District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Dr.

1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-144 Revised June 6, 2013

For temporary pits, below-grade tanks, and multi-well fluid management pits, submit to the appropriate NMOCD District Office.

For permanent pits submit to the Santa Fe Environmental Bureau office and provide a copy to the appropriate NMOCD District Office.

Pit.	Below	-Grade	Tank	c. or
* ***	DOLO	Ornac	T COLLE	19 01

1//so D 1 1 1 1 1 D 1 Cl D1 A 1' 1'
Proposed Alternative Method Permit or Closure Plan Application
Type of action: Below grade tank registration OIL CONS. DIV DIST. 3
Permit of a pit or proposed alternative method Closure of a pit, below-grade tank, or proposed alternative method Modification to an existing permit/or registration FEB 16 2016
Closure plan only submitted for an existing permitted or non-permitted pit, below-grade tank,
or proposed alternative method
Instructions: Please submit one application (Form C-144) per individual pit, below-grade tank or alternative request
Please be advised that approval of this request does not relieve the operator of liability should operations result in pollution of surface water, ground water or the environment. Nor does approval relieve the operator of its responsibility to comply with any other applicable governmental authority's rules, regulations or ordinances.
Operator: Bridgecreek Resources (Colorado), L.L.C. OGRID #: 310262
Address: 405 Urban Street, Suite 400, Lakewood, CO 80228
Facility or well name: Prairie Falcon 19-29 17
API Number: 30-045-35737 OCD Permit Number: 13626
U/L or Qtr/Qtr P SENW Section 19 Township 31 N Range 14 W County: San Juan
Center of Proposed Design: Latitude N 36.879622 Longitude W108.3427360 NAD: □1927 □ 1983
Surface Owner: 🖾 Federal 🗌 State 🔲 Private 🖾 Tribal Trust or Indian Allotment
2.
Pit: Subsection F, G or J of 19.15.17.11 NMAC
Temporary: Drilling Workover
☐ Permanent ☐ Emergency ☐ Cavitation ☐ P&A ☐ Multi-Well Fluid Management Low Chloride Drilling Fluid ☐ yes ☐ no
☐ Lined ☐ Unlined Liner type: Thickness
⊠ String-Reinforced
Liner Seams: Welded Factory Other Burrito Wrapped Volume: bbl Dimensions: L 61ft x W 36ft x D 16ft
3.
Below-grade tank: Subsection I of 19.15.17.11 NMAC
Volume:bbl Type of fluid:
Tank Construction material:
☐ Secondary containment with leak detection ☐ Visible sidewalls, liner, 6-inch lift and automatic overflow shut-off
☐ Visible sidewalls and liner ☐ Visible sidewalls only ☐ Other
Liner type: Thicknessmil
4.
Alternative Method:
Submittal of an exception request is required. Exceptions must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.
5.
Fencing: Subsection D of 19.15.17.11 NMAC (Applies to permanent pits, temporary pits, and below-grade tanks)
Chain link, six feet in height, two strands of barbed wire at top (Required if located within 1000 feet of a permanent residence, school, hospital, institution or church)
Four foot height, four strands of barbed wire evenly spaced between one and four feet
Alternate. Please specify

Netting: Subsection E of 19.15.17.11 NMAC (Applies to permanent pits and permanent open top tanks)	
☐ Screen ☐ Netting ☐ Other	
☐ Monthly inspections (If netting or screening is not physically feasible)	
7.	1.15 2.19 419
Signs: Subsection C of 19.15.17.11 NMAC	
☐ 12"x 24", 2" lettering, providing Operator's name, site location, and emergency telephone numbers	
☑ Signed in compliance with 19.15.16.8 NMAC	
8.	
Variances and Exceptions:	
Justifications and/or demonstrations of equivalency are required. Please refer to 19.15.17 NMAC for guidance.	
Please check a box if one or more of the following is requested, if not leave blank: Variance(s): Requests must be submitted to the appropriate division district for consideration of approval.	
Exception(s): Requests must be submitted to the Santa Fe Environmental Bureau office for consideration of approval.	
Siting Criteria (regarding permitting): 19.15.17.10 NMAC	
Instructions: The applicant must demonstrate compliance for each siting criteria below in the application. Recommendations of accematerial are provided below. Siting criteria does not apply to drying pads or above-grade tanks.	ptable source
General siting	
Ground water is less than 25 feet below the bottom of a low chloride temporary pit or below-grade tank.	☐ Yes ☐ No
- ☐ NM Office of the State Engineer - iWATERS database search; ☐ USGS; ☐ Data obtained from nearby wells	□ NA
Ground water is less than 50 feet below the bottom of a Temporary pit, permanent pit, or Multi-Well Fluid Management pit. NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance adopted pursuant to NMSA 1978, Section 3-27-3, as amended. (Does not apply to below grade tanks) - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☐ No
Within the area overlying a subsurface mine. (Does not apply to below grade tanks) - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☐ No
Within an unstable area. (Does not apply to below grade tanks) - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological Society; Topographic map	Yes No
Within a 100-year floodplain. (Does not apply to below grade tanks) - FEMA map	☐ Yes ☐ No
Below Grade Tanks	12 148
Within 100 feet of a continuously flowing watercourse, significant watercourse, lake bed, sinkhole, wetland or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	Yes No
Within 200 horizontal feet of a spring or a fresh water well used for public or livestock consumption;. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit using Low Chloride Drilling Fluid (maximum chloride content 15,000 mg/liter)	
Within 100 feet of a continuously flowing watercourse, or any other significant watercourse or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). (Applies to low chloride temporary pits.) - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a occupied permanent residence, school, hospital, institution, or church in existence at the time of initial application.	☐ Yes ☐ No
- Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	
Within 200 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 300feet of any other fresh water well or spring, in existence at the time of the initial application. NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No

Within 100 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pit Non-low chloride drilling fluid	
Within 300 feet of a continuously flowing watercourse, or any other significant watercourse, or within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 500 horizontal feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or 1000 feet of any other fresh water well or spring, in the existence at the time of the initial application; NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Permanent Pit or Multi-Well Fluid Management Pit	
Within 300 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, or lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 1000 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 500 horizontal feet of a spring or a fresh water well used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database search; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 500 feet of a wetland. - US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Temporary Pits, Emergency Pits, and Below-grade Tanks Permit Application Attachment Checklist: Subsection B of 19.15.17.9 Naturations: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the document of the following items must be attached to the application. Please indicate, by a check mark in the box, that the document of the following items must be attached. Hydrogeologic Report (Below-grade Tanks) - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Hydrogeologic Data (Temporary and Emergency Pits) - based upon the requirements of Paragraph (2) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19. and 19.15.17.13 NMAC	NMAC
Previously Approved Design (attach copy of design) API Number: or Permit Number:	
Multi-Well Fluid Management Pit Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the document of 19.15.17.11 NMAC Design Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC A List of wells with approved application for permit to drill associated with the pit. Closure Plan (Please complete Boxes 14 through 18, if applicable) - based upon the appropriate requirements of Subsection C of 19 and 19.15.17.13 NMAC Hydrogeologic Data - based upon the requirements of Paragraph (4) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Previously Approved Design (attach copy of design) API Number: or Permit Number:	

Permanent Pits Permit Application Checklist: Subsection B of 19.15.17.9 NMAC Instructions: Each of the following items must be attached to the application. Please indicate, by a check mark in the box, that the	documents are
attached. Hydrogeologic Report - based upon the requirements of Paragraph (1) of Subsection B of 19.15.17.9 NMAC Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Climatological Factors Assessment Certified Engineering Design Plans - based upon the appropriate requirements of 19.15.17.11 NMAC Dike Protection and Structural Integrity Design - based upon the appropriate requirements of 19.15.17.11 NMAC Leak Detection Design - based upon the appropriate requirements of 19.15.17.11 NMAC Liner Specifications and Compatibility Assessment - based upon the appropriate requirements of 19.15.17.11 NMAC Quality Control/Quality Assurance Construction and Installation Plan Operating and Maintenance Plan - based upon the appropriate requirements of 19.15.17.12 NMAC Freeboard and Overtopping Prevention Plan - based upon the appropriate requirements of 19.15.17.11 NMAC Nuisance or Hazardous Odors, including H ₂ S, Prevention Plan Emergency Response Plan Oil Field Waste Stream Characterization Monitoring and Inspection Plan Erosion Control Plan Closure Plan - based upon the appropriate requirements of Subsection C of 19.15.17.9 NMAC and 19.15.17.13 NMAC	
Proposed Closure: 19.15.17.13 NMAC Instructions: Please complete the applicable boxes, Boxes 14 through 18, in regards to the proposed closure plan. Type: Drilling Workover Emergency Cavitation P&A Permanent Pit Below-grade Tank Multi-well F	luid Management Pit
☐ Alternative Proposed Closure Method: ☐ Waste Excavation and Removal ☐ Waste Removal (Closed-loop systems only) ☐ On-site Closure Method (Only for temporary pits and closed-loop systems) ☐ In-place Burial ☐ On-site Trench Burial ☐ Alternative Closure Method	
Waste Excavation and Removal Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be closure plan. Please indicate, by a check mark in the box, that the documents are attached. Protocols and Procedures - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of Subsection C of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings) Soil Backfill and Cover Design Specifications - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC	
Siting Criteria (regarding on-site closure methods only): 19.15.17.10 NMAC Instructions: Each siting criteria requires a demonstration of compliance in the closure plan. Recommendations of acceptable south provided below. Requests regarding changes to certain siting criteria require justifications and/or demonstrations of equivalency. In 19.15.17.10 NMAC for guidance.	
Ground water is less than 25 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Ground water is between 25-50 feet below the bottom of the buried waste - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	Yes No
Ground water is more than 100 feet below the bottom of the buried waste. - NM Office of the State Engineer - iWATERS database search; USGS; Data obtained from nearby wells	☐ Yes ☐ No ☐ NA
Within 100 feet of a continuously flowing watercourse, or 200 feet of any other significant watercourse, lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark). - Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within 300 feet from a permanent residence, school, hospital, institution, or church in existence at the time of initial application. - Visual inspection (certification) of the proposed site; Aerial photo; Satellite image	☐ Yes ☐ No
Within 300 horizontal feet of a private, domestic fresh water well or spring used for domestic or stock watering purposes, in existence at the time of initial application. - NM Office of the State Engineer - iWATERS database; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☐ No
Within 300 feet of a wetland. US Fish and Wildlife Wetland Identification map; Topographic map; Visual inspection (certification) of the proposed site	☐ Yes ☐ No
Within incorporated municipal boundaries or within a defined municipal fresh water well field covered under a municipal ordinance	7.0

adopted pursuant to NMSA 1978, Section 3-27-3, as amended. - Written confirmation or verification from the municipality; Written approval obtained from the municipality	☐ Yes ☐ No
Within the area overlying a subsurface mine. - Written confirmation or verification or map from the NM EMNRD-Mining and Mineral Division	☐ Yes ☐ No
Within an unstable area. - Engineering measures incorporated into the design; NM Bureau of Geology & Mineral Resources; USGS; NM Geological	
Society; Topographic map	☐ Yes ☐ No
Within a 100-year floodplain FEMA map	☐ Yes ☐ No
On-Site Closure Plan Checklist: (19.15.17.13 NMAC) Instructions: Each of the following items must be attached to the closure by a check mark in the box, that the documents are attached. Siting Criteria Compliance Demonstrations - based upon the appropriate requirements of 19.15.17.10 NMAC Proof of Surface Owner Notice - based upon the appropriate requirements of Subsection E of 19.15.17.13 NMAC Construction/Design Plan of Burial Trench (if applicable) based upon the appropriate requirements of Subsection K of 19.15 Construction/Design Plan of Temporary Pit (for in-place burial of a drying pad) - based upon the appropriate requirements of 19.15.17.13 NMAC Confirmation Sampling Plan (if applicable) - based upon the appropriate requirements of 19.15.17.13 NMAC Waste Material Sampling Plan - based upon the appropriate requirements of 19.15.17.13 NMAC Disposal Facility Name and Permit Number (for liquids, drilling fluids and drill cuttings or in case on-site closure standards Soil Cover Design - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Re-vegetation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC Site Reclamation Plan - based upon the appropriate requirements of Subsection H of 19.15.17.13 NMAC	5.17.11 NMAC of 19.15.17.11 NMAC
Operator Application Certification: I hereby certify that the information submitted with this application is true, accurate and complete to the best of my knowledge an Name (Print): Christine Campbell Signature: Date: 2//// Pate: 2//// Date: 2//// Title: Regulatory Lead Telephone: 303-945-2630	d belief.
18.	
OCD Approval: ☐ Permit Application (including closure plan) ☐ Closure Plan (ordy) ☐ OCD Conditions (see attachment of the control of the con	128/16
Title: Egying wested Spec. OCD Permit Number:	
19. Closure Report (required within 60 days of closure completion): 19.15.17.13 NMAC Instructions: Operators are required to obtain an approved closure plan prior to implementing any closure activities and submittee closure report is required to be submitted to the division within 60 days of the completion of the closure activities. Please as section of the form until an approved closure plan has been obtained and the closure activities have been completed. □ Closure Completion Date: 1/11/16 20. Closure Method: □ Alternative Closure Method □ Waste Removal (Closure Method □ Alternative Closure Method □ Waste Removal (Closure Method □ Alternative Closure Method □ Waste Removal (Closure Method □ Method	lo not complete this
If different from approved plan, please explain.	
Closure Report Attachment Checklist: Instructions: Each of the following items must be attached to the closure report. Pleasark in the box, that the documents are attached. Proof of Closure Notice (surface owner and division) Proof of Deed Notice (required for on-site closure for private land only) Plot Plan (for on-site closures and temporary pits) Confirmation Sampling Analytical Results (if applicable) Waste Material Sampling Analytical Results (required for on-site closure) Disposal Facility Name and Permit Number Soil Backfilling and Cover Installation Re-vegetation Application Rates and Seeding Technique Site Reclamation (Photo Documentation) On-site Closure Location: Latitude 36.8786911 Longitude 108.3408421	AD: □1927 ☑ 1983

Operator Closure Certification:	
I hereby certify that the information and attachments submitted with this clos belief. I also certify that the closure complies with all applicable closure requ	
Name (Print): Christine Campbell Signature: Christine Campbell	Title: Regulatory Lead Date: 2////
e-mail address: ccampbell@palomarnr.com	Telephone: 303-945-2642

API No.: 30-045-35737 OCD Trench Permit: 13626

Bridgecreek Resources (Colorado) LLC Temporary Pit Closure Report

General Plan

In accordance with Rule 19.15.17.13 the following information describes the closure of the temporary pit on Bridgecreek locations. All proper documentation regarding closure activities in being included with the C-144.

- Details on capping and covering (see report)
- Plot Plan (Pit Diagram) (Included as attachment)
- Sampling Results (Included as attachment)
- Drilling operations utilized a closed loop water based mud system. Drill cuttings (rock fragments generated during drilling) were produced during drilling of the borehole.
- Notice of closure will be given to the Aztec Division office between 72 hours and one week of closure via email or verbally. The notification of closure will include the following:
 - i. Operators name
 - ii. Location by Unit letter, Section, Township, and Range. Well name and Number.
 - b. Verbal notification provided to all required parties on 12/15/15.
- Within 6 months of the Rig Off status occurring Bridgecreek will ensure that temporary pits are closed, re-contoured, and reseeded.
 - a. Closure occurred from January 4 to January 11, 2016. Bridgecreek will notify OCD upon reseeding of reclaimed area no later than 6 months following rig release date via a form 3160-5 Sundry Form.
- The surface owner shall be notified of Bridgecreek's closing of the temporary pit as per the approved closure plan using certified mail, return receipt requested.
 - Verbal notification was provided to the surface owner on 12/16/15. Certified mail is not required for Federal land per BLM/OCD MOU.
- 5. All contents, including synthetic pit liners, will be buried in place. By folding outer edges of the pit liner to overlap waste material, and then installing a geomembrane liner cover that is 20 mil string reinforced LLDPE, synthetic material, impervious, resistant to ultra violet light, petroleum hydrocarbons, salts, acid and alkaline.
 - a. The burial trench was lined with a 20 mil string reinforced LLDPE liner,

API No.: 30-045-35737 OCD Trench Permit: 13626

stabilized cuttings were placed in liner and burrito wrapped to entirely cover the stabilized cuttings. The entire trench was capped with 4 feet of clean fill dirt and compacted to ground level.

