DIV.
I	API Number			² Pool Code ³ Pool Name			ne said a said			613 1		
30-039-3	31262			13379 Counselors Gallup				up—Dakota				
* Property	Code			⁵ Property Name				[°] Well Number				
3136	45			Dilectione Mea					UUIH			1
⁷ ogrid 28940	No. 08		1	°Operator Name Logos Operating, LLC.				Elevation 6693'			ion S'	
					¹⁰ Surfa	ce L	ocation					/
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	n the	North/South line	Feet from the	East	/West line		County
E	3	T23N	R6W		1695'	·	NORTH	270'	WE:	S <i>T</i>	RIO	ARRIBA
"Bottom Hole Location If Different From Surface												
UL or lot no.	Section	Township	Range	Lot Idu	Feet from	n the	North/South line	Feet from the	East	/West line		County
D	4	T23N	R6W	4	330'		NORTH	300'	WES	ST	RIO	ARRIBA
¹² Dedicated Acre 31 9.12	es ¹³ Joint à $N/2$	r Infill ¹⁴ Cor 4	isolidation	Code 15 Or	rder No.	•						

No allowable will be assigned to this completion until all interests have been consolidated or a non-standard unit has been approved by the division.

. . .

Attachment To Application For Permit To Drill. **Drilling program**

LOGOS OPERATING, LLC 4001 N. Butler, Bldg. 7101 Farmington, NM 87401 U.S.A

DILECTIONE MEA 1H Horizontal Gallup Oil and Gas Well Surface Location: 1695' FSL - 270' FWL Section 3, T23N, R6W Ungraded GL Elev = 6693' Estimate KB Elev =6708' (15'KB) Lat. = 36.256230 deg N Long. = 107.464740 deg W NAD83 Rio Arriba County, New Mexico

Proposed Bottom Hole Location: 1967' FNL - 300' FWL Section 3, T23N, R6W Rio Arriba County, New Mexico

Drilling program written in compliance with onshore Oil and Gas Order No. 1 (III.D.3, effective May 2007) and Onshore Order No. 2 Dated November 18, 1988

1. ESTIMATED TOPS FOR IMPORTANT GEOLOGICAL FORMATIONS

Formation Tops	Surface (TVD)
Kirtland	979
Fruitland	1604
Pictured Cliff's	1920
Chacra	2414
Cliffs House	3554
Menefee	3715
Point Lookout	4223
Mancos	4397
Gallup	5310
Lower Gallup	5520
Landing Point	5534
Total Depth	5483

Drilling Plan

Drill 12 ¼" hole to 320' then set 9 5/8" casing. Drill 8 3/4" hole with fresh water mud from 320' MD to kick off point #1 1127' MD and build 2 degrees per 100' to 20 degrees, 344.22 degrees azimuth and hold to approximately 5242' MD.

Trip out of hole and pick up 8 3/4" kick off assembly at 5242' MD. Build angle at 10 deg/100' to 85 degrees inclination and 269.03 degrees azimuth in the Gallup formation at 5558' MD/ 5310' TVD where 7" intermediate casing will be set at 6044' MD / 5530' TVD.

7" casing will be set in a legal position 1967' FNL & 630' FEL in Section 4.

The 7" casing will be drilled out with a 6 1/8" drilling assembly building angle at 5 deg/100' to 90.67 degrees inclination and 269.03 degree azimuth to 6158' MD / 5534' TVD. Hold 90.67 degrees, 269.03 degrees azimuth and drill to a total depth at 10489' MD / 5483' TVD. Adjustments may be made to the directional program based on geology. Total depth will be 10489' MD / 5483' - 90.67 degrees, 269.03 degrees Azimuth. The Bottom hole location will be in a legal location at 10489' MD at 330' FNL & 300' FWL of section 6.

A total of 4445' of horizontal hole will be drilled.

2. ANTICIPATED DEPTHS OF PROSPECTIVE OIL GAS AND OTHER HYDROCARBONS

Primary objective is the Gallup formation encountered first at 5310' TVD

See formation listings in #1 above for additional zones of interest.

3. MINIMUM SPECIFICATIONS FOR PRESSURE CONTROL EQUIPMENT

BOP equipment and accessories will meet or exceed BLM requirements outlined in 43 CFR Part 3160.

A 2000 psig double ram hydraulic BOP will be used (see attached diagram). Since maximum anticipated formation pressure is 2014 psig (0.364 psi/ft @ 5534' TVD), accessories to the BOP will meet BLM requirements for a 2000 psig system. In accordance with Onshore Order #2 (111.A well requirements) the anticipated surface pressure assuming a partially evacuated hole with normal pressure gradient of 0.22 psi/ft will be 1217 psi (5532' TVD x 0.22 psi/ft).

The accumulator system capacity will be sufficient to close all BOPE with a 50% safety factor. Fill line, kill line and line to the choke manifold will be 2".

BOPs will be function tested every 24 hours and will be recorded on an IADC log. Accessories to the BOPE will include upper and lower Kelly cocks with handles with a stabbing value to fit drill pipe on the floor at all times, string float at bit, 2000 psig choke manifold with 2" adjustable and 2"positive chokes, and pressure gauge.

All BOP equipment will be hydraulically operated with controls accessible both on the rig floor.

The wellhead BOP equipment will be nippled-up on the 9-5/8" x 11" 2,000 psi WP casing head prior to drilling out from under surface casing. All ram preventers and related equipment will be tested to 2,000 psi for 10 minutes. Annular preventers will be tested to 50% of rated working pressure for 10 minutes. Surface casing will be tested to 70% of internal yield pressure. All preventers and surface casing will be tested before drilling out of surface casing. BOP equipment will be tested every 14 days, after any repairs are made to the BOP equipment, and after the BOP equipment is subjected to pressure. Annular preventers will be functionally operated at least once per week. Pipe rams will be activated daily and blind rams shall be activated each trip or at least weekly. The New Mexico Oil & Gas Conservation Commission and the BLM will be notified 24 hours in advance of testing of BOPE.

4. PROPOSED BIT AND CASING PROGRAM

A. Bit Program

12-1/4" Surface Hole = Surface to 320' 8-3/4" = 320' to 6044' = 7" Casing point @ 85 degrees 8-3/4" Landing point = 6158' @ 90.67 degrees 6-1/8" Lateral = 6158' MD to 10489' MD = Gallup Pay Zone Horizontal

					5 9
Casing & Hole Size	Weight	Grade	Coupling	Setting Depth (MD)	Comments
9-5/8" (12-1/4")	36 ppf	J or K-55	LT&C	0' - 320'	New casing. Cement to surface.
7" (8-3/4")	23 ppf	J or K-55	LT&C	0' - 6044' MD	New Casing. Cement to surface with two stages
4-1/2" (6-1/8")	11.6 ppf	P-110	LT&C	5800' - 10489' MD	New Casing - Horizontal Hole Cemented full length with foam cement - TOL at 60 degrees.

B. Casing Program – all casing stings are new casing

Casing strings below the conductor casing will be tested to .22 psi per foot of casing string length or 1500 psi, whichever is greater, but not to exceed 70% of the minimum internal yield.

Minimum casing design factors used:	Collapse -	1.125
	Burst -	1.0
	Jt. Strength -	1.60

Surface casing shall have a minimum of 1 centralizer per joint on the bottom three (3) joints, starting with the shoe joint for a total of (4) minimum centralizers. Centralizers will be placed 10' above the shoe on the shoe joint, on the 1st, 2nd and 3rd casing collars.

The intermediate casing will be centralized using 1 centralizer the first 6 jts and spaced appropriately through the curve section of the well-bore and then spaced +/- 1 centralizer / 4 jts through the remainder of

the cement column, using approximately 40 centralizers.

5. PROPOSED CEMENTING PROGRAM

•

The proposed cementing program has been designed to protect and/or isolate all usable water zones, potentially productive zones, lost circulation zones, abnormally pressured zones, and any prospectively valuable deposits of minerals. Any isolating medium other than cement shall receive approval prior to use. The casing setting depth shall be calculated to position the casing seat opposite a competent formation which will contain the maximum pressure to which it will be exposed during normal drilling operations. All indications of useable water shall be reported.

a) The proposed cementing program is as follows:

Top plugs shall be used to reduce contamination of cement by displacement fluid. A bottom plug or other acceptable technique, such as a pre-flush fluid, inner string cement method, etc. shall be utilized to help isolate the cement from contamination by the mud fluid being displaced ahead of the cement slurry.

