Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Correctiv	e Action
---	----------

		OPERATOR	Initial Report	🛛 Final Report
Name of Company: XTO Energy, Inc.		Contact: Kurt Hoekstra	PCIIN N	<u>אוי פיז א</u>
Address: 382 Road 3100, Aztec, New Mexico 87410		Telephone No.: (505) 333-3100	<u>OIL CO</u>	IS. DIV.
Facility Name: Fullerton Federal 14 # 33		Facility Type: Gas Well (West k	Kutz Pictured Cliffs)	
Surface Owner: Federal	Mineral Owner	•	API No.: 30-045-	28356

				LOCA	ATION OF REI		DIST. 3	
Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
J	14	27N	11W	2420	FSL	1995	FEL	San Juan

Latitude 36.57442	Longitude -107.97123
NATURE	OF DELEASE

Type of Release: Produced Water	Volume of Release: Unknown	Volume Recovered: None
Source of Release: Below Grade Tank	Date and Hour of Occurrence:	Date and Hour of Discovery: 6-11-2009
	Unknown	
Was Immediate Notice Given?	If YES, To Whom?	
🗋 Yes 🔲 No 🛛 Not Required		
By Whom?	Date and Hour	
Was a Watercourse Reached?	If YES, Volume Impacting the W	atercourse.
🗌 Yes 🖾 No		
If a Watercourse was Impacted, Describe Fully.*	-I	

Describe Cause of Problem and Remedial Action Taken.* The below grade tank was removed at the Fullerton Federal 14 # 33 well site due to facility upgrades of the location. The soil beneath the BGT was sampled for TPH via USEPA Method 8015 and 418.1, for BTEX via USEPA Method 8021, and for total chlorides. The sample returned results below the 'Pit Rule' spill confirmation standards for benzene, and total BTEX, but above the TPH Standard of 100ppm at 3,730 ppm via USEPA Method 418.1 and above Chloride Standard of 250 ppm at 600 ppm, confirming that a release has occurred at this location. The site was then ranked according to the NMOCD Guidelines for the Remediation of Leaks, Spills and Releases. The site was ranked a 0 due to an estimated depth to groundwater of greater than 100 feet, distance to a water well greater than 1000 feet, and distance to surface water greater than 1000 feet. This set the closure standard to 5000 ppm TPH, 10 ppm benzene, and 50 ppm total BTEX.

Describe Area Affected and Cleanup Action Taken.* On 10-14-2009 approximately 20 yards of soil was excavated from the BGT cellar and a sample was collected and returned results of < 0.3 ppm TPH via USEPA Method 8015 and 490 ppm total Chloride. This is below the levels outlined in the Guidelines for the Remediation of Leaks, Spills and Releases. No further action is required.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Signature: Kurt Hockstra	OIL CONSERV Approved by Environmental Specialist	ATION DIVISION
Title: EHS Coordinator	Approval Date: 11/13/14 1	Expiration Date:
E-mail Address: Kurt_Hoekstra@xtoenergy.com Date: \ o - 8 - 1 4 Phone: 505-333-3100	Conditions of Approval:	Attached
Attach Additional Sheets If Necessary	KSite RANK 70 PASSED HNCS	1431743231

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	XTO Energy	Project #:	98031-0121
Sample ID:	Fullerton Fed 14#33 BGT Cellar	Date Reported:	06-11-09
Laboratory Number:	50441	Date Sampled:	06-08-09
Chain of Custody:	7188	Date Received:	06-08-09
Sample Matrix:	Soil	Date Analyzed:	06-10-09
Preservative:	Cool	Date Extracted:	06-09-09
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	7 0	ρŋ	
Toluene	11.8	1.0	
Ethylbenzene	6.4	1.0	
p,m-Xylene	9.9	1.2	
o-Xylene	7.6	0.9	
Total BTEX	42.7		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	96.0 %
	1,4-difluorobenzene	96.0 %
	Bromochlorobenzene	96.0 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Comments: B.G.T. Pit Samples