- 6. Cuttings will be contained in four-sided impermeable bins on location. Cuttings will be mixed with non- waste saw dust material in order to achieve the solidification process. The solidification process will be accomplished using a combination of natural drying and mechanically mixing. Cuttings will be mixed with non-waste, saw dust material to a consistency that is deemed a safe and stable. Cuttings will be mixed while in the four-sided bins. The mixing ratio shall not exceed 3 parts clean soil to 1 part pit contents. The stabilized mixture must pass the paint filter liquids test (EPA SW-846, Method 9095 or other test methods approved by the division.
 - a. The cuttings were stabilized in the steel bins on location at a 3:1 clean soil to pit contents ratio prior to passing the paint filter test method.
- 7. A minimum 5-point sample will be taken of the stabilized cuttings for the analysis of constituents under the regulations listed in the NMAC 19.15.17.13 Closure and Site Reclamation requirements, Ute Mountain Ute (UMU) Tribe's "Standards for Spill Cleanup and Chlorides Reclamation" table, and EPA SW-846 methods. These results will be submitted to the Aztec NMOCD via a C-144 and BLM via a 3160-5 Sundry Form to the Tres Rios BLM Field Office.
 - a. A six point composite sample was taken. The approved closure plan calculated a benzene concentration, when mixed at a 3:1 (clean: cuttings) ratio is below the UMU/COGCC Table standard and below the NMOCD limits. (Sample results are attached).
- 8. Upon completion of stabilization and testing in bins, the trench will be dug, lined and stabilized cuttings deposited and burrito-wrapped. The burrito-wrapped stabilized cuttings will be covered with a minimum of four feet of clean fill dirt.
 - a. The trench was excavated and burial completed from January 4 through January 11, 2016.
- 9. Upon completion of interim reclamation re-contouring of location will match fit, shape, line, form and texture of the surrounding area. Reshaping will include drainage control, prevent ponding, and prevent erosion. Natural drainages will be unimpeded and water bars and/or silt traps will be placed in areas where needed to prevent erosion on a large scale. Final re-contour shall have a uniform appearance with smooth surface, fitting the natural landscape.
 - a. The trench area was re-contoured to match fit, shape, line, form and texture of surrounding area. Re-shaping included drainage control, to prevent ponding, and erosion. Natural drainages were unimpeded and silt traps or berms were

API No.: 30-045-35737 OCD Trench Permit: 13626

placed in areas where needed to prevent erosion on a large scale. Final recontour has a uniform appearance with smooth surface, fitting natural landscape.

- 10. Notification will be sent to OCD when the reclaimed area is seeded.
 - a. Notification will be provided to OCD via form 3160-5 Sundry.
- 11. Following 19.15.17.13 (H) (5) (a-e), Bridgecreek shall seed the distributed areas the first growing season after the operator completes interim reclamation. Seeding will be accomplished via drilling on the contour whenever practical or by other division-approved methods. Suggested BIA stipulated seed mixed will be used on federal lands. Vegetative cover will equal 70% of the native perennial vegetative cover (un-impacted) consisting of at least three native plant species, including at least one grass, but not including noxious weeds, and maintain that cover thorough two successive growing seasons. Repeat seeding or planting will be continued until successful vegetative growth occurs. The boundaries of the trench will be designated by surface and depth markers to avoid the possibility of mixing one with another. The markers will clearly define the edge and the depth of the trench to allow for subsequent excavation without disturbing previously buried cuttings.
 - a. Seeding will be done in the first growing season after the operator closed the pit. Seeding will be accomplished via drilling on the contour whenever practical or by other division approved methods. BIA seed mix will be used on the UMU Reservation. Vegetative cover will equal 70% of the native perennial vegetative cover (un-impacted) consisting of at least three native plant species, including at least one grass, but not including noxious weeds, and maintain that cover through two successive growing seasons. Repeat seeding or planting will be continued until successful vegetative growth occurs.
- 12. Bridgecreek will also be installing a temporary Flat Pit Marker upon closure. The temporary pit will be located with a steel marker, no less than four inches in diameter, cemented in a hole three feet deep in the center of the onsite burial upon the abandonment of all the wells on the pad. The marker will be flush with the ground to allow access of the active well pad and for safety concerns. The marker will include a threaded collar to be used for future abandonment. The top of the marker will contain a welded steel 12" square plate that will include operator name, lease number, section, township, range and indicates site is the onsite burial of the temporary pit. The plate will be easily removable and a four foot tall riser will be threaded into the top of the collar marker and welded around the base with the operator's information at the time all wells on the pad are abandoned. The operator's information will include the following: Operator Name, Lease Name, Well Name and number, Unit Number, Section, Township, Range and an indicator that the marker is an onsite burial location.

API No.: 30-045-35737 OCD Trench Permit: 13626

a. A steel temporary marker will be placed in the center of the onsite burial trench as soon as the weather permits in accordance with 19.15.16.8 NMAC.

DISPOSAL FACILITY NAME AND PERMIT NUMBER

Aqua Moss Disposal 3782 Provo Bloomfield, NM 87413

Sunco Disposal Well #001, API 30-045-28653

BIA Seed MIX 2015

UMU Indian Reservation

Species	Variety	% of Mix	#PLS/ac
Galleta	Viva	25	1.0
Alkali sacaton	Salado	25	0.4
Western wheatgrass	Arriba	15	2.4
Blue grama	Hatchita	15	0.5
Indian ricegrass	Nezpar	10	1.2
Sand dropseed	VNS	10	0.05

10. PLANS FOR SURFACE RECLAMATION

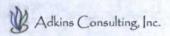
- The objective of interim reclamation is to restore vegetative cover and a portion of the landform sufficient to maintain healthy, biologically active topsoil; control erosion; and minimize habitat and forage loss, visual impact, and weed infestation, during the life of the well or facilities.
- The long-term objective of final reclamation is to return the land to a condition similar to what existed prior to disturbance. This includes restoration of the landform and natural vegetative community, hydrologic systems, visual resources and wildlife habitats. To ensure that the long term objective will be reached through human and natural processes, actions will be taken to ensure standards are met for site stability, visual quality, hydrological functioning and vegetative productivity.
- Bridgecreek will notify the BLM, the UMU Energy and the UMU Environmental Department at least 3 days before beginning any of the approved surface reclamation operations.
- Within six months after the last well on the pad has been completed or plugged, Bridgecreek will contact the BLM by filing a Form 3160-5 with a reclamation plan for approval to reduce the size of the drill pad and reclaim the ground approximately as shown on Attachment H.
- The well pad and access road would cover an area of approximately 3.44 acres, but will be reduced after interim reclamation (following drilling and completion) to approximately 2.61 acre (+/- 0.3 acres) as shown on Attachment H.

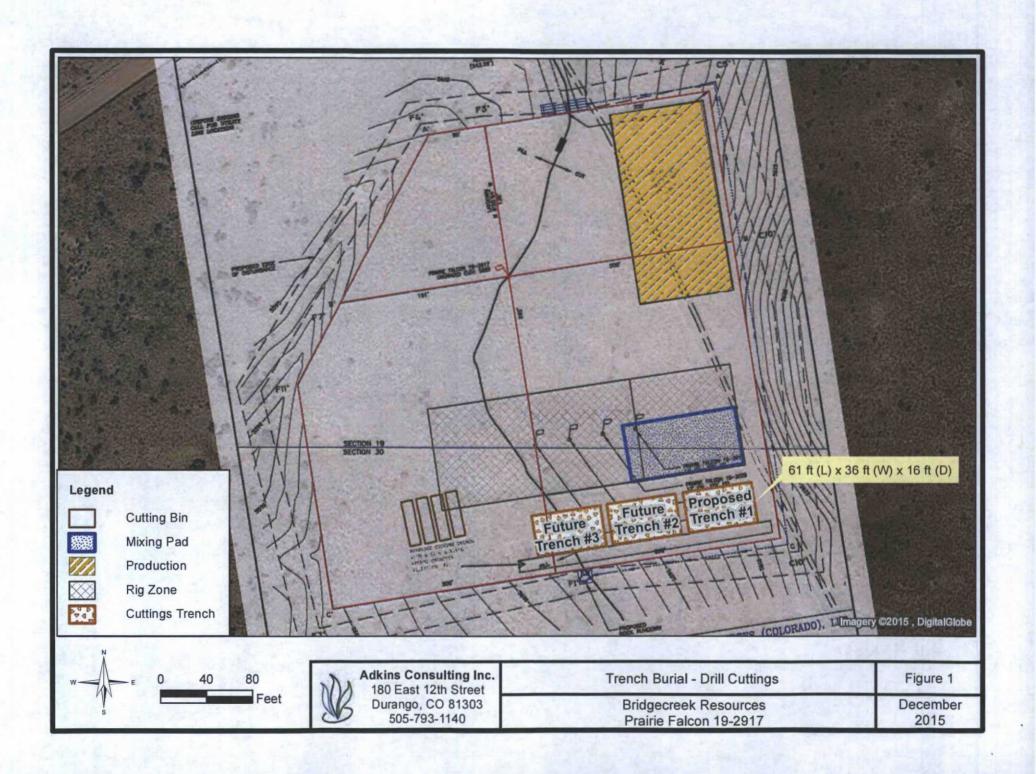
■ INTERIM RECLAMATION

- A. Within 30 days of well completion, the well location and surrounding areas will be cleared of, and maintained free of, all materials, trash, and equipment not required for production. In areas planned for interim reclamation, all the surfacing material used to build the well pad will be removed and returned to the original source or recycled to repair or build roads and well pads.
- B. The areas planned for interim reclamation will then be recontoured to blend with the surrounding topography as much as possible. The interim cut and fill slopes prior to re-seeding will not be steeper than a 3:1 ratio, unless the adjacent native topography is steeper. Note: Constructed slopes may be much steeper during drilling, but will be recontoured to the blend with surrounding topography during interim reclamation.
- C. Topsoil will be evenly respread and revegetated over the entire disturbed area not needed for all-weather operations including cuts & fills. To seed the area, the proper BIA approved seed mixture, free of noxious weeds, will be used. Final seedbed preparation will consist of contour cultivating to a depth of 4 to 6 inches within 24 hours prior to seeding, dozer tracking, or other imprinting in order to break the soil crust and create seed germination micro-sites.
- D. BIA approved seed mix will be broadcast or drilled at an appropriate time prior to the winter season. Bridgecreek will notify the BLM with a Sundry Form 3160-5 upon completion of interim reclamation.
- E. Bridgecreek is responsible for consultation with the BLM and UMU Environmental Department for acceptable weed control methods and shall comply with the following:

- A BLM Sundry Form 3160-5 will be submitted for permission to use any pesticide other than "Roundup" by Scotts Company prior to use.
- All commercial pesticide applicators must hold a valid New Mexico Commercial Applicators license, and the license must be valid for the applicable pesticide application category.
- F. Proper erosion control methods will be used on the area to control erosion, runoff and siltation of the surrounding area.
- G. The interim reclamation will be monitored periodically to ensure that vegetation has reestablished and that erosion is controlled.
- H. Interim reclamation will be considered successful when the desired vegetative species are established and evidence of vegetation reproduction, either by spreading of rhizomatous species or seed production, is established. Interim reclamation will additionally be deemed a success when erosion is controlled, weeds are considered a minimum threat, and a uniform vegetative cover has been established with an individual plant density of at least 70 percent of pre-disturbance levels.

■ FINAL RECLAMATION


- Prior to final reclamation procedures, the well pad, road, and surrounding area will be cleared of material, trash, and equipment.
- All surfacing material will be removed and returned to the original source pit or recycled to repair or build roads and well pads.
- K. All disturbed areas, including roads, pipelines, pads, production facilities, and interim reclaimed areas will be recontoured to the contour existing prior to initial construction or a contour that blends with the surrounding topography. Topsoil that was spread over the interim reclamation areas will be stockpiled prior to recontouring. The topsoil will be redistributed evenly over the entire disturbed site to ensure successful revegetation. Areas to be reclaimed will be recontoured to blend with the surrounding landscape, emphasizing restoration of existing drainage patterns and landform to pre-construction condition, to the extent practicable.
- L. Upon final reclamation after cessation of production operations seedbed preparation of compacted areas will be ripped to a minimum depth of 12 inches, with a maximum furrow spacing of 2 feet. Where practicable, ripping will be conducted in two passes at perpendicular directions. Disking will be conducted if large clumps or clods remain after ripping. Any tilling or disking that occurs along the contour of the slope and seed drills will also be run along the contour to provide terracing and prevent rapid run-off and erosion. If broadcast seeding is used, a dozer or other tracked equipment will track perpendicular to the slope prior to broadcast seeding. Access will be ripped (along the contour when possible) to a minimum depth of 6 inches, water barred, and reseeded with a BIA approved seed mix.
- M. After all the disturbed areas have been properly prepared, the areas will be seeded with the proper BIA seed mixture, free of noxious weeds.
- N. Proper erosion control methods will be used on the entire area to control erosion, runoff and siltation of the surrounding area. This may include erosion control blankets, straw bales, or straw wattles as appropriate to limit erosion and sediment transport from any stockpiled soils


- All unused equipment and structures including pipelines, tanks, etc. that serviced the well will be removed for proper disposal.
- P. All reclaimed areas will be monitored periodically to ensure that revegetation occurs, that the area is not redisturbed, and that erosion is controlled.

BRIDGECREEK RESOURCES (CO) LI PRAIRIE FALCON 19-2917 SENW, Section 19-T31N-R14W 151' FSL & 335' FEL UMU TRIBAL LEASE # 751-14-1038 API # 30-045-35737 SAN JUAN COUNTY, NM EMERGENCY # (505) 599-5284

Figures

Form 3160-5 (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED OMB NO. 1004-0135

D	UREAU OF LAND MANAG	EMENIT	Expire	es: July 31, 2010	
SUNDRY	 Lease Serial No. 751141038 				
Do not use the abandoned we	6. If Indian, Allotted UTE MOUNT				
SUBMIT IN TRI	7. If Unit or CA/Ag	7. If Unit or CA/Agreement, Name and/or No.			
Type of Well ☑ Oil Well ☐ Gas Well ☐ Otl	her		8. Well Name and N PRAIRIE FALC		
Name of Operator BRIDGECREEK RESOURCE	9. API Well No. 30-045-35737	9. API Well No. 30-045-35737-00-X1			
Address 405 URBAN STREET, SUITE	T	3b. Phone No. (include area code Ph: 303-945-2642		or Exploratory	
LAKEWOOD, CO 80228 Location of Well (Footage, Sec., T	R M., or Survey Description)		11. County or Paris	h, and State	
Sec 19 T31N R14W SENW 19 36.879622 N Lat, 108.342736	51FSL 335FEL		SAN JUAN CO		
12. CHECK APPI	ROPRIATE BOX(ES) TO	NDICATE NATURE OF	NOTICE, REPORT, OR OTH	ER DATA	
TYPE OF SUBMISSION		TYPE O	F ACTION		
Notice of Intent	☐ Acidize	☐ Deepen	☐ Production (Start/Resume)	☐ Water Shut-Off	
	☐ Alter Casing	☐ Fracture Treat	□ Reclamation	■ Well Integrity	
Subsequent Report	☐ Casing Repair	■ New Construction	☐ Recomplete	☑ Other	
☐ Final Abandonment Notice	☐ Change Plans	☐ Plug and Abandon	□ Temporarily Abandon	Emergency Pits or Cl osure	
	☐ Convert to Injection	☐ Plug Back	☐ Water Disposal	odure	
Bridgecreek Resources (CO), closed and the summary repo	rt is attached.	on that the drill cutting trend	ch has been		
	Electronic Submission #32	8624 verified by the BLM We ESOURCES COLO LLC, ser ssing by TRACEY AYZE on	nt to the Durango		
Name (Printed/Typed) CHRISTIN	NE CAMPBELL	Title REGU	LATORY LEAD		
Signature (Electronic S	Submission)	Date 01/14/2	2016		
	THIS SPACE FOR	FEDERAL OR STATE	OFFICE USE	ENDALY (
proved By ACCEPT	ED		BINOWITZ MINERALS STAFF CHIEF	Date 01/22/2016	
litions of approval, if any, are attache fy that the applicant holds legal or equ h would entitle the applicant to condu	itable title to those rights in the su		0		

Title 18 U.S.C. Section 1001 and Title 43 U.S.C. Section 1212, make it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

Office Durango

January 14, 2016

Mr. Ryan Joyner
Bureau of Land Management
Tres Rios Field Office
Land and Minerals
15 Burnett Court
Durango, CO 81301

RE: Cutting Trench Closure Report. Bridgecreek Resources. Prairie Falcon 19-29 17. Sec. 19, T31N.R14W. Lease #751-14-1038.