Surface Casing Single Stage Job - (0-320'):

Stage 1 Fluid 1: Water Spacer. Fresh Water

Fresh Water	Fluid Density:	8.33 Ibin/gal
	Volume:	10 661
Fluid 2: Lead Shurry		
HALCEM (TM) SYSTEM	Fluid Weight:	15.8 lbm/gal
94 lbm Premium Cement	Volume:	55.8 bbl
0.1250 lbm Poly-E-Flake	Shurry Yield:	1.174 ft3/sack
5.13 Gal FRESH WATER	Total Mixing Fluid:	5.13 Gal/sack
	Top Of Fluid	0 ft
	Calculated Fill:	500 ft
	Calculated sack:	266.77 sack
	Proposed sack:	270 sack
Fluid 3: Water Based Spacer		
Displacement	Fluid Density:	8.33 lbm/gal
	Volume:	38.7 bbl

Fluid #	Fluid Type	Fluid Name	Surface Density İbm/gal	Estimated Avg Rate	Downhole Volume
1	SPACER	Fresh Water	8.33		10 bbl
2	CEMENT	HalCein Primary	15.8		270 sack
3	SPACER	Displacement	8.33		38.7 bbl

Intermediate Casing – One Stage Job (0-6044' MD): Excess – 50% over gauge hole – 8-3/4" hole and 7" casing (0.1503 ft3/ft) Top of Cement – Surface

•

•

Stage 1		
Fluid 1: Water Spacer	<u></u>	.
Fresh Water,	Fluid Density:	8.33 lbm/gal
	Volume :	10.661
Fluid 2: Reactive Spacer		
Chemical Wash	Fluid Density:	8.4 lbm/gal
1000 gal/Mgal FRESH WATÉR	Volume :	40 bbl
Fluid 3: Water Spacer		
Fresh Water	Fluid Density:	8.33 lbm/gal
	Volume :	10 661
Fluid 4: Foamed		
ELASTISEAL (TM) SYSTEM	Fluid Weight:	13 lbm/gal
1.50 % CHEM - FOAMER 760, TOTETANK	Volume:	193.5 bbl
6.73 Gal FRESH WATER	Slurry Yield:	1.438 ft3/sack
	Total Mixing Fluid:	6.83 Gal/sack
	Top Of Fluid:	0 ft:
	Calculated Fill:	5267 ft
	Calculated sack:	42.26 sack
	Proposed sack:	560 sack
Third S. Tell Charter		
	Thid Walata	1.7. 6 11 milion 1:
570 Gal ERESH WATER	Volumer	15.5 1011/gai
5.70 Garriesh warek	Churry Wield.	10.7 UUI
	Total Mining Eluide	5.7 Gal/agal:
	Top Of Fluid	5767 ft
	Calculated Fill:	500 ft
	Calculated sack:	SI 33 sack
	Proposed sack	85 sack
	Toposed stert.	de outre
Fluid 6: Water Based Spacer		
Displacement	Fluid Density:	8.4 lbm/gal
	Volume :	227 bbl
Fluid 7: Top Off Annulus		
HALCEM (TM) SYSTEM	Fluid Weight:	15.8 lbm/gal
2 % Calcium Chloride	Volume:	20.9 bbl
5.15 Gal FRESH WATER	Slury Ŷield:	1.174 ft3/sack-

Total Mixing Fluid:5.15 Gal/sackCalculated sack:0 sackProposed sack:100 sack

Cement volumes are minimums and may be adjusted based on caliper log results.

<u>Production Casing – Single Stage Job (5800' - 10489' MD):</u> Excess – 50% over gauge hole – 6-1/8" hole and 4-1/2" casing (0.0942 ft3/ft) Top of Cement – Top of Liner.

Stage 1 Fluid 1: Water Based Spacer KCL Spacer

Fluid 2: Water Spacer. Fresh Water

Fluid 3: Rheologically Enhanced Spacer 9 lb/gal Tuned Spacer III 38:32 gal/bbl FRESH WATER 1 gal/bbl SEM-7 1 gal/bbl Musol(R) A 45 gal/bbl BAROID 41 - 50 LB BAG

Fluid 4: Water Spacer. Fresh Water

Fluid 5: Lead Shury ELASTISEAL (TM) SYSTEM 6.91 Gal FRESH WATER

Fluid 6: Foamed ELASTISEAL (TM) SYSTEM 1.50 % CHEM - FOAMER 760, TOTETANK 6.81 Gal FRESH WATER Fluid Density Volume:

Fluid Density: Volume: 40 bbl

8.4 lbm/gal

8.33 lbm/gal. 10 bbl

Fluid Density: Volume: 9 lbm/gal 40 bbl

Fluid Density: Volume: 8.33 İbm/gal. 10 bbl

Fluid Weight:13 lbm/galVolume:11.5 bblShury Yield:1.457 ft3/sackTotal Mixing Fluid:6.91 Gal/sackTop Of Fluid:4750 ftCalculated Fill:550 ftCalculated sack:44.32 sackProposed sack:45 sack

Fluid Weight:13 lbm/gålVolume:82.5 bblSlurry Yield:1.458 ft3/sackTotal Mixing Fluid:6.92 Gål/säckTop Of Fluid:5300 ftCalculated Fill:4267 ftCalculated säck:231.30 sackProposed sack:270 säck

Fhuid 7: Tail Shurry

ELASTISEAL (TM) SYSTEM	Fluid Weight:	13.5 lbm/gal
5.72 Gål FRESH WATER	Volume:	22.2 661
	Slurry Yield:	1.285 ft3/sack
	Total Mixing Fluid:	5.72 Gal/sack
	Top Of Fluid:	9567 ft
	Calculated Fill:	1150 ft
	Calculated sack:	97 sack
	Proposed sack:	100 sack
Fluid 8: Water Based Spacer		
MMCR Displacement	Fluid Density:	8.4 lbm/gal
0.25 gal/bbl Micro Matrix Retarder	Volume:	20 bbl
Fluid 9: Water Based Spacer		
KCL Displacement	Fluid Density:	8.4 lbm/gal
	Volume:	40 bbl
Fluid 10: Water Spacer		
Fresh Water Displacement	Fluid Density:	8.3 lbm/gal
·	Volume:	30 bbl
Fluid 11: Water Based Spacer		
KCL Displacement	Fluid Density:	8.4 lbm/gal
	Volume:	53.5 bbl

Stage 1

,

.

Fluid #	Fluid Type	Ehuid Name	Surface Density Ibm/gal	Estimated Avg.Rate	Downhole Volume:
1	SPACER	KCL Spacer	8.4		40 bbl
2	SPACER	Fresh Water	8:33:		10 bbl.
3.	SPACER	9 lb/gal Tuned Spacer III	9		40 bbl
4	SPACER	Fresh Water	8.33		10 661
٠Ś	CEMENT	Unfoamed Lead	13		45 sack
6	CEMENT	Foamed Cement	13		270 sack
7	CEMENT	Unfoamed Tail	13.5		100 sack
S,	ŠPAČE R	MMCR Displacement	8.4		20.661
9	SPACER	KČĻ Displacement	8.4		40 bbl
10	SPACER	Fresh Water Displacement	8.3		30 661
11	SPACER	KCL Displacement	8.4		53.5 bbl

.

Foam Output Parameter Summary:

Stage 1

Foam Calculation Method :	Constant Density
Annulus Back Pressure	20 psig
Bottom Hole Circulating Temp	145degF
Mud.Outlet Temperature	degF

Calculated Gas :	22274.8 scf
Additional Gas	50000 scf
Total Gas :	72274.8 scf

	Fluid # Name	Unfoamed Eiquid Volume (bbl)	Beginning Density (lbni/gal)	Endings Density (Ibm/gal-)	Beginning Rate (sct/obl)	Ending Rate (scf/bbl)
3	9.1b/gal Tuñed	45	10		-42.58	-43.5

a	<u></u>	y.		 	<u>. </u>
	Spacer III				
6	Foamed Cement	6.9	10	298.61	302•91
6	Foamed Cement	1.2	10.	328.815	327.4
6	Foaned Cement	* 3.1	10	327.57	331.73
6	Foamed Cement	3.9	10	340.74	344,91
6	Foamed Cement	1.8	10	357,22	361.16
6	Foamed Cenient	7,1	10	364.9	369
6	Foanied Cement	:36.2	ľŎ	394.44	398-33

Foam Design Specifications:

Foam Calculation Method:	Constant Density	Calculated Gas =	20792.1 scf
Backpressure:	14 psig	Additional Gas =	50000 scf
Bottom Hole Circulating Temp:	158 degF	Total Gas =	70792.1 scf
Mud Outlet Temperature:	100 degF		
	e - 11eë * 5 6 5 5 5 5 5	a construction of the second	Charles Block and

Production liner clarification: Utilizing foam cement for zonal isolation in the production liner.

Actual volumes will be calculated and determined by conditions onsite. All cement slurries will meet or exceed minimum BLM and New Mexico Oil Conservation Division requirements. Slurries used will be the slurries listed above or equivalent slurries depending on service provider selected. Cement yields may change depending on slurries selected.

All waiting on cement times shall be a minimum of 8 hours or adequate to achieve a minimum of 500 psi compressive strength at the casing shoe prior to drilling out.

6. PROPOSED DRILLING FLUIDS PROGRAM a) Vertical Portion

Hole Size (in)	TVD (ft)	Mud Type	Density (lb/gal)	Viscosity (sec/qt)	Fluid Loss (cc)
12-1/4"	0-320'	Fresh Water	8.4-8.6	60-70	NC
8-3/4"	320'-5033'	Fresh Water LSND	8.5-8.8	40-50	8-10

b) Kick off to Horizontal Lateral:

Hole Size (in)	TVD/MD [*] (ft)	Mud Type	Density (lb/gal)	Viscosity (sec/qt)	FluidLoss (CC)
8-3/4"	5241' (KOP)- 6158'	Fresh Water LSND	8.5-8.8	40-50	8-10
6-1/8"	6158' - 10489'	Synthetic Oil Based Mud	7.0-9.0	15-25	<1

- c) There will be sufficient mud on location to control a blowout should one occur. Mud flow and volume will be monitored both visually and with electronic pit volume totalizers. Mud tests shall be performed every 24 hours after mudding up to determine, as applicable: density, viscosity, gel strength, filtration, and pH.
- d) A closed-loop system will be used to recover drilling fluid and dry cuttings in both phases of the well and on all hole intervals, including fresh water and oil-based operations. Above-ground tanks will be utilized to hold cuttings and fluids for rig operations. A frac tank will be on location to store fresh water. Waste will be disposed of properly at an EPAapproved hazardous waste facility. Fresh water cuttings will be disposed of at Basin Disposal, Inc. and/or Industrial Ecosystems, Inc. The location will be lined in accordance with the Surface Use Plan of Operations.

