State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office to accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

	OPERATOR	\boxtimes	Initial Report	\boxtimes	Final Report
Name of Company ConocoPhillips Company	Contact Lisa Hunter				
Address 3401 East 30th St, Farmington, NM	Telephone No. (505) 258-1607				
Facility Name: San Juan 28-7 Unit 217	Facility Type: Gas Well				

Surface Owner Federal

Mineral Owner Federal

API No. 3003920972

LOCATION OF RELEASE

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County	
В	28	27N	07W	1120	North	1740	East	Rio Arriba	

Latitude 36.54807 Longitude -107. 57764

NATURE OF RELEASE

Type of Release Hydrocarbon (Historic - BGT Closure)	Volume of Release Unknown	Volume Recovered 600 yds
Source of Release BGT	Date and Hour of Occurrence	Date and Hour of Discovery
	Unknown	07/17/2016 @ 10:00 a.m.
Was Immediate Notice Given?	If YES, To Whom?	
🗌 Yes 🗌 No 🛛 Not Required	N/A	
By Whom? N/A	Date and Hour N/A	
Was a Watercourse Reached?	If YES, Volume Impacting the Wate	rcourseOIL CONS. DIV DIST. 3
🗌 Yes 🖾 No	N/A	
If a Watercourse was Impacted, Describe Fully.*		DEC 3 0 2016
N/A		
Describe Cause of Problem and Remedial Action Taken.*		
Contamination stain discovered on western sidewall of BGT cellar du	iring BGT Closure. Site assessment v	vas conducted by third-party
environmental for remediation. Rank: 20		
Describe Area Affected and Oleman Action Talan *		
The below grade tank complex your above regulatory standard	by USEDA method 419.1 for TDU or	d Organia Vanana confirming a
The below grade tank sample results were above regulatory standard	by USEFA method 418.1 for 1 FH an	louds no further estion required
release. Excavation was 55 x 40 x 10 Deep. Analytical result	s were below the regulatory stand	lards – no further action required.
The soil sampling report is attached for review.		
I hereby certify that the information given above is true and complete to t	he best of my knowledge and understan	d that pursuant to NMOCD rules and
regulations all operators are required to report and/or file certain release n	otifications and perform corrective action	ons for releases which may endanger
public health or the environment. The acceptance of a C-141 report by th	e NMOCD marked as "Final Report" do	bes not relieve the operator of liability
should their operations have failed to adequately investigate and remediat	te contamination that pose a threat to gre	ound water, surface water, human health
or the environment. In addition, NMOCD acceptance of a C-141 report d	loes not relieve the operator of responsil	bility for compliance with any other
federal, state, or local laws and/or regulations.	1 1	
	OIL CONSERV	ATION DIVISION
	0	
Simon John tot		
Signature.	Approved by Environmental Specialist:	
Printed Name: Lisa Hunter		hann
Timed Fune. Lisa Hunter		
Title: Field Environmental Specialist	Approval Date: 21212017 E	Expiration Date:
	aloloot L	
E-mail Address: Lisa.Hunter@cop.com	Conditions of Approval:	
2		Attached
Date: December 27, 2016 Phone: (505) 258-1607	INVF1703430579	7

* Attach Additional Sheets If Necessary

OIL CONS. DIV DIST. 3 DEC 3 0 2016

San Juan 28-7 #217 Release Report

Unit Letter B, Section 28, Township 27 North, Range 7 West Rio Arriba County, New Mexico

December 26, 2016

Prepared for: ConocoPhillips 5525 Highway 64 Farmington, New Mexico 87401

Prepared by: Rule Engineering, LLC 501 Airport Drive, Suite 205 Farmington, New Mexico 87401

ConocoPhillips San Juan 28-7 #217 Release Report

Prepared for:

ConocoPhillips 5525 Highway 64 Farmington, New Mexico 87401

Prepared by:

Rule Engineering, LLC 501 Airport Drive, Suite 205 Farmington, New Mexico 87401

Heather M. Wood

Heather M. Woods, P.G., Area Manager

Reviewed by:

Russell Knight, PG, Principal Hydrogeologist

December 26, 2016

Table of Contents

1.0	Introduction	1
2.0	Release Summary	1
3.0	NMOCD Site Ranking	1
4.0	Below Grade Tank Closure Sampling	2
4.1	Field Activities	2
4.2	Soil Sampling	2
4.3	Field Screening Results	3
4.4	Laboratory Analytical Results	3
5.0	Site Assessment	3
5.1	Field Activities	3
5.2	Soil Sampling	3
5.3	Field Screening Results	4
6.0	Excavation Confirmation Sampling	4
6.1	Field Activities	4
6.2	Soil Sampling	4
6.3	Field Screening Results	5
6.4	Laboratory Analytical Results	5
7.0	Conclusions	5
8.0	Closure and Limitations	6

Tables

Table 1	NMOCD Site Ranking Determination
Table 2	Site Assessment Field Screening and Laboratory Analytical Results
Table 3	Excavation Confirmation Field Screening and Laboratory Analytical Results

Figures

Figure 1	Topographic Map
Figure 2	Aerial Site Map
Figure 3	Excavation Confirmation Sample Location Map

Appendices

Appendix A Analytical Laboratory Reports

Rule

1.0 Introduction

The ConocoPhillips San Juan 28-7 #217 release site is located in Unit Letter B, Section 28, Township 27 North, Range 7 West, in Rio Arriba County, New Mexico. A historical release was discovered on July 18, 2016, during below grade tank (BGT) closure sampling when stained soils were observed in the western sidewall of the BGT cellar.

A topographic map of the location reproduced from the United States Geological Society quadrangle map of the area is included as Figure 1 and an aerial site map is included as Figure 2.

Site Name	San Juan 28-7 #217								
Site Location Description	Unit Letter B, Section 28, Township 27 North, Range 7 West								
Wellhead GPS Location	N36.54824 and Release GPS N36.54807 and W107.57748 Location W107.57764								
Land Jurisdiction	Bureau of Land Management	Discovery Date	July 18, 2016						
Release Source	Unknown/Historical								
NMOCD Site Rank	20								
Distance to Nearest Surface Water	The site is located within the drainage of a small, ephemeral wash.								
Estimated Depth to Groundwater	Greater than 100 feet below ground surface (bgs)	<i>Distance to Nearest Water Well or Spring</i>	Greater than 1,000 feet						

2.0 Release Summary

3.0 NMOCD Site Ranking

In accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases (August 1993), this site was assigned a ranking score of 20 (Table 1).

Depth to groundwater at the site is greater than 100 feet bgs based on the elevation differential between the location and Cuervo Canyon and the cathodic well report for San Juan 28-7 #153M reported "no groundwater encountered".

A review was completed of the New Mexico Office of the State Engineer (NMOSE) online New Mexico Water Rights Reporting System (NMWRRS) and no water wells were identified within a 1,000 foot radius of the location. No water wells were observed within a 1,000 foot radius of the location during a visual inspection.

KILE

The site is located within the drainage area of a small, ephemeral wash.

Based on the ranking score of 20, action levels for remediated soils at the site are as follows: 10 milligrams per kilogram (mg/kg) benzene, 50 mg/kg total benzene, toluene, ethylbenzene, and total xylenes (BTEX), and 100 mg/kg total petroleum hydrocarbons (TPH).

4.0 Below Grade Tank Closure Sampling

4.1 Field Activities

On July 17, 2016, Rule Engineering, LLC (Rule) personnel conducted a visual inspection for surface/subsurface indications of a release. Staining was observed in the western sidewall of the BGT cellar. Rule personnel then collected one composite soil sample from the base of the BGT cellar and one composite sample from the stained areas of the western sidewall. Soil sample locations are illustrated on Figure 2.

4.2 Soil Sampling

Rule collected a five-point composite sample (BGT-1) from approximately 0.5 feet below the base of the BGT cellar. Rule also collected a three-point composite sample (BGT-2) from the stained area of the western sidewall. A portion of each sample was field screened for volatile organic compounds (VOCs) and chlorides, and field analyzed for TPH.

Field screening for VOC vapors was conducted with a MiniRAE 3000 photoionization detector (PID). Prior to field screening, the PID was calibrated with 100 parts per million (ppm) isobutylene gas. Field analysis for TPH was conducted for selected samples per United States Environmental Protection Agency (USEPA) Method 418.1, utilizing a Buck Scientific HC-404 total hydrocarbon analyzer. Prior to field analysis, the machine was calibrated following the manufacturer's procedure which includes calculation of a calibration curve using known concentration standards. Rule's practical quantitation limit for USEPA Method 418.1 is 20 mg/kg.

Soil samples collected for laboratory analysis were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico. The samples were analyzed for BTEX per USEPA Method 8021B, TPH per USEPA Method 8015M/D and 418.1, and chlorides per USEPA Method 300.0.

Field and laboratory results for BGT-1 and BGT-2 are summarized in Table 2, and the analytical report is included in Appendix A.

KTLE

4.3 Field Screening Results

Field sampling results for soil composite sample BGT-1 indicated a VOC concentration of 60 ppm and a TPH concentration below the reporting limit of 20 mg/kg. Field chloride concentration was recorded at 40 mg/kg.

Field sampling results for soil composite sample BGT-2 indicated a VOC concentration of 1,500 ppm and a TPH concentration of greater than 2,500 mg/kg. Field chloride concentration was recorded at 120 mg/kg.

Field screening results are summarized in Table 2.

4.4 Laboratory Analytical Results

Laboratory analytical results for sample BGT-1 reported benzene, total BTEX, TPH, and chloride concentrations below the laboratory reporting limits, which are below the BGT closure standards.

Laboratory analytical results for sample BGT-2 reported a benzene concentration below the laboratory reporting limit of 0.48 mg/kg and a total BTEX concentration of 33 mg/kg, which are below the applicable NMOCD action levels. Laboratory analytical results for sample BGT-2 reported TPH concentrations of 670 mg/kg as GRO per USEPA Method 8015 M/D, 7,000 mg/kg DRO per USEPA Method 8015 M/D, and 31,000 mg/kg per USEPA Method 418.1, which exceed the applicable NMOCD action levels. The laboratory analytical result for sample BGT-2 for chloride concentration was below the laboratory reporting limit of 30 mg/kg.

Laboratory analytical results are summarized in Table 2 and the analytical laboratory report is included in Appendix A.

5.0 Site Assessment

5.1 Field Activities

On August 26, 2016, Rule personnel conducted a site assessment to delineate the extent of the release which included advancing five soil borings (SB-1 through SB-5) utilizing a hand auger. Soil borings were advanced to depths ranging from approximately 8 to 12 feet bgs where refusal was encountered on hard soils or sandstone or the limit of the equipment was reached. Soil boring locations are illustrated on Figure 2.

5.2 Soil Sampling

Rule collected soil samples from the soil borings at 1 to 2 foot intervals with an approximately 0.5 foot sample length at each interval. The lithology encountered at the site included interbedded clayey sand and poorly graded sand underlain by sandstone or shale to the maximum depths of the soil borings.

A portion of each sample was field screened for VOCs and selected samples were also field analyzed for TPH. Field screening for VOC vapors was conducted with a PID. Prior to field screening, the PID was calibrated with 100 ppm isobutylene gas. Field analysis for TPH was conducted for selected samples per USEPA Method 418.1, utilizing a total hydrocarbon analyzer. Prior to field analysis, the machine was calibrated following the manufacturer's procedure which includes calculation of a calibration curve using known concentration standards. Rule's practical quantitation limit for USEPA Method 418.1 is 20 mg/kg.

Site assessment field screening results are summarized in Table 2.

5.3 Field Screening Results

Field screening results for samples collected from soil borings SB-1 through SB-5 indicated VOC concentrations ranging from 0.9 ppm to 1,320 ppm. Field TPH results for samples collected from soil borings SB-1 through SB-5 indicated TPH concentrations ranging from below the reporting limit of 20 mg/kg to 2,780 mg/kg. Field screening results are summarized in Table 2.

6.0 Excavation Confirmation Sampling

6.1 Field Activities

Hydrocarbon impacted soils were excavated prior to October 14, 2016, when Rule personnel returned to the site to collect confirmation samples from the resultant excavation which measured approximately 28 feet by 23 feet by 15 feet in depth. Laboratory analysis indicated TPH concentrations in excess of NMOCD action levels from the sample collected from the base of the excavation. An additional two feet of material was removed from the base of the excavation and resampling of the base now measuring approximately 17 feet in depth was conducted on October 21, 2016. Excavated hydrocarbon impacted soils and rock were transported to a local NMOCD approved landfarm for disposal/remediation and the excavation was backfilled with clean, imported material. A depiction of the final excavation with sample locations is included on Figure 3.

6.2 Soil Sampling

Rule collected five composite confirmation soil samples (SC-1 through SC-5) on October 14, 2016, and one additional sample (SC-6) on October 21, 2016. Each confirmation soil sample is a representative composite comprised of five equivalent portions of soil collected from the sampled area.

