<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 **District IV** 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

OIL CONS. DIV DIST. 3

Form C-141

Revised August 8, 2011

MAR 2 0 2017 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

					7										
Release Notification and Corrective Action															
						OPERA	ГOR		☐ Initia	al Report	X	Final Repor			
Name of Co	mpany	Chev	ron Midco	ntinent, L.P.		Contact	Chester O'Na	an		1					
Address		332	CR 3100,	Aztec, NM 87410			No. (505) 333-190	01							
Facility Nar	ne	Robi	nson Broth	ners #2		Facility Typ									
Surface Ow	ner	FEE		Mineral C	wner		FEE		API No	. 30-045	3150	4			
Surface OW	ilei	,							ATTIO	. 00-040	7-0100	-			
II I	Cartian	T1.	D			N OF RE		E 4/3	T .	0 1					
Unit Letter	Section	Township	Range	Feet from the		n/South Line	Feet from the		Vest Line	County					
Р	34	32N	13W	805	2	South	1005	E	ast		San Ju	an			
			La	titude 36.938	3298	Longitud	e -108.185336								
			Da			OF REL									
Type of Rele	ase N	latural gas. Pr	oduced wa	ater (Fruitland Coa			Release est. < 1	nallon	Volume R	Recovered	0				
Source of Re		latural gas gat					lour of Occurrenc					12/22/16 10:13			
Was Immedia	ate Notice (Yes X	No Not Re		If YES, To	Whom?								
		Į.		100											
By Whom?			8.2			Date and H									
Was a Water	course Read		Yes [l No		If YES, Volume Impacting the Watercourse.									
				-		est. < 1	gallon								
If a Watercou	irse was Im	pacted, Descr	ibe Fully.	k											
				the gas gathering				heavy r	ain runoff a	nd ran into t	he La F	lata river.			
A puddle b	etween the	site of the rele	ease and t	he river was tested	d for ch	nlorides, results	were negative.								
Describe Cau	se of Probl	em and Remed	dial Action	n Taken *											
Landowner c	alled Chevr	on local emerg	gency pho	ne-line at 10:13 AM		_		-							
				the line isolated a											
				of the release was											
Describe Are	a Affected	and Cleanup A	Action Tak									_			
				as pulled through											
				istant overcoating,											
I hereby certi	fy that the i	information gi	ven above	is true and comp	lete to	the best of my	knowledge and u	nderstar	d that purs	uant to NM	OCD rt	iles and			
regulations al	l operators	are required to	report an	nd/or file certain re	elease	notifications ar	nd perform correc	tive acti	ons for rele	eases which	may en	ndanger			
				ce of a C-141 repo											
				investigate and retance of a C-141											
		ws and/or regu		tunee of a C 1711	eport	does not renev	e the operator of i	Сэроны	officy for Co	omphanee v	itii airy	other			
						OIL CONSERVATION DIVISION									
Signature:				_											
Signature.			100 5-1 000			A	F 16		/may		2				
Printed Name	: Chest	er O'Nan				Approved by	Environmental Sp	pecialist	C						
Title:	Produ	ction Team Le	ad			Approval Dat	: 4/28/1	7 ,	Expiration 1	Date:					
							7	, , ,	Aphanon	Jane.					
E-mail Addre	ss: cnoc@	chevron.com				Conditions of	Approval:	_		Attached					
Date:	3/1	20/17	Phone:	(505) 947-1000											

* Attach Additional Sheets If Necessary

#WCS 1635844828

Analytical Report

Report Summary

Client: Chevron

Chain Of Custody Number:

Samples Received: 3/6/2017 3:43:00PM

Job Number: 92270-0596 Work Order: P703002

Project Name/Location: Robinson #2

Report Reviewed By:	Walter Hinkown	Date:	3/9/17			
	Walter Hinchman, Laboratory Director					
	Tim Cain Quality Assurance Officer	Date:	3/9/17			

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

Project Name:

Robinson #2

Project Number: Project Manager: 92270-0596 Kyle Walter Reported:

09-Mar-17 14:06

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Pipeline 5 Spots	P703002-01A	Soil	03/06/17	03/06/17	Glass Jar, 4 oz.
Background	P703002-02A	Soil	03/06/17	03/06/17	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Robinson #2

Project Number: Project Manager: 92270-0596 Kyle Walter Reported: 09-Mar-17 14:06

Pipeline 5 Spots P703002-01 (Solid)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.10	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
Toluene	ND	0.10	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
Ethylbenzene	ND	0.10	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
p,m-Xylene	ND	0.20	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
o-Xylene	ND	0.10	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
Total Xylenes	ND	0.10	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
Total BTEX	ND	0.10	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		100 %	50-1	50	1710005	03/06/17	03/07/17	EPA 8021B	
Nonhalogenated Organics by 8015									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	1710005	03/06/17	03/07/17	EPA 8015D	
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	1710006	03/07/17	03/08/17	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		93.9 %	50-1	50	1710005	03/06/17	03/07/17	EPA 8015D	
Surrogate: n-Nonane		108 %	50-2	000	1710006	03/07/17	03/08/17	EPA 8015D	
Total Petroleum Hydrocarbons by 418,1									
Total Petroleum Hydrocarbons	ND	40.0	mg/kg	1	1710010	03/08/17	03/08/17	EPA 418.1	
Cation/Anion Analysis									
Chloride	38.9	20.0	mg/kg	1	1710009	03/07/17	03/07/17	EPA 300.0	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Chevro

Project Name:

Robinson #2

322 Road 3100 Aztec NM, 87410 Project Number: Project Manager: 92270-0596

Reported: 09-Mar-17 14:06

Kyle Walter

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1710005 - Purge and Trap EPA 5030A										
Blank (1710005-BLK1)				Prepared: 0	6-Mar-17	Analyzed: (07-Mar-17			
Benzene	ND	0.10	mg/kg							
Toluene	ND	0.10								
Ethylbenzene	ND	0.10	**							
p,m-Xylene	ND	0.20	**							
p-Xylene	ND	0.10	**							
Total Xylenes	ND	0.10								
Total BTEX	ND	0.10	•							
Surrogate: 4-Bromochlorobenzene-PID	8.00		"	8.00		100	50-150			
LCS (1710005-BS1)				Prepared: 0	6-Mar-17	Analyzed: (07-Mar-17			
Benzene	5.04	0.10	mg/kg	5.00		101	70-130			
Toluene	5.05	0.10		5.00		101	70-130			
Ethylbenzene	5.09	0.10	*	5.00		102	70-130			
p,m-Xylene	10.3	0.20	*	10.0		103	70-130			
o-Xylene	4.94	0.10		5.00		98.8	70-130			
Surrogate: 4-Bromochlorobenzene-PID	8.05		"	8.00		101	50-150			
Matrix Spike (1710005-MS1)	Sou	rce: P703002-	01	Prepared: 06-Mar-17 Analyzed: 07-Mar-17						
Benzene	5.05	0.10	mg/kg	5.00	ND	101	54.3-133			
Toluene	5.07	0.10		5.00	ND	101	61.4-130			
Ethylbenzene	5.09	0.10	**	5.00	ND	102	61.4-133			
p,m-Xylene	10.3	0.20		10.0	ND	103	63.3-131			
o-Xylene	4.97	0.10	**	5.00	ND	99.5	63.3-131			
Surrogate: 4-Bromochlorobenzene-PID	8.11		"	8.00		101	50-150			
Matrix Spike Dup (1710005-MSD1)	Sou	rce: P703002-	01	Prepared: 0	6-Mar-17	Analyzed: (07-Mar-17			
Benzene	5.02	0.10	mg/kg	5.00	ND	100	54.3-133	0.486	20	
Toluene	5.04	0.10	"	5.00	ND	101	61.4-130	0.549	20	
Ethylbenzene	5.06	0.10	•	5.00	ND	101	61.4-133	0.639	20	
p,m-Xylene	10.3	0.20	**	10.0	ND	103	63.3-131	0.705	20	
o-Xylene	4.90	0.10		5.00	ND	98.1	63.3-131	1.39	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