7. TESTING, CORING and LOGGING

- a) Drill Stem Testing None anticipated
- b) Coring-None anticipated.
- c) Mud Logging Mud loggers will be on location from intermediate casing point to TD.
- d) Logging See Below
- e) Gamma Ray from surface casing point to TD

Cased Hole:

CBL/CCL/GRNDL will be run as needed for perforating control

8. ABNORMAL PRESSURES & HYDROGEN SULFIDE

The anticipated bottom hole pressure is +/- 2590 psi based on a 9.0 ppg at 5534' TVD of the landing point of the horizontal. No abnormal pressure or temperatures are anticipated.

No hydrogen sulfide gas is anticipated, however, if H_2S is encountered, the guidelines in Onshore Order No. 6 will be followed.

9. ANTICIPATED START DATE AND DURATION OF OPERATIONS

Drilling is estimated to commence on October 1, 2014. It is anticipated that completion operations will begin within 30 days after the well has been drilled depending on fracture treatment schedules with various pumping service companies.

It is anticipated that the drilling of this well will take approximately 25 days.

CLOSED-LOOP SYSTEM DESIGN PLAN

The closed-loop system will consist of a series of temporary above-ground storage tanks and/or haul-off bins suitable for holding the cuttings and fluids from drilling operations. The closed-loop system will not entail temporary pits, below-grade storage tanks, below-grade sumps, or drying pads.

Design considerations include:

- 1. The closed-loop system will be signed in accordance with 19.15.17.11 NMAC.
- 2. The closed-loop system storage tanks will be of adequate volume to ensure confinement of all fluids and provide sufficient freeboard to prevent uncontrolled releases.
- 3. Topsoil will be salvaged and stored for use in reclamation activities.
- 4. The closed-loop system storage tanks will be placed in bermed secondary containment sized to contain a minimum of 110percent of the volume of the largest storage tank.

CLOSED-LOOP SYSTEM OPERATING & MAINTENANCE PLAN

The closed-loop system will be operated and maintained to contain liquids and solids; minimize the amount of drilling fluids and cuttings that require disposal; maximize the amount of drilling fluid recycled and reused in the drilling process; isolate drilling wastes from the environment; prevent contamination of fresh water; and protect public health and the environment.

Operation and maintenance considerations include:

- 1. Fluid levels will be maintained to provide sufficient freeboard to prevent over-topping.
- 2. Visual inspections will be conducted on a daily basis to identify any potential leaks and to ensure that the closed-loop system storage tanks have sufficient freeboard to prevent over-topping.
- Only drilling fluids or cuttings intrinsic to, used by, or generated from, drilling operations will be stored in the closed-loop system storage tanks. Hazardous waste, miscellaneous solid waste, and/or debris will not be stored in the storage tanks.
- 4. The OCD District Office will be notified within 48 hours of discovery of a leak in the closed-loop drilling system. If a leak is discovered, all liquid will be removed within 48 hours and the damage repaired.

CLOSED-LOOP SYSTEM CLOSURE PLAN

The closed-loop system will be closed in accordance with 19.15.17.13 NMAC.

Closure considerations include:

- 1. Drilling fluids will be recycled and transferred to other permitted closed-loop systems or returned to the vendor for reuse, as practical.
- 2. Residual fluids will be pulled from the storage tanks, mixed with saw dust or similar absorbent material, and disposed of at Industrial Ecosystem, Inc. waste disposal facilities.
- 3. Remaining cuttings or sludges will be vacuumed from the storage tanks and disposed of at the Envirotech, Inc and/or Industrial Ecosystem, Inc. waste disposal facilities.
- 4. Storage tanks will be removed from the well location during the rig move.
- The well pad will be reclaimed and seeded in accordance with subsections G, Hand I of 19.15.17.13NMAC.

Project: Rio Arriba County, NM Site: S3-T23N-R6W (Dilectone Mea Pad) Well: Dilectone Mea 1H Wellbore: HZ Design: Plan #4

Planning Report

Company: Project: Site: Well: Wellbore: Design:	USA EDM 50 LOGOS Ope Rio Arriba Co S3-T23N-R6 Dilectone Me HZ Plan #4	00 Multi Users rating LLC unty, NM W (Dilectone M a 1H	DB ĕa Rad)		Local Co-ordin TVD Reference MD Reference: North Referenc Survey Calcula	ate Reference : : : ation Method:	e: Well KB=1 KB=1 True Minin	Dilectone Mea 5' @ 6708.0us 5' @ 6708.0us	1H ft	
Project Map System: Geo Datum: Map Zone:	; Rio Arrib US State North Ame New Mexi	a County, NM Plane 1983 erican Datum 1 co Central Zone	983 e		System Datu	n:	Mear) Sea Level	an sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a sea a	ana ana ang ang ang ang ang ang ang ang
Site Site Position: From: Position Uncert	ي S3-T23N Lat/L ainty:	I-R6W (Dilector ong 0.0 ust	në Mea Pad) Northi Eastin t Slot Ra	ng: g: adius:	1,914,7 1,282,2 13	79.94 usft L 75.64 usft L -3/16 "G	atitude: .ongitude: Srid Convergen	ce:		36.256230 -107.464740 -0.72 °
Well Well Position	Dilectone	Mea 1H 0.0) usft No	rthing:	1 (11) (11) (11) (11) (11) (11) (11) (1	1,914,779.94 u 1,282,275.64 u	usft Latitu usft Longi	de: tude:	می این می این می این می این این می این این این می این می این این این می این این این این این این این این این این	36.256230 -107.464740
Position Uncert	+E/-W ainty	0.0) usft Eas) usft We	Ilhead Elevatio	on:	0.0 u	usft Groun	d Level:	ر معروف من مراجع من مراجع من مراجع من مراجع من مراجع من مراجع من مراجع من مراجع من مراجع من مراجع من مراجع من م مراجع من مراجع من مرا مراجع من مراجع من مرا	6,693.0 usft
Position Uncert Wellbore Magnetics Design Audit Notes:	+E/-W ainty HZ Mod	0.0 0.0 el Name IGRF200510) usft East) usft We Sample	sting: Ilhead Elevatic Date 6/17/2014	Declination (°)	0.0 u	usft Groun	d Level:	Field. (6,693.0 usft Strength nT) 50,247
Position Uncert Wellbore Magnetics Design Audit Notes: Version:	+E/-W ainty HZ Mod	0.0 0.0 el Name IGRF200510) usft Eas) usft We Sample Phase	sting: Ilhead Elevatic Date 5/17/2014 : PL	Declination (°)	0.0 u 9.33 Tie C	usft Groun	d Level: le 63.06	Field ((6,693.0 usft Strength nT) 50,247
Position Uncert Wellbore Magnetics Design Audit Notes: Version: Vertical Section	+E/-W ainty HZ (Plan #4	0.0 0.0 el Name IGRF200510) usft East) usft We Sample Phase pth From (TV (usft) 0.0	sting: Ilhead Elevatic Date 5/17/2014 : PL D)	Declination (°) AN +N/-S (usft) 0.0	0.0 u on 9.33 Tie C +E/- (usf 0.0	usft Groun Dip Ang (°) Dn Depth: W t)	d Level: lle 63.06 0. Direc (° 283.	Field. ((.0 .0 .1 .1 .42	6,693.0 usft Strength nT) 50,247
Position Uncert Wellbore Magnetics Design Audit Notes: Version: Vertical Section Plan Sections Measured Depth (usft)	+E/-W ainty HZ (Plan #4) Inclination (°)	0.0 0.0 el Name IGRF200510 De Azimuth (°)) usft East) usft We Sample Sample Phase pth From (TV (usft) 0.0 Vertical Depth (usft)	sting: Ilhead Elevatic Date 5/17/2014 : PL D) +N/-S (usft)	Declination (°) AN +N/-S (usft) 0.0 +E/-W (usft) (0.0 u 9.33 Tie C +E/- (usf 0.0 Dogleg Rate */100usft)	usft Groun	d Level: lle 63.06 0. Direc (° 283. Turn Rate /100usft)	.0 tion) TFO (°)	6,693.0 usft Strength nT) 50,247 Target

,

•

Planning Report

Company: LOGOS Operating LLC TVD Reference: KB=15' @ 6708.0usft Project: Rio Arriba County, NM MD Reference: KB=15' @ 6708.0usft Site: S3-T23N-R6W (Dilectone Mea Pad) North Reference: True Well: Dilectone Mea 1H Survey Calculation Method: Minimum Curvature Wellbore: HZ I Design: Plan #4	Database:	USA EDM 5000 Multi Users DB	Local Co-ordinate Reference:	Well Dilectone Mea 1H
Project: Rio Arriba County, NM MD Reference: KB=15' @ 6708.0usft Site: S3-T23N-R6W (Dilectone Mea Pad) North Reference: True Well: Dilectone Mea 1H Survey Calculation Method: Minimum Curvature Wellbore: HZ I Design: Plan #4	Company:	LOGOS Operating LLC	TVD Reference:	KB=15' @ 6708.0usft
Site: S3-T23N-R6W (Dilectone Mea Pad) North Reference: True Well: Dilectone Mea 1H Survey Calculation Method: Minimum Curvature Wellbore: HZ I Image: Survey Calculation Method: Minimum Curvature Design: Plan #4 Image: Survey Calculation Method: Plan #4	Project:	Rio Arriba County, NM	MD Reference:	KB=15' @ 6708.0usft
Well: Dilectone Mea 1H Survey Calculation Method: Minimum Curvature Wellbore: HZ I Design: Plan #4	Site:	S3-T23N-R6W (Dilectone Mea Pad)	North Reference:	True
Wellbore: HZ Design: Plan #4	Well:	Dilectone Mea 1H	Survey Calculation Method:	Minimum Curvature
	Wellbore: Design:	HZ I Plan #4		
		ار این این بود از این است. بود باده این از می از می از این از می از این از می از می از می این این این این این از از این هم مید میرود با مصله می می میم این دارد می منطقه میشوند.	,	اً هو آب الماد میلانیا را با با با با ماده می واقی از آن با کیانیا و آن از این می است. ماده به بریی الیام (مدینات است مدینات کار مانتینا بعد از مینیام میشر میشود) از الموردم می مدینا با م