A portion of each sample was field screened for VOCs and field analyzed for TPH. Field screening for VOC vapors was conducted with a PID. Prior to field screening, the PID was calibrated with 100 ppm isobutylene gas. Field analysis for TPH was conducted for selected samples per USEPA Method 418.1, utilizing a total hydrocarbon analyzer. Prior

КПС

to field analysis, the machine was calibrated following the manufacturer's procedure which includes calculation of a calibration curve using known concentration standards. Rule's practical quantitation limit for USEPA Method 418.1 is 20 mg/kg.

Soil samples collected for laboratory analysis were placed into laboratory supplied glassware, labeled, and maintained on ice until delivery to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico. All excavation confirmation samples were analyzed for BTEX per USEPA Method 8021B, and TPH per USEPA Method 8015M/D.

Field screening and laboratory analytical results are summarized in Table 3. The analytical laboratory reports are included in Appendix A.

6.3 Field Screening Results

Field screening results for soil confirmation samples SC-1 through SC-6 indicated VOC concentrations ranging from 0.3 ppm to 900 ppm. Field TPH concentration results for these samples ranged from below the reporting limit of 20 mg/kg to 2,364 mg/kg. Field screening results are summarized in Table 3.

6.4 Laboratory Analytical Results

Sample Removed by Excavation: Sample SC-5, representing the base of the excavation at approximately 15 feet in depth, was removed by excavation due to NMOCD action level for TPH. Laboratory analytical results for this sample reported a benzene concentration below the laboratory reporting limit of 0.087 mg/kg, a total BTEX concentration of 10.7 mg/kg, and a TPH concentration of 2,480 mg/kg.

Final Excavation Confirmation Samples: Samples collected for final excavation confirmation include SC-1, SC-2, SC-3, SC-4, and SC-6. Laboratory analytical results for final excavation confirmation samples reported benzene, total BTEX, and TPH concentrations below the laboratory reporting limits, which are below the applicable NMOCD action levels for a site rank of 20.

Laboratory analytical results are summarized in Table 3. The analytical laboratory reports are included in Appendix A.

7.0 Conclusions

Hydrocarbon impacted soils associated with a historical release discovered during BGT closure activities at the ConocoPhillips San Juan 28-7 #217 have been excavated and transported to an NMOCD approved landfarm for disposal/remediation. Field screening and laboratory analytical results for samples collected from the final excavation sidewalls and base indicate that concentrations of benzene, total BTEX, and TPH are below NMOCD action levels for a site rank of 20. Therefore, no further work is recommended at this time.

8.0 Closure and Limitations

This report has been prepared for the exclusive use of ConocoPhillips and is subject to the terms, conditions, and limitations stated in Rule's report and Service Agreement with ConocoPhillips. All work has been performed in accordance with generally accepted professional environmental consulting practices. No other warranty is expressed or implied.

Tables

Table 1. NMOCD Site Ranking Determination ConocoPhillips San Juan 28-7 #217 Rio Arriba County, New Mexico

Ranking Criteria	Ranking	Site-Based	Basis for Determination	Data	
	Score	Ranking Score		Sources	
Depth to Groundwater					
<50 feet	20		Elevation differential between location and Cuervo	NMOCD Online database,	
50-99 feet	10	0	Canyon derived from the topographic map of the area and no groundwater encountered on cathodic well	Gould Pass Quadrangle, Google Earth, and Visual	
>100 feet	0		report for the San Juan 28-7 #153M.	Inspection	
Wellhead Protection Area					
<1,000 feet from a water source, or <200 feet from private domestic water source	20 (Yes)	- 0	No water source or recorded water wells within 1,000 foot radius of location.	NMOSE NMWRRS, Gould Pass Quadrangle, Google Earth, and Visual Inspectior	
	0 (No)				
Distance to Surface Water Body					
<200 horizontal feet	20		The side is been added to be desired as the second state of the se	Gould Pass Quadrangle,	
200 to 1,000 horizontal feet	10	20	ephemeral wash.	Google Earth, and Visual	
>1,000 horizontal feet	0			Inspection	
Site Based Total Rank	ing Score	20]		

Rule Engineering, LLC Solutions to Regulations for Industry

Table 2. Site Assessment Field Screening and Laboratory Analytical ResultsConocoPhillipsSan Juan 28-7 #217Rio Arriba County, New Mexico

		Annewimete		Field Results	3	Laboratory Results					
Sample Name	Date	Sample Depth (ft bgs)	Field VOCs by PID (ppm)	Field TPH by 418.1 (mg/kg)	Field Chlorides (mg/kg)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH as GRO (mg/kg)	TPH as DRO (mg/kg)	TPH by 418.1 (mg/kg)	Chloride (mg/kg)
100 - 100 -	BGT Closu	re Standards*		2,500	20,000	10	50	1,0	000	2,500	20,000
	NMOCD	Action Level**	100	100	100	10	50	1	00	100	
BGT-1	7/18/2016	4.5	60	<20.0	40	< 0.024	<0.213	<4.7	<9.6	<19	<30
BGT-2	7/18/2016	2.5 to 3.5	1,550	>2,500	120	<0.48	33	670	7,000	31,000	<30
		1	6.7								
		2	5.7								
		3	8.9								
SR.1	8/26/2016	4	9.1								
3D-1	0/20/2010	6	17.1								
		8	50.9	<20.0							
		10	44.5								
		12	45.7	<20.0							
		1	313								
		2	798								
	8/26/2016	3	350								
SB-2		4	1,320	2,780							
3D-2		6	307	117							
		8	304	39.2							
		10	275								
		12	167	45.0							
		1	5.9								
		2	0.9								
		3	32.9								
SB-3	8/26/2016	4	73.9								
		6	210								
		8	215	20.4							
		10	118								
		6	5.6								
SB-4	8/26/2016	8	13.4	<20.0							
		10	13.0								
		1	47.1								
		2	32.2								
SB-5	8/26/2016	3	60.0								
00-0	512012010	4	37.0								
		6	99.7	<20.0							
1 1		0	027								

Notes: VOCs - volatile organic compounds PID - photoionization detector ft bgs - feet below grade surface ppm - parts per million

mg/kg - milligrams per kilogram

*19.15.17.13 NMAC

TPH - total petroleum hydrocarbons

GRO - gasoline range organics

DRO - diesel range organics

BTEX - benzene, toluene, ethylbenzene, and xylenes

NMOCD - New Mexico Oil Conservation Division

**Based on the NMOCD Guidelines for Remediation of Leaks, Spills and Releases (August 1993)

Table 3. Excavation Confirmation Field Screening and Laboratory Analytical Results ConocoPhillips San Juan 28-7 #217 **Rio Arriba County, New Mexico**

Sample Name	Date	Approximate Sample Depth (ft bgs)	Sample Location	Field VOCs by PID (ppm)	Field TPH by 418.1 (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylben- zene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH as GRO (mg/kg)	TPH as DRO (mg/kg)	TPH as MRO (mg/kg)
	10 M	NMOCI	D Action Level*	100	100**	10	NE	NE	NE	50		100**	
	Samples Removed by Excavation												
SC-5	10/14/2016	15	Base	900	2,364	<0.087	0.22	1.0	9.5	10.7	280	1,800	400
					Excav	ation Confirn	nation Sampl	es					
SC-1	10/14/2016	0 to 15	North Wall	43.8	23.0	<0.024	<0.049	< 0.049	<0.097	ND	<4.9	<9.7	<48
SC-2	10/14/2016	0 to 15	South Wall	102	<20	<0.024	< 0.049	< 0.049	<0.097	ND	<4.9	<9.7	<49
SC-3	10/14/2016	0 to 15	East Wall	2.2	<20	<0.024	<0.047	<0.047	<0.094	ND	<4.7	<9.9	<50
SC-4	10/14/2016	0 to 15	West Wall	2.2	<20	< 0.024	<0.048	<0.048	<0.095	ND	<4.8	<9.9	<50
SC-6	10/21/2016	17	Base	0.3	<20	< 0.046	< 0.046	< 0.046	< 0.092	ND	<4.6	<10	<50

Notes:

VOCs - volatile organic compounds

PID - photoionization detector

ft bgs - feet below grade surface

ppm - parts per million

mg/kg - milligrams per kilogram

NE - not-established

*Based on the NMOCD Guidelines for Remediation of Leaks, Spills and Releases (August 1993)

**Based on a site ranking of 20.

ND - not detected above laboratory reporting limits

BTEX - benzene, toluene, ethylbenzene, and xylenes

TPH - total petroleum hydrocarbons

GRO - gasoline range organics

DRO - diesel range organics

NMOCD - New Mexico Oil Conservation Division

Figures

Rule

Document Path: U:IConocoPhillips/ConocoPhilips\San Juan 28-7 #217/Figure 2 San Juan 28-7 #217 Aerial Map.mxd

Document Path: U:\ConocoPhillips\ConocoPhilips\San Juan 28-7 #217/Figure 3 San Juan 28-7 #217 Excavation Map.mxd

Appendix A

Analytical Laboratory Reports

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

July 28, 2016

Heather Woods Rule Engineering LLC 501 Airport Dr., Ste 205 Farmington, NM 87401 TEL: (505) 325-1055 FAX

RE: San Juan 28-7 217

OrderNo.: 1607859

Dear Heather Woods:

Hall Environmental Analysis Laboratory received 2 sample(s) on 7/19/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order 1607859

Date Reported: 7/28/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-1

 Project: San Juan 28-7 217
 Collection Date: 7/18/2016 9:30:00 AM

 Lab ID: 1607859-001
 Matrix: SOIL
 Received Date: 7/19/2016 8:45:00 AM

 Analyses
 Result
 PQL
 Qual
 Units
 DF
 Date Analyzed
 Batch

 EPA METHOD 418.1: TPH
 Analyst
 Analyst
 Analyst
 Analyst
 Analyst

EPA METHOD 418.1: TPH					Analyst:	MAB
Petroleum Hydrocarbons, TR	ND	19	mg/Kg	1	7/26/2016	26572
EPA METHOD 300.0: ANIONS					Analyst:	MRA
Chloride	ND	30	mg/Kg	20	7/21/2016 7:04:00 PM	26529
EPA METHOD 8015M/D: DIESEL RANGE OF	GANIC	CS			Analyst:	том
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	7/21/2016 1:52:05 PM	26500
Surr: DNOP	103	70-130	%Rec	1	7/21/2016 1:52:05 PM	26500
EPA METHOD 8015D: GASOLINE RANGE					Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	7/20/2016 8:11:37 PM	26468
Surr: BFB	101	80-120	%Rec	1	7/20/2016 8:11:37 PM	26468
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.024	mg/Kg	1	7/20/2016 8:11:37 PM	26468
Toluene	ND	0.047	mg/Kg	1	7/20/2016 8:11:37 PM	26468
Ethylbenzene	ND	0.047	mg/Kg	1	7/20/2016 8:11:37 PM	26468
Xylenes, Total	ND	0.095	mg/Kg	1	7/20/2016 8:11:37 PM	26468
Surr: 4-Bromofluorobenzene	95.9	80-120	%Rec	1	7/20/2016 8:11:37 PM	26468

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 1 of 7
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report

Lab Order 1607859

Date Reported: 7/28/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Rule Engineering LLC Client Sample ID: SC-2 Project: San Juan 28-7 217 Collection Date: 7/18/2016 9:45:00 AM Lab ID: 1607859-002 Matrix: SOIL Received Date: 7/19/2016 8:45:00 AM Analyses Result PQL Qual Units DF Date Analyzed Batch EPA METHOD 418 1: TPH Analyses Analyses Analyses Analyses

EPA METHOD 418.1: TPH						Analyst:	MAB
Petroleum Hydrocarbons, TR	31000	1900		mg/Kg	100	7/26/2016	26572
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Chloride	ND	30		mg/Kg	20	7/21/2016 7:16:24 PM	26529
EPA METHOD 8015M/D: DIESEL RANGE C	RGANI	CS				Analyst:	том
Diesel Range Organics (DRO)	7000	97		mg/Kg	10	7/21/2016 3:46:00 PM	26500
Surr: DNOP	0	70-130	S	%Rec	10	7/21/2016 3:46:00 PM	26500
EPA METHOD 8015D: GASOLINE RANGE						Analyst:	NSB
Gasoline Range Organics (GRO)	670	96		mg/Kg	20	7/22/2016 1:53:17 AM	26468
Surr: BFB	282	80-120	S	%Rec	20	7/22/2016 1:53:17 AM	26468
EPA METHOD 8021B: VOLATILES						Analyst:	NSB
Benzene	ND	0.48		mg/Kg	20	7/22/2016 1:53:17 AM	26468
Toluene	ND	0.96		mg/Kg	20	7/22/2016 1:53:17 AM	26468
Ethylbenzene	1.6	0.96		mg/Kg	20	7/22/2016 1:53:17 AM	26468
Xylenes, Total	31	1.9		mg/Kg	20	7/22/2016 1:53:17 AM	26468
Surr: 4-Bromofluorobenzene	110	80-120		%Rec	20	7/22/2016 1:53:17 AM	26468

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 7
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