Analyst

Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A		Projec Doto	ct#: Reported:		N/A
Laboratory Number:	50427	NGC -	Date :	Samoled [.]		N/A
Sample Matrix:	Soil		Date I	Received:		N/A
Preservative:	N/A		Date	Analyzed:		06-10-09
Condition:	N/A		Analy	sist		BTEX
				in an	Supplement	e a Defect
				av privati a tra tra atta di tra 1 privati a tra di tra atta di tra 2 privati a tra di		a sumt
_						.
Benzene	6.3486E+0	J06 6.3613E	+006 (J.2%	ND	0.1
Toluene	5.9903E+0	106 6.0023E	+006 (J.2%		0.1
n m-Xvlene	1.3667E+	00 5.3322E	+000 (J.Z /0 J 2%	ND	0.1
o-Xylene	5.2098E+	006 5.2202E	+006 (0.2%	ND	0.1
·						
Duplicationseult					er/iniReinkie//	er Detect Elmil
Banzona		37	<u></u>	, אסר כי	309/	0.0
Toluepe		3.7 77	3.0 A	2.1% (2.6% (30%	1.9
Ethvlbenzene		4.9	5.1	41% () - 30%	1.0
p.m-Xviene	•	6.7	6.4	4.5%) - 30%	1.2
o-Xylene		5.5	5.3	3.6%) - 30%	0.9
			Spiked 250 K	20 Shinolog average	HECOVERY	ACCEPT Hange
Benzene		3.7	50.0	51. 9	96.6%	39 - 150
Toluene	•	7.7	50. 0	56.3	97.6%	46 - 148
Ethylbenzene		4.9	50.0	57.3	104%	32 - 160
p,m-Xylene		6.7	100	100	94.0%	46 - 148
о-Хуlепе		5.5	50.0	54.2	97.7%	46 - 148
		5				
ND - Parameter not de	etected at the stated detection li	mit				
		an a				
References:	Method 5030B, Purge-and-Trap, " December 1995	Fest Methods for Ev	aluating Solid V	Vaste, SW-846, US	EPA,	
	Method 8021B, Aromatic and Hal	agenated Volatiles t	v Gas Chromat	ography Using		
	Photoionization and/or Electrolytic	: Conductivity Detec	tors, SW-846, L	JSEPA December	1996.	
Comments:	QA/QC for Sample 50427	and 50441 - 50	449.			
. ~			~			`
	11		(<u>`h</u>	Asther	gual	1th
Analyst	10		Revi	ew	•	
		122 122 122	•			
		35 - F				
		7				
5796 US Highway 64, Farmington, N	M 87401 Ph (505) 632-0615	Fr (300) 362-1879	Fx (505) 632	-1865 lab@envii	otech-inc.com	envirotech-inc.com
	ſ	: `				

4

a a

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Parameter	(mg/l	(g)	(mg/kg)
	Concer	ntration	Limit
			Det
Condition:	Intact	Analysis Needed:	TPH-418.1
Preservative:	Cool	Date Analyzed:	06-09-09
Sample Matrix:	Soil	Date Extracted:	06-09-09
Chain of Custody No:	7188	Date Received:	06-08-09
Laboratory Number:	50441	Date Sampled:	06-08-09
Sample ID:	Fullerton Fed 14 #33	Date Reported:	06-10-09
Client:	XTO Energy	Project #:	98031-0121

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

B.G.T. Pit Samples

Analyst $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$

hristing liketer Review

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition:		QA/QC QA/QC 06-09-TPH.QA/Q Freon-113 N/A N/A	C 50420	Project #: Date Reported Date Sampled: Date Analyzed Date Extracted Analysis Neede	: : : ed:	N/A 06-10-09 N/A 06-09-09 06-09-09 TPH
Calibration	I-Cal Date 05-26-09	C-Cal Date 06-09-09	I-Cal RF: 1,480	C-Cal RF: 1,540	% Difference 4.0%	Accept. Range +/- 10%
Blank Conc. (mg/ TPH	(Kg)		Concentration: ND		Detection Lin 9.5	ut er og som en som
Duplicate Conc. (TPH	(mg/Kg)		Sample 13.0	Duplicate 13.2	% Difference 1.5%	Accept. Range +/- 30%
Spike Conc. (mg/ TPH	/Kg)	Sample 13.0	Spike Added 2,000	Spike Result 1,830	% Recovery 90.9%	Accept Range 80 - 120%

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water and Waste, USEPA Storet No. 4551, 1978.

Comments: QA/QC for Samples 50420, 50435, 50436 and 50441 - 50447.

54.0

Analysi

Naeters athe \underline{ml} Review

Chloride

	. דער איז		
Client:	XTO Energy	Project #:	05089-0002
Sample ID:	Fullerton Fed 14 #33	Date Reported:	06-10-09
Lab ID#:	50441	Date Sampled:	06-08-09
Sample Matrix:	Soil	Date Received:	06-08-09
Preservative:	Cool	Date Analyzed:	06-10-09
Condition:	Intact	Chain of Custody:	7188

с. 1

÷ "N

Parameter

Concentration (mg/Kg)

Total Chloride

600

Reference:

U.S.E.P.A., 4500B, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

B.G.T. Pit Samples.