							. .		
Measured	· •		Vertical			Vertical	Dogleg	Build	Comments /
Depth	Inclination	Azimuth	Depth	+N/-S	+E/-W	Section	Rate	C (Rate	Formations
(usft)	(°)	(°)	(usft)	(usft)	(usft)	(usft)	(°/100usft	(°/100u	
0.0	0.00	0.00	0.0			0.0	0.00	0.00	e como e mar aconse e a mara acada e e e e de acada e e
0.5	0.00	0.00	0.0	0.0	0.0	0.0	0.00	0.00	SH- 1605' ENI - 270' EW/
100.0	0.00	0.00	100.0	0.0	0.0	0.0	0.00	0.00	3H- 1093 FINE, 270 FWL
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	
200.0	0.00	0.00	200.0	0.0	0.0	0.0	0.00	0.00	
500.0	0.00	0.00	300.0	0.0	0.0	0.0	0.00	0.00	
320.0	0.00	0.00	320.0	0.0	0.0	0.0	0.00	0.00	9-5/8"
400.0	0.00	0.00	400.0	0.0	0.0	0.0	0.00	0.00	
500.0	0.00	0.00	500.0	0.0	0.0	0.0	0.00	0.00	
600.0	0.00	0.00	600.0	0.0	0.0	0.0	0.00	0.00	
700.0	0.00	0.00	700.0	0.0	0.0	0.0	0.00	0.00	
800.0	0.00	0.00	800.0	0.0	0.0	0.0	0.00	, 0.00	
900.0	0.00	0.00	900.0	0.0	0.0	0.0	0.00	0.00	
979.0	0.00	0.00	979.0	0.0	0.0	0.0	0.00	0.00	Kitland
1 000 0	0.00	0.00	1 000 0	0.0	0.0	0.0	0.00	0.00	Kiniano
1,000.0	0.00	0.00	1,000.0	0.0	0.0	0.0	0.00	0.00	
1,100.0	0.00	0.00	1,100.0	0.0	0.0	0.0	0.00	0.00	
1,127.0	0.00	0.00	1,127.0	0.0	0.0	0.0	0.00	0.00	KOP @ 1,127' MD
1,200.0	1.46	344.22	1,200.0	0.9	-0.3	0.5	2.00	2.00	
1,300.0	3.46	344.22	1,299.9	5.0	-1.4	2.5	2.00	2.00	
1,400.0	5.46	344.22	1,399.6	12.5	-3.5	6.3	2.00	2.00	
1,500.0	7.46	344.22	1,498.9	23.3	-6.6	11.8	2.00	2.00	
1 600 0	946	344 22	1 597 9	37.5	-10.6	19.0	2.00	2.00	
1,000.0	9.58	344.22	1,007.0	38.5	-10.0	19.0	2.00	2.00	Ervitland
1,000.1	11.46	344.22	1,000.9	55.0	-10.9	19.5	2.00	2.00	Fruitianu
1,700.0	13.46	344.22	1,030.2	75.7	-13.3	27.5	2.00	2.00	
1,000.0	15.46	344 22	1,795.0	99.8	-21.4	50.4	2.00	2.00	
1,300.0	10.40	344.22	1,030.7	55.0	-20.2	50.6	2.00	2.00	
1,930.1	16.06	344.22	1,919.7	107.6	-30.4	54.6	2.00	2.00	Pictured Cliffs
2,000.0	17.46	344.22	1,986.6	127.0	-35.9	64.4	2.00	2.00	
2,100.0	19.46	344.22	2,081.4	157.5	-44.5	79.8	2.00	2.00	
2,126.8	20.00	344.22	2,106.6	166.2	-47.0	84.3	2.00	2.00	EOB @ 20° INC
2,200.0	20.00	344.22	2,175.4	190.3	-53.8	96.5	0.00	0.00	
2,300.0	20.00	344.22	2,269,4	223.2	-63.1	113.1	0 00	0.00	
2,400.0	20.00	344.22	2,363.4	256.1	-72.4	129.8	0.00	0.00	
2,453.0	20.00	344.22	2.413.2	273.5	-77.3	138.7	0.00	0.00	Chacra
2,500.0	20.00	344.22	2.457.3	289.0	-81.7	146.5	0.00	0.00	
2,600.0	20.00	344.22	2,551.3	321.9	-91.0	163.2	0.00	0.00	
0.700.0			0.045.0	054.0	400.0	170.0			
2,700.0	20.00	344.22	2,645.3	354.8	-100.3	179.9	0.00	0.00	
2,800.0	20.00	344.22	2,139.2	30/./	-109.6	195.5	0.00	0.00	
2,900.0	20.00	344.22	2,833.2	420.6	-118.9	213.2	0.00	0.00	
3,000.0	20.00	344.22	2,927.2	453.5	-120.2	229.9	0.00	0.00	
3,100.0	20.00	344.22	3,021.2	400.4	-137.5	240.0	0.00	0.00	
3,200.0	20.00	344.22	3,115.1	519.3	-146.8	263.3	0.00	0.00	
3,300.0	20.00	344.22	3,209.1	552.2	-156.1	280.0	0.00	0.00	
3,400.0	20.00	344.22	3,303.1	585.2	-165.4	296.7	0.00	0.00	
3,500.0	20.00	344.22	3,397.0	618.1	-174.7	313.3	0.00	0.00	
3,600.0	20.00	344.22	3,491.0	651.0	-184.0	330.0	0.00	0.00	
3 668 0	20.00	344 22	3.554.9	673.3	-190.3	341.4	0 00	0.00	Cliff House
3 700 0	20.00	344 22	3 585 0	683.9	-193.3	346 7	0.00	0.00	
3 800 0	20.00	344 22	3,679.0	716.8	-202.5	363.4	0.00	0.00	
3 838 1	20.00	344 22	3 714 7	729.3	-206 1	369.7	0.00	0.00	Meneffee
3 900 0	20.00	344.22	3,772 9	749 7	-211.8	380.1	0.00	0.00	
5,000.0	_0.00					500.1		0.00	
4,000.0	20.00	344.22	3,866.9	782.6	-221.1	396.8	0.00	0.00	
4,100.0	20.00	344.22	3,960.9	815.5	-230.4	413.4	0.00	0.00	

,

.

Planning Report

میں بھی میں ہے۔ اور ایر کا ایک ایک ایک میں میں میں میں اور اور اور اور اور اور اور اور اور اور	a series a series and series a series a series a series a series a series a series a series a series a series a A series a s A series a s	الموسول - مدريق از بهر پروسول - مدروره مروبهوان مانهوان از مروبه مرد بها مانها و مراجع از مراجع از مراجع مراجع - از این محمد با از این این این این می میشود از میشود از این این این این این این این این این این	
Local Co-ordinate Reference:	Well Dilectone Mea 1H	e	ہ د .
TVD Reference:	KB=15' @ 6708.0usft		
MD Reference:	KB=15' @ 6708.0usft		
North Reference:	True		
Survey Calculation Method:	Minimum Curvature		
		a da anti-tana da anti-tana da anti-	
	Local Co-ordinate Reference: TVD Reference: MD Reference: North Reference: Survey Calculation Method:	Local Co-ordinate Reference:Well Dilectone Mea 1HTVD Reference:KB=15' @ 6708.0usftMD Reference:KB=15' @ 6708.0usftNorth Reference:TrueSurvey Calculation Method:Minimum Curvature	Local Co-ordinate Reference: Well Dilectone Mea 1H TVD Reference: KB=15' @ 6708.0usft MD Reference: KB=15' @ 6708.0usft North Reference: True Survey Calculation Method: Minimum Curvature'

÷

Ţ.

	Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft	Build Rate (°/100u	Comments / Formations	· · ·
ľ	4,200.0	20.00	344.22	4,054.9	848.4	-239.7	430.1	0.00	0.00	n a shaha u u ku yu nahar yuhan yuhan ku anta ku kabaru ku u nahan hurun shuku kaba kabaru ku shukurushi.	
ļ	4,300.0	20.00	344.22	4,148.8	881.3	-249.0	446.8	0.00	0.00		
l	4,379.1	20.00	344.22	4,223.2	907.3	-256.4	460.0	0.00	0.00	Point Lookout	
l	4 400 0	20.00	344 22	4 242 8	914.2	-258.3	463.5	0.00	0.00		
l	4,400.0	20.00	344 22	4 336 8	947 1	-267.6	480.2	0.00	0.00		
l	4 564 1	20.00	344 22	4 397 0	968.2	-273.6	490.9	0.00	0.00	Mancos	
	4 600 0	20.00	344 22	4 430 7	980.0	-276.9	496.9	0.00	0.00	Mailoos	
	4,700.0	20.00	344.22	4,524.7	1,012.9	-286.2	513.5	0.00	0.00		
	4 800 0	20.00	244.22	4 6 1 9 7	. 1 045 9	205 5	520 Q	0.00	0.00		
	4,800.0	20.00	344.22	4,018.7	1,045.6	-290.0	530.2	0.00	0.00		
	4,900.0	20.00	344.22	4,712.7	1,076.7	-304.0	540.9	0.00	0.00		
	5,000.0	20.00	344.22	4,000.0	1,111.7	-314.1	503.0	0.00	0.00		
	5,100.0	20.00	344.22	4,900.0	1,144.0	-323.4	506.0	0.00	0.00		
ļ	5,200.0	20.00	547.22	4,334.0	1,177.5	-332.7	590.9	0.00	0.00		
	5,241.6	20.00	344.22	5,033.6	1,191.1	-336.6	603.9	0.00	0.00	Start 10° Build/Turn	
L	5,250.0	20.19	341.83	5,041.6	1,193.9	-337.4	605.3	10.00	2.32		
	5,300.0	21.96	328.79	5,088.2	1,210.1	-345.0	616.4	10.00	3.54		
1	5,350.0	24.60	318.01	5,134.2	1,225.9	-356.8	631.6	10.00	5.27		
	5,400.0	27.85	309.40	5,179.0	1,241.0	-372.8	650.7	10.00	6.51		
	5,450.0	31.53	302.55	5,222.5	1,255.5	-392.9	673.5	10.00	7.36		
	5,500.0	35.51	297.05	5,264.2	1,269.1	-416.8	700.0	10.00	7.95		
	5,550.0	39.69	292.54	5,303.8	1,281.8	-444.5	729.9	10.00	8.36		
	5,558.1	40.38	291.89	5,310.0	1,283.8	-449.3	735.0	10.00	8.54	Gallup	
	5,600.0	44.01	288.78	5,341.0	1,293.6	-475.7	763.0	10.00	8.67		
	5,650.0	48.44	285.57	5,375.6	1,304.2	-510.2	799.0	10.00	8.86		
L	5,700.0	52.95	282.77	5,407.3	1,313.6	-547.7	837.7	10.00	9.02		
l	5,750.0	57.52	280.30	5,435.8	1,321.8	-587.9	878.7	10.00	9.13		
	5,800.0	62.13	278.06	5,460.9	1,328.7	-630.6	921.8	10.00	9.22		
	5,850.0	66.77	276.00	5,482.5	1,334.2	-675.4	966.6	10.00	9.29		
L	5,900.0	71,44	274.09	5,500.3	1.338.3	-721.9	1.012.8	10.00	9,34		
	5,950.0	76.13	272.27	5,514.3	1,340.9	-769.8	1,060.0	10.00	9.37		
L	5.976.1	78.58	271.36	5,520.0	1,341.7	-795.2	1,085.0	10.00	9.40	Lower Gallup	
	6.000.0	80.83	270.53	5,524.2	1,342.1	-818.8	1,107.9	10.00	9,41	·	
1	6,044.3	85.00	269.03	5,529.7	1,342.0	-862.7	1,150.6	10.00	9.41	EOB @ 85°/Start 5° Build - 7"/85° - 330' FN	L, 6
	6 100 0	87.79	269.03	5.533.2	1.341.0	-918.3	1.204.5	5.00	5.00		
	6,157.8	90.67	269.03	5,534,0	1.340.0	-976,1	1,260.5	5.00	5.00	LP @ 5,534' TVD, 90,67° INC	
	6,200.0	90.67	269.03	5,533.5	1,339.3	-1,018.3	1,301.3	0.00	0.00		
l	6,300.0	90.67	269.03	5,532.3	1,337.6	-1,118.2	1,398.2	0.00	0.00		
	6,400.0	90.67	269.03	5,531.1	1,335.9	-1,218.2	1,495.0	0.00	0.00		
	6 500 0	90.67	269.03	5 530 0	1.334.2	-1.318.2	1.591.9	0.00	0.00		
	6,000,0	90.67	269.03	5 528 8	1 332 5	-1 418 2	1 688 7	0.00	0.00		
l	6 700 0	90.67	269.03	5.527.6	1.330.8	-1.518.2	1,785.6	0.00	0.00		
	6,800,0	90.67	269.03	5,526.4	1,329.1	-1,618.1	1,882.5	0.00	0.00		
	6,900.0	90.67	269.03	5,525.2	1,327.4	-1,718.1	1,979.3	0.00	0.00		
	7 000 0	90.67	269.03	5 524 1	1 325 7	-1 818 1	2 076 2	0.00	0.00		
	7,000.0	90.67	269.03	5 522 9	1 324 0	-1 918 1	2,070.2	0.00	0.00		
	7,100.0	90.07 90 67	269.03	5 521 7	1.322.3	-2.018 1	2,269.9	0.00	0.00		
	7 300 0	90.67	269.03	5 520 5	1.320.6	-2,118.0	2,366.7	0.00	0.00		
	7,400.0	90.67	269.03	5,519.4	1,318.9	-2,218.0	2,463.6	0.00	0.00		
	7,000.0	00.07	260.00	E E 40 0	1 247 0	2 240 0	2 660 4	0.00	0.00		
1	7,500.0	90.67	269.03	5,518.2	1,317.2	-2,318.0	2,360.4	0.00	0.00		
	7,600.0	90.67	209.03	5,517.0	1,315.5	-2,410.0	2,007.3	0.00	0.00		
	7,700.0	90.67	269.03	5,515.8	1,313.8	-2,517.9	2,/54.1	0.00	0.00		
	7 800 0	90.67	ZD9 U3	3 3 4 /	1.312.1	-2.017.9	2.001.0	0.00	0.00		

.

Planned Survey

يسفي سنين بران أيب الارتيان

.

Υ.

••••

.

<u>,</u>7

Planning Report

Database:	USA EDM 5000 Multi Users DB	Local Co-ordinate Reference:	^t Well Dilectone Mea 1H
Company:	LOGOS Operating LLC	TVD Reference:	KB=15' @ 6708.0usft
Project:	Rio Arriba County, NM	MD Reference:	KB=15' @ 6708.0usft
Site:	S3-T23N-R6W (Dilectone Mea Pad)	North Reference:	True
Well:	Dilectone Mea 1H	Survey Calculation Method:	Minimum Curvature
Wellbore:	HZ		
Design:	Plan #4		

Planned	Surve

,

.

Planned Surve	y E				· · · · ·	· · · · · ·	na sena sena Sena sena	an marina marina	n a gre A A a a care and a care	i i i i i i i i i i i i i i i i i i i	
Measured	· · · ·		Vertical	· · ·		Vertical	Dogleg	Build	Comments /		
Depth (üsft)	Inclination (°)	Azimuth (°)	Depth (usft)	+N/-S (usft)	+E/-W (usft)	Section (usft)	Rate (°/100usft	Rate (°/100u	Formations		
7,900.0	90.67	269.03	5,513.5	1,310.4	-2,717.9	2,947.8	0.00	0.00			na an a' na na an an an an an an an an an an an
8,000.0	90.67	269.03	·5,512.3	1,308.7	-2,817.9	3.044.7	0.00	0.00			
8,100.0	90.67	269.03	5.511.1	1.307.0	-2.917.9	3,141.5	0.00	0.00			
8,200,0	90.67	269.03	5,509,9	1,305,3	-3.017.8	3.238.4	0.00	0.00			
8,300,0	90.67	269.03	5,508,8	1.303.6	-3.117.8	3.335.3	0.00	0.00			
8,400.0	90.67	269.03	5,507.6	1,301.9	-3,217.8	3,432.1	0.00	0.00			
8,500.0	90.67	269.03	5,506.4	1,300.2	-3,317.8	3,529.0	0.00	0.00			
8,600.0	90.67	269.03	5,505.2	1,298.5	-3,417.8	3,625.8	0.00	0.00			
8,700.0	90.67	269.03	. 5,504.1	1,296.8	-3,517.7	3,722.7	0.00	0.00			
8,800.0	90.67	269.03	5,502.9	1,295.1	-3,617.7	3,819.5	0.00	0.00			
8,900.0	90.67	269.03	5,501.7	1,293.4	-3,717.7	3,916.4	0.00	0.00			
9,000.0	90.67	269.03	5,500.5	1,291.7	-3,817.7	4,013.2	0.00	0.00	•		
9,100.0	90.67	269.03	5,499.4	1,290.0	-3,917.6	4,110.1	0.00	0.00			
9,200.0	90.67	269.03	5,498.2	1,288.3	-4,017.6	4,206.9	0.00	0.00			
9,300.0	90.67	269.03	5,497.0	1,286.6	-4,117.6	4,303.8	0.00	0.00			
9,400.0	90.67	269.03	5,495.8	1,284.9	-4,217.6	4,400.6	0.00	0.00			
9,500.0	90.67	269.03	5,494.6	1,283.2	-4,317.6	4,497.5	0.00	0.00			
9,600.0	90.67	269.03	5,493.5	1,281.5	-4,417.5	4,594.3	0.00	0.00			
9,700.0	90.67	269.03	5,492.3	1,279.8	-4,517.5	4,691.2	0.00	0.00			
9,800.0	90.67	269.03	5,491.1	1,278.1	-4,617.5	4,788.1	0.00	0.00			
9,900.0	90.67	269.03	5,489.9	1,276.4	-4,717.5	4,884.9	0.00	0.00			
10,000.0	90.67	269.03	5,488.8	1,274.7	-4,817.5	4,981.8	0.00	0.00			
10,100.0	90.67	269.03	5,487.6	1,273.0	-4,917.4	5,078.6	0.00	0.00			
10,200.0	90.67	269.03	5,486.4	1,271.3	-5,017.4	5,175.5	0.00	0.00			
10,300.0	90.67	269.03	5,485.2	1,269.6	-5,117.4	5,272.3	0.00	0.00			
10,400.0	90.67	269.03	5,484.1	1,267.9	-5,217.4	5,369.2	0.00	0.00			
10,489.0	90.67	269.03	5,483.0	1,266.4	-5,306.4	5,455.4	0.00	0.00	BHL - 330' FNL, 30)0' FWL - TC) @ 10,489.6' ME
10,489.6	90.67	269.03	5,483.0	1,266.4	-5,306.9	5,455.9	0.00	0.00			