WO#: 1607859

Page 3 of 7

28-Jul-16

Client:	Rule Eng	ineering LI	$\mathcal{L}C$								
Project:	San Juan	28-7 217									
Sample ID	MB 26520	SampTi	(DO: m)	blk	Tos		DA Mothod	200 0: Anion			
Sample ID	WID-26529	Sampig	ype. m	DIK	Tes	icoue. El	PA Method	300.0: Anion	5		
Client ID:	PBS	Batch	ID: 26	529	F	RunNo: 3	5903				
Prep Date:	7/21/2016	Analysis Da	ate: 7	/21/2016	5	SeqNo: 1	111501	Units: mg/H	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID	LCS-26529	SampTy	pe: Ic	S	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch	ID: 26	529	F	RunNo: 3	5903				
Prep Date:	7/21/2016	Analysis Da	ate: 7	/21/2016	5	SeqNo: 1	111502	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
C 11 11		45	4 5	15.00	0	07.0	00	110			
Chloride		15	1.5	15.00	0	97.2	90	110			
Sample ID	1607747-003AMS	SampTy	/pe: m	15.00 s	Tes	tCode: EF	PA Method	300.0: Anion	s		
Sample ID Client ID:	1607747-003AMS BatchQC	SampTy Batch	/pe: m: ID: 26	s 529	Tes	tCode: EF	PA Method	300.0: Anion	S		
Chloride Sample ID Client ID: Prep Date:	1607747-003AMS BatchQC 7/21/2016	SampTy Batch Analysis Da	/pe: m: ID: 26	s 529 /21/2016	U Tes Fi	tCode: EF	PA Method 5903 111513	300.0: Anion Units: mg/k	s		
Sample ID Client ID: Prep Date: Analyte	1607747-003AMS BatchQC 7/21/2016	SampTy Batch Analysis Da Result	/pe: m ID: 26 ate: 7/ PQL	s 529 /21/2016 SPK value	U Tes F SPK Ref Val	SeqNo: 1 %REC	PA Method 5903 111513 LowLimit	300.0: Anion Units: mg/K HighLimit	s (g %RPD	RPDLimit	Qual
Chloride Sample ID Client ID: Prep Date: Analyte Chloride	1607747-003AMS BatchQC 7/21/2016	SampTy Batch Analysis Da Result 17	/pe: m: ID: 26 ate: 7/ PQL 1.5	s 529 /21/2016 SPK value 15.00	Tes F SPK Ref Val 2.609	97.2 tCode: EF RunNo: 38 GeqNo: 14 %REC 98.9	PA Method 5903 111513 LowLimit 70.8	300.0: Anion Units: mg/K HighLimit 119	s Sg %RPD	RPDLimit	Qual
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID	1607747-003AMS BatchQC 7/21/2016 1607747-003AMSE	SampTy Batch Analysis Da Result 17 SampTy	/pe: m: ID: 26 ate: 7, PQL 1.5	5529 /21/2016 SPK value 15.00	U Tes F SPK Ref Val 2.609 Tes	97.2 tCode: EF RunNo: 38 SeqNo: 14 %REC 98.9 tCode: EF	PA Method 5903 111513 LowLimit 70.8 PA Method	300.0: Anion Units: mg/K HighLimit 119 300.0: Anion	s %g %RPD s	RPDLimit	Qual
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	1607747-003AMS BatchQC 7/21/2016 1607747-003AMSE BatchQC	SampTy Batch Analysis Da Result 17 SampTy Batch	/pe: m: ID: 26 ate: 7, PQL 1.5 /pe: m: ID: 26	15.00 s 5529 /21/2016 SPK value 15.00 sd 5529	U Tes F SPK Ref Val 2.609 Tes F	97.2 tCode: EF RunNo: 38 SeqNo: 11 %REC 98.9 tCode: EF RunNo: 38	PA Method 5903 111513 LowLimit 70.8 PA Method 5903	300.0: Anion Units: mg/K HighLimit 119 300.0: Anion	s Kg %RPD s	RPDLimit	Qual
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	1607747-003AMS BatchQC 7/21/2016 1607747-003AMS BatchQC 7/21/2016	SampTy Batch Analysis Da Result 17 SampTy Batch Analysis Da	/pe: ma ID: 26 ate: 7/ PQL 1.5 /pe: ma ID: 26 ate: 7/	s 529 /21/2016 SPK value 15.00 sd 529 /21/2016	U Tes SPK Ref Val 2.609 Tes F S	97.2 tCode: EF &unNo: 34 &eqNo: 11 %REC 98.9 tCode: EF &unNo: 34 &eqNo: 11	PA Method 5903 111513 LowLimit 70.8 PA Method 5903 111514	300.0: Anion Units: mg/K HighLimit 119 300.0: Anion Units: mg/K	s (g %RPD s	RPDLimit	Qual
Chloride Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte	1607747-003AMS BatchQC 7/21/2016 1607747-003AMSE BatchQC 7/21/2016	SampTy Batch Analysis Da Result 17 SampTy Batch Analysis Da Result	/pe: m: ID: 26 ate: 7, PQL 1.5 /pe: m: ID: 26 ate: 7, PQL	s 529 /21/2016 SPK value 15.00 sd 529 /21/2016 SPK value	U Tes SPK Ref Val 2.609 Tes F SPK Ref Val	97.2 tCode: EF tanNo: 34 SeqNo: 11 <u>%REC</u> 98.9 tCode: EF tanNo: 34 SeqNo: 11 %REC	PA Method 5903 111513 LowLimit 70.8 PA Method 5903 111514 LowLimit	300.0: Anion Units: mg/K HighLimit 119 300.0: Anion Units: mg/K HighLimit	s %RPD s %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client:Rule Engineering LLCProject:San Juan 28-7 217

Sample ID MB-26572	SampType: MBLK	TestCode: EPA Method		
Client ID: PBS	Batch ID: 26572	RunNo: 35993		
Prep Date: 7/25/2016	Analysis Date: 7/26/2016	SeqNo: 1114334	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Petroleum Hydrocarbons, TR	ND 20			
Sample ID LCS-26572	SampType: LCS	TestCode: EPA Method	418.1: TPH	
Client ID: LCSS	Batch ID: 26572	RunNo: 35993		
Prep Date: 7/25/2016	Analysis Date: 7/26/2016	SeqNo: 1114335	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Petroleum Hydrocarbons, TR	110 20 100.0	0 106 80.7	121	
Sample ID LCSD-26572	SampType: LCSD	TestCode: EPA Method	418.1: TPH	
Client ID: LCSS02	Batch ID: 26572	RunNo: 35993		
Prep Date: 7/25/2016	Analysis Date: 7/26/2016	SeqNo: 1114336	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Petroleum Hydrocarbons, TR	110 20 100.0	0 111 80.7	121 5.36	20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 7

WO#: 1607859 28-Jul-16

Client: Rule Engineering LLC

Project: San Juan 28-7 217

Sample ID LCS-26500	Samp	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics								
Client ID: LCSS	Batc	h ID: 26	500	F	RunNo: 3	5868				
Prep Date: 7/20/2016	Analysis I	Date: 7/	21/2016	S	SeqNo: 1	111810	Units: mg/l	Kg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	49	10	50.00	0	98.1	62.6	124			
Surr: DNOP	5.3		5.000		106	70	130			
Sample ID MB-26500 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics										
Client ID: PBS	Batc	h ID: 26	500	F	RunNo: 3	5868				
Prep Date: 7/20/2016	Analysis E	Date: 7/	21/2016	5	SeqNo: 1	111811	Units: mg/l	٨g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Surr: DNOP	9.5		10.00		94.8	70	130			
oun prior	0.0									
Sample ID 1607862-001AMS	Samp	Type: MS	6	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Sample ID 1607862-001AMS Client ID: BatchQC	Samp1 Batcl	Type: MS	500	Tes	tCode: El RunNo: 3	PA Method	8015M/D: Di	esel Rang	e Organics	
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016	SampT Batcl Analysis D	Type: MS h ID: 26 Date: 7/	5 500 22/2016	Tes F	tCode: El RunNo: 3 SeqNo: 1	PA Method 5915 112521	8015M/D: Di Units: mg/F	esel Rang Kg	e Organics	
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte	SampT Batcl Analysis D Result	Type: M\$ h ID: 26 Date: 7 / PQL	5 500 22/2016 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 5915 112521 LowLimit	8015M/D: Di Units: mg/H HighLimit	esel Rang (g %RPD	e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO)	SampT Batcl Analysis D Result 65	Type: MS h ID: 26 Date: 7/ PQL 9.3	5 500 22/2016 SPK value 46.43	Tes F S SPK Ref Val 27.38	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9	PA Method 5915 112521 LowLimit 33.9	8015M/D: Di Units: mg/F HighLimit 141	esel Rang (g %RPD	e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO) Surr: DNOP	SampT Batcl Analysis E Result 65 4.8	Type: MS h ID: 26 Date: 7/ PQL 9.3	5 500 22/2016 SPK value 46.43 4.643	Tes F SPK Ref Val 27.38	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9 104	PA Method 5915 112521 LowLimit 33.9 70	8015M/D: Di Units: mg/k HighLimit 141 130	esel Rang (g %RPD	e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO) Surr: DNOP	SampT Batcl Analysis D Result 65 4.8 D SampT	Type: MS h ID: 26 Date: 7/ PQL 9.3	5 500 22/2016 SPK value 46.43 4.643 5D	Tes F SPK Ref Val 27.38 Tes	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9 104 tCode: El	PA Method 5915 112521 LowLimit 33.9 70 PA Method	8015M/D: Di Units: mg/F HighLimit 141 130 8015M/D: Di	esel Rang (g %RPD esel Rang	e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID 1607862-001AMS Client ID: BatchQC	SampT Batcl Analysis D Result 65 4.8 D SampT Batcl	Type: MS h ID: 26 Date: 7/ PQL 9.3 Type: MS h ID: 26	5 500 22/2016 29K value 46.43 4.643 50 500	Tes F SPK Ref Val 27.38 Tes F	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9 104 tCode: El RunNo: 3	PA Method 5915 112521 LowLimit 33.9 70 PA Method 5915	8015M/D: Di Units: mg/k HighLimit 141 130 8015M/D: Di	esel Rang Kg %RPD esel Rang	e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016	SampT Batcl Analysis D Result 65 4.8 D SampT Batcl Analysis D	Type: MS h ID: 26 Date: 7/ 9.3 Type: MS h ID: 26 Date: 7/	5 500 22/2016 SPK value 46.43 4.643 500 500 22/2016	Tes SPK Ref Val 27.38 Tes S	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9 104 tCode: El RunNo: 3 SeqNo: 1	PA Method 5915 112521 LowLimit 33.9 70 PA Method 5915 112522	8015M/D: Di Units: mg/H HighLimit 141 130 8015M/D: Di Units: mg/H	esel Rang %RPD esel Rang	e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte	SampT Batcl Analysis E Result 65 4.8 D SampT Batcl Analysis E Result	Type: MS h ID: 26 Date: 7/ PQL 9.3 Type: MS h ID: 26 Date: 7/ PQL	5 500 22/2016 SPK value 46.43 4.643 500 500 22/2016 SPK value	Tes F SPK Ref Val 27.38 Tes F SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9 104 tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 5915 112521 LowLimit 33.9 70 PA Method 5915 112522 LowLimit	8015M/D: Di Units: mg/H HighLimit 141 130 8015M/D: Di Units: mg/H HighLimit	esel Rang %RPD esel Rang %RPD	e Organics RPDLimit e Organics RPDLimit	Qual
Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO) Surr: DNOP Sample ID 1607862-001AMS Client ID: BatchQC Prep Date: 7/20/2016 Analyte Diesel Range Organics (DRO)	SampT Batcl Analysis E Result 65 4.8 D SampT Batcl Analysis E Result 65	Type: MS h ID: 26 Date: 7/ 9.3 Type: MS h ID: 26 Date: 7/ PQL 9.8	5 500 22/2016 22/2016 46.43 4.643 4.643 500 500 22/2016 SPK value 48.78	Tes SPK Ref Val 27.38 Tes F SPK Ref Val 27.38	tCode: El RunNo: 3 SeqNo: 1 %REC 80.9 104 tCode: El RunNo: 3 SeqNo: 1 %REC 77.0	PA Method 5915 112521 LowLimit 33.9 70 PA Method 5915 112522 LowLimit 33.9	8015M/D: Di Units: mg/k HighLimit 141 130 8015M/D: Di Units: mg/k HighLimit 141	esel Rang %RPD esel Rang %RPD 0.0345	e Organics RPDLimit e Organics RPDLimit 20	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1607859

WO#:

Page 5 of 7

28-Jul-16

WO#: 1607859

Page 6 of 7

28-Jul-16

Client: Project:	Rule Eng San Juan	ineering L 28-7 217	LC								
Sample ID	MB-26468	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8015D: Gas	oline Rang	e	
Client ID:	PBS	Batch	n ID: 26	468	F	RunNo: 3	35833				
Prep Date:	7/19/2016	Analysis D	ate: 7/	20/2016	5	SeqNo: 1	109484	Units: mg/l	٨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	ND	5.0								
Surr: BFB		1000		1000		102	80	120			
Sample ID	LCS-26468	SampT	ype: LC	s	Tes	tCode: E	PA Method	8015D: Gase	oline Rang	e	
Client ID:	LCSS	Batch	n ID: 26	468	F	RunNo: 3	5833				
Prep Date:	7/19/2016	Analysis D	ate: 7/	20/2016	5	SeqNo: 1	109485	Units: mg/l	٨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	26	5.0	25.00	0	106	80	120			
Surr: BFB		1100		1000		115	80	120			
Sample ID	1607859-001AMS	SampT	уре: М	6	Tes	tCode: E	PA Method	8015D: Gase	oline Rang	е	
Client ID:	SC-1	Batch	n ID: 26	468	F	RunNo: 3	5833				
Prep Date:	7/19/2016	Analysis D	ate: 7/	20/2016	S	SeqNo: 1	109488	Units: mg/l	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	23	4.6	23.23	0	98.4	59.3	143			
Surr: BFB		1100		929.4		114	80	120			
Sample ID	1607859-001AMS	D SampT	ype: MS	SD	Tes	tCode: E	PA Method	8015D: Gase	oline Rang	e	
Client ID:	SC-1	Batch	n ID: 26	468	F	RunNo: 3	5833				
Prep Date:	7/19/2016	Analysis D	ate: 7/	20/2016	S	SeqNo: 1	109489	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	31	4.8	24.20	0	127	59.3	143	29.5	20	R
Surr: BFB		1100		968.1		117	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Rule Engineering LLC

Project: San Jua	n 28-7 217									
Sample ID MB-26468	SampTy	pe: ME	BLK	Tes	TestCode: EPA Method 8021B: Volatiles					
Client ID: PBS	Batch	ID: 26	468	F	RunNo: 35833					
Prep Date: 7/19/2016	Analysis Da	te: 7/	20/2016	S	SeqNo: 1	109545	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	1.0		1.000		100	80	120			
Sample ID LCS-26468	SampTy	pe: LC	S	Test	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batch I	D: 264	468	R	RunNo: 3	5833				
Prep Date: 7/19/2016	Analysis Da	te: 7/	20/2016	S	SeqNo: 1	109546	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.99	0.025	1.000	0	98.7	75.3	123			
Toluene	0.97	0.050	1.000	0	96.6	80	124			
Ethylbenzene	0.99	0.050	1.000	0	99.1	82.8	121			
Xylenes, Total	2.9	0.10	3.000	0	96.9	83.9	122			
Surr: 4-Bromofluorobenzene	1.0		1.000		101	80	120			

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded H
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Ρ Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#:

Page 7 of 7

28-Jul-16

1607859

boraicey: (kipis NE M 87199 Sam 45-4107 nial com	ple Log-In Che	eck List
	ReptNo: 1	
an aranandino (nelitario) ministrativ S (ne		and construction
Autor		
Julyther		
No 🗌	Not Present	
No 🗌	Not Present	
No 🗌	NA 🗆	
No 🗌		
No		
No 🗌		
No 🗆		
No 🗹	NA 🗌	
No	No VOA Vials 🗹	
No 🔽	# of preserved bottles checked	
No 🗌	for pH: (<2 or >	12 unless noted
No 📖	Adjusted?	
No 🗌		
No 🗌	Checked by:	
No 🗌	NA	
Phone Fax	In Person	
	an al ann ann an an an ann an an an an an an	
Signed By	1	
	Signed By	Signed By

Chain-of-Custody Record Client: Rule Engineering LLC Malling Address: 301 Airport Dr. Smile 201 Phone # 505 763 9486	Turn-Around Time: Z Standard □ Rush Project Name: San Juan 28-7 # 217 Project #:	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request						
email or Fax#: Condet Condetention (condetention) QA/QC Package: Standard Level 4 (Full Validation) Accreditation DELAP DOther	Project Manager: Heat her Woods Sampler: Sustin Valder On Ice: Of Yes © No Sample Temperature: 9,1	 MTBE + TPH (Gas only) MTBE + TPH (Gas only) 15B (GRO / DRO / 500) lethod 504.1) lethod 504.1) 8310 or 8270 SIMS) 3 Metals 3 Metals 3 Metals C Vo3 esticides / 8082 PCB's (VOA) enti-VOA) bles (Y or N) 						
$\begin{array}{c c} \hline \textbf{Date} \\ \hline \textbf{Trime} \\ \hline \textbf{Date} \\ \hline \textbf{Trime} \\ \hline \textbf{Date} \\ \hline \textbf{Date} \\ \hline \textbf{Matrix} \\ \hline \textbf{Sample Request ID} \\ \hline \textbf{9.75} \\ \hline \textbf{7/8/c} \\ \hline \textbf{Soil} \\ \hline \textbf{5c-1} \\ \hline \textbf{9.75} \\ \hline \textbf{7/8/c} \\ \hline \textbf{Soil} \\ \hline \textbf{5c-2} \\ \hline \textbf{1} \\ \hline \textbf{1} \\ \hline \textbf{1} \\ \hline \textbf{5c-2} \\ \hline \textbf{1} \hline \textbf{1} \hline \textbf{1} \\ \hline \textbf{1} \hline \textbf{1} \hline \textbf{1} \hline \textbf{1} \\ \hline \textbf{1} \hline $	Container Preservative HEAL No. Type Type HEAL No. 4 or glass Cold -001 4 or glass Cold -002	+++ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ BTEX+ RCRAE PAH's (I RCRAE B081 Pe B270 (S B270 (S						
Date: Time: Rolinguished by: 7/18/11 1732 Allance Junk Date: Time: Relinguished by: 7/18/14 1732 Allance Junk Date: Time: Relinguished by: 7/18/14 1732 Allance Junk Time: Relinguished by: 7/18/14 1732 Allance Junk 7/18/14 1732 Allance Junk 7/18/14 174	Received by: Mustur halt 7/10/12 1732 Received by: Date Time Date Time Date Time Date Time	Remarks: Direct bill to Conoco Phillips Area 7 Ordered by: Lisa Supervisor: Ervin Wyck off Hunter Approver: KA/TLW						

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 20, 2016

Heather Woods Rule Engineering LLC 501 Airport Dr., Ste 205 Farmington, NM 87401 TEL: (505) 325-1055 FAX

RE: San Juan 28-7 217

OrderNo.: 1610738

Dear Heather Woods:

Hall Environmental Analysis Laboratory received 4 sample(s) on 10/15/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order 1610738

Date Reported: 10/20/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-1

 Project: San Juan 28-7 217
 Collection Date: 10/14/2016 10:50:00 AM

 Lab ID: 1610738-001
 Matrix: SOIL
 Received Date: 10/15/2016 1:15:00 PM

 Analyses
 Result
 PQL Qual Units
 DF Date Analyzed
 Batch

resure	. Q. Q.	ai emits		Dute i mary zeu	Dutten
ORGANIC	S			Analys	t: TOM
ND	9.7	mg/Kg	1	10/19/2016 12:03:02 P	M 28128
ND	48	mg/Kg	1	10/19/2016 12:03:02 P	M 28128
92.8	70-130	%Rec	1	10/19/2016 12:03:02 P	M 28128
E				Analys	t: NSB
ND	4.9	mg/Kg	1	10/18/2016 10:48:29 A	M 28094
88.6	68.3-144	%Rec	1	10/18/2016 10:48:29 A	M 28094
				Analys	I: NSB
ND	0.024	mg/Kg	1	10/18/2016 10:48:29 A	M 28094
ND	0.049	mg/Kg	1	10/18/2016 10:48:29 A	M 28094
ND	0.049	mg/Kg	1	10/18/2016 10:48:29 A	M 28094
ND	0.097	mg/Kg	1	10/18/2016 10:48:29 A	M 28094
102	80-120	%Rec	1	10/18/2016 10:48:29 A	M 28094
	CORGANIC ND 92.8 E ND 88.6 ND 88.6 ND ND ND ND ND ND ND 102	ND 9.7 ND 48 92.8 70-130 E ND 4.9 88.6 68.3-144 ND 0.024 ND 0.049 ND 0.049 ND 0.097 102 80-120	ND 9.7 mg/Kg ND 48 mg/Kg 92.8 70-130 %Rec E ND 4.9 mg/Kg ND 4.9 mg/Kg 88.6 68.3-144 %Rec ND 0.024 mg/Kg ND 0.049 mg/Kg ND 0.049 mg/Kg ND 0.049 mg/Kg ND 0.097 mg/Kg 102 80-120 %Rec	ND 9.7 mg/Kg 1 ND 48 mg/Kg 1 92.8 70-130 %Rec 1 E ND 4.9 mg/Kg 1 ND 4.9 mg/Kg 1 ND 0.024 mg/Kg 1 ND 0.024 mg/Kg 1 ND 0.049 mg/Kg 1 ND 0.097 mg/Kg 1 ND 0.097 mg/Kg 1 102 80-120 %Rec 1	Itestin Itestin Differential product SORGANICS Analysi ND 9.7 mg/Kg 1 10/19/2016 12:03:02 P ND 48 mg/Kg 1 10/19/2016 12:03:02 P 92.8 70-130 %Rec 1 10/19/2016 12:03:02 P E Analysi ND 4.9 mg/Kg 1 10/18/2016 10:48:29 A 88.6 68.3-144 %Rec 1 10/18/2016 10:48:29 A ND 0.024 mg/Kg 1 10/18/2016 10:48:29 A ND 0.049 mg/Kg 1 10/18/2016 10:48:29 A ND 0.049 mg/Kg 1 10/18/2016 10:48:29 A ND 0.097 mg/K

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method	Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range	
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 1 of 7
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	rage ror /
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit	it as specified

4	ng	lvti	cal	Re	nort	
~	па	1 7 11	cai	ILC	υυιι	

Lab Order 1610738

Date Reported: 10/20/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-2

 Project: San Juan 28-7 217
 Collection Date: 10/14/2016 10:55:00 AM

 Lab ID: 1610738-002
 Matrix: SOIL
 Received Date: 10/15/2016 1:15:00 PM

 Analyses
 Result
 PQL
 Qual
 Units
 DF Date Analyzed
 Batch

 EPA METHOD 8015M/D: DIESEL RANGE ORGANICS
 Analyst: TOM

EPA METHOD 8015M/D: DIESEL RANGE	ORGANIC	S			Analyst: TOM
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	10/19/2016 12:24:47 PM 28128
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	10/19/2016 12:24:47 PM 28128
Surr: DNOP	94.8	70-130	%Rec	1	10/19/2016 12:24:47 PM 28128
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	10/18/2016 12:01:29 PM 28094
Surr: BFB	90.8	68.3-144	%Rec	1	10/18/2016 12:01:29 PM 28094
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.024	mg/Kg	1	10/18/2016 12:01:29 PM 28094
Toluene	ND	0.049	mg/Kg	1	10/18/2016 12:01:29 PM 28094
Ethylbenzene	ND	0.049	mg/Kg	1	10/18/2016 12:01:29 PM 28094
Xylenes, Total	ND	0.097	mg/Kg	1	10/18/2016 12:01:29 PM 28094
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	10/18/2016 12:01:29 PM 28094

Qualifiers:	*	Value exceeds Maximum Contaminant Level	B	Analyte detected in the associated Method Blank
Quantitation		value exceeds maintain containmait bever.	D	Analyte detected in the associated method Diank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 7
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical	Report
------------	--------

Lab Order 1610738

Date Reported: 10/20/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-3

 Project: San Juan 28-7 217
 Collection Date: 10/14/2016 9:00:00 AM

 Lab ID: 1610738-003
 Matrix: SOIL
 Received Date: 10/15/2016 1:15:00 PM

 Analyses
 Result
 PQL Qual Units
 DF Date Analyzed
 Batch

					5	
EPA METHOD 8015M/D: DIESEL RANG	E ORGANIC	S			Analyst:	том
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	10/19/2016 12:46:27 PM	28128
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/19/2016 12:46:27 PM	28128
Surr: DNOP	94.7	70-1 <mark>3</mark> 0	%Rec	1	10/19/2016 12:46:27 PM	28128
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	10/18/2016 1:16:49 PM	28094
Surr: BFB	90.9	68.3-144	%Rec	1	10/18/2016 1:16:49 PM	28094
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.024	mg/Kg	1	10/18/2016 1:16:49 PM	28094
Toluene	ND	0.047	mg/Kg	1	10/18/2016 1:16:49 PM	28094
Ethylbenzene	ND	0.047	mg/Kg	1	10/18/2016 1:16:49 PM	28094
Xylenes, Total	ND	0.094	mg/Kg	1	10/18/2016 1:16:49 PM	28094
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	10/18/2016 1:16:49 PM	28094

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	в	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 7
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report	
Lab Order 1610738	