8.10

5796 US Highway 64, Farmington, NM 87401

Surrogate: 4-Bromochlorobenzene-PID

Ph (505) 632-0615 Fx (505) 632-1865

8.00

101

50-150

Jahoratory@envirotech-inc.com

Project Name:

Robinson #2

Project Number: Project Manager: 92270-0596 Kyle Walter

Reported: 09-Mar-17 14:06

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch 1710005 - Purge and Trap EPA 5030A													
Blank (1710005-BLK1)				Prepared: 0	6-Mar-17	Analyzed: ()7-Mar-17						
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg										
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.58		"	8,00		94.7	50-150						
LCS (1710005-BS1)				Prepared: 06-Mar-17 Analyzed: 07-Mar-17									
Gasoline Range Organics (C6-C10)	55.9	20.0	mg/kg	60.9		91.8	70-130						
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.58		"	8.00		94.7	50-150						
Matrix Spike (1710005-MS1)	Sou	rce: P703002-	D1	Prepared: 06-Mar-17 Analyzed: 07-Mar-17 60.9 91.8 70-130									
Gasoline Range Organics (C6-C10)	55.6	20.0	mg/kg	60.9	ND	91.3	70-130						
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.61		"	8.00		95.1	50-150						
Matrix Spike Dup (1710005-MSD1)	Sou	rce: P703002-	Prepared: 0	6-Mar-17	Analyzed: (07-Mar-17							
Gasoline Range Organics (C6-C10)	55.1	20.0	mg/kg	60.9	ND	90.5	70-130	0.813	20				
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.57		n	8.00		94.7	50-150						

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

Page 5 of 10

Chevron

Project Name:

Robinson #2

322 Road 3100 Aztec NM, 87410 Project Number:

92270-0596

Project Manager:

Kyle Walter

Reported: 09-Mar-17 14:06

RPD

W.DEC

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

Result EPA 3570/3630	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes		
EPA 3570/3630											
	<u>C</u>										
			Prepared &	Analyzed:	07-Mar-17						
ND	25.0	mg/kg									
51.7		mg/L	50.0		103	50-200					
Prepared & Analyzed: 07-Mar-17											
535	25.0	mg/kg	500		107	38-132					
57.4		mg/L	50.0		115	50-200					
Sour	ce: P703001-	01	Prepared &	Analyzed:	07-Mar-17						
2760	250	mg/kg	500	2480	56.2	38-132					
56.6		mg/L	50.0		113	50-200					
SD1) Source: P703001-01				Prepared & Analyzed: 07-Mar-17							
2580	250	mg/kg	500	2480	19.7	38-132	6.83	20	SPK		
56.1		mg/L	50.0		112	50-200					
	ND 51.7 535 57.4 Sour 2760 56.6 Sour 2580	51.7 535 25.0 57.4 Source: P703001- 2760 250 56.6 Source: P703001- 2580 250	ND 25.0 mg/kg 51.7 mg/L 535 25.0 mg/kg 57.4 mg/L Source: P703001-01 2760 250 mg/kg 56.6 mg/L Source: P703001-01 2580 250 mg/kg	Prepared & Solution Prepared & Solution	Prepared & Analyzed: ND 25.0 mg/kg 51.7 mg/L 50.0 Prepared & Analyzed: 535 25.0 mg/kg 500 57.4 mg/L 50.0 Source: P703001-01 Prepared & Analyzed: 2760 250 mg/kg 500 2480 56.6 mg/L 50.0 Source: P703001-01 Prepared & Analyzed: 2580 250 mg/kg 500 2480	Prepared & Analyzed: 07-Mar-17 ND 25.0 mg/kg 51.7 mg/L 50.0 103 Prepared & Analyzed: 07-Mar-17 535 25.0 mg/kg 500 107 57.4 mg/L 50.0 115 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2760 250 mg/kg 500 2480 56.2 56.6 mg/L 50.0 113 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2580 250 mg/kg 500 2480 19.7	Prepared & Analyzed: 07-Mar-17 ND 25.0 mg/kg 51.7 mg/L 50.0 103 50-200 Prepared & Analyzed: 07-Mar-17 535 25.0 mg/kg 500 107 38-132 57.4 mg/L 50.0 115 50-200 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2760 250 mg/kg 500 2480 56.2 38-132 56.6 mg/L 50.0 113 50-200 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2580 250 mg/kg 500 2480 19.7 38-132	Prepared & Analyzed: 07-Mar-17 ND 25.0 mg/kg 51.7 mg/L 50.0 103 50-200 Prepared & Analyzed: 07-Mar-17 535 25.0 mg/kg 500 107 38-132 57.4 mg/L 50.0 115 50-200 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2760 250 mg/kg 500 2480 56.2 38-132 56.6 mg/L 50.0 113 50-200 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2580 250 mg/kg 500 2480 19.7 38-132 6.83	Prepared & Analyzed: 07-Mar-17 ND 25.0 mg/kg 51.7 mg/L 50.0 103 50-200 Prepared & Analyzed: 07-Mar-17 535 25.0 mg/kg 500 107 38-132 57.4 mg/L 50.0 115 50-200 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2760 250 mg/kg 500 2480 56.2 38-132 56.6 mg/L 50.0 113 50-200 Source: P703001-01 Prepared & Analyzed: 07-Mar-17 2580 250 mg/kg 500 2480 19.7 38-132 6.83 20		

