GW-32

1996 Annual Report

Date: 5/5/1997

May 5, 1997

Route 3, Box 7 Gallup, New Mexico 87301

Mr. Roger Anderson Environmental Bureau Chief New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

DECEIVED MAY - 8 1997

Dear Mr. Anderson

OIL CON. DIV.

SUBJECT: OCD ANNUAL REPORT

Pursuant to the water discharge permit, GW-32, Giant Refining Company - Ciniza (Giant) submits the 1996 Annual OCD Report.

The data presented in the enclosed report is arranged in the following order:

- I. Quarterly Aerated Lagoon and API Effluent
- II. OCD LTA Soil Analytical Data
- III. Tabulated analytical Data OW-1, 2, and 3
- IV. Original Analytical Data OW-1, 2, and 3

If there are any questions please contact Dorinda Mancini at (505) 722-0227, or myself at (505) 722-0258.

Sincerely,

Stephen C. Morris, Environmental Specialist

Giant Refining Company

District Copy
For Scanning Only
Has NOT been processed.

cc: Dick Platt, General Manager Giant Refining Company

David Bardiah HCE Marana

David Pavlich, HSE Manager Giant Refining Company

Dorinda Mancini, Environmental Manager Giant Refining Company

Kim Bullerdick, Corporate Counsel Giant Industries Arizona, Inc

Denny Foust, OCD, Aztec Office

1996 OCD ANNUAL REPORT

EXPLANATION OF SAMPLE IDENTIFICATION Wastewater Treatment

SAMPLE DATE	<u>ID</u>	SAMPLE POINT
1/17/96	OCD 4Q95 - AP1	API Separator (effluent)
1/17/96	OCD 4Q95 - AL2	Aeration Lagoon (effluent)
12/16/96	AL1 - 121696	Aeration Lagoon Inlet (API Separator)
12/16/96	EP1 - 121696	Evaporation Pond 1 Inlet (Aer. Lagoon effluent)

February 7, 1996

Route 3, Box 7 Gallup, New Mexico 87301

Mr. P. W. Sanchez State of New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe, New Mexico 87505

Dear Mr. Sanchez:

SUBJECT: ANALYTICAL REPORT FOR DISCHARGE PERMIT GW-32 - 4TH QUARTER 95.

On January 17, 1996, water samples were taken from the API separator and the aerated lagoon. This sampling event was to comply with quarterly sampling requirements set out in the GW 32 Discharge Permit. Attached is a hard copy of the analytical results for this sampling event. ATI ID# 601359-01 corresponds to Giant's sample number OCD 4Q95-AP1, which is the API separator, and ATI I # 601359-02 corresponds to Giant's sample number OCD 4Q95-AL2, aerated lagoon.

If there are any questions please contact me at (505) 722-0227.

Sincerely,

Edward L. Horst, Environmental Manager

Giant Refining Company

CINIZA Facility

xc:

David Pavlich, HSE Manager Steve Morris, Environmental Spec.

File: 4QTR95

ATI I.D. 601359

February 3, 1996

Giant Refining Co. Route 3, Box 7 Gallup, NM 87301

Project Name/Number: OCD-WM 4 QTR 95

Attention: Edward Horst

On 01/18/96, Analytical Technologies, of New Mexico Inc., (ADHS License No. AZ0015), received a request to analyze aqueous samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

EPA method 150.1 (pH) analyses were performed by Analytical Technologies, Inc., Albuquerque, NM.

All other analyses were performed by Analytical Technologies, Inc., 11 East Olive Road, Pensacola, FL.

If you have any questions or comments, please do not hesitate to contact us at (505) 344-3777.

Kimberly D. McNeill Project Manager

MR:jt

Enclosure

H. Mitchell Rubenstein, Ph.D. Laboratory Manager

HWt. teluel lutt

: GIANT REFINING CO.

DATE RECEIVED : 01/18/96

PROJECT #

PROJECT NAME

: 4 QTR 95

: OCD-WM

REPORT DATE

: 02/03/96

ATI ID: 601359

	ATI ID #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	601359-01	OCD 4Q95-AP1	AQUEOUS	01/17/96
02	601359-02	OCD 4Q95-AL2	AQUEOUS	01/17/96

---TOTALS---

MATRIX AQUEOUS #SAMPLES

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

: 601359

CLIENT : GIANT REFINING CO. ATI I.D.

PROJECT # : 4 QTR 95 DATE RECEIVED : 01/18/96

PROJECT NAME : OCD-WM DATE ANALYZED : 01/19/96

PARAMETER UNITS 01 02
PH (150.1) UNITS 8.70 7.61

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : GIANT REFINING CO. ATI I.D.

: 601359

: AQUEOUS

SAMPLE MATRIX

PROJECT # : 4 QTR 95

PROJECT NAME : OCD-WM

PARAMETER	UNITS	ATI I.D.	SAMPLE RESULT	DUP. RESULT	RPD	SPIKED SAMPLE		and the same of
PH	UNITS	60135901	8.70	8.74	0.5	NA	NA	NA

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) = ------ X 100 Average Result

"FINAL REPORT FORMAT - SINGLE"

Accession: 601355
Client: ANALYTICAL TECHNOLOGIES, INC.
Project Number: 601359
Project Location: OCD-WM
Test: Group of Single Wetchem
Matrix: WATER
QC Level: II

			THE RESERVE THE PARTY OF THE PA		the state of the s	the second second second
Lab ID: 001 Client Sample Id: 601359	9-01		Sample Date/T Received Date		17-JAN-96 19-JAN-96	1225
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
BIOCHEMICAL OXYGEN DEMAND (405.1) CHEMICAL OXYGEN DEMAND	MG/L	>7800	2		BDW007	AB
(410.4)	MG/L	17000	200	+	CHX004	RB
TOTAL DISSOLVED SOLIDS (160.1)	MG/L	16000	5		TDW006	ED

Comments:

API

"FINAL REPORT FORMAT - SINGLE"

Accession: 601355
Client: ANALYTICAL TECHNOLOGIES, INC.
Project Number: 601359
Project Location: OCD-WM
Test: Group of Single Wetchem
Matrix: WATER
QC Level: II

Matrix: QC Level:

Lab ID: 002 Client Sample Id: 601359	-02		Sample Date/T Received Date		17-JAN-96 19-JAN-96	1250
Parameters:	Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
BIOCHEMICAL OXYGEN DEMAND (405.1)	MG/L	4100	2		BDW007	AB
CHEMICAL OXYGEN DEMAND (410.4)	MG/L	6600	200	+	CHX004	RB
TOTAL DISSOLVED SOLIDS (160.1)	MG/L	6400	5		TDW006	ED

Comments:

ALZ-

Accession Number: 601355
Client: ANALYTICAL TECHNOLOGIES, INC.
Project Number: 601359
Project Name: GIANT
Project Location: OCD-WM
Test: Group of Single Wetchem

Client Sample Id:	Parameter:	Unit:	Result:
601359-01	BIOCHEMICAL OXYGEN DEMAND (405.1) CHEMICAL OXYGEN DEMAND (410.4) TOTAL DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L	>7800 API 17000 16000
601359-02	BIOCHEMICAL OXYGEN DEMAND (405.1) CHEMICAL OXYGEN DEMAND (410.4) TOTAL DISSOLVED SOLIDS (160.1)	MG/L MG/L MG/L	4100 AC2 6600 6400

Analytical Technologies, Inc.

"WetChem Quality Control Report"

		"WetChem	Quality Cont
Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	BOD BDW007 <2 405.1 N/A 24-JAN-96 19-JAN-96	COD HIGH CHX004 <10 410.4 N/A 23-JAN-96 23-JAN-96	TDS TDW006 <5 160.1 N/A 25-JAN-96 22-JAN-96
Sample Dup	lication		
Sample Dup: Rept Limit:	601357-1 <2	601355-1 <200+	601365-21
Sample Result: Dup Result: Sample RPD: Max RPD: Dry Weight%	12 12 0 22 N/A	17100 17240 1 5 N/A	750 736 2 16 N/A
Matrix Spi	ke		
Sample Spiked: Rept Limit: Sample Result: Spiked Result: Spike Added: % Recovery: % Rec Limits: Dry Weight%	N/A N/A	601355-1 <200+ 17100 31680 15000 97 81-117 N/A	N/A N/A
ICV			I Harris
ICV Result: True Result: % Recovery: % Rec Limits:		660 701 94 90-110	
LCS			
LCS Result: True Result: % Recovery: % Rec Limits:	201 200 101 85-115		337 293 115 66-122

"Quality Control Comments"

Batch Id:

Comments:

TDW006

601408-1 WAS ADDED TO BATCH ON 1/23/96. 601451-1,2,3,4,5,6,7 WERE ADDED TO BATCH ON 1/24/96.

---- Common Footnotes WetChem -----

N/A = NOT APPLICABLE. N/S = NOT SUBMITTED.

N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW ATI REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.

N/D = NOT DETECTED DISS. OR D = DISSOLVED

T & D = TOTAL AND DISSOLVED R = REACTIVE

T = TOTAL

G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATT REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW ATT REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".

Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY

BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DIGESTION) SPIKE.

= ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE. = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE. = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE. (DILUTION PRIOR TO ANALYSIS)

@ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX. (DILUTION PRIOR TO DIGESTION)

= ANALYTICAL (POST DIGESTION) SPIKE.

I = DUPLICATE INJECTION.

= AUTOMATED

A BOUNDATED

A SPIKED > 4 X SPIKE CONCENTRATION.

N/C+ = NOT CALCULABLE

N/C* = NOT CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION.

H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATI REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE ATI REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL".

A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL".

Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,

THIS RESULT IS REPORTED FOR ACCURATE OC CALCULATIONS.

NH= SAMPLE AND / OR DUPLICATE RESULT IS BELOW 5 X ATI REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE ATI REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL". SAMPLE IS NON-HOMOGENEOUS.

= DETECTION LIMITS RAISED DUE TO CLP METHOD NOT REQUIRING A CONCENTRATION STEP FOR CN.

(CA) = SEE CORRECTIVE ACTIONS FORM.

3rd Edition, September 1986 and Revision 1, July 1992. EPA 600/4-79-020, Revised March 1983. STANDARD METHODS, 17TH ED., 1989 NIOSH Manual of Analytical Methods, 3rd Edition. ANNUAL BOOK OF ASTM STANDARDS, VOLUME 11.01, 1991.

COLIFORM PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE LOGARITHM OF COLONIES PER 100 MLS OF SAMPLE ON DUPLICATE PLATES.

PH PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE 2. PH. SAMPLE AND DUPLICATE ANALYSIS.

3. FLASHPOINT. FLASHPOINT PRECISION IS MEASURED BY THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE ANALYSIS. IF FLASHPOINT IS LESS THAN 25 DEGREES CELSIUS, THE DETECTION LIMIT BECOMES THE INITIAL STARTING TEMPERATURE.

RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION) .

RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

SG = SCOTT GRESHAM DPH = DOLLY P. HWANG RB = REBECCA BROWN = NICOLE CALL = CHRISTINE FOSTER NSB = NANCY S. BUTLER NC CF MM = MARY MOLONEY ED = ESTHER DANTIN AB = ANDY BROTHERTON BF = BLANCA FACH

"FINAL REPORT FORMAT - SINGLE"

Accession: Client:

601355 ANALYTICAL TECHNOLOGIES, INC.

Project Number: Project Name: Project Location: Test: 601359 GIANT

OCD-WM TOTAL ORGANIC CARBON

415.1 / EPA 600 / 04-79-020, Rev. March 1983 Analysis Method:

Extraction Method: N/A Matrix: WATER QC Level: II

Sample Date/Time: 17-JAN-96 1225 Lab Id: 001

Client Sample Id: 601359-01 Received Date: 19-JAN-96

Extraction Date:

Batch: TOW003 Blank: A N/A 24-JAN-96 Analysis Date: Dry Weight %: N/A

Parameter: Units: Results: Rpt Lmts: Q:

MG/L INITIALS 4300 200 TOTAL ORGANIC CARBON

DWB ANALYST

Comments: API

"FINAL REPORT FORMAT - SINGLE"

Accession:

601355

Client:

ANALYTICAL TECHNOLOGIES, INC.

Project Number: Project Name: Project Location:

601359 GIANT

Test:

Analysis Method:

OCD-WM
TOTAL ORGANIC CARBON
415.1 / EPA 600 / 04-79-020, Rev. March 1983

Extraction Method: N/A Matrix: QC Level:

WATER

Lab Id:

002

Sample Date/Time:

17-JAN-96 1250

II

Client Sample Id: 601359-02

Received Date:

19-JAN-96

Extraction Date: Analysis Date:

Batch: TOW003

Blank: A

Dry Weight %: N/A

N/A 24-JAN-96

Parameter:

Units:

Results:

Rpt Lmts:

Q:

TOTAL ORGANIC CARBON ANALYST

MG/L INITIALS 1200 DWB

200

Comments:

AL2

"Method Report Summary"

Accession Number: 601355
Client: ANALYTICAL TECHNOLOGIES, INC.
Project Number: 601359
Project Name: GIANT
Project Location: OCD-WM
Test: TOTAL ORGANIC CARBON

Test:

Client Sample Id: Parameter: Unit: Result: 4300 API TOTAL ORGANIC CARBON TOTAL ORGANIC CARBON MG/L MG/L 601359-01 1200 ALZ 601359-02

Analytical Technologies, Inc.

"QC Report"

Title: Water Blank
Batch: TOW003
Analysis Method: 415.1 / EPA 600 / 04-79-020, Rev. March 1983
Extraction Method: N/A

Blank Id: A Date Analyzed: 24-JAN-96 Date Extracted: N/A

Parameters:

Units:

Results:

Reporting Limits:

TOTAL ORGANIC CARBON ANALYST

MG/L INITIALS

ND DWB

Comments:

"QC Report"

Title: Batch:

Water Reagent TOW003

Analysis Method:

415.1 / EPA 600 / 04-79-020, Rev. March 1983

<1

Extraction Method: N/A

RS Date Analyzed: 24-JAN-96 RSD Date Analyzed: 24-JAN-96

RS Date Extracted: N/A RSD Date Extracted: N/A

Parameters:

Spike Added 6.7

Sample RS Conc Conc 6.5

RSD %Rec Conc 97 6.6 RSD RPD Rec %Rec RPD Lmts Lmts 99 2 30 71-127

TOC Surrogates:

Comments:

Notes:

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT
MG/L = PARTS PER MILLION. < = LESS THAN REPORTING LIMIT.