Date Reported: 10/20/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-4

 Project: San Juan 28-7 217
 Collection Date: 10/14/2016 11:00:00 AM

 Lab ID: 1610738-004
 Matrix: SOIL
 Received Date: 10/15/2016 1:15:00 PM

 Analyses
 Result
 PQL Qual Units
 DF Date Analyzed
 Batch

1 mary 505	Result	1 QL Qu	ar emes	21	Dute I mary Zea	Dutten
EPA METHOD 8015M/D: DIESEL RANGE	ORGANIC	S			Analyst:	том
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	10/19/2016 1:08:10 PM	28128
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	10/19/2016 1:08:10 PM	28128
Surr: DNOP	96.2	70-130	%Rec	1	10/19/2016 1:08:10 PM	28128
EPA METHOD 8015D: GASOLINE RANGI	Ξ				Analyst:	NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	10/18/2016 1:40:56 PM	28094
Surr: BFB	94.8	68.3-144	%Rec	1	10/18/2016 1:40:56 PM	28094
EPA METHOD 8021B: VOLATILES					Analyst:	NSB
Benzene	ND	0.024	mg/Kg	1	10/18/2016 1:40:56 PM	28094
Toluene	ND	0.048	mg/Kg	1	10/18/2016 1:40:56 PM	28094
Ethylbenzene	ND	0.048	mg/Kg	1	10/18/2016 1:40:56 PM	28094
Xylenes, Total	ND	0.095	mg/Kg	1	10/18/2016 1:40:56 PM	28094
Surr: 4-Bromofluorobenzene	110	80-120	%Rec	1	10/18/2016 1:40:56 PM	28094

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 7
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Client: Rule Engineering LLC

Project: San Juan 28-7 217

Sample ID LCS-28128	SampT	ype: LC	S	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: LCSS	Batch ID: 28128			RunNo: 38041						
Prep Date: 10/18/2016	Analysis D	ate: 10)/19/2016	S	SeqNo: 1	186160	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	44	10	50.00	0	87.2	62.6	124			
Surr: DNOP	4.3		5.000		85.8	70	130			
and a second second a second second	144	and the second		10.01				al bins		
Sample ID MB-28128	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Sample ID MB-28128 Client ID: PBS	SampT Batch	ype: ME	3LK 128	Tes F	tCode: El RunNo: 3	PA Method 8041	8015M/D: Di	esel Rang	e Organics	
Sample ID MB-28128 Client ID: PBS Prep Date: 10/18/2016	SampT Batch Analysis D	Type: ME n ID: 28 Date: 10	3LK 128 0/19/2016	Tes F	tCode: El RunNo: 3 SeqNo: 1	PA Method 8041 186161	8015M/D: Di Units: mg/H	esel Range Kg	e Organics	
Sample ID MB-28128 Client ID: PBS Prep Date: 10/18/2016 Analyte	SampT Batch Analysis D Result	⁻ ype: ME n ID: 28 Pate: 10 PQL	BLK 128 0/19/2016 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8041 186161 LowLimit	8015M/D: Di Units: mg/F HighLimit	esel Rang (g %RPD	e Organics RPDLimit	Qual
Sample ID MB-28128 Client ID: PBS Prep Date: 10/18/2016 Analyte Diesel Range Organics (DRO)	SampT Batch Analysis D Result ND	ype: ME 1D: 28 Date: 10 PQL 10	BLK 128 0/19/2016 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8041 186161 LowLimit	8015M/D: Di Units: mg/F HighLimit	esel Rang (g %RPD	e Organics RPDLimit	Qual
Sample ID MB-28128 Client ID: PBS Prep Date: 10/18/2016 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	SampT Batch Analysis D Result ND ND	ype: ME n ID: 28 Date: 10 PQL 10 50	BLK 128 0/19/2016 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8041 186161 LowLimit	8015M/D: Di Units: mg/ł HighLimit	esel Rang (g %RPD	e Organics RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: 1610738 20-Oct-16

Page 5 of 7

WO#: 1610738

Client: Rule Engineering LLC San Juan 28-7 217 **Project:** Sample ID MB-28094 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range PBS Batch ID: 28094 Client ID: RunNo: 38022 Prep Date: 10/17/2016 Analysis Date: 10/18/2016 SeqNo: 1185899 Units: mg/Kg SPK value SPK Ref Val %REC HighLimit %RPD RPDLimit Analyte Result PQL LowLimit Qual Gasoline Range Organics (GRO) 5.0 ND Surr: BFB 890 1000 88 6 68.3 144 Sample ID LCS-28094 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range Client ID: LCSS Batch ID: 28094 RunNo: 38022 Prep Date: 10/17/2016 Analysis Date: 10/18/2016 SeqNo: 1185900 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Result PQL LowLimit HighLimit Qual Analyte Gasoline Range Organics (GRO) 28 5.0 25.00 0 111 74.6 123 960 Surr: BFB 1000 96.2 68.3 144 Sample ID 1610738-002AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range Client ID: SC-2 Batch ID: 28094 RunNo: 38022 Prep Date: 10/17/2016 Analysis Date: 10/18/2016 SegNo: 1185903 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte 27 24.18 113 61.3 Gasoline Range Organics (GRO) 4.8 0 150 Surr: BFB 880 967.1 90.6 68.3 144 Sample ID 1610738-002AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: SC-2 Batch ID: 28094 RunNo: 38022 Prep Date: 10/17/2016 Analysis Date: 10/18/2016 SeqNo: 1185905 Units: mg/Kg SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual 61.3 Gasoline Range Organics (GRO) 29 23.34 47 0 122 150 4.72 20 880 933.7 0 Surr: BFB 94.4 68.3 144 0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank B
- E Value above quantitation range
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 6 of 7

20-Oct-16

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

Client: Rule Engineering LLC

Project: San Juan 28-7 217

and the second se											
Sample ID	MB-28094	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	PBS	Batc	h ID: 28	094	RunNo: 38022						
Prep Date:	10/17/2016	Analysis [Date: 10)/18/2016	5	SeqNo: 1	185924	Units: mg/l	Kg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Brom	ofluorobenzene	1.0		1.000		102	80	120			
Sample ID	LCS-28094	Samp	Type: LC	S	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	LCSS	Batc	h ID: 28	094	F	RunNo: 3	8022				
Prep Date:	10/17/2016	Analysis [Date: 10	/18/2016	5	SeqNo: 1	185925	Units: mg/l	Kg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.95	0.025	1.000	0	95.4	75.2	115			
Toluene		0.93	0.050	1.000	0	93.3	80.7	112			
Ethylbenzene		0.90	0.050	1.000	0	89.8	78.9	117			
Xylenes, Total		2.8	0.10	3.000	0	94.3	79.2	115			
Surr: 4-Brom	ofluorobenzene	1.0		1.000		102	80	120			
Sample ID	1610738-001AMS	Samp	Type: MS	3	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Sample ID Client ID:	1610738-001AMS SC-1	Samp ⁻ Batc	Type: MS h ID: 28	s 094	Tes	tCode: El	PA Method 8022	8021B: Vola	tiles		
Sample ID Client ID: Prep Date:	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis I	Гуре: М h ID: 28 Date: 10	5 094 0/18/2016	Tes F	tCode: El RunNo: 3 SeqNo: 1	PA Method 8022 185929	8021B: Vola Units: mg/l	tiles Kg		
Sample ID Client ID: Prep Date: Analyte	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis I Result	Type: MS h ID: 28 Date: 10 PQL	5 094 0/18/2016 SPK value	Tes F SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8022 185929 LowLimit	8021B: Vola Units: mg/ł HighLimit	tiles <g %RPD</g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis [Result 1.0	Type: MS h ID: 28 Date: 10 PQL 0.023	5 094 0/18/2016 SPK value 0.9311	Tes F SPK Ref Val 0	tCode: El RunNo: 3 SeqNo: 1 %REC 107	PA Method 8022 185929 LowLimit 71.5	8021B: Vola Units: mg/ł HighLimit 122	tiles <g %RPD</g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047	5 094 0/18/2016 SPK value 0.9311 0.9311	Tes F SPK Ref Val 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106	PA Method 8022 185929 LowLimit 71.5 71.2	8021B: Vola Units: mg/l HighLimit 122 123	tiles <g %RPD</g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311	Tes F SPK Ref Val 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104	PA Method 8022 185929 LowLimit 71.5 71.2 75.2	8021B: Vola Units: mg/k HighLimit 122 123 130	tiles <g %RPD</g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047 0.093	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793	Tes F SPK Ref Val 0 0 0 0 0.02255	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4	8021B: Vola Units: mg/k HighLimit 122 123 130 131	tiles Kg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Sur: 4-Brom	1610738-001AMS SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95	Type: MS h ID: 28 Date: 10 PQL 0.023 0.047 0.047 0.093	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311	Tes F SPK Ref Val 0 0 0 0 0.02255	tCode: El RunNo: 3: SeqNo: 1 %REC 107 106 104 106 102	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120	tiles <g %RPD</g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom	1610738-001AMS SC-1 10/17/2016 Iofluorobenzene 1610738-001AMSE	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 0 Samp	Type: MS h ID: 28 Date: 10 PQL 0.023 0.047 0.047 0.093	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311 5D	Tes F SPK Ref Val 0 0 0 0 0.02255 Tes	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 102 tCode: El	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola	tiles Kg %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID:	1610738-001AMS SC-1 10/17/2016 offuorobenzene 1610738-001AMSE SC-1	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 O Samp Batc	Type: MS h ID: 28 Date: 10 PQL 0.023 0.047 0.047 0.093 Type: MS h ID: 28	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311 5D 094	Tes F SPK Ref Val 0 0 0 0 0.02255 Tes F	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 102 tCode: El RunNo: 3	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola	tiles <g %RPD tiles</g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date:	1610738-001AMS SC-1 10/17/2016 tofluorobenzene 1610738-001AMSE SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 0 Samp Batc Analysis I	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047 0.093 Type: MS h ID: 280 Date: 10	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311 5D 094 0/18/2016	Tes F SPK Ref Val 0 0 0 0 0.02255 Tes F S	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 102 tCode: El RunNo: 3 SeqNo: 1	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022 185931	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k	tiles Kg %RPD tiles Kg	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Sample ID Client ID: Prep Date: Analyte	1610738-001AMS SC-1 10/17/2016 nofluorobenzene 1610738-001AMSE SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 0.95 D Samp Batc Analysis I Result	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047 0.047 0.093 Type: MS h ID: 280 Date: 10 PQL	5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tes F SPK Ref Val 0 0 0 0 0.02255 Tes F SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 102 tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022 185931 LowLimit	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit	tiles <g tiles <g %RPD</g </g 	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Client ID: Prep Date: Analyte Benzene	1610738-001AMS SC-1 10/17/2016 nofluorobenzene 1610738-001AMSE SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 D Samp Batc Analysis I Result 1.0	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047 0.093 Type: MS h ID: 280 Date: 10 PQL 0.025	5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tes F SPK Ref Val 0 0 0 0 0.02255 Tes F SPK Ref Val 0	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 104 106 102 tCode: El RunNo: 3 SeqNo: 1 %REC 105	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022 185931 LowLimit 71.5	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit 122	tiles <g %RPD tiles <g %RPD 3.96 3.96</g </g 	RPDLimit RPDLimit 20	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Client ID: Prep Date: Analyte Benzene Toluene	1610738-001AMS SC-1 10/17/2016 nofluorobenzene 1610738-001AMSE SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 0 Samp Batc Analysis I Result 1.0 1.0	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047 0.093 Type: MS h ID: 280 Date: 10 PQL 0.025 0.049	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311 5D 094 0/18/2016 SPK value 0.9823 0.9823 0.9823	Tes F SPK Ref Val 0 0 0 0 0.02255 Tes F SPK Ref Val 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 104 106 102 tCode: El RunNo: 3 SeqNo: 1 %REC 105 103	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022 185931 LowLimit 71.5 71.2	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit 122 123	tiles <g %RPD tiles <g %RPD 3.96 2.68</g </g 	RPDLimit RPDLimit 20 20	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	1610738-001AMS SC-1 10/17/2016 Iofluorobenzene 1610738-001AMSE SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 0 Samp Batc Analysis I Result 1.0 1.0 1.0	Type: MS h ID: 280 Date: 10 PQL 0.023 0.047 0.047 0.093 Type: MS h ID: 280 Date: 10 PQL 0.025 0.049 0.049	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311 2.793 0.9311 5D 094 0/18/2016 SPK value 0.9823 0.9823 0.9823 0.9823	Tes F SPK Ref Val 0 0 0 0 0 0.02255 Tes F SPK Ref Val 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 102 tCode: El RunNo: 3 SeqNo: 1 %REC 105 103 103	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022 185931 LowLimit 71.5 71.2 75.2	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit 122 123 130	tiles <g %RPD tiles <g %RPD 3.96 2.68 4.61</g </g 	RPDLimit RPDLimit 20 20 20	Qual
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Brom Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	1610738-001AMS SC-1 10/17/2016 tofluorobenzene 1610738-001AMSE SC-1 10/17/2016	Samp Batc Analysis I Result 1.0 0.98 0.97 3.0 0.95 0 Samp Batc Analysis I Result 1.0 1.0 1.0 3.2	Type: MS h ID: 28 Date: 10 PQL 0.023 0.047 0.047 0.093 Type: MS h ID: 28 Date: 10 PQL 0.025 0.049 0.049 0.098	5 094 0/18/2016 SPK value 0.9311 0.9311 0.9311 2.793 0.9311 0.9311 5D 094 0/18/2016 SPK value 0.9823 0.9823 0.9823 0.9823 2.947	Tes 5 5PK Ref Val 0 0 0 0 0.02255 Tes 5PK Ref Val 0 0 0 0 0.02255	tCode: El RunNo: 3 SeqNo: 1 %REC 107 106 104 106 102 tCode: El RunNo: 3 SeqNo: 1 %REC 105 103 103 107	PA Method 8022 185929 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8022 185931 LowLimit 71.5 71.2 75.2 72.4	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola 8021B: Vola Units: mg/k HighLimit 122 123 130 131	tiles <g %RPD tiles <g %RPD 3.96 2.68 4.61 5.94</g </g 	RPDLimit RPDLimit 20 20 20 20	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 7