Targets	inter a construction de la constru La construction de la construction d La construction de la construction d	an laga da san sanga a tanan sanga		kiji a ji inet≖ ine	n nga nga nga nga nga nga nga nga nga ng	an ang ang ang ang ang ang ang ang ang a	n na de para de del para anta a la Internación de la companya de la companya de la companya de la companya de la	na in the second se	an an an an an an an an an an an an an a
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Dilectone Mea 1H PBHL - plan hits target cen - Point	0.00 ter	0.00	5,483.0	1,266.4	-5,306.9	1,916,112.78	1,276,985.02	36.259707	-107.482738
Dilectone Mea 1H 7'/85° - plan hits target cen - Point	0.00 ter	0.00	5,529.7	1,342.0	-862.7	1,916,132.61	1,281,429.83	36.259916	-107.467666
Dilectone Mea 1H PBHL - plan misses target o - Point	0.00 center by 0.3u	0.00 Isft at 10489	5,482.7 .6usft MD (54	1,266.4 483.0 TVD, 12	-5,306.9 266.4 N, -5306	1,916,112.78 3.9 E)	1,276,985.02	36.259707	-107.482738

Planning Report

Database: Company: Project: Site: Site: Well: Well: Design: USA EDN LOGOS Rio Arriba S3-T23N Dilectone HZ Plan #4	/ 5000 Multi Users DB Dperating LLC a County, NM R6W (Dilectone Mea f Mea 1H	Pad)	Local Co-ord TVD Referen MD Referend North Refere Survey Calc	linate Reference: ice: :e: ence: ulation Method:	Well Dilectone Me KB=15' @ 6708.00 KB=15' @ 6708.00 True Minimum Curvatur	a 1H isft	
Casing Points Measur Depti (usft 6,0	ed: Vertical Depth (usft) 44.3 5,529.7 20.0 320.0	7" 9-5/8"	Name		Casing Diameter (")	Hole Diameter (") 0 0	0
Formations Measured Depth (usft) 979 1,606 1,930 2,453 3,668 3,838 4,379 4,564 5,558 5,976	Vertical Depth (usft) 0 979.0 Ki 1 1,604.0 Fi 1 1,920.0 Pi 0 2,414.0 Ci 0 3,557.0 Ci 1 3,717.0 Mi 1 4,226.0 Pi 1 4,315.0 Gi 1 5,315.0 Gi 1 5,529.0 Lot	Name rtland uitland ctured Cliffs hacra iff House eneffee bint Lookout ancos allup bwer Gallup		Lithology	Dip (°) -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67 -0.67	Dip Direction (°) 269.03 269.03 269.03 269.03 269.03 269.03 269.03 269.03 269.03 269.03 269.03 269.03	
Plan Annotations Measured Depth (usft) 0.5 1,127.0 2,126.8 5,241.6 6,044.3 6,044.3 6,157.8 10,489.0 10,489.0	Vertical Depth (usft) 0.5 1,127.0 2,106.6 5,033.6 5,529.7 5,529.7 5,529.7 5,534.0 5,483.0 5,483.0	Local Coordina +N/-S (usft) 0.0 0.0 166.2 1,191.1 1,342.0 1,342.0 1,342.0 1,340.0 1,266.4 1,266.4	ttes +E/-W (usft) 0.0 0.0 -47.0 -336.6 -862.7 -862.7 -862.7 -976.1 -5,306.4 -5,306.4	Comment SH- 1695' FNL, 270' FN KOP @ 1,127' MD EOB @ 20° INC Start 10° Build/Turn EOB @ 85'/Start 5° Bu 7'/85° - 330' FNL, 630' LP @ 5,534' TVD, 90.6 BHL - 330' FNL, 300' F TD @ 10,489.6' MD	NL NI FEL 7° INC WL		

, ·

.

• ,

ı

LOGOS Operating LLC

Rio Arriba County, NM S3-T23N-R6W (Dilectone Mea Pad) Dilectone Mea 1H HZ Plan #4

Anticollision Report

07 August, 2014

Anticollision Report

	LOGOS Operating LLC	Local Co-ordinate Reference:	Well Dilectone Mea 1H
Project:	Rio Arriba County, NM	TVD Reference:	' KB=15' @ 6708.0usft
Reference Site:	S3-T23N-R6W (Dilectone Mea Pad)	MD Reference:	KB=15' @ 6708.0usft
Site Error:	0.0usft	North Reference:	True
Reference Well:	Dilectone Mea 1H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0usft	Output errors are at	2.00 sigma
Reference Wellbore	HZ	Database:	USA EDM 5000 Multi Users DB
Reference Design:	Plan #4	Offset TVD Reference:	Offset Datum
Filter type: Interpolation Method: Depth Range: Results Limited by: Warning Levels Evalu	GLOBAL FILTER APPLIED: All wellpaths within 2 MD Interval 100.0usft Unlimited Maximum center-center distance of 500.0usft ated at: 2.00 Sigma	200'+ 100/1000 of reference Error Model: Scan Method: Error Surface:	ISCWSA Closest Approach 3D Elliptical Conic
Survey Tool Program	Date 8/7/2014		
Survey Tool Program From (usft)	Date 8/7/2014 To (usft) Survey (Wellbore)	Tool Name	Description

		Reference	Offset	Dista	nce			4.5	
Site Name Offset Well - Wellbore - Design		Measured Depth (usft)	Measured Depth (usft)	Between Centres (usft)	Between Ellipses (usft)	Separation Factor		Warning	
S3-T23N-R6W (Dilectone Mea Pad)	· · · · · · ·	•. •		• • •	, -		••••		71 J
Dilectone Mea 2H - HZ - Plan #3 Dilectone Mea 2H - HZ - Plan #3		1,100.0 1,300.0	1,100.0 1,299.9	50.5 54.8	45.8 49.2	10.782 9.808	CC, ES SF		

.

.

.

Anticollision Report

and the second second seconds	ananovana jakak vonsiikaan maaroo oli oliista ja amaana ahaa ahaa ahaa olii oliitta oliitta oliitta o	interaction and the second second second second second second second second second second second second second	ವಲ್ಲು ಎಂಡಿಕನ್ ವಶವರ್ ಎಲೆನೆದ ನಿವರ್ಷ. ಬಿಲ್ಲೊಟ್ಟಿಯಲ್ಲಿ ಬಿಂಡಿಟಿಸುವಿಕೆ ಸಿಗ್ಗೆ ಬ್ ಡೆ.ಸಿಗ್, ನ ವರ್ಷಗಳನ್ನು ಸಮರ್ಥ ಸಮರ್ಥ ಸ
Company:	LOGOS Operating LLC	Local Co-ordinate Reference:	Well Dilectone Mea 1H
Project:	Rio Arriba County, NM	TVD Reference:	KB=15' @ 6708.0usft
Reference Site:	S3-T23N-R6W (Dilectone Mea Pad)	MD Reference:	KB=15' @ 6708.0usft
Site Error:	0.0usft	North Reference:	True
Reference Well:	Dilectone Mea 1H	Survey Calculation Method:	Minimum Curvature
Well Error:	0.0usft	Output errors are at	2.00 sigma
Reference Wellbore	HZ	Database:	USA EDM 5000 Multi Users DB
Reference Design:	Plan #4	Offset TVD Reference:	Offset Datum,
The function of the second second	그는 방문 가지 않는 것 같은 것 같이 많은 것 같아요. 이렇게 있는 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 같아요.		