* = VALUES OUTSIDE OF QUALITY CONTROL LIMITS.

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE
PROGRAM AND REFERENCED METHOD.

Analytical Technologies, Inc.

"QC Report"

Title: Batch: Water Matrix

TOW003

Analysis Method:

415.1 / EPA 600 / 04-79-020, Rev. March 1983

Extraction Method: N/A

Dry Weight %: N/A Sample Spiked: 601439-14

MS Date Analyzed: 24-JAN-96 MS Date Extracted: N/A MSD Date Analyzed: 24-JAN-96 MSD Date Extracted: N/A

Spike Added 7

Sample MS Conc Conc

MS MSD %Rec Conc %Rec RPD Lmts Lmts 100 0 30 51 51-135

Parameters: TOC

Surrogates:

Comments:

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT
MG/L = PARTS PER MILLION. < = LESS THAN REPORTING LIMIT.

* = VALUES OUTSIDE OF QUALITY CONTROL LIMITS.

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE
PROGRAM AND REFERENCED METHOD.

Common notation for Organic reporting

Analytical Technologies, Inc.

N/S = NOT SUBMITTED
N/A = NOT APPLICABLE
D = DILUTED OUT
UG = MICROGRAMS
UG/L = PARTS PER BILLION.
UG/KG = PARTS PER BILLION.
MG/M3 = MILLIGRAM PER CUBIC METER.
PPMV = PART PER MILLION BY VOLUME.
MG/KG = PARTS PER MILLION.
MG/L = PARTS PER MILLION.
< = LESS THAN DETECTION LIMIT.

* = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

ND = NOT DETECTED ABOVE REPORTING LIMIT.

RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES.

RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION)

ATI/GC/FID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID).

ATI/GC/FIX

ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID).

ATI/GC/FPD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE.

ATI/GC/PID

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID).

ATI/GC/TCD

ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD).

LJT = LISA THOMASON SW = STEVE WILHITE KW = KAREN WADSWORTH PL = PAUL LESCHENSKY RW = ROBERT WOLFE

BV = BEN VAUGHN KS = KENDALL SMITH

KK = KERRY KUST DWB = DAVID W. BOWERS

RP = ROB PEREZ

Analytical Technologies of New Mexico	xico, Inc
Albuquerque, New Mexico	

Interlab Chain of Custody 60/355 DATE: 1-18-96 PAGE: 1 OF 1

NETWORK PROJECT MANAGER:	KIMBERLY	D. McNI	EILL										A	NA	LYS	SIS	RE	ฉบ	EST	Г			1,4					
COMPANY: Analytical Tech ADDRESS: 2709-D Pan Am Albuquerque, N	erican Fre			Inc.		24	A TCI P (1311)										PUB (BUB/BUBU)	Action of the College	d compounds acrims (acaracra)	Volatile Organics GC/MS (624/8240)	Polynuclear Aromatics (610/8310)	311) ZHE	911)			eta		NTAINERS
CLIENT PROJECT MANAGER:	n Mc	Nei	ll		tals - TAL		Metals - HCHA		×	0	Che	SQ.		Oil and Grease	0 9		Pesticides/Pub	o) sanoini	base/iveuital Acid	attle Organ	ynuclear Ar	8240 (TCLP 1311) ZHE	70 (TCLP 1311)	TO-14		Gross Alpha/Beta		NUMBER OF CONTAINERS
SAMPLE ID	DATE	TIME	MATRIX	LABID	Metal	Me	S G		TOX	100	Gen	H		ō	800		r i	2 6	od.	9	Po	85	8270	5	2 0	5		N
60/359-01	1-17-96	12:25	AQ	1						X		X			_										-			
V -02	4	12:50	AQ	2						X		X			X /	(No.	
				Markey														+		+								
				10 19 10 1 14 2 10 10 10 10 10 10 10 10 10 10 10 10 10												1												
																1										#		
				Transfer of											1				1	1					1			
PROJECT INFORMATION			SAMP	LE RECEI	PT			SAMPL	ES SE	NT TO	D:		RE	LINC	UISH	IED	BY:				1.	R	ELINQUI	SHED	BY	/ :		2.
PROJECT NUMBER: 60/359		TOTAL	NUMBER OF	CONTAINE	RS			SAN DI				_	Signal	//	//		Tim		5:	14		Sig	gnature:			Time		
PROJECT NAME: Giant		CHAIN	OF CUSTOD	Y SEALS				FT. COL	PAGE NAME OF THE PAGE N		+		Printer	i Nar	BEET CO.		Dat	e:				Pr	inted Name	:		Date	: 7	
OC LEVEL: (STD.) IV		INTACT	?					PENSA	COLA		>	<	Analyl		lo lu				18-	_	_	Co	ompany:					
OC REQUIRED MS MSD BLANK		-	VED GOOD (COND./COLI)			PORTL	STATE OF THE STATE		-		Albuqi	erqu	е		3											
TAT: STANDARD RUSH!		LAB NI	JMBER					PHOEN	11X	115	-	-			/ED I	153110	CONTRACT				1.	-	ECEIVED	BY: (-	-		2.
=-1-01		1011	1										Signa	ure:	Sp	em	1111		101				gnature:			Time:		
DUE DATE: 2-1-96 RUSH SURCHARGE:	TU	De	: KM	1113	S 1	101	,						Printe R. A	Na	ne.		Dal	le: /	11	9/	96	Pr	inted Name):		Date:		
CLIENT DISCOUNT: 10% SPECIAL CERTIFICITION REQUIRED:			,,,	co nv	NO	LOT	THE						Comp	any:	A	T.I		F	L			Co	ompany:			Fill		

ARE FOR

SHADED AREAS

FORM IN COMPLETELY.

FILL

PLEASE

Analytical Technologies of New Mexico, Inc., Albuquerque, NM San Diego • Phoenix • Seattle • Pensacola • Ft. Collins • Portland • Albuquerque • Anchorage

CHAIN OF CUSTODY DATE: 1-17-96 PAGE: 1 OF 1

ATI LABIDA	3000 上海路	· (人) (10) (10) (10)	SAFAR WINELD	DER SATER AS
ATT LAB IIU.	m	1		5
5	111	5. (9	

PHOJECT MANAGEH:													Α	INAL	YSIS	REQ	UES	ST.									Mag.
COMPANY: GIANT REAL ADDRESS: ROUTE 3 GAILUP, PHONE: (505) 722 FAX: (505) 722 BILL TO: EDWARD COMPANY: Same ADDRESS: SAME	BOX 3 1/1 8 2-022 2-0210	1 7 7	2/	oleum Hydrocarbons (418.1) TRPH	(MOD.8015) Diesel/Direct/Inject	D	(M8015) Gas/Purge & Trap	Gasoline/BTEX & MTBE (M8015/8020)	X & Chlorinated Aromatics (602/8020)	MTBE/EDC &	Chlorinated Hydrocarbons (601/8010)		EDBU/ DBCPU	Polynuclear Aromatics (610/8310) Volatile Organics (624/8240) GC/MS	Volatile Organics (8260) GC/MS	Pesticides/PCB (608/8080)	Herbicides (615/8150)	Base/Neutral/Acid Compounds GC/MS (625/8270)	C	General Chemistry:	S		Priority Pollutant Metals (13)	Target Analyte List Metals (23)		lS:	NUMBER OF CONTAINERS
SAMPLE ID DA	ATE TIME	MATRIX	LAB I.D.	Petrol	(MC	30	(M8	Gas	BIAE	BTB	ਲੁੱ	COD	504	Polynuci Volatile (Vola	Pes	Hert	Base	10	Ger	17	10	5	arg Pop		Metals:	NUM
OCD 49 95-API 1-1	17-9612:25 7-9612:50	H20 H20	-01			X						X							X		X	X					5
PROJECT INFORMATION	PRIOR AUT	HORIZATI	ON IS RE	QU	IREC) FO	OR B	USH	I PR	OJE	CTS		BEI	INOU	ISHED	BY:			1,	Гр	ELIN	QUIS	HEL	BV.	1		2.
PROJ. NO.: 4 9TR 95 PROJ. NAME: OCD - VY M P.O. NO.:	(RUSH) □ 24hr CERTIFICATION I METHANOL PRES	☐ 48hr REQUIRED:	□72hr □) 1 W			-			2/21		S	ignalu	Name:	fo	Time: /: 20 Date:	P	(0)	hn.	Sig	natur	1.7		T	me: ale:		2.
SAMPLE RECEIPT NO. CONTAINERS CUSTODY SEALS RECEIVED INTACT BLUE IC	COMMENTS: I	NOT B	OD /	40	5	4	21	n,	. 0	no k	dry	S	Ompa	DEIVE	D BY:			Į (i		中門門	natura Av nted N	IVED e: \(\sigma\)	Jol hr	1 1 D	me! ale:	14: 1-18 ew Me	Telephone I

January 8, 1997

Mr. Steve Morris Giant Refining, Inc. Route 3, Box 7 Gallup, NM 87301

Dear Mr. Morris:

Enclosed are the analytical results for the water samples submitted to Inter-Mountain Laboratories - Farmington, New Mexico, on December 18, 1996. The samples were analyzed for BOD, COD, TDS, and TOC, as specified on the accompanying Chain of Custody document #43574.

Tests were performed in accordance with 40 CFR 136, "Guidelines Establishing Test Procedures for Analysis, " as amended.

Please call me if you have any questions or comments concerning the analyses.

Sincerely,

Wanda Manley Water Lab Supervisor IML - Farmington

W. Marluy

Enclosure: Analytical Report

Inter Mountain Laboratories, Inc.

Client: Giant Industries, Inc.

Giant Ciniza- OCD Waste Water 4th Quarter

Sample ID: EP1 - 121696 Laboratory ID: 0396W02732

Sample Matrix: Water
Condition: Cool/Intact

2506 W. Main Street Farmington, New Mexico 87401

Date Reported: 01/08/97

Date Sampled: 12/18/96 Time Sampled: 1:00 PM

Date Received: 12/18/96

A	nalytical		
Parameter	Result	Units	
otal Dissolved Solids @ 180°C	6,230	mg/L	
iochemical Oxygen Demand	529	mg/L	
Chemical Oxygen Demand	1,650	mg/L	
		mg/L	

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. "Standard Methods For The Examination Of Water And Waste Water", 18th ed., 1992.

ments:

Reviewed by B

Inter-Mountain Laboratories, Inc.

Client: Giant Industries, Inc.

Pract: Giant Ciniza- OCD Waste Water 4th Quarter

Sample ID: AL1 - 121696 Laboratory ID: 0396W02733

Sample Matrix: Water
Condition: Cool/Intact

2506 W. Main Street Farmington, New Mexico 87401

Date Reported:

01/08/97

Date Sampled: Time Sampled: 12/18/96 1:20 PM

Date Received:

12/18/96

	nalytical Result	Units	
5 1 1 0' tot Calida @ 100°C	4 990	ma/L	
Total Dissolved Solids @ 180°C	4,990 815	mg/L mg/L	
Total Dissolved Solids @ 180°C			

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. "Standard Methods For The Examination Of Water And Waste Water", 18th ed., 1992.

ments:

Reviewed by 88

CHAIN OF CUSTODY RECORD

Client/Project Name GIANT — OC Sampler: (Signature)	: D- W.	95TE WATE	R- 4. Proje	ANT -	- CIN	izA	1	1	ANAL	YSES	/PAR	AMETERS		
Sampler: (Signature)	Man	13.	Chain of Cu	stody Tape N	lo.		ers		/	/	/	Rema	rks	
Sample No./	Date	Time	Lab Number		Matrix		No. of Containers	700	207	BOD	COD			
EPI-121696	12/16/96	1300		H2	0		3	1	1	v	4		Tanky.	
EPI-121696 ALI-121696	12/16/96	1320		H2(3	v	V	V	V			
												Cool	+unto	st
		i i						1 3 % s						
	a JAG	Surb	•	Date 12/17/96	700	Received	110	27111	Rows	res			12-18-76	Time 1100
Relinquished by: (Signature)				Date	Time	Received	by: (Sign	nature)	1				Date	Time
Relinquished by: (Signature)				Date	Time	Received	by labor	ratory: (S	ilgnature)			Date	Time
			Inter-Mo	ountain I	Labora	tories,	Inc.							
1633 Terra Avenue Sheridan Wyoming 82 Telep (307) 672-8	801 Gi	 01 Phillips Circ lette, Wyomin elephone (307)	g 82718 Farr	6 West Main Str nington, NM 87 phone (505) 32	401	1160 Res Bozeman Telephon	, Montana	59715	C	183 SH ollege St	30 lation, TX 9 (409) 77	77845 6-8945	43	374

2506 West Main Street Farmington, New Mexico 87401 Tel. (505) 326-4737

16 May 1996

Ed Horst Giant Refining Co. Rt. 3 Box 7 Gallup, NM 87301

Mr. Horst:

Enclosed please find the report for the samples received by our laboratory for analysis on April 18, 1996.

If you have any questions about the results of these analyses, please don't hesitate to call me at your convenience.

Sincerely,

Anna Schauer

Anna Schaerer Organic Analyst/IML-Farmington

Enclosure

xc: File

Client:

Giant Refining Co.

Project:

OCD-Land Farm Soil Test

Sample ID:

OCD-25-41696

Laboratory ID:

0396G00647

Sample Matrix:

Soil

Date Reported:

05/16/96

Date Sampled:

04/16/96

Date Received:

04/18/96

Date Analyzed: 04/24-30/96

		Detection	
Parameter	Result	Limit	Units
Arsenic	<2.5	2.5	mg/kg
Barium	50.5	0.5	mg/kg
Cadmium	ND	0.2	mg/kg
Chromium	25.0	0.5	mg/kg
Lead	3.5	2.5	mg/kg
Mercury	ND	0.2	mg/kg
Selenium	ND	2.5	mg/kg
Silver	ND	0.5	mg/kg

References:

"Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, United States Environmental Protection Agency, November, 1986.