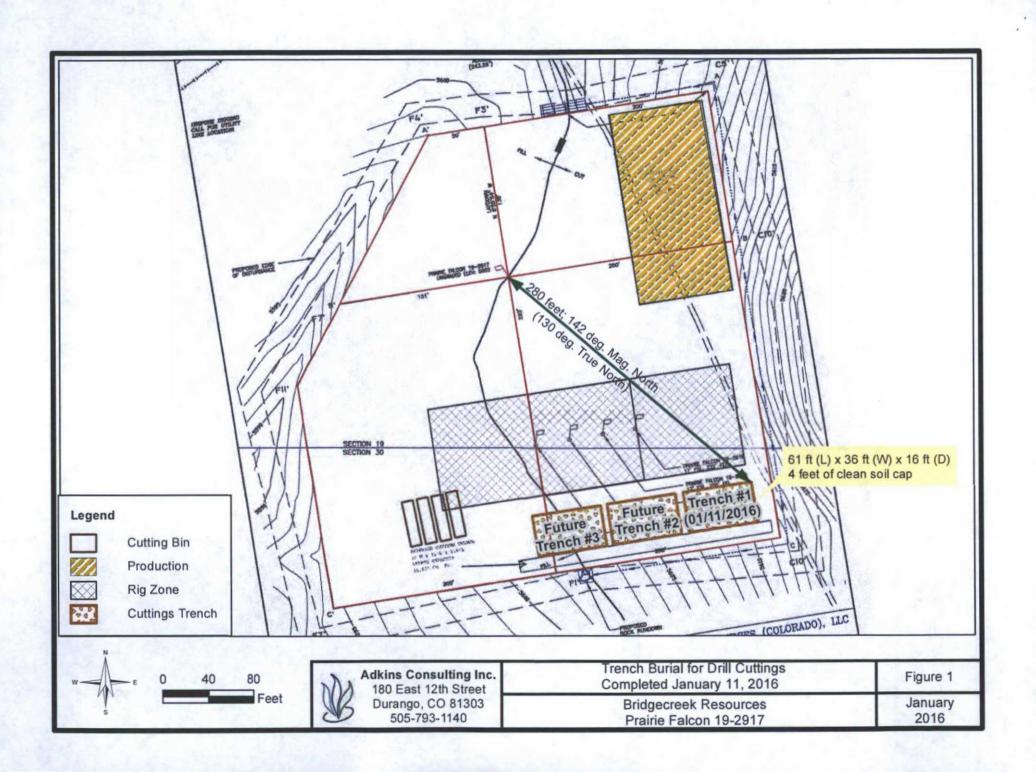
Mr. Joyner:

On the behalf of Bridgecreek Resources (Bridgecreek), Adkins Consulting Inc. (ACI) is pleased to submit this closure plan report. Closure occurred from January 4 through January 11, 2016. Photographs of the closure are located in Appendix A. Exhibit 1 shows the location of the cuttings trench in relation to the Prairie Falcon 19-19 17 wellhead.

The northeast corner of the cuttings trench is 280 feet bearing 142 deg. magnetic north (MN) [130 deg. true north (TN)] from the Prairie Falcon 19-29 17 wellhead. The cuttings trench measures 61 ft (L) \times 35 ft (W) \times 12 ft (D). Including the 4-foot topsoil cap, the total depth of the trench is 16 ft.

The drill cuttings were mixed in the steel bins and within the cuttings trench until a ratio of 3 (clean): 1 (cuttings) was achieved. Stabilization occurred at a ratio of 1.5 (clean):1 (cuttings).

A confirmation sample of the mixed drill cuttings was obtained after final mixing within the cuttings trench. The confirmation sample was obtained from a six point composite representing the buried drill cuttings matrix. The matrix of the buried cuttings was approximately 45% fines, 45% stabilized mixed cuttings, and 10% rock.


The confirmation sample was delivered to Envirotech Environmental Laboratory for the analysis of constituents listed in the UMU Table and chloride. Analytical results are pending. Bridgecreek will submit analytical results via Sundry when the results become available.

If you have any questions or comments please contact me at 970-570-9535.

Andrew Parker
Adkins Consulting, Inc
Durango, CO
970-570-9535
andrew@adkinsenvironmental.com

Cc: Christine Campbell, Bridgecreek Resources

Exhibits

Appendix A

Figure 1: Excavating the cuttings trench.

Figure 2: Lining the cuttings trench.

Figure 3: Mixing clean soil with drill cuttings.

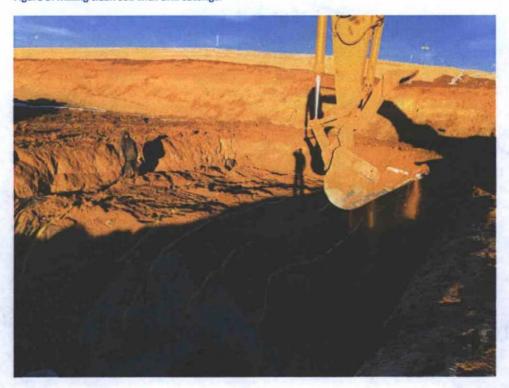


Figure 4: Placing clean soil on top of lined mixed and stabilized drill cuttings. Caution tape marks the top of the liner cap.

Figure 5: Final cuttings trench grade with T-posts marking cutting trench corners and center.

Form 3160-5 (August 2007)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED OMB NO. 1004-0135 Expires: July 31, 2010

					Lease Serial No.		
Do not use t	SUNDRY NOTICES AND REPORTS ON WELLS						
Do not use this form for proposals to drill or to re-enter an abandoned well. Use form 3160-3 (APD) for such proposals.					6. If Indian, Allottee UTE MOUNTA	or Tribe Name IN UTE	
SUBMIT IN TRIPLICATE - Other instructions on reverse side. 1. Type of Well					7. If Unit or CA/Agreement, Name and/or No.		
					8. Well Name and No		
☑ Oil Well ☐ Gas Well ☐ C		CURIOTIVE	A A A D D D D L		PRAIRIE FALCO	N 19-2917	
2. Name of Operator Contact: CHRISTINE CAMPBELL BRIDGECREEK RESOURCES COLO EMail: ccampbell@palomarnr.com					9. API Well No. 30-045-35737-	00-X1	
3a. Address 405 URBAN STREET, SUIT LAKEWOOD, CO 80228	3b. Phone No. (Ph: 303-945-				10. Field and Pool, or Exploratory VERDE GALLUP		
4. Location of Well (Footage, Sec.,	T., R., M., or Survey Description	1)	De L'I		11. County or Parish,	and State	
Sec 19 T31N R14W SENW 36.879622 N Lat, 108.34273					SAN JUAN CO	UNTY, NM	
12. CHECK API	PROPRIATE BOX(ES) TO	O INDICATE N	NATURE OF	NOTICE, RE	PORT, OR OTHE	R DATA	
TYPE OF SUBMISSION		10.	TYPE O	F ACTION			
D Notice of Latest	☐ Acidize	☐ Deepe	n	☐ Producti	on (Start/Resume)	☐ Water Shut-Off	
☐ Notice of Intent	☐ Alter Casing	☐ Fractu	re Treat	□ Reclama	ition	☐ Well Integrity	
Subsequent Report	☐ Casing Repair	□ New C	Construction	Recomp	lete	⊘ Other	
☐ Final Abandonment Notice	☐ Change Plans	□ Plug a	nd Abandon		arily Abandon	Emergency Pits or Cl	
	Convert to Injection	□ Plug E		☐ Water D		osure	
results for the Prairie Falcon	19-29#17 trench.						
14. I hereby certify that the foregoing	is true and correct. Electronic Submission #	329735 verified I	oy the BLM We OLO LLC, ser	ell Information	System go		
I hereby certify that the foregoing	is true and correct. Electronic Submission # For BRIDGECREEK committed to AFMSS for pro-	RESOURCES C	ÓLO LLC, ser CEY AYZE on	nt to the Durar 01/26/2016 (16	go BDT0030SE)		
I hereby certify that the foregoing	is true and correct. Electronic Submission #	RESOURCES C	ÓLO LLC, ser CEY AYZE on	ell Information In to the Durar 01/26/2016 (16 LATORY LEA	go BDT0030SE)		
14. I hereby certify that the foregoing C Name (Printed/Typed) CHRIST	is true and correct. Electronic Submission # For BRIDGECREEK committed to AFMSS for pro-	RESOURCES C cessing by TRAC	ÓLO LLC, ser CEY AYZE on	nt to the Durar 01/26/2016 (16 LATORY LEA	go BDT0030SE)		
14. I hereby certify that the foregoing C Name (Printed/Typed) CHRIST	is true and correct, Electronic Submission # For BRIDGECREEK committed to AFMSS for prod	RESOURCES C cessing by TRA(OLO LLC, ser CEY AYZE on Citle REGUI	nt to the Durar 01/26/2016 (16 LATORY LEA 2016	gó BDT0030SE) D		
14. I hereby certify that the foregoing C Name (Printed/Typed) CHRIST	is true and correct. Electronic Submission # For BRIDGECREEK committed to AFMSS for prod INE CAMPBELL Submission)	RESOURCES C cessing by TRA	OR STATE	to the Durar 01/26/2016 (16 LATORY LEA 2016 OFFICE US	gó BDT0030SE) .D	Date 01/27/2016	

January 25, 2016

Mr. Ryan Joyner
Bureau of Land Management
Tres Rios Field Office
Land and Minerals
15 Burnett Court
Durango, CO 81301

RE: Analytical Result Addendum to Cutting Trench Closure Report. Bridgecreek Resources. Prairie Falcon 19-2917. Sec. 19, T31N.R14W. Lease #751-14-1038.

Mr. Joyner:

On the behalf of Bridgecreek Resources (Bridgecreek), Adkins Consulting Inc. (ACI) is pleased to submit this addendum to the above referenced closure plan report.

Attached is the Certificate of Analysis for the confirmation sample of mixed buried cuttings.

Constituents listed are below the UMU Table standards except for Benzene and arsenic. Arsenic was discussed in the closure plan and is not evaluated further.

Sample ID	Date	TPH(EPA 8015)	Benzene	Arsenic
	1	mg/kg	mg/kg	mg/kg
Confirmation Sample	1/7/2016	<229.4	0.18	6.85
UMU Table (COGCC Table 910-1)		500	0.17	0.39
NMOCD (Rule 19.15.17; DTW > 100 ft)		1,000	10	
CDPHE-HMWMD/EPA RSLs			5.10	3.00
Notes:				
exceeds UMU Table standards	200			
exceeds EPA RSL Standards			-	

Benzene exceeds standards by 0.01 mg/kg, as shown in the above table. The approved closure plan calculated a benzene concentration, when mixed at a 3:1 (clean: cuttings) ratio, of 0.16 mg/kg; 0.01 mg/kg below the UMU Table standard. The benzene concentration is below both the NMOCD and EPA RSLs standards. In addition, the benzene is sequestered in place and encapsulated within a 20-mil LLDPE string-reinforced liner and covered with 4-feet of clean fill dirt.

The *de minimis* concentration (0.01 mg/kg) of benzene sequestered in-place is highly unlikely to impair human health and the environment. Therefore, we conclude no further action is required.

If you have any questions or comments please contact me at 970-570-9535.

Andrew Parker
Adkins Consulting, Inc
Durango, CO
970-570-9535
andrew@adkinsenvironmental.com

Cc: Christine Campbell, Bridgecreek Resources

Analytical Report

Report Summary

Client: Bridgecreek Resources, LLC
Chain Of Custody Number:

Samples Received: 1/7/2016 5:00:00PM

Job Number: 15090-0001 Work Order: P601005

Project Name/Location: Prairie Falcon 19- 29-17

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

1/15/16

Date:

Project Name:

Prairie Falcon 19-29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 15-Jan-16 16:08

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Confirmation Sample	P601005-01A	Soil	01/07/16	01/07/16	Glass Jar, 4 oz.
	P601005-01B	Soil	01/07/16	01/07/16	Glass Jar, 4 oz.
	P601005-01C	Soil	01/07/16	01/07/16	Glass Jar, 4 oz.
	P601005-01D	Soil	01/07/16	01/07/16	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Edward Constitution Services

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker

Reported: 15-Jan-16 16:08

Confirmation Sample P601005-01 (Solid)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021	- 194					je w		18 6 2	711
Benzene	0.18	0.10	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
Toluene	0.59	0.10	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
Ethylbenzene	0.28	0.10	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
p,m-Xylene	0.66	0.20	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
o-Xylene	0.43	0.10	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
Total Xylenes	1.08	0.10	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
Total BTEX	2.14	0.10	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		99.8 %	50	150	1602012	01/08/16	01/11/16	EPA 8021B	
Nonhalogenated Organics by 8015						4			- 111
Gasoline Range Organics (C6-C10)	24.4	20.0	mg/kg	1	1602012	01/08/16	01/11/16	EPA 8015D	
Diesel Range Organics (C10-C28)	155	25.0	mg/kg	1	1602017	01/08/16	01/08/16	EPA 8015D	
Oil Range Organics (C28-C40+)	ND	50.0	mg/kg	1	1602017	01/08/16	01/08/16	EPA 8015D	
Surrogate: n-Nonane		119 %	50	-200	1602017	01/08/16	01/08/16	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		104 %	50	150	1602012	01/08/16	01/11/16	EPA 8015D	
Total Metals by 6010				100					tyre.
Arsenic	6.85	1.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Barium	305	10.0	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Cadmium	ND	1.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Chromium	28.6	5.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Copper	5,30	2.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Lead	20.5	1.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Mercury	ND	1.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Nickel	13.8	1.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Selenium	ND	5.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Silver	ND	1.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	
Zinc	62.4	2.00	mg/kg	1	1602016	01/08/16	01/14/16	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

CHINACCH BECOM

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number:

15090-0001

Reported:

Project Manager: Andr

Andrew Parker

15-Jan-16 16:08

Confirmation Sample P601005-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis						100			
pH @0°C	8.05		pH Units	1	1602015	01/08/16 10:36	01/08/16 13:24	9040C/4500 H	
Electrical Conductivity	2830		umhos/cm	1	1602015	01/08/16 10:36	01/08/16 13:24	9050A/2510	
Sodium Absorption Ratio	3.39		N/A	1	1603019	01/15/16	01/15/16	[CALC]	
Chloride	112	20.0	mg/kg	1	1603002	01/12/16	01/12/16	EPA 300.0	
Calcium	13.0	0.50	mg/L	1	1603006	01/12/16	01/14/16	EPA 6010C	
Magnesium	6.79	0.20	mg/L	1	1603006	01/12/16	01/14/16	EPA 6010C	
Sodium	60.6	2.00	mg/L	1	1603006	01/12/16	01/15/16	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010							100		
Boron	ND	0.50	mg/L	1	1602013	01/08/16	01/15/16	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

lahoratory@envirotech-inc.com

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 15-Jan-16 16:08

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1602012 - Purge and Trap EPA 5030A										
Blank (1602012-BLK1)				Prepared: (08-Jan-16 A	Analyzed: 1	11-Jan-16			
Benzene	ND	0.10	mg/kg							
Toluene	ND	0.10	**							
Ethylbenzene	ND	0.10	**							
p,m-Xylene	ND	0.20	**							
o-Xylene	ND	0.10	**							
Total Xylenes	ND	0.10	**							
Total BTEX	ND	0.10	201							
Surrogate: 4-Bromochlorobenzene-PID	0.319		**	0.320		99.6	50-150			
LCS (1602012-BS1)				Prepared: (08-Jan-16 A	Analyzed: 1	11-Jan-16			
Benzene	10.8	0.10	mg/kg	0.01		108	70-130			
Toluene	10.8	0.10	**	10.0		108	70-130			
Ethylbenzene	10.9	0.10	**	10.0		109	70-130			
p,m-Xylene	21.7	0.20	**	20.0		109	70-130			
o-Xylene	10.6	0.10		10.0		106	70-130			
Surrogate: 4-Bromochlorobenzene-PID	0.320		*	0.320		99.9	50-150			
Matrix Spike (1602012-MS1)	Sour	rce: P601005-	-01	Prepared: (08-Jan-16 A	nalyzed: 1	11-Jan-16			
Benzene	10.9	0.10	mg/kg	10.0	0.18	108	54.3-133			
Toluene	11.2	0.10		10.0	0.59	106	61.4-130			
Ethylbenzene	11.0	0.10		10.0	0.28	107	61.4-133			
p,m-Xylene	22.1	0.20	**	20.0	0.66	107	63.3-131			
o-Xylene	10.8	0.10	**	10.0	0.43	103	63.3-131			
Surrogate: 4-Bromochlorobenzene-PID	0.320			0.320		100	50-150			
Matrix Spike Dup (1602012-MSD1)	Sour	rce: P601005-	01	Prepared: 0	08-Jan-16 A	analyzed: 1	11-Jan-16			
Benzene	11.4	0.10	mg/kg	10.0	0.18	112	54.3-133	4.29	20	
Toluene	11.7	0.10	**	10.0	0.59	111	61.4-130	4.40	20	
Ethylbenzene	11.5	0.10	**	10.0	0.28	112	61.4-133	4.36	20	
p,m-Xylene	23.1	0.20	**	20.0	0.66	112	63.3-131	4.33	20	
o-Xylene	11.3	0.10	**	10.0	0.43	108	63.3-131	4.58	20	
Surrogate: 4-Bromochlorobenzene-PID	0.323			0.320		101	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

the same of the same

Project Name:

Prairie Falcon 19- 29-17

Snike

405 Urban St Suite 400

Project Number:

Reporting

15090-0001

Reported:

RPD

%REC

Lakewood CO, 80228 Project Manager: Andrew Parker

15-Jan-16 16:08

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

		Reporting	1	Spike	Source	272222	70KEC		KID	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1602012 - Purge and Trap EPA 5030A		1200						NAME OF	67	
Blank (1602012-BLK1)			SHE	Prepared: (08-Jan-16	Analyzed: 1	11-Jan-16			4
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg							
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.314		"	0.320		98.2	50-150			
LCS (1602012-BS1)		11 6	2	Prepared: (08-Jan-16	Analyzed: 1	11-Jan-16			240
Gasoline Range Organics (C6-C10)	132	20.0	mg/kg	106		125	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.323		"	0.320		101	50-150		- 4	
Matrix Spike (1602012-MS1)	Sou	rce: P601005-	01	Prepared: (08-Jan-16	Analyzed: 1	1-Jan-16			
Gasoline Range Organics (C6-C10)	153	20.0	mg/kg	106	24.4	121	70-130	a ^r		
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.328		"	0.320		102	50-150			
Matrix Spike Dup (1602012-MSD1)	Sou	rce: P601005-	01	Prepared: (08-Jan-16	Analyzed: 1	1-Jan-16			
Gasoline Range Organics (C6-C10)	151	20.0	mg/kg	106	24.4	119	70-130	1.25	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.314		"	0.320		98.1	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Project Name:

Prairie Falcon 19-29-17

405 Urban St Suite 400 Lakewood CO, 80228

Project Number: Project Manager: 15090-0001 Andrew Parker

Reported: 15-Jan-16 16:08

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1602017 - DRO Extraction EPA 3550M									19.3	
Blank (1602017-BLK1)				Prepared &	Analyzed:	08-Jan-16				
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							(= -3-
Surrogate: n-Nonane	59.3		"	50.0		119	50-200			777
LCS (1602017-BS1)				Prepared &	Analyzed:	08-Jan-16			- Section	
Diesel Range Organics (C10-C28)	526	25.0	mg/kg	500		105	38-132			LIS THEFAS
Surrogate: n-Nonane	55.9		*	50.0		112	50-200			er gr
Matrix Spike (1602017-MS1)	Sou	rce: P601001-	01	Prepared &	Analyzed:	08-Jan-16				
Diesel Range Organics (C10-C28)	533	25.0	mg/kg	500	ND	107	38-132			
Surrogate: n-Nonane	53.0			50.0		106	50-200			
Matrix Spike Dup (1602017-MSD1)	Sou	rce: P601001-	01	Prepared &	Analyzed:	08-Jan-16				
Diesel Range Organics (C10-C28)	544	25.0	mg/kg	500	ND	109	38-132	2.01	20	
Surrogate: n-Nonane	54.4		"	50.0		109	50-200			7.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 15-Jan-16 16:08

Total Metals by 6010 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1602016 - Metal Solid Dig	gestion EPA 3051A	- 11				1.50		A STATE OF	100	
Blank (1602016-BLK1)		Prepared: (08-Jan-16 A	Analyzed: 1	4-Jan-16					

Blank (1602016-BLK1)				Prepared: 08-Jan-16 Analyzed: 14-Jan-16
Arsenic	ND	1.00	mg/kg	
Barium	ND	10.0		
Cadmium	ND	1.00		
Chromium	ND	5.00		
Copper	ND	2.00	**	
Lead	ND	1.00		
Mercury	ND	1.00		
Nickel	ND	1.00	**	
Selenium	ND	5.00		
Silver	ND	1.00	**	
Zinc	ND	2.00		
				B 100 F 17 F 1 1 1 1 1 1 1 1 1

LCS (1602016-BS1)				Prepared: 08-Jan	n-16 Analyzed: 1	4-Jan-16	
Arsenic	76.7	1.00	mg/kg	90.0	85.2	80-120	
Barium	85.2	10.0		90.0	94.7	80-120	
Cadmium	79.9	1.00	**	90.0	88.8	80-120	
Chromium	81.0	5.00		90.0	90.0	80-120	
Copper	76.2	2.00		90.0	84.6	80-120	
Lead	80.4	1.00	**	90.0	89.4	80-120	
Mercury	82.5	1.00		90.0	91.7	80-120	
Nickel	79.1	1.00		90.0	87.9	80-120	
Selenium	73.9	5.00	*	90.0	82.1	80-120	
Silver	77.5	1.00		90.0	86.1	80-120	
Zinc	78.9	2.00		90.0	87.6	80-120	

Zinc	78.9	2.00		90.0		87.6	80-120		
Matrix Spike (1602016-MS1)	Sourc	Prepared: 08-Jan-16 Analyzed: 14-Jan-16				- 15			
Arsenic	81.5	0.97	mg/kg	87.4	6.85	85.4	75-125		
Barium	590	9.71	"	87.4	305	325	75-125		SPK1
Cadmium	75.8	0.97	**	87.4	ND	86.7	75-125		
Chromium	107	4.85		87.4	28.6	90.2	75-125		
Copper	76.7	1.94	**	87.4	5.30	81.7	75-125		
Lead	95.0	0.97	98	87.4	20.5	85.2	75-125		
Mercury	78.4	0.97	**	87.4	ND	89.7	75-125		
Nickel	87.3	0.97	*	87.4	13.8	84.1	75-125		
Selenium	72.7	4.85	**	87.4	ND	83.2	75-125		
Silver	16.6	0.97	**	87.4	ND	19.0	75-125		SPK1
Zinc	140	1.94		87.4	62.4	88.5	75-125		

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker

Reported: 15-Jan-16 16:08

Total Metals by 6010 - Quality Control

Envirotech Analytical Laboratory

Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Reporting		Spike	Source		%REC		RPD	300 07 00
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1602016 - Metal Solid Digestion EPA 3051A

Matrix Spike Dup (1602016-MSD1)	Source	Source: P601005-01			Prepared: 08-Jan-16 Analyzed: 14-Jan-16					
Arsenic	82.2	0.98	mg/kg	88.4	6.85	85.2	75-125	0.826	20	
Barium	401	9.82	**	88.4	305	109	75-125	38.0	20	D1
Cadmium	77.3	0.98	*	88.4	ND	87.5	75-125	2.01	20	
Chromium	104	4.91	*	88.4	28.6	85.4	75-125	3.08	20	
Copper	79.0	1.96	*	88.4	5.30	83.4	75-125	2.99	20	
Lead	95.6	0.98		88.4	20.5	84.9	75-125	0.639	20	
Mercury	79.8	0.98	**	88.4	ND	90.3	75-125	1.80	20	
Nickel	88.2	0.98		88.4	13.8	84.1	75-125	0.972	20	
Selenium	74.8	4.91		88.4	ND	84.6	75-125	2.88	20	
Silver	30.2	0.98	**	88.4	ND	34.2	75-125	58.2	20	D1, SPK1
Zinc	137	1.96	**	88.4	62.4	84.6	75-125	1.86	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

aboratory@envirotech-inc.com

Project Name:

Prairie Falcon 19-29-17

405 Urban St Suite 400 Lakewood CO, 80228

Project Number: Project Manager: 15090-0001 Andrew Parker

Reported: 15-Jan-16 16:08

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1603002 - Anion Extraction EPA 300.0	ly.								A sec	
Blank (1603002-BLK1)		1 194		Prepared &	Analyzed:	12-Jan-16				
Chloride	ND	20.0	mg/kg	764			100			
LCS (1603002-BS1)				Prepared &	Analyzed:	12-Jan-16				
Chloride	477	20.0	mg/kg	500		95.3	90-110			
Matrix Spike (1603002-MS1)	Sour	ce: P601005-	01	Prepared &	Analyzed:	12-Jan-16				
Chloride	609	20.0	mg/kg	500	112	99.4	80-120	100	-	
Matrix Spike Dup (1603002-MSD1)	Sour	ce: P601005-	01	Prepared &	Analyzed:	12-Jan-16				
Chloride	594	20.0	mg/kg	500	112	96.4	80-120	2.49	20	4

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 15-Jan-16 16:08

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 1603006 - Metal Water Digestion			-	2,0141	result	A Julia	2,11,11,1				
Blank (1603006-BLK1)				Prepared:	12-Jan-16 A	Analyzed: 1	4-Jan-16				
Calcium	ND	0.50	mg/L							-	
Magnesium	ND	0.20	*								
Sodium	ND	2.00	-								
LCS (1603006-BS1)		Prepared: 12-Jan-16 Analyzed: 14-Jan-16									
Calcium	92.7	0.50	mg/L	100	1167	92.7	80-120			100	
Magnesium	87.6	0.20	*	100		87.6	80-120				
Sodium	99.1	2.00	"	100		99.1	80-120				
Matrix Spike (1603006-MS1)	Sou	rce: P601005-	01	Prepared: 1	12-Jan-16 A	Analyzed: 1	4-Jan-16		1.4		
Calcium	103	0.50	mg/L	100	13.0	90.3	75-125				
Magnesium	92.8	0.20		100	6.79	86.0	75-125				
Sodium	160	2.00	**	100	60.6	99.9	75-125				
Matrix Spike Dup (1603006-MSD1)	Sou	rce: P601005-	01	Prepared: 1	12-Jan-16 A	Analyzed: 1	4-Jan-16		1		
Calcium	105	0.50	mg/L	100	13.0	92.0	75-125	1.63	20		
Magnesium	94.1	0.20		100	6.79	87.3	75-125	1.34	20		
Sodium	162	2.00		100	60.6	101	75-125	0.896	20		

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Project Name:

Prairie Falcon 19-29-17

405 Urban St Suite 400

Project Number:

15090-0001

Reported:

Lakewood CO, 80228

Project Manager: Andrew Parker

15-Jan-16 16:08

PPD

0/PEC

Boron-Hot Water Soluble by EPA 6010 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1602013 - Boron HW Soluble Digestion			4	14 10			No.			
Blank (1602013-BLK1)		4 - 1		Prepared: (08-Jan-16	Analyzed: I	5-Jan-16	41.5		
Boron	ND	0.50	mg/L					126		
LCS (1602013-BS1)				Prepared: (08-Jan-16	Analyzed: 1	5-Jan-16			
Boron	4.09		mg/L	4.00		102	80-120			
Matrix Spike (1602013-MS1)	Sou	rce: P601005-	01	Prepared: (08-Jan-16	Analyzed: 1	5-Jan-16			
Boron	3.36		mg/L	4.00	0.17	79.8	75-125			
fatrix Spike Dup (1602013-MSD1) Source: P601005-01				Prepared: (08-Jan-16	Analyzed: 1	5-Jan-16			
Boron	3.55		mg/L	4.00	0.17	84.4	75-125	5.24	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 15-Jan-16 16:08

Notes and Definitions

SPK1 The spike recovery is outside of quality control limits.

D1 Duplicates or Matrix Spike Duplicates Relative Percent Difference is outside of control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

73

envirotech-inc.com

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

aboratory activitote of me con

Client: Bridgereek	Resources		And the American		RUSH?	La	ab Use Only			Ana	alysis	and Me	thod	la	ab Only
mail(s): andrew @ adkins environmental . com roject Manager: Andrew Parter Sample ID Sample Date Sample						P 00 150 e 1 of	Lab WO# 1 0 0 5 ob Number 90 - 0 0 6 1 Interpretation	GRO/DRO by 8015	K by 8021	TPH by 418.1	Chloride by 300.0	Table 910-1			Correct Cont/Prsrv (s) Y/N
Samp	le ID		Sample Date	Time	Matrix	The second secon	TYPE/Preservativ	GRO	BTE	TPH	Chlo	7			Š
Confirmation San	ple		1/1/2016	14.10	Soil	4 407	- Jar / Tel	E X			X	×			Y
														99	
														100	
			#5.												
															No.
														100	
Relinquished by: (Signature)	0ate V 4:45 pm		Walter		_	Date 1/2/18	Time 12:00	**Recei	ived	on lo		b Use C	Only		1
Relinquished by: (Signature)	Date	Time	Received	by: (Signa	ture)	Date	Time	T1 <u>牛.0</u> AVG Te	mp°	c 4	T2_ D			Т3	
Sample Matrix: 5 - Soll, Sd - Solld, Sg - S					17.4		Container Typ	e: g - gla:	ss, p -	- poly	/plas	tic, ag -	amber gl	ass, v - V	AC
**Samples requiring thermal preservati	to a secure drop of	ff area.	hey are sampled o	AND DESCRIPTION OF THE PARTY OF	acked in ice of Custody		ng Info:	ode C	Cr-	VI	/	0'/. R	ock		
envirotech Analytical Laboratory State Spings - 65 Nortale								632-0615 Te 159-0615 Tr				4/3	107	Page 1	

Page 14 of 29

ANALYTICAL REPORT

January 14, 2016

EnviroTech- NM

Sample Delivery Group: L811059

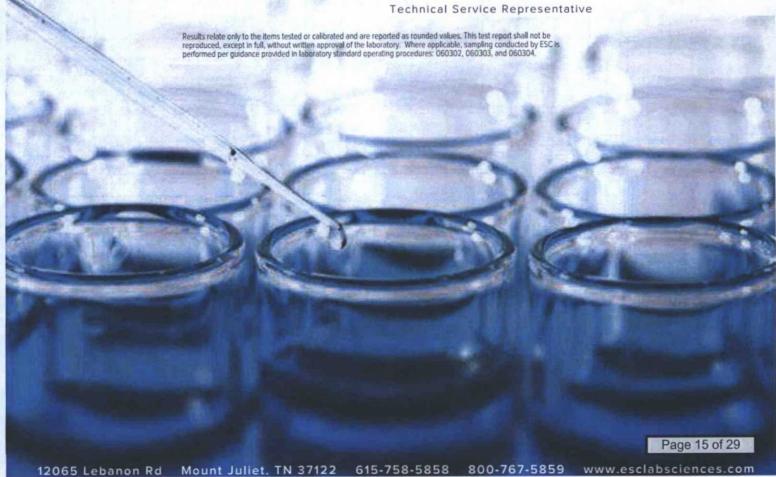
 Samples Received:
 01/09/2016

 Project Number:
 15090-0001

Description: Prarie Falcon 19-29-17

Site: P601005

Report To: Tim Cain and Lynn Cook


5796 US. Highway 64

Farmington, NM 87401

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards

TABLE OF CONTENTS

ONE LAB. NATIONWIDE.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
CONFIRMATION L811059-01	5
Qc: Quality Control Summary	6
Total Solids by Method 2540 G-2011	6
Wet Chemistry by Method 2580 B-2011	7
Wet Chemistry by Method 3060A/7196A	8
Wet Chemistry by Method 9045D	9
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	10
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Chain of Custody	15

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

CONFIRMATION L811059-01 Solid						
Dilution	Preparation	Analysis	Analyst			
	date/time	date/time				
1	01/09/16 18:17	01/11/16 09:52	KMP			
1	01/11/16 15:05	01/11/16 15:15	MEL			
1	01/12/16 08:34	01/12/16 08:35	JER			
1	01/11/16 10:01	01/12/16 09:48	AMC			
1	01/12/16 17:04	01/12/16 17:04	MAJ			
	Dilution 1 1 1 1 1 1	date/time 1 01/09/16 18:17 1 01/11/16 15:05 1 01/12/16 08:34 1 01/11/16 10:01	Andrew Parker 01/07/16 14:10 Dilution Preparation Analysis date/time date/time 1 01/09/16 18:17 01/11/16 09:52 1 01/11/16 15:05 01/11/16 15:15 1 01/12/16 08:34 01/12/16 08:35 1 01/11/16 10:01 01/12/16 09:48			

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Technical Service Representative

Dapline R Richards

CONFIRMATION

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 01/07/16 14:10

Total Solids by Method 2540 G-2011

THE REAL PROPERTY.	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	83.0		1	01/11/2016 15:15	WG841481

Wet Chemistry by Method 2580 B-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	mV			date / time		
ORP	72		1	01/12/2016 08:35	WG841510	

Wet Chemistry by Method 3060A/7196A

PIE LOND NO.	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chromium, Hexavalent	ND	15.53	2.41	1	01/12/2016 09:48	WG841297	

Wet Chemistry by Method 9045D

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
pH	7.80		1	01/12/2016 17:04	WG841295

Sample Narrative:

9045D L811059-01 WG841295: 7.80 at 22.9c

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

WASHINGTON TO THE PARTY OF THE	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00723	1	01/11/2016 09:52	WG841243
Acenaphthene	ND		0.00723	1	01/11/2016 09:52	WG841243
Acenaphthylene	ND		0.00723	1	01/11/2016 09:52	WG841243
Benzo(a)anthracene	ND		0.00723	1	01/11/2016 09:52	WG841243
Benzo(a)pyrene	ND		0.00723	1	01/11/2016 09:52	WG841243
Benzo(b)fluoranthene	ND		0.00723	1	01/11/2016 09:52	WG841243
Benzo(g,h,i)perylene	ND		0.00723	1	01/11/2016 09:52	WG841243
Benzo(k)fluoranthene	ND		0.00723	1	01/11/2016 09:52	WG841243
Chrysene	ND		0.00723	1	01/11/2016 09:52	WG841243
Dibenz(a,h)anthracene	ND		0.00723	1	01/11/2016 09:52	WG841243
Fluoranthene	ND		0.00723	1	01/11/2016 09:52	WG841243
Fluorene	ND		0.00723	1	01/11/2016 09:52	WG841243
Indeno(1,2,3-cd)pyrene	ND		0.00723	1	01/11/2016 09:52	WG841243
Naphthalene	0.0899		0.0241	1	01/11/2016 09:52	WG841243
Phenanthrene	0.00745		0.00723	1	01/11/2016 09:52	WG841243
Pyrene	ND		0.00723	1	01/11/2016 09:52	WG841243
1-Methylnaphthalene	0.0324		0.0241	1	01/11/2016 09:52	WG841243
2-Methylnaphthalene	0.0387		0.0241	1	01/11/2016 09:52	WG841243
2-Chloronaphthalene	ND		0.0241	1	01/11/2016 09:52	WG841243
(S) Nitrobenzene-d5	89.8		22.1-146		01/11/2016 09:52	WG841243
(S) 2-Fluorobiphenyl	87.5		40.6-122		01/11/2016 09:52	WG841243
(S) p-Terphenyl-d14	76.9		32.2-131		01/11/2016 09:52	WG841243

QUALITY CONTROL SUMMARY L811059-01

ONE LAB. NATIONWIDE.