Burvey Frogram: CHSCNSA MV0 Context Service A Context Multiple A C	Offset De	sign	S3-T23	N-R6W ([Dilectone Me	a Pad) -	Dilectone N	/lea 2H - HZ - I	Plan #3	سر الاست من د	and a second	an an an an an an an an an an an an an a	a an adaption of the	Offset Site Error:	0.0 usft
Returnerics Offset Semi Mayor Adis Deptind	Survey Proc	ram: 0-IS	CWSA MWD						1 N 11 1				tot t	Offset Well Error:	• • 0.0 usft
Metaured (unt) Vertical (unt) Metaured (unt) Vertical (unt) Metaured (unt) Offset (unt) Highese (unt) Centre (unt) Eleveen (unt) Eleveen (unt) Eleveen (unt) Eleveen (unt) Metaured (unt) Metaured (unt) </th <th>Refe</th> <th>rence</th> <th>Offs</th> <th>et</th> <th>Semi Major</th> <th>Axis</th> <th> ,</th> <th>•.</th> <th></th> <th>Dist</th> <th>ance</th> <th>11 - 1 - 1 1 - 1 - 1</th> <th></th> <th></th> <th></th>	Refe	rence	Offs	et	Semi Major	Axis	,	•.		Dist	ance	11 - 1 - 1 1 - 1 - 1			
Depth Depth Depth Centra FL/R FL/R Centra Ellipse Uncertainty Factor 0.0 0	Measured	Vertical	Measured	Vertical	Reference	Offset	Highside	Offset Wellbo	re Centre	Between	Between	Total	Separation	Warning	
(a) (a) <th(a)< th=""> <th(a)< th=""> <th(a)< th=""></th(a)<></th(a)<></th(a)<>	Depth	Depth	Depth	Depth	" (inner)	(Toolface	+N/-S	+E/-W	Centres	Ellipses	Uncertainty	Factor		i î î
0 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""></th0.0<></th0.0<></th0.0<>	(usn)	(usn)	(usπ)	(usπ)	(usπ)	(usπ)	(*) - * 	(usft)	(usft)	(USIT) **	(usit)	Axis	· · · · · · · · · · · · · · · · · · ·		
100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 264.472 200.0 400.0 400.0 0.6 0.5 0.5 159.50 47.3 -17.7 50.5 49.0 1.54 32.818 500.0 500.0 500.0 500.0 1.2 1.2 -159.50 47.3 -17.7 50.5 46.1 2.44 20.719 700.0 700.0 700.0 700.0 1.4 1.4 -159.50 47.3 -17.7 50.5 46.1 2.44 20.719 700.0 700.0 700.0 1.000.0 1.000.0 1.7 1.7 750.5 47.3 -17.7 50.5 46.1 2.44 20.719 1,000.0 1.000.0 1.000.0 2.8 2.6 -14.33 -17.7 50.5 46.3 4.24 </td <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>-159.50</td> <td>-47.3</td> <td>-17.7</td> <td>50.5</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.0	0.0	0.0	0.0	0.0	0.0	-159.50	-47.3	-17.7	50.5					
2000 2000 2000 2000 0.3 0.3 -155.50 -47.3 -17.7 50.5 49.9 0.64 78.78 3000 3000 3000 3000 3000 3000 3000 3000 3000 4000 4000 4000 4000 4000 4000 4000 0.8 0.8 -155.50 -47.3 -17.7 50.5 49.0 15.4 32.818 5000 5000 5000 6000 6000 6000 1.4 -159.50 -47.3 -17.7 50.5 44.5 1.99 25.401 7000 7000 7000 7000 7000 7000 7001 1.7 1.7 1.7 50.5 44.5 1.99 2.401 1.928 9000 9000 9000 9000 9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000 1.9000	100.0	100.0	100.0	100.0	0.1	0.1	-159.50	-47.3	-17.7	50.5	50.3	0.19	264.472		
300.0 300.0 300.0 300.0 0.5 0.5 159.50 47.3 17.7 50.5 49.4 1.09 46.331 400.0 <td>200.0</td> <td>200.0</td> <td>200.0</td> <td>200.0</td> <td>0.3</td> <td>0.3</td> <td>-159.50</td> <td>-47.3</td> <td>-17.7</td> <td>50,5</td> <td>49.9</td> <td>0.64</td> <td>78.878</td> <td></td> <td></td>	200.0	200.0	200.0	200.0	0.3	0.3	-159.50	-47.3	-17.7	50,5	49.9	0.64	78.878		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	300.0	300.0	300.0	300.0	0.5	0.5	-159.50	-47.3	-17.7	50.5	49.4	1.09	46.351		
5000 5000 5000 5000 10 10 1990 -47.3 -17.7 50.5 48.5 1.99 25.401 600.0 600.0 600.0 600.0 600.0 600.0 600.0 12 12 -159.50 -47.3 -17.7 50.5 48.1 2.44 20.719 700.0 700.0 700.0 1.4 1.4 -159.50 -47.3 -17.7 50.5 46.7 3.79 13.341 1000.0 1.000.0 1.000.0 1.000.0 2.1 2.1 -159.50 -47.3 -17.7 50.5 46.7 3.79 13.341 1.000.0 1.000.0 1.000.0 2.23 -159.50 -47.3 -17.7 50.5 46.7 3.79 13.341 1.000.0 1.000.0 1.000.0 2.20 2.6 2.6 -47.3 -17.7 51.3 46.9 10.782 CC.ES 1.200.0 1.200.0 1.200.0 1.200.0 3.0 3.0 -165.84 47.	400.0	400.0	400.0	400.0	0.8	0.8	-159.50	-47.3	-17.7	50.5	49.0	1.54	32.818		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	500.0	500.0	500.0	500.0	1.0	1.0	-159,50	-47.3	-17.7	50.5	48.5	1.99	25.401		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600.0	600.0	600.0	600.0	1.2	1.2	-159.50	-47.3	-17.7	50.5	48.1	2.44	20,719		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700.0	700.0	700.0	700.0	1.4	1.4	-159.50	-47.3	-17.7	50.5	47.6	2.89	17,494		
\$00.0 \$00.0 \$00.0 \$00.0 \$1.9 1.9 -159.50 47.3 -17.7 50.5 46.7 3.79 13.341 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 1.000.0 2.3 2.3 -159.50 47.3 -17.7 50.5 45.8 4.69 10.782 CC, ES 1.200.0 1.200.0 1.200.0 1.200.0 2.6 2.6 -144.33 47.3 -17.7 51.3 46.1 5.14 9.983 1.300.0 1.299.9 1.299.9 1.299.9 2.8 2.8 -146.91 47.3 -17.7 54.8 49.2 5.59 9.808 SF 1.400.0 1.398.6 1.398.6 3.0 3.0 -150.80 47.3 -17.7 71.5 65.0 6.59 11.001 1.600.0 1.597.9 1.597.9 3.5 3.5 -150.18 47.3 -17.7 71.5 65.0 6.59 11.001 1.600.0 1.597.9 1.597.9 3.57 3.5 -162.89 47.3 -17.7 123.1 115.3 7.65 15.684 <td>800.0</td> <td>800.0</td> <td>800.0</td> <td>800.0</td> <td>1.7</td> <td>1.7</td> <td>-159.50</td> <td>-47.3</td> <td>-17.7</td> <td>50.5</td> <td>47.2</td> <td>3.34</td> <td>15,138</td> <td></td> <td></td>	800.0	800.0	800.0	800.0	1.7	1.7	-159.50	-47.3	-17.7	50.5	47.2	3.34	15,138		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	900.0	900.0	900.0	900.0	1.9	1.9	-159.50	-47.3	-17.7	50.5	46.7	3.79	13.341		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,000.0	1,000.0	1,000.0	1,000.0	2.1	2.1	-159.50	-47.3	-17.7	50.5	46.3	4.24	11.926		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,100.0	1,100.0	1,100.0	1,100.0	2.3	2.3	-159.50	-47.3	-17.7	50.5	45.8	4.69	10.782 CC.	ES	
1,300.0 1,299.9 1,299.9 1,299.9 1,299.9 1,299.9 1,299.9 1,299.9 1,299.9 1,299.9 1,299.9 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,399.6 1,498.9 1,41 1,381.6 1,700.0 1,696.2 1,696.2 1,696.1 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,793.8 1,754.4 1,69.72 <t< td=""><td>1,200.0</td><td>1,200.0</td><td>1,200.0</td><td>1,200.0</td><td>2.6</td><td>2.6</td><td>-144.33</td><td>-47.3</td><td>-17.7</td><td>51.3</td><td>46.1</td><td>5.14</td><td>9.983</td><td></td><td></td></t<>	1,200.0	1,200.0	1,200.0	1,200.0	2.6	2.6	-144.33	-47.3	-17.7	51.3	46.1	5.14	9.983		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,300.0	1,299.9	1,299.9	1,299.9	2.8	2.8	-146.91	-47.3	-17.7	54.8	49.2	5.59	9.808 SF		
1,500.0 $1,498.9$ $1,498.9$ $1,498.9$ $1,498.9$ $1,498.9$ $1,498.9$ $1,498.9$ $1,498.9$ $1,498.9$ $1,597.9$ $1,597.9$ $1,597.9$ $1,597.9$ 3.5 3.5 -159.18 -47.3 -17.7 71.5 65.0 6.50 11.001 $1,600.0$ $1,597.9$ $1,597.9$ $1,597.9$ 3.5 3.5 -159.18 -47.3 -17.7 102.3 94.9 7.41 13.816 $1,700.0$ $1,696.2$ $1,986.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,996.6$ $1,986.6$ 4.9 4.3 -172.40 -47.3 -17.7 240.3 230.7 9.60 25.043 $2,300.0$ $2,269.4$ $2,269.4$ 6.5 5.0 -173.34 -47.3 -17.7 274.3 296.2 10.08 <td>1,400.0</td> <td>1,399.6</td> <td>1,399.6</td> <td>1,399.6</td> <td>3.0</td> <td>3.0</td> <td>-150.80</td> <td>-47.3</td> <td>-17.7</td> <td>61.5</td> <td>55.4</td> <td>6.05</td> <td>10.171</td> <td></td> <td></td>	1,400.0	1,399.6	1,399.6	1,399.6	3.0	3.0	-150.80	-47.3	-17.7	61.5	55.4	6.05	10.171		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,500.0	1,498.9	1,498.9	1,498.9	3.3	3.2	-155.11	-47.3	-17.7	71.5	65.0	6.50	11.001		