Method 3030: Acid Digestion of Oils, Greases, Or Waxes.

Reported By:

Reviewed: 33

Client:

Giant Refining Co.

Project:

OCD-Land Farm Soil Test

Sample ID:

OCD-70-41696

Laboratory ID:

0396G00648

Sample Matrix:

Soil

Date Reported: 05/16/96 Date Sampled: 04/16/96 Date Received: 04/18/96 Date Analyzed: 04/24-30/96

		Detection	
Parameter	Result	Limit	Units
Arsenic	2.5	2.5	mg/kg
Barium	34.4	0.5	mg/kg
Cadmium	ND	0.2	mg/kg
Chromium	24.0	0.5	mg/kg
Lead	8.45	2.5	mg/kg
Mercury	ND	0.2	mg/kg
Selenium	ND	2.5	mg/kg
Silver	ND	0.5	mg/kg

References:

"Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, United States Environmental Protection Agency, November, 1986.

Method 3030: Acid Digestion of Oils, Greases, Or Waxes.

Reported By:

Reviewed: \$3

Client:

Giant Refining Co.

Project:

OCD-Land Farm Soil Test

Sample ID:

OCD-77-41696 0396G00649

Laboratory ID: Sample Matrix:

Soil

Date Reported:

05/16/96

Date Sampled:

04/16/96

Date Received: 04/18/96

Date Analyzed: 04/24-30/96

		Detection	-196(09) (80)
Parameter	Result	Limit	Units
Arsenic	<2.5	2.5	mg/kg
Barium	15.6	0.5	mg/kg
Cadmium	ND	0.2	mg/kg
Chromium	30.7	0.5	mg/kg
Lead	1.93	2.5	mg/kg
Mercury	ND	0.2	mg/kg
Selenium	ND	2.5	mg/kg
Silver	ND	0.5	mg/kg

References:

"Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, United States Environmental Protection Agency, November, 1986.

Method 3030: Acid Digestion of Oils, Greases, Or Waxes.

Reported By:

Reviewed: AB

Client:

Giant Refining Co.

Project:

OCD-Land Farm Soil Test

Sample ID:

OCD-Center-41696

Laboratory ID:

0396G00650

Sample Matrix:

Soil

Date Reported:

05/16/96

Date Sampled:

04/16/96

Date Received:

04/18/96

Date Analyzed: 04/24-30/96

		Detection	
Parameter	Result	Limit	Units
	4000 11000		
Arsenic	<2.5	2.5	mg/kg
Barium	18.0	0.5	mg/kg
Cadmium	ND	0.2	mg/kg
Chromium	30.9	0.5	mg/kg
Lead	3.07	2.5	mg/kg
Mercury	ND	0.2	mg/kg
Selenium	ND	2.5	mg/kg
Silver	ND	0.5	mg/kg

References:

"Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, United States Environmental Protection Agency, November, 1986.

Method 3030: Acid Digestion of Oils, Greases, Or Waxes.

Reported By:

Reviewed:_ \$\frac{1}{3}

Client: G

Giant Refining Co.

Project: Sample ID: OCD-Land Farm Soil Test OCD-Composite-41696

Laboratory ID:

0396G00651

Sample Matrix: Soil

Date Reported:

05/16/96

Date Sampled:

04/16/96

Date Received:

04/18/96

Date Analyzed:	04/24-30/96
----------------	-------------

		Detection	
Parameter	Result	Limit	Units
Arsenic	3.5	2.5	mg/kg
Barium	9.7	0.5	mg/kg
Cadmium	ND	0.2	mg/kg
Chromium	18.6	0.5	mg/kg
Lead	2.35	2.5	mg/kg
Mercury	0.71	0.2	mg/kg
Selenium	ND	2.5	mg/kg
Silver	ND	0.5	mg/kg

References:

"Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, United States Environmental Protection Agency, November, 1986.

Method 3030: Acid Digestion of Oils, Greases, Or Waxes.

Reported By:

Reviewed:

Quality Control / Quality Assurance

Spike Analysis / Blank Analysis TRACE METALS

Client: Project: Giant Refining Co.

Sample Matrix:

OCD-Landfarm Soil Test

Soil

Date Reported:

05/03/96

Date Analyzed: 04/24-30/96

Date Received:

04/18/96

Snike Analysis

		pine Analysis	000000000=00000-0000000	AND RESIDENCE OF THE PROPERTY
Parameter	Spike Result (mg/L)	Sample Result (mg/L)	Spike Added (mg/L)	Percent Recovery
Arsenic	0.023	0.007	0.020	80%
Barium	0.48	0.03	0.50	90%
Cadmium	0.46	< 0.004	0.50	92%
Chromium	0.47	< 0.01	0.50	94%
Lead	0.47	< 0.05	0.50	95%
Mercury	0.67	0.14	0.500	105%
Selenium	0.022	< 0.005	0.020	110%
Silver	0.46	< 0.01	0.50	92%

Method Blank Analysis

Parameter	Result	Detection Limit	Units
			Omics
Arsenic	ND	0.25	mg/L
Barium	ND	0.5	mg/L
Cadmium	ND	0.2	mg/L
Chromium	ND	0.5	mg/L
Lead	ND	2.5	mg/L
Mercury	ND	0.2	mg/L
Selenium	ND	0.25	mg/L
Silver	ND	0.5	mg/L

References:

"Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", SW-846, United States Environmental Protection Agency, November, 1986.

Method 3030: Acid Digestion of Oils, Greases, Or Waxes.

Reported by

Reviewed by 33

Quality Control / Quality Assurance

Known Analysis TRACE METALS

Client: Project: Giant Refining Co. OCD-Landfarm Soil Test

Sample Matrix:

Date Reported:

05/16/96 Date Analyzed: 04/24-30/96

Date Received:

04/18/96

Parameter	Found Result (mg/Kg)	Known Result (mg/Kg)	Percent Recovery
Arsenic	0.009	0.010	90%
Barium	0.99	1.00	99%
Cadmium	1.04	1.00	104%
Chromium	1.05	1.00	105%
Lead	1.05	1.00	105%
Mercury	0.010	0.010	103%
Selenium	0.011	0.010	110%
Silver	0.98	1.00	98%

References:

Method 1311: Toxicity Characteristic Leaching Procedure,

SW-846, Rev. 0, July 1992.

Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total

Metals, SW-846, Rev. 1, July 1992.

Reported by_____

Reviewed by \$3

2506 W. Main Street Farmington, New Mexico 87401

VOLATILE AROMATIC HYDROCARBONS

Giant

Soil Test OCD-Landfarm Report Date: 05/16/96 Project ID: Date Sampled: 04/16/96 Sample ID: OCD-25-41696 Date Received: 04/18/96 Lab ID: 0396G00647 Date Extracted: 04/24/96 Sample Matrix: Soil 04/29/96 Date Analyzed: Cool/Intact Condition:

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	9.8
Toluene	ND	9.8
Ethylbenzene	ND	9.8
m,p-Xylenes	ND	9.8
o-Xylene	ND	9.8

ND - Analyte not detected at the stated detection limit.

Acceptance Limits **Quality Control:** Surrogate Percent Recovery

> 75 -125% 109.3 Bromofluorobenzene

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Reference:

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

Review

2506 W. Main Street Farmington, New Mexico 87401

VOLATILE AROMATIC HYDROCARBONS

Giant

Project ID: Sample ID: Lab ID: Sample Matrix: Condition:

Soil Test OCD-Landfarm OCD-70-41696 0396G00648

Soil Cool/Intact Report Date: Date Sampled: Date Received: Date Extracted: Date Analyzed:

05/16/96 04/16/96 04/18/96 04/24/96 04/29/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	9.9
Toluene	ND	9.9
Ethylbenzene	ND	9.9
m,p-Xylenes	ND	9.9
o-Xylene	ND	9.9

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

109.2

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

VOLATILE AROMATIC HYDROCARBONS

Giant

Project ID: Sample ID: Lab ID: Sample Matrix:

Condition:

Soil Test OCD-Landfarm OCD-77-41696 0396G00649

Soil Cool/Intact

 Report Date:
 05/16/96

 Date Sampled:
 04/16/96

 Date Received:
 04/18/96

 Date Extracted:
 04/24/96

 Date Analyzed:
 04/29/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	9.8
Toluene	ND	9.8
Ethylbenzene	ND	9.8
m,p-Xylenes	ND	9.8
o-Xylene	ND	9.8

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

108.7

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

213

05/16/96

VOLATILE AROMATIC HYDROCARBONS

Giant

Project ID: Sample ID: Lab ID: Sample Matrix:

Condition:

Soil Test OCD-Landfarm OCD-Center-41696 0396G00650

Soil

Cool/Intact

Report Date: Date Sampled: Date Received: Date Extracted: Date Analyzed:

04/16/96 04/18/96 04/24/96 04/29/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)	
Benzene	ND	10.0	
Toluene	ND	10.0	
Ethylbenzene	ND	10.0	
m,p-Xylenes	ND	10.0	
o-Xylene	ND	10.0	

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

107.7

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

VOLATILE AROMATIC HYDROCARBONS

Giant

Project ID: Sample ID: Lab ID: Sample Matrix: Condition: Soil Test OCD-Landfarm OCD-Composite-41696 0396G00651 Soil

Cool/Intact

Report Date:
Date Sampled:
Date Received:
Date Extracted:
Date Analyzed:

05/16/96 04/16/96 04/18/96 04/24/96 04/30/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	374	198.2
Toluene	670	198.2
Ethylbenzene	ND	198.2
m,p-Xylenes	2,880	198.2
o-Xylene	1,720	198.2

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

98.9

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

813

2506 W. Main Street Farmington, New Mexico 87401

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Duplicate Analysis

Lab ID: Sample Matrix: 0396G00650

Condition:

Soil Cool/Intact Report Date: Date Analyzed: 05/16/96 04/29/96

Target Analyte	Duplicate Concentration (ppb)	Original Concentration (ppb)	% Difference
Benzene	ND	ND	NA
Toluene	ND	ND	NA
Ethylbenzene	ND	ND	NA
m,p-Xylenes	ND	ND	NA
o-Xylene	ND	ND	NA

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

107%

75 -121%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Matrix Spike Analysis

Lab ID:

0396G00650

Sample Matrix: Condition: Soil

Cool/Intact

Report Date: Date Analyzed: 05/16/96

04/29/96

Target Analyte	Spiked Sample Result in ng	Sample result in ng	Spike Added (ng)	% Recovery	Acceptance Limits (%)
Benzene	36.7	ND	45	81.6%	70-130
Toluene	42.1	0.41	45	92.6%	70-130
Ethylbenzene	41.7	ND 4	45	92.7%	70-130
m,p-Xylenes	83.2	0.27	90	92.1%	70-130
o-Xylene	42.9	0.16	45	95.0%	70-130

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

108.2%

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

AB

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Method Blank Analysis

Sample Matrix: Lab ID: Extract Method Blank Report Date: Date Analyzed: 05/16/96 04/29/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	10.0
Toluene	ND	10.0
Ethylbenzene	ND	10.0
m,p-Xylenes	ND	10.0
o-Xylene	ND	10.0

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

107.0

75-125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

SB

2506 W. Main Street Farmington, New Mexico 87401

Quality Control / Quality Assurance

Known Analysis BTEX

Client: Project: Giant Refining Co. Soil Test OCD-Landfarm Date Reported: 05/01/96 Date Analyzed: 04/30/96

Known Analysis

Parameter	Found Concentration (ppb)	Known Concentration (ppb)	Percent Recovery	Acceptance Limits
Benzene	10.0	9.0	111%	70-130%
Toluene	10.4	9.0	116%	70-130%
Ethylbenzene	10.1	9.0	112%	70-130%
m+p-Xylene	20.1	18.0	112%	70-130%
o-Xylene	10.4	9.0	115%	70-130%

Quality Control: Surrogate Percent Recovery Acceptance Limits

Bromofluorobenzene 101.1 75-125%

Reference: Method 5030, Purge and Trap: Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Reported by

Reviewed by &B

TOTAL PETROLEUM HYDROCARBONS EPA METHOD 418.1

Giant Refining Co.

Project:

Soil Test OCD-Landfarm

Matrix:

Soil

Condition: Intact/Cool

Date Reported: 05/16/96

Date Sampled: 04/16/96

Date Received: 04/18/96

Date Received: 04/18/96
Date Extracted: 04/30/96
Date Analyzed: 05/01/96

Sample ID	Lab ID	Result	Detection Limit
•		(mg/kg)	(mg/kg)
OCD-25-41696	0396G00647	ND	20
OCD-70-41696	0396G00648	ND	20
OCD-77-41696	0396G00649	54.2	20
OCD-Center-41696	0396G00650	ND	20
OCD-Composite-41696	0396G00651	19,100	1,000

ND - Analyte not detected at stated detection level.

References: Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of Water and Waste, 1978.

Method 3550: Ultrasonic Extraction of Non-Volatile and Semi-Volatile Organic Compounds from Solids, USEPA SW-846, Rev. 1, July 1992.

Analyst:

Reviewed: 33

TOTAL PETROLEUM HYDROCARBONS Quality Assurance/Quality Control

Giant Refining Co.

Project:

Soil Test OCD-Landfarm

Matrix:

Soil

Condition: Intact/Cool

Date Reported:

05/16/96

Date Sampled:

04/16/96

Date Received: Date Extracted: 04/18/96 04/30/96

Date Analyzed:

05/01/96

Duplicate Analysis

Sample	Duplicate			
Result	Result	Units	% Difference	
ND	ND	ppm	NA	
TOTAL PROPERTY.	Sample Result ND	Sample Duplicate Result Result ND ND		Sample Duplicate Result Result Units % Difference ND ND ppm NA

Method Blank Analysis

Lab ID	Result		Detection Limit	
Method Blank	ND	ppm	20	

Spike Analysis

	Found	Known	Percent	Acceptance
Lab ID	Conc.	Conc.	Recover	Limits
	(ppm)	(ppm)		
Blank Spike	225	250	90%	70-130%
Blank Spike	225	250	90%	70-130%

Known Analysis

	Found	Known	Percent	Acceptance
Lab ID	Canc. (ppm)	Conc. (ppm)	Recover	Limits
QC	8.4	7.0	117%	70-130%

References:

Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of

Water and Waste, 1978.