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Project Name:

Robinson #2

Project Number: Project Manager: 92270-0596 Kyle Walter Reported: 09-Mar-17 14:06

Total Petroleum Hydrocarbons by 418.1 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1710010 - 418 Freon Extraction										
Blank (1710010-BLK1)				Prepared &	Analyzed:	08-Mar-17				
Total Petroleum Hydrocarbons	ND	40.0	mg/kg							
LCS (1710010-BS1)				Prepared &	Analyzed:	08-Mar-17				
Total Petroleum Hydrocarbons	918	40.0	mg/kg	1000		91.8	80-120			
Matrix Spike (1710010-MS1)	Sour	ce: P703001-	01	1000 91.8 80-120 Prepared & Analyzed: 08-Mar-17						
Total Petroleum Hydrocarbons	3320	400	mg/kg	1000	3410	NR	70-130			SPK1
Matrix Spike Dup (1710010-MSD1)	Sour	ce: P703001-	01	Prepared &	Analyzed:	08-Mar-17				
Total Petroleum Hydrocarbons	4940	400	mg/kg	1000	3410	153	70-130	39.2	30	SPK1

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

envirotech-inc.com laboratory@envirotech-inc.com

Page 7 of 10

Project Name:

Robinson #2

Project Number:

92270-0596

Reported:

Project Manager: Kyle Walter 09-Mar-17 14:06

Cation/Anion Analysis - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1710009 - Anion Extraction EPA 300.0										
Blank (1710009-BLK1)				Prepared &	Analyzed:	07-Mar-17				
Chloride	ND	20.0	mg/kg							
LCS (1710009-BS1)				Prepared &	Analyzed:	07-Mar-17				
Chloride	512	20.0	mg/kg	500		102	90-110			
Matrix Spike (1710009-MS1)	Sou	rce: P703002-	01	Prepared &	Analyzed:	07-Mar-17				
Chloride	548	20.0	mg/kg	500	38.9	102	80-120			
Matrix Spike Dup (1710009-MSD1)	Sou	rce: P703002-	01	Prepared &	Analyzed:	07-Mar-17				
Chloride	546	20.0	mg/kg	500	38.9	101	80-120	0.289	20	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Project Name: Project Number: Project Manager: Robinson #2

92270-0596 Kyle Walter Reported: 09-Mar-17 14:06

Notes and Definitions

SPK2

The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to native analyte concentration at 4 times or

greater than the spike concentration.

SPK1

The spike recovery is outside of quality control limits.

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

aboratory@envirotech-inc.com

Page 9 of 10

Ph (505) 632-0615 Fx (505) 632-1865

Ph (970) 259-0615 Fr (800) 362-1879