· - ·

Analy

Mistre Maeters Review

CHAIN OF CUSTODY RECORD

Client:	Project Name / Location	:								ANAL	YSIS	/ˈPAR	AMET	TERS		<u> </u>			
XTO ENERGY	B.G.T. Pr	T SAMP	NES										·	,		·			
Client Address: 382 ROAD 3100 AZTEC NM 87411	Sampler Name:	7-5			8015)	1 8021)	8260)	S			0			5					
Client Phone No.:	Client No.: 980	031-012	1		thod	lethoo	sthod	Meta	Anion		th H/F		8.1)	Ы				Cool	Intact
	0508	9-2007			S	N N	N.	A 8	1 / u		Š		(41	Ы				ple	Be
Sample No./ Sample S	nple Lab No. S	Sample IN	of	reserva	표	Ê	8	CR	atio	ō	G	AH	H	Т Г				Sam	Sam
FULLERTON FOD 1433		Sludge	Containers	3003 1104			2	<u> </u>	0				×	x				$\overline{}$	$\overline{\mathbf{v}}$
B.G.I. BETLEUAR 18 11	50 30 7 7 / Solid Solid	Sludge)402~JA2											\sim					
	Solid	Sludge																	
	Solid	Sludge																	
	Soil	Siudge																	~
	Soil	Sludge																	
	Solid Solid	Siudge					 1					l, e ay			 :		-		
	Solid Solid	Sludge																	
	Soil	Sludge																	
	Soil Soil	Sludge																	
Relinquished by:/Signature)/		Date	Time	Rece	jved by:	(Sign	ature)	A		L		L	L	LL		p	ate	Ţin	ne
Kust Liebstr	-	6-8	4:35	K	lan	$\mathbf{J}_{\mathbf{G}}$		4	-~~~	لحفر	J.		÷.			78	109	4	351
Relinquished by: (Signature)				Rece	ived by:	: (Sign	ature)		0								•		
Relinquished by: (Signature)				Rece	ived by:	: (Sign	ature)	-											
										_					• .				
			€NV Anc	Î l'		dbor	C I ato	h ry	EM Ku Ki	AIL RT M	RE Hoi Cha	EKS MP	LTS TR-F INN	TC t); ; ;				

EPA METHOD 8015 Modified Nonhalogenated Volatile Organics Total Petroleum Hydrocarbons

		•		
Client:	XTO Energy		Project #:	98031-0121
Sample ID:	BGT Pit		Date Reported:	10-16-09
Laboratory Number:	52080	10 - 1 ⁰	Date Sampled:	10-14-09
Chain of Custody No:	8142	•	Date Received:	10-14-09
Sample Matrix:	Soil	1	Date Extracted:	10-14-09
Preservative:	Cool		Date Analyzed:	10-15-09
Condition:	Intact		Analysis Requested:	8015 TPH

Parameter	Concentration (mg/Kg)	Det. Limit (mg/Kg)
Gasoline Range (C5 - C10)	ND	0.2
Diesel Range (C10 - C28)	ND	0.1
Total Petroleum Hydrocarbons	ND	0.2

ND - Parameter not detected at the stated detection limit.

References: Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

.....

3Q/3

Comments: Fullerton Federal 14 #33

\bigcap			Cho
Analyst	42		
	¥	26 A.	

Joeto

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Quality Assurance Report

Client:	QA/QC		Project #:		N/A
Sample ID:	10-15-09 QA/QC	2	Date Reported:		10-16-09
Laboratory Number:	52072		Date Sampled:		N/A
Sample Matrix:	Methylene Chlorid	le	Date Received:		N/A
Preservative:	N/A 🍃		Date Analyzed:		10-15-09
Condition:	N/A		Analysis Request	ed:	ТРН
			Nice Contraction for	water in the providence of the second se	a accept Ramps
Gasoline Range C5 - C10	05-07-07	9.7458E+002	9.7497E+002	0.04%	0 - 15%
Diesel Range C10 - C28	05-07-07	9.4088E+002	9.4126E+002	0.04%	0 - 15%
		Colores in a trace			
Gasoline Range C5 - C10		ND		0.2	
Diesel Range C10 - C28		ND		0.1	
Total Petroleum Hydrocarbons		ND		0.2	
	anna ann an as a' far an ann an an ann a' far Mhar ann an				
Gasoline Range C5 - C10	ND	ND	0.0%	0 - 30%	-
Diesel Range C10 - C28	ND	ND	0.0%	0 - 30%	
			n Sill Ares (6.7		
Gasoline Range C5 - C10	ND	250	253	101%	75 - 125%
Diesel Range C10 - C28	ND /	250	240	96.0%	75 - 125%

149 149

. مدير

ND - Parameter not detected at the stated detection limit.

envirotech Analytical Laboratory

References:

Method 8015B, Nonhalogenated Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1,396.

Comments:

QA/QC for Samples 52035 - 52066, 52072 - 52073, and 52080.