Method 3550: Ultrasonic Extraction of Non-Volatile and Semi-Volatile Organic Compounds from Solids, USEPA SW-846, Rev. 1, July 1992.

Analyst:

Reviewed:

Inter Mountain Laboratories, Inc.

2506 West Main Street

Farmington, New Mexico 87401

Tel. (505) 326-4737

GIANT OCD-LAND FARM

DATE MAY 8, 1996

Lab No. LOCATION	рН	EC mhos/cm @ 25°C	Calcium meq/l	Magnesium meq/I	Sodium meq/l	Potassium meq/l	Ammonia ppm	Nitrate- Nitrogen ppm	Nitrite- Nitrogen ppm	Total Kjeldahl Nitrogen ppm
47064 OCD-25-41696	7.8	4.17	9.06	3.16	31.1	4.75	1.36	1.50	0.16	273
47065 OCD-70-41696	7.9	2.13	3.93	1.31	15.7	4.21	1.16	1.98	0.09	291
47066 OCD-77-41696 47067 OCD-CENTER-416	7.8 7.2	4.79 17.1	19.3 83.8	6.43 29.0	31.7 61.0	4.25 3.34	1.20 1.38	<.05 1.76	0.12 0.09	273 236

Inter Mountain Laboratories, Inc.

2506 West Main Street

Farmington, New Mexico 87401

Tel. (505) 326-4737

GIANT OCD-LAND FARM

DATE MAY 8, 1996

Lab No.	LOCATION	HCO3 meq/l	CO3 meq/l	Fluoride PE ppm	Chloride PE meq/l	SO4 PE meq/l	Bromide PE ppm
47064	OCD-25-41696	2.20	<.01	0.89	14.8	27.8	1.80
47065	OCD-70-41696	2.80	<.01	0.96	7.96	9.43	0.50
47066	OCD-77-41696	2.00	<.01	0.79	9.57	45.1	<.10
47067	OCD-CENTER-4169	0.80	<.01	0.62	170	3.60	<.10

CHAIN OF CUSODY RECORD

GIANT			O	ct Location	ND FA	RM	/			YSES	/ PARAMETERS		
Sampler: (Signature)				stody Tape N			1_	8.F.	1/2	/	/ Remai	ks	
HORST				\sim			Iner	So IN	一次				
Sample No./ Identification	Date	TĮme	Lab Number		Matrix		No. of Containers	See, 19	General Chomistry				
OCD-25-41696	4-16-96			Soil	i k		2	X	X				_::-
OCD-90-41696		4%		Soil			2	14:	*				
000-77-41696		3%		Soll			2	1	1				
oed-cover-416%		61		9011			2	7	7				
OCD-COMPOSIT-41696		43		3011			1	Y	7				
					7 20 K 10					-11 (A)			
						100 500				A)			
				AT LEASE OF							Coort	+into	ict
		i i	The second				G VIII						
	\												
Relingationed by: (Signature)	2/1	1	919 34	Date	Time	Received	A COLUMN CONTRACTOR		_			Date	Time
Soma ON	Vin	1		4-17-96	9:51	(hai	^ -	Ra	umo	1)	4/18/	1030
Reimquished by: (Signature)				Date	Time	Received	by: (Sig	nature)	(1		Date	Time
Bull and hard from (Classetons)				Date	Time	Received	by labo	ratory: (Signatur	e)		Date	Time
Relinquished by: (Signature)				200									
			Inter-Mo		Labora	tories,						3,	1491
1633 Terra Avenue Sheridan, Wyoming 82801	1701 Phillips Gillette, Wyo	Circle ming 82718 807) 682-8945	2506 West Main Str Famington, NM 874 Telephone (505) 32	401 Boze	Research Dr man, Montan phone (406) 5	a 59715	Colleg		, TX 7784 9) 776-89	5 Co	04 Longmire Drive llege Station, TX 77845 lephone (409) 774-4999		1701

TOTAL PETROLEUM HYDROCARBONS **EPA METHOD 418.1**

Client: Project: **Giant Refining**

Matrix:

RCRA/OCD LTA's

Condition:

Soil Intact/Cool

09/26/96 Date Reported: 09/03/96 Date Sampled: 09/05/96 Date Received: Date Extracted:

Date Analyzed:

09/12/96 09/12/96

Sample ID	Lab ID	Result	Detection Limit
		mg/kg	mg/kg
OCD-1-9396	0396G01773	377	19.7

ND - Analyte not detected at stated detection level.

References: Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of

Water and Waste, 1978.

Method 3550: Ultrasonic Extraction of Non-Volatile and Semi-Volatile Organic Compounds

from Solids, USEPA SW-846, Rev. 1, July 1992.

Reviewed: _ #

VOLATILE AROMATIC HYDROCARBONS

Giant Refining Co.

Project ID: Sample ID: Lab ID:

Lab ID: Sample Matrix: Condition: RCRA/ OCD LTA's OCD-1-9396 0396G01773 soil Cool/Intact Report Date:
Date Sampled:
Date Received:
Date Extracted:
Date Analyzed:

09/26/96 09/03/96 09/05/96 NA 09/13/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	10.0
Toluene	12.8	10.0
Ethylbenzene	ND	10.0
m,p-Xylenes	10.1	10.0
o-Xylene	ND	10.0

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

71%

70- 130%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

At

Quality Control / Quality Assurance

Known Analysis BTEX

Client: Project: **Giant Refining** Ciniza Refinery Date Reported: 09/17/96 Date Analyzed: 09/13/96

Known Analysis

Parameter	Found Concentration (ppb)	Known Concentration (ppb)	Percent Recovery	Acceptance Limits
Benzene	8.4	9.0	94%	70-130%
Toluene	7.9	9.0	88%	70-130%
Ethylbenzene	8.9	9.0	99%	70-130%
m+p-Xylene	18.2	18.0	101%	70-130%
o-Xylene	8.9	9.0	99%	70-130%

Percent Recovery Acceptance Limits Quality Control: Surrogate

> 75-125% 102.0 Bromofluorobenzene

Method 5030, Purge and Trap: Method 8020, Aromatic Volatile Organics; Test Reference:

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Reviewed by _____

TOTAL PETROLEUM HYDROCARBONS Quality Assurance/Quality Control

Client:

Giant Refining

Project:

RCRAVOCD LTA's

Matrix: Condition: Soil

Intact/Cool

Date Reported:

09/26/96

Date Sampled: Date Received: 09/03/96

Date Extracted:

09/05/96 09/12/96

Date Analyzed:

09/12/96

Duplicate Analysis

Lab ID	Sample Result	Duplicate Result	Units	% Difference
0396W01748	1,741	1,800	mg/Kg	3.4%

Method Blank Analysis

Lab ID	Result	Units	Detection Limit
Method Blank	ND	mg/Kg	20

Spike Analysis

	Found	Sample	Spike	Percent	Acceptance
Lab ID	Conc.	Conc.		Recovery	Limits
	mg/Kg	mg/Kg	mg/Kg		
0396W01773	1.595	377	1.050	116%	70-130%

Known Analysis

	Found	Known	Percent	Acceptance
Lab ID	Conc.	Conc.	Recovery	Limits
	mg/Kg	mg/Kg		
	50.0	50.2	105%	70-130%
QC	52.9	50.3	100%	70-13078

References:

Method 418.1: Petroleum Hydrocarbons, Total Recoverable, USEPA Chemical Analysis of Water and Waste, 1978.

Method 3550: Ultrasonic Extraction of Non-Volatile and Semi-Volatile Organic Compounds from Solids, USEPA SW-846, Rev. 1, July 1992.

Analyst:

Reviewed: A

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Duplicate Analysis

Lab ID:

Sample Matrix: Condition: 0396G01773

soil Cool/Intact Report Date: Date Analyzed: 09/26/96 09/13/96

Target Analyte	Duplicate Concentration (ppb)	Original Concentration (ppb)	% Difference
Benzene	ND	ND	NA NA
Toluene	12.8	12.8	0.0
Ethylbenzene	ND	ND	NA
m,p-Xylenes	16.3	10.1	*40.0
o-Xylene	ND	ND	NA

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

75%

70%- 130%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

* Difference is within laboratory tolerances.

de

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Method Blank Analysis

Sample Matrix: Lab ID: Extract Method Blank Report Date: Date Analyzed: 09/26/96 09/12/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	10.0
Toluene	ND	10.0
Ethylbenzene	ND	10.0
m,p-Xylenes	ND	10.0
o-Xylene	ND	10.0

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

87%

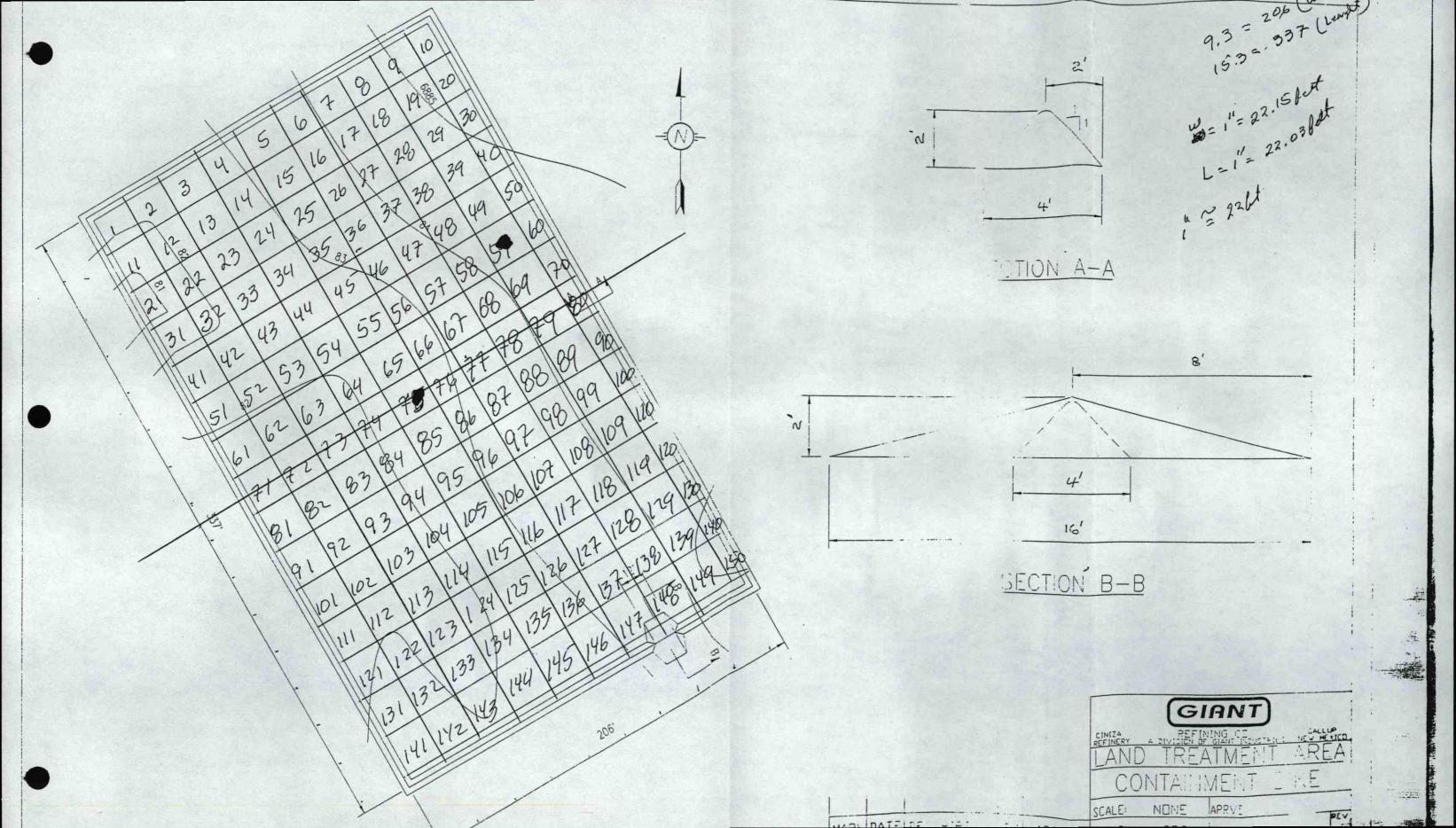
70-130%

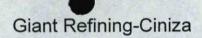
Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.