1,700.0 $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,696.2$ $1,793.8$ $1,293.2$ $1,994.6$ $1,794.8$ $1,220.05$ $2,000.0$ $2,651.4$ $2,2694.4$ $2,2694.4$ 6.5 5.0 -173.34 -47.3 -17.7 240.3 230.7 9.60 25.043 $2,400.0$ $2,651.3$ $2,651.3$ $2,651.3$ $2,651.3$ $2,651.3$ $2,651.3$ $2,651.3$ $2,651.3$ <td>1,600.0</td> <td>1,597.9</td> <td>1,597.9</td> <td>1,597.9</td> <td>3.5</td> <td>3.5</td> <td>-159.18</td> <td>-47.3</td> <td>-17.7</td> <td>85.1</td> <td>78.2</td> <td>6.96</td> <td>12.236</td> <td></td> <td></td>	1,600.0	1,597.9	1,597.9	1,597.9	3.5	3.5	-159.18	-47.3	-17.7	85.1	78.2	6.96	12.236		
1.800.01.793.81.7961.890.71.890.71.890.71.451.167.88-47.3-17.7147.5139.28.2917.7962,000.01,986.61,986.61,986.64.94.3-169.72-47.3-17.7175.3166.68.7220.1132,100.02,081.42,081.42,081.45.44.5-171.18-47.3-17.7240.3230.79.6025.0432,300.02,7542,175.42,175.45.94.8-172.40-47.3-17.7274.3264.210.0827.2232,400.02,363.42,363.47.15.2-174.08-47.3-17.7308.3297.710.5629.1942,500.02,457.32,457.32,457.37.65.4-174.67-47.3-17.7376.4364.911.5432.6122,600.02,551.32,551.32,551.38.25.6-175.15-47.3-17.7376.4364.911.5432.6122,600.02,53	1,700.0	1,696.2	1,696.2	1,696.2	3.8	3.7	-162.69	-47.3	-17.7	102.3	94.9	7.41	13.816		
1,900.0 $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,890.7$ $1,96.6$ $1,986.6$ $1,986.6$ 4.9 4.3 -167.28 -47.3 -17.7 147.5 139.2 8.29 17.796 $2,000.0$ $1,986.6$ $1,986.6$ $1,986.6$ 4.9 4.3 -169.72 -47.3 -17.7 175.3 166.6 8.72 20.113 $2,100.0$ $2,081.4$ $2,081.4$ $2,081.4$ 5.4 4.5 -171.18 -47.3 -17.7 206.6 197.4 9.14 22.605 $2,200.0$ $2,175.4$ $2,175.4$ $2,175.4$ 5.9 4.8 -172.40 -47.3 -17.7 240.3 230.7 9.60 25.043 $2,300.0$ $2,269.4$ $2,269.4$ $2,269.4$ 6.5 5.0 -173.34 -47.3 -17.7 274.3 264.2 10.08 27.223 $2,400.0$ $2,363.4$ $2,363.4$ 7.1 5.2 -174.08 -47.3 -17.7 308.3 297.7 10.56 29.194 $2,500.0$ $2,457.3$ $2,457.3$ $2,457.3$ 7.6 5.4 -174.67 -47.3 -17.7 376.4 364.9 11.54 32.612 $2,600.0$ $2,551.3$ $2,651.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ $2,645.3$ <t< td=""><td>1,800.0</td><td>1,793.8</td><td>1,793.8</td><td>1,793.8</td><td>4.1</td><td>3.9</td><td>-165.57</td><td>-47.3</td><td>-17.7</td><td>123.1</td><td>115.3</td><td>7.85</td><td>15.684</td><td></td><td></td></t<>	1,800.0	1,793.8	1,793.8	1,793.8	4.1	3.9	-165.57	-47.3	-17.7	123.1	115.3	7.85	15.684		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,900.0	1,890.7	1,890.7	1,890.7	4.5	4.1	-167.88	-47.3	-17.7	147.5	139.2	8.29	17.796		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,000.0	1,986.6	1,986.6	1,986.6	4.9	4.3	-169.72	-47.3	-17.7	175.3	166.6	8.72	20.113		
2,200.0 2,175.4 2,175.4 2,175.4 2,175.4 5.9 4.8 -172.40 -47.3 -17.7 240.3 230.7 9.60 25.043 2,300.0 2,269.4 2,269.4 2,269.4 2,269.4 2,269.4 6.5 5.0 -173.34 -47.3 -17.7 274.3 264.2 10.08 27.223 2,400.0 2,363.4 2,363.4 2,363.4 7.1 5.2 -174.08 -47.3 -17.7 308.3 297.7 10.56 29.194 2,500.0 2,457.3 2,457.3 2,457.3 7.6 5.4 -174.67 -47.3 -17.7 308.3 297.7 10.56 29.194 2,600.0 2,551.3 2,551.3 8.2 5.6 -175.15 -47.3 -17.7 376.4 364.9 11.54 32.612 2,600.0 2,551.3 2,645.3 2,645.3 8.9 5.8 -175.56 -47.3 -17.7 470.5 398.5 12.04 34.100 2,800.0 2,739.2 2,739.2 9.5 6.0 -175.90 -47.3 -17.7 470.	2,100.0	2,081.4	2,081.4	2,081.4	5.4	4.5	-171.18	-47.3	-17.7	206.6	197.4	9.14	22.605		
2,300.0 2,269.4 2,269.4 2,269.4 2,269.4 2,269.4 6.5 5.0 -173.34 -47.3 -17.7 274.3 264.2 10.08 27.223 2,400.0 2,363.4 2,363.4 2,363.4 7.1 5.2 -174.08 -47.3 -17.7 308.3 297.7 10.56 29.194 2,500.0 2,457.3 2,457.3 2,457.3 7.6 5.4 -174.67 -47.3 -17.7 342.4 331.3 11.05 30.984 2,600.0 2,551.3 2,551.3 2,551.3 8.2 5.6 -175.15 -47.3 -17.7 376.4 364.9 11.54 32.612 2,700.0 2,645.3 2,645.3 8.9 5.8 -175.56 -47.3 -17.7 410.5 398.5 12.04 34.100 2,800.0 2,739.2 2,739.2 9.5 6.0 -175.90 -47.3 -17.7 444.6 432.1 12.54 35.464 2,900.0 2,833.2 2,833.2 10.1 6.2 -176.19 -47.3 -17.7 478.8 465.7 13.04<	2,200.0	2,175.4	2,175.4	2,175.4	5.9	4.8	-172.40	-47.3	-17.7	240.3	230.7	9.60	25.043		
2,400.0 2,363.4 2,363.4 2,363.4 2,363.4 7.1 5.2 -174.08 -47.3 -17.7 308.3 297.7 10.56 29.194 2,500.0 2,457.3 2,457.3 2,457.3 2,457.3 2,457.3 7.6 5.4 -174.67 -47.3 -17.7 342.4 331.3 11.05 30.984 2,600.0 2,551.3 2,551.3 2,551.3 8.2 5.6 -175.15 -47.3 -17.7 376.4 364.9 11.54 32.612 2,700.0 2,645.3 2,645.3 2,645.3 8.9 5.8 -175.56 -47.3 -17.7 410.5 398.5 12.04 34.100 2,800.0 2,739.2 2,739.2 9.5 6.0 -175.90 -47.3 -17.7 444.6 432.1 12.54 35.464 2,900.0 2,833.2 2,833.2 10.1 6.2 -176.19 -47.3 -17.7 478.8 465.7 13.04 36.717	2,300.0	2,269.4	2,269.4	2,269.4	6.5	5.0	-173.34	-47.3	-17.7	274.3	264.2	10.08	27.223		
2,500.0 2,457.3 2,457.3 2,457.3 7.6 5.4 -174.67 -47.3 -17.7 342.4 331.3 11.05 30.984 2,600.0 2,551.3 2,551.3 2,551.3 2,551.3 2,551.3 8.2 5.6 -175.15 -47.3 -17.7 376.4 364.9 11.54 32.612 2,700.0 2,645.3 2,645.3 2,645.3 8.9 5.8 -175.56 -47.3 -17.7 410.5 398.5 12.04 34.100 2,800.0 2,739.2 2,739.2 9.5 6.0 -175.90 -47.3 -17.7 444.6 432.1 12.54 35.464 2,900.0 2,833.2 2,833.2 10.1 6.2 -176.19 -47.3 -17.7 478.8 465.7 13.04 36.717	2,400.0	2,363.4	2,363.4	2,363.4	7.1	5.2	-174.08	-47.3	-17.7	308.3	297.7	10.56	29.194		
2,600.0 2,551.3	2,500.0	2,457.3	2,457.3	2,457.3	7.6	5.4	-174.67	-47.3	-17.7	342.4	331.3	11.05	30.984		
2,700.0 2,645.3 2,645.3 2,645.3 8.9 5.8 -175.56 -47.3 -17.7 410.5 398.5 12.04 34.100 2,800.0 2,739.2 2,739.2 2,739.2 9.5 6.0 -175.90 -47.3 -17.7 444.6 432.1 12.54 35.464 2,900.0 2,833.2 2,833.2 2,833.2 10.1 6.2 -176.19 -47.3 -17.7 478.8 465.7 13.04 36.717	2,600.0	2,551.3	2,551.3	2,551.3	8.2	5.6	-175.15	-47.3	-17.7	376.4	364.9	. 11.54	32.612		
2,800.0 2,739.2 2,739.2 2,739.2 9.5 6.0 -175.90 -47.3 -17.7 444.6 432.1 12.54 35.464 2,900.0 2,833.2 2,833.2 1,0.1 6.2 -176.19 -47.3 -17.7 478.8 465.7 13.04 36.717	2,700.0	2,645.3	2,645.3	2,645.3	8.9	5.8	-175.56	-47.3	-17.7	410.5	398.5	12.04	34.100		
2,900.0 2,833.2 2,833.2 1,0.1 6.2 -176.19 -47.3 -17.7 478.8 465.7 13.04 36.717	2,800.0	2,739.2	2,739.2	2,739.2	9.5	6.0	-175.90	-47.3	-17.7	444.6	432.1	12.54	35.464		
	2,900.0	2,833.2	2,833.2	2,833.2	10.1	6.2	-176.19	-47.3	-17.7	478.8	465.7	13.04	36.717		

•

,

Anticollision Report

150

Sheet C

LOGOS OPERATING, LLC DILECTIONE MEA #001H 1695' FNL, 270' FWL SEC. 3, T-23-N, R-6-W, N.M.P.M. RIO ARRIBA COUNTY, NEW MEXICO NAD 83 LATITUDE: N36.25623 LONGITUDE: W107.46474 ELEVATION: 6693'

Directions from the intersection of U.S. Highway 550 South and U.S. Highway 64 Bloomfield, NM

То

Dilecione Mea #001H

Beginning at the intersection of Hwy. 550 South & Hwy. 64 Head south on Hwy. 550 for 54.7 miles;

Turn left onto Rio Arriba County Road 379 following said road 3.1 miles;

Turn left onto a two track dirt road following said two track 0.2 miles;

Well location sits directly to right.

Well Control Equipment Schematic for 2M Service

Attachment to Drilling Technical Program