WO#: 1610738 20-Oct-16

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental And A Albuqu TEL: 505-345-3975 FA Website: www.haller	ilysis La 901 Ha erque, N X: 505 vironme	aboratory wkins NE IM 87109 345-4107 ental.com	Sam	ple Log-In Check	(List
Client Name: RULE ENGINEERING LL	Work Order Number: 16	10738			RcptNo: 1	
Received by/date: Logged By: Lindsay Mangin 10	0 15 16 /15/2016 1:15:00 PM		0	tund of Allorge		
Completed By: Lindsay Mangin 10	/15/2016 2:16:49 PM		0	ty Allogo		
Reviewed By: TC 10/17/16 Chain of Custody		ł	* *			
1. Custody seals intact on sample bottles?	Ň	'es]	No 🗌	Not Present	
2. Is Chain of Custody complete?	١	es 🖌	}	No 🗌	Not Present	
3. How was the sample delivered?	<u>c</u>	ourier				
Log In						
4. Was an attempt made to cool the samples?		es 🖌		No 🗌		
5. Were all samples received at a temperature of	>0° C to 6.0°C Y	es 🛃		No 🗌	NA 🗆	
6. Sample(s) In proper container(s)?	,	res 🛃		No 🗌		
7. Sufficient sample volume for indicated test(s)?	Ň	es 🖈	}	No 🗌		
8. Are samples (except VOA and ONG) properly p	reserved? Y	es 🖈	}	No 🗌		
9. Was preservative added to bottles?	٢	es 🗌]	No 🛃	NA	
10.VOA vials have zero headspace?	٢	es 🗌]	No 🗌	No VOA Vials 🛃	
11. Were any sample containers received broken?		res 🗆]	No 🛃	# of amount of	
12.Does paperwork match bottle labels?	, ,	es 🛃	1	No 🗌	bottles checked for pH: (<2 or >12 u	nless noted
13 Are matrices correctly identified on Chain of Cu	stody?	es 🖌	1	No 🗌	Adjusted?	
14. Is it clear what analyses were requested?	Y	es 🛃		No 🗌		
15.Were all holding times able to be met? (If no, notify customer for authorization.)	Y	es 🖈		No 🗌	Checked by:	· • · · ·
Special Handling (if applicable)						
16. Was client notified of all discrepancies with this	order? Y	es 🗆		No 🗌	NA 🛃	
Person Notified:	Date:					
By Whom:	Via:	Mail	Phone	Fax	In Person	
Regarding:						
Client Instructions:						
17. Additional remarks:						
18. <u>Cooler Information</u>	Intert Cool No. P	Data	Dir.	od By	1	
1 4.4 Good Yes	intact Seat NO Sea	Date	Sigr	ied By		
				at hat 1111 1 hat in heat at hat his 111 h gas b	l	

Chain-of-Custody Record	Turn-Around Time:	HALL ENVIRONMENTAL
lent: hale Engineering LLC	Ø Standard □ Rush	ANALYSIS LABORATORY
)),	Project Name:	
ailing Address: 501 Airport Dr. Suile 20-7	y San Juan 28-7 # 217	4901 Hawkins NE - Albuquerque, NM 87109
arminyton, Mr. 81901	-	Tel. 505-345-3975 Fax 505-345-4107
10ne #: 505 793 9486		
VQC Package:	Project Manager:	3021) as only 4,SO4
rStandard Level 4 (Full Validation)	Heather Woods	
creditation	Sampler: Justize Ualdez	
NELAP Other	On Ice: ZYes	orh OA) 82 82 94 82 94 94 94 94 94 94 94 94 94 94 94 94 94
EDD (Type)	Sample Temperature 4,4	
Date Time Matrix Sample Request ID	Container Type and # Preservative Type HEAL No	BTEX + 4 BTEX + M ⁻ TPH 8015E TPH (Meth EDB (Meth EDB (Meth EDB (Meth EDB (Meth EDB (Meth 831 Pesti 8081 Pesti 8270 (Sem Air Bubbles
114/050 56-1	MOZ Blass Cold -001	
414 1055 51-2	-002	+ + +
HILL 900 51-3	-003	
4/11, 1100 4 56-4		
		┼╴┠╶┠╌╬╍╋╼┠╸┩╴┝╴┫╴┥╸┥╴┥╴┥
		╎
ate: Time: Relinduished by: 1	Received by: Date Time	Remarke:
4/16/1614 Justin Valen	Christ Vals 10/14/10/1414	Direct kill to Conoco Phillips
te: Time: Relinquished by: 4/14/2014/Mathe Walth	Received Dr. Date Time	Approver: KAITLW Ordered by: Approver: KAITLW Lisa Hunder
If necessary, samples submitted to Hall Environmental may be subc	contracted to other accredited laboratories. This serves as notice of this	s possibility. Any sub-contracted data will be clearly notated on the analytical report.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

October 18, 2016

Heather Woods Rule Engineering LLC 501 Airport Dr., Ste 205 Farmington, NM 87401 TEL: (505) 325-1055 FAX

RE: San Juan 28-7 217

OrderNo.: 1610737

Dear Heather Woods:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/15/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1610737

Date Reported: 10/18/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-5

 Project: San Juan 28-7 217
 Collection Date: 10/14/2016 1:50:00 PM

 Lab ID: 1610737-001
 Matrix: MEOH (SOIL)
 Received Date: 10/15/2016 1:15:00 PM

 Analyses
 Result
 POL Qual Units
 DF Date Analyzed
 Batch

resure	. 45	Zum	CINCO	<i>D</i> 1	Dute I mary 200	Dutten
ORGANIC	S				Analyst	том
1800	50		mg/Kg	5	10/17/2016 2:45:02 PM	28084
400	250		mg/Kg	5	10/17/2016 2:45:02 PM	28084
73.0	70-130		%Rec	5	10/17/2016 2:45:02 PM	28084
E					Analyst	NSB
280	17		mg/Kg	5	10/17/2016 10:50:17 AM	1 28066
351	68.3-144	S	%Rec	5	10/17/2016 10:50:17 AM	1 28066
					Analyst	NSB
ND	0.087		mg/Kg	5	10/17/2016 10:50:17 AM	1 28066
0.22	0.17		mg/Kg	5	10/17/2016 10:50:17 AM	1 28066
1.0	0.17		mg/Kg	5	10/17/2016 10:50:17 AM	1 28066
9.5	0.35		mg/Kg	5	10/17/2016 10:50:17 AM	1 28066
126	80-120	S	%Rec	5	10/17/2016 10:50:17 AM	1 28066
	CORGANIC 1800 400 73.0 E 280 351 ND 0.22 1.0 9.5 126	ND 0.087 0.22 0.17 351 68.3-144 ND 0.087 0.22 0.17 1.0 0.17 9.5 0.35 126 80-120	Iteor I Q2 Quit ORGANICS 1800 50 1800 250 73.0 70-130 E 280 17 351 68.3-144 S ND 0.087 0.22 0.17 1.0 0.17 9.5 0.35 126 80-120	ND 0.087 mg/Kg 0.22 0.17 mg/Kg 73.0 70-130 %Rec E 280 17 mg/Kg 351 68.3-144 S %Rec ND 0.087 mg/Kg 0.22 0.17 mg/Kg 1.0 0.17 mg/Kg 9.5 0.35 mg/Kg 126 80-120 S %Rec %Rec	ND 0.087 mg/Kg 5 ND 0.087 mg/Kg 5 100 0.17 mg/Kg 5 100 250 mg/Kg 5 100 250 mg/Kg 5 100 70-130 %Rec 5 100 17 mg/Kg 5 100 0.087 mg/Kg 5 1.0 0.17 mg/Kg 5 9.5 0.35 mg/Kg 5 126 80-120 S %Rec 5	Itestit Itestit <t< td=""></t<>

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 4
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Rule Engineering LLC

Project: San Juan 28-7 217 Sample ID LCS-28084 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Batch ID: 28084 RunNo: 37981 Client ID: LCSS Prep Date: 10/17/2016 Analysis Date: 10/17/2016 SeqNo: 1183848 Units: mg/Kg RPDLimit PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD Qual Analyte Result 50 100 62.6 124 Diesel Range Organics (DRO) 10 50.00 0 Surr: DNOP 4.6 5.000 91.8 70 130 Sample ID MB-28084 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 28084 RunNo: 37981 Prep Date: 10/17/2016 Analysis Date: 10/17/2016 SeqNo: 1183849 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 9.9 10.00 98.8 70 130 Sample ID LCS-28085 TestCode: EPA Method 8015M/D: Diesel Range Organics SampType: LCS Client ID: LCSS RunNo: 37982 Batch ID: 28085 Prep Date: 10/17/2016 Analysis Date: 10/17/2016 SeqNo: 1183862 Units: %Rec Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Surr: DNOP 4.7 5.000 94.5 70 130 Sample ID MB-28085 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 28085 RunNo: 37982 Prep Date: 10/17/2016 Analysis Date: 10/17/2016 SeqNo: 1183863 Units: %Rec Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte PQL

Surr: DNOP	8.9 10.	00 89.5 70	130
Sample ID MB-28076	SampType: MBLK	TestCode: EPA Method	8015M/D: Diesel Range Organics
Client ID: PBS	Batch ID: 28076	RunNo: 37981	
Prep Date: 10/14/2016	Analysis Date: 10/17/2016	SeqNo: 1184449	Units: %Rec
Analyte	Result PQL SPK val	ue SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Surr: DNOP	8.6 10.	85.7 70	130
Prep Date: 10/14/2016 Analyte Surr: DNOP	Analysis Date: 10/17/2016 Result PQL SPK val 8.6 10.	SeqNo: 1184449 ue SPK Ref Val %REC LowLimit 00 85.7 70	Units: %Rec HighLimit %RPD RPDLimit Qual 130

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 4

WO#: 1610737 18-Oct-16

Client: Rule Engineering LLC

Project: San Juan 28-7 217

Sample ID MB-28066	SampTy	pe: ME	3LK	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e	
Client ID: PBS	Batch	ID: 28	066	F	RunNo: 3	7988				
Prep Date: 10/14/2016	Analysis Da	ate: 10	0/17/2016	S	SeqNo: 1	184548	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	810		1000		81.3	68.3	144			
Sample ID LCS-28066	SampTy	/pe: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Sample ID LCS-28066 Client ID: LCSS	SampTy Batch	/pe: LC	S 066	Tes F	tCode: El	PA Method 7988	8015D: Gaso	line Rang	e	
Sample IDLCS-28066Client ID:LCSSPrep Date:10/14/2016	SampTy Batch Analysis Da	/pe: LC ID: 28 ate: 10	S 066 0/17/2016	Tes F	tCode: El RunNo: 3 SeqNo: 1	PA Method 7988 184549	8015D: Gaso Units: mg/K	oline Rang	e	
Sample ID LCS-28066 Client ID: LCSS Prep Date: 10/14/2016 Analyte	SampTy Batch Analysis Da Result	ype: LC ID: 28 ate: 10 PQL	S 066 0/17/2016 SPK value	Tes F SPK Ref Val	tCode: EF RunNo: 3 SeqNo: 1 %REC	PA Method 7988 184549 LowLimit	8015D: Gaso Units: mg/K HighLimit	vline Rang Gg %RPD	e RPDLimit	Qual
Sample ID LCS-28066 Client ID: LCSS Prep Date: 10/14/2016 Analyte Gasoline Range Organics (GRO)	SampTy Batch Analysis Da Result 26	ype: LC ID: 28 ate: 10 PQL 5.0	S 066 0/17/2016 SPK value 25.00	Tes F S SPK Ref Val 0	tCode: ER RunNo: 3 SeqNo: 1 %REC 103	PA Method 7988 184549 LowLimit 74.6	8015D: Gaso Units: mg/K HighLimit 123	viline Rang Sg %RPD	e RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

WO#: 1610737 18-Oct-16

Page 3 of 4

Client: Rule Engineering LLC

Project: San Juan 28-7 217

Sample ID MB-28066	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: PBS	Batc	h ID: 28	066	F	RunNo: 3	7988				
Prep Date: 10/14/2016	Analysis [Date: 10	0/17/2016	S	SeqNo: 1	184561	Units: mg/M	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.95		1.000		94.8	80	120			
Sample ID LCS-28066	Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Volat	tiles		
Client ID: LCSS	Batc	h ID: 28	066	F	RunNo: 3	7988				
Prep Date: 10/14/2016	Analysis [Date: 10	0/17/2016	S	SeqNo: 1	184562	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.93	0.025	1.000	0	92.6	75.2	115			
Toluene	0.96	0.050	1.000	0	96.1	80.7	112			
Ethylbenzene	0.99	0.050	1.000	0	98.6	78.9	117			
Xylenes Total	0.0	0.40	0.000	0	070		445			
rylonoo, rotai	2.9	0.10	3.000	0	97.9	79.2	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 4