Comments:


St

. CHAIN OF CUSODY RECORD

Inter- Mountain Laboratories, Inc.				CHAIN	OF C	MOE	DY RE	CO	RD		1	16	En	•	
Client/Project Name	linis	6		Proje	ct Location	OCD	LTA.	2/	1	ANAL			RAMETERS	r	
Sampler: (Signature)	0			Chain of Cus				/	/	7	7	/	Rema	rks	
Sample No./ Identification	Date	Time	Lat	Number		Matrix		No. of Containers	BTEX	144	0+0				
297-1-82-9396	9/3/96				50	;/		1			V				
ZOI-2-165-9396	9/3/86	1499			11		Sec.	1		TO S	V		Faller of		
ZoJ-2-33+739-6	9/3/98	1345	The state of		11			1			V			Ball In	
202-3-88-9396	2/3/91	1440	i ali	_A9 H 4	1			1			V	aliza (
DCD-1-93-94	7/5/96	1500	639	6601773	11			1	V	v	1 EFF		6"below	orig.s	unfoc
														75.4	
				NE ENTER					E 19			116	3011 61 7	uori,	
A SECURIAL SEC													17 11		14
Mark Layer Care									•		1		44 (1.00)		
													Coo	+ inte	Tct_
															- 1
Relinquished by: (Signature)	509	m -	2		Date	Time	Received	by: (Sign	nature)					Date	lime
	2 -7	formy	2		9/4/96	9900	Ch	nis	Ra	ymi	4			9-5-96	1120
Relinquished by: (Signature)					Date	Time	Received	by: (Sign	nature)	8				Date	Time
Relinquished by: (Signature)					Date	Time	Received	by labor	atory: (S	lgnatur	a)			Date	Time
1633 Terra Avenue Sheridan, Wyoming 82801	1701 Phillips (Gillette, Wyon Telephone (30	ning 82718	2506 Farm	Mest Main Streetington, NM 8740	et 1160 01 Boze	Abora Research Dr. man, Montana Jone (406) 50	59715	11183 S College	SH 30 Station, one (409)	TX 7784 776-894	5 Col	lege Sta	nire Drive tion, TX 77845 (409) 774-4999	378	66

OW-1 Volatile Organics

Method 8240

Parameter	
Benzene	
Toluene	Muga
Ethylbenzene	
Xylenes (total)	

28 APR 93 Result	4 JUN 93 Result	14 JUL 93 Result	29 OCT 93 Result	27 APR 94 Result	6 JUL 94 Result	11 AUG 94 Result	15 MAY 95 Result	25-Mar-96 Result	Units
ND	0.9	ND	ND	ND	ND	ND	ND	ND	ug/L
2.3	1.9	1.4	ND	0.9	ND	ND	ND	ND	ug/L
ND	ND	ND	ND	ND	ND	ND	ND	ND	ug/L
ND	1.6	0.6	ND	2.7	ND	ND	ND	ND	ug/L

OW-1 Dissolved Metals

1000					
Pa	ra	m	et	el	

Calcium	
Magnesium	
Potassium	
Sodium	

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	15 MAY 95 Result	26-Mar-96 Result	Units
2.6	3.6	1.1	2.0	2.6	mg/L
1.5	4.5	0.2	0.2	0.2	mg/L
1.2	2.1	ND	ND	0.8	mg/L
83	326	306	287	299	mg/L

OW-1 General Inorganics

Parameter

Alkalinity, Bicarb. as
CaCO3 at pH 4.5
Alkalinity, Carb. as
CaCO3 at pH 8.3
Chloride

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	15 MAY 95 Result	26-Mar-96 Result	Units
410	387	388	410	467	mg/L
60	22	37	19	14	mg/L
58	41	55	46	49	mg/L

pH	
рН	
pH	
pH	
Sulfate	
Specific Conductance	
at 25 deg.C	Y
Specific Conductance	
at 25 deg.C	
Specific Conductance	
at 25 deg.C	
Specific Conductance	
at 25 deg.C	
Total Organic Carbon	
Total Organic Carbon	
Total Organic Carbon	
Total Organic Carbon	
Total Organic	
Halogen as Cl	
Total Organic	
Halogen as Cl	
Total Organic	
Halogen as Cl	1
Total Organic	
Halogen as Cl	
Total Dissolved	
Solids	

8.8	8.7	8.82	8.70	8.60	units
into			(10 A) - AL S		units
				_	units
				- 1 - M	units
210	210	210	10	216	mg/L
1300	1260	1270	1300	1380	umhos/cm
	_ =		1_1	_	umhos/cm
_				_	umhos/cm
_				100 <u>La</u> n	umhos/cm
		70 - 		-	mg/L
				-	mg/L
			F 15 - 14 3		mg/L
	II.				mg/L
(1-)				-	ug/L
	<u> </u>		14 <u>-</u>		ug/L
-		_		_	ug/L
					ug/L
2800	870	840	830	832	mg/L

Giant Refining-Ciniza

OW-2 Volatile Organics

Method 8240

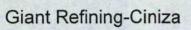
Parameter	
Benzene	
Toluene	NUL S
Ethylbenzene	
Xylenes (total)	

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	7 JUL 94 Result	11 AUG 94 Result	15 MAY 95 Result	18-Mar-96 Result	Units
ND	ND	ND	ND	ND	ND	ND	ug/L
ND	ND	ND	ND	ND	ND	ND	ug/L
ND	ND	ND.	ND	ND	ND	ND	ug/L
ND	ND	1.1	2.2	ND	ND	ND	ug/L

OW-2 Dissolved Metals

Parameter	
Calcium	
Magnesium	
Potassium	
Sodium	

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	15 MAY 95 Result	18-Mar-96 Result	Units
6.8	8.7	7.6	8.9	9.02	mg/L
2.5	3.7	3.1	3.6	3.16	mg/L
ND	ND	ND	ND	0.39	mg/L
88	336	318	297	320	mg/L


OW-2 General Inorganics

Para	meter
Alka	linity, Bicarb. as
C	aCO3 at pH 4.5
Alka	linity, Carb. as
C	aCO3 at pH 8.3
Chl	oride

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	15 MAY 95 Result	18-Mar-96 Result	Units
670	662	668	660	810	mg/L
ND	ND	ND	5		mg/L
72	42	46	41	42.4	mg/L

рН	Ì
pH	
рН	7
pH	
Sulfate	
Specific Conductance	
at 25 deg.C	N
Specific Conductance	
at 25 deg.C	
Specific Conductance	
at 25 deg.C	
Specific Conductance	
at 25 deg.C	7
Total Organic Carbon	
Total Organic	
Halogen as Cl	
Total Organic	
Halogen as CI	
Total Organic	
Halogen as Cl	
Total Organic	
Halogen as Cl	
Total Dissolved	
Solids	

units	7.9	7.09	8.04	8.1	8.0
units	E MO SECURE				
units					
units			(-		
mg/L	12.3	19	20	19	15
umhos/cm	1340	1300	1260	1220	1300
umhos/cm					
umhos/cm					_
umhos/cm					
mg/L					
mg/L		AMERICAN TO THE RESIDENCE OF THE PERSON OF T	Red W-	and a nd Fine S	
mg/L					
mg/L				e	253
ug/L	-				1
ug/L		+ 14-			
ug/L				-	
ug/L	-				
mg/L	840	840	890	1100	1800

OW-S

OW-3 Volatile Organics Method 8240

Parameter	
Benzene	Count
Toluene	
Ethylbenzene	i Station
Xylenes (total)	

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	15 MAY 95 Result	18-Mar-96 Result	Units
ND	ND	ND	ND	ND	ug/L
ND	ND	ND	ND	ND	ug/L
ND	ND	ND	ND	ND	ug/L
ND	ND	ND	ND	ND	ug/L

OW-3 Dissolved Metals

Parameter	
Calcium	
Magnesium	
Potassium	
Sodium	

23 APR 92 Result	28 APR 93 Result	27 APR 95 Result	15 MAY 95 Result	18-Mar-96 Result	Units
9.5	9.5	8.1	8.1	9.42	mg/L
3.0	3.6	3.1	2.7	3.04	mg/L
ND	ND	ND	ND	0.78	mg/L
82	340	313	276	317	mg/L

OW-3 General Chemistry

Parai	neter
Alkal	inity, Bicarb. as
Ca	CO3 at pH 4.5
Alkal	inity, Carb. as
Ca	CO3 at pH 8.3
Chlo	ride

23 APR 92 Result	28 APR 93 Result	27 APR 94 Result	15 MAY 95 Result	18-Mar-96 Result	Units
580	660	662	670	811	mg/L
ND	ND	ND	6		mg/L
39	41	42	39	42.2	mg/L

	3
0	-

pH
pH
pH
pH
Sulfate
Specific Conductance
at 25 deg.C
Specific Conductance
at 25 deg.C
Specific Conductance
at 25 deg.C
Specific Conductance
at 25 deg.C
Total Organic Carbon
Total Organic
Halogen as CI
Total Organic
Halogen as CI
Total Organic
Halogen as Cl
Total Organic
Halogen as Cl
Total Dissolved
Solids

units	8	8.00	7.88	8.2	7.9
units		1000	L	- 0 A	
units					
units			Eral da		
mg/L	26.3	29	18	16	34
umhos/cm	1340	1300	1240	1260	1200
umhos/cm	_				
umhos/cm	-	-		12	<u> </u>
umhos/cm			<u></u>		
mg/L					
mg/L					-
mg/L					
mg/L	1915 -		N.		
ug/L				11	24
ug/L	_			1	
ug/L	-			_	
ug/L	7-3			_	
mg/L	798	980	800	840	1100

2506 W. Main Street **Giant Refinery** Client: Farmington, New Mexico 87401 Project: Not given Date Reported: 04/17/96 ample ID: OW1-032596 Date Sampled: 03/25/96 Laboratory ID: 0396W00503 Time Sampled: 13:00 Sample Matrix: Water Date Received: 04/01/96 Condition: Cool/Intact

	Analytical			
arameter	Result	Units		Units
ab pH	8.6	s.u.		
ab Conductivity @ 25° C	1,380	umhos/cm		
otal Dissolved Solids @ 180°C	832	mg/L		
otal Dissolved Solids (Calc)	813	mg/L		
otal Alkalinity as CaCO3	407	mg/L		
otal Hardness as CaCO3	8	mg/L		
Bicarbonate as HCO3	467	mg/L	7.66	meq/L
Carbonate as CO3	14	mg/L	0.48	meq/L
Hydroxide	<1	mg/L	< 0.01	meq/L
Chloride	49	mg/L	1.38	meq/L
Sulfate	216	mg/L	4.51	meq/L
Calcium	2.6	mg/L	0.13	meq/L
Magnesium	0.2	mg/L	0.02	meq/L
Potassium	0.8	mg/L	0.02	meq/L
Sodium	299	mg/L	13.02	meq/L
ations			13.19	meq/L
nions			14.03	meq/L
ation/Anion Difference			3.09	%

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. "Standard Methods For The Examination Of Water And Waste Water", 19th ed., 1995.

Reported by LOM

Reviewed by Co

2506 W. Main Street Farmington, New Mexico 87401

VOLATILE AROMATIC HYDROCARBONS

Giant Refining Co.

Project ID: Sample ID: Lab ID: Sample Matrix: Condition: Not Given OW1-032596 0396W00503 Water Cool/Intact Report Date:
Date Sampled:
Date Received:
Date Extracted:
Date Analyzed:

04/11/96 03/25/96 04/01/96 NA 04/04/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylenes	ND	0.2
o-Xylene	ND	0.2

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

103.0

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Allyst ...

23

Client:	Giant Refinery	Farming	2506 W. Main Stree gton, New Mexico 87401
Project:	NMED-LTA	Date Reported:	04/10/96
Cample ID:	OW2-031896	Date Sampled:	03/18/96
Laboratory ID:	0396W00421	Time Sampled:	15:00
Sample Matrix:	Water	Date Received:	03/20/96
Condition:	Cool/Intact		

	Analytical			
arameter	Result	Units		Units
ab pH	7.9	s.u.		
ab Conductivity @ 25° C	1,340	umhos/cm		
otal Dissolved Solids @ 180°C	840	mg/L		
otal Dissolved Solids (Calc)	786	mg/L		
otal Alkalinity as CaCO3	664	mg/L		
otal Hardness as CaCO3	35.5	mg/L		
Bicarbonate as HCO3	810	mg/L	13.3	meq/L
Carbonate as CO3	<1	mg/L	<0.01	meq/L
Hydroxide	<1	mg/L	< 0.01	meq/L
Chloride	42.4	mg/L	1.20	meq/L
Sulfate	12.3	mg/L	0.26	meq/L
Calcium	9.02	mg/L	0.45	meq/L
Magnesium	3.16	mg/L	0.26	meq/L
Potassium	0.39	mg/L	0.01	meq/L
Sodium	320	mg/L	13.9	meq/L
ations			14.6	meq/L
nions			14.7	meq/L
ation/Anion Difference			0.32	%

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. "Standard Methods For The Examination Of Water And Waste Water", 19th ed., 1995.

Reported by 3

Reviewed by WM

VOLATILE AROMATIC HYDROCARBONS

Giant Refining Co.

Project ID:
Sample ID:
Lab ID:
Sample Matrix:
Condition:

NMED-LTA OW2 031896 0396W00421 Water Cool/Intact

 Report Date:
 04/02/96

 Date Sampled:
 03/18/96

 Date Received:
 03/20/96

 Date Extracted:
 NA

 Date Analyzed:
 03/27/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylenes	ND	0.2
o-Xylene	ND	0.2

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

120.8

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

yst

23

2506 W. Main Street Client: **Giant Refinery** Farmington, New Mexico 87401 Project: NMED-LTA Date Reported: 04/10/96 sample ID: OW3-031896 Date Sampled: 03/18/96 Laboratory ID: 0396W00422 Time Sampled: 13:15 Sample Matrix: Water Date Received: 03/20/96 Condition: Cool/Intact

	Analytical			
Parameter	Result	Units		Units
Lab pH	8.0	s.u.		
Lab Conductivity @ 25° C	1,340	umhos/cm		
Total Dissolved Solids @ 180°C	844	mg/L		
Total Dissolved Solids (Calc)	798	mg/L		
Total Alkalinity as CaCO3	665	mg/L		
Total Hardness as CaCO3	36.0	mg/L		
Bicarbonate as HCO3	811	mg/L	13.3	meg/L
Carbonate as CO3	<1	mg/L	<0.01	meg/L
Hydroxide	<1	mg/L	<0.01	meg/L
Chloride	42.2	mg/L	1.19	meg/L
Sulfate	26.3	mg/L	0.55	meq/L
Calcium	9.42	mg/L	0.47	meq/L
Magnesium	3.04	mg/L	0.25	meq/L
Potassium	0.78	mg/L	0.02	meq/L
Sodium	317	mg/L	13.8	meq/L
Cations			14.6	meq/L
nions			15.0	meq/L
Cation/Anion Difference			1.65	%

Reference:

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. "Standard Methods For The Examination Of Water And Waste Water", 19th ed., 1995.

Reported by B

Reviewed by WM

VOLATILE AROMATIC HYDROCARBONS

Giant Refining Co.

Project ID:
Sample ID:
Lab ID:
Sample Matrix:
Condition:

NMED-LTA OW3 031896 0396W00422 Water Cool/Intact Report Date: 04/02/96
Date Sampled: 03/18/96
Date Received: 03/20/96
Date Extracted: NA
Date Analyzed: 03/27/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylenes	ND	0.2
o-Xylene	ND	0.2

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

100.8

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Alvst .