Analyst

Jaeley -ml<u>hristin</u> Review

Anal	ytical Laboratory	1999	Chloride	
lient:	a XTO Energy		Project #:	98031-0121
ample ID:	BGT Pit		Date Reported:	10-16-09
.ab ID#: Somele Metrix:	52080 Seil		Date Sampled:	10-14-09
Preservative:	Cool		Date Received: Date Analyzed:	10-14-09
Condition:	Intact		Chain of Custody:	8142
		· 4	· · · · ·	
Parameter			Concentration (mg/	Kg)
Total Chloride	~		400	
rotai omoriue	5		490	
	· ·.			
				4
		van a		
Reference:	U.S.E.P.A., 45	00B, "Methods ods Fc: The Fx	for Chemical Analysis of Water ar amination of Water And Waste W	nd Wastes", 1983.
· · ·				ater, rom eu., 1202.
				aler, foln eu., 1552.
Comments:	Fullerton Fe	ederal 14 #33	B.	aler, 1811 ed., 1892.
Comments:	Fullerton Fe	dera) 14 #33		aler, 1811 ed., 1992.
Comments:	Fullerton Fe	ederal 14 #33		aler, 1811 ed., 1892.
Comments:	Fullerton Fe	dera) 14 #33		aler, 1811 ed., 1892.
Comments:	Fullerton Fe	ederal 14 #33		aler, 1811 ed., 1892.
Comments:	Fullerton Fe	edera) 14 #33		aler, 1811 ed., 1892.
Comments:	Fullerton Fe	ederal 14 #33		aler, 1811 ed., 1892.
Comments:	Fullerton Fe	edera) 14 #33		aler, 1911 ed., 1992.
Comments:	Fullerton Fe	ederal 14 #33	5.	aler, 1911 ed., 1992.
Comments:	Fullerton Fe	edera) 14 #33		aler, 1911 ed., 1992.
Comments:	Fullerton Fe	ederal 14 #33		aler, 1911 ed., 1992.
Comments:	Fullerton Fe	edera) 14 #33	h_{1}	
	Fullerton Fe	ederal 14 #33	Anastu A)cllar_
Comments:	Fullerton Fe	ederal 14 #33	Anstur Review)cllar_
Comments:	Fullerton Fe	edera) 14 #33	Anstur Review)cllar_

*..

.

•

CHAIN OF CUSTODY RECORD 8142 Rush

XTO F	NERGI		FULLEPTON FEDERAL 14 + 33				ANALYSIS / PARAMETERS															
Client Address:	NERGU		Sampler Name:	<u>N 14</u>			<u> </u>		<u> </u>	Ê				[[1	-	
382 Kor	4D 310	0	1			015	802	200						1								
Client Phone No:	VIM 81	410	Nort No :	KURT	·				d 8 1	8	80	tals	5		ЧĮ		\sim				_	t
Chent Phone No.				- .					tho	leth	the	Me	Anio		Lh F		<u>8.1</u>	빙			ß	nta
333-31	207		780	<u>-1 < </u>	0121				Me	N N	N.	8 4	12		wit		(41				<u> </u> କା	<u>e</u>
Sample No./	Sample	Sample	Lab No.	S	ample	No.Volume	Prese	rvative	Ŧ	μ	8	E E	atio	5	L L	Ţ	표	4			dua	l L
Identification	Date	Time			Matrix	Containers	Hyrz, H	a	4	<u>छ</u>	18	Ĭŭ	ő	ŭ	Ĕ	å	<u> </u>	5			S	Š
B.G.T. PIT	10/14	1:30	52080	(Soil) Solid	Sludge Aqueous	(1)402-J	AR		X									X			1	
				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous																	
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -				Soil Solid	Sludge Aqueous																	
n na seni sinte se				Soil ⁴ Solid	Sludge Aqueous						¦									-	·3·	
				Soll Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous														_			
- Alexandron				Soil Solid	Sludge Aqueous																	
				Soil Solid	Sludge Aqueous																	
11	11	1		Soil Solid	Sludge Aqueous																	
Relinquished by: (Sig	nature	L.			Date	Time	Re	ceive	d by:	(Sign	ature))							1		T	ime
Relinquished by: (Sig	nature)		·		10/17	2.00	Re	ceive	d by:	2 Sign	ature)		-							/C	1/2	00
Relinquished by: (Sig	nature)	_	<u> </u>				Re	ceive	d by:	(Sign	ature)											
	<u> </u>			A		anı		.			~		<u> </u>	LAIL	RE	SU	UTS	70	•			
						SII V An	n 🛙 aly	∎ ₪ ticc	∮ ⊑ I La	bor	se la ator	i II ry	Ku	27 . N	Hor	5×15	TRI	A				

ACCENT Printing • Form 28-0807