WO#: 1610737 18-Oct-16

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albu Albu TEL: 505-345-3975 Website: www.hai	Analysi 4901 querqu FAX: 5 llenviro	s Laboratory Hawkins NL e, NM 87109 05-345-4107 nmental.con	sam	ple Log-In C	heck List
Client Name: RULE ENGINEERING LL	Work Order Number:	16107	37		RcptNo:	1
Received by/date:	0/15/16					
Logged By: Lindsay Mangin	0/15/2016 1:15:00 PM		C	Julythap		
Completed By: Lindsay Mangin 1	0/15/2016 2:14:49 PM	ł	(Junely Hargo		
Reviewed By: AT 10/ 17115			L L			
Chain of Custody						
1. Custody seals intact on sample bottles?		Yes		No 🗌	Not Present	
2. Is Chain of Custody complete?		Yes		No 🗌	Not Present	
3. How was the sample delivered?		Cour	ier			
Log In						
4. Was an attempt made to cool the samples?		Yes		No 🗌		
_						
5. Were all samples received at a temperature of	of >0° C to 6.0°C	Yes		No	NA	
6. Sample(s) in proper container(s)?		Yes		No 🗌		
7. Sufficient sample volume for indicated test(s)	?	Yes		No 🗆		
8. Are samples (except VOA and ONG) properly	preserved?	Yes		No 🗋		
9. Was preservative added to bottles?		Yes		No 🛃	NA 🗌	
10.VOA vials have zero headspace?		Yes		No 🗌	No VOA Vials 🛃	
11. Were any sample containers received broker	?	Yes		No 🛃	# of preserved	• • • • • • • • •
12. Does paperwork match bottle labels?		Yes		No 🗆	bottles checked for pH:	
(Note discrepancies on chain of custody)		Vee			Adjusted?	r >12 unless noted
13. Are matrices correctly identified on Chain of C	ustody?	Yes				
15. Were all holding times able to be met?		Yes			Checked by:	
(If no, notify customer for authorization.)				l		
16. Was client notified of all discrepancies with th	is order?	Yes		No 🗌	NA 🛃	
Person Notified:	Date:			The local division of the state of the		
By Whom:	Via:	eMa	il 🗌 Pho	ne 🗌 Fax	In Person	
Regarding:						
Client Instructions:						
17. Additional remarks:						
18. Cooler Information	, .					
Cooler No Temp C Condition Sea	I Intact Seal No S	Seal Da	ite Si	gned By		
1 4.4 Good Yes			1			

.

Client: Mailing	Address	-of-Cu Engine	inport Dr. Suite	Turn-Around Standard Project Name Gan Ju Project #:	Time: Rush e: an 26-7	Same Day # 217		49 Te	01 H	lawki	IA WWW ins N 15-31	LL AL v.hall NE - 975 A	El YS lenv Alb F	ironr uque	ment 505-	AE al.co e, NI 345-	NN 30 0m 4107	1EI RA 109		AL	
email o QA/QC I C Stan Accredi	r Fax#;;c Package: dard itation AP	D Othe	Level 4 (Full Validation)	Project Mana Heather Sampler: Ju On Ica:	ger: (Nouds stige (Jalden 22 Yes perature: 4	T No.	E+ 研究 (8021)	E + TPH (Gas only)	GRO / DRO / MRO)	1418.1)	1504.1)	or 8270 SIMS)	als	NO3, NO2, PO4, SO4)	des / 8082 PCB's		(OA)				Y or N)
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	A BTEX + MTB	BTEX + MTB	- TPH 8015B (TPH (Method	EDB (Method	PAH's (8310	RCRA 8 Met	Anions (F,CI,	8081 Pesticio	8260B (VOA	8270 (Semi-\				Air Bubbles (
Date: IOIUIU Date: IOIAIL	Time: UA Time: 7 D i U	Relinquish	ed by: where by: ad by: Att 14 () A & H & (Received by: Mutto Received by:	Whelt=	Date Time	Rer		s: 711	Bil		, Ün	Aves	o P Subred	billi	15	Vin	Wy	cKol	}£	
_ <u></u>	f necessary,	samples sub	mitted to Hall Environmental may be subc	contracted to other a	ccredited laboratori	es. This serves as notice of thi	s possi	ibility.	Any st	ub-con	tracte	d data	will be	e clear	ly not	ated or	n the a	nalytica	l report		

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

October 26, 2016

Heather Woods Rule Engineering LLC 501 Airport Dr., Ste 205 Farmington, NM 87401 TEL: (505) 325-1055 FAX

RE: San Juan 28-7 #217

OrderNo.: 1610B31

Dear Heather Woods:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/22/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytic	al Report
----------	-----------

Lab Order 1610B31

Date Reported: 10/26/2016

Hall Environmental Analysis Laboratory, Inc.

 CLIENT: Rule Engineering LLC
 Client Sample ID: SC-6

 Project: San Juan 28-7 #217
 Collection Date: 10/21/2016 10:20:00 AM

 Lab ID: 1610B31-001
 Matrix: SOIL
 Received Date: 10/22/2016 8:20:00 AM

 Analyses
 Result
 PQL
 Qual
 Units
 DF
 Date Analyzed
 Batch

			~ ~	2000 11001 200	2000
ORGANIC	s			Analys	t: TOM
ND	10	mg/Kg	1	10/25/2016 12:57:27 F	M 28237
ND	50	mg/Kg	1	10/25/2016 12:57:27 F	M 28237
86.0	70-130	%Rec	1	10/25/2016 12:57:27 F	M 28237
E				Analys	t: NSB
ND	4.6	mg/Kg	1	10/25/2016 11:22:27 F	M 28236
86.6	68.3-144	%Rec	1	10/25/2016 11:22:27 F	M 28236
				Analys	t: NSB
ND	0.046	mg/Kg	1	10/25/2016 11:22:27 F	M 28236
ND	0.046	mg/Kg	1	10/25/2016 11:22:27 F	M 28236
ND	0.046	mg/Kg	1	10/25/2016 11:22:27 F	M 28236
ND	0.092	mg/Kg	1	10/25/2016 11:22:27 P	M 28236
102	80-120	%Rec	1	10/25/2016 11:22:27 P	M 28236
	E ORGANIC ND 86.0 E ND 86.6 ND 86.6 ND ND ND ND ND ND ND 102	E ORGANICS ND 10 ND 50 86.0 70-130 E ND 4.6 86.6 68.3-144 ND 0.046 ND 0.046 ND 0.046 ND 0.046 ND 0.046 ND 0.092 102 80-120	ND 10 mg/Kg ND 50 mg/Kg 86.0 70-130 %Rec E ND 4.6 mg/Kg ND 0.046 mg/Kg ND 0.092 mg/Kg 102 80-120 %Rec	ND 10 mg/Kg 1 ND 50 mg/Kg 1 86.0 70-130 %Rec 1 E ND 4.6 mg/Kg 1 ND 4.6 mg/Kg 1 ND 0.046 mg/Kg 1 ND 0.092 mg/Kg 1 ND 0.092 mg/Kg 1 ND 0.092 %Rec 1	EORGANICS Analys ND 10 mg/Kg 1 10/25/2016 12:57:27 P ND 50 mg/Kg 1 10/25/2016 12:57:27 P 86.0 70-130 %Rec 1 10/25/2016 12:57:27 P E Analys Analys Analys Analys Analys Analys ND 4.6 mg/Kg 1 10/25/2016 11:22:27 P 86.6 68.3-144 %Rec 1 10/25/2016 11:22:27 P ND 0.046 mg/Kg 1 10/25/2016 11:22:27 P ND 0.092 mg/Kg 1 10/25/2016 11:22:27 P ND<

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 4
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Rule Engineering LLC **Client:**

San Juan 28-7 #217 **Project:**

Sample ID LCS-28237	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	n ID: 28	237	F	RunNo: 3	8183				
Prep Date: 10/24/2016	Analysis D	ate: 10)/25/2016	S	SeqNo: 1	191886	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	48	10	50.00	0	95.6	62.6	124			
Surr: DNOP	4.7		5.000		93.3	70	130			
Sample ID MB-28237	SamnT	vne ME	a k	Test	Code: El	PA Mothod	8015M/D · Di	osol Rang	Organice	
Sample ID MB-28237	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Sample ID MB-28237 Client ID: PBS	SampT Batch	ype: ME	3LK 237	Tesi R	tCode: El RunNo: 3	PA Method 8183	8015M/D: Di	esel Rang	e Organics	
Sample ID MB-28237 Client ID: PBS Prep Date: 10/24/2016	SampT Batch Analysis D	ype: ME 1D: 282 Date: 10	BLK 237 0/25/2016	Tesi R S	tCode: El RunNo: 3 SeqNo: 1	PA Method 8183 191887	8015M/D: Di Units: mg/F	esel Rango (g	e Organics	
Sample ID MB-28237 Client ID: PBS Prep Date: 10/24/2016 Analyte	SampT Batch Analysis D Result	Type: ME n ID: 282 Date: 10 PQL	BLK 237 0/25/2016 SPK value	Tesi R SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8183 191887 LowLimit	8015M/D: Di Units: mg/F HighLimit	esel Rango (g %RPD	e Organics RPDLimit	Qual
Sample ID MB-28237 Client ID: PBS Prep Date: 10/24/2016 Analyte Diesel Range Organics (DRO)	SampT Batch Analysis D Result ND	ype: ME 1D: 282 Date: 10 PQL 10	BLK 237 0/25/2016 SPK value	Test R S SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8183 191887 LowLimit	8015M/D: Di Units: mg/F HighLimit	esel Rango (g %RPD	e Organics RPDLimit	Qual
Sample ID MB-28237 Client ID: PBS Prep Date: 10/24/2016 Analyte Diesel Range Organics (DRO) Motor Oil Range Organics (MRO)	SampT Batch Analysis D Result ND ND	ype: ME n ID: 282 Pate: 10 PQL 10 50	BLK 237 0/25/2016 SPK value	Test R SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8183 191887 LowLimit	8015M/D: Di Units: mg/F HighLimit	esel Rango (g %RPD	e Organics	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- **Reporting Detection Limit** RL
- W Sample container temperature is out of limit as specified

Page 2 of 4

WO#:

1610B31 26-Oct-16

Client: Rule Engineering LLC

Project: San Juan 28-7 #217

Sample ID MB-28236	SampT	BLK 236	Tes	e								
Prep Date: 10/24/2016	Analysis D)ate: 10	0/25/2016	S	SeqNo: 1	192363	Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Gasoline Range Organics (GRO) Surr: BFB	ND 850	5.0	1000		85.0	68.3	144					
Sample ID LCS-28236	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e			
Sample ID LCS-28236 Client ID: LCSS	SampT Batch	ype: LC	S 236	Tes F	tCode: El	PA Method 8202	8015D: Gaso	line Rang	e			
Sample ID LCS-28236 Client ID: LCSS Prep Date: 10/24/2016	SampT Batch Analysis D	ype: LC 1D: 28 Date: 10	:S 236 0/25/2016	Tes F S	tCode: El RunNo: 3 SeqNo: 1	PA Method 8202 192364	8015D: Gaso Units: mg/K	oline Rang	e			
Sample ID LCS-28236 Client ID: LCSS Prep Date: 10/24/2016 Analyte	SampT Batch Analysis D Result	ype: LC n ID: 28 Date: 10 PQL	S 236 0/25/2016 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8202 192364 LowLimit	8015D: Gasc Units: mg/K HighLimit	vline Rang Kg %RPD	e RPDLimit	Qual		
Sample ID LCS-28236 Client ID: LCSS Prep Date: 10/24/2016 Analyte Gasoline Range Organics (GRO)	SampT Batch Analysis D Result 22	ype: LC n ID: 28 Date: 10 PQL 5.0	S 236 0/25/2016 SPK value 25.00	Tes F S SPK Ref Val 0	tCode: El RunNo: 3 SeqNo: 1 %REC 89.8	PA Method 8202 192364 LowLimit 74.6	8015D: Gaso Units: mg/M HighLimit 123	Soline Rang	e RPDLimit	Qual		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 4

WO#: 1610B31 26-Oct-16

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client: Rule Engineering LLC