38

Inorganics Laboratory 11183 SH 30 College Station, Texas 77845 (409) 776-8945 Fax (409) 774-4705

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

EPA Method 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Project: Sample ID:

Trip Blank

Laboratory ID: 0696G00543 Sample Matrix Water

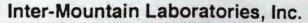
Preservative: HCI

Condition:

Intact, pH < 2

Report Date: 04/01/96

Date Sampled: NA


Date Received: 03/22/96 Date Extracted: 03/26/96

Date Analyzed: 03/26/96

Time Analyzed: 11:59 PM

Analyte	Concentration	Detection Limit
Analyte Acetone	(mg/L) ND	(mg/L) 0.03
Acrolein	ND	0.02
Acrylonitrile	ND	0.01
Benzene	ND	0.005
Bromodichloromethane	ND	0.005
Bromoform	ND	0.005
Bromomethane	ND	0.005
Carbon Disulfide	ND	0.01
Carbon Tetrachloride	ND	0.005
Chlorobenzene	ND	0.005
Chlorodibromoethane	ND	0.005
Chloroethane	ND	0.005
2-Chloroethylvinyl ether	ND	0.005
Chloroform	ND	0.005
Chloromethane	ND	0.005
Dibromomethane	ND	0.005
t-1,4-Dichloro-2-butene	ND	0.05
Dichlorodifluoromethane	ND	0.005
1,1-Dichloroethane	ND	0.005
1,2-Dichloroethane	ND	0.005
1,1-Dichloroethene	ND	0.005
trans-1,2-Dichloroethene	ND	0.005
1,2-Dichloropropane	ND	0.005
cis-1,3-Dichloropropene	ND	0.005
trans-1,3-Dichloropropene	ND	0.005
Ethyl Benzene	ND	0.005
Ethyl Methacrylate	ND	0.005
2-Hexanone	ND	0.01
lodomethane	ND	0.01
Methylene Chloride	ND	0.02
Methyl Ethyl Ketone	ND	0.01
4-Methyl-2-Petanone	ND	0.01
Styrene	ND	0.005

ND - Analyte not detected at stated limit of detection

11183 SH 30 College Station, Texas 77845 (409) 776-8945 Fax (409) 774-4705

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

EPA Method 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

Trip Blank Laboratory ID: 0696G00543

Matrix:

Water

Report Date: 04/01/96 Date Sampled: NA

Date Analyzed: 03/26/96 Time Analyzed: 11:59 PM

Analyte	Concentration (mg/L)	Detection Limit (mg/L)
1,1,2,2-Tetrachloroethane	ND	0.005
Tetrachloroethene	ND	0.005
Toluene	ND	0.005
1,1,1-Trichloroethane	ND	0.005
1,1,2-Trichloroethane	ND	0.005
Trichloroethene	ND	0.005
Trichlorofluoromethane	ND	0.005
1,2,3-Trichloropropane	ND	0.02
Vinyl Acetate	ND	0.01
Vinyl Chloride	ND	0.005
Xylenes	ND	0.005

ND - Analyte not detected at stated limit of detection

Quality Control:

Surrogate	Percent Recovery	Acceptance Limits
Dibromofluoromethane	101%	86 - 118%
Toluene-d8	99%	88 - 110%
Bromofluorobenzene	97%	86 - 117%

Inter-Mountain Laboratories, Inc.

Inorganics Laboratory 11183 SH 30 College Station, Texas 77845 Phone (409) 776-8945 Fax (409) 774-4705

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

EPA Method 8260 **VOLATILE ORGANIC COMPOUNDS** ADDITIONAL DETECTED COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

Trip Blank Laboratory ID: 0696G00543

Matrix:

Water

Report Date:

04/01/96

Date Sampled: NA

Date Analyzed: 03/26/96

Time Analyzed: 11:59 PM

Tentative Identification	Retention Time (Minutes)	Concentration * (mg/L)
None	detected at reportable	levels

* - Concentration calculated using assumed Relative Response Factor = 1

Reference:

Method 8260: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry:

Capillary Column Technique. Test Methods for Evaluating Solid Waste, SW - 846, United States Environmental Protection Agency, Final Update II, September 1994.

Comments:

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

EPA Method 8260 VOLATILE ORGANIC COMPOUNDS

Client:

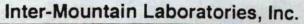
GIANT REFINING COMPANY

Project: Sample ID: NMED-LTA Trip Blank

Laboratory ID: 0696G00479 Sample Matrix Water Preservative: HCI

Condition:

Intact, pH < 2


04/01/96 Report Date:

Date Sampled: NA

Date Received: 03/21/96 Date Extracted: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 11:59 PM

	Concentration	Detection Limit
Analyte	(mg/L)	(mg/L)
Acetone	ND	0.03
Acrolein	ND	0.02
Acrylonitrile	ND	0.01
Benzene	ND	0.005
Bromodichloromethane	ND	0.005
Bromoform	ND	0.005
Bromomethane	ND	0.005
Carbon Disulfide	ND	0.01
Carbon Tetrachloride	ND	0.005
Chlorobenzene	ND	0.005
Chlorodibromoethane	ND	0.005
Chloroethane	ND	0.005
2-Chloroethylvinyl ether	ND	0.005
Chloroform	ND	0.005
Chloromethane	ND	0.005
Dibromomethane	ND	0.005
t-1,4-Dichloro-2-butene	ND	0.05
Dichlorodifluoromethane	ND	0.005
1,1-Dichloroethane	ND	0.005
1,2-Dichloroethane	ND	0.005
1,1-Dichloroethene	ND	0.005
trans-1,2-Dichloroethene	ND	0.005
1,2-Dichloropropane	ND	0.005
cis-1,3-Dichloropropene	ND	0.005
trans-1,3-Dichloropropene	ND	0.005
Ethyl Benzene	ND	0.005
Ethyl Methacrylate	ND	0.005
2-Hexanone	ND	0.01
lodomethane	ND	0.01
Methylene Chloride	ND	0.02
Methyl Ethyl Ketone	ND	0.01
4-Methyl-2-Petanone	ND	0.01
Styrene	ND	0.005

ND - Analyte not detected at stated limit of detection

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

EPA Method 8260 VOLATILE ORGANIC COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID:

Trip Blank Laboratory ID: 0696G00479

Matrix:

Water

Report Date: 04/01/96

Date Sampled: NA

Date Analyzed: 03/22/96 Time Analyzed: 11:59 PM

Analyte	Concentration (mg/L)	Detection Limit (mg/L)
1,1,2,2-Tetrachloroethane	ND	0.005
Tetrachloroethene	ND	0.005
Toluene	ND	0.005
1,1,1-Trichloroethane	ND	0.005
1,1,2-Trichloroethane	ND	0.005
Trichloroethene	ND	0.005
Trichlorofluoromethane	ND	0.005
1,2,3-Trichloropropane	ND	0.02
Vinyl Acetate	ND	0.01
Vinyl Chloride	ND	0.005
Xylenes	ND	0.005

ND - Analyte not detected at stated limit of detection

Quality Control:

Surrogate	Percent Recovery	Acceptance Limits
Dibromofluoromethane	99%	86 - 118%
Toluene-d8	99%	88 - 110%
Bromofluorobenzene	98%	86 - 117%

11183 SH 30 College Station, Texas 77845 (409) 776-8945 Fax (409) 774-4705

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

EPA Method 8260 **VOLATILE ORGANIC COMPOUNDS** ADDITIONAL DETECTED COMPOUNDS

Client:

GIANT REFINING COMPANY

Sample ID: Laboratory ID: 0696G00479

Trip Blank

Matrix:

Water

Report Date: 04/01/96

Date Sampled: NA

Date Analyzed: 03/22/96

Time Analyzed: 11:59 PM

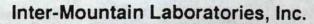
Tentative Identification	Retention Time (Minutes)	e Concentration * (mg/L)
	None detected at reporta	able levels

* - Concentration calculated using assumed Relative Response Factor = 1

Reference:

Method 8260: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry: Capillary Column Technique. Test Methods for Evaluating Solid Waste, SW - 846, United States Environmental Protection Agency, Final Update II, September 1994.

Comments:


Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Sample ID: Method Blank Laboratory ID: MB0322 Sample Matrix Water Report Date: 03/25/96 Date Extracted: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 7:04 PM

	Concentration	Detection Limit
Analyte	(mg/L)	(mg/L)
Acetone	ND	0.03
Acrolein	ND	0.02
Acrylonitrile	ND	0.01
Benzene	ND	0.005
Bromodichloromethane	ND	0.005
Bromoform	ND	0.005
Bromomethane	ND	0.005
Carbon Disulfide	ND	0.01
Carbon Tetrachloride	ND	0.005
Chlorobenzene	ND	0.005
Chlorodibromoethane	ND	0.005
Chloroethane	ND	0.005
2-Chloroethylvinyl ether	ND	0.005
Chloroform	ND	0.005
Chloromethane	ND	0.005
Dibromomethane	ND	0.005
t-1,4-Dichloro-2-butene	ND	0.05
Dichlorodifluoromethane	ND	0.005
1,1-Dichloroethane	ND	0.005
1,2-Dichloroethane	ND	0.005
1,1-Dichloroethene	ND	0.005
trans-1,2-Dichloroethene	ND	0.005
1,2-Dichloropropane	ND	0.005
cis-1,3-Dichloropropene	ND	0.005
trans-1,3-Dichloropropene	ND	0.005
Ethyl Benzene	ND	0.005
Ethyl Methacrylate	ND	0.005
2-Hexanone	ND	0.01
Iodomethane	ND	0.01
Methylene Chloride	ND	0.02
Methyl Ethyl Ketone	ND	0.01
4-Methyl-2-Petanone	ND	0.01
Styrene	ND	0.005

ND - Analyte not detected at stated limit of detection

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Page 2

Sample ID: Method Blank Laboratory ID: MB0322

Report Date: 03/25/96 Date Sampled: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 7:04 PM

	Concentration	Detection Limit
Analyte	(mg/L)	(mg/L)
1,1,2,2-Tetrachloroethane	ND	0.005
Tetrachloroethene	ND	0.005
Toluene	ND	0.005
1,1,1-Trichloroethane	ND	0.005
1,1,2-Trichloroethane	ND	0.005
Trichloroethene	ND	0.005
Trichlorofluoromethane	ND	0.005
1,2,3-Trichloropropane	ND	0.02
Vinyl Acetate	ND	0.01
Vinyl Chloride	ND	0.005
Xylenes	ND	0.005

ND - Analyte not detected at stated limit of detection

Quality Control:

Surrogate	Percent Recovery	Acceptance Limits
Dibromofluoromethane	99%	86 - 118%
Toluene-d8	101%	88 - 110%
Bromofluorobenzene	99%	86 - 117%

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS ADDITIONAL DETECTED COMPOUNDS Page 3

Sample ID: Method Blank Laboratory ID: MB0322 Report Date: 03/25/96 Date Sampled: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 7:04 PM

Tentative Identification	Retention Time (Minutes)	Concentration * (mg/L)
No	one detected at reportable	le levels

^{* -} Concentration calculated using assumed Relative Response Factor = 1

Reference:

Method 8260: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry: Capillary Column Technique. Test Methods for Evaluating Solid Waste, SW - 846, United States Environmental Protection Agency, Final Update II, September 1994.

Comments:

Analyst

Ramona R. Wennes

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Sample ID: Method Blank Laboratory ID: MB0326 Sample Matrix Water Report Date: 03/29/96 Date Extracted: 03/26/96 Date Analyzed: 03/26/96 Time Analyzed: 8:35 PM

	Concentration	Detection Limit
Analyte	(mg/L)	(mg/L)
Acetone	ND	0.03
Acrolein	ND	0.02
Acrylonitrile	ND	0.01
Benzene	ND	0.005
Bromodichloromethane	ND	0.005
Bromoform	ND	0.005
Bromomethane	ND	0.005
Carbon Disulfide	ND	0.01
Carbon Tetrachloride	ND	0.005
Chlorobenzene	ND	0.005
Chlorodibromoethane	ND	0.005
Chloroethane	ND	0.005
2-Chloroethylvinyl ether	ND	0.005
Chloroform	ND	0.005
Chloromethane	ND	0.005
Dibromomethane	ND	0.005
t-1,4-Dichloro-2-butene	ND	0.05
Dichlorodifluoromethane	ND	0.005
1,1-Dichloroethane	ND	0.005
1,2-Dichloroethane	ND	0.005
1,1-Dichloroethene	ND	0.005
trans-1,2-Dichloroethene	ND	0.005
1,2-Dichloropropane	ND	0.005
cis-1,3-Dichloropropene	ND	0.005
trans-1,3-Dichloropropene	ND	0.005
Ethyl Benzene	ND	0.005
Ethyl Methacrylate	ND	0.005
2-Hexanone	ND	0.01
lodomethane	ND	0.01
Methylene Chloride	ND	0.02
Methyl Ethyl Ketone	ND	0.01
4-Methyl-2-Petanone	ND	0.01
Styrene	ND	0.005

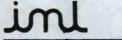
ND - Analyte not detected at stated limit of detection

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845

QUALITY CONTROL REPORT - METHOD BLANK Phone (409) 774-4999 Fax (409) 696-0962 **EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS**

Page 2

Method Blank Sample ID: Laboratory ID: MB0326


Report Date: 03/29/96 Date Sampled: 03/26/96 Date Analyzed: 03/26/96 Time Analyzed: 8:35 PM

Analyte	Concentration (mg/L)	Detection Limit
1,1,2,2-Tetrachloroethane	ND ND	(mg/L) 0.005
Tetrachloroethene	ND	0.005
Toluene	ND	0.005
1,1,1-Trichloroethane	ND	0.005
1,1,2-Trichloroethane	ND	0.005
Trichloroethene	ND	0.005
Trichlorofluoromethane	ND	0.005
1,2,3-Trichloropropane	ND	0.02
Vinyl Acetate	ND	0.01
Vinyl Chloride	ND	0.005
Xylenes	ND	0.005

ND - Analyte not detected at stated limit of detection

Quality Control:

Surrogate	Percent Recovery	Acceptance Limits
Dibromofluoromethane	98%	86 - 118%
Toluene-d8	100%	88 - 110%
Bromofluorobenzene	98%	86 - 117%

Inter-Mountain Laboratories, Inc.