Method Blank (MB)

Total Solids by Method 2540 G-2011

(MB) 01/11/16 15:15				
	MB Result	MB Qualifier	MB RDL	
Analyte	%		%	
Total Solids	0.000700			

L810997-28 Original Sample (OS) • Duplicate (DUP)

(OS) 01/11/16	15:15 •	(DUP)	01/11/16	15:15

	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	87.5	87.8	1	0.360		5

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 2580 B-2011

L811059-01

L810751-01 Original Sample (OS) • Duplicate (DUP)

(OS) 01/12/16 08:35 • (D	JP) 01/12/16 08:35
--------------------------	--------------------

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mV	mV		%		%
ORP	106	108	1	1.87		20

L811075-01 Original Sample (OS) • Duplicate (DUP)

(OS) 01/12/16 08:35 • (DUP) 01/12/16 08:35

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mV	mV		%		%	
ORP	305	303	1	0.658		20	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 01/12/16 08:35 • (LCSD) 01/12/16 08:35

(LCS) 0 112/10 00.33 · (LCS	0) 01/12/10 00.55									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mV	mV	mV	%	%	%			%	%
ORP	100	100	100	100	100	90.0-110			0.000	20

QUALITY CONTROL SUMMARY L811059-01

ONE LAB. NATIONWIDE

Wet Chemistry by Method 3060A/7196A

Method Blank (MB)

(MB	01	112	116	09	38
first on	101	1 401	100	00	

	MB Result	MB Qualifier	MB RD
Analyte	mg/kg		mg/kg
Chromium.Hexavalent	ND		2.00

L811055-01 Original Sample (OS) • Duplicate (DUP)

(OS) 01/12/16 09:43 • (DUP) 01/12/16 09:43

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chromium, Hexavalent	ND	ND	1	0.000		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

// CSI 01/12/16 09:40 • (I CSD) 01/12/16 09:40

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chromium, Hexavalent	97.4	90.4	90.2	92.8	92.6	80.0-120			0.221	20

GI

L811055-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 01/12/16 09:43 • (MS) 01/12/16 09:46 • (MSD) 01/12/16 09:46

	Spike Amo	ount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chromium, Hexavalent	20.0	ND	20.3	20.4	102	102	1	75.0-125			0.491	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L811059-01

Wet Chemistry by Method 9045D

L811055-01 Original Sample (OS) • Duplicate (DUP)

S) 01/12/16 17:04 • (DUP) 01/12/16 17:04

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	su		%		%
pH	8.35	8.35	1	0.000		1

L811067-03 Original Sample (OS) • Duplicate (DUP)

Ī	IDEL	01/12/16	17-04	IDLID	01/12/	16 17:04
1	(03)	01/12/10	17.04 *	IDUF)	UIIIZI	10 17.04

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	su	SU		%		%	
рН	8.07	8.09	1	0.248		1	П

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

II CS	01/12/16	17:04 .	(I CSD)	01/12/16	17:04
	01/12/10	17.04 *	(LUSU)	01/12/10	17.04

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	su	su	su	%	%	%			%	%
nH	6.72	6.70	6.70	99.7	99.7	98 5-102			0.000	1

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L811059-01

Method Blank (MB)

(MB) 01/11/16 03:23				
	MB Result	MB Qualifier	MB RDL	
Analyte	mg/kg		mg/kg	
Anthracene	ND		0.00600	
Acenaphthene	ND		0.00600	
Acenaphthylene	ND		0.00600	
Benzo(a)anthracene	ND		0.00600	
Benzo(a)pyrene	ND		0.00600	
Benzo(b)fluoranthene	ND		0.00600	
Benzo(g,h,i)perylene	ND		0.00600	
Benzo(k)fluoranthene	ND		0.00600	
Chrysene	ND		0.00600	
Dibenz(a,h)anthracene	ND		0.00600	
Fluoranthene	ND		0.00600	
Fluorene	ND		0.00600	
Indeno(1,2,3-cd)pyrene	ND		0.00600	
Naphthalene	ND		0.0200	
Phenanthrene	ND		0.00600	
Pyrene	ND		0.00600	
1-Methylnaphthalene	ND		0.0200	
2-Methylnaphthalene	ND		0.0200	
2-Chloronaphthalene	ND		0.0200	
(S) p-Terphenyl-d14	55.9		32.2-131	
(S) Nitrobenzene-d5	64.8		22.1-146	
(S) 2-Fluorobiphenyl	65.9		40.6-122	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 01/11/16 02:40 · (LCSD)	01/11/16 03:02									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Anthracene	0.0800	0.0772	0.0738	96.6	92.3	50.3-130		To the same	4.53	20
Acenaphthene	0.0800	0.0745	0.0698	93.2	87.2	52.4-120			6.61	20
Acenaphthylene	0.0800	0.0745	0.0700	93.1	87.5	49.6-120			6.22	20
Benzo(a)anthracene	0.0800	0.0740	0.0689	92.6	86.2	46.7-125			7.15	20
Benzo(a)pyrene	0.0800	0.0675	0.0593	84.4	74.2	42.3-119			12.9	20
Benzo(b)fluoranthene	0.0800	0.0715	0.0684	89.4	85.5	43.6-124			4.53	20
Benzo(g,h,i)perylene	0.0800	0.0795	0.0734	99.4	91.8	45.1-132			7.95	20
Benzo(k)fluoranthene	0.0800	0.0824	0.0769	103	96.1	46.1-131			6.96	20

²Tc

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L811059-01

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 01/11/16 02:40 · (LCSD) (01/11/16 03:02	3								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chrysene	0.0800	0.0778	0.0729	97.3	91.1	49.5-131			6.55	20
Dibenz(a,h)anthracene	0.0800	0.0822	0.0764	103	95.5	44.8-133			7.34	20
Fluoranthene	0.0800	0.0779	0.0729	97.4	91.1	49.3-128			6.69	20
Fluorene	0.0800	0.0729	0.0683	91.2	85.3	50.6-121			6.64	20
Indeno(1,2,3-cd)pyrene	0.0800	0.0808	0.0751	101	93.9	46.1-135			7.24	20
Naphthalene	0.0800	0.0739	0.0692	92.4	86.5	49.6-115			6.59	20
Phenanthrene	0.0800	0.0738	0.0668	92.2	83.4	48.8-121			9.96	20
Pyrene	0.0800	0.0749	0.0687	93.6	85.8	44.7-130			8.64	20
1-Methylnaphthalene	0.0800	0.0737	0.0693	92.2	86.6	50.6-122			6.26	20
2-Methylnaphthalene	0.0800	0.0736	0.0692	92.1	86.5	50.4-120			6.28	20
2-Chloronaphthalene	0.0800	0.0748	0.0693	93.4	86.6	53.9-121			7.57	20
(S) p-Terphenyl-d14				78.4	81.0	32.2-131				
(S) Nitrobenzene-d5				84.7	90.3	22.1-146				
(S) 2-Fluorobiphenyl				85.4	90.4	40.6-122				

L810999-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 01/11/16 07:21 • (MS) 01/11/16	07:42 • (MSD)	01/11/16 08:04										
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Anthracene	0.0800	0.00659	0.0829	0.0731	95.4	83.1	1	26.5-141			12.6	21.2
Acenaphthene	0.0800	0.0373	0.128	0.105	113	84.5	1	31.9-130			19.8	20
Acenaphthylene	0.0800	0.0123	0.0921	0.0823	99.8	87.6	1	33.7-129			11.2	20
Benzo(a)anthracene	0.0800	0.00403	0.0781	0.0737	92.6	87,1	1	18.3-136			5.82	24.6
Benzo(a)pyrene	0.0800	0.00197	0.0734	0.0700	89.3	85.0	1	16.9-135			4.72	25.2
Benzo(b)fluoranthene	0.0800	0.00173	0.0748	0.0692	91.3	84.4	1	10.0-134			7,68	30.9
Benzo(g,h,i)perylene	0.0800	0.00226	0.0798	0.0760	96.9	92.2	1	14.1-140			4.78	25.5
Benzo(k)fluoranthene	0.0800	0.000659	0.0699	0.0724	86.6	89.7	1	18.2-138			3.49	25.6
Chrysene	0.0800	0.00326	0.0738	0.0709	88.2	84.6	1	17.1-145			3.99	24.2
Dibenz(a,h)anthracene	0.0800	ND	0.0773	0.0746	96.6	93.2	1	18.5-138			3.59	24.3
Fluoranthene	0.0800	0.00864	0.0861	0.0788	96.8	87.7	1	15.4-144			8.87	27.1
Fluorene	0.0800	0.0301	0.121	0.106	114	94.8	1	23.5-136			13.5	20
Indeno(1,2,3-cd)pyrene	0.0800	0.000677	0.0774	0.0751	95.9	93.1	1	14.5-142			2.97	25.8
Naphthalene	0.0800	6.87	10.5	6.61	4570	0.000	1	29.2-128	V	73 V	45.8	20
Phenanthrene	0.0800	0.0414	0.138	0.112	120	88.1	1	20.1-134			20.7	23.6
Pyrene	0.0800	0.0132	0.0925	0.0843	99.1	88.88	1	11.0-148			9.30	26.1

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L811059-01

L810999-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 01/11/16 07:21 · (MS) 01/1	1/16 07:42 • (MSD	01/11/16 08:04										
	Spike Amou	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		100	%	%
1-Methylnaphthalene	0.0800	2.68	3.86	2.65	1470	0.000	1	28.4-137	V	J3 V	37.0	20
2-Methylnaphthalene	0.0800	5.83	8.71	5.70	3600	0.000	1	26.6-137	V	<u>13 V</u>	41.8	20
2-Chloronaphthalene	0.0800	ND	0.0806	0.0751	101	93.9	-1	38.6-126			7.06	20
(S) p-Terphenyl-d14					84.7	81.0		32.2-131				
(S) Nitrobenzene-d5					60.2	63.7		22.1-146				
(S) 2-Fluorobiphenyl					94.3	90.0		40.6-122				

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadi, MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina 2	41
Georgia	NELAP	North Dakota	R-140
Georgia 1	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	AZLA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA_Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{no} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Ср

Sa Sa San San San San San San San San Sa	ect # 0001	Farmin Email To: Lynn C	ook & Tim Ca City/State Collected: Lab Project #	in		z jar/ Cool	Hexavalent Chromium/ 4oz jar/ Cool	-nv Fee	ENVIROFMINIODAISSI						12065 Lebanon I Mount Juliet, TN Phone: 615-758- Phone: 800-767- Fax: 615-758-585	-5858 -5859 -59
Lynn Cook & Tim Cain Project Project Falcon 19- Description: Phone: Fax: Collected by (print): Andrew Parker Collected by (signature): Rush Immediately	ect # 0001 y ID # 005 P (Lab MUST Be me Day	Lynn C	City/State Collected: Lab Project #			z jar/ Cool	4oz jar/ Cool	7050	120 FT IN 1000						12065 Lebanon I Mount Juliet, TN Phone: 615-758- Phone: 800-767- Fax: 615-758-58:	Rd (137122 -5858 -5859 -59 -6958
Project Prolific Falcon 19— Description: Phone: Fax: Collected by (print): Andrew Parker Collected by (signature): Rush	ect # 0001 y ID # 005 P (Lab MUST Be me Day	• Notified)	City/State Collected: Lab Project #			z jar/ Cool	4oz Jar/ Coo	7050	ROFFINI						Phone: 800-767- Fax: 615-758-585	5859 3.55 59 11 28
Phone: Fax: Collected by (print): Andrew Parker Collected by (signature): Rush Immediately Collected by (signature): Rush	ect # 0001 y ID # 005 P (Lab MUST Be me Day		Collected: Lab Project #	18th		z jar/ Cool	4oz jar/ C	101	ROFF					- 1		LEJSh.
Phone: Fax: Collected by (print): Andrew Parker Collected by (signature): Rush Immediately To	y ID # 005 P (Lab MUST Be		P.O.# 1427	18b		z Jar/ C	4oz j	121	3		3	1 2	THE OWNER OF THE OWNER, NAMED IN		A CANCELL STORMAN	
Andrew Parker P401 Collected by (signature): Rush Sa Immediately	OOS (Lab MUST Be		142	180	P.O. F. L. (2015)		um/ 4oz	14	3					1	The second liverage and the se	17059
SaSaNe ImmediatelyTw	me Day					im/ 40	romiur	lin.							Acctnum: Template:	
	ree Day		Date Results Needed O\ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		PAH by 8270 Sim/ 4oz jar/ Cool	avalent Chr	waint m	grote					A COLUMN TO SERVICE AND ADDRESS OF THE PERSON OF THE PERSO	Prelogin: TSR: PB:		
Sample ID Comp/Gr	ab Matrix *	Depth	Date	Time	Cntrs	PA	Hex	3	芝	- 5		1		17	Shipped Via:	
Confirmation Sample	SS	1	01-07-16	14:10	2	X	X								7	and sample (lab
			26.39	W . C	31		7.5%			7		22.5		4.9	grade Silver	7
		1.5		10.772				100			1000		200			· December
	1 000		-	-	9 8	P	40.74	1000		27	-			-0.79	The state of the s	No. of Contract of
Market Control of the		1 1 1					1	Sale	10		Maj		100		4	
	1 1							35			1		653	m. The	1 100	Service Servic
7			1 2 3			TO SE			100					BC-		- 100000
					-	STEE		288	- 9						5	
			72 2	- All		700	1	100	-			7 3			100	
						1000		100000 100000								
		1				10000	100	1000	1					11-12-5		