Project: San Juan 28-7 #217

Sample ID	MB-28236	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Vola	tiles						
Client ID:	PBS	Batc	h ID: 28	236	F	RunNo: 3	8202								
Prep Date:	10/24/2016	Analysis I	Date: 10	0/25/2016	5	SeqNo: 1	192384	Units: mg/Kg							
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene		ND	0.025												
Toluene		ND	0.050												
Ethylbenzene		ND	0.050												
Xylenes, Total		ND	0.10												
Surr: 4-Bron	nofluorobenzene	0.99		1.000		99.0	80	120							
Sample ID	LCS-28236	Samp	Type: LC	S	Tes	tCode: El	PA Method	8021B: Vola	tiles						
Client ID:	LCSS	Batc	h ID: 28	236	F	RunNo: 3	8202								
Prep Date:	10/24/2016	Analysis [Date: 10	0/25/2016	5	SeqNo: 1	192385	Units: mg/ł	۲g						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene		0.93	0.025	1.000	0	92.8	75.2	115							
Toluene		0.93	0.050	1.000	0	92.9	80.7	112							
Ethylbenzene		0.95	0.050	1.000	0	95.4	78.9	117							
Xylenes, Total		2.8	0.10	3.000	0	93.6	79.2	115							
Surr: 4-Bron	nofluorobenzene	1.0		1.000		103	80	120							
Sample ID 1610B31-001AMS SampType: MS TestCode: EPA Method 8021B: Volatiles															
Sample ID	1610B31-001AMS	Samp	Туре: МS	3	Tes	tCode: El	PA Method	8021B: Vola	tiles						
Sample ID Client ID:	1610B31-001AMS SC-6	Samp ⁻ Batc	Type: MS h ID: 28	3 236	Tes	tCode: El RunNo: 3	PA Method 8202	8021B: Vola	tiles						
Sample ID Client ID: Prep Date:	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I	Type: MS h ID: 28 Date: 10	3 236 0/25/2016	Tes F	tCode: El RunNo: 3 SeqNo: 1	PA Method 8202 192387	8021B: Vola Units: mg/ł	tiles (g						
Sample ID Client ID: Prep Date: Analyte	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result	Type: MS h ID: 28 Date: 10 PQL	3 236 0/25/2016 SPK value	Tes F SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8202 192387 LowLimit	8021B: Vola Units: mg/ł HighLimit	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92	Type: MS h ID: 28 Date: 10 PQL 0.024	5 236 0/25/2016 SPK value 0.9434	Tes F SPK Ref Val 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4	PA Method 8202 192387 LowLimit 71.5	8021B: Vola Units: mg/ł HighLimit 122	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95	Type: MS h ID: 28 Date: 10 PQL 0.024 0.047	5 236)/25/2016 SPK value 0.9434 0.9434	Tes F SPK Ref Val 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101	PA Method 8202 192387 LowLimit 71.5 71.2	8021B: Vola Units: mg/k HighLimit 122 123	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98	Type: MS h ID: 28 Date: 10 PQL 0.024 0.047 0.047	5 236)/25/2016 SPK value 0.9434 0.9434 0.9434	Tes F SPK Ref Val 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104	PA Method 8202 192387 LowLimit 71.5 71.2 75.2	8021B: Vola Units: mg/k HighLimit 122 123 130	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9	Type: MS h ID: 28 Date: 10 PQL 0.024 0.047 0.047 0.094	3 236 0/25/2016 0.9434 0.9434 0.9434 0.9434 2.830	Tes F SPK Ref Val 0 0 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4	8021B: Vola Units: mg/F HighLimit 122 123 130 131	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron	1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0	Type: MS h ID: 28 : Date: 10 0.024 0.047 0.047 0.094	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434	Tes F SPK Ref Val 0 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp	Type: MS h ID: 28 Date: 10 PQL 0.024 0.047 0.047 0.047 0.094	3 236 5/25/2016 0.9434 0.9434 0.9434 2.830 0.9434 5D	Tes F SPK Ref Val 0 0 0 0 0 0 Tes	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method	8021B: Vola Units: mg/F HighLimit 122 123 130 131 120 8021B: Vola	tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID Client ID:	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6	Samp Batc Analysis I 0.92 0.95 0.98 2.9 1.0 D Samp Batc	Type: MS h ID: 28 : Date: 1(0.024 0.047 0.047 0.094 Type: MS h ID: 28 :	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 35D 236	Tes F SPK Ref Val 0 0 0 0 Tes F	tCode: EI RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: EI RunNo: 3	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola	tiles (g %RPD tiles	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID Client ID: Prep Date:	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp Batc Analysis I	Type: MS h ID: 28: Date: 10 PQL 0.024 0.047 0.047 0.047 0.094 Type: MS h ID: 28: Date: 10	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 30 236 0/26/2016	Tes F SPK Ref Val 0 0 0 0 0 Tes F s	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El RunNo: 3 SeqNo: 1	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202 192388	8021B: Vola Units: mg// HighLimit 122 123 130 131 120 8021B: Vola Units: mg//	tiles (g %RPD tiles	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Sample ID Client ID: Prep Date: Analyte	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp Batc Analysis I Result	Type: MS h ID: 28: Date: 10 PQL 0.024 0.047 0.047 0.094 Type: MS h ID: 28: Date: 10 PQL	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 2.830 0.9434 5D 236)/26/2016 SPK value	Tes F SPK Ref Val 0 0 0 0 Tes F SPK Ref Val	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El RunNo: 3 SeqNo: 1 %REC	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202 192388 LowLimit	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit	tiles (g %RPD tiles (g %RPD	RPDLimit	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Client ID: Prep Date: Analyte Benzene	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp Batc Analysis I Result 0.88	Type: MS h ID: 28: Date: 10 PQL 0.024 0.047 0.047 0.094 Type: MS h ID: 28: Date: 10 PQL 0.023	3 236 5/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 2.830 0.9434 5D 236 5/26/2016 SPK value 0.9372	Tes F SPK Ref Val 0 0 0 0 Tes F SPK Ref Val 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El RunNo: 3 SeqNo: 1 %REC 93.7	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202 192388 LowLimit 71.5	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit 122	tiles (g %RPD tiles (g %RPD 4.57	RPDLimit RPDLimit 20	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Client ID: Prep Date: Analyte Benzene Toluene	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp Batc Analysis I Result 0.88 0.89	Type: MS h ID: 28: Date: 10 PQL 0.024 0.047 0.047 0.094 Type: MS h ID: 28: Date: 10 PQL 0.023 0.047	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 30 236)/26/2016 SPK value 0.9372 0.9372	Tes F SPK Ref Val 0 0 0 0 0 Tes F SPK Ref Val 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El RunNo: 3 SeqNo: 1 %REC 93.7 95.0	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202 192388 LowLimit 71.5 71.2	8021B: Vola Units: mg/k HighLimit 122 123 130 131 120 8021B: Vola Units: mg/k HighLimit 122 123	tiles (g %RPD tiles (g %RPD 4.57 6.51	RPDLimit RPDLimit 20 20	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp Batc Analysis I Result 0.88 0.89 0.92	Type: MS h ID: 28: Date: 10 PQL 0.024 0.047 0.047 0.047 0.094 Type: MS h ID: 28: Date: 10 PQL 0.023 0.047 0.047	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 2.830 0.9434 5D 236 SPK value 0.9372 0.9372 0.9372 0.9372	Tes F SPK Ref Val 0 0 0 0 0 Tes F SPK Ref Val 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El RunNo: 3 SeqNo: 1 %REC 93.7 95.0 98.0	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202 192388 LowLimit 71.5 71.2 75.2	8021B: Vola Units: mg/F HighLimit 122 123 130 131 120 8021B: Vola Units: mg/F HighLimit 122 123 130	tiles (g %RPD tiles (g %RPD 4.57 6.51 6.33	RPDLimit RPDLimit 20 20 20 20	Qual				
Sample ID Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bron Client ID: Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	1610B31-001AMS SC-6 10/24/2016 nofluorobenzene 1610B31-001AMS SC-6 10/24/2016	Samp Batc Analysis I Result 0.92 0.95 0.98 2.9 1.0 D Samp Batc Analysis I Result 0.88 0.89 0.92 2.7	Type: MS h ID: 28: Date: 10 PQL 0.024 0.047 0.047 0.094 Type: MS h ID: 28: Date: 10 PQL 0.023 0.047 0.024 0.047	3 236)/25/2016 SPK value 0.9434 0.9434 0.9434 2.830 0.9434 2.830 0.9434 5D 236 SPK value 0.9372 0.9372 0.9372 0.9372 2.812	Tes F SPK Ref Val 0 0 0 0 0 0 5 FK Ref Val 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 3 SeqNo: 1 %REC 97.4 101 104 103 106 tCode: El RunNo: 3 SeqNo: 1 %REC 93.7 95.0 98.0 95.9	PA Method 8202 192387 LowLimit 71.5 71.2 75.2 72.4 80 PA Method 8202 192388 LowLimit 71.5 71.2 75.2 75.2 72.4	8021B: Vola Units: mg/F HighLimit 122 123 130 131 120 8021B: Vola Units: mg/F HighLimit 122 123 130 131	tiles (g %RPD tiles (g %RPD 4.57 6.51 6.33 7.44	RPDLimit RPDLimit 20 20 20 20 20 20	Qual				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 4

WO#: 1610B31 26-Oct-16

HALL Hall Environment ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-345-39 Website: www.	tal Analysis Labora 4901 Hawkins Ibuquerque, NM 87 75 FAX: 505-345-4 hallenvironmental.	NE 109 Sam 107 com	ple Log-In Ch	eck List
Client Name: RULE ENGINEERING LL Work Order Numb	er: 1610B31		RcptNo: 1	
Received by/date: Cm 10/22//G				
Logged By: Anne Thorne 10/22/2016 8:20:00	AM	anne Hann	-	
Completed By: Anne Thorne() 10/24/2016		Ann Al-	-	
Reviewed By: DE TC 12/24/16				
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?	Courier			
Log In				
 Was an attempt made to cool the samples? 	Yes 🗹	No 🗆		
5. Were all samples received at a temperature of $>0^{\circ}$ C to 6.0° C	Yes 🗹	No 🗌		
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌		
7 Sufficient sample volume for indicated test(s)?	Yes V	No 🗆		
8 Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗆		
9. Was preservative added to bottles?	Yes	No 🗹	NA 🗌	
10 VOA viele have new bandeness?	Yes 🗖	No 🗍		
10. VOA viais nave zero neadspace?		No V	NO VOA Viais 🕑	
	res		# of preserved	
12. Does paperwork match bottle labels?	Yes 🗹	No 🗖	for pH:	
(Note discrepancies on chain of custody)			(<2 or	>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗹	No 🛄		
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗆	Checked by:	
,				
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	

Person Notified:		Date		Salah attorney and another the sales and at 18	
By Whom:		Via:	eMail	Phone Fax	In Person
Regarding:		-	18-370 C		
Client Instructions:	1927 West and a second se		and a second second second second		

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.4	Good	Yes	-		

С	hain-	of-Cu	stody Record	Turn-Around	Time:									Ē	NV	ТЕ		NR	AF	NT	-	
lient:	Rule 1	Envinor	MAR IIC	□ Standard	Rush	3 Day	1							YS	SIS	5 L	AE	30	RA	ТС	R	Y
		J		Project Name	:			www.hallenvironmental.com														
failing	Address	:501 P	timet Dr. Guile	500 J	un 78-		4901 Hawkins NE - Albuquerque NM 87109										109					
05	Fanni	nation	NIN	Project #:				Tel. 505-345-3975 Fax 505-345-4107														
hone #	1: 505	793 940	ôle									4	A	naly	/sis	Req	uest					
mail or	Fax#: (valdezas	ule enineening Com	Project Mana	ger:			1)	nly)	RO)					04)							
A/QC F	Package:	U	5 5	34 4	115			802	as o	/ W			S)		04,S	CB's						
₫ Stan	dard		Level 4 (Full Validation)	Heather	· Woods			25	Ű	RO			SIN		2,PC	2 P						
	tation		r	Sampler: Ju	stin Ualo	lez		FIME	TPH	0/0	3.1)	4.1)	270		NO	808						(Z
			I	On Ice:	Yes	U-NO	A DECEMBER OF	+	+ ш	Ц Ш	418	50	or 8	als	NO	es /		٩٥				Y or
1 200	(1900/_			Campio rom				TEB	ATB	SB (thod	thoc	310	Vieta	Ľ,	ticic	OA	mi-				es (
Date	Time	Matrix	Sample Request ID	Container	Preservative	HEA	I No	+ >	+ 1	801	(Mei	(Me	8	A 8	IS (F	Pes	S	(Se				lqqr
Duto	Time			Type and #	Туре	Unine		Ê	Ê	H	H	DB	AH'	CR	nior	081	260	270				ir Bi
	inn	C.il	6 (.)	(D) ()	All	ILL ILL	701		<u> </u>	F F	-	<u> </u>	<u> </u>	Ľ.	A	80	80	~	\rightarrow	+	+	4
6119	10.00	2011	51 4	1402 61635	Loid		001	200		<u>\</u> .										-+	+	
																				\rightarrow	_	
																. `.						
																				-	-	
																			$ \rightarrow$	\rightarrow	-+	+
							Ø									-			\vdash	\dashv	+	
								-						-	-	-	-			-+	+	+
									-			-			-	-			$\left - \right $	\rightarrow		
lato:	Time:	Pelingulish	ad by: / /	Received by:		Date	Time	Por	nork	<u> </u>					116.		A 1-	- 1 14	, «			
	1:00 (E. U. A.I.	MA L	Ibal	10/1	111-DO			3. W	N, 2	-11		1	100	-	1	1		uper	Ling	WEST.
Lilly Date:	Time:	Relinauish	ed by:	Received by:	Wilts_	, Date	Time		11	00	1	Bil	14		1 N	NO(6 !	hi	1/10	5	0	
					× II							J.			<u></u>				- <u>P</u> .			
21/1c	2100	1			710 10	10216	0870				ord	teres	d by	4:1	150	H	und	ter				

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.