Inorganics Laboratory 11183 SH 30 College Station, Texas 77845 Ph (409) 776-8945 Fax (409) 774-4705 Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS ADDITIONAL DETECTED COMPOUNDS Page 3

Sample ID:

Method Blank

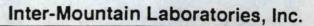
Laboratory ID: MB0326

Report Date: 03/29/96

Date Sampled: 03/26/96 Date Analyzed: 03/26/96 Time Analyzed: 8:35 PM

Tentative Identification	Retention Time (Minutes)	Concentration * (mg/L)
Nor	l ne detected at reportable	levels

^{* -} Concentration calculated using assumed Relative Response Factor = 1


Reference:

Method 8260: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry: Capillary Column Technique. Test Methods for Evaluating Solid Waste, SW - 846, United States Environmental Protection Agency, Final Update II, September 1994.

Comments:

Analyst

Review Review

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - BLANK SPIKE / SPIKE DUPLICATE ANALYSIS **EPA METHOD 8260 - VOLATILE ORGANICS**

Laboratory ID:

Blank Spike and Blank Spike Duplicate

Sample Matrix:

Water

Report Date: 03/25/96

Preservative:

Date Sampled: NA Date Received: NA

Condition:

NA NA

Date Analyzed: 03/22/96

Time Analyzed: 7:46 PM / 8:28 PM

BLANK SPIKE ANALYSIS

055	ND	0.050	110%	61 - 145
051	ND	0.050	102%	71 - 120
050	ND	0.050	100%	76 - 127
049	ND	0.050	98%	76 - 125
049	ND	0.050	98%	75 - 130
	055 051 050 049 049	051 ND 050 ND 049 ND	051 ND 0.050 050 ND 0.050 049 ND 0.050	051 ND 0.050 102% 050 ND 0.050 100% 049 ND 0.050 98%

BLANK SPIKE DUPLICATE ANALYSIS

	Duplicate	Percent	Original Spike		QC	Limits
Analyte	Result (mg/L)	Recovery	Result (%)	RPD	RPD	Rec.
,1 - Dichloroethene	0.057	114%	110%	4%	14%	61 - 145
richloroethene	0.052	104%	102%	2%	14%	71 - 120
Benzene	0.051	102%	100%	2%	11%	76 - 127
Toluene	0.051	102%	98%	4%	13%	76 - 125
Chlorobenzene	0.050	100%	98%	2%	13%	75 - 130

ND - Analyte not detected at stated limit of detection

Spike

Spike Recovery:

0 out of 10 outside QC Limits

RPD:

0 out of 5 outside QC Limits

Quality Control:

Surrogate	Recovery	Recovery	Recovery Limits
Dibromofluoromethane	99%	100%	86 - 118%
Toluene-d8	100%	100%	88 - 110%
Bromofluorobenzene	98%	97%	86 - 115%

Reference:

Method 8260A: Gas Chromatography / Mass Spectrometry for Volatile Organics Test Methods for Evaluating Solid Waste, SW - 846, Final Update II, United States

Environmental Protection Agency, September 1994.

Comments:

Duplicate

Inter-Mountain Laboratories, Inc.

Inorganics Laboratory 11183 SH 30 College Station, Texas 77845 (409) 776-8945 Fax (409) 774-4705

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - BLANK SPIKE / SPIKE DUPLICATE ANALYSIS

EPA METHOD 8260 - VOLATILE ORGANICS

Laboratory ID: Sample Matrix: Blank Spike and Blank Spike Duplicate

Water

Preservative: Condition:

NA NA

Report Date: 03/27/96

Date Sampled: NA Date Received: NA

Date Analyzed: 03/26/96

Time Analyzed: 9:16 PM / 9:57 PM

BLANK SPIKE ANALYSIS

Spiked Sample Result (mg/L)	Sample Result (mg/L)	Spike Added (mg/L)	Percent Recovery	QC Limits Recovery
0.056	ND	0.050	112%	61 - 145
0.049	ND	0.050	98%	71 - 120
0.048	ND	0.050	96%	76 - 127
0.047	ND	0.050	94%	76 - 125
0.046	ND	0.050	92%	75 - 130
	0.056 0.049 0.048 0.047	Result (mg/L) Result (mg/L) 0.056 ND 0.049 ND 0.048 ND 0.047 ND	Result (mg/L) Result (mg/L) (mg/L) 0.056 ND 0.050 0.049 ND 0.050 0.048 ND 0.050 0.047 ND 0.050	Result (mg/L) Result (mg/L) (mg/L) Recovery 0.056 ND 0.050 112% 0.049 ND 0.050 98% 0.048 ND 0.050 96% 0.047 ND 0.050 94%

BI ANK SPIKE DUPLICATE ANALYSIS

	Duplicate	Percent	Original Spike		QC Limits	
Analyte	Result (mg/L)	Recovery	Result (%)	RPD	RPD	Rec.
1 - Dichloroethene	0.055	110%	112%	2%	14%	61 - 145
richloroethene	0.047	94%	98%	4%	14%	71 - 120
Benzene	0.047	94%	96%	2%	11%	76 - 127
Toluene	0.042	84%	94%	11%	13%	76 - 125
Chlorobenzene	0.045	90%	92%	2%	13%	75 - 130

ND - Analyte not detected at stated limit of detection

Spike

Spike Recovery:

0 out of 10 outside QC Limits

RPD:

0 out of 5 outside QC Limits

Quality Control:

Recovery Limits Recovery Recovery Surrogate 86 - 118% Dibromofluoromethane 99% 99% 100% 100% 88 - 110% Toluene-d8 97% 86 - 115% Bromofluorobenzene 97%

Reference:

Method 8260A: Gas Chromatography / Mass Spectrometry for Volatile Organics Test Methods for Evaluating Solid Waste, SW - 846, Final Update II, United States

Environmental Protection Agency, September 1994.

Comments:

Duplicate

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Sample ID: Method Blank Laboratory ID: MB0322 Sample Matrix Water Report Date: 03/25/96 Date Extracted: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 7:04 PM

	Concentration	Detection Limit
Analyte	(mg/L)	(mg/L)
Acetone	ND	0.03
Acrolein	ND	0.02
Acrylonitrile	ND	0.01
Benzene	ND	0.005
Bromodichloromethane	ND	0.005
Bromoform	ND	0.005
Bromomethane	ND	0.005
Carbon Disulfide	ND	0.01
Carbon Tetrachloride	ND	0.005
Chlorobenzene	ND	0.005
Chlorodibromoethane	ND	0.005
Chloroethane	ND	0.005
2-Chloroethylvinyl ether	ND	0.005
Chloroform	ND	0.005
Chloromethane	ND	0.005
Dibromomethane	ND	0.005
t-1,4-Dichloro-2-butene	ND	0.05
Dichlorodifluoromethane	ND	0.005
1,1-Dichloroethane	ND	0.005
1,2-Dichloroethane	ND	0.005
1,1-Dichloroethene	ND	0.005
trans-1,2-Dichloroethene	ND	0.005
1,2-Dichloropropane	ND	0.005
cis-1,3-Dichloropropene	ND	0.005
trans-1,3-Dichloropropene	ND	0.005
Ethyl Benzene	ND	0.005
Ethyl Methacrylate	ND	0.005
2-Hexanone	ND	0.01
lodomethane	ND	0.01
Methylene Chloride	ND	0.02
Methyl Ethyl Ketone	ND	0.01
4-Methyl-2-Petanone	ND	0.01
Styrene	ND	0.005

ND - Analyte not detected at stated limit of detection

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Page 2

Sample ID: Method Blank Laboratory ID: MB0322 Report Date: 03/25/96 Date Sampled: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 7:04 PM

Analyte	Concentration (mg/L)	Detection Limit (mg/L)
1,1,2,2-Tetrachloroethane	ND	0.005
Tetrachloroethene	ND	0.005
Toluene	ND	0.005
1,1,1-Trichloroethane	ND	0.005
1,1,2-Trichloroethane	ND	0.005
Trichloroethene	ND	0.005
Trichlorofluoromethane	ND	0.005
1,2,3-Trichloropropane	ND	0.02
Vinyl Acetate	ND	0.01
Vinyl Chloride	ND	0.005
Xylenes	ND	0.005

ND - Analyte not detected at stated limit of detection

Quality Control:

Surrogate	Percent Recovery	Acceptance Limits
Dibromofluoromethane	99%	86 - 118%
Toluene-d8	101%	88 - 110%
Bromofluorobenzene	99%	86 - 117%

Inter-Mountain Laboratories, Inc.

Inorganics Laboratory 11183 SH 30 College Station, Texas 77845 Phone (409) 776-8945 Fax (409) 774-4705

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK **EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS** ADDITIONAL DETECTED COMPOUNDS

Page 3

Sample ID: Method Blank Laboratory ID: MB0322

Report Date: 03/25/96 Date Sampled: 03/22/96 Date Analyzed: 03/22/96 Time Analyzed: 7:04 PM

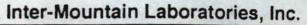
Tentative	Retention Time	Concentration *
Identification	(Minutes)	(mg/L)
None	 detected at reportable 	levels

^{* -} Concentration calculated using assumed Relative Response Factor = 1

Reference:

Method 8260: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry: Capillary Column Technique. Test Methods for Evaluating Solid Waste, SW - 846, United States Environmental Protection Agency, Final Update II, September 1994.

Comments:


Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Sample ID: Method Blank Laboratory ID: MB0326 Sample Matrix Water Report Date: 03/29/96 Date Extracted: 03/26/96 Date Analyzed: 03/26/96 Time Analyzed: 8:35 PM

	Concentration	Detection Limit
Analyte	(mg/L)	(mg/L)
Acetone	ND	0.03
Acrolein	ND	0.02
Acrylonitrile	ND	0.01
Benzene	ND	0.005
Bromodichloromethane	ND	0.005
Bromoform	ND	0.005
Bromomethane	ND	0.005
Carbon Disulfide	ND	0.01
Carbon Tetrachloride	ND	0.005
Chlorobenzene	ND	0.005
Chlorodibromoethane	ND	0.005
Chloroethane	ND	0.005
2-Chloroethylvinyl ether	ND	0.005
Chloroform	ND	0.005
Chloromethane	ND	0.005
Dibromomethane	ND	0.005
t-1,4-Dichloro-2-butene	ND	0.05
Dichlorodifluoromethane	ND	0.005
1,1-Dichloroethane	ND	0.005
1,2-Dichloroethane	ND	0.005
1,1-Dichloroethene	ND	0.005
trans-1,2-Dichloroethene	ND	0.005
1,2-Dichloropropane	ND	0.005
cis-1,3-Dichloropropene	ND	0.005
trans-1,3-Dichloropropene	ND	0.005
Ethyl Benzene	ND	0.005
Ethyl Methacrylate	ND	0.005
2-Hexanone	ND	0.01
lodomethane	ND	0.01
Methylene Chloride	ND	0.02
Methyl Ethyl Ketone	ND	0.01
4-Methyl-2-Petanone	ND	0.01
Styrene	ND	0.005

ND - Analyte not detected at stated limit of detection

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS

Page 2

Sample ID: Method Blank Laboratory ID: MB0326 Report Date: 03/29/96 Date Sampled: 03/26/96 Date Analyzed: 03/26/96 Time Analyzed: 8:35 PM

No Labor	Concentration	Detection Limit
Analyte 1,1,2,2-Tetrachloroethane	(mg/L) ND	(mg/L) 0.005
Tetrachloroethene	ND	0.005
Toluene	ND	0.005
1,1,1-Trichloroethane	ND	0.005
1,1,2-Trichloroethane	ND	0.005
Trichloroethene	ND	0.005
Trichlorofluoromethane	ND	0.005
1,2,3-Trichloropropane	ND	0.02
Vinyl Acetate	ND	0.01
Vinyl Chloride	ND	0.005
Xylenes	ND	0.005

ND - Analyte not detected at stated limit of detection

Quality Control:

Surrogate	Percent Recovery	Acceptance Limits
Dibromofluoromethane	98%	86 - 118%
Toluene-d8	100%	88 - 110%
Bromofluorobenzene	98%	86 - 117%

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - METHOD BLANK **EPA METHOD 8260 - VOLATILE ORGANIC COMPOUNDS** ADDITIONAL DETECTED COMPOUNDS Page 3

Sample ID:

Method Blank

Laboratory ID: MB0326

Report Date:

03/29/96

Date Sampled: 03/26/96

Date Analyzed: 03/26/96

Time Analyzed: 8:35 PM

Tentative		on Time Con	centration *
Identification		utes)	(mg/L)
	None detected at	reportable levels	

* - Concentration calculated using assumed Relative Response Factor = 1

Reference:

Method 8260: Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry: Capillary Column Technique. Test Methods for Evaluating Solid Waste, SW - 846. United States Environmental Protection Agency, Final Update II, September 1994.

Comments:

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - BLANK SPIKE / SPIKE DUPLICATE ANALYSIS EPA METHOD 8260 - VOLATILE ORGANICS

Laboratory ID:

Blank Spike and Blank Spike Duplicate Water

Preservative: Condition:

Sample Matrix:

NA NA Report Date: 03/25/96

Date Sampled: NA Date Received: NA

Date Analyzed: 03/22/96

Time Analyzed: 7:46 PM / 8:28 PM

BLANK SPIKE ANALYSIS

Analyte	Spiked Sample Result (mg/L)	Sample Result (mg/L)	Spike Added (mg/L)	Percent Recovery	QC Limits Recovery
1.1 - Dichloroethene	0.055	ND	0.050	110%	61 - 145
Trichloroethene	0.051	ND	0.050	102%	71 - 120
Benzene	0.050	ND	0.050	100%	76 - 127
Toluene	0.049	ND	0.050	98%	76 - 125
Chlorobenzene	0.049	ND	0.050	98%	75 - 130

BLANK SPIKE DUPLICATE ANALYSIS

	Duplicate	Percent	Original Spike		QC Limits				
Analyte	Result (mg/L)	Recovery	Result (%)	RPD	RPD	Rec.			
1 - Dichloroethene	0.057	114%	110%	4%	14%	61 - 145			
richloroethene	0.052	104%	102%	2%	14%	71 - 120			
Benzene	0.051	102%	100%	2%	11%	76 - 127			
Toluene	0.051	102%	98%	4%	13%	76 - 125			
Chlorobenzene	0.050	100%	98%	2%	13%	75 - 130			

ND - Analyte not detected at stated limit of detection

Spike

Spike Recovery:

0 out of 10 outside QC Limits

RPD:

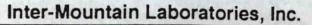
0 out of 5 outside QC Limits

Quality Control:

Surrogate Recovery Recovery Recovery Limits Dibromofluoromethane 99% 100% 86 - 118% Toluene-d8 100% 100% 88 - 110% 98% 97% Bromofluorobenzene 86 - 115%

Reference:

Method 8260A: Gas Chromatography / Mass Spectrometry for Volatile Organics
Test Methods for Evaluating Solid Waste, SW - 846, Final Update II, United States


Environmental Protection Agency, September 1994.