Tables

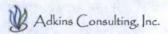


Table 1: Summary of Analytical Results

Sample ID	Date	DRO (8015D)	MRO (80150)	GRO (8015D)	TPH(EPA 8015)	Benzene	Toluene	Ethylbenzene	Xylenes (total)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	reg/kg	mg/kg
Bin Composite	12/4/2015	367	122	56	545	0.59	1.47	0.54	2.3
Background	12/4/2015	-25	<50	<20	95	<0.02	<0.02	0.03	<0.02
UMU Table (COGCC Table 910-1)	UR. D. A. See 5	SEASON AND ADDRESS OF THE PARTY	CANDELLO PROPERTO DE	and the same	500	0.17	85	100	175
NMOCD (Rule 19.15.17; DTW > 100 R)	metric della	Carlotte Carlotte	A STREET, SQUARE BY	A THE PARTY OF THE	1,000	10	Comment of the last		
CDPHE-HMW/MD/EPA RSLs	STREET, STREET	OF BANKS PARKET	STATE OF THE PARTY AND ADDRESS OF THE PARTY AN	Control of the Control		5,10	4,700	25	250

exceeds UMU Table standards exceeds EPA RSL Standards

na = not analyzed

Table 1: Summary of Analytical Results

Sample ID	Date	Chloride	Mercury	Arsenic	Barium	Boron	Cadmium	Chromium	Chromium VI	Copper	Lead	Nickel	Selenium	Silver
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
3in Composite	12/4/2015	134	<0.96	5.38	1,830	< 0.50	<0.96	25.5	<2.68	3.68	16.2	12.3	<4.8	<0.96
Background	12/4/2015	849	<0.99	4.67	152	<0.50	<0.99	13.1	<2.36	<1.97	15.6	9,07	<4.93	<0.99
UMU Table (COGCC Table 910-1)	STATE OF STREET	Participant of	23	0.39	15,000	4 (exempt)	70	120,000	23	3,100	400	1,600	390	390
MMOCD (Rule 19.15.17; DTW > 100 ft)	Fund before 2	ALIVO CASIO		AND DESCRIPTION OF	Charles and the		Lancon Committee	CONTRACTOR OF THE SECOND						1
DPHE-HMWMD/EPA RSLs	Shi (Million and A	AND THE REAL PROPERTY.	35	3.00	22,400	Park of the later	98	180,000	SAN DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW	4,700	800	2,200	580	580

exceeds UMU Table standard exceeds EPA RSL Standards

a = not analyzed

Table 1: Summary of Analytical Results

Sample ID	Date	Zinc	pH	Naphthalene	Acenaphthene	Fluorene	Anthracene	Fluoranthene	Pyrene	Benzo(A)anthracene	Chrysene
		mg/kg	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	rng/kg	mg/kg
Bin Composite	12/4/2015	54.5	8,98	0.394	0.0123	0.0379	<0.00799	<0.00799	0.0094	<0.00799	<0.00799
Background	12/4/2015	39.9	8.73	<0.0236	<0.00708	<0.00708	<0.00708	<0.00708	<0.00708	<0.00708	<0.00708
UMU Table (COGCC Table 910-1)	Call country	23,000	6-9	23	1,000	1,000	1,000	1,000	1,000	0.22	22
NMOCD (Rule 19.15.17; DTW > 100 ft)	Balling Comment	Jord School							Maria Committee	100000000000000000000000000000000000000	
CDPHE-HMWMD/EPA RSLA	Exhibit was a	35,000	morris.	17	4,500	3,000	23,000	3,000	2,300	2.90	200

exceeds UMU Table standards

a = not analyzed

Table 1: Summary of Analytical Results

Sample ID	Date	Benzo(8)fluoranthene	Benzo(K)floranthene	Benzo(A)pyrene	Dibenzo(A,H)anthracene
		rng/kg	mg/kg	mg/kg	mg/kg
Bin Composite	12/4/2015	<0.00799	<0.00799	<0.00799	<0.00799
Background	12/4/2015	<0.00708	<0.00708	<0.00708	<0.00708
UMU Table (COGCC Table 910-1)	The state of the later	0.22	2.20	0.022	0.022
NMOCD (Rule 19,15,17; DTW > 100 ft)			A STATE OF THE PARTY OF THE PARTY.		Section of the sectio
COPHE-HMWRED/EPA RSLs	EN LINE DE LA CONTRE DE	2.80	29.00	0.29	0.290

exceeds UMU Table standards

na = not analyzed

Table 1: Summary of Analytical Results

Sample ID	Date	Indeno(1,2,3-cd)pyrene	Sodium Absportion Ratio	Electrical Conductivity
		rou/kg	THE RESIDENCE TO SERVICE THE	mmhos/cm
Bin Composite	12/4/2015	<0.00799	2.24	1.63
Background	12/4/2015	<0.00708	0.186	0.112
UMU Table (COGCC Table 910-1)	State of the	0.22	<12	c4 or 2x background
NIMOCD (Rule 19.15.17; DTW > 100 ft)		The second second second second		欧江州市中国国际 E
CDPHE-HMWMD/SPA RSLs	Mary and the same of	2.90		The state of the s

exceeds UMU Table standards exceeds EPA RSL Standards

na - not sayband

Table 2: Mixing Ratio

Mixing Ratio	DRO (8015D)	MRO (8015D)	GRO (8015D)	TPH(EPA 8015)	Benzene	Toluene	Ethylbenzene	Xylenes (total)
clean:cuttings	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1:1	196	86	38	320	0.31	0.75	0.29	1.16
2:1	139	74	32	245	0.21	0.50	0.20	0.78
3:1	111	68	29	208	0.16	0.38	0.16	0.59
JMU Table (COGCC Table 910-1)				500	0.17	85	100	175
IMOCD (Rule 19.15.17; DTW > 100 ft)		THE MESSAGE		1,000	10			
DPHE-HMWMD/EPA RSIs				A STATE OF THE PARTY OF THE PAR	5.10	4,700	25	250

Notes: exceeds UMU Table standards exceeds EPA RSL Standards

Table 2: Mixing Ratio

Mixing Ratio	Arsenic	Barium	Boron	Cadmium	Chromium	Chromium VI	Copper	Lead	Nickel	Selenium	Silver	Zinc	pH	Naphthalene
clean:cuttings	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	94	mg/kg
1:1	5.03	991.00	0.50	0.98	19.30	2.51	2.83	15.90	10.69	4.87	0.98	47.20	8.86	0.21
2:1	4.91	711.33	0.50	0.98	17.23	2.46	2.54	15.80	10.15	4.89	0.98	44.77	8.81	0.15
3:1	4.85	571.50	0.50	0.98	16.20	2.44	2,40	15.75	9.88	4.90	0.98	43.55	8.79	0.12
MU Table (COGCC Table 918-1)	0.39	15,000		70	120,000	23	3,100	400	1,600	390	390	23,000	6-9	23
MOCD (Rule 19.15.17; DTW > 100 ft)			(a) P(0.55, 0.1)				DE ESTY	3 3 3 3	STATE OF SEC					
PHE-HMWMD/EPA RSLs	3	22,400	although a coul	98	180,000	6.30	4,700	800	2,200	580	580	35,000	Billiantill	17

exceeds UMU Table standards

exceeds EPA RSL Standards

Table 2: Mixing Ratio

Mixing Ratio	Acenaphthene	Fluorene	Anthracene	Fluoranthene	Pyrene	Benzo(A)anthracene	Chrysene	Benzo(B)fluoranthene
clean:cuttings	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1:1	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
2:1	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
3:1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4 000							
//U Table (COGCC Table 910-1)	1,000	1,000	1,000	1,000	1,000	0.22	22	0.22
MOCD (Rule 19.15.17; DTW > 100 ft)							23/07/2002/5/10	DATE OF THE PARTY
PHE-HMWMD/EPA RSEs	4,500	3,000	23,000	3,000	2,300	2.90	290	2.90

exceeds UMU Table standards

exceeds EPA RSL Standards

Table 2: Mixing Ratio

Mixing Ratio	Benzo(K)floranthene	Benzo(A)pyrene	Dibenzo(A,H)anthracene	Indeno(1,2,3-cd)pyrene	Sodium Absportion Ratio
clean:cuttings	mg/kg	mg/kg	mg/kg	mg/kg	A STATE OF THE PARTY OF THE PAR
1:1	0.01	0.01	0.01	0.01	1.21
2:1	0.01	0.01	0.01	0.01	0.87
3:1	0.01	0.01	0.01	0.01	0.70

UMU Table (COGCC Table 910-1)	2.20	0.022	0.022	0.22	<12
NMOCD (Rule 19.15.17; DTW > 100 ft)					
CDPHE-HMWMD/EPA RSLs	29	0.29	0.29	2.9	

exceeds UMU Table standards

exceeds EPA RSL Standards

Appendix A

Analytical Report

Report Summary

Client: Bridgecreek Resources, LLC

Chain Of Custody Number:

Samples Received: 12/4/2015 5:44:00PM

Job Number: 15090-0001 Work Order: P512016

Project Name/Location: Prairie Falcon 19-29-17

Entire Report Reviewed By:

11 10

Tim Cain, Laboratory Manager

Date: 12

12/22/15

Supplement to analytical report generated on: 12/15/15 5:22 pm

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Prairie Falcon 19-29-17

Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 22-Dec-15 10:34

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Bin Composite	P512016-01A	Soil	12/04/15	12/04/15	Glass Jar, 4 oz.
	P512016-01B	Soil	12/04/15	12/04/15	Glass Jar, 4 oz.
	P512016-01C	Soil	12/04/15	12/04/15	Glass Jar, 4 oz.
Background	P512016-02A	Soil	12/04/15	12/04/15	Glass Jar, 4 oz.
	P512016-02B	Soil	12/04/15	12/04/15	Glass Jar, 4 oz.
	P512016-02C	Soil	12/04/15	12/04/15	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com

Project Name:

Prairie Falcon 19-29-17

405 Urban St Suite 400 Lakewood CO, 80228

Project Number: Project Manager: 15090-0001 Andrew Parker

Reported: 22-Dec-15 10:34

Bin Composite P512016-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021	The land		L-value	Ala D			SME		
Benzene	0.59	0.10	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	100.71
Toluene	1.47	0.10	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	
Ethylbenzene	0.54	0.10	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	
p,m-Xylene	1.33	0.20	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	
o-Xylene	0.97	0.10	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	
Total Xylenes	2.30	0.10	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	
Total BTEX	4.90	0.10	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		117 %	50	-150	1550020	12/09/15	12/10/15	EPA 8021B	
Nonhalogenated Organics by 8015		100		100	VI.25			The sur o	
Gasoline Range Organics (C6-C10)	56.0	20.0	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8015D	
Diesel Range Organics (C10-C28)	367	25.0	mg/kg	1	1550019	12/09/15	12/10/15	EPA 8015D	
Oil Range Organics (C28-C40+)	122	50.0	mg/kg	1	1550019	12/09/15	12/10/15	EPA 8015D	
Surrogate: n-Nonane	1001	113 %	50	-200	1550019	12/09/15	12/10/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.3 %	50	-150	1550020	12/09/15	12/10/15	EPA 8015D	
Total Metals by 6010		a naid				The latest	A PARTY OF	0, 69	-8
Arsenic	5.38	0.96	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Barium	1830	9.60	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Cadmium	ND	0.96	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Chromium	25.5	4.80	mg/kg	1.	1551002	12/14/15	12/14/15	EPA 6010C	
Copper	3.68	1.92	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Lead	16.2	0.96	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Mercury	ND	0.96	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Nickel	12.3	0.96	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Selenium	ND	4.80	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Silver	ND	0.96	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Zinc	54.5	1.92	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

Bridgecreek Resources, LLC 405 Urban St Suite 400 Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Project Number: Lakewood CO, 80228 Project Manager: 15090-0001 Andrew Parker Reported: 22-Dec-15 10:34

Bin Composite P512016-01 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis					1		Take A		
рН @25°С	8.98		pH Units	1	1550009	12/08/15 12:24	12/08/15 14:33	9040C/4500 H	
Electrical Conductivity	1630		umhos/cm	1	1550009	12/08/15 12:24	12/08/15 14:33	9050A/2510	
Sodium Absorption Ratio	2.24		N/A	1	1551017	12/15/15	12/15/15	[CALC]	
Chloride	134	20.0	mg/kg	1	1550022	12/10/15	12/10/15	EPA 300.0	
Calcium	52.0	0.50	mg/L	1	1551009	12/14/15	12/15/15	EPA 6010C	
Magnesium	39.9	0.20	mg/L	1	1551009	12/14/15	12/15/15	EPA 6010C	
Sodium	88.1	2.00	mg/L	1	1551009	12/14/15	12/15/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010									
Boron	ND	0.50	mg/L	1	1551005	12/14/15	12/15/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 22-Dec-15 10:34

Background P512016-02 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021	T EAT		200		Day L		Contract of		Mary a
Benzene	ND	0.02	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	A-0
Toluene	ND	0.02	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	A-0
Ethylbenzene	0.03	0.02	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	A-0
p,m-Xylene	ND	0.04	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	A-0
o-Xylene	ND	0.02	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	A-0
Total Xylenes	ND	0.02	mg/kg	1 .	1550020	12/09/15	12/10/15	EPA 8021B	A-0
Total BTEX	ND	0.02	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8021B	A-0
Surrogate: 4-Bromochlorobenzene-PID		115 %	50	-150	1550020	12/09/15	12/10/15	EPA 8021B	
Nonhalogenated Organics by 8015					34	- 1	Europe a	144.15	
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	1550020	12/09/15	12/10/15	EPA 8015D	
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	1550019	12/09/15	12/10/15	EPA 8015D	
Oil Range Organics (C28-C40+)	ND	50.0	mg/kg	1	1550019	12/09/15	12/10/15	EPA 8015D	
Surrogate: n-Nonane		107 %	50	-200	1550019	12/09/15	12/10/15	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.5 %	50	1-150	1550020	12/09/15	12/10/15	EPA 8015D	
Total Metals by 6010	1.35							and the	
Arsenic	4.67	0.99	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Barium	152	9.86	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Cadmium	ND	0.99	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Chromium	13.1	4.93	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Copper	ND	1.97	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Lead	15.6	0.99	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Mercury	ND	0.99	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Nickel	9.07	0.99	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Selenium	ND	4.93	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Silver	ND	0.99	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	
Zinc	39.9	1.97	mg/kg	1	1551002	12/14/15	12/14/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-inc.com

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Prairie Falcon 19- 29-17

Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 22-Dec-15 10:34

Background P512016-02 (Solid)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Cation/Anion Analysis	4-14-4						Libert A.		in a
рН @21.6℃	8.73		pH Units	1	1550009	12/08/15 12:24	12/08/15 14:33	9040C/4500 H	
Electrical Conductivity	112		umhos/cm	1	1550009	12/08/15 12:24	12/08/15 14:33	9050A/2510	
Sodium Absorption Ratio	0.186		N/A	1	1551017	12/15/15	12/15/15	[CALC]	
Chloride	849	20.0	mg/kg	1	1550022	12/10/15	12/10/15	EPA 300.0	
Calcium	22.1	0.50	mg/L	1	1551009	12/14/15	12/15/15	EPA 6010C	
Magnesium	20.1	0.20	mg/L	1	1551009	12/14/15	12/15/15	EPA 6010C	
Sodium	5.02	2.00	mg/L	1	1551009	12/14/15	12/15/15	EPA 6010C	
Boron-Hot Water Soluble by EPA 6010	255			3 -	17.15	No Mark			
Boron	ND	0.50	mg/L	1	1551005	12/14/15	12/15/15	EPA 6010C	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Prairie Falcon 19-29-17

405 Urban St Suite 400 Lakewood CO, 80228

Project Number: Project Manager: 15090-0001

Reported:

Andrew Parker

22-Dec-15 10:34

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1550020 - Purge and Trap EPA 50	030A					Lycate 19	Best	Total I	Shine.	4
Blank (1550020-BLK1)				Prepared: (09-Dec-15	Analyzed:	10-Dec-15		10	Boo
Benzene	ND	0.10	mg/kg		The same		Will be to	15471	1 3 5	
Toluene	ND	0.10								
Ethylbenzene	ND	0.10								
p,m-Xylene	ND	0.20								
o-Xylene	ND	0.10								
Total Xylenes	ND	0.10	н							. 50
Total BTEX	ND	0.10								
Surrogate: 4-Bromochlorobenzene-PID	0.364	10	"	0.400		91.1	50-150	No.		
LCS (1550020-BS1)				Prepared: (09-Dec-15	Analyzed:	10-Dec-15		1	
Benzene	11.8	0.10	mg/kg	10.0		118	70-130			
Toluene	11.6	0.10		10.0		116	70-130			
Ethylbenzene	11.6	0.10		10.0		116	70-130			
p,m-Xylene	23.5	0.20		20.0		117	70-130			
o-Xylene	11.2	0.10		10.0	T. 18	112	70-130			38
Surrogate: 4-Bromochlorobenzene-PID	0.367	12-1-1	"	0.400		91.6	50-150		27,43	
Matrix Spike (1550020-MS1)	Sou	rce: P512014-	-21	Prepared: (09-Dec-15	Analyzed:	10-Dec-15			72.14
Benzene	10.9	0.10	mg/kg	10.0	ND	109	54.3-133			
Toluene	10.7	0.10		10.0	ND	107	61.4-130			
Ethylbenzene	10.7	0.10		10.0	ND	107	61.4-133			
p,m-Xylene	21.6	0.20	*	20.0	ND	108	63.3-131			
o-Xylene	10.5	0.10		10.0	ND	105	63.3-131			
Surrogate: 4-Bromochlorobenzene-PID	0.365		"	0.400		91.3	50-150			
Matrix Spike Dup (1550020-MSD1)	Sou	rce: P512014-	21	Prepared: (09-Dec-15	Analyzed:	10-Dec-15	1	To the	
Benzene	11.4	0.10	mg/kg	10.0	ND	114	54.3-133	4.80	20	
Toluene	11.2	0.10	*	10.0	ND	112	61.4-130	4.97	20	
Ethylbenzene	11.2	0.10		10.0	ND	112	61.4-133	5.01	20	
p,m-Xylene	22.7	0.20		20.0	ND	113	63.3-131	4.85	20	
o-Xylene	10.9	0.10	"	10.0	ND	109	63.3-131	4.21	20	
Surrogate: 4-Bromochlorobenzene-PID	0.366		**	0.400		91.4	50-150	and the		

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Prairie Falcon 19-29-17

Project Number: Project Manager: 15090-0001 Andrew Parker Reported:

22-Dec-15 10:34

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1550019 - DRO Extraction EPA	3550M						150			A.F.
Blank (1550019-BLK1)	D. Committee			Prepared &	Analyzed:	09-Dec-15				
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg				The second			7-1-1
Surrogate; n-Nonane	52.4	7-19-5		50.0	100	105	50-200		T: V3	
LCS (1550019-BS1)				Prepared &	Analyzed:	09-Dec-15				
Diesel Range Organics (C10-C28)	502	25.0	mg/kg	500		100	38-132	CHUR.	SAME	
Surrogate: n-Nonane	52.4	(10) TO 1	"	50.0	The state of	105	50-200		13136	THE ST
Matrix Spike (1550019-MS1)	Sou	rce: P512013-	-01	Prepared &	Analyzed:	09-Dec-15				
Diesel Range Organics (C10-C28)	506	25.0	mg/kg	500	ND	101	38-132	100		
Surrogate: n-Nonane	49.5	C NEW TOWN	"	50.0		99.0	50-200	1	1466	1
Matrix Spike Dup (1550019-MSD1)	Sou	rce: P512013-	01	Prepared &	Analyzed:	09-Dec-15			- 18	- 311
Diesel Range Organics (C10-C28)	507	25.0	mg/kg	500	ND	101	38-132	0.207	20	Bush
Surrogate: n-Nonane	47.8		"	50.0	1-7	95.6	50-200			SHIP

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Inharatory Construtesh inc con

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported:

22-Dec-15 10:34

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
								15		
Batch 1550020 - Purge and Trap EPA 5030A			lo-o-si	225	2 77	40.000	The No.	1759-ac =	R.Day	
Blank (1550020-BLK1)	- 1	The last	AL THE	Prepared: 0	9-Dec-15	Analyzed:	10-Dec-15		1	CONTRACTOR
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg							
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.270			0.400		67.5	50-150	0	THE O	
LCS (1550020-BS1)			524	Prepared: (9-Dec-15	Analyzed:	10-Dec-15		Tree !	
Gasoline Range Organics (C6-C10)	109	20.0	mg/kg	113		96.7	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.278	1111	*	0.400	377	69.5	50-150		4	100
Matrix Spike (1550020-MS1)	Sou	rce: P512014-	21	Prepared: (9-Dec-15	Analyzed:	10-Dec-15			
Gasoline Range Organics (C6-C10)	101	20.0	mg/kg	113	ND	89.1	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.276		**	0.400		69.0	50-150			
Matrix Spike Dup (1550020-MSD1)	Sou	rce: P512014-	21	Prepared: 0	9-Dec-15	Analyzed:	10-Dec-15	V in		
Gasoline Range Organics (C6-C10)	105	20.0	mg/kg	113	ND	93.3	70-130	4.57	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	0.277		**	0.400		69.3	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Inharatory Constituted income

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager:

Reporting

15090-0001 Andrew Parker

Spike

Source

Reported: 22-Dec-15 10:34

RPD

%REC

Total Metals by 6010 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1551002 - Metal Solid Digestion	EPA 3051A	e lin		VA I	i va	V.30)	New York	- Miles	The said	131
Blank (1551002-BLK1)		The Land		Prepared &	& Analyzed	: 14-Dec-1	5			
Arsenic	ND	1.00	mg/kg	1		The second			A PARL	
Barium	ND	10.0	*							
Cadmium	ND	1.00	**							
Chromium	ND	5.00	- "							
Copper	ND	2.00								
Lead	ND	1.00	**							
Mercury	ND	1.00	*							
Nickel	ND	1.00	**							
Selenium	ND	5.00								
Silver	ND	1.00	"							
Zinc	ND	2.00	"							
LCS (1551002-BS1)				Prepared &	& Analyzed	: 14-Dec-1	5			
Arsenic	93.1	1.00	mg/kg	100	Fe/ -51	93.1	80-120		1 1 1 1 1 1 1	
Barium	103	10.0	**	100		103	80-120			
Cadmium	96.0	1.00	**	100		96.0	80-120			
Chromium	103	5.00	**	100		103	80-120			
Copper	87.8	2.00	"	100		87.8	80-120			
Lead	97.9	1.00	**	100		97.9	80-120			
Mercury	92.8	1.00	**	100		92.8	80-120			
Nickel	95.6	1.00		100		95.6	80-120			
Selenium	89.1	5.00		100		89.1	80-120			
Silver	97.5	1.00	**	100		97.5	80-120			
Zinc	94.7	2.00		100		94.7	80-120			
Matrix Spike (1551002-MS1)	Sour	ce: P512013-	-06	Prepared &	& Analyzed	: 14-Dec-15	5			
Arsenic	93.4	0.98	mg/kg	97.8	1.88	93.6	75-125	1	La re-	
Barium	156	9.78		97.8	59.5	99.1	75-125			
Cadmium	94.4	0.98		97.8	ND	96.5	75-125			
Chromium	105	4.89	**	97.8	4.91	102	75-125			
Copper	84.8	1.96		97.8	ND	86.7	75-125			
Lead	101	0.98		97.8	5.56	97.6	75-125			
Mercury	92.8	0.98		97.8	ND	94.9	75-125			
Nickel	95.9	0.98		97.8	2.20	95.7	75-125			
Selenium	87.9	4.89		97.8	ND	89.8	75-125			
ASSESSMENT OF THE PROPERTY OF		1100		- 1.00						

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

46.2

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Silver

Zinc

Ph (505) 632-0615 Fx (505) 632-1865

97.8

ND

47.2

75-125

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com noratory@envirotech-inc.com

SPK1

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400

Project Number: Project Manager:

Reporting

15090-0001

Reported:

RPD

%REC

Lakewood CO, 80228

Andrew Parker

Spike

22-Dec-15 10:34

Total Metals by 6010 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1551002 - Metal Solid Digestion E	PA 3051A	No.				100		No oral		n de
Matrix Spike Dup (1551002-MSD1)	Source	e: P512013-	06	Prepared &	Analyzed:	14-Dec-15			FATIER	
Arsenic	91.2	0.95	mg/kg	95.1	1.88	94.0	75-125	2.40	20	- 6
Barium	164	9.51		95.1	59.5	110	75-125	4.69	20	
Cadmium	92.2	0.95		95.1	ND	97.0	75-125	2.38	20	
Chromium	103	4.75		95.1	4.91	104	75-125	1.50	20	
Copper	82,5	1.90		95.1	ND	86.8	75-125	2.81	20	
Lead	99.8	0.95		95.1	5.56	99.2	75-125	1.26	20	
Mercury	89.7	0.95		95.1	ND	94.4	75-125	3.41	20	
Nickel	93.4	0.95		95.1	2.20	95.9	75-125	2.63	20	
Selenium	86.2	4.75		95.1	ND	90.7	75-125	1.95	20	
Silver	28.6	0.95		95.1	ND	30.1	75-125	47.0	20	SPK1
Zinc	101	1.90		95.1	9.97	95.4	75-125	2.23	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Bridgecreek Resources, LLC 405 Urban St Suite 400 Lakewood CO, 80228 Project Name:

Prairie Falcon 19- 29-17

Project Number: Project Manager: 15090-0001 Andrew Parker Reported: 22-Dec-15 10:34

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

	D	Reporting	TT-10-	Spike	Source	A/DEC	%REC	nnn	KPD	Marin
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1550022 - Anion Extraction EPA 300.0					200	-//	51 Albert	910		
Blank (1550022-BLK1)	med Land			Prepared &	Analyzed:	10-Dec-15			200	
Chloride	ND	20.0	mg/kg							
LCS (1550022-BS1)				Prepared &	Analyzed:	10-Dec-15			A 1927	
Chloride	472	20.0	mg/kg	500		94.4	90-110			
Matrix Spike (1550022-MS1)	Sou	rce: P512013-	-01	Prepared &	Analyzed:	10-Dec-15	To a		110	The same
Chloride	505	20.0	mg/kg	500	ND	101	80-120			
Matrix Spike Dup (1550022-MSD1)	Sou	rce: P512013-	-01	Prepared &	Analyzed:	: 10-Dec-15	ALTERNATION OF THE PARTY OF THE			165
Chloride	507	20.0	mg/kg	500	ND	101	80-120	0.563	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Jahoratory Genylrotech-inc com

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number:

15090-0001

Reported:

Project Manager:

Andrew Parker

22-Dec-15 10:34

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

一		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1551009 - Metal Water Digestion	EPA 3015A		48 %		100	1.30	1	No.		124
Blank (1551009-BLK1)		Dr. 4446		Prepared &	Analyzed:	14-Dec-15		S. P. Sir	1800	76
Calcium	ND	0.50	mg/L	MEN			P. Fry	N. 3370 D.	p 20 19	4
Magnesium	ND	0.20								
Sodium	ND	2.00	. "							
LCS (1551009-BS1)				Prepared &	Analyzed:	14-Dec-15				
Calcium	109	0.50	mg/L	111	1,2 3	98.5	80-120		Sales Des	
Magnesium	114	0.20		111		103	80-120			
Sodium	122	2.00	"	111		110	80-120			
Matrix Spike (1551009-MS1)	Sou	rce: P512013-	01	Prepared &	Analyzed:	14-Dec-15				
Calcium	121	0.50	mg/L	111	11.2	99.1	75-125			
Magnesium	116	0.20	**	111	2.60	102	75-125			
Sodium	122	2.00		111	2.31	108	75-125			
Matrix Spike Dup (1551009-MSD1)	Sou	rce: P512013-	01	Prepared &	Analyzed:	14-Dec-15	1000			17
Calcium	118	0.50	mg/L	111	11.2	95.8	75-125	3.16	20	
Magnesium	118	0.20		111	2.60	104	75-125	1.14	20	
Sodium	124	2.00	**	111	2.31	109	75-125	1.36	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Bridgecreek Resources, LLC 405 Urban St Suite 400

Lakewood CO, 80228

Project Name:

Prairie Falcon 19- 29-17

Project Number: Project Manager: 15090-0001 Andrew Parker

Reported: 22-Dec-15 10:34

Boron-Hot Water Soluble by EPA 6010 - Quality Control

Envirotech Analytical Laboratory

100 图 / PROPARE A CONTROL TO THE PARE		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1551005 - Boron HW Soluble Digestion	1000			- 37	1	2.0				
Blank (1551005-BLK1)				Prepared:	14-Dec-15	Analyzed:	15-Dec-15	1.00	A SA	
Boron	ND	0.50	mg/L							
LCS (1551005-BS1)	4.55		Y.	Prepared:	14-Dec-15	Analyzed:	15-Dec-15			776
Boron	4.15		mg/L	4.00		104	80-120			
Matrix Spike (1551005-MS1)	Sou	rce: P512016-	02	Prepared:	14-Dec-15	Analyzed:	15-Dec-15	4	-7 12	
Boron	3.19		mg/L	4.00	0.06	78.1	75-125			
Matrix Spike Dup (1551005-MSD1)	Sou	rce: P512016-	02	Prepared:	14-Dec-15	Analyzed:	15-Dec-15			- has
Boron	2.98		mg/L	4.00	0.06	73.1	75-125	6.55	20	SPK1

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Prairie Falcon 19- 29-17

405 Urban St Suite 400 Lakewood CO, 80228 Project Number: Project Manager: 15090-0001 Andrew Parker Reported:

22-Dec-15 10:34

Notes and Definitions

SPK1 The spike recovery is outside of quality control limits.

A-01 Re-reported. Client requested lower detection limit.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

laboratory@envirotech-inc.com

Client: Bridgecreet Troject: Project: Trans	Resou	rces			RUSH?		b Use Only			Ana	alysis	and	Meth	hod		lab	Only
Sampler: A. PARKCE			r Andrew Pa 12	101/15 is	1d 3d	P512	Lab WO#	GRO/DRO by 8015µmg.co		St. A	0	×) CON	620	SE CONTRACTOR) Jeer	Correct Cont/Prsrv (s) Y/N
Email(s): andreweak			1+21.00	7		151	090-0007	by 803	021	1680K	Chloride by 300.0	1-0	1)	1	ab Number	ont/Pr
Project Manager:					Pag		1	- Se	by 8	7	ide b	ath	IA			La	cto
Sample ID			Sample Date	Sample Time	Matrix	QTY-Vol/T	ontainers TYPE/Preservati	Company of the Compan	BTEX by 8021	1	Chlori	Table	Cra				Corre
3 AD 4 DE BE	K Com	2000-	12/4	4:15	SOLID	3-402	4 lass/co	1/10		×	+	×	×			1	Y
300 HOE BA	ckgr	ourd	12/4	4:30	L		L	+		X	X	X	X	4 · · · · · · · · · · · · · · · · · · ·		2	1
	V									1							
							Vester Sur				1000						
													100				
		er Funk.															
Relinquished by: (Signature) Relinquished by: (Signature)	Date 12/4/15 Date	Time 17:35 Time	Alana	by: (Signated by	من	Date 12/4/15 Date	Time 17:44 Time	**Rece	ived	on lo		b Us / N	e Or	nly	TE		
Sample Matrix: S - Soil, Sd - Soild, Sg - Sludge.	A - Agreement	O a Other						AVG Te			_	ele.					
**Samples requiring thermal preservation mu		100000000000000000000000000000000000000	they are sampled o	received or	ekad in lea	at an our tome ab	Container Ty					cic, a	R - di	nuer	giass, \	- 10/	

Three Springs - 65 Mercado Street, Suite 115, Decomp., 60 01301

ANALYTICAL REPORT

December 15, 2015

EnviroTech- NM

Sample Delivery Group:

L805353

Samples Received:

12/08/2015

Project Number:

15090-0002

Description:

Prairie Falcon 19-29-17

Site:

P512016

Report To:

Tim Cain and Lynn Cook

5796 US. Highway 64

Farmington, NM 87401

Entire Report Reviewed By:

Shane Gambill

Results relate only to the items tested or calibrated and are reported as sounded values. This test report shall not be reproduced, coregin in fall, without written approach of the isocraticity. Where applicable, sampling conducted by ISC is performed per guidance provided in leaderstay standard operating procedures. 20,000, and 10,000.4.

Page 17 of 31

12,065 Lebanon Rd. Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.escalabsciences.com

Cp: Cover Page	1
² Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
⁵ Sr: Sample Results	5
BIN COMPOSITE L805353-01	5
BACKGROUND L805353-02	6
GC: Quality Control Summary	7
Total Solids by Method 2540 G-2011	7
Wet Chemistry by Method 2580 B-2011	8
Wet Chemistry by Method 3060A/7196A	9
Wet Chemistry by Method 9045D	10
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Chain of Custody	15

SAMPLE SUMMARY

ONE LAB, NATIONWIDE.

BIN COMPOSITE L805353-01 Solid			Collected by A. Parker	Collected date/time 12/04/15 16:15	12/08/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG834440	1	12/09/15 19:07	12/10/15 11:12	KMP
Total Solids by Method 2540 G-2011	WG834540	1	12/14/15 13:03	12/14/15 13:12	MEL
Wet Chemistry by Method 2580 B-2011	WG834194	1	12/08/15 21:26	12/08/15 21:27	MZ
Wet Chemistry by Method 3060A/7196A	WG834156	1	12/09/15 09:52	12/10/15 13:58	AMC
Wet Chemistry by Method 9045D	WG834208	1	12/09/15 09:20	12/09/15 09:20	MAJ
BACKGROUND L805353-02 Solid			Collected by A. Parker	Collected date/time 12/04/15 16:30	Received date/time 12/08/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG834440	1	12/09/15 19:07	12/10/15 11:34	KMP
Total Solids by Method 2540 G-2011	WG834540	1	12/14/15 13:03	12/14/15 13:12	MEL
			40 100 HE 04 00	40 100 HE 04 07	147
Wet Chemistry by Method 2580 B-2011	WG834194	1	12/08/15 21:26	12/08/15 21:27	MZ
Wet Chemistry by Method 2580 B-2011 Wet Chemistry by Method 3060A/7196A	WG834194 WG834156	1	12/08/15 21:26	12/08/15 21:27	AMC

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the

Ср

Technical Service Representative

BIN COMPOSITE

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 12/04/15 16:15

Total Solids by Method 2540 G-2011

THE PARTY OF	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	75.1		1	12/14/2015 13:12	WG834540

Wet Chemistry by Method 2580 B-2011

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	mV			date / time			
ORP	90		1	12/08/2015 21:27	WG834194	THE PERSON	THE RESERVE

Wet Chemistry by Method 3060A/7196A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Chromium, Hexavalent	ND		2.66	1	12/10/2015 13:58	WG834156	A PERMIT

Qc

Wet Chemistry by Method 9045D

END BUT	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
pH	9.64		1	12/09/2015 09:20	WG834208

Sample Narrative:

9045D L805353-01 WG834208: 9.64 at 23.7c

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.00799	1	12/10/2015 11:12	WG834440
Acenaphthene	0.0123		0.00799	1	12/10/2015 11:12	WG834440
Acenaphthylene	ND		0.00799	1	12/10/2015 11:12	WG834440
Benzo(a)anthracene	ND.		0.00799	1	12/10/2015 11:12	WG834440
Benzo(a)pyrene	ND		0.00799	1	12/10/2015 11:12	WG834440
Benzo(b)fluoranthene	ND		0.00799	1	12/10/2015 11:12	WG834440
Benzo(g,h,i)perylene	ND		0.00799	1	12/10/2015 11:12	WG834440
Benzo(k)fluoranthene	ND		0.00799	1	12/10/2015 11:12	WG834440
Chrysene	ND		0.00799	1	12/10/2015 11:12	WG834440
Dibenz(a,h)anthracene	ND		0.00799	1	12/10/2015 11:12	WG834440
Fluoranthene	ND		0.00799	1	12/10/2015 11:12	WG834440
Fluorene	0.0379		0.00799	1	12/10/2015 11:12	WG834440
Indeno(1,2,3-cd)pyrene	ND		0.00799	1	12/10/2015 11:12	WG834440
Naphthalene	0.394		0.0266	1	12/10/2015 11:12	WG834440
Phenanthrene	0.0733		0.00799	1	12/10/2015 11:12	WG834440
Pyrene	0.00940		0.00799	1	12/10/2015 11:12	WG834440
1-Methylnaphthalene	0.320		0.0266	1	12/10/2015 11:12	WG834440
2-Methylnaphthalene	0.409		0.0266	1	12/10/2015 11:12	WG834440
2-Chloronaphthalene	ND		0.0266	1	12/10/2015 11:12	WG834440
(S) Nitrobenzene-d5	69.5		22.1-146		12/10/2015 11:12	WG834440
(S) 2-Fluorobiphenyl	41.7		40.6-122		12/10/2015 11:12	WG834440
(S) p-Terphenyl-d14	44.3		32.2-131		12/10/2015 11:12	WG834440

5 of 15

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 12/04/15 16:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	84.7	1 2 5 2 5	1	12/14/2015 13:12	WG834540

Wet Chemistry by Method 2580 B-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	mV			date / time		
ORP	124		1	12/08/2015 21:27	WG834194	

Wet Chemistry by Method 3060A/7196A

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Chromium, Hexavalent	ND		2.36	1	12/10/2015 14:00	WG834156

Qc

Wet Chemistry by Method 9045D

THE WAY TO MAKE	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	9.11	The Chi	1	12/09/2015 09:20	WG834208

Sc

GI

Sample Narrative:

9045D L805353-02 WG834208: 9.11 at 23.9c

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	mg/kg		date / time	
Anthracene	ND	0.00708	1	12/10/2015 11:34	WG834440
Acenaphthene	ND	0.00708	1	12/10/2015 11:34	WG834440
Acenaphthylene	ND	0.00708	1	12/10/2015 11:34	WG834440
Benzo(a)anthracene	ND	0.00708	1	12/10/2015 11:34	WG834440
Benzo(a)pyrene	ND	0.00708	1	12/10/2015 11:34	WG834440
Benzo(b)fluoranthene	ND	0.00708	1	12/10/2015 11:34	WG834440
Benzo(g,h,i)perylene	ND	0.00708	1	12/10/2015 11:34	WG834440
Benzo(k)fluoranthene	ND	0.00708	1	12/10/2015 11:34	WG834440
Chrysene	ND	0.00708	1	12/10/2015 11:34	WG834440
Dibenz(a,h)anthracene	ND	0.00708	1	12/10/2015 11:34	WG834440
Fluoranthene	ND	0.00708	1	12/10/2015 11:34	WG834440
Fluorene	ND	0.00708	1	12/10/2015 11:34	WG834440
Indeno(1,2,3-cd)pyrene	ND	0.00708	1	12/10/2015 11:34	WG834440
Naphthalene	ND	0.0236	1	12/10/2015 11:34	WG834440
Phenanthrene	ND	0.00708	1	12/10/2015 11:34	WG834440
Pyrene	ND	0.00708	1	12/10/2015 11:34	WG834440
1-Methylnaphthalene	ND	0.0236	1	12/10/2015 11:34	WG834440
2-Methylnaphthalene	ND	0.0236	1	12/10/2015 11:34	WG834440
2-Chloronaphthalene	ND	0.0236	1	12/10/2015 11:34	WG834440
(S) Nitrobenzene-d5	67.4	22.1-146		12/10/2015 11:34	WG834440
(S) 2-Fluorobiphenyl	71.9	40.6-122		12/10/2015 11:34	WG834440
(S) p-Terphenyl-d14	67.9	32.2-131		12/10/2015 11:34	WG834440

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L805353-01,02

Method Blank (MB)

24 M.Ph.	40	IN R	La pre	an.	400
(MB)	172	14/	75	15:	12

Analyte

MB Result	MB Qualifier	MB RDI
%		%

Total Solids 0.000400

L805396-01 Original Sample (OS) • Duplicate (DUP)

(OS)	12/14/15	12-12	- /DI ID	12/14/	E 12:12
1031	12/14/13	13.12	· LUUF	12/14/	3 13.12

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	78.9	77.2	1	2.28		5

Laboratory Control Sample (LCS)

(LCS	5) 12	/14/1	5 13	3:12

1200) 1211110 10.12	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	%	%	%	%			
Total Solids	50.0	50.0	99.9	85.0-115	- 10 - 10 P	A County of the	

QUALITY CONTROL SUMMARY L805353-01,02

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 2580 B-2011

L804772-01 Original Sample (OS) • Duplicate (DUP)

(OS) 12/08/15 21:27 • (DUP) 12/08/15 21:27

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limit
Analyte	mV	mV		%		%
ORP	-19.0	-18	1	0.000	Stelle Land	20

3Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 12/08/15	21:27 •	(LCSD)	12/08/15	21:27
----------------	---------	--------	----------	-------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mV	mV	mV	%	%	%			%	%
ORP	100	97	98	97.0	98.0	90.0-110	650	State Investor	103	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 3060A/7196A

L805353-01,02

Method Blank (MB)

(MB)	12	MA	ME	12	25	
(IAID)	12	10	113	10.	J.	ь.

	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Chromium, Hexavalent	ND	Walley 1	2.00

Тс

L805169-01 Original Sample (OS) • Duplicate (DUP)

Ī	IDEL	12/10/1E	12.42	- /DLID	12/10/15	12.E2
Ц	(03)	12/10/15	15.45	* (DUP	1 12/10/15	13.33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chromium Hexavalent	ND	ND	1	0.000		20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 12/10/15 13:40 • (LCSD) 12/10/15 13:41

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Chromium Hexavalent	97.4	78.2	79.6	80.3	817	80.0-120			177	20	

Sc

L805169-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 12/10/15 13:43 • (MS) 12/10/15 13:53 • (MSD) 12/10/15 13:54

	Spike Amo	ount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chromium, Hexavalent	20.0	ND	15.8	16.5	79.0	82.5	1	75.0-125		277 -	4.33	20

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9045D

L805353-01,02

L804859-20 Original Sample (OS) • Duplicate (DUP)

(OS) 12/09/15 09:20 • (DUP) 12/09/15 09:20

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	4.14	4.17	1	0.722	Line Shirt I	1

3Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 12/09/15 09:20 • (LCSD) 12/09/15 09:20

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	su	su	Su	%	%	%			%	%
nLI	6.72	6.72	6.60	100	006	00 5 102	and the state of t		0.447	1

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

L805353-01,02

Method Blank (MB)

(MB) 12/10/15 08:42	ALL MANNEY TO SEE		
	MB Result MB Qualifie	MB RDL	
Analyte	mg/kg	mg/kg	
Anthracene	ND	0.00600	
Acenaphthene	ND	0.00600	
Acenaphthylene	ND	0.00600	
Benzo(a)anthracene	ND	0.00600	
Benzo(a)pyrene	ND	0.00600	
Benzo(b)fluoranthene	ND	0.00600	
Benzo(g,h,i)perylene	ND	0.00600	
Benzo(k)fluoranthene	ND	0.00600	
Chrysene	ND	0.00600	
Dibenz(a,h)anthracene	ND	0.00600	
Fluoranthene	ND	0.00600	
Fluorene	ND	0.00600	
Indeno(1,2,3-cd)pyrene	ND	0.00600	
Naphthalene	ND	0.0200	
Phenanthrene	ND	0.00600	
Pyrene	ND	0.00600	
1-Methylnaphthalene	ND	0.0200	
2-Methylnaphthalene	ND	0.0200	
2-Chloronaphthalene	ND	0.0200	
(S) p-Terphenyl-d14	83.0	32.2-131	
(S) Nitrobenzene-d5	75.4	22.1-146	
(S) 2-Fluorobiphenyl	88.2	40.6-122	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

10/15 08:20									
Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
mg/kg	mg/kg	mg/kg	%	%	%			%	%
0.0800	0.0723	0.0752	90.4	94.0	50.3-130	11.00		3.89	20
0.0800	0.0681	0.0711	85.1	88.8	52.4-120			4.26	20
0.0800	0.0696	0.0727	87.0	90.8	49.6-120			4.32	20
0.0800	0.0711	0.0738	88.9	92.3	46.7-125			3.72	20
0.0800	0.0596	0.0609	74.5	76.1	42.3-119			2.13	20
0.0800	0.0668	0.0632	83.4	79.0	43.6-124			5.41	20
0.0800	0.0673	0.0696	84.1	87.0	45.1-132			3.34	20
0.0800	0.0671	0.0760	83.9	95.0	46.1-131			12.4	20
	Spike Amount mg/kg 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800	Spike Amount LCS Result mg/kg mg/kg 0.0800 0.0723 0.0800 0.0681 0.0800 0.0696 0.0800 0.0711 0.0800 0.0596 0.0800 0.0668 0.0800 0.0673	Spike Amount LCS Result LCSD Result mg/kg mg/kg mg/kg 0.0800 0.0723 0.0752 0.0800 0.0681 0.0711 0.0800 0.0696 0.0727 0.0800 0.0711 0.0738 0.0800 0.0596 0.0609 0.0800 0.0668 0.0632 0.0800 0.0673 0.0696	Spike Amount LCS Result LCSD Result LCS Rec. mg/kg mg/kg % % 0.0800 0.0723 0.0752 90.4 0.0800 0.0681 0.0711 85.1 0.0800 0.0696 0.0727 87.0 0.0800 0.0711 0.0738 88.9 0.0800 0.0596 0.0609 74.5 0.0800 0.0668 0.0632 83.4 0.0800 0.0673 0.0696 84.1	Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. mg/kg mg/kg % % 0.0800 0.0723 0.0752 90.4 94.0 0.0800 0.0681 0.0711 85.1 88.8 0.0800 0.0696 0.0727 87.0 90.8 0.0800 0.0711 0.0738 88.9 92.3 0.0800 0.0596 0.0609 74.5 76.1 0.0800 0.0668 0.0632 83.4 79.0 0.0800 0.0673 0.0696 84.1 87.0	Spike Amount LCS Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits mg/kg mg/kg % % % 0.0800 0.0723 0.0752 90.4 94.0 50.3-130 0.0800 0.0681 0.0711 85.1 88.8 52.4-120 0.0800 0.0696 0.0727 87.0 90.8 49.6-120 0.0800 0.0711 0.0738 88.9 92.3 46.7-125 0.0800 0.0596 0.0609 74.5 76.1 42.3-119 0.0800 0.0668 0.0632 83.4 79.0 43.6-124 0.0800 0.0673 0.0696 84.1 87.0 45.1-132	Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier mg/kg mg/kg % % % % 0.0800 0.0723 0.0752 90.4 94.0 50.3-130 0.0800 0.0681 0.0711 85.1 88.8 52.4-120 0.0800 0.0696 0.0727 87.0 90.8 49.6-120 0.0800 0.0711 0.0738 88.9 92.3 46.7-125 0.0800 0.0596 0.0609 74.5 76.1 42.3-119 0.0800 0.0668 0.0632 83.4 79.0 43.6-124 0.0800 0.0673 0.0696 84.1 87.0 45.1-132	Spike Amount LCS Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier mg/kg mg/kg % % % % 0.0800 0.0723 0.0752 90.4 94.0 50.3-130 0.0800 0.0681 0.0711 85.1 88.8 52.4-120 0.0800 0.0696 0.0727 87.0 90.8 49.6-120 0.0800 0.0711 0.0738 88.9 92.3 46.7-125 0.0800 0.0596 0.0609 74.5 76.1 42.3-119 0.0800 0.0668 0.0632 83.4 79.0 43.6-124 0.0800 0.0673 0.0696 84.1 87.0 45.1-132	Spike Amount LCS Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD mg/kg mg/kg % % % % % 0.0800 0.0723 0.0752 90.4 94.0 50.3-130 3.89 0.0800 0.0681 0.0711 85.1 88.8 52.4-120 4.26 0.0800 0.0696 0.0727 87.0 90.8 49.6-120 4.32 0.0800 0.0711 0.0738 88.9 92.3 46.7-125 3.72 0.0800 0.0596 0.0609 74.5 76.1 42.3-119 2.13 0.0800 0.0668 0.0632 83.4 79.0 43.6-124 5.41 0.0800 0.0673 0.0696 84.1 87.0 45.1-132 3.34

QUALITY CONTROL SUMMARY 1805353-01,02

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		THE TREE	%	%	
Chrysene	0.0800	0.0736	0.0774	92.0	96.8	49.5-131	GUE D		5.05	20	
Dibenz(a,h)anthracene	0.0800	0.0668	0.0687	83.5	85.9	44.8-133			2.83	20	
Fluoranthene	0.0800	0.0731	0.0763	91.4	95.4	49.3-128			4.26	20	
Fluorene	0.0800	0.0703	0.0729	87.9	91,1	50.6-121			3.59	20	
Indeno(1,2,3-cd)pyrene	0.0800	0.0703	0.0728	87.8	91.0	46.1-135			3.49	20	
Naphthalene	0.0800	0.0638	0.0655	79.7	81.8	49.6-115			2.63	20	
Phenanthrene	0.0800	0.0658	0.0678	82.3	84.7	48.8-121			2.90	20	
Pyrene	0.0800	0.0749	0.0773	93.6	96.6	44.7-130			3.10	20	
1-Methylnaphthalene	0.0800	0.0720	0.0744	90.0	93.0	50.6-122			3.25	20	
2-Methylnaphthalene	0.0800	0.0734	0.0757	91.8	94.6	50.4-120			3.09	20	
2-Chloronaphthalene	0.0800	0.0735	0.0763	91.9	95.4	53.9-121		8 30-1	3.74	20	
(S) p-Terphenyl-d14				87.3	88.6	32.2-131					
(S) Nitrobenzene-d5				79.4	78.0	22.1-146					
(S) 2-Fluorobiphenyl				92.4	94.7	40.6-122					

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conductive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina 1	DW21704
Florida	E87487	North Carolina 2	41
Georgia	NELAP	North Dakota	R-140
Georgia 1	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky 1	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789	
A2LA - ISO 170255	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁴⁶ Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address: Envirotech IncNN 5796 US Highway 64 Farmington, NM 87401	И		Account	ormation: nts Payable IS Highway 64 gton, NM 874	\$ 01				Analy	sis / Con	tainer / P	reservative		Chain of Custod	ESC
Report to: Lynn Cook & Tir	n Cain		Email To:	Lynn Cook 8	Tim Cain		pr/600	-	× 1551	175,000				12065 Lebanon Rd Mount Juliet, 3N 3 Phone: 615-738-51	712
Project Description: Prairie Fal		-17		City/State Collected:	A S		/the pr	1/00	11609					Phone: 800-767-51 Fax: 615-758-5851	00
Phone: Fax:	Client Project		,	Lab Project #			mium,	1402 Ju/COO	ENVIRO FAIN 1009 15					L80	091
Collected by (print): A. Parker	Site/Facility III	2014		P.O.# 14	2780		Chro		68-38-38	2,73156-1				Acctnum: Template:	
Collected by (signature): Immediately Packed on ice N Y	Same		200%	12-1	Results Needed	No.	Hexavalent Chromium	Sim by 8270	Posto					Prelogin: TSR: PB:	
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	He,	丟	ree					Shipped Via:	Sample # (
Bin Composite	e sale to the	55	Sand William	12/4/15	16:15	1	/	1	1		170		100	THE RESERVE	1
Background		SS	e Su	12/4/15		1	/	/						ST STATE	
													1488		0,45
														C. A. L.	
		to the said	36			1									
		100		A No.											
The Table Table	1 100														
	16.3		100					13.7		特					
* Matrix: \$\$ - Soil GW - Groundwate Remarks:	r WW - WasteW	later DW - Dr	rinking Wat	ter OT - Other		67			pH	w	Ter	nper	Hold I	09373	796
Relinquished by : (Signature)		Date: 12-07	-15	Time:	Received by: (Sign	ature)			18.00	The same of the same of		UPS	Condi	ition: (lab	use only)
Relinquished by : Signature)		Date:			teceived by: (Sign	ature)	S. A.		Ten 3			2=40E		Seal Intact: Y	N
Relinquished by : (Signature)		Date:		Time:	Received for lab b	y: (Signa	ture)		Dat	1 7	J	me:	pH Ch	necked: NCI	