Comments:

nalyst 7 mg/4

Review R. Wounds

Duplicate

Organics Laboratory 3304 Longmire Drive College Station, Texas 77845 Phone (409) 774-4999 Fax (409) 696-0962

QUALITY CONTROL REPORT - BLANK SPIKE / SPIKE DUPLICATE ANALYSIS **EPA METHOD 8260 - VOLATILE ORGANICS**

Laboratory ID: Sample Matrix:

Blank Spike and Blank Spike Duplicate

Water

Preservative: Condition:

NA NA Report Date: 03/27/96

Date Sampled: NA Date Received: NA

Date Analyzed: 03/26/96

Time Analyzed: 9:16 PM / 9:57 PM

BLANK SPIKE ANALYSIS

Spiked Sample Result (mg/L)	Sample Result (mg/L)	Spike Added (mg/L)	Percent Recovery	QC Limits Recovery
0.056	ND	0.050	112%	61 - 145
0.049	ND	0.050	98%	71 - 120
0.048	ND	0.050	96%	76 - 127
0.047	ND	0.050	94%	76 - 125
0.046	ND	0.050	92%	75 - 130
	0.056 0.049 0.048 0.047	Result (mg/L) Result (mg/L) 0.056 ND 0.049 ND 0.048 ND 0.047 ND	Result (mg/L) Result (mg/L) (mg/L) 0.056 ND 0.050 0.049 ND 0.050 0.048 ND 0.050 0.047 ND 0.050	Result (mg/L) Result (mg/L) (mg/L) Recovery 0.056 ND 0.050 112% 0.049 ND 0.050 98% 0.048 ND 0.050 96% 0.047 ND 0.050 94%

BLANK SPIKE DUPLICATE ANALYSIS

	Duplicate	Percent	Original Spike	QC Limits				
Analyte	Result (mg/L)	Recovery	Result (%)	RPD	RPD	Rec.		
1 - Dichloroethene	0.055	110%	112%	2%	14%	61 - 145		
Trichloroethene	0.047	94%	98%	4%	14%	71 - 120		
Benzene	0.047	94%	96%	2%	11%	76 - 127		
Toluene	0.042	84%	94%	11%	13%	76 - 125		
Chlorobenzene	0.045	90%	92%	2%	13%	75 - 130		

ND - Analyte not detected at stated limit of detection

Spike

Spike Recovery:

0 out of 10 outside QC Limits

RPD:

0 out of 5 outside QC Limits

Quality Control:

Surrogate Recovery Recovery Recovery Limits Dibromofluoromethane 99% 99% 86 - 118% Toluene-d8 100% 100% 88 - 110% Bromofluorobenzene 97% 97% 86 - 115%

Reference:

Method 8260A: Gas Chromatography / Mass Spectrometry for Volatile Organics Test Methods for Evaluating Solid Waste, SW - 846, Final Update II, United States

Environmental Protection Agency, September 1994.

Comments:

Samona R. Donnes Leview

Duplicate

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Duplicate Analysis

Lab ID: Sample Matrix: Condition: 0396W00421 Water Cool/Intact Report Date: Date Analyzed: 04/02/96 03/27/96

Target Analyte	Duplicate Concentration (ppb)	Original Concentration (ppb)	% Difference
Benzene	ND	ND	NA
Toluene	ND	ND	NA
Ethylbenzene	ND	ND	NA
m,p-Xylenes	ND	ND	NA
o-Xylene	ND	ND	NA

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

120.5%

75 -115%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

88

Review

2506 W. Main Street Farmington, New Mexico 87401

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Matrix Spike Analysis

Lab ID:

Condition:

0396W00422

Sample Matrix:

Benzene

Toluene

m,p-Xylenes

o-Xylene

Water

Report Date: Date Analyzed:

95.3%

93.0%

04/02/96 03/27/96

70-130

70-130

Cool/Intact

Acceptance Limits Spiked Sample Result Spike Added (ng) Target Analyte Sample result in ng % Recovery in ng (%) 70-130 57.66 0.86 60 94.7% 70-130 53.22 0.00 60 88.7% 70-130 Ethylbenzene 55.14 0.00 60 91.9%

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

114.38

55.79

Percent Recovery

120

60

Acceptance Limits

Bromofluorobenzene

107.6%

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test

0.00

0.00

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

diyst

Review

2506 W. Main Street Farmington, New Mexico 87401

Quality Control / Quality Assurance

Known Analysis BTEX

Client: Project: Giant Refining Co. NMED-LTA Date Reported: 03/28/96 Date Analyzed: 03/27/96

Known Analysis

Found Concentration (ppb)	Known Concentration (ppb)	Percent Recovery	Acceptance Limits
8.95	9.0	99%	70-130%
8.43	9.0	94%	70-130%
8.20	9.0	91%	70-130%
17.3	18.0	96%	70-130%
8.31	9.0	92%	70-130%
	8.95 8.43 8.20 17.3	Concentration (ppb) Concentration (ppb) 8.95 9.0 8.43 9.0 8.20 9.0 17.3 18.0	Concentration (ppb) Concentration (ppb) Percent Recovery 8.95 9.0 99% 8.43 9.0 94% 8.20 9.0 91% 17.3 18.0 96%

Quality Control: Surrogate Percent Recovery Acceptance Limits

Bromofluorobenzene 104.9 75-125%

Reference: Method 5030, Purge and Trap: Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Reported by

Reviewed by 38

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Method Blank Analysis

Sample Matrix: Lab ID: Water Method Blank Report Date: Date Analyzed: 04/02/96 03/27/96

Target Analyte	Concentration (ppb)	Detection Limit (ppb)
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
m,p-Xylenes	ND	0.2
o-Xylene	ND	0.2

ND - Analyte not detected at the stated detection limit.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

100.4

75-125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

SB

Review

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Duplicate Analysis

Lab ID: Sample Matrix: Condition: 0396G00506 Water Cool/Intact Report Date: Date Analyzed: 04/11/96 04/04/96

Target Analyte	Duplicate Concentration (ppb)	Original Concentration (ppb)	% Difference
Benzene	102,100	129,200	23.4
Toluene	113,100	152,300	29.5
Ethylbenzene	4,720	6,350	29.4
m,p-Xylenes	16,700	21,500	25.1
o-Xylene	7,470	9,290	21.7

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

99.6%

75 -115%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Analyst

213

Review

2506 W. Main Street Farmington, New Mexico 87401

VOLATILE AROMATIC HYDROCARBONS QUALITY CONTROL REPORT

Matrix Spike Analysis

Lab ID:

0396W00503

Sample Matrix:

Water

Condition:

Cool/Intact

Report Date: Date Analyzed: 04/11/96

04/04/96

Target Analyte	Spiked Sample Result in ng	Sample result in ng	Spike Added (ng)	% Recovery	Acceptance Limits (%)
Benzene	40.28	0.61	45	88.2%	70-130
Toluene	37.75 0.32		45	83.2%	70-130
Ethylbenzene	39.08	0.00	45	86.8%	70-130
m,p-Xylenes	lenes 81.66 0.37		90	90.3%	70-130
o-Xylene	38.98	0.00	45	86.6%	70-130

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

Quality Control:

Surrogate

Percent Recovery

Acceptance Limits

Bromofluorobenzene

105.4%

75 -125%

Reference:

Method 5030, Purge and Trap; Method 8020, Aromatic Volatile Organics; Test

Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

SB

Review

Analyst

2506 W. Main Street Farmington, New Mexico 87401

Quality Control / Quality Assurance

Known Analysis BTEX

Client: Project: Giant Refining Co. Not Given Date Reported: 04/09/96
Date Analyzed: 04/04/96

Known Analysis

Parameter	Found Concentration (ppb)	Known Concentration (ppb)	Percent Recovery	Acceptance Limits
Benzene	8.89	9.0	99%	70-130%
Toluene	8.62	9.0	96%	70-130%
Ethylbenzene	8.11	9.0	90%	70-130%
m+p-Xylene	17.1	18.0	95%	70-130%
o-Xylene	8.23	9.0	91%	70-130%

 Quality Control:
 Surrogate
 Percent Recovery
 Acceptance Limits

 Bromofluorobenzene
 103.9
 75-125%

Reference:

Method 5030, Purge and Trap: Method 8020, Aromatic Volatile Organics; Test Methods for Evaluating Solid Wastes, SW-846, United States Environmental

Protection Agency, September 1986.

Comments:

Reported by

Reviewed by

从	Analytic Technologies, Inc., Albuquerque, NM Sagrand Promis Seattle Pensacora Pt. Cullins Portland Albuquerque								12 E	OF_				ATI	LAB	I.D.	
	PROJECT MANAGER:	ANALYSIS REQUEST															
EAS ARE FOR LAB USE ONLY.	COMPANY: GIANT REFINING ADDRESS: ROUTE 3, BOX 7 CALLUP NIM B7301 PHONE: 505-722-0227 FAX: 505-722-0210 BILL TO: DAULD PAULTCH COMPANY: Same ADDRESS:	Petroleum Hydrocarbons (418.1)	(MOD 8015) Gas/Diesel	Diesel/Gasoline/BTXE/MTBE (MOD 8015/8020)	BTXE/MTBE (8020)		Chlorinated Hudenschane (604 804 0)	Aromatic Hydrocarbons (602/8020)	SDWA Volatiles (502.1/503.1), 502.2 Reg. & Unreg.		Pesticides/PCB (608/8080)	Herbicides (615/8150)	Base/Neutral/Acid Compounds GC/MS (625/8270)	Volatile Organics GC/MS (624/8240)	Polynuclear Aromatics (610/8310)		SDWA Primary Standards - Arizona
SHADED AREAS	SAMPLE ID DATE TIME MATRIX LAB ID OWI -032596 3-25-96 1300 H20	Pe	M) W	io /	1 / BT	X		1	35	1	2-	Ĭ /	BE	>	4		Z
COMPLETELY. SH	Complete untact				2		>	4/2	W)	2		7	<i>/</i>				
OMPL	no trip blank																
FORM IN CO	PROJECT INFORMATION SAMPLE RECEIPT PROJ. NO.: NO. CONTAINERS		AMF		8 F		DUISI		Y: 1		TELIN		SHE	F F37	B ime:		2.
S FOI	PROJ. NAME: CUSTODY SEALS Y / N / NA P.O. NO.: RECEIVED INTACT	E	·L			ST	ate:	3/2	9/1	2	ted N	e de la		D	ate:		
LTHIS	SHIPPED VIA: RECEIVED COLD PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS	6	LAZ		BV	-	T-9	22-	027	STATE OF THE OWNER, OWNER, THE OW	npany		BV.				2.
EFILL	(RUSH) 24hr 48hr 72hr 1 WEEK (NORMAL) 2 WEEK		natu	re:	1		ime:	1)		Sign	nature			- 1000	ime:	1	
LEASE	SEE ATTACH ShEET. FOR ANALYSIS REQUEST.	6	nted	Nam	e: _		ate:	2	1/1/9		ted N			D	ate:		

RELINQUISHED BY:

RECEIVED BY:(LAB)

Signature:

Company:

Signature:

Printed Name:

Printed Name:

Time:

Date:

Time:

Date:

Analytical Technologies, Inc.

3.

SDWA Secondary Standards - Arizona

SDWA Secondary Standards - Federal

The 13 Priority Pollutant Metals RCRA Metals by Total Digestion

RCRA Metals by TCLP (1311)

NUMBER OF CONTAINERS

SDWA Primary Standards - Federal

CHAIN OF CUST DY RECORD

CHAILD FOR THE CO.				ED-LTA				ANALYSES / PARAMETERS					
2011 1160 C. W. C. 1001				Custody Tape No.				11	11	Remarks			
MORRIS/140	RST						2	1 1.1	1		Parent P		
Sample No./	Date	Time	Lab Number	Matrix			No. of Containers			SEE ATTACHED SHEET			
MW4-031396	3-13-96	1:00 PM	1396W00418	AQU		The second second	9	全性性变					
MW5-03/396	The state of the s	THE PROPERTY AND PERSONS NAMED IN COLUMN 1	0396000419	Agu			9			Insten	id on	OX	
DW11-031396	3-13-96	2:05PM	0396 WOOYD	Agu	,	15.00	9						
OW2-031896	3-18-96			Agu.			4	2		a Standard			
OW3-031896	3-18-96			Aqu.			4						
										S Par Vice			
						7							
									18 18				
												1	
										Coolt	AND DESCRIPTION OF THE PERSON NAMED IN		
Relinquished by (Signature)			Date	Time	Received	Received by: (Signature)					Time		
			3-19-96	osan	Ch	ris	Kario	ees		3/2018			
Hettingulation by: (Signature)			Data	Time	Received by: (Signature)					Time			
Relinquished by: (Signature)				Date	Time	Received	Received by laboratory: (Signature) Date					Time	
1633 Terra Avenue Sheridan, Wyoming 82801 Telephone (307) 672-8945	1701 Phillips Gillette, Wy	s Circle cming 82718 (307) 582-8545	Inter-Mo 2506 West Main Str Famington, NM 87- Telephone (505) 32	reet 1160	Research Draman, Montan	ia 59715	11183 College		5 College	ngmire Drive Station, TX 77845 ne (409) 774-4999	34	130	